
JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2017025
MANAGEMENT OPTIMIZATION
Volume 13, Number 4, October 2017 pp. 1927–1943

SINGLE SERVER RETRIAL QUEUES WITH SPEED SCALING:

ANALYSIS AND PERFORMANCE EVALUATION

Tuan Phung-Duc

Division of Policy and Planning Sciences

Faculty of Engineering, Information and Systems

University of Tsukuba, Ibaraki 305-8573, Japan

Wouter Rogiest∗ and Sabine Wittevrongel

Department of Telecommunications and Information Processing

Ghent University, St.-Pietersnieuwstraat 41
B-9000 Gent, Belgium

Abstract. Recently, queues with speed scaling have received considerable at-

tention due to their applicability to data centers, enabling a better balance

between performance and energy consumption. This paper proposes a new
model where blocked customers must leave the service area and retry after a

random time, with retrial rate either varying proportionally to the number of
retrying customers (linear retrial rate) or non-varying (constant retrial rate).

For both, we first study a basic case and then subsequently incorporate the

concepts of a setup time and a deactivation time in extended versions of the
model. In all cases, we obtain a full characterization of the stationary queue

length distribution. This allows us to evaluate the performance in terms of

the mentioned balance between performance and energy, using an existing cost
function as well as a newly proposed variant thereof. This paper presents the

derivation of the stationary distribution as well as several numerical examples

of the cost-based performance evaluation.

1. Introduction. In current large-scale data centers, thousands of parallel servers
are responsible for the processing of incoming jobs. While system performance
is still measured by means of a traditional measure like job latency, the overall
energy consumption is a second important consideration. According to [19], data
centers constitute about 40% of the global ICT electricity consumption in 2012, or
approximately 107 TWh. Therefore, a modern system needs mechanisms to handle
the trade-off between performance and energy consumption [3].

In response to this, speed scaling has been developed [8, 20, 21], slowing down
the server speed when the number of customers is low, and speeding up, in the
converse case. As argued in [20] (and later in [8]), this enables a better balance
between performance and energy consumption. This is also argued in [10] in the
context of data centers, and can be intuitively understood as follows. Assume that
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the speed of the system can be tuned by tuning the service rate (“speed scaling”).
While the power consumption rises more than proportionally with the service rate
(e.g., with the former approximately equal to the square of the latter [20]), this
does not hold true for the mean number of customers in the system. Specifically,
the latter is approximately proportional to the mean service time in case of very
low traffic load (with low arrival rate). Opposed to this, in case of high traffic
load, speeding up can have in inverse a much larger than proportional impact on
the number of customers in the system, while the relation between service rate
and power consumption remains the same. In other words, the added value per
additional unit of power is higher when the traffic load is high than when the traffic
load is low, creating a trade-off. In this sense, it is useful to work at lower speed
when the traffic load is low, and at higher speed in the converse case.

To the best of our knowledge, the first queueing model to address (a form of)
speed scaling is [4], which presents the analysis of a single server system with Poisson
arrivals and a service rate that depends on the number of customers n according to
a formula µn = ncµ1, where µ1 is a model parameter describing the service rate for
a customer arriving at an idle system. An important recent contribution with speed
scaling is [8], which features the concept of switching delay discussed also below.

While [4, 8] study a classic model without retrials, in this work, we assume a
retrial queue for the incoming jobs (or customers). This reflects the distributed
nature of a data center, in which the workload manager maintaining the queue is
separated from the actual processing units. In this respect, it is useful to mention
the related work on retrial queues of [11], which presents a generic study of the broad
class of retrial queues with state-dependent rates, sharing many of the assumptions
of this contribution. However, [11] does not discuss speed scaling as such and does
not include any of the expressions derived below. Moreover, the concepts of setup
time and deactivation time are not treated in [11], whereas both play a key role in
this contribution.

The concept of setup time and its counterpart of deactivation time are important
and realistic model extensions since these phenomena are found in realistic data
centers. Setup times were studied earlier in different contexts in e.g. [1,5–7,13–16].
Furthermore, the mentioned switching delay of [8] is identical to the setup time as
defined in this work. A similar concept to deactivation time was studied earlier in
a context without retrial queues, in [9].

Summarizing the above, we conclude that speed scaling has already been con-
sidered in settings with setup times [8], and also indirectly in settings with retrial
queues [11], but never directly in the combination with both setup times and retrial
queues, and never with deactivation times. This is exactly the contribution of this
work. Specifically, sections 4 to 7 of this paper are devoted to retrial models with
speed scaling and a setup time, where the models in sections 5 and 7 additionally
include a deactivation time. Based on the formulas derived in this paper, we also
evaluate the mentioned balance between performance and energy consumption, us-
ing an existing cost function as well as a newly proposed variant thereof. This paper
extends an earlier version [17], where neither the concept of deactivation time nor
the cost-based evaluation were considered.

