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Abstract. In modern factories, different machines and devices offering their
services, such as producing parts or simply providing information, become more
and more important. The number and diversity of such devices is increasing and the
task of combining available resources into workflows becomes a challenge which
can hardly be handled by a human user. In this paper we describe how we use
RESTdesc, a formalism to semantically describe possible actions of RESTful Web
APIs via existential rules to automatically generate and execute such workflows.
Our approach makes use of Notation3 reasoners and their ability to produce
proofs. These proofs are interpreted as workflow descriptions which can be easily
executed and updated. The latter makes our approach very adaptable to unforeseen
situations. By using one rule per possible API call, our system is very modular and
easy to maintain; services can be readily added or removed. Our implementation
shows how the use of rule-based reasoning can significantly improve the daily
work in today’s factories.
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1 Business Case

Our business case applies to workflows in factories. Modern factories rely on a huge
variety of services provided by different computers; there are sensors which measure
the temperature of a machine, there are interfaces to start and stop machines, there are
different sources to share knowledge, computers to communicate with human users, and
many more. Access to all these services is given through RESTful Web APIs whose
functioning is semantically described. A workflow system should take these descriptions
into account, properly combine them, and execute the services when it comes to the task
of fulfilling a desired goal. It should be flexible enough to change workflows when a
service does not behave as expected or simply fails, and it should support all kinds of
reachable goals which could be semantically expressed within the language. Such an
adaptable goal-driven workflow system facilitates factory work and organization:

– Existing software services can be used in an optimal way; if a new task needs to be
solved, the system is aware of existing services and can use them. No service gets
forgotten. Unnecessary expenses for the implementation of new use case specific
components or machines can be avoided.
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– The maintenance of the workflow system is easy. If a new component is bought, it
can easily be added to the workflow system by adding its functional description. If a
component will not be used anymore, its description can be simply removed. No
time is lost by editing rather complex detailed workflows.

– If a component temporarily does not work, another service (or the combination of
several services) can cover for that. So the daily work in the factory does not get
disturbed by the failure of a single component.

– Users have the possibility to define their own instant goals. Even workflows which
do not get repeated very often (like for example accessing different sources to get
data about the state of a specific single component of a machine) are supported.

– Knowledge can be shared and accessed in a more efficient way. Data in factories
is often stored in different computer systems or databases. An adaptive system as
described above is aware of the sources and can compose and execute workflows to
access those as needed. No time is lost by searching for information.

2 Technological Challenges

A goal driven adaptive workflow system as described above should:

Semantics use the knowledge at its disposal (description of services, background know-
ledge about infrastructure, machines and workers) to compose and execute a plan in
order to reach a given goal;

Adaptivity adapt the plan if (for example due to service failure) any service does not
behave as expected;

Configuration allow to add or remove service descriptions from the system at configu-
ration time;

Flexibility immediately support all viable goals the user could express in its underlying
language;

Scalability be able to deal with a big amount of possible services and knowledge.

There are several options to implement workflow systems. In industrial contexts,
process-oriented approaches are very common. Systems like for example jBPM [3] or
Activiti [1] enable the user to express whole processes using Business Process Model and
Notation (BPMN) [2]. While such systems are a good solution for fixed and error-resitent
workflows which get repeated frequently, they are not suited for the use case described
above: they are not able to autonomously compose workflows, which insted have to be
specified by the user. They do not take context information like working schedules in
factories or functioning of machines into account (Semantics). If something in a workflow
goes wrong, e.g., if a component fails, such a system can only react on that if that case
has been considered in the workflow description (Adaptivity). If services get added or
removed from the system, all workflows making use of this particular component need
to be edited, because the system is not able to adapt to that case (Configuration). If a new
goal becomes relevant to the system, the workflow towards that particular goal needs to
be explicitly modeled, even if all relevant components are already used in other contexts
(Flexibility). As the workflows are known beforehand, these kinds of systems can be
optimised; therefore most of them scale very well (Scalability).
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1 @prefix : <http://facts4workers.eu/>.
2 @prefix http: <http://www.w3.org/2011/http#>.
3 @prefix tmpl: <http://purl.org/restdesc/http-template#>.
4
5 { ?part :partId ?id. }
6 =>
7 { _:request http:methodName "GET";
8 tmpl:requestURI ("http ://f4w.eu/parameters /" ?id);
9 http:resp [ http:body _:parameters ].

10 ?part :productionParameters _:parameters. }.

Listing 1. RESTdesc description for an API call to retrieve the production parameters for a part.

