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Abstract 

Economists that study long-term changes during the 19
th
 and 20

th
 century are fundamentally restricted 

by the availability of qualitative data, as the latter is often inversely proportional to quality. This is 

further compounded by administrative changes that alter what exactly is being measured over time as 

well as an overall decrease of data availability the further we go back in time. This is particularly 

inconvenient in historical population data, as census data is often only available ever decade. As a 

result, researchers are forced to either impute qualitative data, or otherwise combine datasets of 

varying quality in some way. In this article, we demonstrate the versatility of state-space models in 

addressing these problems, enabling us to compose large data series of a high quality. Moreover, 

unlike more simple techniques it also provides an estimate of the reliability of the results, allowing any 

subsequent analyses to take this into account. We illustrate this by combining growth and level data on 

the population of Belgian cities into a dataset that contains yearly estimates of the population of over 

2600 cities from 1880 to 1970. 

Keywords: Population, Data quality, State-space model, Bayesian econometrics 

1. Introduction 

Research on population and the rate of its growth has always held a central position in economics and 

economic history. Not only does this data hold information on the demographic structure, it is also 

informative on economic, political and geographic changes. However, the potential insights that it 

offers are restricted by the availability of qualitative data. Population censuses are a highly qualitative 
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source of data that is frequently used, but are typically only taken every decade. To circumvent this 

availability problem, population levels are often interpolated, examples of which can be found in 

Gonzalez-Val (2014). While this approach might work relatively well in years when population 

growth remains stable (e.g. those without administrative changes or wars), it cannot provide reliable 

growth rates. Furthermore, without knowing the actual population levels, it is impossible to know for 

certain that population remained stable during the interpolated years. 

This can be a limitation for researchers. For example, most people interested in regional economics are 

familiar with the empirical regularities that are increasingly studied in the field, i.e. Zipf’s and Gibrat’s 

law. These hold that the size of cities follows a power law and that the relation between growth rates 

and initial population size is stochastic, respectively. While initial studies mostly confirmed the 

existence of both laws,
2
 a recent wave of research disputes those findings. Using historical, un-

truncated datasets that includes all geographic entities instead of only the largest cities, they (partially) 

reject Zipf’s and Gibrat’s laws (Klein, 2014; Gonzalez-Val, 2014).
3
 The rejection of these empirical 

regularities is important as it indicates that population growth is not stochastic, but needs to be 

explained by deterministic models. However, identifying the relevant dynamic determinants and 

identify for example structural breaks is neigh impossible using the sparse census data. In other words, 

population data needs to be much more detailed –ideally containing yearly observations for all 

municipalities over long stretches of time– both in order to more fully explore the empirical 

regularities and to test deterministic models that can explain the observed patterns. 

One way of overcoming this problem is to use additional data sources on population. In this article, we 

demonstrate how this can best be achieved even when these datasets have markedly different 

characteristics and reliability. By way of case study, we focus on the Belgian population data. 

Specifically, we show how to combine the 10-yearly population censuses with the yearly growth data 

coming from sources such as parish or population registers that track births, deaths and migration. The 

Belgian government collected yearly questionnaires in which each municipality had to report changes 

to the population register: the mouvement. However, when the yearly population data is constructed by 

adding these yearly changes to the census data of that decade, it quickly becomes clear that both data 

sources are not entirely consistent. Figure 1 illustrates this by reconstructing the population of the 

Belgian capital, Brussels, from 1880 to 1970. The black crosses show the census data, and the 

interpolated census data are indicated by the red dotted lines. The yearly population levels based on 

the mouvement data (shown using the full black lines) clearly show significant deviations from the 

                                                      
2 Gonzalez-Val (2014) summarized 18 studies published in the last three decennia, ranging from Eaton and Eckstein (1997) 

to Michaels et al. (2012). Adding to this list three studies that have been published subsequently (Desmet, 2013; Glaeser et 

al., 2014 and Luckstead and Devados, 2014), there are 11 studies that find evidence supporting Gibrat’s law, five that reject it 

and six showing mixed results. 
3 Studies on Spain, Italy and the United Kingdom not only reject the independent relation for small entities, which is not that 

uncommon in the literature (Klein, 2014), but also indicate a clear positive relation between growth and size (Klein, 2014; 

Gonzalez-Val, 2014). 
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census data. The second panel of this figure shows that the difference between both series can be as 

high as 15% of total population. The likely causes for this discrepancy are errors in data registration 

and collection, particularly in the mouvement data. Moreover, Vrielinck (2013) points out that 

municipalities also had a financial incentive to underreport emigration outflow, as more populous 

cities received more funds from the federal government.  