This paper is organized as follows. In sections 2 and 3, a speed scaling model
without setup time is considered, either with classical linear retrial rate (section 2)
or with constant retrial rate (section 3). In sections 4 to 7, speed scaling models
with setup time are considered, either without deactivation (linear retrial rate in
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section 4, constant retrial rate in section 6) or with deactivation (linear in section 5,
constant in section 7). Section 8 presents a note on practical implementation. The
cost functions, combining power consumption and delay performance, are discussed
in section 9, followed by several numerical examples. Conclusions are drawn in
section 10.

2. Linear retrial rate model.

2.1. Assumptions. We consider a single server retrial queueing system where
blocked customers leave the server and retry after independent and identically dis-
tributed (iid) retrial times. Retrials take place at rate nν, where n is the number of
customers in orbit: A so-called linear retrial rate model. Further, as is common in
retrial queue terminology, see e.g. [1, 12], during consecutive retrials, the customer
is said to be in the orbit. However, different from a classical retrial queue, speed
scaling takes place: The service rate of the server is linear to the total number of
customers in the system. In particular, if there are n customers in the orbit the
customer in the server (if any) is served at rate (n + 1)µ. Customers arrive at the
system according to a Poisson process with rate λ.

2.2. Analysis. In order to analyze the above queueing model, let C(t) and N(t)
denote the number of active servers and the number of customers in the orbit,
respectively. It is easy to see that {X(t) = (C(t), N(t)); t ≥ 0} forms a Markov
chain on the state space

S = {(i, n); i = 0, 1, n ∈ Z+},

where Z+ = {0, 1, 2, . . . }. It is also easily seen that the system is always stable due
to the speed scaling. Let πi,n = limt→∞ Pr[C(t) = i,N(t) = n] ((i, n) ∈ S) denote
the joint stationary distribution of {X(t)}.

In this section, we derive a recursion for calculating the joint stationary distri-
bution πi,n ((i, n) ∈ S). The balance equations read as follows:

(λ+ nν)π0,n = (n+ 1)µπ1,n, n ≥ 0, (1)

(λ+ µ)π1,0 = λπ0,0 + νπ0,1, (2)

(λ+ (n+ 1)µ)π1,n = λπ0,n + λπ1,n−1 + (n+ 1)νπ0,n+1, n ≥ 1. (3)

We define the partial generating functions Π0(z) and Π1(z) as

Π0(z) =

∞∑
n=0

π0,nz
n, Π1(z) =

∞∑
n=0

π1,nz
n. (4)

Using these definitions, we obtain the following system of equations for Π0(z) and
Π1(z):

λΠ0(z) + νzΠ′0(z) = µzΠ′1(z) + µΠ1(z), (5)

λΠ1(z) + µzΠ′1(z) + µΠ1(z) = λΠ0(z) + λzΠ1(z) + νΠ′0(z). (6)

Adding these two equations, we find νΠ′0(z) = λΠ1(z). Substituting Π1(z) into (5),
we obtain

zΠ′′0(z) +
λ

µ

(µ
λ
− z
)

Π′0(z)− λ2

µν
Π0(z) = 0. (7)
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Substituting z = µx/λ and introducing the notation p(x) = Π0(µx/λ) = Π0(x/ρ)
(ρ = λ/µ), we obtain the following equation:

xp′′(x) + (1− x) p′(x)− λ

ν
p(x) = 0.

This is the confluent hypergeometric differential equation whose solution is a con-
fluent hypergeometric function, a special case of the hypergeometric function also
encountered in the analysis of some retrial queue models without speed scaling,
such as the one studied in [2]. The solution for this equation is given by following
expression:

p(x) = π0,0M(a, b, x) = π0,0

∞∑
n=0

a(n)x
n

b(n)n!
,

where M(a, b, x) denotes the confluent hypergeometric function, with

a =
λ

ν
, b = 1,

and where for a real number x, the symbol x(n) denotes the Pochhammer symbol,
defined as follows:

x(0) = 1, x(n) = x(x+ 1) · · · (x+ n− 1), n ≥ 1.