Given the requirements above, especially the need for flexibility and configurability,
we opted for a rule-based solution. In the proposed implementation, each possible
operation of a service is described by a rule taking into account the data and resources
needed to apply a service, a description on how it can be applied, and the situation
which results from its execution. We then make use of the well-studied mechanisms
employed in rule-based reasoning. Rules and facts get combined into a formal proof
for a desired goal. This can then serve as a plan which can be updated after every
service-call execution. Our approach is thereby highly adaptive, as will be pointed out in
the following sections.

3 Rule-based Solution

In this section our rule-based solution is detailed. First, we introduce RESTdesc [9],
the description format for RESTful Web APIs employed in our solution. After that we
explain how RESTdesc descriptions can be combined into proofs which then serve as
plans towards a goal. These plans can be executed and updated. In the third part of this
section we illustrate this in more detail and explain how our framework adapts in cases
where services do not behave as expected. Our approach is based on an earlier paper [7],
where a more formal consideration of the algorithm described below can be found.

3.1 Describing RESTful Web APIs

RESTdesc is a way to formally describe the functionality of RESTful Web APIs in terms
of rules. These are expressed in Notation3 (N) [5], a logic which forms a superset
of RDF and extends the RDF data model by functional predicates, logical operators
(in particular implication), and the option to refer formulas (graphs). N distinguishes
between two kinds of variables, the universal variable starting with ‘?‘ and the existential
variable or blank node beginning with ‘_:‘. These variables are implicitly existentially
and universally, resp., quantified [4]. N supports blank nodes in the conclusion of a
rule, and allows thereby reasoning with existential rules.

The latter is one of the reasons why we use N for our purposes; a RESTdesc
description is an existential rule describing a possible API operation. Each such rule has
the raw structure

{ precondition. } => { HTTP-request. postcondition.}
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where the three parts precondition, HTTP-request and postcondition are as follows:

1. The precondition specifies the resources needed to perform the operation described.
Such a description may not include existential variables.

2. The HTTP-request description explains by which exact request the desired result
can be obtained. The request itself is represented by a new existential variable, all
its other variables should also be contained in the precondition.

3. The postcondition describes the results that the execution of the operation provides.
All universal variables it contains should also be present in the precondition. The
postcondition may additionally contain existential variables.

Note that the conditions ensure that all universal variables occurring in the consequence
of a rule are also present in the antecedent; RESTdesc descriptions do not introduce
new universally quantified variables. By choosing an existential variable to represent the
request itself, we express that, given the circumstances described in the pre-condition,
the existence of such a call can be guaranteed. The existential variables which are only
allowed in the postcondition fulfill a special purpose: they express the knowledge of
whose existence we know before executing the call, but whose exact form we can only
know after that. These variables get instantiated by performing the call.

To better understand this idea we take a closer look at the formula displayed in
Listing 1. The formula describes an API operation which, given a certain part, can be
performed to retrieve its production parameters like for example its measurements and
the material it is made of. According to the precondition (line 5) we need a part and
its part-id to be able to execute the described API-operation. With this information an
HTTP-GET-request to the URI http://f4w.eu/parameters/?id can be constructed
with ?id being a placeholder for the actual part-id1 (HTTP-request description, line
7–8). In lines 9–10, the consequences of the execution of such an API call are expressed
(postcondition). As a response, the call gets the production parameters of the part with
this particular part id. In the description, these parameters are represented by a blank
node, _:parameters, an existential variable which is quantified within the consequence
of the rule [4]. Given a part and its id, we do know of the existence of these parameters
and that they can be retrieved by executing the call, their exact nature and content is only
known after the execution of the call.

3.2 A proof as a workflow description

Having introduced the basic idea of RESTdesc descriptions in the last section, we now
explain how these can be combined into a workflow. Here we make use of the fact
that the descriptions are simple rules and can as such be applied and combined by a
rule-based reasoner to verify a desired goal. N reasoners work in a goal-driven manner;
provided with facts, rules, and a goal, they will try to find evidence for the latter and, in
case of success, provide a formal proof. As in such a proof all rules which were used are
also displayed, we can interpret it as a workflow description and follow it rule-by-rule.

We clarify this by an example. Additionally to Listing 1, we take another RESTdesc
description into account; Listing 2 displays a formula which explains how, given the

1 Here the formula makes use of an HTTP-template, see http://purl.org/restdesc/http-template.

http://purl.org/restdesc/http-template
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1 @prefix : <http://facts4workers.eu/>.
2 @prefix http: <http://www.w3.org/2011/http#>.
3
4 { ?part :productionParameters ?parameters. }
5 =>
6 { _:request http:methodName "POST";
7 http:requestURI "http :// f4w.eu/machine1/produce ";
8 http:body ?parameters;
9 http:resp [ http:body _:newPartInstance ].

