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Summary 



 

It is impossible to imagine a world without metals. These substances are part of the earth’s crust and 

are also used for building constructions, the manufacturing of electronic products and batteries, 

galvanization processes and much more. The extensive use and anthropogenic pollution of metals has 

led to elevated metal concentrations in aquatic ecosystems worldwide. As a consequence, natural 

communities around the world are at risk due to metal pollution. This has encouraged authorities 

worldwide to take action. Environmental Quality Standards (EQS) and European risk assessment 

frameworks concerning single metals have taken a leap forward since the change of the millennium, by 

implementing bioavailability based EQS values and bioavailability models. However, European risk 

assessment frameworks do not account for possible mixture effects due to exposure to metal mixtures. 

Because there seems to be no clear pattern in the interactions between metals, the development of 

metal mixture risk assessment frameworks is currently hindered. Recently however, a tiered approach 

to evaluate mixture risks was presented by Backhaus and Faust (2012). In this approach, the models of 

Concentration Addition (CA) and Independent Action (IA) are applied directly to species sensitivity 

distribution (SSD) curves, as explained by De Zwart and Posthuma (2005). Although interest is growing 

in these methods in the field of mixture risk assessment, they also have an important limitation: the 

predictions made by the CA and IA models are theoretically only consistent when applied to single 

species (dose–response curves (DRCs)), and not when applied to communities (SSDs). However, the 

tiered approach by Backhaus and Faust (2012) also includes a theoretically consistent method that 

applies CA first to different single species separately and then combines all single-species information 

to calculate risk estimates for a species assemblage. A similar method, but developed based on the IA 

method was also proposed by Gregorio et al. (2013). 

However, these 2 approaches also have a few limitations. The approach of Backhaus and Faust (2012) 

only uses the so-called base set of toxicity data for a substance. This base set (i.e., x% effect 

concentration (ECx) values for algae, crustaceans, and fish) is the minimum set of data required by 

REACH for the calculation of a Predicted-No-Effect-Concentration (PNEC). Although their approach can 

be applied to a broader array of substances (i.e. so-called data-poor substances) and can be extended 

to a higher number of species, the method applies subjective assessment factors to calculate the risk 

quotient for a mixture. Gregorio and colleagues (2013) only evaluated their method using sets of species 

toxicity values that were randomly generated from SSDs of sets of hypothetical substances, and they 

also assumed a range of possible slope values of dose–response curves for these species, because 

they argued that implementing the method with existing data was not possible with the typical amount 

of data available for a substance. 

Bearing in mind the limitations found in the research mentioned above, the objective in the present study 

was to evaluate differences in mixture risk estimates for a number of monitoring databases, using the 

four approaches listed above but overcoming the limitations mentioned in these approaches. 

The present study can be divided into three major sections. In a first section, the toxicity of mixtures of 

Cu, Ni and Zn was investigated building on the research reported above and bearing in mind their 

limitations. In the second section, the limitations discovered in Chapter 1 were addressed and 

adaptations to existing bioavailability models and normalization procured were made (Chapter 3, 4, 5, 

7). In a third section, the implications of these adaptations on metal mixture risk evaluation is assessed 
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(Chapter 6 and 8). Furthermore, the study can be divided into two parts. In a first part (Chapters 2-4), 

calculations and analyses were done using existing bioavailability models that are also implemented in 

risk assessments. In a second part (Chapters 5-9), these bioavailability models were improved and 

these new models were used for calculations and analyses. 

Bearing in mind the limitations found in the research mentioned above, in the second Chapter in the 

present study, we aimed to evaluate differences in mixture risk estimates using actual chronic toxicity 

data for Cu, Ni and Zn for more than the base set of species. Four mixture risk assessment 

methodologies were compared for risk estimations of mixtures of Cu, Ni and Zn. Across 4 different 

monitoring datasets and a natural baseline database, between 0% and 52% of the target water samples 

were estimated to be at risk, but only between 0% and 15% of the target water samples were at risk 

because of the mixture of metals and not any singe metal individually. Finally, across the 4 monitoring 

datasets, the following order of conservatism for the 4 methods was shown (from most to least 

conservative): CASSD > CADRC > IADRC > IASSD. In addition, we developed a general tiered scheme 

for the risk assessment of metal mixtures in a regulatory context including these 4 methods. 

Based on Chapter 2, certain weaknesses/assumptions in our research were encountered. For instance, 

the underlying assumptions of the four methods should be tested. More specifically, the following 

research question should be addressed: Is the CA model or the IA model best to predict chronic toxicity 

of metal-mixtures? Because microalgae, as primary producers, form the base of the food web, it is of 

utmost importance to understand the effects of metals on these organisms. And although numerous 

studies have examined the effects of metal mixtures on invertebrates, fish and higher plants, few have 

conducted on freshwater microalgae. Research that has been conducted with microalgae was 

conducted in one specific water chemistry, although it has been demonstrated that the interactive effects 

of metals in mixtures can depend on water chemistry. In Chapter 3, we therefore addressed the latter 

by performing experiments with the freshwater microalgae Pseudokirchnerialla subcapitata for the Cu-

Ni-(Zn) mixtures in various natural waters that show diverse water-chemistry variables. We showed that 

the ternary Cu-Ni-Zn mixture acted non-interactively on algal growth, except for in 1 water in which the 

mixture acted antagonistically. We suggest that a low cationic competition situation in the latter water 

could be the reason for the antagonistic interaction between the metals. On the other hand, the binary 

Cu-Ni mixture acted non-interactively on algal growth in all tested waters. We showed that both the CA 

and IA model can serve as accurate models for toxicity of ternary Cu-Ni-Zn and binary Cu-Ni mixtures 

to P. subcapitata in most cases, and as protective models in all cases. 

Another obstacle for applying the four methods described in Chapter 2 is the uncertainty about the 

degree of conservatism compared to observed community-level metal mixture toxicity effects. To assess 

this limitation, the metal mixture risk evaluation methods should be validated using multispecies 

experiments (microcosm/mesocosm studies) and/or field data. To evaluate the conservativeness of our 

methods, a calculated msPAF, based on measured physico-chemistry, should be compared to 

community-level effects. Because we did not find the adequate information in literature, we performed 

a microcosm experiment in which a zooplankton and phytoplankton community were exposed to a 

mixture of Cu, Ni and Zn (Chapter 4). To calculate the msPAF values, we used a SSD that only 
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contained chronic toxicity data of zooplankton and phytoplankton species. Effects on community 

composition or diversity were only observed at msPAF values above 0.05. However, effects on 

community functioning (notably community respiration and phytoplankton metabolism) were observed 

at  msPAF values of 0.05 or lower, i.e. in the Ni-Zn mixture. This indicates that the cut-off msPAF value 

of 0.05 is not necessarily protective for all community level endpoints against metal mixture exposure. 

A possible explanation for this result is the mismatch between the species in the SSD and those in our 

microcosm community. Especially the presence of one single dominant and very Zn and/or Ni sensitive 

species, i.e. a Cyanobacteria of the genus Oscillatoria, which is not represented in the SSD, might have 

been the driver of all observed effects at or below an msPAF of 0.05. Overall, our results show that 

SSDs are not necessarily a good predictor of effects on all types of communities and that the presence 

of dominant sensitive species may result in significant effects on community functioning endpoints at an 

msPAF value (0.05) that is generally considered protective. 

In a fifth Chapter, the bioavailability models that were formerly used to normalize toxicity data in Chapter 

2 were evaluated. The main issue that was addressed was the nonlinearity between the H+ activity and 

the EC50Me2+ activity that was observed for chronic Cu and Zn toxicity to Daphnia magna and/or 

Oncorhynchus mykiss. This nonlinearity implies that the effect of pH should not be described by single-

site competition between Me2+ and H+. Rather, the effect of pH should be modelled based on an 

empirical linear relationship between pH and EC50Me2+. We will call this type of model a generalized 

BioAvailability Model (gBAM).The first bioavailability model that we took an in depth look into was the 

D. magna BLM for Cu. Cu BLMs have been applied to derive Water Quality Criteria in the US and 

PNECs in the EU. Although both frameworks use a similar approach to derive bioavailability-based 

PNEC or WQC values for copper, the structural formulation and parameterization of the BLMs that is 

used in both frameworks differ. The purpose was to evaluate the capacity of these two different copper 

BLMs to predict chronic toxicity of copper for two different D. magna clones.  

We found that one BLM performed best with clone K6 data while the other performed best with clone 

ARO data. We also found that there is an important difference between both BLMs in how they predict 

bioavailability of copper as a function of pH. Our modelling results suggest that the effect of pH on 

chronic copper toxicity is different between the two clones considered, which was confirmed with 

additional chronic toxicity experiments. In addition, we explored the ability of a generalized 

BioAvailability Model (gBAM) as an alternative for the existing BLMs to predict chronic effect 

concentrations for copper in two D. magna clones.  

Secondly, we took an in depth look into the bioavailability models for D. magna and P.subcapitata for 

Zn. These models had so far only been validated within a certain range of water chemistry. Yet, around 

20% of the European surface waters fall outside this ‘validation boundary’. This means that a 

considerable number of European waters falls outside the applicability range of the bioavailability 

models. The purpose was therefore to evaluate if the Zn bioavailability models can be extrapolated 

outside their bioavailability ranges. Results from D. magna experiments suggested that the BLM is not 

able to reflect the pH effect over a broad pH range (5.5-8.5). In addition, due to calcium deficiency of D. 

magna in the softwater tests, we can’t conclude whether the BLM is applicable below its Ca boundary. 

Results for P. subcapitata experiments showed that the bioavailability model can accurately predict Zn 
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toxicity for Ca concentrations down to 0.8mg/L and pH values up to 8.5. Based on the results, we also 

explored the ability of a generalized BioAvailability Model (gBAM) as an alternative for biotic ligand 

model to predict chronic effect concentrations for Zn to D. magna.  

In the two first sections of Chapter 5, gBAMs were developed to predict toxicity of Cu and Zn to D. 

magna. With this, the uniformisation of all bioavailability models (i.e. of Cu, Ni and Zn for invertebrates, 

fish and algae) to a gBAM-structure was almost complete. The models that did not yet incorporate a pH 

slope parameter (i.e. had the gBAM-structure) were the bioavailability models for fish for Zn and Cu. 

Therefore, in a third section of Chapter 5, we developed and validated a gBAM for the metals Zn and 

Cu for fish. These gBAMs were at least as accurate as the BLM counterparts. 

In Chapter 6, we evaluated the impact of the implementation of the models developed in Chapter 5 on 

risk estimations. This was done by repeating the calculations performed in Chapter 2 but implementing 

the gBAMs developed in Chapter 5 for D. magna and fish for the metals Cu and Zn instead of the original 

BLMs.  Implementing these gBAMs only had a small influence on msPAF values and on the % of target 

water samples that are predicted to be affected by the mixture of Zn, Cu and Ni. However, because the 

newly developed gBAMs for Cu and Zn for invertebrates and fish more accurately predict single metal 

toxicity, we recommend the use of the newly developed gBAMs to normalize toxicity data for Cu and Zn 

prior to metal mixture risk calculations. 

A final limitation of the calculations performed in Chapter 2 that was assessed in this work, was that they 

were based on bioavailability-normalized dissolved metal concentrations. However, when present in a 

mixture, metals may compete with each other for the binding sites of DOC. Hence, metal mixture risks 

should ideally be evaluated on the free ion activity level. However, assessing risks based on free ion 

activities is limited because the chronic bioavailability models for individual metals are currently based 

on different software to model metal speciation: i.e. WHAM V for Zn and Cu and WHAM VI for Ni. 

Additionally, some assumptions for chemical speciation calculations differ between these metals. 

Recently, an updated version of the WHAM software (WHAM/Model VII) was developed. Therefore, in 

Chapter 7 we evaluated whether the chronic daphnid, fish and algae metal bioavailability models can 

all be updated to the WHAM VII speciation software, without loss of predictive capacity. Overall, our 

results showed that WHAM VII with an assumption of 65% AFA can be used as a speciation model to 

predict metal toxicity to different species with sufficient accuracy. 

In Chapter 8, we combined the adaptations made to the bioavailability models (Chapter 5) with the 

update of the models all WHAM VII (Chapter 7) to evaluate the impact on mixture risk estimations. In 

this chapter, we performed calculations for all monitoring databases described in Chapter 2, but based 

on free metal ion activities. For this, the dissolved metal concentrations in the monitoring databases 

were converted to free ion activities in two ways, one that did not take into account the competition 

between the metals for DOC binding sites and one that did. Although we had expected that taking into 

account the competition between metals for DOC binding sites would result in higher free metal 

activities, we found that, at environmental concentrations, competition between metals for DOC had 

relatively little effect on free metal ion activity (1.1% - 20%). As a consequence, msPAF values calculated 



XVIII 
 

with both scenarios were similar. We concluded that competition between metals for DOC binding sites 

has little impact on metal mixture risk estimations. 

In a final chapter, Chapter 9, we concluded and integrated the research that was conducted in all 

previous chapters. 

 

The metal (mixture) bioavailability models developed in the present study can be integrated into risk 

assessment frameworks. The chronic metal (mixture) toxicity data from single species and microcosm 

experiments increases our overall understanding of chronic metal (mixture) effects on single species 

and communities. The proposed 4 methods and metal mixture risk evaluation scheme may guide the 

incorporation of metal mixture toxicity into future risk assessment frameworks. 
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Metalen zijn niet weg te denken uit onze samenleving. Deze chemische elementen maken deel uit van 

de aardkorst en worden gebruikt bij bouwconstructies, de productie van elektronisch materiaal en 

batterijen, galvanisatieprocessen en nog veel meer. Het uitgebreide gebruik en de antropogene 

vervuiling van metalen heeft geleid tot verhoogde metaalconcentraties in aquatische ecosystemen 

wereldwijd. Als gevolg van metaalvervuiling zijn natuurlijke gemeenschappen over de hele wereld in 

gevaar. Dit heeft de overheden wereldwijd aangezet actie te ondernemen. Europese risico-

evaluatieprocedures met betrekking tot individuele metalen hebben sinds de eeuwwisseling vooruitgang 

geboekt door de implementatie van biobeschikbaarheidsmodellen en door het gebruik van 

biobeschikbaarheidscorrecties bij de berekening van milieukwaliteitsnormen. Echter, Europese 

kaderrichtlijnen houden geen rekening met mogelijke mengseleffecten bij blootstelling aan 

metaalmengsels. Omdat er geen duidelijk patroon in de interacties tussen metalen lijkt te zijn, is de 

ontwikkeling van risico-evaluatie betreffende metaalmengsels momenteel belemmerd. Onlangs is 

echter een gecontroleerde aanpak voor het evalueren van mengselrisico's gepresenteerd door 

Backhaus en Faust (2012). In deze aanpak worden de modellen van Concentratie Additie (CA) en 

Onafhankelijke Actie (IA) direct toegepast op de soortengevoeligheidscurves (SSDs). Hoewel interesse 

in deze methoden op het gebied van de risicoanalyse groeit, hebben deze methoden ook een 

belangrijke beperking: de voorspellingen van de CA- en IA-modellen zijn theoretisch alleen consistent 

bij toepassing op afzonderlijke soorten (dosis-responscurves) en niet wanneer toegepast op 

gemeenschappen (SSDs). De aanpak van Backhaus en Faust (2012) bevat echter ook een theoretisch 

consistente methode die het CA model eerst bij verschillende soorten afzonderlijkbtoepast en 

vervolgens alle informatie betreffende de individuele soorten combineert om een schatting van het risico 

voor de gemeenschap van soorten te bepalen. Een soortgelijke methode, maar ontwikkeld op basis van 

het IA model werd ook voorgesteld door Gregorio et al. (2013). 

Deze 2 benaderingen hebben ook een paar beperkingen. De aanpak van Backhaus en Faust (2012) 

gebruikt alleen de zogenaamde basisset aan toxiciteitsgegevens voor een chemische stof. Deze 

basisset (x% effectconcentraties (ECx) voor algen, invertebraten en vissen) is het minimum aan data 

die door REACH vereist is voor de berekening van een PNEC (de voorspelde concentratie waarbij geen 

effect wordt waargenomen). Hoewel hun aanpak toegepast kan worden op een bredere reeks aan 

chemische stoffen (de zogenaamde data-arme stoffen) en kan worden uitgebreid naar een groter aantal 

soorten, past de methode subjectieve beoordelingsfactoren toe om het risicoquotiënt voor een mengsel 

te berekenen. Gregorio en collega's (2013) hebben hun methode alleen geëvalueerd door gebruik te 

maken van sets van toxiciteitspunten van soorten die willekeurig gegenereerd werden uit SSDs van 

hypothetische stoffen. Verder hebben ze een aantal mogelijke hellingswaarden van dosis-

responscurves voor deze soorten aangenomen, omdat ze argumenteerden dat de uitvoering van de 

methode met bestaande gegevens niet mogelijk was met de typische hoeveelheid gegevens die 

beschikbaar zijn voor een stof. 

De huidige studie kan worden onderverdeeld in drie delen. In een eerste deel (hoofdstuk 2) wordt de 

toxiciteit van mengsels van Cu, Ni en Zn onderzocht op basis van het bovengenoemde onderzoek en 

rekening houdend met de beperkingen hiervan. In het tweede deel werden de beperkingen die in deel 

1 werden ontdekt besproken en werden aanpassingen aan bestaande biobeschikbaarheidsmodellen en 
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normalisatieprocedures gemaakt (hoofdstuk 3, 4, 5, 7). In een derde deel worden de implicaties van 

deze aanpassingen op de evaluatie van metaalmengselrisico’s beoordeeld (hoofdstukken 6 en 8). 

Gebaseerd op de beperkingen die in bovengenoemd onderzoek werden gevonden, was het doel van 

het tweede hoofdstuk van deze studie om de verschillen in risicoschattingen ten gevolge van mengsels 

te evalueren gebruikmakend van chronische toxiciteitsgegevens voor Cu, Ni en Zn voor meer dan de 

basisset aan soorten. Er werden vier methodes voor risicoanalyses gebruikt voor de bepaling van 

risicoschattingen van mengsels van Cu, Ni en Zn. Over 4 verschillende monitoring datasets en een 

natuurlijke baseline database bleken tussen 0% en 52% van de waters risico te vertonen, maar slechts 

tussen 0% en 15% van de waters waren in gevaar door het metaalmengsel en niet enkel het individuele 

metaal. Tenslotte werd over de 4 monitoring datasets heen de volgende volgorde van conservatisme 

voor de 4 methoden aangetoond (van de meest tot het minst conservatieve): CASSD> CADRC> IADRC> 

IASSD. Daarnaast ontwikkelden we in het kader van een risico-evaluatie voor metaalmengsels een 

algemeen schema dat deze 4 methodes omvat. 

Op basis van hoofdstuk 2 werden bepaalde zwakke punten of veronderstellingen in ons onderzoek 

geconstateerd. Zo moeten de onderliggende assumpties van de vier methoden worden getest. Meer 

specifiek moet de volgende onderzoeksvraag worden aangepakt: Welk van beide modellen, het CA-

model of het IA-model, is het beste om de chronische toxiciteit van metaalmengsels te voorspellen? 

Omdat microalgen, als primaire producenten, de basis vormen van het voedselweb, is het van groot 

belang om de effecten van metalen op deze organismen te begrijpen. En hoewel tal van studies de 

effecten van metaalmengsels op ongewervelde dieren, vissen en hogere planten hebben onderzocht, 

is er weinig onderzoek gebeurd op zoetwatermicroalgen. Bestaand onderzoek met microalgen is 

meestal uitgevoerd in één specifiek water, hoewel aangetoond is dat de interactieve effecten van 

metalen in mengsels afhankelijk kunnen zijn van de waterchemie. In hoofdstuk 3 behandelden we deze 

kwestie door experimenten te verrichten met de alg Pseudokirchnerialla subcapitata voor mengsels van 

Cu-Ni- (Zn) in verschillende natuurlijke wateren die een uiteenlopende waterchemie vertoonden. We 

hebben aangetoond dat het tertiaire Cu-Ni-Zn mengsel non-interactief op de algengroei inwerkte, 

behalve in 1 water waarin het mengsel antagonistisch optrad. Wij suggereren dat een lage kationische 

concurrentie in het laatste water de reden zou kunnen zijn voor de antagonistische interactie tussen de 

metalen. Anderzijds werkte het binaire Cu-Ni-mengsel niet-interactief in op algengroei in alle geteste 

wateren. We toonden aan dat zowel het CA- als IA-model in de meeste gevallen kunnen dienen als 

nauwkeurige modellen voor toxiciteit van ternaire Cu-Ni-Zn en binaire Cu-Ni-mengsels bij P. 

subcapitata, en als beschermende modellen in alle gevallen. 

Een ander obstakel voor de toepassing van de vier methoden beschreven in hoofdstuk 2 is de 

onzekerheid over de mate van conservatisme in vergelijking met waargenomen toxiciteitseffecten op 

het gemeenschapsniveau. Om deze beperking na te gaan, moeten de risico-evaluatiemethoden voor 

metaalmengsels worden gevalideerd met behulp van multisoortenexperimenten (microkosmos/ 

mesokosmos studies) en/of veldgegevens. Om het conservatisme van onze methoden te evalueren, 

moet een voorspelde msPAF, gebaseerd op de gemeten fysico-chemie van het water, worden 

vergeleken met effecten op gemeenschapsniveau. Omdat we in de literatuur niet voldoende informatie 
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hebben gevonden, hebben we een microkosmos experiment uitgevoerd waarin een zoöplankton- en 

fytoplanktongemeenschap blootgesteld werd aan een mengsel van Cu, Ni en Zn (hoofdstuk 4). Om de 

msPAF-waarden te berekenen, gebruikten we een SSD die alleen gegevens over chronische toxiciteit 

van zoöplankton- en fytoplanktonsoorten bevatte. Effecten op gemeenschapscompositie en diversiteit 

werden alleen geobserveerd bij msPAF waarden boven 0.05. Effecten op het functioneren van de 

gemeenschap, meer bepaald op respiratie van de gemeenschap en op phytoplankton metabolisme, 

werden geobserveerd bij msPAF waarden van 0.05 en lager in het Ni-Zn mengsel. Dit geeft aan dat de 

drempelwaarde van een msPAF van 0.05 niet noodzakelijk beschermend is tegen metaalmengsel 

blootstelling voor alle gemeenschaps eindpunten. Een mogelijke reden hiervoor is de mismatch tussen 

de soorten in de SSD en deze in onze microcosm gemeenschap. Voornamelijk de aanwezigheid van 

één dominante en erg Zn en/of Ni gevoelige soort, een Cynaobacterie van het genus Oscillatoria, dat 

niet in de SSD voorkomt, kan de reden zijn voor de geobserveerde effecten beneden de msPAF waarde 

van 0.05. Onze resultaten tonen dat SSDs niet noodzakelijk een goede voorspelling van effecten geven 

voor alle gemeenschapstypes en dat de aanwezigheid van een dominante gevoelige soort kan 

resulteren in significante effecten op het functioneren van de gemeenschap bij msPAF waarden (0.05) 

die normaal als beschermend worden gezien. 

In een vijfde hoofdstuk werden de biologische beschikbaarheidsmodellen die in hoofdstuk 2 gebruikt 

werden om toxiciteitsgegevens te normaliseren geëvalueerd. Het eerste biobeschikbaarheidsmodel dat 

we bestudeerden, was het D. magna BLM voor Cu. Cu BLM's worden toegepast om 

waterkwaliteitscriteria (WQC) in de Verenigde Staten en PNEC's in de Europese Unie af te leiden. 

Hoewel beide kaders een vergelijkbare aanpak gebruiken om biologische beschikbaarheid op basis van 

PNEC- of WQC-waarden voor koper af te leiden, verschillen de structurele formulering en de 

parametrisering van de BLM's die in beide kaders worden gebruikt. Het doel was de capaciteit van deze 

twee verschillende koper BLM’s in het voorspellen van de chronische toxiciteit van koper voor twee 

verschillende D. magna klonen te evalueren. We toonden aan dat één BLM het beste werkte voor de 

data van de K6-kloon, terwijl het andere het beste werkte voor de data van de ARO-kloon. We toonden 

ook aan dat er een belangrijk verschil is tussen beide BLM's in hoe zij biobeschikbaarheid van koper als 

functie van de pH voorspellen. Onze modelleringsresultaten suggereren dat het effect van de pH op 

chronische kopertoxiciteit verschilt tussen de twee beschouwde klonen, wat werd bevestigd met 

aanvullende chronische toxiciteitsexperimenten. Daarnaast onderzochten we de capaciteit van een 

genormaliseerd biobeschikbaarheismodel (gBAM) als alternatief voor de bestaande BLM’s om 

chronische effectconcentraties voor koper te voorspellen in twee D. magna klonen. 

Ten tweede hebben we de biobeschikbaarheidsmodellen voor D. magna en P.subcapitata voor Zn 

bestudeerd. Deze modellen werden tot nu toe alleen gevalideerd binnen een bepaald bereik van 

waterchemie. Toch valt ongeveer 20% van de Europese oppervlaktewateren buiten deze 

'validatiegrens'. Dit betekent dat een aanzienlijk aantal Europese wateren buiten het toepassingsbereik 

van de biobeschikbaarheidsmodellen valt. Het doel was daarom om te beoordelen of de Zn 

biobeschikbaarheidsmodellen buiten hun bereik kunnen worden geëxtrapoleerd. Resultaten van D. 

magna experimenten suggereerden dat het BLM het pH-effect niet kan reflecteren over een breder pH-

bereik (5.5-8.5). Daarnaast kunnen we, wegens een calciumtekort bij D. magna, niet concluderen of het 
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BLM onder de Ca-grens accuraat is. Resultaten van experimenten met P. subcapitata toonden aan dat 

het biobeschikbaarheidsmodel de Zn toxiciteit bij lage Ca concentraties nauwkeurig kan voorspellen tot 

0.8 mg/L en bij pH-waarden tot 8.5. Op basis van de resultaten hebben we ook de capaciteit van een 

gBAM als alternatief voor het BLM verkend om de chronische toxiciteit van Zn op D. magna te 

voorspellen. 

In de eerste twee secties van hoofdstuk 5 werden gBAM's ontwikkeld om toxiciteit van Cu en Zn voor 

D. magna te voorspellen. Hierdoor was de uniformisering van alle biobeschikbaarheidsmodellen (die 

van Cu, Ni en Zn voor ongewervelde dieren, vissen en algen) naar een gBAM-structuur bijna compleet. 

De modellen die de gBAM-structuur nog niet hadden waren de biologische beschikbaarheidsmodellen 

voor vissen voor Zn en Cu. Daarom hebben we in een derde sectie van hoofdstuk 5 een gBAM 

ontwikkeld en gevalideerd voor de metalen Zn en Cu voor vissen. Deze gBAM's waren minstens even 

nauwkeurig als hun BLM-tegenhangers. 