We then have

Π0(z) = p(λz/µ) = π0,0

∞∑
n=0

a(n)(λz/µ)n

b(n)n!
= π0,0

∞∑
n=0

a(n)(λz/µ)n

n!2
,

where we used b(n) = n! in the last equality. Thus, we get

π0,n = π0,0
a(n)ρ

n

b(n)n!
= π0,0

a(n)

n!2

(
λ

µ

)n
.

Furthermore, we have

Π1(z) =
ν

λ
Π′0(z) = π0,0

λ

µ
M(a+ 1, b+ 1, λz/µ),

where we have used
M ′(a, b, x) =

a

b
M(a+ 1, b+ 1, x).

Formally, the unknown number π0,0 is determined using the normalization condi-
tion:

Π0(1) + Π1(1) = 1,

which yields

π0,0 =
1

M(a, b, λ/µ) + λ
µM(a+ 1, b+ 1, λ/µ)

.

Although this is an explicit expression for π0,0, it still contains the confluent hy-
pergeometric function, and thus, indirectly, infinite sums. This however poses no
problem for the numerical calculation of π0,0, since most scientific software packages
are able to handle confluent hypergeometric functions directly.

Remark 1. It should be noted that in the analysis of an M/M/1 retrial queue
with a linear retrial rate yet without speed scaling, one does not encounter a hy-
pergeometric function, but merely a first-order differential equation. The reason for
the hypergeometric function here is the linear increase of the service rate with the
number of customers in the system. In this regard, speed scaling makes the analysis
more complex.
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3. Constant retrial rate model.

3.1. Assumptions. We consider a single server retrial queueing system where
blocked customers leave the server and retry at a later time. As in the previ-
ous section, the retrial times are iid random variables. However, different from the
previous section, the retrial rate is independent of the number of customers in the
orbit. In particular, retrials occur at a constant retrial rate ν as soon as the orbit
is non-empty. Again, speed scaling takes place: The service rate of the server is
proportional to the total number of customers in the system. Just like in the linear
retrial rate case studied in the previous section, if there are n customers in the orbit
the customer in the server (if any) is served at rate (n + 1)µ. Customers arrive at
the system according to a Poisson process with rate λ.

3.2. Analysis. As before, let C(t) and N(t) denote the number of active servers
and the number of customers in the orbit, respectively. It is easy to see that
{X(t) = (C(t), N(t)); t ≥ 0} forms a Markov chain on the state space

S = {(i, n); i = 0, 1, n ∈ Z+}.
Again, the system is stable due to the speed scaling. Furthermore, the joint sta-
tionary distribution of {X(t)} is denoted by πi,n = limt→∞ Pr[C(t) = i,N(t) = n],
((i, n) ∈ S).

In this section, we derive a recursive scheme for calculating the joint stationary
distribution πi,n ((i, n) ∈ S). The balance equations now read as follows:

λπ0,0 = µπ1,0, (8)

(λ+ ν)π0,n = (n+ 1)µπ1,n, n ≥ 1, (9)

(λ+ µ)π1,0 = λπ0,0 + νπ0,1, (10)

(λ+ (n+ 1)µ)π1,n = λπ0,n + λπ1,n−1 + νπ0,n+1, n ≥ 1. (11)

Again introducing the partial generating functions Π0(z) and Π1(z), we obtain the
following system of equations:

λΠ0(z) + ν(Π0(z)− π0,0) = µzΠ′1(z) + µΠ1(z), (12)

λΠ1(z) + µzΠ′1(z) + µΠ1(z) = λΠ0(z) + λzΠ1(z) +
ν

z
(Π0(z)− π0,0). (13)

Adding these two equations, we get

λΠ1(z) =
ν(Π0(z)− π0,0)

z
or

zΠ1(z) =
ν(Π0(z)− π0,0)

λ
.

Taking the first derivative of the latter equation with respect to z and substituting
the result in the right-hand side of (12), we find

λΠ0(z) + ν(Π0(z)− π0,0) =
µν

λ
Π′0(z)

or

Π′0(z) =
λ(λ+ ν)

µν
Π0(z)− λ

µ
π0,0. (14)

Solving this differential equation we obtain

Π0(z) = π0,0

[
λ

λ+ ν
exp(γz) +

ν

λ+ ν

]
,
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where we introduced the notation

γ =
λ(λ+ ν)

µν
.

We also find that

Π1(z) =
ν

λ+ ν

exp(γz)− 1

z
π0,0.

From the normalization condition,

Π0(1) + Π1(1) = 1,

we find that π0,0 = exp(−γ).

Remark 2. In the analysis of the simpler M/M/1 retrial queue with constant retrial
rate yet without speed scaling, no differential equation is involved. The differential
equation (14) in this analysis is brought about by the speed scaling.

