

FACULTY OF ENGINEERING AND ARCHITECTURE

Oxygen-Containing Contaminants and Steam Cracking: Understanding their Impact Using COILSIM1D

Ismaël Amghizar¹, Andrés E. Muñoz G.², Marko R. Djokic¹, Kevin M. Van Geem¹, Guy B. Marin¹

¹ Laboratory for Chemical Technology, Ghent University - www.lct.UGent.be ² AVGI – www.avgi.be

2017 AIChE Spring Meeting – 29th Ethylene Producers' Conference San Antonio - TX, USA, March 27th, 2017

Steam Cracking

AVGI

Oxygen containing compounds

Typical contaminants in the feed

Bio based species

Steam Cracking

Methanol Acids Formaldehyde CO/CO_2 Gum formation

Introduction

- Reactor and kinetic model
- Simulations and Results

Conclusions

The challenge:

- Complex chemistry
 - Large number of species
 - Large number of reactions
- Reactor model
- Unknown mixture

The solution:

- COILSIM1D
 - Detailed Chemistry
 - 1D reactor model
 - Feed reconstruction
 - Reasonable computational times

Key elements of COILSIM1D

z z+dz

0

COILSIM1D

- Broadest kinetic model for steam cracking
 - o 720+ molecules
 - o 43 radicals
 - 300,000+ reactions
- Based on high level Ab initio data, and validated (pilot and industrial)

Ζ

CRACKSIM

Free radical mechanism

3 main reaction families:

1. C-C and C-H scission of molecules and reverse radical-radical recombination

$$R_1-R_2\leftrightarrow R_1^\bullet+R_2^\bullet$$

2. H abstraction reactions (intra- and intermolecular)

$$R_1 - H + R_2^{\bullet} \leftrightarrow R_1^{\bullet} + R_2 - H$$

3. Radical addition to olefins and reverse β-scission of radicals, both intra- and intermolecular

$$R_1^{\bullet} + R_2 - R_3 \leftrightarrow R_1 - R_2 - R_3^{\bullet}$$

CRACKSIM

Assumption for accurate network of manageable size

- μ -hypothesis: bimolecular reactions can be neglected for certain radicals (C₆⁺)
- PSSA for large radical species

Kinetic model consists of two parts:

• β -network: network with elementary reactions of C_5^- radicals

•µ-network: describes the thermal decomposition of large molecules

PRIM-O

De Bruycker, R. Production of green base chemicals through conventional and emerging pyrolysis processes. Ghent University, 2016.

Inclusion of oxygenates

Introduction of new species and radicals which can interact with hydrocarbon matrix

Validation

Pilot plant of LCT - UGent

- Fire-heated Furnace
- Reactor: 12.8 m long
- 7 independently heated cells
- Online analytics:
 - Permanent Gas Analyzer
 - Refinery Gas Analyzer
 - Detailed HC Analyzer
 - GCxGC-FID/TOF-MS
 - Light Oxygenates Analyzer
 - CO / CO₂ detector

- Introduction
- Reactor and kinetic model
- Simulations and Results

Conclusions

Simulation cases

		wt/wt	Conversion?	
СНЗОН	•	0.01	V	•
20LE-C06	•	0.000833	V	
CPT	•	0.0135	V	=
ME-CPT	•	0.0231	V	-
CHX	•	0.0501	\checkmark	
ME-CHX	•	0.0341	\checkmark	
DM-CHX	•	0.0222	V	
ET-CHX	•	0.00247	\checkmark	
BENZENE	•	0.00423		
TOLUENE	•	0.0093		
XYLENES	-	0.0124		
ET-BENZENE	-	0.00768		
IP-BENZENE	•	0.0118		
C62mip	•	0.0717		Ŧ

Two contaminants:

- Methanol
- -DME

Two illustrative cases:

Case	Hydrocarbon	Oxygenate	Concentrations [wt%]	COT [°C]	COP [bar]	δ [kg _{H2O} / kg dry feed]
i	Naphtha	Methanol	[0, 0.025, 0.05, 0.075, 0.1, 0.5, 1.0, 2.0]	840	1.8	0.35
ii	Naphtha	DME	[0, 0.025, 0.05, 0.075, 0.1, 0.5, 1.0, 2.0]	840	1.8	0.35

Simulation cases

Naphtha composition

Reconstructed from commercial indices using SIMCO

Commercial indices of the naphtha feed				
Specific density [kg/m ³]	708.8			
ASTM D86 [°C]				
IBP	39			
50%	99			
FBP	165			
PIONA [wt%]				
Paraffins	36.5			
Iso-paraffins	32.8			
Olefins	0.0			
Naphthenes	21.4			
Aromatics	9.20			

Reconstructed feed

Results: Case I

17

Results: Case II

18

Validation

Simulated vs experimental data

- Temperatures: 800 - 860 °C

echnology

AVG

– Conc. Oxygenates: 0 – 2 wt%

Introduction

- Reactor and kinetic modeling
- Simulations and Results

Conclusions

Wrapping up

- CRACKSIM has been extended with the thermal decomposition of oxygenates
- COILSIM1D can explicitly account for the effect of oxygenates on reactor outlet yields
- Presence of oxygen compounds in the feed negatively impact the yields of valuable products

Wrapping up

- The simulated cases (methanol and DME) showed an increased yield of CO, CO₂ and formaldehyde, compared to pure HC feed
- Validation with pilot plant experiments showed good agreement of the model for a broad range of conditions

Acknowledgements

The Long Term Structural Methusalem Funding

FACULTY OF ENGINEERING AND ARCHITECTURE

Oxygen-Containing Contaminants and Steam Cracking: Understanding their Impact Using COILSIM1D

Ismaël Amghizar¹, Andrés E. Muñoz G.², Marko R. Djokic¹, Kevin M. Van Geem¹, Guy B. Marin¹

¹ Laboratory for Chemical Technology, Ghent University - www.lct.UGent.be ² AVGI – www.avgi.be

2017 AIChE Spring Meeting – 29th Ethylene Producers' Conference San Antonio - TX, USA, March 27th, 2017