In hoofdstuk 6 hebben we de impact van de implementatie van de in hoofdstuk 5 ontwikkelde modellen 

op de risicoschattingen geëvalueerd. Dit werd gedaan door de berekeningen in hoofdstuk 2 te herhalen, 

maar in plaats van de oorspronkelijke BLM’s de gBAM’s te implementeren die in hoofdstuk 5 werden 

ontwikkeld voor D. magna en vissen voor de metalen Cu en Zn. De implementatie van deze gBAM's 

had slechts een kleine invloed op de msPAF-waarden en op het percentage aan waters dat werd 

beïnvloed door het mengsel van Cu, Ni en Zn. Aangezien de nieuw ontwikkelde gBAM's voor Cu en Zn 

voor ongewervelde dieren en vissen nauwkeuriger de toxiciteit van individuele metalen voorspellen, 

raden we het gebruik van de nieuw ontwikkelde gBAM’s aan om de toxiciteitsdata voor Cu en Zn te 

normaliseren om het risico van metaalmengsels te berekenen. 

Een laatste beperking van de berekeningen in hoofdstuk 2 was dat ze gebaseerd waren op 

biobeschikbaarheid-genormaliseerde opgeloste metaalconcentraties. Bij aanwezigheid in een mengsel 

kunnen metalen echter concurreren met de bindingsplaatsen van DOC. Daarom zouden de risico’s van 

metaalmengsels idealiter moeten worden beoordeeld op het niveau van de vrije ionactiviteit. Echter, het 

beoordelen van risico's op basis van vrije ionactiviteiten is beperkt omdat de chronische 

biobeschikbaarheidsmodellen voor individuele metalen momenteel gebaseerd zijn op verschillende 

software programma’s voor het modelleren van metaalspeciatie: WHAM V voor Zn en Cu en WHAM VI 

voor Ni. Daarnaast verschillen sommige assumpties voor de chemische speciatieberekeningen tussen 

deze metalen. Onlangs is een nieuwe versie van de WHAM software (WHAM / Model VII) ontwikkeld. 

Daarom zijn we in hoofdstuk 7 nagegaan of de chronische daphnia-, vis- en algen-

biobeschikbaarheidsmodellen naar de WHAM VII-speciatiesoftware kunnen worden bijgewerkt, zonder 

verlies van voorspellingscapaciteit. Over het algemeen tonen onze resultaten aan dat WHAM VII als 

speciatiemodel met voldoende nauwkeurigheid kan worden gebruikt om metaaltoxiciteit voor 

verschillende soorten te voorspellen. 

In hoofdstuk 8 combineerden we de aanpassingen aan de biobeschikbaarheidsmodellen (hoofdstuk 5) 

met de update van de modellen naar WHAM VII (hoofdstuk 7) om de impact op de risico's van het 

mengsel te evalueren. In dit hoofdstuk hebben we berekeningen uitgevoerd voor alle monitoring 

databases beschreven in hoofdstuk 2, maar gebaseerd op vrije metaal ion activiteiten. Hiervoor werden 
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de opgeloste metaalconcentraties in de monitoringdatabases omgezet in ionenactiviteiten en dit op 2 

manieren, één waarbij geen rekening gehouden werd met de concurrentie tussen de metalen voor DOC-

bindingsplaatsen en één waarbij hiermee wel rekening werd gehouden. Hoewel we hadden verwacht 

dat wanneer er rekening werd gehouden met de concurrentie tussen metalen voor DOC-

bindingsplaatsen dit zou leiden tot hogere vrije metaalactiviteiten, vonden we dat de concurrentie tussen 

metalen voor DOC relatief weinig effect had op de vrije metaalionactiviteit (1.1%-20%). Als gevolg 

daarvan waren de msPAF-waarden berekend met beide scenario's vergelijkbaar. We kunnen hieruit 

concluderen dat de concurrentie tussen metalen voor DOC-bindingsplaatsen weinig impact heeft op de 

schattingen van de metalenmengselrisico’s. 

In een laatste hoofdstuk, hoofdstuk 9, maken we conclusies en integreren we al het onderzoek dat 

uitgevoerd werd in deze thesis. 

De in de huidige studie ontwikkelde metaal(mengsel)biobeschikbaarheidsmodellen kunnen worden 

geïntegreerd in risico-evaluatieprocedures. De toxiciteitsgegevens van de chronische metaal(mengsel) 

experimenten verhogen ons algehele begrip van chronische metalen(mengsel)effecten op individuele 

soorten en gemeenschappen. De 4 methoden die werden beschreven en het voorgestelde 

metaalmengsel risico-evaluatie schema kunnen helpen bij het opstellen van toekomstige risico-

evaluatieprocessen voor metaalmengsels. 
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A  

%AFA Percentage of active fulvic acid 

AIC Aikake information criterion 

B  

BL Biotic ligand 

BLM Biotic ligand model 

C  

CA Concentration Addition 

CADRC Concentration Addition applied to individual Dose–Response Curves before 

calculating the msPAF 

CASSD Concentration Addition applied directly to the Species Sensitivity Distribution 

CI Confidence Interval 

D  

DIC Dissolved Inorganic Carbon 

DOC  Dissolved Organic Carbon 

DOM Dissolved Organic Matter 

DRC Dose Response Curve 

E  

EC European Commission 

ECx X% Effective Concentration 

EDTA Ethylene diamine tetraacetic acid 

ERA Environmental Risk Assessment 

EQS Environmental Quality Standard 

EU European Union 

F  

FA Fulvic Acid 

FOREGS Forum of the European geological surveys directors 

G  

gBAM generalized BioAvailability Model 

H  

HA Humic Acid 

HC5 5% hazardous concentration 

I  

IA Independent Action 

IADRC Independent Action applied to individual Dose–Response Curves before 

calculating the msPAF 

IASSD Independent Action applied directly to the Species Sensitivity Distribution 

ICP-OES Inductive coupled plasma-optical emission spectroscopy 

L  

LA50 Lethal accumulation at 50% mortality 

LOEC Lowest observed effect concentration 

LOQ Limit of Quantification 

LCx X% lethal concentration 

M  

MOPS 3-N-morpholinoproanesulfonic acid 

msPAF multisubstance potentially affected fraction 

N  

NIST National Institute of Standards and Technology 

NOEC No Observed Effect Concentration 

NOM Natural Organic Matter 

O  

OECD Organisation for Economic Co-operation and Development 
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O/P Logarithmic model-measurement deviation; i.e. log Observed ECx – log 

Predicted ECx 

P  

PEC Predicted Environmental Concentration 

PNEC Predicted No-Effect Concentration 

R  

RAR Risk Assessment Report 

RCR Risk Characterisation Ratio 

REACH Registration Evaluation and Authorisation of Chemicals 

RE Relative Effect 

RGR Relative Growth Rate 

RR Relative Reproduction 

RQ Risk Quotient 

S  

SCHER Scientific Committee on Health and Environmental Risks 

SSD Species Sensitivity Distribution 

T  

TU Toxic Unit 

U  

USGS United States Geological Survey 

V  

VMM Flemish Environmental Agency 

W  

WFD Water Framework Directive 

WHAM Windermere Humic Aqueous Model 
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1. General introduction and research approach 
 

1.1. Copper, nickel and zinc 

Copper (Cu), Nickel (Ni) and Zinc (Zn) are three metals that occur in the environment as a result of both 

natural and anthropogenic sources (Salminen et al. 2005). Therefore, these metals often occur 

simultaneously in freshwater systems. Because concentrations of these metals can be high and can 

cause risk to natural communities, the European Union (EU) and member states of the EU are 

responsible for defining specific environmental quality standards for these substances (e.g. FR 2015) 

and therefore, the environmental concentration is commonly measured via monitoring efforts (e.g. FEA 

2013). In addition, the chronic toxicity of these metals to a variety of organisms (e.g. from algae to fish) 

has been studied extensively, which makes these metals “data-rich” substances (e.g. De 

Schamphelaere and Janssen 2002, Heijerick et al. 2002a, Deleebeeck et al. 2008). Furthermore, a lot 

of effort has been put in the development of bioavailability models and biotic ligand models for these 

metals, which are also used in risk assessments, to account for the variation in water chemistry variables 

(i.e. bioavailability of the metals) to predict metal toxicity (e.g. De Schamphelaere and Janssen 2004b, 

De Schamphelaere and Janssen 2008, Deleebeeck et al. 2007).The availability of monitoring data, 

chronic toxicity data and bioavailability models make Cu, Ni and Zn good subjects to evaluate risks of 

mixtures of these metals. 

Copper 

Since pre-historic times, copper has been an essential material to man. Smelting of Cu dates back as 

far as 7000 years ago (Radivojevic et al. 2010). Even one of the ‘ages’ in history, the Bronze age (3200 

– 600 BC) is a named after a copper alloy, bronze. It is clear that copper has had a large influence on 

human history. At the onset of the Industrial Revolution, world Cu production was about 10 000 tonnes 

per year (Hong et al. 1996). Since then, Cu production has increased strongly up to 18.5 million tonnes 

in 2014 (USGS 2014a). The global consumption of copper reached 22.9 million tonnes in 2014 and the 

European Union accounted for 3.2 million tons of this global consumption (USGS 2014a). Currently, Cu 

is the third most used metal in the world due to its properties of thermal and electrical conductivity, high 

ductility, and resistance to corrosion (USGS 2014a). In the USA, Cu is mainly used in building 

construction (Figure 1.1) (USGS 2014a), while in Europe the majority of Cu is used for energy and 

electricity applications (Figure 1.1) (Sverdrup et al. 2014). 

Figure 1.1 Primary uses of copper in the USA and Europe in 2014 (USGS 2014a, Sverdrup et al. 2014) 
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Because production and consumption of Cu is so high, it is not surprising that copper occurs in the 

natural environment due to anthropogenic sources. These include the use of pesticides and anti-fouling 

paints, urban runoff, mining leachates and corrosion (Lifset et al. 2012). However, it is also a naturally 

occurring element. It is the 26th most abundant element in the earth’s crust. Therefore, it is not surprising 

that the natural sources of copper in the aquatic environment include atmospheric deposition due to 

windblown dust, volcanic eruptions, forest fires and sea spray as well as natural erosion processes 

(Davies and Bennet 1985). Dissolved copper concentrations in pristine areas in Europe have been 

reported to range between 0.1 and 14 µg Cu/L (Salminen 2005; Figure 1.2). However, local 

concentrations can be much higher due to anthropogenic pollution, such as in the Dommel catchment 

area in the Netherlands, where Cu concentrations up to 60 µg/L have been reported (Verschoor et al. 

2011). 

 

Figure 1.2 Dissolved copper concentrations in pristine areas in Europe in 2006 (Salminen et al. 2005). The 

dot size scale gives the minimum and maximum of the dataset. The 10% of the lowest Cu concentrations 

are shown by the smallest symbol size and 2% of the highest concentrations by the big grey symbol. 

Between these fixed percentiles, the scale is logarithmic. In addition, a colour scale based on the 

following percentiles: 5, 15, 25, 35, 50, 65, 75, 85 and 95 (Salminen et al. 2005). 

Because Cu is present in the aquatic environment, via natural and anthropogenic sources, it can also 

be present in concentrations that are toxic to organisms. Indeed, when the process of uptake of a 

metabolically active metal is in imbalance with the detoxification, storage or excretion mechanisms, 

metal toxicity can occur (Luoma and Rainbow 2008). This metal toxicity can be due to both non-

essential and essential metals, and is often a result of the disruption of the ion homeostasis in the 

organism (Paquin et al. 2002).  
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Although Cu is an essential micronutrient and is an active component in more than 30 enzymes that 

catalyse redox reactions and transport oxygen (Wright and Welbourn 2002), an excess of Cu can lead 

to toxicity. Chronic Cu toxicity has been shown to influence amongst other endpoints, reproduction, 

survival and growth of fish species (Erickson et al. 1996; Jezierska et al. 2009; Wang et al. 2014), 

invertebrate species (De Schamphelaere and Janssen 2004a; Schwartz and Vigneault 2007; Arnold et 

al. 2011) and algal species (Knauer et al. 1997; De Schamphelaere et al. 2003; Wilde et al. 2006). 

The mechanisms of uptake of Cu by algae, daphnids and fish is not yet fully understood. Ay et al. (1999) 

investigated the mechanisms of acute Cu accumulation by the fish Tilapia zillii. It was observed by these 

authors that the activity of the Na/K-ATPase was inhibited significantly by copper. A change in the activity 

of this enzyme may disturb the ion homeostasis of Na and K. In addition, Cu participates in redox 

reactions that generate reactive oxygen species (i.e. the hydroxyl radical), which can cause damage to 

lipids, proteins and DNA (Halliwell and Gutteridge 1984). Furthermore, it was demonstrated that Cu was 

able to inactivate iron-sulfur dehydratase enzymes (Macomber and Imlay 2009) by replacing the Fe ion. 

This lead to disturbance of the Fe homeostatis and additional production of reactive oxygen species due 

to the increase in free Fe ions. 

Nickel 

The use of nickel also has a long history. In ancient China (1700 – 1400 BC), nickel alloys were used 

for the manufacturing of weapons (Nriagu 1980). The exploitation of Ni started much later, in the 19th 

century (Sevin 1980), and due to strong world economic growth until 2007, the rising production of Ni 

was supported. After the economic crisis, which lead to lower worldwide Ni production, the production 

recovered in 2010 and has increased ever since (Nickel Institute 2017). The world Ni production in 2014 

was estimated at 2.45 million tons, while the demand of primary Ni was estimated at 1.78 million ton in 

2014 (USGS 2013). In contrast to Cu, the demand of Ni has not yet exceeded its production. The total 

Ni consumption in the European Union was 200 000 tons in 2013 (USGS 2013).  The main use of Ni on 

a global scale is for the production of stainless steel (Figure 1.3), because of its valuable properties such 

as toughness, corrosion resistance, high-temperature stability and ductility (Reck et al. 2008).  

Because production and consumption of Ni is ever increasing, it is not surprising that Ni occurs in the 

natural environment due to anthropogenic sources. These include amongst others, mining, smelting, 

waste incineration, surface runoff, industrial effluents and waste waters treatment facilities (Chau and 

Kulikovksy-Cordeiro 1995, Pyle and Couture 2012). However, Ni which is the 22nd most abundant 

element in the earth crust, also occurs naturally in the aquatic environment due to the same processes 

as those that were listed for Cu. These include natural erosion processes and atmospheric deposition 

due to windblown dust, volcanic eruptions, forest fires and sea spray (USGS 1998). 
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Figure 1.3 Primary global uses of nickel (Nickel institute 2017) 

Dissolved nickel concentrations in pristine areas in Europe are usually lower than approximately 6 µg 

Ni/L (Figure 1.4), but in regions with naturally high Ni concentrations, Ni concentrations of 25 µg/L occur 

(Salminen 2005). In addition, local concentrations can be much higher due to anthropogenic pollution, 

such as in the Dommel catchment area in the Netherlands, where Ni concentrations up to 160 µg/L have 

been reported (Verschoor et al. 2011). In Canada, dissolved Ni concentrations for surface waters near 

industrial sites of up to 2000 µg Ni/L have been reported (Chau and Kulikovksy-Cordeiro 1995). 

 

Figure 1.4 Dissolved nickel concentrations in pristine areas in Europe in 2006 (Salminen et al. 2005). The 

dot size scale gives the minimum and maximum of the dataset. The 10% of the lowest Ni concentrations 

are shown by the smallest symbol size and 2% of the highest concentrations by the big grey symbol. 

Between these fixed percentiles, the scale is logarithmic. In addition, a colour scale based on the 

following percentiles: 5, 15, 25, 35, 50, 65, 75, 85 and 95 (Salminen et al. 2005). 
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Nickel, an essential micronutrient for plant growth and development (Brown et al. 1987), but only 

officially labelled essential since 2001 (Lui 2001), can also cause toxicity when present in excess in an 

organism. Chronic Ni toxicity has been shown to influence amongst other endpoints, reproduction, 

survival and growth of fish species (Pickering 1974; Hoang et al. 2004; Deleebeeck et al. 2007a), 

invertebrate species (De Schamphelaere et al. 2006a; Deleebeeck et al. 2007b; Biesinger and 

Christensen 1972; Muyssen et al. 2006) and algal species (Spencer and Greene 1981; Wong et al. 

2000; Deleebeeck et al. 2009). 

Chen et al. (2009) demonstrated for plants that Ni toxicity is likely to be caused by indirect mechanisms, 

as it is not an active or redox metal. One of these routes is the competition between Ni and other 

essential ions such as Fe and Mg, which leads to less absorption and therefore deficiency of the latter 

ions. Because Ni has the same oxidation state as Mg, it can be exported into the cell via the Mg2+ ion 

transport system, and can therefore also reduce the Mg2+ uptake (Oller et al. 1997). Pane et al. (2003) 

also observed that Mg2+ uptake was reduced during acute and chronic exposure to Ni in Daphnia magna. 

A recent study by Brix et al. (2017), who used an adverse outcome pathway analysis to identify 

mechanisms of action for Ni, also identified that disruption of Mg2+ and Fe2+/3+ homesotatis are 2 events 

by which Ni may exert toxicity to aquatic organisms. This all suggest for plants and daphnids that Ni 

most probably works as a Mg antagonist. This agrees with the observations of the protective effects of 

Mg on Ni toxicity to algae and daphnids (Deleebeeck et al. 2009; Deleebeeck et al. 2008). Another 

indirect route of Ni toxicity is by reducing the activity of antioxidant enzymes such as superoxide 

dismutase and peroxidase (Baccouch et al. 1998; Chen et al. 2009; Gajewska and Skłodowska 2005; 

Brix et al. 2017). As such, cells are less well protected against reactive oxygen species that can cause 

damage to lipids, proteins and DNA.   

Zinc 

Demands for zinc, which was brought to Europe via India and then China in the 17th century (Weeks 

1932), increased rapidly during the industrial revolution (Nriagu 1996). Nowadays, it is the fourth most 

used non-ferrous metal worldwide, after iron, aluminium and copper (USGS 2014b). It is therefore not 

surprising that the world Zn production in 2014 was estimated at 13.3 million tons (USGS 2014b). The 

global demand of primary Zn was estimated at 13.7 million ton in 2014 (USGS 2014b). Similar to Cu, 

the demand of Zn has exceeded its production. The total Zn consumption in the European Union was 

approximately 2 million tons in 2013 (USGS 2014b). The main use of Zn on a global scale is for 

galvanizing (Figure 1.5), because of its most valuable property, corrosion resistance.  
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Figure 1.5 Primary global uses of zinc (ILZSG 2017) 

Not surprisingly, anthropogenic sources of Zn are significant, arising from corrosion of galvanized 

products and Zn alloys, atmospheric deposition, wastewater treatment plants, urban runoff and drainage 

from agricultural soils, mining and metal-related industrial activities (Hogstrand 2012). Additionally, as it 

is the 25th most abundant element in the earth crust (Luoma and Rainbow 2008), it also enters the 

aquatic environment via natural sources. These are again similar to those of Cu and Ni: natural erosion 

processes and atmospheric deposition due to windblown dust, volcanic eruptions, forest fires and sea 

spray. 

Dissolved zinc concentrations in pristine areas in Europe have been reported to range between 0.1 and 

31 µg/L (Salminen 2005; Figure 1.6). Van Sprang et al. (2009) reported total Zn values between 5.4 and 

42.6 µg/L in European rivers unaffected by historical mining and point sources. However, local Zn 

concentrations near mining sites (Luoma and Rainbow 2008) and industrial sites (Verschoor et al. 2011) 

can be much higher.  

Zinc, although essential for human, animal and plant life, can cause toxicity when present in excess in 

an organism. Chronic Zn toxicity has been shown to influence amongst other endpoints, reproduction, 

survival and growth of fish species (Skidmore 1964; De Schamphelaere and Janssen 2004b; Besser et 

al. 2007), invertebrate species (Paulauskis and Winner 1988; Heijerick et al. 2005a; De Schamphelaere 

and Janssen 2010) and algal species (De Schamphelaere et al. 2005; Wilde et al. 2006; Gao et al. 

2016). 
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Figure 1.6 Dissolved zinc concentrations in pristine areas in Europe in 2006 (Salminen et al. 2005). The 

dot size scale gives the minimum and maximum of the dataset. The 10% of the lowest Zn concentrations 

are shown by the smallest symbol size and 2% of the highest concentrations by the big grey symbol. 

Between these fixed percentiles, the scale is logarithmic. In addition, a colour scale based on the 

following percentiles: 5, 15, 25, 35, 50, 65, 75, 85 and 95 (Salminen et al. 2005). 

An important mode of action of zinc in fish and daphnids is the inhibition of Ca2+ uptake, which can lead 

to hypocalcaemia (Spry and Wood 1985; Hogstrand et al. 1995; Muyssen et al. 2006). Muyssen et al. 

(2006) demonstrated that mortality to daphnids was mainly an acute process due to inhibition of the Ca 

uptake. At sub-lethal reductions of Ca body contents, reduced growth and reproduction is observed due 

to decreased food intake as a result of inhibited movement and filtration rate. On a chronic timeframe, 

however, repair processes were observed and Ca body contents were restored (Muyssen et al. 2006). 

It is therefore not unlogic that Ca provides a protection against acute and chronic Zn toxicity (Heijerick 

et al. 2003; 2005). 

1.2. Metal bioavailability 
 

Metal speciation and its influence on toxicity 

As discussed above, metals are present in the aquatic environment due to both natural and 

anthropogenic sources. However, toxic effects can only occur when the metal is taken up by an 

organism. Because not all metal species are equally bioavailable to an organism, the speciation of the 

metal is of critical importance in metal toxicity (Luoma and Rainbow 2008). Metals can be present in two 
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phases in the water column: the particulate phase and the dissolved phase, although the importance of 

the former in metal toxicity is less important than the latter (DeForest and Meyer 2015). In the dissolved 

fraction, the distribution of the metal species is dependent on the water chemistry. For instance, the 

presence of organic ligands (i.e. dissolved organic matter) and inorganic ligands (e.g. CO3
2-, SO4

2-,  

OH-) will result in the complexation and therefore decrease of free metal ions. On the other hand, the 

competition between protons and metal ions for complexation to these organic ligands will result in an 

increase of free metal ions (Figure 1.5). In general, the free metal ion is the most bioavailable and 

therefore most toxic species (Campbell 1995; Paquin et al. 2002; De Schamphelaere and Janssen 

2004a).  

These chemical speciation processes are embedded in computational models such as the Windermere 

Humic Aqueous Model VII (WHAM VII; Tipping et al. 2011), which was used in this study. This model 

incorporates a thermodynamic database containing stability constants for inorganic complexation as 

well as a model (Humic Ion-Binding Model VII) that describes the interactions of metals and protons at 

the binding sites of humic and fulvic acids (Tipping et al. 2011). As such, it can be used to calculate 

chemical speciation of metal ions and inorganic complexes, which has been done successfully in recent 

studies (Tipping and Lofts 2013; 2015; Iwasaki and Brinkman 2015, Nys et al. 2016). 

 

Competition: how does it influence metal toxicity? 

It was already described above that the presence of free metal ions can be influenced by the competition 

with protons for binding sites of organic ligands, which can increase the toxicity of a metal. However, 

protons not only affect metal toxicity by their effect on speciation, but also by competitive interactions at 

the biological surfaces, which decreases metal toxicity (Campbell and Stokes 1985).  Hence, the pH of 

a water is an important factor when the toxicity of a metal is evaluated. In addition, certain other cations 

such as Ca2+, Mg2+ and Na+ can exert a protective effect against metal toxicity by competitive 

interactions at the biological surface (Figure 1.7) (Heijerick et al. 2003; De Schamphelaere et al. 2003; 

Deleebeeck et al. 2008; 2009). However, which cations protect against toxicity and to what extent  is 

dependent on the metal, the organism and the duration of exposure.  

For instance, Ca2+ and Mg2+ ions did not affect toxicity of chronic Cu2+  to Pseudokircherniella subcapitata 

(De Schamphelaere et al. 2003), while Mg2+ did protect against chronic Ni2+   toxicity to the same species 

(Deleebeeck et al. 2009). The protective effects of Mg2+ against Ni2+ toxicity, due to competition at the 

Mg2+ uptake sites, were also observed for D. magna (Deleebeeck et al. 2008) and Oncorhynchus mykiss 

(Deleebeeck et al. 2007a). The protective effects of Ca2+ against Ni2+ toxicity on the other hand were 

attributed to competition at the Ca2+ uptake sites in O. mykiss, but to secondary effects of Ca in the 

maintenance of the cell membrane integrity in D. magna. Heijerick et al. (2005) demonstrated the 

protective effects against chronic Zn2+ toxicity as a result of competition with Ca2+, Mg2+, Na+ and H+ for 

D. magna, whereas the same species is not protected against chronic Cu2+  toxicity by competition with 

Ca2+ and Mg2+ (De Schamphelaere and Janssen 2004a). 
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Figure 1.7 General schematic representation of metal bioavailability models 

Models incorporating metal bioavailability and toxicity  

Metal bioavailability and toxicity have long since been recognized to be determined by water chemistry, 

which lead to the development of two bioavailability models in the 80s: the free ion activity model (FIAM; 

Morel 1983) and the gill surface interaction model (GSIM; Pagenkopf 1983). Increased knowledge and 

understanding of the mechanisms of metal toxicity lead to the formulation of the biotic ligand model 

(BLM) by Di Toro et al. (2001). The BLM, initially developed to predict acute toxicity, assumes that the 

metal ions bind to a biotic ligand (Figure 1.5). The biotic ligand represents a discrete receptor or site of 

action on an organism where accumulation of metal leads to toxicity. The BLM is used to predict the 

amount of metal accumulation at this site for a variety of chemical conditions and metal concentrations. 

According to the conceptual framework of the BLM, accumulation of metal at the biotic ligand at or above 

a critical threshold concentration leads to toxicity. For example, the LA50 is the lethal accumulation of 

metal at the biotic ligand that results in 50% mortality, and is assumed to be independent of water 

chemistry (Meyer et al. 1999). In the BLM framework of Di Toro et al. (2001), it is assumed that binding 

stability constants for both metal ions and competing cations are the same across all species and that 

the LA50 is species-dependent (Santore et al. 2001). 

Soon after Di Toro et al. (2001) introduced the BLM, De Schamphelaere and Janssen (2002) presented 

an alternative modelling approach, that also received the “BLM” stamp. The main difference between 

both approaches was that the biotic ligand binding stability constants were calculated directly from 

observed toxicity data in the approach of De Schamphelaere and Janssen (2002), which allowed for the 

calculation of species-specific stability constants. These stability constants were derived from the linear 

relationship between the activity of one cation and the free metal ion toxicity, when other cation activities 

are kept constant (De Schamphelaere and Janssen 2002). De Schamphelaere and colleagues 

developed numerous BLMs for the prediction of Zn and Cu to D. magna (De Schamphelaere and 

Janssen 2002; De Schamphelaere et al. 2002; Heijerick et al. 2002a; De Schamphelaere and Janssen 

2004b; Heijerick et al. 2005a) and O. mykiss (De Schamphelaere and Janssen 2004b; De 

Schamphelaere and Janssen 2008).  
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The relation between free metal ion toxicity and proton activity is not always linear, but can be more 

curvilinear, which suggests that the effect of pH on free metal toxicity may be a result of other or 

additional factors besides the competitive effect of H+. This was observed for chronic Cu toxicity to algae 

(De Schamphelaere et al. 2003), chronic Zn toxicity to algae (De Schamphelaere et al. 2005) and chronic 

Ni toxicity to D. magna, fish, C. dubia and algae (De Schamphelaere et al. 2006a; Deleebeeck et al. 