 

Figure 1 - Population of Brussels based on an amalgamation of ten-yearly census 

data and yearly population registers (mouvement) 

Notes: The census data is represented by the black crosses, while the red dotted line shows its imputed values. The black line 

shows the combination of the census data with the yearly mouvement data. The difference between the latter and the census 

data is shown in the bar graph below, expressed as a percentage of the census data. 

 

While results for Brussels might lead to the conclusion that both series should not be combined, it 

should be noted the severity of this problem differs depending on the municipality. For example, 

figure two shows the same plots for the city of Wavre in Wallonia, where the average difference 

between the census and movement data is less than 1.2 percent. 

While adding both series to each other does not produce reliable results, this does not mean that the 

information from both series cannot be combined. Recent collaborations between econometricians and 

historians have brought to the fore a technique that could be used to this end, namely state-space 

models. Simply put, state-space models are used to elicit an unobserved signal (e.g. the level of 

population in each year) from a collection of data sources of varying quality (e.g. the census and 

mouvement data). The main advantage of these models is their flexibility as they can be adjusted to fit 
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many different situations: in this case, the combination of level and change data that varies in both 

quality and availability.
4
  

 

Figure 2 - Population of Wavre based on an amalgamation of ten-yearly census data 

and yearly population registers (mouvement) 

Notes: The census data is represented by the black crosses, while the red dotted line shows its imputed values. The black line 

shows the combination of the census data with the yearly mouvement data. The difference between the latter and the census 

data is shown in the bar graph below, expressed as a percentage of the census data. 

 

The goal of this paper is twofold. We contribute to the growing literature on the application of state-

space models in economics. Specifically, we argue that on their flexibility that allows us to combine 

dataset with markedly different characteristics. Moreover, the assumptions that are used when 

combining the data can be tested and compared to various alternatives, allowing us to develop a model 

that maximizes the reliability of the estimates. As a result, this technique allows us to combine 

different sources of (historical) data, thereby increasing the availability of qualitative historical data. 

The state-space model also provides estimates of the reliability of its own estimates, as well as that of 

the underlying sources, allowing these to be taken into account in any subsequent analysis (see e.g. 

Desbordes and Koop, 2016). 

                                                      
4
 The application of state-space models to solve problems in economic history is relatively recent. The earliest examples 

explored the use of state-space models in studying Malthusian mechanisms (see e.g. Lee et al., 2002; Crafts and Mills, 2009; 

or Pfister et al., 2012), while recently Veenstra (2015) and Standaert et al. (2016) used it to combine data on German 

manufacturing and worldwide bilateral trade flows, respectively. 
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The second goal of this paper is to produce qualitative estimates of the population of up to 2681 

Belgian cities and municipalities on a disaggregated level (LAU level 2) on a yearly basis for the 

period 1880-1970. The level of detail and the length of the period under analysis should make this 

dataset of interest to a wide readership, not to mention the fact that this period included both World 

Wars. This dataset is available upon request.  

The remainder of this article briefly discusses the data sources used, after which we give a brief 

outline of state-space models and explain how they are used to estimate the population levels. After 

presenting the results, we finish by addressing some critical notes in the conclusion.   

2. Data 

As mentioned in the introduction, we combine two datasets on the population of Belgian cities and 

municipalities. The census data was collected at the start of each decade and contains the population 

levels. The second dataset, called mouvement,
5
 contains yearly information on the deaths, births, 

inward and outward migration of each municipality and is based on yearly questionnaires collected by 

the central government in which each municipality reported on the changes in their population register. 