4. Linear retrial rate model with setup time. In this section, we consider an
extension of the model studied in section 2, introducing the concept of a setup time.
As is the case in many realistic systems, upon turning idle (i.e., empty server and
empty orbit), the system may go into sleep mode (or hybernation mode) to save
energy, returning to active mode when triggered by the arrival of a new customer.
Moving from idle to active mode may happen instantaneously (as in the models
of sections 2 and 3) or the system may be in setup mode during a time interval
called the setup time. In this section and the following, we assume iid setup times
with exponential distribution with parameter α. Further, we assume that a new
customer arriving at an idle system immediately goes to the server without joining
the orbit and triggers the setup of the server. Arriving customers who find the
server occupied (either setting up or actually serving) join the orbit and repeat
their attempt after some random time.

Let C(t) denote the state of the server and N(t) denote the number of customers
in the orbit at time t. There are 3 possible server states:

C(t) =

 0, the server is idle,
1, the server is busy,
2, the server is in setup mode.

Here, {X(t) = (C(t), N(t)); t ≥ 0} forms a Markov chain on the state space

S = {(i, n); i ∈ {0, 1, 2}, n ∈ Z+}.
Figure 1 presents the transitions among the states. Note that (0, 0) is the state
corresponding to a system in sleep mode.

Let πi,n = limt→∞ Pr[C(t) = i,N(t) = n] ((i, n) ∈ S). Our goal is to explicitly
express all πi,n in terms of π0,0, which is uniquely determined using the normaliza-
tion condition. The balance equation for an idle server, with states (0, n), reads

(λ+ nν)π0,n = (n+ 1)µπ1,n, n ≥ 0,

which is identical to (1), the balance equation without setup time. As a result, the
relation (5) between the partial generating functions Π0(z) and Π1(z) also holds
true here. Opposed to this, the balance equations for a busy server, with states
(1, n), explicitly involve the setup parameter α, as follows:

(λ+ µ)π1,0 = νπ0,1 + απ2,0, (15)

(λ+ (n+ 1)µ)π1,n = λπ0,n + λπ1,n−1 + (n+ 1)νπ0,n+1 + απ2,n, n ≥ 1. (16)
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Figure 1. Transitions among states.

Introducing the partial generating function

Π2(z) =

∞∑
n=0

π2,nz
n, (17)

we then have

λΠ1(z) + µΠ1(z) + µzΠ′1(z) = λ(Π0(z)− π0,0) + λzΠ1(z) + νΠ′0(z) + αΠ2(z).

The balance equations for a server in setup mode, with states (2, n) are given by

(λ+ α)π2,0 = λπ0,0, (18)

(λ+ α)π2,n = λπ2,n−1, n ≥ 1. (19)

Transformation to the z-domain leads to

(λ+ α)Π2(z) = λzΠ2(z) + λπ0,0

or

Π2(z) =
λπ0,0

λ+ α− λz
. (20)

Expressing the balance of flows in and out the orbit, we obtain

λ(π1,n + π2,n) = (n+ 1)νπ0,n+1, n ≥ 0, (21)

which yields

λ(Π1(z) + Π2(z)) = νΠ′0(z).

Multiplying both sides of the above equation by z and taking the derivative with
respect to z of both sides, we get

λ[(zΠ1(z))′ + (zΠ2(z))′] = νzΠ′′0(z) + νΠ′0(z).

Using (5) to substitute (zΠ1(z))′ in terms of Π0(z), we find the following differential
equation:

λ
λΠ0(z) + νzΠ′0(z)

µ
+ λ(zΠ2(z))′ = νzΠ′′0(z) + νΠ′0(z).

Rearranging this equation, we obtain

zΠ′′0(z) + (1− λ

µ
z)Π′0(z)− λ2

µν
Π0(z) =

λ

ν
(zΠ2(z))′, (22)
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where Π2(z) is known, see (20). This is a non-homogeneous confluent differential
equation and its explicit solution seems difficult, but we can solve it by means of a
power expansion method.

In particular, substituting Π0(z) =
∑∞
n=0 π0,nz

n into the left-hand side of the
differential equation (22), we obtain
∞∑
n=0

[
(n+ 1)2π0,n+1 −

λ

µ

(
n+

λ

ν

)
π0,n

]
zn =

λ2π0,0
ν(λ+ α)

∞∑
n=0

(n+ 1)

(
λ

λ+ α

)n
zn,

where we have used

Π2(z) =
λπ0,0
λ+ α

∞∑
n=0

(
λz

λ+ α

)n
,

and thus

(zΠ2(z))′ =
λπ0,0
λ+ α

∞∑
n=0

(
λ

λ+ α

)n
(n+ 1)zn.