2007a; 2008; 2009). In these models, which are more generally termed ‘bioavailability models’ due to 

the difference in model and equation structure compared to the BLMs, the effect of pH (H+) on metal ion 

toxicity was expressed as a log-linear effect of pH, represented by a slope parameter, i.e. SpH. When 

observed, the protective effects of other competitive ions were incorporated as conventional BLM-type 

competition constants. 

1.3. Metal mixture toxicity 

Metals are rarely present in the environment as individual substances. More commonly, they occur as 

mixtures. The effects of individual metals can differ from the effects of the same metals when these 

metals occur in a mixture. Because testing of every possible mixture of metals that could occur in the 

aquatic environment is time consuming, costly and unrealistic, predictions of mixture toxicity are made 

using mathematical models. 

Two mixture reference models are generally accepted: the concentration addition (CA) and independent 

action (IA) model (Jonker et al. 2005; 2011). The CA model assumes that components in a mixture have 

the same mode of action at the same toxicity site, are non-interactive and work independently (Loewe 

and Muischneck 1926). The model is described using Equation 1.1. 

∑ 𝑇𝑈𝑖,𝑥
𝑛
𝑖=1 = ∑

𝑐𝑖

𝐸𝐶𝑥𝑖
= 1𝑛

𝑖=1                                                                                                          (1.1) 

Where n is the number of mixture components and TUi is the toxic unit of component i in the mixture. 

The TUi, a dimensionless parameter, is defined as the ratio between the concentration of component i 

in the mixture and ECxi, the x% effective concentration of component i in the mixture (Joncker et al. 

2005). When the ∑TU equals 1 and the mixture causes x% effect, CA holds true. This model therefore 

assumes that as long as the ∑TUi,x of the mixture does not change, the components in a mixture are 

interchangeable without changing the overall mixture toxicity. This implies that toxicity can occur in 

mixtures wherein the mixture components are present at low concentrations as long as the number of 

mixture components is high enough, because all mixture components contribute to the overall mixture 

toxicity proportional to their toxic units.  

According to the IA model, the components in a mixture have a dissimilar mode of action, bind to different 

sites of toxicity and are non-interactive (Bliss 1939). The global mixture effect according to IA is the 

product of the individual responses to each of the individual components in a mixture and is calculated 

using Equation 1.2. 

𝐸𝑚𝑖𝑥 = 1 − (∏ (1 − 𝐸𝑖))𝑛
𝑖=1                                                                                                                    (1.2) 
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Where Emix is the global effect of a mixture that consist of n components and Ei is the individual effect of 

component i in the mixture if applied singly. In contrast to the CA model, the IA model assumes that only 

those components that are present at a concentration that causes an effect (i.e. Ei > 0) will contribute 

to the overall mixture effect. Therefore, when a mixture contains a lot of components, but these do not 

cause effect individually, there will also be no mixture effect. 

Both CA and IA assume that the components in a mixture are non-interactive. However, interactions 

between components in a mixture can occur. If the observed effect in a mixture is smaller than those 

predicted with the CA or IA model, the mixture is said to be antagonistic or “less-than-additive”. In 

contrast, if the observed effect of the mixture is larger than expected based on CA or IA, the mixture is 

said to by synergistic or “more-than-additive” (Jonker et al. 2005; 2011).  

Both models are commonly used to assess the effects of mixtures, although CA is used more often due 

to its conservativeness in the context of metal mixture assessment (Vijver et al. 2011). Although 

countless tests have been conducted to assess metal mixtures, no clear patterns have appeared. 

Extensive research conducted by Norwood et al. (2003) and Vijver et al. (2011) has shown that mixtures 

interact (i.e. are synergistic or antagonistic) in more cases than not (i.e. are additive). However, these 

interactive effects depend on, amongst other things, the species tested, the metal combination tested, 

the water chemistry and the selected endpoint (Norwood et al. 2003; Vijver et al. 2011; Liu et al. 2015; 

Sharma et al. 1999; Nys et al. 2017c).   

The concepts of both the CA and IA model have been implemented to develop metal mixture 

bioavailability models (MMBMs). These MMBMs implement the BLM-concept to predict mixture toxicity. 

When based on the CA-concept, the MMBM assumes that metals bind at a single shared biotic ligand 

site (Kamo and Nagai 2008; Hatano and Shoji 2008; Jho et al. 2011; Iwasaki et al. 2015; Farley et al. 

2015). When based on the IA-concept, the MMBM assumes that multiple biotic ligand sites are present 

(Versieren et al. 2014; Santore and Ryan 2015; Nys et al. 2017a). Based on the metal mixture modelling 

evaluation project, in which these models were extensively tested, the IA model is in general the better 

option to model metal mixture toxicity (Van Genderen et al. 2015; Farley et al. 2015). However, the CA, 

which is in general more conservative than the IA model (Vijver et al. 2011; Meyer et al. 2015; Nys et 

al. 2016; Nys et al. 2017b) can be implemented as a default first-tier approach in an assessment of 

potential mixture toxicity. 

1.4. Metal regulations in Europe 
 

Regulations for single metals: the present 

Since the start of the 21st century, the Water Framework Directive (WFD) has set out strategies against 

the pollution of water. A first step was the identification of priority substances that presented a significant 

risk to the aquatic environment (EC 2001). Amongst these substances, also a number of metals were 

prioritised, i.e. Ni, Cd, Pb and Hg. For these metals, an Environmental Quality Standard (EQS) was 

established in the European Union that had to be met by all member states by 2015 (EC 2008). For Ni, 

this value was originally defined at 20 µg dissolved Ni/L. By 2013, the list of priority substances was 
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revised and new substances were added to the list, adding up to a total of 33 substances. In addition, 

the EQS values of the metals present on the list were adapted to a more ‘worst-case’ generic value. For 

instance, the EQS for Ni was lowered to 4 µg dissolved Ni/L (EC 2013). In addition, member states were 

given the authority to take into account the water chemistry and thus evaluating risk based on 

bioavailability of metals (EC 2013). This bioavailability based EQS may be implemented if it can be 

determined based on bioavailability models, i.e. BLMs, regression models or speciation models (EC 

2011). 

Although Ni was selected as a priority substance under the EU WFD (EC 2001), zinc and copper are 

currently not. Therefore, member states of the EU are responsible for defining member state specific 

EQS values for these substances. In Flanders, an EQS for dissolved Zn and Cu of 20 µg/L and 7 µg/L 

is set for surface waters, respectively (VR 2015). However, for all three metals, bioavailability adjusted 

EQS values can be calculated because BLMs for all metals have been developed (e.g. De 

Schamphelaere and Janssen 2002; De Schamphelaere et al. 2002; Heijerick et al. 2002a Deleebeeck 

et al. 2007a). 

Next to the WFD that strives against the pollution of water, REACH aims to improve the protection of 

human health and the environmental by the registration, evaluation and authorisation of chemicals (EC 

2006). The REACH regulation requires that industries obtain information on the properties of their 

chemical products and perform a chemical safety assessment or environmental risk assessment (ERA) 

in which the risks of the substance are assessed. Typically, this assessment is a three stage process: 

an exposure assessment, an effect assessment and a risk characterization (Figure 1.8). In the exposure 

assessment, the concentration of the substance in the environment is predicted (PEC: predicted 

environmental concentration) or measured (MEC: measured environmental concentration). In the effect 

assessment, the predicted no effect concentration (PNEC), or the concentration below which no 

(adverse) effect on the environment is expected, is determined. For metals, a bioavailability based 

effects assessment is possible (ECHA 2008) (Figure 1.9). For the metals considered in this study, 

bioavailability based PNECs have been used in European risk assessments, i.e. for Cu (ECI 2008), for 

Ni (DEPI 2008) and for Zn (Van Sprang et al. 2009). To calculate a bioavailability based PNEC, the 

effect data (10% effect concentrations (EC10) and no-observed-effect concentrations (NOECs)) in a 

toxicity database of a metal is normalized to a given river-basin specific physico-chemistry using BLMs. 

Subsequently a species sensitivity distribution (SSD) is constructed with the lowest geometric mean 

NOEC or EC10 (i.e. the most sensitive endpoint) per species (Van Sprang et al. 2009). From these 

SSDs the hazardous concentration affecting 5% of the species in a community (HC5) is calculated. The 

bioavailability based PNEC is then derived from the HC5 by dividing the HC5 value by an assessment 

factor between 1 and 5 depending on the uncertainties associated with the method of HC5 derivation 

(ECI 2008; Van Sprang et al. 2009). 

In a final step of the chemical safety assessment, the risk characterisation is performed by comparing 

the PEC with the PNEC. If the Risk Characterisation Ratio (RCR = PEC/PNEC) is larger than 1, the 

substance is said to present a risk to the ecosystem of the considered environmental compartment.  
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Figure 1.8 General schematic representation of a chemical safety assessment or envrionmetal risk 

assessment 

 

Figure 1.9 General schematic representation of the process in which a bioavailability based HC5 is 

calculated, from which the bioavailability based PNEC can be derived. 

Regulations for metal mixtures: the future 

Although the regulation of single metal exposure is nowadays ingrained in the (EU) metal risk 

assessment frameworks, in the environment, organisms are usually simultaneously exposed to a 

multitude of metals (EC 2006). However, currently, possible mixture effects of metals are not yet 

considered in risk assessment frameworks around the world. The only exception is found in Australia 

and New Zealand, two countries that explicitly incorporate guidelines to calculate metal mixture risk in 

their regulatory guidelines (A&NZ 2000). In the USA, mixture toxicity of metals is mentioned in guidance 

documents, but is not yet incorporated into regulations (US EPA 1991; 1994). Possible mixture effects 
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are also not yet considered in European risk assessment frameworks. This may result in 

underestimation of the risks to human health and the environment posed by metal exposure. However, 

a general agreement exists that future risk assessment procedures should require the consideration of 

mixture toxicity effects (SCHER 2009; CEU 2009). Governments and scientists across the EU have 

therefore not rested on their laurels, as different initiatives have considered how to regulate chemical 

mixtures (Kortenkamp et al. 2009; Backhaus et al. 2011; EC 2012). Some examples of approaches that 

were put forward include calculating a RCRs for mixtures expressed in terms of toxic units 

(∑TUi=∑(cw,i/QSi); with cw,i the concentration of substance i in the water). In other approaches, each 

substance in a mixture is treated equally and in turn the EQS of each substance is divided by the total 

number of substances in the water. In addition, more elaborate methods have been proposed that 

combine CA and IA models with SSD-approaches to evaluate mixture risks (Traas et al. 2002; De Zwart 

and Posthuma 2005). Recently, these methods were implemented in a tiered approach to evaluate 

mixture risks that was presented by Backhaus and Faust (2012) (Figure 1.8). In a first tier of the risk 

assessment approach, the CA model is first applied on the community level. Here, a risk quotient of the 

mixture is calculated (RQPEC/PNEC = ∑(PECi)/(PNECi)). If the RQ is higher than a certain threshold, the 

CA model is subsequently applied on the toxicity data of the individual species by calculating a RQSTU 

based on the ‘species toxic units’. If the data still suggests mixture effects, the IA model is applied in a 

second, less conservative tier. Gregorio et al. (2013) also developed a method to evaluate mixture risks 

starting from information on single species in combination with the IA approach, to calculate risk 

estimated for species assemblages. 

1.5. Objectives 
 

Environmental Quality Standards and European risk assessment frameworks concerning single metals 

have taken a leap forward since the change of the millennium, by implementing bioavailability based 

EQS values (EC 2013) and bioavailability models (ECI 2008; DEPA 2008; Van Sprang et al. 2009). 

However, European risk assessment frameworks do not account for possible mixture effects due to 

exposure to metal mixtures. Because there seems to be no clear pattern in the interactions between 

metals, the development of metal mixture risk assessment frameworks is currently hindered (Meyer et 

al. 2015; Van Genderen et al. 2015). Recently however, a tiered approach to evaluate mixture risks was 

presented by Backhaus and Faust (2012) (Figure 1.10). In this approach, the models of CA and IA are 

applied directly to species sensitivity distribution (SSD) curves, as explained by De Zwart and Posthuma 

(De Zwart and Posthuma 2005). Although interest is growing in these methods in the field of mixture 

risk assessment, they also have an important limitation: the predictions made by the CA and IA models 

are theoretically only consistent when applied to single species (dose–response curves (DRCs)), and 

not when applied to communities (SSDs) (Gregorio et al. 2013). However, the tiered approach by 

Backhaus and Faust (2012) also includes a theoretically consistent method that applies CA first to 

different single species separately and then combines all single-species information to calculate risk 

estimates for a species assemblage. A similar method, but developed based on the IA method was also 

proposed by Gregorio et al. (2013). 
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However, these two approaches also have a few limitations. The approach of Backhaus and Faust 

(2012) only uses the so-called base set of toxicity data for a substance. This base set (i.e., x% effect 

concentration (ECx) values for algae, crustaceans, and fish) is the minimum set of data required by 

REACH for the calculation of a PNEC (ECHA 2008). Although their approach can be applied to a broader 

array of substances (i.e., so-called data-poor substances) and can be extended to a higher number of 

species, the method applies subjective assessment factors to calculate the risk quotient for a mixture. 

Gregorio and colleagues (2013) only evaluated their method using sets of species toxicity values that 

were randomly generated from SSDs of sets of hypothetical substances, and they also assumed a range 

of possible slope values of dose–response curves for these species, because they argued that 

implementing the method with existing data was not possible with the typical amount of data available 

for a substance. 

 

Bearing in mind the limitations found in the research mentioned above, the objective in the present study 

was to evaluate differences in mixture risk estimates for a number of monitoring databases, using the 

four approaches listed above but overcoming the limitations mentioned in these approaches. 

 

Figure 1.10 Outline for the predictive ecotoxicological risk assessment of chemical mixtures proposed by 

Backhaus and Faust (2012) (taken from Backhaus and Faust (2012). 
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1.6. Research approach 

The present study can be divided into three major sections. In a first section, the toxicity of mixtures of 

Cu, Ni and Zn was investigated building on the research reported above and bearing in mind their 

limitations (Figure 1.11). In the second section, certain limitations discovered in Chapter 1 were 

addressed and adaptations to existing bioavailability models and normalization procedures were made 

(Chapter 3, 4, 5, 7). In a third section, the implications of these adaptations on metal mixture risk 

assessment is evaluated (Chapter 6, 8 and 9).  

Furthermore, the study can also be divided into two parts in terms of the bioavailability models that were 

used. In a first part (Chapters 2-4), all calculations and analyses were done using existing bioavailability 

models that are already implemented in risk assessments. In a second part (Chapters 5-9), these 

bioavailability models were improved and these new models were used for calculations and analyses. 

Bearing in mind the limitations found in the research mentioned above, in the second Chapter in the 

present study, we aimed to evaluate differences in mixture risk estimates using actual chronic toxicity 

data for Cu, Ni and Zn for more than the base set of species. In addition, we applied four methods for 

mixture evaluations on existing environmental monitoring datasets to estimate metal mixture risks. 

Copper, Ni and Zn were selected because it has been demonstrated for numerous species that toxic 

effects due to these metals can occur and that these elements are commonly present together in rivers 

with historic industrial pollution (Verschoor et al. 2001).  

Based on Chapter 2, certain weaknesses/assumptions in our research were encountered. For instance, 

the underlying assumptions of the four methods should be tested. In addition, the uncertainty about the 

degree of conservatism and accuracy compared to observed community-level metal mixture toxicity 

effects should be assessed. Furthermore, the bioavailability models used in Chapter 2 should be 

evaluated and adapted when necessary. In addition, it should be evaluated whether these models can 

all be updated to the same speciation software, without loss of predictive capacity. These 

weaknesses/assumptions will be addressed in the following chapters. 

In Chapter 2 four methods were used of which the underlying assumptions should be tested. More 

specifically, the following research question should be addressed: Is the CA model or the IA model best 

to predict chronic toxicity of metal-mixtures? Because microalgae, as primary producers, form the base 

of the food web, it is of utmost importance to understand the effects of metals on these organisms. And 

although numerous studies have examined the effects of metal mixtures on invertebrates, fish and 

higher plants, few have been conducted on freshwater microalgae. Research that has been conducted 

so far with microalgae appears not to be suitable to answer our research question. For instance, Franklin 

et al. (2002) examined the effect of mixtures of Cu, Zn and Cd on Chlorella sp. However, these authors 

only used the CA model and not the IA model as reference model to investigate the mixture effects, 

which makes it impossible to compare both models. In addition, the toxicity of the mixtures was not 

investigated simultaneously with those of each of the individual components in the mixture. This was 

also not the case in the studies on P.subcapitata performed by Nagai and Kamo (2014). However, De 

Laender et al. (2009) demonstrated that when toxicity of single substances and mixtures is not 

simultaneously assessed erroneous conclusions about the interactive effects can be made. 
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Furthermore, the above mentioned research was conducted in one specific water chemistry, although it 

has been demonstrated that the interactive effects of metals in mixtures can depend on water chemistry 

(Norwood et al. 2003; Vijver et al. 2011). In Chapter 3, we therefore addressed the latter by performing 

experiments with the freshwater microalgae P.subcapitata for the ternary mixture Cu-Ni-Zn in various 

natural waters that show diverse water-chemistry variables. In addition, the toxicity of the individual 

metals were investigated simultaneously with the mixture. 

Another possible obstacle for applying the four methods described in Chapter 2 is the uncertainty about 

the degree of conservatism and accuracy compared to observed community-level metal mixture toxicity 

effects. To assess this limitation, the metal mixture risk evaluation methods should be validated using 

multispecies experiments (microcosm/mesocosm studies) and/or field data. To evaluate the 

conservativeness of our methods, a calculated msPAF, based on reported or estimated physico-

chemistry, should be compared to community-level effects. Several studies have reported data of 

mixture toxicity (e.g. Richardson and Kiffney 2000; Hickey et al. 2002; Clements 2004; Clements et al. 

2013). However, these studies show certain limitations which makes them inadequate for our research. 

For instance, DOC, an important variable influencing metal toxicity, was not measured. In addition, all 

mentioned studies deal with short term toxicity, i.e. from 6 days (Richardson and Kiffney 200) to 34 days 

(Hickey et al. 2002). Furthermore, the organisms that were exposed to the mixture were limited to 

benthic macroinvertebrates in most studies. Finally, none of the studies investigated the mixture that we 

are currently examining, i.e. Cu-Ni-Zn. Because we did not find the adequate information in literature, a 

multispecies microcosm experiment was performed to evaluate the conservativeness and accuracy of 

our methods (Chapter 4). In this experiment, which lasted for 56 days, a naturally occurring zooplankton 

and phytoplankton community was exposed to a mixture of Cu, Ni and Zn.  
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Figure 1.11 General overview of the framework of the study. In Chapter 2 the toxicity of mixtures of Cu, Ni 

and Zn was investigated (light blue figures). In Chapter 3, 4, 5 and 7 the limitations discovered in Chapter 1 

were addressed (orange figures). In Chapter 6 and 8 the implications of these adaptations on metal mixture 

risk evaluation is assessed (green figures). Chapter 9 gives the general conclusions and research 

recommendations (dark blue figure). The chapters can also  be divided into two parts in terms of the 

bioavailability models used: in Part I calculations and analyses were done using existing models that have 

been used in risk assessments (delineated in pink) and in Part II models were improved and implications 

for risk calculations were assessed (delineated in yellow).  

In a fifth Chapter, the bioavailability models that were formerly used to normalize toxicity data in Chapter 

2 were evaluated and improved when necessary. The main issue that was addressed was the 

nonlinearity between the H+ activity and the EC50Me2+ activity that was observed for chronic Cu and Zn 

toxicity to Daphnia magna and/or Oncorhynchus mykiss. This nonlinearity implies that the effect of pH 

should not be described by single-site competition between Me2+ and H+. Rather, the effect of pH should 

be modelled based on an empirical linear relationship between pH and EC50Me2+. We will call this type 

of model a generalized BioAvailability Model (gBAM). 

The first bioavailability model that we took an in depth look into was the D. magna BLM for Cu. Cu BLMs 

have been applied to derive Water Quality Criteria in the US and PNECs in the EU. Although both 

frameworks use a similar approach to derive bioavailability-based PNEC or WQC values for copper, the 

structural formulation and parameterization of the BLMs that is used in both frameworks differ (US EPA 

2007; ECI 2008). The purpose was to evaluate the capacity of these two different copper BLMs to predict 

chronic toxicity of copper. In addition, we explored the ability of a generalized BioAvailability Model 

(gBAM) as an alternative for the existing BLMs to predict chronic effect concentrations for copper in two 

D. magna clones. Secondly, we took an in depth look into the bioavailability models for D. magna and 
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P.subcapitata for Zn. These models had so far only been validated within a certain range of water 

chemistry. Yet, around 20% of the European surface waters fall outside this ‘validation boundary’ 

(Salminen et al. 2005). This means that a considerable number of European waters falls outside the 

applicability range of the bioavailability models. The purpose was therefore to evaluate if the Zn 

bioavailability models can be extrapolated outside their bioavailability ranges. Based on the results, we 

also explored the ability of a generalized BioAvailability Model (gBAM) as an alternative for biotic ligand 

model to predict chronic effect concentrations for Zn to D. magna. In the two first sections of Chapter 5, 

gBAMs were developed to predict toxicity of Cu and Zn to D. magna. With this, the uniformisation of all 

bioavailability models (i.e. of Cu, Ni and Zn for invertebrates, fish and algae) to a gBAM-structure was 

almost complete. The models that did not yet incorporate a pH slope parameter (i.e. had the gBAM-

structure) were the bioavailability models for fish for Zn and Cu. Therefore, in a third section of Chapter 

5, we developed and validated a gBAM for the metals Zn and Cu for fish. 

 

In Chapter 6, we evaluated the impact of the implementation of the models developed in Chapter 5 on 

risk estimations. This was done by repeating the calculations performed in Chapter 2 but implementing 

the gBAMs developed in Chapter 5 for D. magna and fish for the metals Cu and Zn instead of the original 

BLMs.   

 

A final limitation of the calculations performed in Chapter 2 that was evaluated in this work, was that the 

limitations were based on bioavailability-normalized dissolved metal concentrations. However, when 

present in a mixture, metals may compete with each other for the binding sites of DOC. Hence, metal 

mixture risks should ideally be evaluated on the free ion activity level. However, assessing risks based 

on free ion activities is limited because the chronic bioavailability models for individual metals are 

currently based on different software to model metal speciation: i.e. WHAM V for Zn (Van Sprang et al. 

2009) and Cu (ECI, 2008) and WHAM VI for Ni (DEPA, 2008). Additionally, some assumptions for 

chemical speciation calculations differ between these metals. Recently, an updated version of the 

WHAM software (WHAM/Model VII) was developed (Tipping 2011). Therefore, in Chapter 7 we 

evaluated whether the chronic daphnid, fish and algae metal bioavailability models can all be updated 

to the WHAM VII speciation software, without loss of predictive capacity. 

 

In Chapter 8, we combined the adaptations made to the bioavailability models (Chapter 5) with the 

update of the models all WHAM VII (Chapter 7) to evaluate the impact on mixture risk estimations.  

 

In a final chapter, Chapter 9, we conclude and integrate the research that was conducted in all previous 

chapters and propose a possible metal mixture risk evaluation approach.
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Part I 

In Part I of this work, we first aimed to evaluate differences in mixture risk estimates using four methods 

for mixture risk evaluations. For this, actual chronic toxicity data for Cu, Ni and Zn for more than the 

base set of species was used and existing environmental monitoring datasets were used to estimate 

metal mixture risks (Chapter 2).  

In addition, two limitations encountered in Chapter 2 were addressed. First, we tested the underlying 

assumptions of the four methods. More specifically, the following research question was adressed: Is 

the CA model or the IA model best to predict chronic toxicity of metal-mixtures? We addressed the latter 

by performing experiments with the freshwater microalgae P.subcapitata for the ternary mixture Cu-Ni-

Zn in various natural waters that show diverse water-chemistry variables (Chapter 3). Second, we 

assessed the uncertainty about the degree of conservatism of the four methods described in Chapter 2 

compared to observed community-levels metal mixture toxicity effects. To evaluate the 

conservativeness of our methods, a calculated msPAF, based on measured physico-chemistry, was 

compared to community-level effects obtained via a microcosm experiment in which a  naturally 

occurring zooplankton and phytoplankton community was exposed to a mixture of Cu, Ni and Zn 

(Chapter 4). 

For these three chapters in Part I, existing bioavailability models for algae, invertebrates and fish for the 

metals Cu, Ni and Zn were used that have also been used in risk assessment procedures. 
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2. Comparison of four methods for bioavailability-based risk assessment of 

mixtures of Cu, Zn and Ni in freshwater 

 

2.1. Introduction 

In the environment, organisms are usually simultaneously exposed to a multitude of substances 

including pesticides, pharmaceuticals, and metals (EU, 2006). Although risk assessment is still mainly 

performed on a single-substance basis, various approaches toward the risk assessment of mixtures of 

chemicals have been proposed (Backhaus et al. 2002; De Zwart and Posthuma 2005; Backhaus and 

Faust 2012; Gregorio et al. 2013; European Commission 2012). These approaches are mainly based 

on 2 fundamental concepts that predict the joint toxicity of substances in a mixture to a single species 

based on each substance’s individual effects: concentration addition (CA) and independent action (IA). 

Although these 2 concepts were originally theorized and mathematically developed to predict mixture 

toxicity to different single species (Backhaus et al. 2003), they have also been applied directly to species 

assemblages, both real (Balistrieri et al. 2015; Mebane et al. 2016) and mathematical (De Zwart and 

Posthuma 2005). In the latter case this is done by applying the 2 models directly to species sensitivity 

distribution (SSD) curves, as explained by De Zwart and Posthuma (De Zwart and Posthuma 2005). 