Because the data collection of the former was centralized and better controlled, it is of higher quality 

than the mouvement data. The latter are more prone to measurement errors as they were collected in a 

decentralized manner (both in time and geographically) and errors could have crept in during the 

initial registration, the collection or transmission of the register data, or could be caused by delays in 

registration due to administrative procedures. Moreover, the yearly change in population is the result 

of a combination of four data series (inward and outward migration, births and deaths), further 

exacerbating the problem. As noted earlier, municipalities also had a financial incentive to inflate their 

population figures, for example by underreporting outward migration (Vrielinck, 2013).  

The datasets were obtained from LOKSTAT
6
 that are at present kept at the state archives of Belgium 

and were disclosed for the period 1880-1976 by the national statistical office (Statistics Belgium). 

While both contain the same number of municipalities, this number does not stay constant over time. 

Starting at 2583 in 1880, it continued to rise to 2633 in 1913. The number of municipalities fell back 

to 2581 in 1919, and while it rose 2670 in 1939, it ended up at 2601 in 1970. Table 2 gives an 

overview of the data at the beginning and at the end of the studied period. All 2681 distinct 

municipalities combined, the total number of observations approaches 240.000. 

The quality of the dataset is not only dependent on the historical sources, but also on the stability of 

geographical entities. While the number of municipalities remained relatively stable, a number of 

                                                      
5
 Yearly population figures for the period between 1880 and 1976 coming from the Mouvement de la Population et de l’Etat 

Civil [Population Mouvements and marital status changes], the registers of population, death and the population and the 

socio-economic censuses 
6 See http://www.lokstat.ugent.be/lokstat_start.php  

http://www.lokstat.ugent.be/lokstat_start.php
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administrative changes and geographic reorganizations altered the boundaries of the municipalities. 

These were split up into four types of changes: a full merging of geographic entities, a partial merging 

of geographic entities, reciprocal border changes between two municipalities and changes in the names 

of municipalities.   

Table 1 - Distribution of population at the beginning and end of the period. 

Year Pop. Mean Median St. dev. Max Min 

1880 5467783 2163 1060 6790 175636 25 

1970 8364488 3820 1291 10187 224545 31 

Notes. Overview of total population, mean, median, standard deviation, maximum and minimum population for six 

representative years. The yearly summary is available upon request.  

 

Finally, the data itself was also checked for large errors. For example, even though no administrative 

changes were reported, the mouvement data suggests that population of Ghent, Antwerp, Liège and 

Charleroi suddenly increased with half or even ten times the original population. By way of 

illustration, figure 4 plots the census and mouvement data of Antwerp and Charleroi. However, the 

census data showed no signs of a change of population of this magnitude in any of these cities during 

this period, suggesting that either the initial increase was in error or that the corresponding decrease is 

missing from the dataset. Because of aberrant size of these observations (in some cases, more than 9 

times the standard deviation), they tend to skew the estimations if left uncorrected. Looking for similar 

errors in the dataset, we flagged all observations in the mouvement dataset that were bigger than five 

times the standard deviation for that country. Ignoring those that coincided with administrative 

changes, as well as those where mouvement and census data matched (within 10% of population), this 

process identified 43 observations (less than 0.02% of the dataset) as suspect. To improve the 

workings of the state-space algorithm, these observations were set to missing. 

 
 

Figure 3 – Major errors in the dataset 

Notes: The census data is represented by the black crosses, while the red dotted line shows its imputed values. The black line 

shows the combination of the census data with the yearly mouvement data. 
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3.  State-space population 

The following section first discusses the intuition underlying the state-space models and then explains 

in more detail how the model estimating population was constructed. For more background on state-

space models and a thorough explanation on how to estimate them, we refer to Kim and Nelson 

(1999). 

As was noted earlier, a state-space model is a statistical method that enables you to compute the 

distribution of an unknown variable (the state variable) from a collection of indicators that are related 

to this state variable in some way. In this case, the unknown state variable is the population of each 

city, while the measurement variables are the census and mouvement data. The way in which these 

variables are related to the state variable is detailed in the measurement equation (2). This equation can 

be modified to reflect the characteristics of the data, like the fact that the census data captures the level 

of population, while the mouvement data measures the yearly change. Similarly, it can be adjusted to 

deal with differences in the reliability of the data sources.  