10 _:newPartInstance :instanceOf ?part. }.

Listing 2. RESTdesc description for an API call which starts the production of a part.

production parameters of a certain part, a machine can be called to produce that part. We
furthermore have a knowledge base which contains, among other information, the fact
that a cog is a type of part which can be produced and that the internal id of cog is 27:

:cog :partId 27. (1)

We now want to produce an instance of such a cog and invoke the reasoner with a goal:

{ ?x instanceOf :cog. }=>{ ?x :instanceOf :cog. }. (2)

In N goals are given to the reasoner as simple rules. These are used as filters, i.e. in a
concrete proof the application of these rules will appear as the very last step. As we do a
kind of query here, premise and conclusion of the rule do not differ.

Taking a closer look at the formulas given, a possible workflow towards our goal
could be: we use the knowledge from Formula 1 which provides us with all information
needed to apply the API call from Listing 1. That call returns the production parameters
for a :cog. These parameters can be used in a second step; the execution of the API call
in Listing 2, which will then initialize the production of an instance of our part :cog.

This plan is also displayed in the (shortened) proof of Listing 3, which was produced
by the EYE reasoner [8]. The proof consists of different lemmas, each being a reasoning
step. Lemmas 4–7 [lines 32–35] contain the steps of extraction, parsing and conjunction
elimination applied to the input formulas. The filenames used for the source files indicate
to which formula each lemma refers. Lemma 3 [line 23] is an inference applying the
RESTdesc description from Listing 1 to the knowledge base triple from Formula 1. The
object of the predicate r:gives displays the instantiated consequence of that inference;
we see a description of the API call which returns the production parameters of :cog.
As the HTTP-request is free of variables or sufficiently specified [7], we could make a
GET-request to the URI http://f4w.eu/parameters/27 which would, if the API works as
described, provide us with the production parameters, here expressed by the (renamed)
blank node _:sk_2. The inference step in Lemma 2 [line 14] now makes use of the
knowledge derived in Lemma 3 and applies the RESTdesc rule from Listing 2 to it. Here
the object of the r:gives is formed by the instantiated description of the HTTP-request
which starts the actual production of an instance of our part :cog. Note that this call
uses of the production parameters _:sk_2 whose exact appearance is not known at this
point, so this request cannot be executed. In Lemma 1 [line 10] the goal rule (Formula 2)
is applied to the consequences of Lemma 2 and leads to the result of the proof [line 6].
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1 @prefix : <http://facts4workers.eu/>.
2 @prefix http: <http://www.w3.org/2011/http#>.
3 @prefix tmpl: <http://purl.org/restdesc/http-template#>.
4 @prefix r: <http://www.w3.org/2000/10/swap/reason#>.
5
6 [] a r:Proof , r:Conjunction;
7 r:component <#lemma1 >;
8 r:gives { _:sk_5 :instanceOf :cog. }.
9

10 <#lemma1> a r:Inference;
11 r:gives {_:sk_5 :instanceOf :cog};
12 r:evidence (<#lemma2 >); r:rule <#lemma4 >.
13
14 <#lemma2> a r:Inference;
15 r:gives {_:sk_3 http:methodName "POST".
16 _:sk_3 http:requestURI "http ://f4w.eu/produce ".
17 _:sk_3 http:body _:sk_2.
18 _:sk_3 http:resp _:sk_4.
19 _:sk_4 http:body _:sk_5.
20 _:sk_5 :instanceOf :cog};
21 r:evidence (<#lemma3 >); r:rule <#lemma5 >.
22
23 <#lemma3> a r:Inference;
24 r:gives {_:sk_0 http:methodName "GET".
25 _:sk_0 tmpl:requestURI
26 ("http ://f4w.eu/parameters /" "27").
27 _:sk_0 http:resp _:sk_1.
28 _:sk_1 http:body _:sk_2.
29 :cog :productionParameters _:sk_2};
30 r:evidence (<#lemma6 >); r:rule <#lemma7 >.
31
32 <#lemma4> a r:Extraction; r:because [a r:Parsing; r:source <goal.n3 >].
33 <#lemma5> a r:Extraction; r:because [a r:Parsing; r:source <api2.n3 >].
34 <#lemma6> a r:Extraction; r:because [a r:Parsing; r:source <know.n3 >].
35 <#lemma7> a r:Extraction; r:because [a r:Parsing; r:source <api1.n3 >].

Listing 3. Example API composition proof.

The proof displays the dependencies between lemmas—and thereby also between
API calls—and it contains concrete descriptions of the HTTP-requests which have to
be executed to achieve the goal. Thus, this proof can be understood as a workflow
description. Given the above, we would first execute the instantiated call from Lemma 3,
the next step would be Lemma 2 leading then to our goal, the production of a :cog.