These authors estimated the risks of chemical cocktails on species assemblages expressed as a 

“multisubstance potentially affected fraction of species” (msPAF). Although interest is growing in these 

methods in the field of mixture risk assessment, they also have an important limitation: the predictions 

made by the CA and IA models are theoretically only consistent when applied to single species (dose–

response curves (DRCs)), and not when applied to communities (SSDs) (Gregorio et al. 2013). More 

recently, Backhaus and Faust (2012) as well as Gregorio et al. (2013) developed theoretically consistent 

methods that apply CA or IA first to different single species separately and then combine all single-

species information to calculate risk estimates for a species assemblage. However, these 2 approaches 

also have a few limitations. The approach of Backhaus and Faust (2012) only uses the so-called base 

set of toxicity data for a substance. This base set (i.e., x% effect concentration [ECx] values for algae, 

crustaceans, and fish) is the minimum set of data required by the European Commission’s Registration, 

Evaluation, Authorization, and Restriction of Chemicals (REACH) for the calculation of a predicted no-

effect concentration (PNEC) (European Chemicals Agency 2008). Although their approach can be 

applied to a broader array of substances (i.e., so-called data-poor substances) and can be extended to 

a higher number of species, the method applies subjective assessment factors to calculate the risk 

quotient for a mixture. Gregorio and colleagues (2013) only evaluated their method using sets of species 

toxicity values that were randomly generated from SSDs of sets of hypothetical substances, and they 

also assumed a range of possible slope values of dose–response curves for these species, because 

they argued that implementing the method with existing data was not possible with the typical amount 

of data available for a substance. 

Fortunately, limited data availability is not an issue for several metals. Indeed, the effects of the metals 

copper (Cu), zinc (Zn), and nickel (Ni) on single species have been studied extensively, which makes 

these metals data-rich substances. More recently, metal mixture toxicity has been receiving increased 

attention, and study topics are focused both on influences of metal mixtures on single species (Nys et 
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al. 2015; Nys et a. 2016) and on communities (Balistrieri et al. 2015; Mebane et al. 2016; Iwasaki et al. 

2013; Richardson and Kiffney 2000). Because it is not feasible to examine the effects of all possible 

mixtures of substances on every natural community experimentally, estimations of risks by means of 

models such as the ones described above are essential. 

In the present study, we therefore aimed to evaluate differences in (ternary) mixture risk estimates 

among 4 methods (Table 2.1) using actual chronic toxicity data for Cu, Zn, and Ni. To this end, available 

toxicity datasets were first extended with recently published toxicity data as well as with the slope values 

of the dose-response curves (see Materials and Methods section). Then, for the first time, we applied 

these 4 methods to 4 existing environmental monitoring datasets to estimate metal mixture risks: 

Dommel (Verschoor et al. 2011), Rhine (ICPR 2013), Austria (ARCHE 2014), and Flanders (or VMM) 

(FEA 2013). The Dommel dataset represents a local industrial exposure scenario (historic pollution), 

whereas the Rhine, Austria, and VMM datasets represent a regional mixed exposure scenario (a 

combination of urban, industrial, and agricultural pollution). In addition to the environmental monitoring 

datasets, we investigated 1 dataset that contains high-quality environmental geochemical baseline 

concentrations, that is, natural background metal concentrations of freshwater surfaces across Europe 

(Forum of European Geological Surveys, FOREGS) (Salminen et al. 2005). By doing so, we aimed to 

answer 3 questions: 1) How big are the differences in risk estimates among the 4 methods when one is 

using actual chronic metal toxicity data and real monitoring datasets? 2) Is there a rank-order in risk 

estimates among the different methods? We expected that the CASSD method (concentration addition 

applied directly to the species sensitivity distribution; see Figure 2.1) would always be the most 

conservative method among the 4, based on findings by Backhaus and Faust (2012), who demonstrated 

this mathematically for an assemblage of 3 species. 3) If the CASSD method is the most conservative 

method, what is the margin of safety (MoS) provided by this method relative to the other 3 methods? 

Table 2.1. Four different approaches to calculate the toxic pressure expressed as multisubstance 

potentially affected fractions (msPAF) of species that are described in the present and other studiesa,  

This study De Zwart and Posthuma (2003) Backhaus and Faust (2005) Gregorio et al. (2013) 

CASSD CA RQPEC/PNEC 
M2ssd,CA 

CADRC NI RQSTU M1sp,CA 

IASSD RA or IJA NI M2ssd,IA 

IADRC NI NI M1sp,IA 

aThe terminologies are given of equivalent or analogous approaches used by De Zwart and Posthuma (2003), 

Backhaus and Faust (2005) and Gregorio et al (2013). The msPAF values reported are on the basis of EC10 

values.CA = Concentration Addition; SSD = Species Sensitivity Distribution, RQ = Risk Quotient, PEC = Predicted 

Environmental Concentration; PNEC = Predicted No Effect Concentration; DRC = Dose-Response Curve, NI = 

Not Included; RA = Response Addition; IJA = Independent Joint Action; STU = Sum of Toxic Units 
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Figure 2.1. Overview of 4 different methods combining 2 mixture toxicity concepts, concentration addition 

(CA) and independent action (IA) with species sensitivity distribution (SSD) functions to estimate toxic 

pressure expressed as multisubstance potentially affected fractions (msPAF) of species exposed to metal 

mixtures. For each method, the general mathematical function is given as well as the data required to 

calculate the msPAF value. The msPAF values reported are based on 10% effect concentration (EC10) 

values. TU = toxic unit; HC5 = concentration hazardous to 5% of the species; i = x; ci = environmental 

concentration of a metal i; Emix = the mixture effect; DRC = dose-response curves. 
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2.2. Materials and Methods 

A schematic overview of the methodology applied in the present study is given in Figure 2.2 and is 

explained step by step in the following paragraphs. 

Monitoring data gathering 

The present study focuses on 4 monitoring datasets, the Dommel (Verschoor et al. 2011), the Rhine 

(ICPR 2013), the VMM (FEA 2013), and Austria (ARCHE 2014), as well as a dataset with natural 

baseline concentrations in Europe, the FOREGS database (Salminen et al. 2005). Extensive 

information on how these datasets were gathered and processed is given in the Appendix A.1. Main 

results of all datasets are given in the present study. 

Data in the monitoring datasets were only retained when information on the major water-chemistry 

variables was present—dissolved organic carbon (DOC), calcium, pH, and dissolved metal 

concentrations. When not present in the database, estimations of Na, Mg, K, Cl, and SO4 were based 

on reported regression relations with Ca concentrations (Van Sprang et al. 2009). In addition, alkalinity 

was estimated based on the pH value (Stumm and Morgan 1996). Although we acknowledge that the 

use of transfer functions (e.g., regressions) to estimate some water characteristics is not ideal, 

estimation of physicochemical parameters was necessary because otherwise there were too few data. 

In the different databases, certain metal concentrations in some target water samples were reported as 

below the detection limit (Appendix A.1 and S.9). Target water samples that included at least 1 metal 

reported as below the detection limit and for which ∑
DL

HC5

n 
𝑖=1  was larger than 1 were not retained for data 

analysis (0.3%, 8–10%, 0%, 16%, and 0% of the target water samples for the Dommel, VMM, Rhine, 

Austria, and FOREGS database, respectively; Appendix A.1), because such samples would be 

categorized as at risk whereas 1 or more metals would be below the detection limit, which would not be 

a meaningful result. For the remaining target water samples (those that were not removed by that filter), 

concentrations of metals that were reported to be below the detection limit were set equal to the 

detection limit/2. Although a more detailed investigation of the issue of nondetects is outside the scope 

of the present study (which was to compare and to rank 4 mixture risk assessment methods), we 

acknowledge that for many monitoring datasets, the presence of nondetect data is a reality that needs 

careful consideration. For example, in cases with ∑
DL

HC5

n 
𝑖=1  >1, water quality managers might be advised 

to revisit these sampling locations and measure the metal concentrations with more precise equipment. 
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Figure 2.2. Overview of the methodology used for the calculations in the present study. Hexagonal boxes 

represent different steps of data collection and data handling, rounded boxes represent calculations, and 

rectangular boxes represent outcomes of calculations. Reference is given to tables, figures, Appendices 

and the online database at doi:10.1002/etc.3746.. DOC = dissolved organic carbon; ECx = x% effect 

concentration ; BLM = biotic ligand model; SSD = species sensitivity distribution; HC5 = hazardous 

concentration affecting 5% of the species within a community; CA= concentration addition; IA = 

independent action; DRC = dose-response curves; msPAF = multisubstance potentially affected fraction. 

All msPAF values reported are on the basis of EC10 values. 
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An overview of the monitoring data is given in Table 2.2. Monitoring data for sampling locations in the 

Dommel tributary of the river Meuse (The Netherlands) were obtained from Verschoor et al., who had used 

the data for a previous study (Verschoor et al. 2011). Monitoring data for VMM were gathered from the 

online database of the Flemish Environmental Agency (FEA 2013). Monitoring data for the Rhine were 

gathered from the online database of the International Commission for the Protection of the Rhine (ICPR 

2013). Monitoring data for Austria was received from Assessing Risks of Chemicals (ARCHE, Ghent, 

Belgium). The FOREGS–EuroGeoSurveys Geochemical Baseline Database was obtained from the website 

of the Geological Survey of Finland and can also be found in Salminen et al. (2005). Additional information 

on the gathering of the monitoring data is given in the Appendix A.1. 

Table 2.2. Overview of the monitoring databases used in this study 

Database Exposure scenario Time period Number of samples 
Number of sampling 

locations 

Dommel Industrial (historic pollution) 2007-2010 3176 97 

VMM Regional mixeda 2012 155 48 

Rhine Regional mixeda 2010-2011 209 53 

Austria Regional mixeda 2006 2138 249 

FOREGS Natural background 1998-2001 784 784 
a  i.e. a combination of  urban, industrial and agricultural pollution 

 

Chronic toxicity databases 

Databases containing chronic toxicity information (no-observed-effect concentrations [NOECs] and 10% 

effect concentrations [EC10s]) for each of the 3 metals (Cu, Zn, and Ni) were used for calculations. For the 

sake of simplicity as well as for all calculations, from now on EC10 will be used to specify both NOEC and 

EC10 values. Although there is continuing debate in the literature (Jager 2012; Chapman et al 1996) on the 

use of NOEC versus EC10, these measures are still being used as equivalents of each other in regulatory 

single-metal risk assessments (Danish EPA 2008; RIVM 2006; ECI 2008). 

The following chronic toxicity databases were used as starting points for further calculations. The chronic 

Ni database was originally reported in the Nickel European Union Risk Assessment Report (2008) and was 

recently updated by Nys et al. (2012). The chronic Zn database was reported in 2009 by Van Sprang et al. 

(2009). The Cu chronic toxicity database was originally reported in the European Union Risk Assessment 

Report (2008). 

The toxicity databases that were used as starting points were updated as follows. For the 3 metals, a 

literature search was performed to update the databases with new toxicity data published after compilation 

of the databases. Particular attention was devoted to searching for data for species that were already 

represented for 1 or 2 metals, but not for all 3, because this was helpful for further calculations. Only data 

from chronic toxicity studies that reported measured metal concentrations (rather than just nominal) and 

the physicochemistry of the test media (which is important to account for bioavailability, e.g., pH, Ca, and 

DOC concentrations) were included. Chronic toxicity data for 3 new species were added to the Zn database, 
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the great pond snail Lymnaea stagnalis (De Schamphelaere and Janssen 2010), the fatmucket clam 

Lampsilis siliquoidea (Wang et al 2010), and a rotifer species Brachionus calyciflorus (De Schamphelaere 

and Janssen 2010). No new species were added to the Cu and Ni chronic toxicity databases. 

In addition, the Cu database (ECI 2008) was updated in the present study according to the chemistry found 

in the original peer-reviewed publications and reports. All adaptations to the Cu database and a description 

of why EC10 values were not retained can be found in the Appendix A.2. The final toxicity databases for 

Cu, Ni, and Zn including the physicochemistry of the test media as well as the chronic toxicity data (i.e., 

EC10 values) can be found in the online database at doi:10.1002/etc.3746. The Cu database contains 133 

chronic toxicity test results from 27 species. That of Ni contains 31 species (214 test results) and that of Zn 

contains 22 species (128 test results). The toxicity databases include 7 species for which data on all 3 

metals are present, that is, they have 7 species in common, which include the algae Pseudokirchneriella 

subcapitata, the cladocerans Daphnia magna and Ceriodaphnia dubia, the amphipod Hyalella azteca, the 

rotifer Brachionus calyciflorus, and 2 fish species Pimephales promelas and Oncorhynchus mykiss (online 

database at doi:10.1002/etc.3746.). The effect concentrations of these 7 species are evenly distributed 

within the toxicity databases, that is, this set of 7 comprises species that are both sensitive and less 

sensitive to the different metals. For example, for an average water sample within the VMM database (pH 

7.6, Ca 69.0 mg/L, and DOC 5.9 mg/L), the 7 species reside between potentially affected fraction values 

ranging from 0.04 to 0.89 for Cu, from 0.06 to 0.97 for Ni, and from 0.05 and 0.82 for Zn. 

In addition to the chronic toxicity data that were already present in the toxicity databases (i.e., EC10 values) 

(online database at doi:10.1002/etc.3746.) , we also needed the slope of the dose–response curves, to be 

able to apply 1 of the 4 mixture evaluations tools, the IADRC method. Thus we reviewed all the literature in 

the toxicity databases for all 3 metals (online database at doi:10.1002/etc.3746.). However, information on 

the slope of the curves was never reported explicitly in the peer-reviewed papers. Therefore, other methods 

were used to gather this information. An extensive overview of how slope values were retrieved based on 

the assumption of a log-logistic dose–response curve (Equation 2.1) is given in the Appendix A.3. 

 

𝑦 =
100

1+(
𝑥

𝐸𝐶50
)

𝛽                              (2.1) 

 

For certain EC10 values within the toxicity databases (online database at doi:10.1002/etc.3746.), no 

associated information on the slope of the dose–response curve could be retrieved. The percentage of 

EC10 values for which slope values could be retrieved was 87%, 84%, and 85 % for Cu, Zn, and Ni, 

respectively. Furthermore, this implies that for certain species within the toxicity databases (online database 

at doi:10.1002/etc.3746.), no information could be gathered. The percentage of species for which at least 

1 slope value could be retrieved was 96%, 82%, and 94% for Cu, Zn, and Ni, respectively. The median 

slope value was 3.8, 2.5, and 2.1 for Cu, Zn, and Ni, respectively. The 10th and 90th percentile values were 

1.9 and 10.9 for Cu, 1.1 and 9.6 for Zn, and 1.4 and 7.1 for Ni, respectively. No correlation was found 
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between slope values and the sensitivities of the species, that is, species that are sensitive to a certain 

metal (low EC10) can show both low and high slope values (Appendix A.4). This is also clear from Figure 

2.3, which shows the distribution of the slopes for the different metals. Because no correlations were found, 

slope values for the species generated (see further discussion below in Generalization of species) were 

sampled randomly from the log-logistic distribution fitted to the set of slope values for each metal (best fit 

distribution based on the Kolmogorov–Smirnov goodness-of-fit statistic (Gan et al. 1991; Stephens 1982)). 

 

Bioavailability models and normalizations 

Chronic toxicity of metals to aquatic organisms is influenced by water chemistry variables (e.g., pH, water 

hardness, and DOC) because of the bioavailability effects of metals. Biotic ligand models (BLMs) were 

developed to account for this influence of water chemistry variables on metal toxicity (Di Toro et al. 2009). 

Therefore, all chronic toxicity data from the 3 ecotoxicity databases (Cu, Zn, and Ni) were normalized to the 

specific physicochemistry of each individual water sample (the target water sample) in each of the 5 

monitoring databases before risks for the monitoring sites could be calculated. This was done as explained 

in Van Sprang et al. (2009) for Zn, in the European Union Risk Assessment Report for Cu (2008), and in 

Nys et al. (2012) for Ni. An overview of the process of normalization is also given in the Appendix A.5. 

Normalizations for Zn and Cu were performed using BLM software (HydroQual 2015) that incorporates 

Windermere Humic Aqueous Model (WHAM) number V (Tipping 1994), and normalizations for Ni were 

performed using the chronic Ni bioavailability and normalization tool (Nys et al. 2012), which incorporates 

the WHAM Model VI (Tipping 1998). 

SSD construction and HC5 estimation 

After normalization of the toxicity data within the 3 databases to the given target water samples, SSD curves 

were constructed as explained in Van Sprang et al. (2009). The SSDs were fitted in 2 different ways: 1) the 

log-normal distribution was used to construct the SSD for all target water samples; and 2) 5 different 

parametric distributions (log-normal, log-gamma, log-logistic, log-exponential, and log-Weibull) were fitted 

and the best fitting distribution was determined based on the Kolmogorov–Smirnov goodness-of-fit statistic 

(Gan et al. 1991; Stephens 1982). These 2 different distribution fittings were compared, to examine whether 

the output based on a single default distribution (i.e., all log-normal) is comparable to the output using the 

best fit distribution, and whether extensive computational work (i.e., using best-fit distributions) is redundant. 

From these SSDs we calculated HC5 values for each of the single metals, that is, hazardous concentrations 

for these metals that are assumed to protect 95% of the species within a community against adverse effects 

of exposure beyond their no-effect level (EC10 in the present study). Parameters of the various SSDs can 

be found in online database at doi:10.1002/etc.3746.. 

 



Chapter 2 
 

62 
 

 

Figure 2.3. Distribution of slope values of dose-response curves for the Zn (A), Cu (B), and Ni (C) chronic 

ecotoxicity database. Slope values for fish, invertebrates and algae are depicted as squares (red), triangles 

(blue), and diamonds (black), respectively. 
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Toxic pressure (msPAF) calculations 

All toxic pressures (expressed as msPAF) reported are on the basis of EC10 values and are given as 

fractions (ranging between 0 and 1), for example, msPAF = 0.5 means that 50% of the species are assumed 

to experience 10% effect or more by the mixture. 

The toxic pressure of the metal mixture for the different target water samples within the monitoring 

databases was calculated with 4 different methods. The R code used to apply these methods can be found 

in the online database at doi:10.1002/etc.3746.. 

A first method, and also the simplest approach (Figure 2.1), was proposed earlier by De Zwart and 

Posthuma (2005) (their msPAFCA method; Table 2.1). In this approach, the CA model is applied directly to 

the SSDs. For this, the species are considered the “ecological receptors” in an equivalent way as 

“toxicological receptors” in individual organisms. Hence, the SSD curve of an individual substance 

(representing the fraction of species affected as a function of the concentration of a substance) is 

considered the equivalent of the dose–response curve of a species, that is, it represents the % effect of the 

considered endpoint as a function of the concentration. Following this approach, a risk quotient (RQ- for a 

given chemical mixture can be calculated as follows (De Zwart and Posthuma 2005; Equation 2.2) 

 

RQ PEC

PNEC

= ∑
PEC𝑖

PNECi

 n
𝑖=1                               (2.2) 

 

where PECi is the predicted environmental concentration and PNEC i is the predicted no-effect 

concentration of substance i. However, the PNEC is under the influence of a certain arbitrariness (i.e., 

choice of the safety factor applied to toxicity data for each individual substance i (De Zwart and Posthuma 

2005)), and an equivalent, but more general alternative, devoid of arbitrariness, can be formulated based 

on measured environmental concentrations and the HC5 (Equation 2.3). 

 

RQ ci

HC5

= SumTUHC5 = ∑
[c𝑖]

HC5𝑖
𝑖                                (2.3) 

 

where [ci] is the environmental concentration of a metal i and HC5i the hazardous concentration of a metal 

i affecting 5% of the species within a community. According to this approach, which we will later call the 

CASSD (concentration addition applied directly to the species sensitivity distribution) approach, the 

community is considered to contain exactly 5% of the species that are potentially affected under the mixture 

exposure when RQ ci

HC5

= SumTUHC5 = 1, that is, the toxic pressure expressed as the multisubstance potentially 

affected fraction of species (msPAFCA,SSD) = 0.05. When RQ ci

HC5

= SumTUHC5 > 1, more than 5% of the species 

are potentially affected. To evaluate whether a sample is at risk because of a mixture of metals (in other 

words, to calculate the SumTUHC5), only information on the HC5 of the metals is necessary, which makes 

this method the simplest of the 4 methods considered (Figure 2.1). 
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In addition to a risk quotient or SumTUHC5 for a given mixture scenario, it is also possible to calculate the 

exact toxic pressure (expressed as msPAFCA,SSD). This is done by solving Equation 2.4 for x, that is, 

searching for x such that the SumTUHCx is exactly 1, given the ci for the 3 metals. This value of x is then the 

msPAFCA,SSD value of the water body. Calculating an exact toxic pressure therefore requires not only 

information on the HC5 of each metal (as is the case for the SumTUHC5 calculations), but also knowledge 

of the mean and standard deviation (SD) of the SSD distribution. 

 

SumTUHC𝑥 = ∑
[𝑐

𝑖
]

HC𝑥i

= 1                                                                            (2.4) 

 

This method of calculating the exact msPAFCA,SSD value is conceptually similar to that of De Zwart and 

Posthuma (2005). However, with our method we acknowledge that differences between slope values of 

SSDs may exist among metals, whereas the method of De Zwart and Posthuma assumes that the slopes 

of the SSDs are equal across chemicals (De Zwart and Posthuma 2005). 

A second approach is analogous to what Backhaus and Faust (2012) call the risk quotient expressed 

relative to the sum of toxic units (RQSTU) approach (Table 2.1), which they applied for demonstrative 

purposes to a limited toxicity dataset containing 3 acute toxicity values (EC50 values for fish, Daphnia, and 

algae) and which also makes use of a safety factor (the assessment factor; Equation 2.5) 

 

RQSTU = max (∑
PECi

EC50𝑖,algae

n
𝑖=1 , ∑

PEC𝑖

EC50𝑖,daphnids

n
i=1 , ∑

PECi

EC50𝑖,fish

n
𝑖=1 ) ×  assessment factor                                               (2.5) 

 

The difference from the approach that we follow in the present study is that we extended their methodology 

to a method for data-rich substances by using an SSD approach (Backhaus and Faust 2012). In this 

approach, which we call the CADRC (concentration addition applied to individual dose–response curves 

before calculating the msPAF) method, the CA model is first applied to toxicity data (the dose–response 

data) of the individual species by calculating a SumTUEC10 for each species j (Equation 2.6) 

 

SumTUEC10,𝑗 = ∑
[c𝑖]

EC10i,j

n
𝑖=1                                                                                          (2.6) 

 

where [ci] is the environmental concentration of substance i, and EC10i,j is the 10% effect affected if the 

sum of toxic units expressed relative to the EC10 (SumTUEC10,j) across n substances exceeds 1. The toxic 

pressure (expressed as msPAFCA,DRC) is then estimated as the fraction of species that at a given mixture 

exposure is predicted to have a SumTUEC10 > 1, because this implies that the species would experience an 

effect of >10% compared with a control (according to the CA concept). To calculate the toxic pressure with 

the CADRC method therefore requires information on all EC10 values within each SSD, as is the case for 

calculation of the msPAFCA,SSD value (Figure 2.1). An advantage of this method compared with the CASSD 
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method is that we apply the CA concept to individual species, which is consistent with the original theory of 

CA (De Zwart and Posthuma 2005; Backhaus and Faust 2012). 

A third method is grounded in the other important mixture toxicity concept, independent action, and will be 

called the IASSD (independent action applied directly to the species sensitivity distribution) method. This 

method was first proposed by De Zwart and Posthuma (2005) (Table 2.1) and applies the IA model directly 

to the SSD (Equation 2.7) 

 

msPAFIA,SSD = 1 − ∏ (1 − PAFi)
n
𝑖=1                                                                            (2.7) 

 

where PAFi is the potentially affected fraction of species as a result of substance i. Similar to the CASSD and 

CADRC methods, calculation of the toxic pressure with the IASSD method requires information on the whole 

SSD of each metal (all EC10 values within each SSD; Figure 2.1). 

A final method has been proposed by Gregorio et al. (2013) (Table 2.1) and is the most complex. We term 

it the IADRC (independent action applied to individual dose–response curves before calculating the msPAF) 

approach. For this approach, similar to the CADRC approach, the IA model is first applied to the dose–

response data of the individual species, after which the SSD approach is used to calculate the msPAFIA,DRC 

value. In a first step, the effect (E) on each individual species j because of each substance i in a given 

mixture is calculated following the IA concept (Equation 2.8) 

 

Ej = 1 − ∏ (1 − E𝑖)
n
𝑖=1                                                                                         (2.8) 

 

To this end it requires the full dose–response curve of each species, that is, not only the EC10 value but 

also the slope of the dose–response curve. Subsequently, the toxic pressure (expressed as msPAFIA,DRC) 

is estimated as the fraction of species that at a given mixture exposure is predicted to have more than 10% 

effect (Ej > 0.1). This method is the most complex, because it requires not only the EC10 values per species 

and per substance, but also information on the slopes of the dose–response curves of each substance for 

each species in the toxicity database (Figure 2.1). 

The toxic pressure was calculated using the 4 approaches described above for all target water samples in 

the monitoring databases and the natural baseline database. A sample was defined to be at risk when the 

toxic pressure (expressed as msPAF) was higher than 0.05, which is equivalent to the typical protection 

goal for single substances, that is, a maximum of 5% affected species at the HC5 concentration. The 

percentage of samples predicted to be at risk was calculated for each database. Furthermore, we 

determined which individual substances or combinations of substances contributed to the adverse effects. 
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Generalization of species 

Two of the 4 approaches described above (CADRC and IADRC) require data on the individual species. If only 

the data present in the 3 chronic toxicity databases were considered (online database at 

doi:10.1002/etc.3746.), it would be possible to predict mixture toxicity for only 7 species. This is because 

only these 7 species are represented in all 3 toxicity databases. Because natural communities are 

composed of a multitude of species, the set of actual toxicity data was used to generate a set of hypothetical 

toxicity data for 20 000 hypothetical species (i.e., species sensitivities were sampled from the SSD) by 

applying methods to extrapolate unknown species sensitivity from known species sensitivity (Verdonck 

2003). This was done in 2 ways: 1) by not taking into account intermetal sensitivity correlations when 

sampling hypothetical species for a given target water sample; and 2) by sampling the species based on 

the correlations found between the sensitivity of a species for 1 metal and its sensitivity for a second metal 

for a given target water sample. Because the effects of water chemistry on chronic metal toxicity—as 

predicted with the bioavailability models used—depend on metal identity and species, intermetal sensitivity 

correlations can be dependent on the water chemistry of the target water sample. The sampling method 

that accounted for intermetal sensitivity correlations was executed using the method of Iman and Conover 

(Iman and Conover 1982). This method is used to generate rank order–correlated input distributions and is 

often applied in the literature (Verdonck 2003; Cullen and Frey 1999). 

The 2 methods described above were performed, and their output (i.e., msPAF values) was compared, to 

examine whether sampling species randomly (i.e., a less computation time–demanding approach than 

sampling nonrandomly) has an influence on the outcome of the risk estimates. 

For the present study we chose to use the nonrandom sampling technique, and in that way we used full 

option methods for our toxicity predictions and msPAF estimations. The R codes for both options (random 

and nonrandom sampling) are given in the online database at doi:10.1002/etc.3746., so that other users 

can choose which method to use. 