Comparison of the coefficients of z0 in both sides yields

π0,1 =
λ2(λ+ µ+ α)

µν(λ+ α)
π0,0.

If we assume that π0,n = βnπ0,0 (n ∈ Z+), it follows from the comparison of the
coefficients of zn that

(n+ 1)2βn+1 −
λ

µ

(
n+

λ

ν

)
βn =

λ2

ν(λ+ α)
(n+ 1)

(
λ

λ+ α

)n
=
λ

ν
(n+ 1)

(
λ

λ+ α

)n+1

, n ≥ 0,

where β0 = 1. Rearranging this equation, we obtain

βn+1 =
λ

µ

(n+ λ/ν)

(n+ 1)2
βn +

λ

ν

(λ/(λ+ α))n+1

n+ 1
, n ≥ 0,

with β0 = 1. This equation allows to calculate π0,n in terms of π0,0 for any n ∈ Z+.
Using (1), we can also calculate π1,n in terms of π0,0 for any n ∈ Z+. Determining
π0,0 can then be done by means of the recursion explained below in section 8.

Remark 3. As the introduction of a setup time makes the differential equation (22)
non-homogeneous (as opposed to (7)), its solution is no longer a hypergeometric
function. Fortunately, we are still able to solve this differential equation using a
power expansion method.

5. Linear retrial rate model with setup and deactivation. In view of its use-
fulness in the numerical examples below, in this section, we extend the model of the
previous section with the concept of a deactivation time. In particular, we assume
that after the system becomes empty the server is not turned off immediately, but
rather remains in a deactivation mode for a time interval called the deactivation
time. During deactivation, new arrivals receive service immediately, without incur-
ring a setup time. We assume that the deactivation time is exponentially distributed
with mean 1/β.

By adopting a convenient notation, the state space of the underlying Markov
chain of the system is almost the same as in the previous section, except that the
model now incorporates two states associated with an idle system, instead of one.
First, there is one additional state OFF (O), corresponding to an idle system with
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the server turned off. Second, the state (0, 0) corresponds to an idle system in
deactivation. Let

X(t) =

{
O, the server is turned off,
(C(t), N(t)), otherwise.

It is easy to see that {X(t); t ≥ 0} forms a Markov chain on the state space S given
by

S = O ∪ {0, 1, 2} × Z+.

The transition diagram is presented in Fig. 2.

2, 0 2, 1O 2, 2

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

2, n

0, n

1, n

. . .

. . .

. . .

λ λ λ λ λ λ

λ λ λ λ λ

α α α α

λλ λ λ
µ

2µ 3µ (n+1)µ

ν 2ν

3ν

nν

β

Figure 2. Transitions among states.

The stationary distribution is defined as before but with an additional probability
πO = limt→∞ Pr[X(t) = O]. Partial generating functions are defined as before.
After some tedious calculations we obtain the following results:

Π2(z) =
λπO

λ+ α− λz
, λπO = βπ0,0. (23)

The differential equation for Π0(z) becomes the following:

zΠ′′0(z) +

(
1− λ

µ
z

)
Π′0(z)− λ2

µν
Π0(z) =

λβπ0,0
µν

+
λ

ν
(zΠ2(z))′. (24)

From this differential equation, π0,n is expressed in terms of π0,0 for all n ∈ Z+.
Furthermore, π1,n is expressed in terms of π0,n as follows:

(λ+ β)π0,0 = µπ1,0, (25)

(λ+ nν)π0,n = (n+ 1)µπ1,n, n ≥ 1. (26)

The orbit balance equation is identical to (21), the equation without deactivation
time. Thus, as detailed in section 8, we can use a recursion expressing all probabil-
ities in terms of π0,0 and then normalize these in order to calculate the stationary
distribution.

Remark 4. Deactivation does not make an essential difference in the analysis. In
particular, the differential equation (24) is almost the same as (22). Thus, we can
solve this model using the same technique as for the model with setup time and
without deactivation.
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6. Constant retrial rate model with setup time. In this section, we extend
the model of section 3 with the concept of a setup time, an iid random variable with
exponential distribution with parameter α. Further, the state space is the same as
in section 4. Finally, while the steady-state distribution is obviously different, we
use the same notation as in section 4. The transition diagram is presented in Fig. 3.

2, 0 2, 1 2, 2 2, 3

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, n

0, n

1, n

. . .

