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Radio-frequency (RF) exposure measurements using personal dosimeters or exposimeters are 

influenced by the presence of the body, which reflects, diffracts, and absorbs the RF 

electromagnetic fields (EMFs) that one wishes to measure [Bolte et al., 2011]. Two of these 

effects are a reduction in registered electric field (E-Field) strength and the influence of 

polarization. The latter one is caused by differences in propagation around the human body, 

according to De Miguel-Bilbao et al. [2017]. In their research, they find that “the attenuation 

due to the body-shadow effect is greater when the antenna is vertically polarized” [De Miguel-

Bilbao et al., 2017]. This would be mainly attributed to “a greater effective area where incident 

waves are scattered” [De Miguel-Bilbao et al., 2017]. In our opinion, the propagation and 

absorption mechanisms are more complex, in particular the polarization dependence, than what 

the authors of [De Miguel-Bilbao et al., 2017] bring forward in the discussion section of their 

paper. Moreover, as we will show in this manuscript, the received polarization is not controlled 

nor constant in the experiments used in [De Miguel-Bilbao et al., 2017]. 

When RF EMFs are incident on a subject, a part of the incident RF EMFs will be absorbed, 

another part will be reflected away from the measurement devices, and a third part can 

propagate towards the exposimeters. This propagation has several components: propagating 

modes around the human body: specular components including the line-of-sight (LOS) 

component between the source and the exposimeter and reflections from the environment, and 

the diffuse multipath component (DMC). This DMC is the part of the incident power density 

that cannot be attributed to any incident angle [Bamba et al., 2015] (in contrast to the specular 

components).  

First, the loss of EM power due to absorption in the human body is quantified using the whole-

body averaged specific absorption rate (SARwb). Existing literature on the absorption of RF 

frequencies above > 2 GHz is not conclusive on the polarization dependence of the SARwb. 



3 
 

Some studies find a higher absorption for horizontally polarized (H-polarized) incident plane 

waves [Hirata et al., 2009; Uusitupa et al., 2010; Bamba et al., 2015] at frequencies higher than 

2 GHz. Others, Kuhn et al. [2009] and Bakker et al. [2010], find only slightly higher absorption 

values for vertically polarized (V-polarized) incident plane waves at frequencies higher than 

2 GHz.  

Second, the propagation around the human body is indeed polarization dependent. However, 

there is again no clear consensus in literature that propagation of EMF waves around the human 

body would result in relatively more path loss for V-polarized plane waves at 2435 MHz in 

comparison to H-polarized EMFs. Alves et al. [2011] found a higher path loss for E-fields 

polarized parallel to the main axis of a lossy cylinder in comparison to E-fields polarized 

orthogonal to the surface of the same cylinder at 2.4 GHz, for EMFs that are emitted in very 

close proximity to the cylinder. Kammersgaard et al. [2016] found less path loss at the back of 

a lossy cylinder for a V-polarized incident wave at 2.45 GHz than for an H-polarized incident 

plane wave. They also indicate that the path loss depends heavily on the dielectric properties of 

the cylinder. Syed et al. [1991] and Mavridis et al. [2013] indicate that a difference in path loss 

between both polarizations depends on the size and dielectric properties of the phantom 

(cylinder) w.r.t. the used wavelength. Moreover, it is not clear how the two considered 

polarizations H and V would convert into parallel and orthogonally propagating modes on the 

body as both incident polarizations will have components alongside both on body orientations 

(parallel and orthogonal to the body). 

Third, the specular reflections are polarization dependent. A fraction of the power emitted by 

an antenna with a certain (linear) polarization will be converted to other polarizations [Gaspard, 

2015; Quitin et al., 2010]. This effect is commonly quantified using the cross-polarization ratio 

(XPR). This is a statistical quantity that depends on the size of the indoor environment 

[Gaspard, 2015], the separation between transmitter and receiver [Quitin et al., 2010], and their 
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relative orientations [Gaspard, 2015; Quitin et al., 2010]. Given the information provided in De 

Miguel-Bilbao et al. [2017], one cannot assume one of the two considered polarizations H and 

V are reflected more or less efficient in the studied rooms, nor can one determine what the XPR 

is at the location of the receiver. 

Finally, in the indoor configurations shown in De Miguel-Bilbao et al. [2017] a considerable 

amount of incident power density can be found in the DMC [Andersen et al., 2007]. The DMC 

has an XPR closer to 1 [Gaspard, 2015; Landmann, et al., 2007; Quitin et al., 2010], which 

means that received power is less dependent on the polarization of the source antenna. Bamba 

et al. [2012] demonstrated that the DMC at 2.3 GHz in an indoor environment contains 

considerable amounts of incident power density.  At 6 and 10 m from the transmitting antenna, 

more than 50% and 70%, respectively, of all incident power will be in the DMC. In a follow-

up study, Bamba et al. [2014] also demonstrated that the power loss due to absorption of DMC 

does not depend on polarization of the transmitting antenna. 

In order to validate the polarization dependency of exposimeters we suggest the use of 

measurements in an anechoic chamber [Thielens et al., 2013] where only specular components 

with a controlled polarization are present, and a reverberation chamber [Aminzadeh et al., 2016] 

where the XPR can be controlled using mechanical stirring [Kildal and Carlsson, 2002].  
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