Margin of safety 

The CASSD method is the simplest 1 to implement and it is claimed to be conservative. By calculating the 

MoS  provided by the CASSD approach relative to the other methods, the following question can be 

answered: By how many fold can the SumTUHC5 in a given target water sample be raised until so-called 

risk (msPAF = 0.05) is just being predicted with each of the methods? For MoS calculations, we start from 

a situation in which the metals are present at the concentrations and metal–metal ratios reported in the 

databases. Then the metal concentration of each metal is increased (keeping all metal concentration ratios 

constant) until the level where toxic pressure according to the different approaches equals 0.05. The 

SumTUHC5 at this new combination of metal concentrations is then calculated, and this value is equal to the 

MoS  provided by the CASSD approach. Only those target water samples were examined that, according to 

the 3 different methods (CADRC; IASSD, and IADRC) were not affected by the metal mixture (i.e., msPAF < 
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0.05), because a MoS  calculation does not make sense for target water samples not falling into this 

category. 

2.3. Results and Discussion 

 

Monitoring data 

A detailed overview of the 4 monitoring datasets and the geochemical baseline dataset can be found in the 

online database at doi:10.1002/etc.3746. An overview of the main physicochemical variables and the 

dissolved metal concentrations is given in Table 2.3 for all datasets. Median Cu concentrations are similar 

across the monitoring databases and are on average 91% lower than the median bioavailability corrected 

HC5 values in all 4 monitoring databases (Table 2.3). Median Zn and Ni concentrations differ more between 

monitoring databases than Cu. Median Zn and Ni concentrations are below the median bioavailability 

corrected HC5 values in all 4 monitoring databases, and are on average 71% and 84% lower, respectively. 

For the geochemical baseline dataset (FOREGS), median Cu, Zn, and Ni concentrations are below the 

median bioavailability corrected HC5 values and are 95%, 93%, and 87% lower, respectively. 

SSD construction: log-normal or best-fit? 

Probability distributions were fitted to the data using 1) log-normal distributions for all data; and 2) 

distributions that best fit the data. The log-normal distribution was the best-fit distribution in 29.2%, 1.8%, 

and 3.9% of the target water samples for Cu, Zn, and Ni, respectively. The highest percentage of data was 

fitted with the log-logistic distribution, 33.6%, 93.1%, and 73.1% of the target water samples for Cu, Zn, and 

Ni, respectively. From the fitted distributions, HC5 values (based on dissolved concentrations) per target 

water sample were estimated, and 10th, 50th (median), and 90th percentiles of the HC5 for each monitoring 

database are given in Table 2.3. 

If the conventional log-normal distribution was fitted to all target water samples, median HC5 values vary 

between 4.1 µg/L and 46.6 µg/L for Cu, 22.2 µg/L and 52.1 µg/L for Zn, and 7.0 µg/L and 27.3 µg/L for Ni. 

Fitting the best-fit distribution to all target water samples gives median HC5 values that vary between 4.3 

µg/L and 46.6 µg/L for Cu, 22.9 µg/L and 47.9 µg/L for Zn, and 6.9 µg/L and 27.3 µg/L for Ni. On average, 

the HC5 values generated from log-normal distributions and best-fit distributions are 3.6% higher for Cu, 

0.25% higher for Zn, and 0.01% higher for Ni. Thus, using a single default distribution (i.e., all log-normal) 

for mixture toxic pressure estimations, which is computationally less demanding, seems justified. 

Furthermore, because the msPAF values calculated based on log-normal and best-fit SSD distributions 

were similar (see further discussion below in Risk calculations), preference was given to only report data 

(seen in the figures and tables) and do downstream data analyses based on the log-normal SSDs within 

the manuscript, and all results are reported based on the best-fitting SSDs in the online database at 

doi:10.1002/etc.3746.. 



 

 
 

Table 2.3. Physico-chemical parameters (pH, DOC and Ca concentration) and dissolved metal concentrations (nickel, zinc and copper) of the different monitoring 

databases. In addition, HC5 values (hazardous concentration affecting 5% of the species within a community, beyond their no-effect level (here EC10)) for the 

different monitoring datasets (log-normal SSD and best-fit SSD).  

    Dommel VMM Rhine Austria FOREGS 

pH  7.1 (6.5 - 7.6)a 7.6 (7.0 - 8.0) 8.0 (7.8 - 8.2) 8.0 (7.6 - 8.3) 7.7 (6.4 - 8.3) 

DOCb (mg/L) 9.4 (5.5 - 15.0) 7.7 (5.2 – 15.1) 2.4 (1.7 - 3.4) 1.6 (0.7 - 4.5) 5.3 (1.0 - 17.1) 

Ca (mg/L) 41.4 (31.0 - 57.0) 84.0 (26.4 - 146.0) 67.0 (50.0 - 110.4) 45.9 (18.8-80.0) 40.3 (2.8 - 118.2) 

Ni (µg/L)  8.3 (0.8 - 29.0) 2.5 (2.0 - 11.0) 1.1 (0.5 - 2.0) 0.5 (0.03 - 1.9) 1.9 (0.4 - 4.7) 

Zn (µg/L)  28 (3.5 - 98.0) 15.0 (5.0 - 66.0) 2.8 (1.0 - 5.1) 1.9 (0.4 - 7.8) 2.7 (1.0 - 9.8) 

Cu 
(µg/L) 

 2.1 (0.5 - 4.6) 1.0 (1.0 - 4.0) 1.6 (0.8 - 2.3) 0.5 (0.4 - 1.6) 0.9 (0.3 - 2.3) 

Ni HC5 
log-normal 27.3 (18.1-39.4) 20.6 (14.9-32.8)  7.9 (5.3-18.9)  7.0 (3.9-14.4)  14.8 (4.1-39.3) 

best-fit 27.3 (18.2-39.3) 22.1 (16.0-31.3) 7.9 (5.2-17.2) 6.9 (3.8-14.7) 14.6 (3.9-38.1) 

Zn HC5 log-normal 42.8 (27.4-67.9)  52.1 (27.9-92.9) 24.4 (19.1-36.5)  22.2 (13.2-40.4) 36.2 (14.2-100.0)  
 best-fit 42.6 (27.3-67.8) 47.9 (27.0-81.9) 25.5 (19.0-40.3) 22.9 (12.9-40.4) 37.8 (14.1-95.3) 

Cu HC5 
log-normal 46.6 (19.0-78.8)  39.5 (24.3-82.0) 12.5 (7.3-21.7)  4.1 (1.9-13.3) 19.6 (3.4-74.3) 

best-fit 46.6 (19.0-78.8) 39.4 (24.3-78.5) 13.4 (7.2-23.6) 4.3 (2.2-13.1) 19.7 (3.7-73.9) 
a Values reported are median values, 10th and 90th percentiles are given in between parentheses. 
b DOC = Dissolved Organic Carbon 
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Generalization of species: random or nonrandom? 

Hypothetical species were generated in 2 ways: 1) by not taking into account intermetal sensitivity 

correlations; and 2) by taking into account intermetal sensitivity correlations, which depended on the 

chemistry of the target water sample. When all monitoring datasets were considered together, correlations 

between the sensitivity of species to Ni and Zn ranged from r = –0.36 to r = 0.48. However, none of these 

correlations were statistically significant (p > 0.05). Correlations between Ni and Cu ranged from r = –0.9 

to r = 0.22, and only 6.6% were significant (p < 0.05). These significant correlations are strong negative 

correlations (r < –0.6), suggesting that—in these 6.6% of cases—when a species is sensitive to Ni it is more 

likely to be less sensitive to Cu and vice versa. In addition, these negative correlations between Cu and Ni 

sensitivity are more likely to occur at low pH, and positive correlations are more likely at high pH (Appendix 

A.6), meaning that at low pH, a species that is less sensitive to Ni is more likely to be more sensitive to Cu 

and vice versa. Such a correlation is not apparent with either DOC or Ca concentrations, 2 other variables 

affecting metal bioavailability. Correlations between Zn and Cu ranged from r = –0.80 to r = 0.47, and of 

these only 0.06% were significant correlations (p < 0.05). Again, we observed a trend of negative 

correlations between Zn and Cu sensitivity at low pH and positive correlations at high pH, and again no 

trend is apparent with either DOC or Ca concentrations (Appendix A.6). 

As median correlation coefficients between the sensitivity of species to 1 metal and their sensitivity to a 

second metal are rather low (Appendix A.6), one would expect that the results (i.e., the msPAF values) 

when sampling species by not taking into account intermetal sensitivity correlations would be quite similar 

to results when sampling the species based on the correlations found between the sensitivities. Indeed, we 

found that differences in msPAF values between these 2 methods were small, on average 0.002 (0.005 

SD) difference in toxic pressure for the CADRC method and on average 0.001 (0.003 SD) difference in toxic 

pressure for the IADRC method. Therefore, sampling species randomly appears to be a justifiable option to 

reduce computational time. 

Risk calculations 

The results for the simplest method to estimate risks as a result of metal mixtures (CASSD) are visualized in 

Figure 2.4. In this figure the (Sum)TUHC5 is given for every metal and for every monitoring database. For 

the Dommel dataset, median TUHC5 values are smaller than 1 for all 3 metals. However, 9% of the TUHC5 

values for Ni, 35% of the TUHC5 values for Zn, and 0.3% of the TUHC5 values for Cu within the Dommel basin 

show a TUHC5 > 1, indicating that there might be a risk from the single metals at these sites. Adding up the 

TUHC5 values gives a SumTUHC5 that is indicative for the risk of a mixture of substances. Figure 2.4 shows 

that the median SumTUHC5 for the Dommel lies above 1, indicating a risk from the metal mixture or from 

single metals in more than half of the cases. Similar results are found for the VMM, Austria, and FOREGS 

database (Figure 2.4). However, for these waters the median SumTUHC5 lies below 1, indicating that less 
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than half of the cases show a risk because of metal mixtures or single metals. For the Rhine, none of the 

TUHC5 or SumTUHC5 values lie above 1, indicating no risk according to the CASSD method in this waterway. 

More advanced methods to calculate the toxic pressure include the 4 methods described above in which 

the exact msPAF value of a sample is calculated. Table 2.4 shows the distribution of toxic pressure 

(expressed as msPAF values) for all 4 methods for the different monitoring datasets. For the results using 

the best-fit SSD calculations, Appendix A.7 can be consulted. A toxic pressure > 0.05 indicates that the 

sample is affected by the metal mixture. 

For the Dommel monitoring database, the median toxic pressure is above 0.05 only when the CASSD method 

is used (Table 2.4), which suggests that the simplest method is the most conservative. The median toxic 

pressure is lowest (0.024) using the IASSD method, suggesting that this method is the most liberal (least 

conservative) method. The percentage of target water samples affected within the Dommel dataset ranges 

between 52% and 39% depending on the method used. Similar results were obtained for the best-fit SSD, 

which shows that using the log-normal distribution by default does not have a large influence on the 

outcome of the toxic pressure calculations. The results suggest that almost half of the target water samples 

within the Dommel waterway in The Netherlands are at risk because of metal contamination. However, 

according to the CASSD method, 15% of the target water samples from the Dommel are affected by the 

mixture itself and not by any individual metal, whereas the IASSD method predicts that only 3% of the target 

water samples will be affected by the mixture of metals itself (Table 2.4). By going into more detail (Table 

2.5), we see that Zn has a large effect individually: in 26.84% of the target water samples a risk is found 

because of Zn alone. Furthermore, in 8.48% of the samples, a risk is found from both Zn and Ni individually 

(i.e., the TUHC5 of both Zn and Ni is above 1). When the remaining samples that are affected by the mixture 

and not by any individual metal are examined, 13.01% of the target water samples are found to have an 

effect from a binary combination of the metals, whereas 2.14% are affected because of a ternary 

combination of the metals. When the contribution of each metal to the SumTUHC5 of these mixture effects 

is examined, we see that Zn, which has the largest TUHC5 in 70.96% of the cases, is the largest contributor 

to the mixture effect. 
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Figure 2.4. Toxic Unit expressed relative to the hazardous concentration affecting 5% of the species within a 

community (TUHC5) for Ni, Zn and Cu for the different target water samples of the Dommel (A), Flanders (VMM) 

(B), Rhine (C), Austria (D) and Forum of European Geological Surveys (FOREGS) (E) dataset. SumTUHC5 shows 

the summation of the TUHC5’s according to the CASSD (concentration addition applied directly to the species 

sensitivity distribution) method using the log-normal SSD distribution. The horizontal line indicates a TUHC5 or 

SumTUHC5 of 1. Results are represented as box plots: median values are given in bold, bottom and top of the 

box plots give the 25th and 75th percentile. Bottom and top of the error bars represent the 5th and 95th percentile, 

open circles are outliers.



 

 
 

Table 2.4. Toxic pressure expressed as multisubstance potentially affected fraction of species (msPAFa) for the Dommel, VMM, Rhine, Austria and FOREGS 

database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) when SSDs are fitted with log-normal distributions a.  

 Dommel VMM Rhine 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 0.054 0.038 0.024 0.027 0.009 0.004 0.003 0.003 0.006 0.002 0.002 0.002 

10th percentile msPAF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 

90th percentile msPAf 0.423 0.466 0.342 0.364 0.227 0.2201 0.177 0.185 0.012 0.0005 0.003 0.004 

% samples affected (msPAF>0.05) 52 46 39 44 27 25 23 23 0 0 0 0 

% samples affected by mixture of metals and 
not by any of the individual metals 

15 10 3 5 7 4 2 3 0 0 0 0 

MoS provided by the CASSD approach NA 1.17 1.48 1.38 NA 1.18 1.57 1.46 NA 1.25 1.72 1.60 

 

 Austria FOREGS 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 0.004 0.001 0.001 0.001 0.004 0.001 0.001 0.001 

10th percentile msPAF <0.001 <0.001 <0.001 <0.001 <0.001 0 <0.001 <0.001 

90th percentile msPAf 
 

0.035 0.023 0.016 0.017 0.052 0.039 0.031 0.033 

% samples affected (msPAF>0.05) 
 

8 6 5 5 10 8 7 7 

% samples affected by mixture of metals and 
not by any of the individual metals 
 

3 2 0.2 0.6 4 2 0.4 0.5 

MoS provided by the CASSD approach NA 1.21 1.52 1.45 NA 1.22 1.52 1.43 

 
a The percentage of affected samples is given per method, as well as the median Margin of Safety (MoS) values provided by the CASSD approach for the other methods. The 

msPAF values reported are on the basis of EC10 values. CA = Concentration Addition; IA = Independent Action; SSD = Species Sensitivity Distribution; DRC = Dose Response 

Curve; NA = not applicable; MoS = Margin of Safety
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Verschoor and colleagues (2011) also investigated the mixture toxicity from Cu, Zn, and Ni in the 

Dommel waterways, by calculating the multimetal risk characterization ratio (RCR; Equation 2.9), which 

is conceptually identical to our CASSD approach. 

 ∑ RCR =
[𝐶𝑢]

𝐻𝐶5𝐶𝑢
+

[𝑁𝑖]

𝐻𝐶5𝑁𝑖
+

[𝑍𝑛]

𝐻𝐶5𝑍𝑛
                                                                                   (2.9) 

A similar percentage of affected target water samples was predicted by Verschoor et al. (2011); these 

authors found that 47% of the target water samples were at risk, whereas we found that 52% of the 

target water samples were affected (Table 2.4). In addition, when annual mean risk characterization 

ratio values (calculated by Verschoor et al. (2011)) were compared with TUHC5 values (present study), 

they were found to be equal for Zn (1.36) and Cu (0.075), but not for Ni (1.35 vs 0.47) and therefore also 

not for the Zn–Cu–Ni mixture (2.79 vs 1.91). 

 

Table 2.5. Percentage of samples that is not affected and percentage that is affected (msPAF value > 0.05) 

by a mixture of Cu, Zn and/or Ni according to the CASSD method for the Dommel database. 

 
Percentage (%) 

No effect 48.33 

Effect 51.67 

   Individual metal effects 36.52 

      Only Zinca  26.84 

      Only Nickela 0.91 

      Only Coppera 0.09 

      Both Zinc and Nickelb 8.48 

      Both Zinc and Copperb 0.16 

   Mixture effects 15.15 

      Binary combinationsc 13.01 

      Ternary combinationd 2.14 

      Shows the largest TUe  

          Zn 77.96 

          Ni 22.04 

          Cu 0 
a The Toxic Unit of zinc, nickel or copper is above 1 
b The Toxic Unit of all mentioned metals is above 1 
c At least one of the possible binary combinations (i.e.Zn&Ni, Zn&Cu, Ni&Cu) shows an effect 
d The ternary combination (but none of the 3 possible binary combinations) shows an effect 
e For each metal the percentages of samples is given in which that metal has the largest Toxic Unit in the sample 
affected by a binary or ternary combination, i.e.in which that metal is the largest contributor to the toxic effect 

 

The difference between the results of Verschoor et al. (2011) and those from the present study could 

be because of a number of factors. A first factor could be the different parameterization of the BLMs 

used for bioavailability normalization. For Cu and Ni, Verschoor et al. (2011) used the stability constants 

describing the interactions at the biotic ligand from the original BLMs (Danish EPA 2008; De 

Schamphelaere et al. 2003), whereas we used the updated BLMs (De Schamphelaere and Janssen 

2006; Deleebeeck et al. 2007; Deleebeeck et al. 2009; Deleebeeck et al. 2008). Furthermore, the choice 

of speciation software was different; Verschoor et al. (2011) used WHAM Model VI for all speciation 
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calculations, and we used WHAM Model V for Cu and Zn speciation calculations because the BLMs for 

Cu and Zn were originally calibrated and developed with WHAM Model V. Finally, we used updated 

toxicity databases as well as validated BLMs that have been cross-validated for other species and that 

are currently used in regulatory environmental risk assessments of the 3 metals. However, despite the 

considerable differences in methodology, the differences in the % of samples calculated to be at risk as 

well as the differences in risk characterization ratios are still relatively small. 

When the 3 monitoring databases other than the Dommel are considered, the target water samples in 

the VMM database are found to be most at risk from metals, with 23% to 27% of the target water samples 

affected (Table 2.4), depending on the method used. The Rhine is the least at risk, with none (0%) of 

the target water samples at risk from metal contamination. The Austrian target water samples are in 

between, with 5% to 8% of the waters affected (Table 2.4). 

For the FOREGS database, between 7% and 10% of the waters, depending on the method used, are 

predicted to be affected (Table 2.4). This finding demonstrates that even for waters with assumed natural 

geochemical baseline concentrations of metals, a substantial number of water bodies are predicted to 

be at risk. This result is a well-known issue in metals risk assessment in general, which arises when 

natural background concentrations of metals, which can vary markedly between geologically different 

areas, are not taken into account in risk assessment procedures. One way to deal with this issue (e.g., 

in a higher tier of risk assessment) could be to use the added risk approach (Struijs et al. 1997), but this 

is beyond the scope of the present study. 

When we examined those target water samples affected by the metal mixture and not by any single 

metal individually in the FOREGS database, between 0.3% and 4% of the target water samples were 

found to be at risk, depending on the method used (Table 2.4). This analysis not only shows that true 

mixture risks are relatively low for the FOREGS database, but also that the issue of risk at geochemical 

background levels is higher when CASSD is used compared with the other methods used. Indeed, 4% of 

the target water samples are found to be at risk when the CASSD is used, whereas only 0.3% to 2% of 

the target water samples are found to be at risk when the other methods are used. 

After generalization to all databases, we see that—when the conservative CASSD method is used—in 

approximately one-third of the target water samples predicted to be affected, a risk is predicted from an 

actual mixture of metals (and not from any individual metal; Table 2.4). However, when the theoretically 

more correct methods are used (CADRC and IADRC), 1.5 to 2.0 times fewer target water samples are 

affected by mixtures according to the CADRC method and 2.3 to 8.0 times fewer target water samples 

according to the IADRC method. The difference between mixtures risk between the 2 latter methods 

emphasizes the need to establish which model (CA or IA) is the best at predicting chronic metal mixture 

toxicity to individual aquatic species, such that a well-informed choice can be made between CADRC or 

IADRC in the implementation of metal mixture risk assessment. 
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Ranking the methods and margin of safety calculations 

A larger difference in the percentage of target water samples that are at risk was found among the 4 

methods, with a difference of 3% (Austria) to 13% (Dommel) between the methods. At present, it is too 

early to conclude which method might be the proper approach. Indeed, these approaches arise from 2 

major toxicity concepts, CA and IA. It is currently not known which model is the most appropriate. 

Moreover, the results suggest that the most appropriate model may be dependent on the metal 

combination, the species tested, the water chemistry of the test medium, and so forth (Nys et al. 2015; 

Norwood et al. 2003). However, earlier research (Backhaus and Faust 2012)  demonstrated 

mathematically that for an assemblage of 3 species, the RQ PEC

PNEC

 approach (which is analogous to our 

CASSD approach) was always more conservative than the RQTU approach (which is analogous to our 

CADRC method). Nonetheless, we found that at high toxic pressure (above 0.15; expressed as 

msPAFCA,SSD), the CASSD approach is no longer the most conservative method, with a higher 

conservatism found for the CADRC approach (Figures 2.5 and 2.6). Furthermore, for the IADRC approach, 

the value at which this shift occurs is higher (msPAFCA,SSD of 0.55; Figures 2.5 and 2.6). However, we 

see that at toxic pressure values (expressed as msPAFCA,SSD) below 0.15, there is 0% chance of finding 

a msPAFCA,SSD value smaller than msPAFCA,DRC or msPAFIA,DRC (Figure 2.5). Therefore, at toxic 

pressures of approximately 0.05, the CASSD method is the most conservative not only for assemblages 

of 3 species but also at the community level. 

This is also clear from our calculations in which the MoS of the CASSD approach compared with the other 

methods was determined. Figure 2.7 shows the MoS that the CASSD method provides relative to the 3 

other methods for all monitoring databases. For the Dommel database, using the CADRC method, 

variability in the MoS is the lowest and the median MoS is equal to 1.17. The MoS has higher variability 

and higher median values with the IADRC and IASSD methods (1.38 and 1.48, respectively). The CASSD 

method is thus more conservative than the other methods by a factor 1.17 to 1.48. This means that, for 

example, 1.48-fold higher metal concentrations are needed to conclude that risk is present based on 

the IASSD approach compared with the CASSD approach. In addition, if CA (or IA) is a conservative 

estimator of mixture toxicity across all species, which is demonstrable in toxicity tests, then the simple 

CASSD method is on average more conservative by a factor of 1.17 (or 1.48). 

Our MoS calculations can be compared with the findings of Gregorio et al. (2013), who based their 

research on theoretical datasets generated for hypothetical substances. These authors showed that the 

use of CA directly on SSD (our CASSD method) may lead to an overestimation or underestimation of the 

mixture concentration affecting 5% of the species depending on the SD of the SSD of the substances 

within the mixture. These results were found by calculating the DmsPAF=5, which is the ratio of the mixture 

concentration affecting 5% of the species calculated with their M2ssd,CA (method applying CA to the SSD 

curves) method (our CASSD method) to the mixture concentration affecting 5% of the species calculated 

with their M1sp,CA (method applying CA to single species separately) method (our CADRC method). This 

DmsPAF=5 value is therefore the reciprocal of our MoS value (i.e., 1/ MoS). For mixtures of substances 

with a steep SSD (SD ≤ 0.55), Gregorio et al. (2013) demonstrated a higher likelihood of underestimating 

the mixture concentration affecting 5% of the species when using CASSD relative to using CADRC (i.e., 
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DmsPAF=5 < 1). This is in compliance with our results. The mixtures of metals considered in our analysis 

also showed steep SSDs (mean SD; Dommel SD = 0.37, VMM SD = 0.39, Rhine SD = 0.47, Austria SD 

= 0.50), and average margin of safety values for all monitoring databases were larger than 1 (Table 2.4). 

The results of Gregorio et al. (2013) based on hypothetical data for hypothetical substances are 

therefore confirmed by our results based on real toxicity data for real substances. 

 

Figure 2.5. Percentage of samples for which the msPAFCA,SSD value (the multisubstance potentially affected 

fraction of species calculated with the CASSD method (concentration addition applied directly to the species 

sensitivity distribution)) is smaller than the msPAFCA,DRC value (msPAF calculated with the CADRC method 

(concentration addition applied to individual dose-response curves)) (top) and for which the msPAFCA,SSD 

value is smaller than the msPAFIA,DRC value (msPAF value calculated with the IADRC method (independent 

action applied to individual dose-response curves)) (bottom), for different categories of msPAFCA,SSD values 

(for the Dommel, Flanders [VMM], Austria, and Forum of European Geological Surveys [FOREGS] 

databases combined). 
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Figure 2.6. Comparison of the toxic pressure (expressed as multisubstance potentially affected fraction 

[msPAF]) according to the CASSD method (concentration addition applied directly to the species sensitivity 

distribution) versus the CADRC method (concentration addition applied to individual dose-response curves) 

(left graphs) and according to the CASSD versus the IADRC method (independent action applied to the 

individual dose-response curves) (right graphs) for the Dommel (A), Flanders (VMM) (B), Austria (C), and 

the Forum of European Geological Surveys (FOREGS) (D) database. The msPAF values reported are on the 

basis of 10% effect concentration values. 
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Figure 2.7. Representation of the margin of safety (MoS), which is the sum toxic unit expressed relative to 

the hazardous concentration affecting 5% of the species within a community (SumTUHC5) corresponding to 

a multisubstance potentially affected fraction (msPAF) of 0.05 for the Dommel (A), Flanders (VMM) (B), 

Rhine (C), and Austria (D) database, for the different methods: CADRC (concentration addition applied to 

individual dose-response curves) , IADRC (independent action applied to individual dose-response curves), 

and IASSD (independent action applied directly to species sensitivity distribution). Results are represented 

as box plots: median values are given in bold, bottom and top of the box plots give the 25th and 75th 

percentile. Bottom and top of the error bars represent the 5th and 95th percentile, asterisks are outliers.
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In general, our calculations show the following order of conservatism (from most conservative to most 

liberal) 
 

CASSD > CADRC > IADRC > IASSD 

 

This rank order indicates that these methods could be implemented in a tiered metal-mixtures risk 

evaluation scheme (Figure 2.8). Because CA gives a more cautious risk estimate (at low msPAF values), 

the CASSD method could serve as a first (conservative) tier to identify situations with likely no risk of 

metal mixtures (SumTUHC5 < 1). The IASSD method could be applied in a second tier to identify situations 

of risk regardless of the method used (msPAF > 0.05). The CADRC and IADRC methods could be used in 

a third tier for more detailed calculations for situations that fall in between (SumTUHC5 > 1 and 

msPAFIA,SSD < 0.05), for example, as part of a weight-of-evidence approach. For situations in which the 

outcome depends on the method used (CADRC or IADRC), targeted research could be performed in a final 

tier. 

Our MoS calculations also demonstrate the possibility of an intermediate tier between the proposed tiers 

1 and 2. When the SumTUHC5 is > 2 (Figure 2.7), risk is always predicted, independent of the method 

used. The intermediate tier could therefore implement a cut-off on the SumTUHC5 value, above which 

risk is always predicted, and thus unneeded time and resource investment in the more complicated 

calculations could be avoided. However, this case is so far only demonstrated for the 4 monitoring 

datasets examined in the present study and should first be examined more thoroughly before this 

intermediate tier can be added to the tiered metal-mixtures risk evaluation scheme (Figure 2.8). 