. . .

. . .

λ λ λ λ λ λ

λ λ λ λ λ λ

α α α α α

λ λ λ λ

λ

µ
2µ 3µ 4µ (n+1)µ

ν ν ν

ν

ν

Figure 3. Transitions among states.

The balance equations for an idle server are identical to (8) and (9), the equations
without setup time. Hence, the relation (12) between Π0(z) and Π1(z) remains valid
here. Balance of flows in and out the orbit yields

λ(π1,n + π2,n) = νπ0,n+1, n ≥ 0 (27)

and hence,

λ(Π1(z) + Π2(z)) =
ν

z
(Π0(z)− π0,0). (28)

Multiplying both sides of the above equation by z, taking the derivative with respect
to z of both sides, using (12) to substitute (zΠ1(z))′ and rearranging the result, we
obtain the differential equation

Π′0(z) =
λ(λ+ ν)

µν
Π0(z)− λ

µ
π0,0 +

λ

ν
(zΠ2(z))′,

or

Π′0(z) = γΠ0(z) + π0,0Q(z), (29)

where Q(z) and γ are defined as

Q(z) = −λ
µ

+
λ

ν

(
λz

λ+ α− λz

)′
, γ =

λ(λ+ ν)

µν
.

It should be noted that we have used the expression (20) for Π2(z), which also holds
here. The solution of the differential equation (29) has the form:

Π0(z) = π0,0 exp(γz)

(
1 +

ˆ z

0

exp(−γu)Q(u)du

)
.

Hence, formally, we have Π0(1) = κ0π0,0 where

κ0 = exp(γ)

(
1 +

ˆ 1

0

exp(−γu)Q(u)du

)
.
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From (28), we also have Π1(1) + Π2(1) = κ1π0,0, where

κ1 =
ν

λ
(κ0 − 1).

From the normalization condition

Π0(1) + Π1(1) + Π2(1) = 1,

we can then obtain

π0,0 =
1

κ0 + κ1
.

We can obtain κ0 (and thus, also κ1 and π0,0) using numerical integration which
is readily available in almost all scientific software packages. Furthermore, π0,0 can
also be obtained directly by means of the recursion explained in section 8.

Remark 5. The introduction of a setup time in the model implies that the differ-
ential equation involved in the analysis becomes more complicated. In particular,
the second term on the right-hand side of (29) is a function of z, as opposed to a
constant in (14). As a result, the solution is no longer explicit but can be formulated
in an integral form.

7. Constant retrial rate model with setup and deactivation. Also for the
constant retrial rate model, we devote a section to incorporating the deactivation
time into the model presented in the previous section. Although the transition rates
are different, the state space of the underlying Markov chain and the stationary
distribution are defined as for the model in section 5. The transition diagram is
presented in Fig. 4.
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Figure 4. Transitions among states.

The differential equation for Π0(z) has the same form (29) as before, but now
Q(z) is given by

Q(z) =
λ(β − ν)

µν
+
λ

ν

(zΠ2(z))′

π0,0
,

where

Π2(z) =
λπO

λ+ α− λz
, λπO = βπ0,0.
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The probabilities π1,n can be calculated in terms of π0,0 using the following equa-
tions:

(λ+ β)π0,0 = µπ1,0,

(λ+ ν)π0,n = (n+ 1)µπ1,n. n ≥ 1.

The orbit balance equation is identical to (27). As a result, as explained in the next
section, a recursive scheme allows to calculate all probabilities πi,n in terms of π0,0,
which is determined using the normalization condition.

Remark 6. Similar to the case of a linear retrial rate, the introduction of a de-
activation time in the model does not imply major changes in the analysis. The
non-homogeneous differential equation can still be solved in either integral form or
using a power expansion method.

8. Recursive approach. From a theoretical point of view, the results in the pre-
vious sections are nice since they are related to some well-known differential equa-
tions. However, from a practical point of view, it is more convenient to evaluate
the stationary probabilities via some simple recursion.

Practically, the approach for the model of section 4 is as follows. In a first step,
we set π0,0 = 1. In a second step, we can calculate π2,0 and then π1,0. Using these
results, we can calculate π0,1 using the balance equation in and out the orbit, i.e.,

(n+ 1)νπ0,n+1 = λ(π1,n + π2,n), n ≥ 0.

Next, the probability π2,1 is easily calculated from the balance equation

(λ+ α)π2,n+1 = λπ2,n, n ≥ 0.

So, we can again use the following balance equation in order to determine π1,1:

(λ+ (n+ 1)ν)π0,n+1 = (n+ 2)µπ1,n+1, n ≥ 0.