A crucial difference with other approaches (e.g. principal component analysis) is that the state-space 

model also takes the temporal dimension of the data into account. In this case, it is clear that in the 

absence of large administrative changes or wars, the population of a city strongly depends on that 

city’s population in the previous year. Rather than computing the level of population on a year-by-year 

basis, the state-space model will use the time-dependence to improve the estimated population level. 

The way in which population depends on its previous values is detailed in the second equation: the 

state equation (1). As was the case with the measurement equation, the state equation can be adjusted 

to fit the properties of the data.  

If 𝑺𝑡 is a vector containing the state variable and 𝑿𝑡 is a vector with the measurement variables, a 

linear state-space typically take the following form: 

 𝑺𝑡 = 𝜹𝒕 + 𝑻 𝑺𝑡−1 + 𝝁𝑡     𝑤𝑖𝑡ℎ 𝝁𝑡  ~ 𝑁(0, 𝑄𝑡) (1) 

 𝑿𝑡 = 𝑪𝒕 + 𝒁𝒕 𝑺𝑡 + 𝝐𝑡     𝑤𝑖𝑡ℎ 𝝐𝑡  ~ 𝑁(0, 𝐻𝑡) (2) 

Vectors 𝑪𝒕 and 𝒁𝒕 contain scaling parameters that detail the relation between the state and 

measurement variables, while the measurement errors are captured by the error term 𝝐𝑡. Vectors 𝜹𝒕 

and 𝑻𝒕 details the overall pattern of time-dependence in the state variables, while the error term 𝝁𝑡 

allows the change in the state variable to differ from the overall time-dependence pattern (e.g. because 

of administrative changes).
7
 All of these parameters 𝑪𝒕, 𝒁𝒕, 𝜹𝒕, 𝑻𝒕, 𝑸𝒕 and 𝑯𝒕 can vary over time if 

                                                      
7 Depending on the needs of the model, C, Z, T, Q and H can all be made time-varying. 
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necessary, depending on the requirements of the model. In other words, if there is reason to assume 

that the relationship between the variables changes over time, this can be incorporated in the model. 

As illustrated in figure 4, to estimate the value of the state variable in in a certain year, the state-space 

model will first predict what the current value is using past and future values of the state variable as 

detailed by the state equation (1).
8
 It will subsequently update that prediction using the information 

from the measurement variables as described in the measurement equation (2). The more reliable the 

measurement variables are, the stronger the effect of this updating step will be on the value of the state 

variable, and vice versa.  

 

 

 

Figure 4 - The estimation of the state-vector 

Because the state-space model uses the temporal patterns in the state variable, it is also able to deal 

with variables that have (many) missing observations. Take the example of the census data that is only 

available every decade. In the year after the census, the population level will first be predicted using 

the previous estimate of population (that includes the census data). This estimate will than be updated 

using the information in the mouvement variable. Similarly the year before the census becomes 

available, the future census data is used to predict what the current population would be. The fact that 

the census data is unavailable does come at a cost, namely an increase in the uncertainty of the 

predicted population level. The longer we have to go back (or forward), the larger this uncertainty will 

be.  

3.1. The population state-space model 

In order to build the state-space model used to estimate the population of Belgian cities and 

municipalities, we rely on two main assumptions. In line with the literature (e.g. Vrielinck, 2013), the 

first assumption that the census data is a correct measure of the actual population, even though it is 

                                                      
8 To see how future information is taken into account, consider that equation (1) can be rewritten as: 𝑺𝑡 = 𝑻−𝟏(𝑺𝑡+1 − 𝝁𝑡) 

St-1	 St	 St+1	

Xt	

1.	Predict	 1.	Predict	

2.	Update	
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only available every decade.
9
 If 𝑃𝑖,𝑡 is the actual population of city i at time t and 𝑃𝑖,𝑡