Strengths and weaknesses 

The research conducted in the present study shows certain strengths compared with the existing 

literature. We evaluated the use of 4 mixture risk assessment methodologies simultaneously, using 

available real toxicity data and monitoring datasets. In addition, we compared the influence of the use 

of the log-normal and the best-fit SSD on the risk estimations, as well as the influence on the risk 

estimations of generating hypothetical species randomly versus nonrandomly. However, certain 

weaknesses in our research also exist. An important obstacle for applying either method is that the 

underlying assumptions of the different methods need to be tested, and the degree of conservatism 

compared with community-level metal mixture toxicity effects needs to be investigated (e.g., based on 

mesocosm or field data). Another limitation of our methods is the fact that calculations of mixture toxicity 

have been performed based on dissolved metal concentrations, whereas possible interactions between 

metals at DOC sites have not been accounted for. This is because in the validated bioavailability models, 

speciation calculations for the different metals are performed with different speciation models in the 

current BLMs (i.e., WHAM Model V for Cu and Zn vs WHAM Model VI for Ni). Taking into account these 

interactions at DOC sites could result in higher predicted msPAF values. However, we expect that this 

would only influence the absolute msPAF values per method, but not the relative ranking of msPAF 

values among the different methods. 



Chapter 2 
 

80 
 

 

Figure 2.8. Possible tiered metal mixture risk evaluation scheme. A sample is defined to be at risk when the 

toxic pressure (expressed as multisubstance potentially affected fraction [msPAF]) was higher than 0.05 

(or the sum toxic unit expressed relative to the hazardous concentrations affecting 5% of species within a 

community [SumTUHC5] >1), which is equivalent to the typical protection goal for single substances, that is, 

a maximum of 5% affected species at the HC5 concentration. The msPAF values reported are on the basis 

of EC10 values. BLMs = biotic ligand models; CASSD = concentration addition applied directly to the species 

sensitivity distribution; IASSD = independent action applied directly to the species sensitivity distribution; 

CADRC = concentration addition applied to individual dose-response curves; IADRC = independent action 

applied to individual dose-response curves. a Unless very strong synergisms at low effect levels. b Unless 

very strong antagonisms at low effect levels. 

Research recommendations 

Although the CASSD approach is the most conservative (at msPAFCA,SSD values < 0.15), it is the easiest 

to implement, and shows a high MoS, more research is needed to conclude whether more complex, 

liberal methods (CADRC or IADRC) might be more accurate in predicting the level of risk posed by mixtures 

of metals. This could for instance be examined by performing mesocosm experiments. The real 

ecological meaning of the msPAF has been a topic of research (Smetanova et al. 2014; Posthuma and 

de Zwart 2006; Posthuma and de Zwart 2012), but uncertainties remain. For instance, although it is 

assumed that the HC5 value for a single substance is protective for 95% of the species within a 

community, it is not straightforward to predict what effects may occur in an actual community exposed 

to a concentration equal to the HC5 of that substance. This uncertainty applies invariantly to mixtures 

of substances, and thus it is not straightforward to predict what effects on natural communities may be 

expected after exposure to a metal mixture with a toxic pressure equal to any msPAF. The relation 

between msPAF and actual effects of metal mixtures on natural communities should be the subject of 

future research. The calculated toxic pressure (expressed as msPAF values) could possibly be applied 

in an absolute way if the toxic pressure can be correlated to ecological effects or in a relative way by 
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ranking contaminated sites. Either way, we propose that a tiered metal mixture risk evaluation scheme 

in which the 4 methods described in the present study are applied, might be a way forward to evaluate 

risks implied by mixtures of substances. 

In addition, the perception exists that adding more metals to a mixture, even when metals are present 

at background concentrations, will result in risk predictions for a higher percentage of samples. However, 

when the results from the FOREGS database are examined, we see that only a limited percentage of 

samples (up to 4%) is affected by a mixture of 3 metals. In addition, when theoretically more correct 

models are applied (CADRC and IADRC), the issue of mixture toxicity is even lower; 0.5% to 2% of the 

target water samples are said to be at risk at background concentrations. However, more research is 

needed to establish whether CA or IA is the best model to implement. Further research is also needed 

to update existing chronic metal bioavailability models to the same speciation model (e.g., WHAM Model 

VII) to allow more consistent speciation-based computations of msPAF. 

2.4. Conclusions 

The present study examined the use of 4 mixture risk assessment methodologies that combine chronic 

toxicity data, bioavailability modeling, SSDs, and CA or IA for ecological risk assessment by calculating 

the toxic pressure (expressed as msPAF values) based on measured concentrations of metals in 4 

monitoring databases and 1 natural baseline database. The percentage of target water samples 

predicted to be at risk differed between the methods used and were between 0% (Rhine) and 52% 

(Dommel) when the simplest approach (CASSD) was used. When only the target water samples that were 

at risk from metal mixtures and not from individual metals were examined, the percentage of affected 

target water samples ranged between 0% (Rhine) and 15% (Dommel). The percentage of target water 

samples predicted to be affected also differed between the methods used, with a difference of 3% to 

13% between methods. 

In general, our calculations showed the following order of conservatism for the 4 methods (from most to 

least conservative): CASSD > CADRC > IADRC > IASSD. Because the CASSD method, the simplest to 

implement, was shown to be the most conservative (below certain risk values), MoS values could be 

calculated. It was demonstrated that the CASSD method is more conservative by a factor 1.17 to 1.48 

than the other methods (based on the Dommel dataset). Finally, we suggest applying these 4 

approaches in a general tiered scheme for the risk assessment of chemical mixtures in a regulatory 

context. The CASSD method could serve as a first (conservative) tier to identify situations with likely no 

potential risk at all, regardless of the method used (SumTUHC5 < 1) and the IASSD method could be used 

to identify situations of potential risk, also regardless of the method used (msPAFIA,SSD > 0.05). The 

CADRC and IADRC methods could be used for site-specific assessment for situations that fall in between 

(SumTUHC5 > 1 and msPAFIA,SSD < 0.05). 
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3. Mixture toxicity to Pseudokirchneriella subcapitata in various natural waters 

3.1 Introduction 

Recent studies (Cooper et al 2009; Shaw et al 2006; Nys et al 2017c, Van Regenmortel et al. 

2017a/Chapter 2) have expressed concerns that risk assessment procedures for metals are still mainly 

based on single metal toxicity, whereas freshwater biota are typically exposed to mixtures of different 

metals. The effects of metal mixtures have therefore repeatedly been subject of research. Two reference 

models are commonly used for the prediction of mixture toxicity: the concentration addition (CA) model 

and the independent action (IA) model. The former model is mostly used to predict the toxicity of 

mixtures of substances that have a similar mode of action (Loewe & Muischnek 1926), whereas the 

latter model is mostly used to predict substances that have a dissimilar mode of action (Bliss 1939). 

Both reference models assume that substances do not interact. However, interactions (i.e. synergistic 

or antagonistic) can be determined using a more elaborate mixture analysis framework based on CA or 

IA (Joncker et al 2005). This framework has allowed for the determination of non-interactive, antagonistic 

and synergistic effects in various metal mixture toxicity studies (Iwasaki et al. 2015; Lynch et al. 2015; 

Hochmuth et al. 2016; Nys et al. 2015; 2017a). Numerous studies have examined the interactive effects 

of metal mixtures on invertebrates (Norwood et al. 2007; Naddy et al. 2015; Nys et al. 2015; 2017a) , 

fish (Spehar and Fiandt 1986; Naddy et al. 2015) and higher plants (Lui et al. 2015; Versieren et al. 

2014; 2016; Gapolapillai 2016).  

Another group of species, microalgae, have also been subject of research. Because these primary 

producers are at the base of the food web, it is of utmost to understand the effects of metals on these 

organisms.  Franklin et al (2002) demonstrated for Chlorella sp. that the metal combinations Cu-Zn, Cd-

Zn and Cu-Cd-Zn acted antagonistically on cell growth relative to the CA model, whereas the mixture of 

Cu-Cd acted synergistically. It was hypothesized that this was due to cadmium-enhanced copper 

uptake. Nagai and Kamo (2014) found that the interactions between Zn, Cd and Cu were antagonistic 

relative to the CA model for the algae Pseudokirchneriella subcapitata. In addition, it was shown that 

the IA model performed better than the CA model in predicting mixture toxicity. Nagai and De 

Schamphelaere (2016) demonstrated for Navicula pelliculosa that all binary combinations of Zn-Cu-Cd-

Ni acted antagonistically relative to the CA model. In addition, here too the IA model performed better 

than the CA model (for combinations of Cd-Zn and Cd-Cu). However, all of the above mentioned studies 

with algae show a certain limitation: the interactive effects of the mixtures in the above mentioned algae 

studies were only tested in one specific water chemistry. However, it has been shown for invertebrates 

and plants that interactive effects can vary depending on the water chemistry (Naddy et al. 2015; 

Versieren et al. 2014). 

The objective of this study was therefore to test the interactive effects of metal mixtures to P.subcapitata, 

across various natural waters that show diverse water-chemistry characteristics. This was done by 

performing experiments with ternary Cu-Ni-Zn mixtures in 3 natural waters and binary Cu-Ni mixtures in 

5 natural waters. In these experiments, the toxicity of the single metals and mixtures were tested 

simultaneously. We aimed to answer the following research questions. (1) Does the type of interactive 

effect between Cu-Ni-Zn and Cu-Ni to P.subcapitata growth vary with water chemistry? Our null 

hypothesis is that the interactive effect is independent of water chemistry. However, based on studies 
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with C. dubia (Naddy et al. 2016; Nys et al. 2017a) and H. vulgare (Versieren et al. 2014) that showed 

different interactive effects in hard and soft waters, interactive effects could be dependent on water 

chemistry. (2) Do the metals interact or not? Based on research of effects of Cu-Ni mixtures on other 

algae  (Israr et al. 2011; Nagai and Kamo 2014; Flouty and Khalaf 2015) we hypothesized that the Cu-

Ni mixture would act antagonistically relative to CA on P.subcapitata growth rate. Limited literature was 

found concerning toxicity of Cu-Ni-Zn mixture to algae (Nys et al. 2016b). Based on this, we 

hypothesized that the Cu-Ni-Zn mixture would also act antagonistically relative to CA on algal growth. 

(3) Is the CA or the IA model the best model to predict chronic mixture toxicity to P.subcapitata?  

In addition, we also aimed to develop a metal mixture bioavailability model by combining single metal 

bioavailability models, similar to work performed by Nys et al. (2017c, 2017a).  

3.2 Materials and methods 

Collection of test media 

Natural surface waters were sampled in two periods. In 2013, water was sampled for tests on Cu-Ni-Zn 

mixture toxicity with P.subcapitata and in 2014, water was sampled for tests on Cu-Ni mixture toxicity 

with P.subcapitata. Samples of natural surface waters were taken at four locations in France, two 

locations in Belgium and one location in the Netherlands (Table 3.1). The natural waters were 

sequentially filtered through 10 µm, 1 µm and 0.2 µm filters (Eurowater, FZ 2001-010, 2021-001, 3005-

020) and were collected in acid-washed (1% HNO3) polyethylene vessels. The water was stored in total 

darkness until use.  

Ecotoxicity testing with P.subcapitata  

General test design. 

The effects of ternary Cu-Ni-Zn and binary Cu-Ni mixtures were investigated using the chronic (48h) P. 

subcapitata growth inhibition test (OECD 2011) using an equitoxic ray design. This entails that each 

component in a mixture has the same relative toxicity, i.e. is added in equitoxic proportions relative to 

their toxic units (TU). As it has been shown that metal concentration ratios can influence the metal 

interactions in a mixture (Nys et al. 2017a), using an equitoxic design ensures that we explicitly tested 

the effect of differences in water chemistry on the mixture interaction, which is in line with what our 

hypothesis states, and not the effect of the difference in contribution of each metal on the metal 

interaction. The latter would have been the case in a design in which a single fixed metal concentration 

ratio for all waters (for instance based on environmentally realistic concentration ratios) would have been 

chosen. Mixture combinations were tested at 8 to 10 (ternary mixture) and 5 (binary mixture) mixture 

treatments. These treatments ranged between 0.2-6.0 and 0.2-4.4 sum of TU (∑TUMe), relative to the 

median effective concentration (EC50Me), for the ternary and binary mixture, respectively. Nominal 

dissolved EC50Me in the test media were predicted using the existing bioavailability models for Cu (De 

Schamphelaere & Janssen 2006), Ni (Deleebeeck et al 2009) and Zn (De Schamphelaere & Janssen 

2005). For both mixture test series, the individual metals were tested simultaneously with the mixture 

treatments, to avoid difficulties with data interpretation of mixture interaction analysis due to temporal 

sensitivity shifts (De Laender et al 2009). 



 

 
 

Table 3.1. Overview of the locations and sampling dates of the natural surface waters with which toxicity tests were performed. 

Site ID 
Coordinates 

Location 
District or province, 
country codea 

Waterbasin 
Sampling date 

Latitude Longitude (dd-mm-yyyy) 

Loire 58° 22' 17.3'' 4° 11' 45.5'' Aurec-Sur-Loire Auvergne, F Loire 10-04-2013  
Dolaizon 45° 0' 53.86'' 3° 50' 21.33'' Saint-Christophe-sur-Dolaison Auvergne, F Loire 10-04-2013  
Moselotte 47° 58' 4.87'' 6° 43' 47.32'' Saulxure-sur-Moselotte Lorraine, F Rhine 09-04-2013 

Bihain (Ruisseau de St. Martin) 50° 8' 52.9'' 5° 50' 46'' Bihain Luxembourg, B Meuse 28-10-2014 

Brisy (l’ Ourthe Orientale) 50° 14' 27.3'' 5° 48' 30.6'' Brisy Luxembourg, B Meuse 28-10-2014 
Voyon 50° 6' 4.9'' 4° 5' 51.3'' Eppe-Sauvage Nord-Pas-de-Calais, F Meuse 28-10-2014 
Markermeer 52° 26’ 07’’ 5° 05’ 22’’ Marken Flevoland, Nl Ijssel 10-12-2014 

a F = France, Nl = the Netherlands,  B = Belgium 
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Preparation of test media. 

To investigate the effect of mixtures of Cu-Ni-Zn and Cu-Ni to P.subcapitata, tests were conducted in 8 

natural waters. A reference water (OECD growth medium) was also prepared according to the standard 

protocol 201 of the OECD for testing with P.subcapitata (OECD 2011). However, some adjustments 

were made to the reference water: (1)  Stock C was made without addition of Cu and Zn, as background 

concentrations of these metals were already present in the natural waters. (2) Na-ethylenediamine 

tetraacetic acid (EDTA) was omitted from Stock B (as has been done previously, e.g. Heijerick et al. 

2002a, Deleebeeck et al. 2009) as EDTA is known to be a very strong metal complexing ligand, which 

complicates speciation calculations and is therefore not appropriate for metal toxicity testing. All OECD 

stock solutions were subsequently added to the natural waters at the concentrations as indicated in the 

OECD guideline, to provide extra nutrients during testing. Natural waters were adjusted to the required 

pH by adding 750 mg/L 3-N-morpholinopropanesulfonic acid (MOPS)  (Kandegedara et al 1999; De 

Schamphelaere et al 2004) (except for the Dolaizon water, as the nominal pH for this water was above 

the working range of MOPS (pH 6.5-7.9)) and the required amount of NaOH or HCl. The composition of 

the test media, based on measured water chemistry during the test and after the addition of OECD stock 

solutions, MOPS and the adjustment of pH, is given in Table 3.2. This water chemistry was used for 

data analyses. 

In the ternary mixture experiment, each treatment received 3 replicates. Next to this 3 control replicates 

(modified natural medium without extra metals added) and a blank correction per replicate (no algae; 

used for particle correction, i.e. the average number of particles from all “blank corrections” is subtracted 

from the particle counts of the metal treatments and controls) were also run. In the binary mixture 

experiment, each treatment received 3 replicates, the control treatments received 10 replicates and in 

addition 6 blank corrections were run. All treatments were prepared by adding reagent grade NiCl2, 

ZnCl2 and CuCl2 purchased from VWR International. To allow equilibration, solutions were spiked with 

the metals 24 hours prior to testing.  

P.subcapitata culturing.  

Toxicity tests were performed with a P.subcapitata strain (CCAP 278/4) that was obtained from the 

Culture Collection of Algae and Protozoa (CCAP, at the Scottish Association for Marine Science, Argyll, 

Scotland, United Kingdom). A culture of the algae was set up 4 days prior to testing in aerated tap water 

(Gent, Belgium) that was passed sequentially through an activated carbon and a 0.45 µm filter to which 

the modified Provasoli’s ES enrichment (Bold and Wynne, 1978) at 1/2 strength and, additionally, 1.4 

mg/L FeSO4.7H2O, 15 mg/L NaH2PO4.2H2O, 150 mg/L NaNO3 and 2.35 mg/L MnCl2.4H2O were added. 

The flasks containing the algae were placed on a shaking device under continuous light (120 µmol 

photons.m-2.s-1) at 25°C. 

Ecotoxicity testing.  

The chronic toxicity tests with P.subcapitata were conducted following the OECD Guideline 201 (OECD 

2011). Algal tests were performed in 100 mL Erlenmeyer flasks containing 50 mL of test medium. All 

replicates, except the blank corrections, were inoculated with 104 cells/mL (= cell density N0 at the start 
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(t0) of testing). Next, all Erlenmeyer flasks were incubated at 24 °C on a light table (24 h light, 120 µmol 

photons m-2 s-1) and were manually shaken two times per day. During the test, the pH was adjusted 

daily by adding NaOH or HCl. Cell densities (N1, N2 and N3) were measured using a particle counter 

(Coulter Counter  Z1, Beckman) after 24 (t1), 48 (t2) and 72 (t3) hours. Growth rate µ (d-1) was determined 

in each replicate of each treatment as the slope of the linear regression of the natural logarithm of cell 

density versus time (in days). Test validity was evaluated as described by the OECD guidelines (OECD 

2011). 

Chemical analyses  

During the test period, samples of test media were collected for analysis of total (unfiltered) and 

dissolved (filtered through 0.45µm; Acrodisc, PALL Life Sciences) metals, major ions, organic carbon 

(OC) and inorganic carbon (IC). For P.subcapitata, total samples of media were taken at test initiation 

and dissolved samples both at test initiation, and after 48h and 72h. Samples for analysis of DOC 

(Dissolved Organic Carbon) and TOC (Total Organic Carbon) were taken before addition of MOPS. The 

pH of fresh and old media were measured daily with a pH glass electrode (Hanna Instruments, Temse, 

Belgium). Samples for metal analysis were acidified to 0.14 mol/L HNO3 (Normatom quality, VWR 

Prolabo). Information concerning the instruments to measure metal concentrations is given in Appendix 

B.1. 

Speciation calculations 

The software package WHAM VII (Windermere Humic Aqueuous Model , Tipping et al. 2011) was used 

to calculate the chemical speciation of Cu, Ni and Zn (using the average measured dissolved metal 

concentrations between the start and end of the test) in the different test waters. MOPS was added to 

the default solute database (pKa of 7.2). The default parameters for inorganic ligand-metal complexation 

of Cu, Ni and Zn in WHAM VII were adapted to those reported by the National Institute for Standards 

and Technology (Smith et al 2004). The default complexation parameters for the metal - dissolved 

organic matter (DOM) complexation were used. For the DOM in the test media it was assumed that  

65% of the DOM is reactive and behaves as isolated fulvic acid (FA; 65% AFA) while humic acid (HA) 

was assumed to be 0%. This % was chosen as assumptions of 60% to 70% reactive FA have been 

shown to work best for predicting metal speciation in natural waters (Tipping 2002) and the assumption 

of 65% AFA has been used in many recent metal mixture studies (Tipping and Lofts, 2013, 2015; Nys 

et al. 2016a; 2017a). In addition, it was assumed that DOM contains 50% carbon on a weight basis. 

Therefore, the measured DOC concentration was multiplied by 1.3 to obtain the FA concentration to be 

used as the input for speciation calculations. Activities of the metal cation Fe3+ were assumed to be 

controlled by colloidal Fe(OH)3 precipitates using the default equation and solubility product embedded 

in WHAM VII (Lofts & Tipping 2011).  

Data analysis 

If the validity criteria of the standard tests for P.subcapitata are met after 72h, effect concentration (EC) 

are calculated based on relative growth rate after 72h. However, if the growth rate of P.subcapitata for 

the control treatments did not pass validity criteria after 72-h, the OECD guideline permits that the tests 
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may be shortened to 48-h to maintain unlimited, exponential growth during the test as long as the validity 

criteria are met (OECD 2011), and that ECx values may be based on results of 48h exposure. As not all 

tests passed the validity criteria after 72h, we used the results of the 48h exposure for all tested waters, 

in accordance with the OECD test guidelines. 

Effect concentrations (EC10 and EC50) were calculated based on average measured dissolved metal 

concentrations (i.e. the average metal concentration at the start of the test and after 72h for the ternary 

mixture (as no measurements were taken at 48h) and after 48 hours for the binary mixture) as well as 

on WHAM VII calculated free ion activities. The relative growth rate (RGR, relative to the mean control 

reproduction, %) was used as the endpoint.  

EC50, EC10 and corresponding confidence intervals were determined for Cu, Ni and Zn using the drc-

package in R 1.0.136 (R Development Core Team, Vienna, Austria) with a log-logistic concentration 

response model with two parameters (Equation 3.1). 

RGRMei
=

100

1+exp
(bMei

(ln(xMei
)−ln(EC50Mei

)))
                                                 (3.1) 

Where RGRMei
 is the predicted relative growth rate for metal i (%);bMei

 is the slope parameter for metal 

i; xMei
 is the dissolved metal concentration (µg/L) or free ion activity of metal i (nmol/L) and EC50Mei

is 

the 50% effect concentration of metal i (µg dissolved metal/L or nmol free metal ion/L).  

Mixture interactions analysis 

For each of the ternary and binary mixtures, the interactive effects were assessed using the mixture 

analysis framework developed by Jonker et al. (2005) and further extended by Hochmuth et al. (2014), 

as has been applied elsewhere (Nys et al. 2015; Nys et al. 2016b; Nys et al. 2017a). With this method 

it is possible to examine whether a mixture deviates from strict non-interaction using the CA and the IA 

reference models. The analysis of the interactive effects was made based on both the dissolved 

concentrations and the free ion activities, to identify possible shifts in interactions due to competitive 

binding of Cu, Ni and Zn onto DOC. The mean RGR for every treatment was used as input for the 

analysis of the combined effects, which was performed in three subsequent steps. These steps were 

performed in the software package R-1.0.136 (R development Core Team). A detailed overview of the 

different steps is given in the Appendix (B.2). In short, a first step entailed the prediction of the RGR for 

the mixture combinations, which was made with the reference models CA and IA using the parameters 

of the individual dose response curves of Cu, Ni and Zn (𝐸𝐶50𝑀𝑒𝑖
 and 𝑏𝑀𝑒𝑖

). In a second step, the RGR 

were predicted for the mixture combinations with the CA and IA reference models using the parameters 

fitted to the single metal and mixture data simultaneously. Subsequently, in the third step, the CA and 

IA reference models were extended with a deviation parameter (a), which is a measure for the deviation 

of non-interactivity (Joncker et al 2005, Hochmuth et al 2014). To examine whether the deviation from 

non-interactivity was significant, it was checked whether the addition of the deviation parameter a 

significantly improved the predictions of the nested models from step 2 and 3 (Hochmuth et al. 2014). 

This was done by performing an F-test, after checking the validity of the assumptions for this test.  
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Metal Mixture Bioavailability Model (MMBM) development 

Recent meta-analyses (Van Genderen et al. 2015; Nys et al. 2017c) showed that the IA model was the 

most accurate model in predicting mixture toxicity. Because the IA model was also the most accurate to 

predict Ni-Zn-Pb toxicity to C. dubia, Nys et al. (2017a) developed a MMBM by combining the individual 

chronic bioavailability models with the IA model. We found that IA was equally as accurate compared to 

CA for predicting Cu-Ni-Zn toxicity to P.subcapitata (see Results section). However, the individual 

P.subcapitata bioavailability models for Cu, Ni and Zn differ in the competing ions that they consider. 

This suggests that Cu, Ni and Zn have different modes of action and bioavailability relations, which 

supports the choice of an IA-based MMBM. Hence, we developed a MMBM for P.subcapitata as was 

done by Nys et al. (2017a) by combining the individual chronic bioavailability models for Cu (De 

Schamphelaere & Janssen 2006), Ni (Deleebeeck et al 2009) and Zn (De Schamphelaere & Janssen 

2005) with the IA model (Equation 3.2) on the basis of the free ion activity.  

RGRmix = 100 ∙ ∏ (
1

1+(
xMei

EC50Mei
)

bMei
)n

i=1                                                                (3.2) 

Where n is the number of metals in the mixture and RGRmix is the predicted mixture growth rate relative 

to the control. As was assumed by Nys et al. (2017a) for competition between Ni2+, Zn2+ and Pb2+, we 

also assumed that each metal only binds to its own biotic ligand site and therefore that competition 

between metals for binding at the biotic ligand site was not allowed. The competitive effects of Mg2+ for 

binding at the Ni biotic ligand site and the effect of pH on the binding of the free metal ion to the biotic 

ligand sites were integrated in the MMBM using the stability constant (KMgBLMei) and pH slopes (SpHMe,i) 

of the individual chronic bioavailability models. Equation 3.3 was used to predict the RGR in the 

presence of Cu, Ni and/or Zn. 

RGRMMBM,k = 100 ∙
1

1+(
c

Cu2+,k

10
−(Q50

Cu2++SpH,Cu∙pHk)
)

b
Cu2+

  

∙
1

1 + (
cNi2+,k

10−(Q50Ni2++SpH,Ni∙pHk)(1 + KMgBLZn
{Mg2+}k

)

bNi2+
 

∙
1

1+(
c

Zn2+,k

10
−(Q50

Zn2++SpH,Zn∙pHk)
)

b
Zn2+

                                               (3.3) 

In Equation 3.3, RGRMMBM,k is the relative growth rate (%) in water k predicted with the MMBM. cCu2+,k, 

cNi2+,k and cZn2+,k are the WHAM VII predicted free metal activities of Cu2+, Ni2+ and Zn2+ in test medium 

k (mol/L), respectively. Q50Cu2+, Q50Ni2+ and Q50Zn2+ are the intrinsic sensitivities of the chronic Cu, Ni and 

Zn bioavailability models (log(mol/L)), respectively. bCu2+, bNi2+ and bZn2+ are the slope parameters of the 

log-logistic dose response curves of Cu2+, Ni2+ and Zn2+, which are assumed to be independent of water 

chemistry. Whether this assumption is valid is not clear, as the factors influencing slope values are not 

fully understood. In the present study, there is no clear pattern between the observed slopes of the 

different natural waters and the major physicochemical parameters (i.e. pH, Ca concentration and DOC 

concentration; Table 4; Pearson’s correlation p > 0.05). Therefore, until the factors influencing the slopes 

of dose-response curves are better understood, this assumption is inevitable. In addition, this 

assumption also avoids making thee MMBM overly complicated.  
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The Q50Me and bMe values were calibrated on all single metal toxicity data using non-linear least square 

fitting in R. SpH,Cu, SpH,Ni and SpH,Zn are the pH slopes of Cu2+, Ni2+ and Zn2+ toxicity in the Cu, Ni and Zn 

bioavailability models, respectively. pHk is the pH of water k. KMgBL,Ni is the stability constant for the 

binding of Mg2+ to the Ni biotic ligand (L/mol) (Deleebeeck et al. 2009; De Schamphelaere and Janssen 

2005; 2006). SpH,Me values and the stability constant for Mg2+ were taken from the individual metal BLMs. 