The step from n to n+1 is taken in the same manner. As a result, we can calculate
the relative values of the πi,n (i = 0, 1, 2) for any value of n up to a certain value
n = N0, which characterizes the accuracy (the larger N0, the better the accuracy),
and then normalize the result by ensuring that the sum of the obtained probabilities
is 1.

A similar procedure can be applied for the models of sections 2, 3, 5, 6 and 7.
As a result, we can calculate any desired performance measure with high accuracy,
by setting N0 sufficiently high.

9. Energy-aware speed scaling.

9.1. Two cost functions. As discussed in section 1 and in [8, 20], speed scaling
enables a better balance between performance and energy consumption, involving a
trade-off between the two. In this section, we use the obtained results to numerically
evaluate this trade-off in different scenarios, in terms of the existing cost model
applied also in [8,20]. In this model, the instantaneous cost (at an arbitrary instant)
equals N + Sσ/τ , where N (like above) denotes the number of customers in the
orbit, S denotes the current service rate of the server, σ > 1 is the dynamic power
parameter (denoted α in [8, 20]) and τ (denoted β in [8, 20]) controls the relative
weight of delay, called delay aversion in [8, 20]. As discussed in [20], the factor Sσ

models the dynamic power (excluding leakage power) used by chips when operating
at speed S; correspondingly, here, it models the power consumption of the server
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when running at rate S. In the analysis, we focus on the average cost per time unit,
and therefore use as cost function

z = E[N ] + E[Sσ]/τ, (30)

where z denotes the cost, E[N ] denotes the average number of customers in the
orbit, and the service rate S is a random variable that equals (N + 1)µ if the server
is busy (C(t) = 1) and zero otherwise (C(t) 6= 1), in all six models studied above.
Accordingly, (30) can be rewritten as

z =
∑

(i,n)∈S

nπi,n +
µσ

τ

∞∑
n=0

(n+ 1)σπ1,n. (31)

Here, note that by virtue of Little’s result, the performance-energy trade-off becomes
explicit by dividing (31) by λ, since then, the first term is the mean delay, whereas
the second is the mean energy per job. As in [8, 20], the focus below is on the case
where σ = 2 to allow for comparison with the results reported there.

While the cost function given by (31) can be applied generically to any of the
models considered in this paper, it is unable to capture the detailed behavior of the
system, especially for the phases of setup and deactivation, during which the power
consumption is assumed zero by (31), which is not realistic. To address this need,
we propose a second cost function, which assumes that some power is consumed
whenever the system is not switched off. Specifically, for the models presented in
sections 5 and 7 (with deactivation), we propose the following cost function y,

y =
∑

(i,n)∈S

nπi,n +
µσ

τ

∞∑
n=0

{(n+ 1)σπ1,n + ϕπ2,n + ψπ0,n}, (32)

where ϕ and ψ represent the power consumption during setup (C(t) = 2) and
during periods when the server is idle but the system is not switched off (C(t) = 0),
respectively. The first parameter, the setup power consumption ϕ, is assumed to be
matched with the power consumption for the processing of an isolated job (single
job that is the only present in the system): ϕ = 1. For the second parameter,
the idle power consumption ψ, we use the rough estimate proposed earlier in [10,
18], assuming that an idle server combined with a system that is not switched off
consumes about 60% of the nominal power consumption of the mentioned isolated
job: ψ = 0.6. Both cost functions (31) and (32) are applied in the following.

9.2. Numerical examples. In the numerical examples, we address the following
optimization problem: Given a certain delay aversion value τ and assuming σ = 2,
what is the speed parameter µ for which performance and energy are optimally
balanced? To answer this question, we first use (31) as cost function in a first group
of examples, and apply it to the models of sections 2, 3, 4 and 6 (all models safe those
with deactivation time). As shown in [8], in the case without retrials and without
setup time, this value is simply µ =

√
τ . In the case without retrials but with setup

time, according to [8], while not optimal, µ =
√
τ may perform reasonably, and

provides for a robust choice in the sense that it does not take into account any a
priori knowledge of the traffic statistics. In the case with retrials considered in this
contribution, the retrial parameter ν inevitably impacts this relation, especially for
small values of ν, when retrials take more time.