3.3 Dealing with alternatives

After having seen in the last section how a formal proof serves as a workflow description,
we explain here how we use these descriptions. The basic idea of our algorithm is
to repeat the following steps: first we find the HTTP-requests which are sufficiently
instantiated, as a second step we execute one of them, and then add a representation of
the execution result in N to our knowledge base. After that we generate a new plan.
This new plan can either be shorter than the previous one, then we repeat the procedure,
or it could be that the new information did not change the proof, in that case the last
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service used did not behave as expected, we therefore remove it from our knowledge
base and try to find a new proof to then again follow these steps. The algorithm ends if
either no proof can be generated in the first step (failure) or if the generated proof does
not contain HTTP-request descriptions (success).

We clarify this procedure following our previous example: the proof in Listing 3
contains a sufficiently specified HTTP-request, the one in Lemma 3. We execute the
GET-request to http://f4w.eu/parameters/27. If the call behaves as described we get
parameter information back, for example radius, width and material:

:cog :productionParameters
{:parameters :radius "2cm"; :width "0.5cm"; :material :steel.}.

After adding that formula to the knowledge base and starting the reasoner again,
we get a new proof but this time with one inference step less as the application
of the rule in Listing 1 to retrieve production parameters is no longer needed.
The new proof makes use of the triple above. In the shorter version the value
for the body _:sk_2 in Lemma 2 will be replaced by the actual parameters,
{:parameters :radius "2cm"; :width "0.5cm"; :material :steel.}. This then

makes the description in Lemma 2 sufficiently specified. In a next step we could execute
the POST-request. If this call also ends as expected the goal is reached.

The execution of the request in Lemma 3 could also lead to a different result: it could
for example already start the machine and produce the part. In that case the proof which
is generated after adding a representation of that event to the knowledge base does not
include API descriptions any more, the process would also successfully end. A third
possibility is that the call returns data which is useless for our purpose or no data at
all, for example, because the service is temporarily out of order. In that case we simply
remove the description of Listing 1 from the current knowledge and then try to find
another plan towards the goal which does not include the service which failed. If there
exist other APIs which return the production parameters of a cog or if there is another
API to cause its production which relies on different data which can also be retrieved via
a described API call, this will be found by the reasoner. It will then display a new plan
which can be executed.

4 Status

The example presented in this paper consists of simplified formulas employed in the use
cases we currently tackle in our project FACTSWORKERS2 (FW). This Horizon 2020
project is part of the Factories of the Future PPP3 and focuses on the needs of factory
workers and the question how their daily work can be improved by means of technology.
One important aspect here is to use and combine the technology which is already present
in the factory in an optimal way and our implementation is aiming to solve exactly this
problem. We were able to apply our framework on several of the identified challenges4

and are working on the others at this moment.

2 http:// facts4workers.eu/
3 http://ec.europa.eu/research/ industrial_technologies/ factories-of-the-future_en.html
4 http:// facts4workers.eu/wp-content/uploads/2015/12/F4W_D1.2_Requirements.pdf .

http://facts4workers.eu/
http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
http://facts4workers.eu/wp-content/uploads/2015/12/F4W_D1.2_Requirements.pdf
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The implementations already done lead to promising results: we are able to incorpo-
rate additional semantic information and to apply this in the reasoning process which
generates the workflows. The workflow composition itself benefits from the develop-
ments achieved by rule-based reasoning. As the RESTful API operations are described
by simple rules, which are written independently from each other, it is easy to add
or remove services from the knowledge base. As the workflow is recomposed after
every service execution, our implementation can easily adapt to unforeseen situations
and update or change its plan. The fact that the workflows are not fixed furthermore
guarantees that new viable goals are supported immediately. The main challenge of our
approach remains scalability: first tests presented in our previous paper [7] show that the
reasoner we use—EYE [8]—scales very well for short paths even with bigger amounts of
RESTdesc rules. The reasoner additionally supports different reasoning strategies, e.g.,
linear logic, where every rule can only be applied once, or existing-path, a strategy which
extends EYE’s basic Euler path detection such that it also tests for homomorphisms
of existential graph patterns (see also [6]). Both strategies improve the performance of
reasoning with existential rules. Their optimal usage will be part of future research.

All tests done so far on our framework were executed on theoretical set-ups and not
in a real-world environment; therefore another important next step after finishing the
implementation of all the use cases is to test our framework together with our industrial
partners in the factory set-ups where it is meant to operate. By doing this we will perform
one further step from our theoretical framework towards a real-life application which
will improve the daily work in a smart factory.
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