𝑐   is its census 

estimate, this idea can be expressed mathematically as: 

 𝑃𝑖,𝑡
𝑐 = 𝑃𝑖,𝑡 . (3) 

The second assumption is that the yearly change as computed from the city registers (i.e. the 

mouvement) has an error. This mouvement data, 𝛥𝑃𝑖,𝑡
𝑚, represent the yearly level change in the 

population data. This gives us the following mathematical expression for the second assumption: 

 𝛥𝑃𝑖,𝑡 = 𝛥𝑃 𝑖,𝑡
𝑚 + 𝑐𝑖 + 𝜇𝑖,𝑡 (4) 

The difference between the actual growth rate and the mouvement data consists of two parts. 𝜖𝑖,𝑡 

captures the random measurement errors like those resulting from “honest mistakes” and  is normally 

distributed with mean zero and a city specific variance 𝛴𝑖 . To allow cities more structural differences, 

it also contains a city-specific constant 𝑐𝑖 that would capture for example consistent underreporting of 

the outgoing immigration. Because the mouvement data is collected and reported by each city 

individually, the magnitude of both measurement errors is allowed to differ for each city.
10

 

In order to build a state-space model from these assumptions, we have to rewrite them such that they 

fit the shape of the state and measurement equations outlined in equations one and two. To that end, 

we define equation (3) as the measurement equation and rewrite equation (4) into a state equation. 

Using the level of population as the state-variable, this gives us the following state-state space model:  

 𝑃𝑖,𝑡 =  𝑃𝑖,𝑡−1 + 𝛥𝑃 𝑖,𝑡
𝑚 + 𝑐𝑖 + 𝜇𝑖,𝑡

=  𝛿𝑖,𝑡 + 1 ∗  𝑃𝑖,𝑡−1 + 𝜇𝑖,𝑡 with 𝜇𝑖,𝑡~𝑁(0, 𝛴𝑖)

𝑃𝑖,𝑡
𝐶 = 𝑃𝑖,𝑡

= 0 + 1 ∗ 𝑃𝑖,𝑡 + 𝜖𝑖,𝑡 with 𝜖𝑖,𝑡~𝑁(0,0)

 (5) 

Where 𝛿𝑖,𝑡 = 𝑐𝑖 + 𝛥𝑃𝑖,𝑡 
𝑚 .  

3.2. Results 

In order to estimate this model, we have to compute the model’s parameters (𝑐𝑖, 𝛴𝑖, 𝛴𝜇) and determine 

the most likely values of the population of all Belgian cities. While this estimation can be achieved 

using maximum likelihood estimation, we prefer to estimate it using Bayesian Gibbs sampling (with 

uninformative priors, the results are identical). The latter allows us to split up the estimation problem 

into more easily solvable subsections, significantly simplifying the problem (see Kim and Nelson, 

                                                      
9 While assumption is rather restrictive, it is necessitated by the lack of data. The estimations no longer converge when the 

census data is allowed to have an error, or would require highly restrictive prior assumptions on the variance of the error 

term.  
10 While imposing the same measurement error for each city (𝑐𝑖 = 𝑐 and 𝛴𝑖 = 𝛴) reduced the number of parameters that have 

to be estimated with more than 4000, it also decreased the fit of the model to such an extent that the quality of the estimated 

population went down. 
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1999). Moreover, the output of the Gibbs sampling estimation is a sample of thousands of draws from 

the distribution of the population, allowing us to take into account any remaining uncertainty in 

subsequent analyses or regressions (see e.g. Desbordes and Koop, 2015). For example, this allows us 

to compute the statistical significance of any changes over time or differences between municipalities.  

This algorithm ran for 10,000 iterations and its convergence was verified by inspecting the parameter 

values.
11

 The results for Belgium’s four most populous cities are shown in figure 5: Brussels, 

Antwerp, Ghent and Charleroi. The thick black line plots our estimate of population with its 95% 

confidence interval indicated by the blue shaded area. For comparison’s sake, the red crosses and 

dotted lines show the census and mouvement data, respectively. Finally, the asterisks indicate the years 

in which administrative changes took place for that municipality. 