{Mg2+} is the chemical activity of Mg2+ in water k predicted with WHAM VII. All MMBM parameters are 

listed in Table 3.2. The MMBM was used to predict the RGR of Cu, Ni and Zn as a mixture, as well as 

individually.  

Table 3.2 Model parameters of the chronic Pseudokircherniella subcapitata metal mixture bioavailability 

model  

  Cu Ni Zn 

Fixed model parameters Log KMgBL,Me - 3.3a - 
 SpH,Me 1.354b 0.143a 0652c 

Calibrated model parametersd Q50Me2+ -1.98 ± 0.06 4.45 ± 0.04 1.36 ± 0.03 
 bMe2+ 0.80 ± 0.10 1.97 ± 0.28 1.33 ± 0.14 

a Model parameters originating from the chronic Ni P.subcapitata bioavailability model (Deleebeeck et al 2009) 
b Model parameters originating from the chronic Cu P.subcapitata bioavailability model (De Schamphelaere & Janssen 2006)  
c Model parameters originating from the chronic Zn P.subcapitata bioavailability model (De Schamphelaere & Janssen 2005) 
d Calibrated MMBM model parameters ± standard error 

3.3 Results 

Chemical characterisation of natural study waters 

An overview of the water chemistry of the natural test media is given in Table 3.3. pH ranged between 

6.5 and 8.2, DOC ranged between 2.2 mg/L and 12.7 mg/L and Ca concentrations ranged between 2.6 

mg/L and 227.7 mg/L. 

Concentration response analysis 

The validity criteria of the standard tests for P.subcapitata were not met for 2 out of 8 waters after 72h 

of exposure (Appendix B.3). Therefore, it was decided that the 48-h growth rate, for which all criteria 

were met in all waters, was used to calculate effect concentrations in each water. The concentration 

response data of the individual Cu, Ni and Zn exposures based on dissolved metal concentration and 

free metal ion activity are shown in Appendix B Figure B3.1-2 and Table B3.2-3. Dissolved Ni, Cu and 

Zn concentrations ranged between 1 µg/L – 2680 µg/L, 1 µg/L – 659 µg/L and 1 µg/L – 450 µg/L in the 

individual exposures, respectively. Corresponding EC10Mei
, EC50Mei

and bMei
are listed in Table 3.4. A 

large range in ECx values is observed, e.g. EC10 between 7.2 µg/L Cudiss and 112.0 µg/L Cudiss. This 

can be linked to the water chemistry of the test medium. For algae, DOC concentration and pH are the 

main divers of metal toxicity (De Schamphelaere et al. 2003, Deleebeeck et al. 2009, De Schamphelaere 

et al. 2005) and the reason toxicity is so variable (Table 3.4). 

Analysis of interactive mixture effects 

Figure 3.1 shows the CA- and IA-predicted and observed relative growth rate of the ternary and binary 

mixture treatments plotted as a function of the ∑TU based on free ion activities. In addition, the individual 

log-logistic concentration–response curves of Cu, Ni and Zn (Figure B3.1-2) in the corresponding test 

waters are plotted in Figure 3.1. A similar figure for dissolved concentrations is given in the Appendix 

(B.4). The observed type of interactive effect to the two reference models for each mixture for all waters 
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is given in Table 3.5. The variability between the replicates in some of the binary mixtures was higher 

than in most ternary mixtures (Figure 3.1), which may have influenced the outcome of the statistical 

analyses. Despite this, the statistical analysis showed that no significant interactions were observed for 

the ternary and binary mixture relative to both the CA and the IA model (Appendix B Table B4.3-4), 

when concentrations were expressed as free ion activities (Figure 3.2, Appendix B Figure B.4.2-3) or as 

dissolved concentrations (Appendix B Figure B.4.4-5). The only exception was found in the water 

Moselotte, where the ternary mixture acted antagonistically on P.subcapitata growth rate relative to both 

the CA and IA model, either when concentrations were expressed as free ion activities or as dissolved 

concentrations. 



 

 
 

Table 3.3. Overview of measured test water chemistry of the different experimental series. Mean values ± standard deviations are reported.  

  
Test seriesa pH DOC (mg/L) DIC (mg/L) Na (mg/L) Mg (mg/L) K (mg/L) Ca (mg/L) Cl (mg/L) SO4 (mg/L) 

Loire 
1 

7.2 ± 0.03  3.7b 14.6 ± 0.0 14.8 ± 0.2 6.8 ± 0.1 76.8 ± 11.0 2.6 ± 0.1 65.0 ± 8.5 23.4 ± 2.3 

Dolaizon 
2 

8.2 ± 0.08 4.6 ± 0.5 22.3 ± 1.8 17.7 ± 0.3 14.7 ± 0.1 2.2 ± 0.1 17.9 ± 0.2 37.9 ± 1.0 18.1 ± 2.0 

Moselotte 
3 

7.6 ± 0.02 2.2b 9.56 ± 0.0 114.1 ± 0.9 4.2 ± 0.1 1.3 ± 1.3 9.0 ± 0.2 128.8 ± 0.6 14.6 ± 1.3 

Bihain  
4 6.5 ± 0.01 12.7b  2.9 ± 1.1 146 ± 5.7 4.1 ± 0.1 1.8 ± 0.1 9.7 ± 0.7 50.2 ± 3.2 10.4 ± 1.6 

Brisy1 
4 7.2 ± 0.01 4.4b 4.8 ± 2.0 72.5 ± 0.7 6.9 ± 0.4 2.9 ± 0.1 15.5 ± 0.7 51.1 ± 4.6 15.1 ± 2.7 

Voyon 
4 6.8 ± 0.03 9.0b 4.8 ± 2.5 41 ± 4.2 9.4 ± 0.4 2.8 ± 0.1 24.3 ± 1.3 67.0 ± 9.8 19.7 ± 2.7 

Brisy2 
5 7.2 ± 0.01 7.1b  72.5  ± 0.7 6.1 ± 0.3 2.9  ± 0.7 13.5 ± 0.6 54.7 ± 7.0 13.9 ± 0.5 2.5 ± 1.2 

Markermeer 
5 8.1 ± 0.07 9.9b 88.7 ± 0.0 18.8 ± 0.6 4.9 ± 0.0 57.3 ± 2.3 227.7 ± 15.8 89.6 ± 4.2 16 ± 3.6 

a All natural waters within a test series were tested simultaneously, b 750 mg/L MOPS added to the test water, therefore only DOC measurement at the start of the test; 

DOC = Dissolved Organic Carbon, DIC = Dissolved Inorganic Carbon 
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Table 3.4 EC10, EC50 and b of the concentration response curves (± standard error) of the individual Zn, 

Ni and Cu 48-h exposures 

 

EC10 = 10% effective concentration 
EC50 = median effective concentration 
b = slope of the individual concentration response curves 
Mediss = parameters of the individual concentration response curves based on dissolved concentrations (µgL) 
Meact = parameters of the individual response curves based on free ion activities (nmol/L) 
NA = Not applicable 

 

 

 
Parameter Cudiss (µg/L) Nidiss (µg/L) Zndiss (µg/L) 

Cu2+
act 

(nmol/L) 
Ni2+

act  
(nmol/L) 

Zn2+
act (nmol/L) 

Loire 

EC10 29.0 ± 2.2 187.5 ± 19.3 63.8 ± 6.6 2.3 ± 0.4 1736.6 ± 186.3 358.1 ± 42.3 

EC50 99.0 ± 3.4 498.6 ± 22.6 204.2 ± 10.0 26.5 ± 1.9 4784.1 ± 225.3 1336.0 ± 75.3 

b 1.79 ± 0.12 2.25 ± 0.22 1.89 ± 0.17 0.89 ± 0.07 2.17 ± 0.21 1.67 ± 0.15 

Dolaizon 

EC10 10.0 ± 1.7 224.7 ± 6.6 9.4 ± 1.6 0.03 ± 0.01 1494.1 ± 50.4 24.1 ± 4.5 

EC50 34.5 ± 2.9 484.3 ± 14.8 45.8 ± 3.3 0.4 ± 0.1 3343.8 ± 117.0 140.3 ± 11.4 

b 1.77 ± 0.23 2.86 ± 0.19 1.38 ± 0.13 0.83 ± 0.11 2.73 ± 0.20 1.25 ± 0.12 

Moselotte 

EC10 7.2 ± 0.9 80.1 ± 3.4 11.5 ± 2.6 0.1 ± 0.03 713.0 ± 31.7 49.9 ± 12.9 

EC50 24.5 ± 1.5 227.9 ± 9.4 52.9 ± 5.0 1.8 ± 0.2 2619.5 ± 92.6 281.3 ± 30.2 

b 1.78 ± 0.18 1.77 ± 0.09 1.44 ± 0.19 0.82 ± 0.07 1.69 ± 0.08 1.27 ± 0.17 

Bihain 

EC10 112.0 ± 28.5 222.2 ± 22.5 NA 4.3 ± 2.1 1825.9 ± 200.2 NA 

EC50 363.5 ± 33.8 513.0 ± 29.3 NA 80.8 ± 15.9 4542.3 ± 281.7 NA 

b 1.87 ± 0.38 2.63 ± 0.20 NA 0.75 ± 0.12 2.41 ± 0.18 NA 

Brisy1 

EC10 47.5 ± 8.5 297.1 ± 70.1 NA 3.6 ± 1.5 4678.4 ± 1132.9 NA 

EC50 117.3 ± 6.8 584.3 ± 42.3 NA 49.9 ± 7.6 8657.6 ± 628.1 NA 

b 2.43 ± 0.36 3.25 ± 0.82 NA 0.84 ± 0.10 3.57 ± 1.02 NA 

Voyon 

EC10 51.0 ± 19.9 552.4 ± 67.5 NA 10.7 ± 5.9 5908.6 ± 737.8 NA 

EC50 284.0 ± 43.6 1102.4 ± 51.1 NA 248.4 ± 51.7 11516.5 ± 530.1 NA 

b 1.28 ± 0.29 3.18 ± 0.48 NA 0.70 ± 0.12 3.29 ± 0.53 NA 

Brisy2 

EC10 47.5 ± 2.0 207.3 ± 49.9 NA 1.8 ± 0.2 1919.3 ± 492.3 NA 

EC50 120.5 ± 2.3 784.5 ± 67.0 NA 13.2 ± 0.6 7918.9 ± 716 NA 

b 2.36 ± 0.10 1.65 ± 0.25 NA 1.09 ± 0.06 7.55 ± .23 NA 

Markermeer 

EC10 52.3 ± 1.5 403.89 ± 63.3 NA 0.6 ± 0.2 2769.8 ± 459.8 NA 

EC50 132.2 ± 11.1 1530.3 ± 72.6 NA 4.4 ± .6 11105.0 ± 554.2 NA 

b 2.37 ± 0.45 1.65 ± 0.17 NA 1.12 ± 0.15 1.58 ± .17 NA 



 

 
 

 

Figure 3.1. Observed and predicted relative growth rate (RGR) as a function of the sum of toxic units (SumTU) based on free ion activities in the ternary Cu-

Ni-Zn mixture combinations (A-C) and the binary Cu-Ni mixture combinations (D-H) for Pseudokirchneriella subcapitata. Observed RGR (circles), 

predictions with concentration addition (CA; triangles, Equation B2.1), and predictions with independent action (IA; squares, Equation B2.2 Predictions are 

based on the 50% effective concentration (EC50Me2+,i) and slope (bMe2+,i) of the individual concentration–response curves of Cu, Ni and Zn (see Equation 3.1, 

Table 3.4). 

𝑺𝒖𝒎𝑻𝑼 =  ∑
𝑴𝒆𝒊

𝟐+

𝑬𝑪𝟓𝟎
𝑴𝒆𝟐+,𝒊

. Lines represent the individual log-logistic concentration–response curves of Cu, Ni and Zn in the corresponding test waters. Error 

bars show standard errors.  A=Loire, B=Dolaizon, C=Moselotte, D= Bihain, E=Brisy1, F=Voyon, G=Brisy2, H=Markermeer 
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Figure 3.2 Observed relative growth rate versus predicted relative growth rate for the mixture 

reference models concentration Observed relative growth rate versus predicted relative growth 

rate for the mixture reference models concentration addition (blue symbols) and independent 

action (purple symbols) for the Pseudokircherniella subcapitata ternary Cu-Ni-Zn (A) and binary 

Cu-Ni (B) experimental series. Model predictions were based on parameters estimated from 

single-metal exposures of Cu, Ni and Zn (Table 3.4), with doses expressed as free ion activities. 
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Table 3.5. Observed type of interactive effect in the Cu-Ni-Zn and Cu-Ni mixtures for Pseudokirchneriella 
subcapitata a 

 Concentration addition Independent action 
 Mediss

b Me2+
c Mediss Me2+ 

Ternary 
Loire NI NI NI NI 
Dolaizon NI NI NI NI 
Moselotte A A A A 

Binary 
Bihain NI NI NI NI 
Brisy1 NI NI NI NI 
Voyon NI NI NI NI 
Brisy2 NI NI NI NI 
Markermeer NI NI NI NI 

a All parameters of the fitted models are listed in Table Appendix B3-4 
b Analysis of mixture interactions based on dissolved concentrations 
c Analysis of mixture interactions based on free ion activities 
A = antagonism; NI = non-interactive 

 

Validation of the MMBM 

Figure 3.3 and Figure 3.4 show the MMBA-predicted versus observed relative growth rate of the mixture 

treatments and individual treatments for the ternary and binary mixture, respectively. For the ternary 

mixture (Figure 3.3), the MMBM predicted the RGR of 96% of the mixture treatments with less than 20% 

error. The RGR for the individual Cu, Ni and Zn treatments were predicted within 20% error in 100%, 

100% and 100% of the cases. The root mean square errors were 9, 9, 5 and 11 for the mixture, individual 

Cu, individual Ni and individual Zn treatments, respectively. For the binary mixture (Figure 3.4), the 

MMBM predicted the RGR of 72% of the mixture treatments with less than 20% error. The RGR for the 

individual Cu and Ni treatments were predicted within 20% error in 88% and 84% of the cases. The root 

mean square errors were 19, 15 and 15 for the mixture, individual Cu and individual Ni treatments, 

respectively. 

3.4 Discussion 

Analysis of interactive mixture effects 

In the present study, we investigated the combined effects of ternary Cu-Ni-Zn and binary Cu-Ni 

mixtures on P.subcapitata growth inhibition. Non-interactivity amongst metals is not an uncommon 

phenomenon. In a meta-analysis performed by Norwood et al. (2003) which included 77 species and 21 

different metals, 27% of the responses showed non-interactivity (although it was not specified against 

which reference model). A recent meta-analysis performed by Nys et al. (2017c) including 3 species 

and 5 metals showed non-interactivity in 35% and 29% of the cases relative to the CA and IA model, 

respectively. One exception to non-interactivity of the Cu-Ni-Zn mixture was found for the Moselotte 

water. The ternary Cu-Ni-Zn mixture acted non-interactively on algal growth relative to the CA and IA 

model (Figure 3.1 and Appendix B Table B.3.3), except for in 1 water (Moselotte), in which the mixture 

acted antagonistically. Mehta et al. (2000) investigated the Ni-adsorption by another freshwater algae, 

C. vulgaris, when Cu and Zn were administered. The simultaneous application of both Cu and Zn 

appeared to inhibit the adsorption of Ni, possibly by competing with them for binding onto common 
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functional groups on the cell surface. In a study by Franklin et al. (2002), it was shown that Cu had an 

inhibitory effect on the uptake of Zn by Chlorella sp.. In addition, the binary Cu-Zn mixture acted 

antagonistically on Chlorella sp. growth rate relative to the CA model. This was most likely because of 

competition for the same transport sites on the cell membrane. Similarly, Cu also had an inhibitory effect 

on the uptake of Ni by C. reinhardtii (Flouty and Khalaf, 2015) which was explained as a competitive 

binding of Cu with Ni for the transport sites being used for Ni uptake. These studies are therefore 

consistent with the observed antagonistic effects of Cu-Ni-Zn on algae growth in the Moselotte water. 

However, in the other 2 waters (Loire and Dolaizon), the Cu-Ni-Zn mixture acted non-interactively on 

algal growth. Norwood et al. (2003) speculated why deviations from model predictions, for mixtures of 

the same metals, could be so variable. These authors suggested that difference in test organisms could 

explain this result. In addition, we observed variable deviations from model predictions, for a mixture of 

the same metals, for a single species (i.e. P. subcapitata). Norwood et al. (2003) suggested that different 

water chemistry could underlie these variable model predictions. 

 

Figure 3.3 Metal mixture bioavailability model predicted versus observed relative growth rate of 

Pseudokirchneriella subcapitata in the Cu-Ni-Zn metal mixture treatments (A), individual Cu treatments (B), 

individual Ni treatments (C) and individual Zn treatments (D) in the different test waters (Loire (▲), Dolaizon 

(✴) and Moselotte (◆)). The full line indicates a perfect match between observed and predicted data. The 

dashed line indicates a difference of 20% between the observed and predicted data.  
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Figure 3.4 Metal mixture bioavailability model predicted versus observed relative growth rate of 

Pseudokirchneriella subcapitata in the Cu-Ni metal mixture treatments (A), individual Cu treatments (B) and 

individual Ni treatments (C) in the different test waters (Bihain (+), Brisy1 (-), Voyon (■), Brisy2 (X) and 

Markermeer (●)). The full line indicates a perfect match between observed and predicted data. The dashed 

line indicates a difference of 20% between the observed and predicted data.  

It is well known that the physico-chemistry of a water body influences the bioavailability and thus toxicity 

of individual metals, which lead to the development of Biotic Ligand Models for numerous individual 

metals and species (Deleebeeck et al. 2009, De Schamphelaere & Janssen 2005, De Schamphelaere 

& Janssen 2006). It is therefore apparent that mixture toxicity is also influenced by water chemistry, a 

factor that has been demonstrated and implemented into mixture models (Tipping & Lofts 2015; Santore 

& Ryan 2015; Iwasaki et al. 2015; Nys et al. 2017a). Although our results, i.e. that the interactive 

response of a Cu-Ni-Zn mixture to P.subcapitata changes with water chemistry, cannot be confirmed or 

contradicted by other studies on algae, studies on other species have reported similar results. In these 

studies (Naddy et al. 2015; Versieren et al. 2014; Nys et al. 2017a) the mixture interaction shifted 

between soft water and hard water. Nys et al. (2017b) explained this for H. vulgare and C. dubia by 

competition reactions at the receptor site. These authors demonstrated that antagonisms among metal 

ions relative to the CA model decreased as the concentrations of competing ions increased. Hence, in 

a low cationic competition situations (e.g. a soft water) there is more antagonism between metals than 

in high cationic competition situations (e.g. a hard water). When examining Table 3. 2, we can observe 

that the Moselotte water has low concentrations of Mg, Ca and K, and is therefore a low cationic 

competition situation, which could explain the antagonism observed in this water. However, 

concentrations of these competitive cations are also low in other waters (e.g. the Loire) in which 

antagonism was not observed, which shows that a low cationic competition situation can not be the only 

reason for the observed antagonism in the Moselotte water. Overall, the present study illustrates that 

the interactive toxic effects of mixtures of Cu-Ni-Zn to P.subcapitata may vary under different physico-

chemical conditions, although we emphasize that this is due to one exception found for the Moselotte 

water. However, our first hypothesis, that the type of interaction for the ternary mixture is independent 

of water chemistry, is therefore rejected. In addition, our second hypothesis, that the ternary mixture 

would act antagonistically relative to CA on algal growth, independent of water chemistry, is also 

rejected. 

The binary Cu-Ni mixture acted non-interactively on algal growth relative to both the CA and IA reference 

models (Figure 3.1 and Appendix B Table B4.4). These results are different from results of other studies 
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on freshwater algae. Nagai et al. (2014) showed for N. pelliculosa that the binary Cu-Ni mixture acted 

antagonistically on algal growth. Flouty and Khalaf (2015) also found an inhibitory effect of Cu on the 

uptake for Ni by C. reinhardtii. Also in the higher plant, Sesbania drummondii, Cu uptake in the shoots 

was decreased in the presence of Ni (Israr et al. 2011) which was possibley explained by the competition 

between metal transport systems during uptake process. Our results for P.subcapitata however, show 

for 5 different waters, that the mixture of Cu and Ni acts non-interactively on P.subcapitata growth. The 

null hypothesis of our first research question is therefore confirmed, as the type of interactive effect 

between Cu-Ni to P.subcapitata growth is independent of water chemistry. However, the hypothesis of 

our second research question is not confirmed, as the binary mixture act non-interactively on 

P.subcapitata growth.  

For both the ternary and binary mixture, the conclusion about the interactive effect (i.e. no interaction or 

antagonism) did not change when predictions were based either on dissolved metal concentrations or 

on free ion activities (Table 3.5). Thus, accounting for competition between the metals for DOC does 

not change the conclusion about toxicological interactions between the metals in the mixture.   

To answer our third research question, whether the CA or IA model is the best model to predict mixture 

toxicity, the Akaike Information Criterion (AIC) and the lower root-mean-squared-error (RMSE) values 

can be used as an indicator of model fit. AICs and RMSEs of both reference models were relatively 

similar between both models in most cases (see Appendix B Table B4.3-5). Therefore, based on these 

indicators, there is no one “best” model. This can also be observed in Figure 3.1, which shows that the 

predictions of CA and IA are very close to each other. Our findings also suggest that, although the 

predictions made by the CA model were in general more conservative than the predictions of the IA 

model, both models are accurate for estimating the toxicity of ternary Cu-Ni-Zn and binary Cu-Ni 

mixtures to P.subcapitata. 

 

Development and validation of the MMBM 

Nys et al (2017a) developed a MMBM that combines the single metal bioavailability models with the IA 

model because these authors observed that Ni-Zn-Pb mixture toxicity to C. dubia showed no interaction 

relative to the IA model and was most accurately predicted with the IA model. Since we also found no 

interaction in most waters relative to the IA model and that the IA model was accurate in predicting Cu-

Ni-Zn toxicity to P.subcapitata, a MMBM was developed in the present study that combines the IA model 

with the chronic P.subcapitata bioavailability models for the individual metals (De Schamphelaere & 

Janssen 2006, Deleebeeck et al 2009, De Schamphelaere & Janssen 2005). The MMBM model is 

structured in a way that it predicts toxicity expressed as RGR of P.subcapitata. As was highlighted by 

Nys et al (2017a), this type of model accounts for possible bioavailability effects, as the individual BLMs 

that form the basis of the MMBM have been validated in waters with different water chemistries (De 

Schamphelaere & Janssen 2006, Deleebeeck et al 2009, De Schamphelaere & Janssen 2005). This is 

in contrast to other models that predict metal mixtures (Versieren et al 2014, Tipping and Lofts 2015, 

Santore and Ryan 2015) and that do not take into account any bioavailability effects.  

For the ternary mixture, 96% of the mixture treatments was predicted with less than 20% error. This is 

at least as accurate as the MMBM developed by Nys et al (2017a) for C. dubia, for which 85% of the 
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Zn-Ni-Pb mixture treatments were predicted with less than 20% error. In addition, in spite of the 

significant mixture interaction that was found for the Moselotte water, the MMBM showed a good 

predictive ability for this test water (Figure 3.3). The root mean square error for the mixture treatments 

was similar than for the individual metal treatments (i.e. 9 vs 9, 5 and 11), which indicates that the 

chronic toxicity of the ternary Cu-Ni-Zn mixture predicted with the MMBM calibrated on the single metal 

toxicities is at least equally as accurate as the toxicity observed in the individual metal treatments. This 

indicates that the MMBM can be used to predict Cu-Ni-Zn toxicity to P.subcapitata under different water 

characteristics. However, a bias in the model predictions can be observed (Figure 3.3). Indeed, a 

tendency to overestimate mixture toxicity effects is observed for all waters. This indicates that the MMBM 

predicted greater toxicity than was actually observed, which implies that the MMBM is a conservative 

model for ternary Cu-Ni-Zn mixtures. This observation was also seen for a water tested by Nys et al 

(2017a). A possible explanation for the overestimation of mixture toxicity effects that was given by these 

authors was that the assumption that free metal ions do not compete for binding at the biotic ligand sites 

may not be correct. Our results therefore confirm the observations of Nys et al (2017a), that in waters 

with a low cationic competitions situations, e.g. high pH (our Dolaizon water) or low Ca concentration 

(our Loire and Moselotte waters), there is theoretically more chance for metal-metal competition which 

is not incorporated into the MMBM. 

For the binary mixture, 72% of the mixture treatments was predicted with less than 20% error (Figure 

3.4). The root mean square error for the binary Cu-Ni mixture treatments was approximately the same 

as for the individual metal treatments (i.e. 19 vs 15 and 15), which indicates that the chronic toxicity of 

the binary Cu-Ni mixture predicted with the MMBM calibrated on the single metal toxicities is 

approximately as accurate as the toxicity predicted for the individual metal treatments. This indicates 

that the MMBM can be used to predict Cu-Ni toxicity to P.subcapitata under different water 

characteristics. 