In Fig. 5(a), the cost function (31) is plotted as function of µ, with ν either
equal to 1 or 4, τ = 1 and λ = 1. A setting without setup times or deactivation
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times is assumed, both for a linear and a constant retrial rate, which corresponds
to the models of sections 2 and 3, respectively. Curves are shown for both the case
with linear retrial rate and the case with constant retrial rate. For all four curves,
the trade-off is apparent, with low energy consumption on the left-hand side, low
delay on the right-hand side, and an optimum (minimum) in between. In general,
there is a lower cost level for a higher retrial rate, which is intuitive, as high retrial
rates prevent large queues. Consequently, for a given value of ν, the curves for a
constant retrial rate are above the ones for a linear retrial rate, since the effective
retrial rate is higher in the linear case than in the constant case, for the same ν.
Furthermore, for a large value of the retrial rate (ν = 4), the optimum in the curves
roughly occurs for µ =

√
τ = 1, which comes as expected. Indeed, the faster the

retrials (larger ν), the closer the system resembles that of [8]. Beyond the figures,
we may note that for the limit ν → ∞, the systems with linear and with constant
retrial rate and that of [8] all coincide. At the other end of the scale, with small ν,
Fig. 5(b) presents curves for a retrial rate value as small as ν = 0.25. As can be



SINGLE SERVER RETRIAL QUEUES WITH SPEED SCALING 1941

seen, the optimum for a linear retrial rate largely remains unimpacted, whereas the
one for a constant retrial rate shifts to a higher value of µ.

To see the impact of the delay aversion, Fig. 6(a) presents curves for the same
setting as Fig. 5(a) but with τ = 4 instead of τ = 1. Clearly, an increasing delay
aversion leads to a higher optimal value of µ. In particular, the optimum in the
curves still roughly occurs for µ =

√
τ , which now corresponds to µ = 2.
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Figure 7. Cost z as function of the service rate µ

While the figures discussed above consider models without setup time, we now
turn to models with setup time but without deactivation time, treated in sections 4
and 6. Fig. 6(b) considers the same setting as Fig. 5(a) but with setup time,
with setup rate α = 1. Comparing both, the introduction of setup times leads to
higher cost values, which is intuitive. Indeed, setup times lead to longer queues
and more delay (direct effect), and therefore, given the speed scaling behavior,
to higher energy consumption (indirect effect). Interestingly, the optimum for µ
becomes somewhat more pronounced than without setup time, as is pointed out by
Fig. 6(b). This trend is confirmed by the curves of Figs. 7(a) and 7(b), with larger
setup rate for Fig. 7(a) and corresponding lower cost, and higher delay aversion in
Fig. 7(b), leading to a higher optimal value of µ.

For a second group of numerical examples, we resort to the second cost function
(32) to quantify the impact of the deactivation time on the balance of performance
and energy consumption, using the models of sections 5 and 7. Fig. 8(a) considers
the same setting as Fig. 6(b), with ν = 1, but now with deactivation, with either
a high deactivation rate and small average (1/β=1) or a very low rate and large
average (1/β=100). In the comparison between Fig. 8(a) and Fig. 6(b), the impact
of deactivation lies not so much in a cost increase or decrease (as both figures show
similar cost levels) or in the position of the optimum (which remains roughly the
same), but rather in a different behavior with respect to lower and higher values
of µ. As can be seen in Fig. 8(a), for low values of µ, the two curves for a linear
retrial rate coincide, despite the large difference in terms of deactivation rate. The
same holds true for the two curves for a constant retrial rate. For high values of µ,
however, the value of β is the decisive factor, with the two curves for β = 1 close
together, and the two curves for β = 0.01 even closer. This can be understood as
follows: The higher µ, the more often the system succeeds in emptying the queue,
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and the more important the average duration of the deactivation time becomes.
This effect also comes about if we stretch the periods of setup, with α = 0.25
instead of α = 1, the setting considered in Fig. 8(b). In such setting, the setup
times are significantly larger than the deactivation times with β = 1, leading to
a shift to a higher cost for the associated curves, particularly for higher values of
µ, and a lowering of the optimal value of µ. The curves associated with β = 0.01
however largely remain unaffected, which can be explained by the fact that in this
case, the deactivation times are still much larger on average than the setup times.
As such, Figs. 8(a) and 8(b) together show that the relative durations of setup and
deactivation times have a key impact on the system behavior.

10. Conclusions. In this paper, we studied an M/M/1 retrial queue model with
speed scaling. The analysis yielded an exact solution for the steady-state queue
length distribution, and this for six different cases: Two without setup times (either
linear or constant retrial rate), and four with setup times, of which two augmented
with a deactivation time (again, linear or constant retrial rate).

With these results available, two different cost functions enabled a detailed study
of the trade-off between performance and energy consumption, inherent to speed
scaling systems.
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