The graphs in Figure 5 clearly show that the estimated population level tries to follow the pattern of 

the mouvement data, while at the same time ensuring that it equals the census data in each decade. This 

is the case in those situations where the mouvement data does not line up with the census estimates, 

e.g. the estimates for Brussels in the late 1890s and 1900s or those of Antwerp in the 1920s. Overall, 

the correlation between both series is very high (95.8%), but this is mostly driven by a very high 

between correlation (99.94%) i.e. the correlation of the mean values for each country. As we expected, 

the within correlation, which only compares the changes over time, is much lower (59.7%). What also 

becomes clear is that the administrative changes are captured by this dataset, like the large increase in 

the population of Brussels in 1921. Finally, we also see that when the mouvement and census data line 

up better as is the case for Charleroi, the size of the confidence bounds shrinks. In the case of a city 

like Wavre where match is near perfect, they are practically non-existent.  

Finally, regarding the shape of the confidence intervals, you might have expected them to increase as 

the time to/from the census data increases. That is, as distance with the last certain measurement 

increases the confidence in the population estimate decreases, resulting in peaks in 1885, 1895, 1905 

etc. Instead, the width of the confidence intervals in Figure 5 remains constant in between the census 

years. The reason is that by setting the population estimate to be exactly equal to the census data in 

each decade, the total increase over the intervening years is fixed. As a result, more extreme decreases 

or increases in one year have to be compensated in subsequent years in order to end up at the next 

census data point. In contrast, for those municipalities where the final census data in 1970 is missing, 

the confidence bounds increase gradually from 1961 onwards, forming the expected triangular pattern.  

 

                                                      
11 Convergence was verified by inspecting their plotted values, autocorrelation functions and CUMSUM graphs. 
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Figure 5 – The state-space population estimates 

Notes: The estimated level of population is indicated by the thick black line and its 95% confidence interval by the blue 

shaded area. The census data and mouvement data are plotted using the red crosses and dotted line, respectively. 

Administrative changes are indicated by asterisk. 

Robustness checks 

We also tried a number of alternative specifications of the state-space model to see whether these 

results could be improved, but the specification outlined in equations (3) to (5) outperformed all 

others. Following Veenstra (2015), we modeled population growth as a local linear trend. This 

assumes that population growth follows a long-term pattern from which it can deviate in the short 
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term. This model was estimated both in logs and levels, but both versions produced estimates of 

population that deviated twice as much from the mouvement data and had larger confidence intervals.  

Secondly, we also considered explicitly incorporating the reported administrative changes into the 

model. This was done by allowing the variance in the growth rate of population (𝛴𝑖) to be different in 

these years. While this significantly improved the estimates of the model that used the local linear 

trend, it did little to improve the estimates using our preferred specification.  

Finally, we also considered abandoning the assumption that the census data is without error. However, 

without the census data as anchor point, the model was unable to produce believable estimates of the 

level of population. Overall, the relative dearth of data obliges us to impose stronger assumptions in 

order to produce reliable results.  

4. Conclusion 

In summary the population data provides a good showcase of the problems that occur when multiple 

(historical) data series are combined. Not only do both series differ in terms of type of data (levels 

versus growth) and availability, they also differ in terms of quality. The problem is further 

compounded by a number of administrative changes that took place throughout the 90-year period. 

However, this paper has shown that each of these problems can be addressed using state-space models, 

as it can be fully adjusted to reflect the characteristics of the data that is being combined. As a result, 

the model can combine both sources of information on population to produce an estimate of the level 

of population as well as an indicator of its reliability. In this example we construct one of the most 

replete datasets on population, containing the yearly population growth of over 2600 municipalities for 

close to a hundred years.  

While it is true that a number of assumptions had to be made to construct the state-space model, this 

also happened when the data is imputed or when the mouvement data was added to the census data. 

For example, all three approaches share the assumption that the census data is correct. However, 

unlike the alternatives, the state-space model is explicit about which assumptions are made. This 

transparency allows these assumptions to be more openly critiqued and (hopefully) refined, improving 

the quality of het data series. 
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