3.5 Conclusion 

The present study investigated the effects of ternary Cu-Ni-Zn and binary Cu-Ni mixtures on the growth 

of the freshwater algae P.subcapitata across various natural waters that show diverse water-chemistry 

characteristics, using equitoxic ray designs. Our modelling analysis showed that the toxicity of the 

ternary mixture acts non-interactively on algal growth, except in one water in which the mixture acted 

antagonistically. We suggest that a low cationic competition situation in the latter water could be the 

reason for the antagonistic interactions between the metals in this water.  On the other hand, the binary 

mixture acted non-interactively on algal growth in 5 waters with different water chemistry. We showed 

that both the CA and IA model can serve as a protective scenario for toxicity of ternary Cu-Ni-Zn and 

binary Cu-Ni mixtures to P.subcapitata. In addition, although we found that both reference models 

predict ternary Cu-Ni-Zn and binary Cu-Ni mixture toxicity equally well, we developed a MMBM based 

on the IA model. We found that the MMBM can be used to accurately predict Cu-Ni-Zn and Cu-Ni toxicity 

to P.subcapitata under different water characteristics. The present study increased the knowledge on 

chronic metal mixture effects for freshwater microalgae across various waters that show diverse water 
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chemistry characteristics, which might help advance the integration of metal mixture toxicity into metal 

risk assessment frameworks (Van Genderen et al 2015).
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4. The effects of a Cu-Ni-Zn mixture on the structure, diversity and functioning 

of a freshwater planktonic community  
 

4.1. Introduction 

It has been recognized that ecological risk assessment should be performed by taking into account the 

toxic effects of mixtures of substances, as organisms in the aquatic environment are exposed to 

chemical mixtures rather than isolated substances. Although few countries already consider mixture 

effects in their risk assessment frameworks (A&NZ 2000), regulatory risk assessment is still primarily 

performed on a substance-by-substance basis. While considerable research has been performed to 

assess the influence of mixtures on single species, still little is known on how mixtures influence 

community structure and functioning. Most data concerning mixture effects on communities are found 

for pesticides. A review of recent literature concerning exposure of species in aquatic microcosms 

indicates that most pesticide mixtures act additively on community structure and functioning 

(Verbruggen and Van den Brink 2010). Synergisms are only found in exceptional cases, but deviations 

from additivity are small and only found in short-term exposures toxicity (Laetz et al. 2009, Anderson 

and Lydy 2002). For metals, some field studies and experimental microcosm studies have been 

performed (e.g. Stockdale et al. 2010, Richardson and Kiffney 2000, Clements et al. 2013, Mebane et 

al. 2017, Clement 2004). Richardson and Kiffney (2000) did not find significant decreases in benthos 

densities when exposed to mixtures of Cu, Zn, Mn and Pb in a low-conductivity stream. Clements et al. 

(2013) and Mebane et al. (2017) on the other hand found in their community level microcosm 

experiments that effect concentrations for aquatic insects were several orders of magnitude lower than 

those obtained with single species tests. In addition, Mebane et al. (2017) found that the Cd-Zn mixture 

acted antagonistically relative to the Independent Action (IA) model. Clements (2004) observed for a 

macroinvertebrate community that functional community endpoints (e.g. community respiration) were 

more sensitive to metal mixtures than structural endpoints (e.g. abundance). Although empirical 

knowledge on community-level effects due to metals is increasing, regulatory risk assessment of metals 

still mostly relies on methods to extrapolate from single-species to communities, such as the species-

sensitivity distribution (SSD) approach (De Zwart and Posthuma 2005, ECI 2008, Van Sprang et al. 

2009, Van Sprang et al. 2016). This approach is used to calculate a potentially affected fraction (PAF) 

of species as a proxy of community-level effect. This is done based on toxicity data derived from single 

species tests and therefore the approach ignores species interactions (Forbes and Calow 2002, 

Gregorio et al. 2013). It is generally assumed that as long as the majority of species (i.e. 95%) 

experiences no adverse effect due to a single substance (i.e. PAF < 5%), no significant long-term 

structural or functional effects on the community are expected to occur (De Zwart and Posthuma 2005, 

Gregorio et al. 2013, Van Regenmortel et al. 2017). Single-metal microcosm experiments (Schäfers 

2001, Hommen et al. 2016, Van de Perre et al. 2016) support the assumption of protectiveness of this 

threshold (PAF ≤ 5%). This threshold can also theoretically be applied for exposures to multiple 

contaminants, i.e. no significant effects on the community level are expected to occur as long as the 

multisubstance PAF (msPAF) is below 5% (De Zwart and Posthuma 2005). It is, however, not known 

whether this threshold protects against mixed metal contamination. A recent study by Van Regenmortel 

et al. (2017) demonstrated that between 0% and 52% of target waters samples from 4 monitoring 
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databases are predicted to be at risk due to single and mixed metal contamination (i.e. (ms)PAF > 5%) 

using a simple and conservative approach to calculate an msPAF, i.e. their so-called CASSD approach. 

In this approach, which is a classic toxic unit approach, the Concentration Addition method is applied 

directly to the SSD. One important limitation of this in-silico method, which was already mentioned by 

Van Regenmortel et al. (2017), is that the indirect effects of the mixture on the community (through 

ecological interactions between species) are not accounted for. Therefore the degree of conservatism 

of the CASSD method compared with community-level metal mixture effects needs to be investigated. A 

literature search performed prior to the design and execution of this study showed that no studies were 

appropriate for this investigation (e.g. Stockdale et al. 2010, Richardson and Kiffney 2000, Clements et 

al. 2013, Clements 2004, Hickey and Golding 2002). One reason is the lack of Dissolved Organic Carbon 

(DOC) measurements, an important variable influencing metal toxicity and needed to accurately 

calculate metal bioavailability. Therefore, a multispecies microcosm experiment was performed in the 

present study. In this experiment, a naturally occurring freshwater planktonic community was exposed 

to Cu, Ni and Zn, as a mixture, for 8 weeks. We aimed to answer two main research questions. First, 

what are the direct and indirect effects of the metal mixture on the community? When examining the 

direct effects of the single metals by inspecting the species sensitivity distributions (SSDs) of Cu, Ni and 

Zn we can observe that for Ni and Cu zooplankton species are more sensitive than phytoplankton 

species while for Zn the opposite is observed (ECI 2008, Van Sprang et al. 2009, DEPA 2008). We 

therefore hypothesize that both organism groups (when present together in a community) will be 

targeted directly by the Cu-Ni-Zn mixture. Verbruggen and Van den Brink (2010) demonstrated for 

pesticide mixtures that significant synergisms at the community level are found in cases where different 

pesticides in the mixture simultaneously target different parts of the foodweb. We can therefore expect, 

by analogy, that the Cu-Ni-Zn exposure might result in synergistic effects on the community. This might, 

in contrast to what is expected for single substances, also lead to effects at or below a msPAF value of 

0.05.  

Second, when using the classic toxic unit approach, i.e. the CASSD method: as of which msPAF value 

are effects observed on (A) structural community-level endpoints (species groups abundances, 

community composition, species diversity and species richness) and on (B) community functioning 

measured by indirect physico-chemical proxy’s (Δ dissolved oxygen (ΔDO) as proxy for community 

respiration (Van de Perre et al. 2016, Downing and Leibold 2002), ΔpH as proxy for phytoplankton 

metabolism (Kayambo et al. 2002) and change in DOC as proxy for the microbial loop and pelagic food 

web interactions (Jumars et al; 1989, Brönmark and Hansson 2005, Wetzel 2003)? Based on microcosm 

studies on single metals that showed no effects on the community at a PAF value ≤ 0.05 (Schäfers 

2001, Hommen et al. 2016, Van de Perre et al. 2016), we expected that no effects due to the mixture 

would be found at an msPAF value ≤ 0.05. This hypothesis is contrasting to the hypothesis related to 

our first research question. These two alternative hypotheses are thus the possible outcomes of our 

experiment. 

In addition, we expected that the functional community endpoints would be affected at lower 

concentrations and earlier in the exposure period compared to the structural community endpoints as 

has been observed in other cosm studies (Clements 2004, Van de Perre et al. 2016).  
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4.2. Material and methods 

Experimental approach 

Community-level effects of Cu, Ni and Zn were investigated by performing a microcosm experiment that 

lasted 8 weeks. The experimental design included the following treatments: a control treatment (no 

metals added) and a mixture ray (6 treatments) with metal concentration ratio’s based on the average 

measured dissolved metal concentrations found in a European river basin for which high potential risk 

due to metal contamination was predicted (i.e. the Dommel; Zn:Ni 2.6 and Zn:Cu 12.6; Van Regenmortel 

et al. (2017/Chapter 2)). The control treatments received 4 replicates, the mixture treatments received 

3 replicates, which gave a total of 22 cosms. Microcosm exposures were performed in plastic aquaria 

of 10 L (31x18x16 LxWxH; rounded edges; Flamingo) filled with a sediment layer of approximately 2 cm 

and 5L of water. Both the sediment and the water were collected from an uncontaminated mesotrophic 

pond (Sinderhoeve Experimental Station, Renkum, The Netherlands) in September 2015. Previous work 

in which water from this site was use was successful (Van de Perre et al. 2016). Large particulate organic 

matter and organisms were removed manually from the sediment, after which the sediment was sieved 

through 5 mm before it was placed in the microcosms. The microcosms were filled with water and were 

installed randomly in a water bath (16-18°C) for temperature regulation under a 12:12-h light:dark cycle 

(55 µmol.m-2.s-1) and were seeded with additional zooplankton that was collected from uncontaminated 

ditches from the Sinderhoeve experimental site. Prior to zooplankton seeding all macroinvertebrates 

were removed manually. Three snails smaller than 1 cm (Lymnaea stagnalis) were added to every cosm 

to prevent periphyton growth. A pre-treatment period of 4 weeks was run prior to the actual start of the 

experiment. During this period (and also during the experiment), nutrients (NH4NO3, 1 mg N/L and 

KH2P04 0.01 mg P/L) were added twice a week to stimulate phytoplankton growth. In addition, in the 

pre-treatment period, the water from all the microcosms was mixed once a week to guarantee similar 

start conditions in all test systems (Brock et al. 2014; Van de Perre et al. 2016). This was done by 

removing the water from all microcosms to just above the sediment layer and mixing it in a central 

container, after which the water was randomly redistributed over the 40 cosms. Because of the mixing, 

little variation in the physico-chemistry of the water at the start of the experiment was found (Appendix 

C1), which ensures that all microcosms started with the same metal bioavailability (ECI 2008, DEPI 

2008, Van Sprang et al. 2009). To prevent the development of a bacterial biofilm on the surface of the 

water, a tubing system was installed above the microcosms that provided each aquarium with a 

compressed air flow. Macrophytes were manually removed from the microcosms when they became 

visible. Water loss due to evaporation was supplemented with demineralized water once a week. Water 

loss due to sampling during the experiment was supplemented with filtered Sinderhoeve water. 

To obtain test concentrations, chronic toxicity data for Cu, Ni and Zn were normalized using chronic 

bioavailability models as was explained in Van Regenmortel et al. (2017a/Chapter 2). Normalization was 

done based on the average measured water chemistry variables of all 22 microcosms the day before 

the start of the experiment (Table 4.1). A log-normal SSD was fitted to the BLM-normalized toxicity data 

for invertebrates, fish and algae, from which the HC5 for every metal were derived.  This is in accordance 

with the European risk assessments for Cu (ECI 2008), Ni (DEPI 2008) and Zn (SCHER 2007), for which 

the calculation of bioavailability based PNECs also include data for fish, invertebrates and algae. 
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Table 4.1. Overview of the average measured water chemistry variables of the microcosms the day before 

the start of the experiment, used for bioavailability normalization. 

pH DOC Ca Mg Na K SO4 Cl DIC T 

 (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (°C) 

8.07 13.71 12.03 1.63 4.70 0.31 13.05 12.52 4.16 16.50 

 

For the mixture ray, specific concentrations were chosen (with concentration ratio’s for Zn:Ni = 2.6 and 

Zn:Cu = 12.6) so that the msPAF calculated using the CASSD method showed a range in values both 

below and above the 0.05 cut-off value (i.e. nominal msPAF values: 0.01, 0.05, 0.26, 0.48, 0.68, 0.91), 

to be able to answer our second research question. The CASSD method was selected for this purpose 

because it has been shown to be the most simple and conservative method (Van Regenmortel et al. 

2017/Chapter 2).  An overview of the nominal (ms)PAF values and metal concentrations for all 

treatments is given in Table 4.2. 

Table 4.2. Nominal (multisubstance) potentially affected fraction (msPAF) and copper, nickel and zinc 

concentrations of the mixture treatments. 

Treatment (ms)PAF 
Cu Ni Zn 

(µg/L) (µg/L) (µg/L) 

Mixture 1 0.01 2 9 24 

Mixture 2 0.05 3 16 41 

Mixture 3 0.26 7 34 89 

Mixture 4 0.48 11 53 140 

Mixture 5 0.68 17 81 212 

Mixture 6 0.91 32 154 404 

Metal addition and chemical analyses 

Metals were applied to every treatment by distributing the correct volume of stock solution (between 0.2 

mL and 50 mL) evenly over the water surface of the microcosms. The stock solutions of the individual 

metals contained  9.7 mg/L Cu, 9.6 mg/L Ni and 4.4 mg/L Zn and were added as solutions of 

CuCl2.6H2O, NiCl2.6H2O or ZnCl2. The metals were stirred into the water as a result of the compressed 

air flow above the water column. Metal concentrations were adjusted daily by additional spiking, to 

compensate for losses from the water column.  Metals were added to the concentration 15% above the 

nominal concentrations in order to maintain an average metal concentration equal to the nominal 

concentration. Samples for dissolved metals were taken twice a day to monitor the metal concentrations. 

Samples were taken just before the dosing of the metals and between 15 min and 35 min after the 

dosing. Sampling consisted of taking a 10-mL filtered sample (filtered through 0.45µm; Acrodisc, PALL 

Life Sciences; after discarding 5mL of water to clean the filter) per microcosm after gentle stirring of the 

water using a syringe, approximately 5 cm under the water surface. Total metal concentrations were 

measured twice a week. Samples for metal analysis were acidified to 0.14 mol/L HNO3 (Normatom 

quality, VWR Prolabo). All Zn concentrations and all Cu and Ni concentrations above 10 µg/L were 

measured using inductively coupled plasma atomic emission spectroscopy (ICP-OES; ICAP 7200 DUO; 

ThermoFisher Scientific; limit of quantification 2 µg Zn/L, 4 µg Ni/L, 5 µg Cu/L; method detection limit 

0.5 µg Zn/L, 1.2 µg Ni/L and 2 µg Cu/L). Cu and Ni concentrations below 10 µg/L were measured using 

graphite furnace atomic absorption spectrophotometry (GFAAS Furnace Autosampler, Thermo Fisher 
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Scientific Inc.; reference material TM24.3; limit of quantification, 2.5 µg Cu/L and 1 µg Ni/L; method 

detection limit, 0.75 µg Cu/L and 0.30 µg Ni/L). Samples for cations and anions were taken twice a week 

and once every two weeks, respectively. Cations were measured using ICP-OES while anions were 

measured using ion chromatography (Aquamate, Thermo Electron Corporation; Chloride: Merck, 

Spectroquant 1.14897.001; Sulphate: Merck, Spectroquant 1.14548.001). Samples for measurements 

of dissolved and total organic and inorganic carbon were taken once a week and were measured with a 

Total Organic Carbon analyser following the NPOC method (TOC-5000, Shimadzu, Duisburg, Germany; 

Limit of Quantification 1.5 mg DOC/L; Method Detection Limit 0.5 mg DOC/L). Samples for the 

measurements of total and dissolved ammonium, nitrate and nitrite were taken every two weeks and 

were measured using ion chromatography. The pH, conductivity, temperature and oxygen content of 

each microcosm was measured before the start and the end of the photoperiod and this twice a week. 

The pH and conductivity were measured using a pH glass electrode (826 pH mobile, Metrohm) and a 

conductivity meter (WTW cond 315i), respectively. The temperature and oxygen content were measured 

using an oximeter (WTW oxi 330i).  

Zooplankton and phytoplankton 

Samples for zooplankton and phytoplankton identification were taken as explained in Van de Perre et 

al. (2016). Samples were taken each week from every microcosm, starting the day before the start of 

the first metal addition. Water was taken randomly from several locations (approximately 7) in the 

microcosm using a transparent tube (3.3 cm diameter) that was lowered to the sediment surface making 

sure not to disturb it, until a total volume of 600 mL was collected (Van de Perre et al. 2016). The water 

was first filtered through a plankton net (mesh width 55 µm) for the collection of zooplankton and 

subsequently, the water was filtered through another plankton net (mesh width 20 µm) for the collection 

of phytoplankton. Afterwards, the filtered water was returned to the microcosms. Both zooplankton and 

phytoplankton samples were preserved with lugol (0.3%). Plankton samples were analysed for week 0, 

2, 4, 6 and 8. The identification of zooplankton and phytoplankton was done using an inverted 

microscope. Macro- and microzooplankton individuals present in the zooplankton samples were 

identified to the lowest practical taxonomic level and counted. Copepoda were classified as Cyclopoida 

or Calanoida and counted. The phytoplankton and protozoa species composition in the phytoplankton 

samples was identified to the lowest practical taxonomic level by counting and identifying at least 300 

individual cells of a subsample of 30 mL. The abundances per species were afterwards recalculated to 

numbers per liter. Colonies of colony forming algae were counted as single individuals. 

Data analysis 

The following effects were distinguished. (1) individual species abundance effects (univariate analysis), 

(2) structural community-level effects including (2a) species groups abundance effects (univariate 

analysis), (2b) community composition effects (multivariate analysis) and (2c) species diversity and 

richness, and (3) the functional community-level effects measured by indirect physico-chemical proxies 

including (3a) the ΔDO = 𝐷𝑂𝑒𝑣𝑒𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥 - 𝐷𝑂𝑚𝑜𝑟𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥+1 as proxy for the community respiration 

(Downing and Leibold 2002, Van de Perre et al. 2016), (3b) the ΔpH = 𝑝𝐻𝑒𝑣𝑒𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥 −

𝑝𝐻𝑚𝑜𝑟𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥+1, a variable that is influenced by both the increase of pH during the day due to the 
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uptake of CO2 via photosynthesis and by the decrease of pH during the night as a result of an increase 

of CO2 concentration due to bacteria and algae respiration and decomposition (Kayombo et al. 2002) 

and is therefore regarded as proxy for the phytoplankton and bacteria abundance (Kayambo et al. 2002) 

and (3c) the change in DOC concentration, a variable that is regarded as proxy for the microbial loop of 

the community. In this loop, the dissolved organic matter (DOM) and DOC excreted from organisms 

(e.g. phytoplankton and zooplankton) is consumed by bacteria and in turn, these bacteria are consumed 

by protozoa and zooplankton (Jumars et al. 1989).  

For the analyses of the individual species abundance effects (1), the species groups abundance effects 

(2a) and the community composition effects (2b), the zooplankton data were ln(1.2x+1)-transformed 

and the phytoplankton data were ln(0.001x+1)-transformed (where x is the abundance value) to 

approximate a log-normal distribution of the data by down-weighting the values of species showing high 

abundances (see Van Den Brink et al. 2000 for rationale). For the species groups abundance effects, 

this transformation was done after the summation of the absolute abundances of the taxa within each 

group. The community composition effects were evaluated by performing multivariate analyses with the 

principal response curve method (Van den Brink and Ter Braak 1999), using CANOCO 4.5 (Ter Braak 

& Smilauer 2002). This method is based on redundancy analysis ordinations and shows the changes in 

community structure in the metal treatments over time, relative to a control treatment. Accompanying 

the PRC curves are the weights (bk) of the different species. A positive bk indicates that the abundance 

of a species goes in the same direction as that of the graph, a negative bk indicates that the abundance 

of the species goes in the opposite direction as that of the graph. The statistical significance of the metal 

application on community composition for each sampling day was tested using Monte Carlo permutation 

tests in the ordination axis, using the ln-transformed doses as an explanatory variable. The latter was 

done to fit the intrinsically sigmoid dose-response curves to the linear response model in the RDA as 

closely as possible (Van den Brink et al. 1996). In addition, the treatments that were significantly different 

from the controls were determined to derive a community composition no observed effect concentration 

(NOEC) for that sampling day. This NOECcomposisiton was determined by performing univariate analyses 

with the Williams tests in the Community Analysis computer program, version 4.3.14 (Williams 1972, 

Hommen et al. 1994), performed on the sample scores resulting from a principal component analysis. 

This test assumes an increasing effect (either adverse or beneficial) with increasing dose. The individual 

species abundance effects and species groups abundance effects were also evaluated by performing 

univariate analyses with the Williams test which resulted in NOECabundance. Lowest observed effect 

concentrations (LOECcomposisiton and LOECabundance) were considered as consistent, when statistically 

significant deviations in the same direction (increase or decrease) were observed for at least 2 

successive sampling days (Van den Brink et al. 2000). Consistent NOECs were defined as the 

concentration immediately below the consistent LOEC.  

The species diversity (2c) in each treatment at each time point was calculated using the Shannon index 

H (Equation 4.1) (Shannon and Weaver 1949) while the species richness was determined as the number 

of species.   

 𝐻 =  ∑ 𝑝𝑖 ∙ 𝑙𝑛 𝑝𝑖 
𝑁
𝑖=1                               (Eq. 4.1) 
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where pi is the relative abundance of species i and N is the total number of species. The treatments for 

which the diversity index and species richness were significantly different from the controls were 

determined using Williams tests. In addition, a consistent LOECdiversity  and LOECrichness were determined. 

For the proxies for functional community-level effects (3), the Williams test was applied to determine 

from which treatment a significant difference was observed and to determine consistent LOECΔDO,  

LOECΔpH and LOECDOC. 

Examining from which msPAF value onward an effect occurs 

Our second research question was to examine from which msPAF value onward effects on the 

community structure (species groups abundance, community composition, species diversity and 

richness) and proxies for community functioning (ΔDO, ΔpH, DOC) are observed. This was done by 

comparing the “initial msPAF value” to the consistent lowest observed effect concentration (LOEC) 

values for these endpoints and all treatments and determining at which msPAF value this consistent 

LOEC occurred. As such, we were also able to examine whether an msPAF value of 0.05 is protective 

for an aquatic community exposed to a mixture of Cu, Ni and Zn. The initial msPAF values were 

calculated based on the measured water chemistry (Table 4.1) and measured metal concentrations of 

every microcosm at the start of the experiment. 

4.3. Results 

General overview  

In the controls, the average dissolved (± standard deviation) Cu, Ni and Zn concentration was 6.1 ± 1.0 

µg/L, 3.0 ± 0.6 µg/L and 3.7 ± 1.6 µg/L, respectively. The average metal concentrations in the mixture 

treatments were within 10% of the target concentrations for Ni and Zn (Table 4.3, Figure S2). For Cu, 

the three highest environmental ratio treatments were within 10% of the target concentrations. For the 

three lowest environmental ratio treatments, the measured dissolved Cu concentration was higher than 

the target concentration. This is due to the fact that the Cu concentration in the control treatment was 

already higher than that of the two lowest environmental ratio treatments (Table 4.3). This implies that 

when evaluating effects relative to the control, the two lowest mixture treatments should rather be 

considered Ni-Zn mixtures than Cu-Ni-Zn mixtures. 

Table 4.3. Average (± standard deviation) measured dissolved Cu, Ni and Zn concentration in the different 

treatments.  

Treatment 
Dissolved Cu Dissolved Ni Dissolved Zn 

µg/L µg/L µg/L 

Control 6.1 ± 1.0 3.0 ± 0.6 3.7 ± 1.6 

Mixture 1 5.6 ± 1.0 9.7 ± 1.0 22.5 ± 4.7 

Mixture 2 4.8 ± 0.9 16.4 ± 1.7 38.9 ± 7.2 

Mixture 3 8.6 ± 1.3 34.5 ± 4.0 80.1 ± 17.7 

Mixture 4 12.0 ± 1.9 54.6 ± 6.7 135.0 ± 27.3 

Mixture 5 18.0 ± 2.1 82.7 ± 10.9 206.7 ± 38.6 

Mixture 6 32.9 ± 4.0 157.4 ± 21.9 397.3 ± 77.7 
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Average measured water chemistry for the different microcosms is reported in Table 4.4. A full overview 

of the water chemistry in all microcosm replicates for the different sampling dates can be found in the 

supplementary material (see the online repository at mda.vliz.be).  

Individual species and species groups 

Zooplankton community 

The zooplankton community consisted of 42 different zooplankton taxa, of which 14 belonged to the 

macrozooplankton and 28 belonged to the microzooplankton. The most abundant cladocerans in the 

controls were Daphnia longispina, Simocephalus vetulus and Alonella nana. The copepods were 

dominated by Cyclopoida and nauplii. Rotifers present in the control treatments were predominantly 

Lecane group luna, Lecane group lunaris and the Lepadella patella. The zooplankton species 

abundances of all microcosms per sampling date can be found in the supplementary material (see the 

online repository at mda.vliz.be). 

Consistent LOECabundance values could be calculated for 13 out of 42 zooplankton taxa. All other species 

showed unbounded LOECabundance values (i.e. LOECabundance ≥ Mixture 6). All consistent LOECabundance 

values are listed in Table 4.5. Figure .4.1 shows the abundance values of the different species groups 

(e.g. Cladocera, Rotifera) listed in Table 4.5. In general, the abundance of cladocerans as a group was 

not significantly different from the control (Figure 4.1A). Some cladoceran species (i.e.. D. longispina 

and A. harpae) were only significantly affected at the highest mixture treatment Mixture 6) (Table 4.5). 

Rotifers as a group were already significantly affected at the Mixture 4 treatment (Figure 4.1B). The 

lowest consistent NOEC (< Mixture 1) was calculated for the rotifers Trichocerca group similis and  

Dissotrocha sp. Copepods as a group and the nauplli of the copepods were significantly affected by the 

Mixture 5 and 6 treatments (Figure 4.1C). 

 

Phytoplankton community 

In total, 55 phytoplankton taxa were identified, of which 23 belonged to the Chlorophyta and 9 belonged 

to the Cyanobacteria. The control treatments were dominated by Cyanobacteria (e.g. Oscillatria sp. 1, 

Pseudoanabaenoideae sp. and Anabaena sp.), Cryptophtya (Flagellate sp. 3) and Chlorophyta 

(Chlorococcales sp., Scendesmus sp. 2 and colony sp. 1). The phytoplankton species abundances of 

all microcosms per sampling date can be found in the supplementary material (see the online repository 

at mda.vliz.be).  

Consistent LOECabundance values could be calculated for 12 out of 55 phytoplankton taxa. All other 

species showed unbounded LOECabundance values (i.e. LOECabundance ≥ Mixture 6). All consistent 

LOECabundance values are listed in Table 4.5. Figure 4.2 shows the abundance values of the different 

groups (e.g. Cyanobacteria, Chlorophyta) listed in Table 4.5. In general, we can observe that the 

abundance of the Chlorophyta group was not significantly affected (Figure 4.1E). The abundance of the 

Cyanobacteria as a group was negatively affected from the first mixture treatment upwards (Figure 

4.1D). The abundance of the Chrysophyta, Charophyta, Diatoms and Cryptophyta as groups were all 

positively affected (Figure 1F-I), those of the Chrysophyta, Cryptophyta and Diatoms from the lowest 

tested concentration upwards (Table 4.5). 



 

 
 

Table 4.4. Measureda water chemistry in the microcosms 

 

Treatment pH DOC Ca Mg Na K SO4 Cl DIC T 

  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) °C 

Control 8.3 ± 0.9 15.7 ± 1.8 13.7 ± 1.7 1.9 ± 0.1 5.3 ± 0.3 0.2 ± 0.1 6 ± 1.2 7.3 ± 1.1 5.9 ± 0.3 16.7 ± 0.5 

Mixture 1 7.9 ± 0.7 14.1 ± 1.5 12.2 ± 1.0 1.7 ± 0.2 4.9 ± 0.5 0.3 ± 0.1 5.5 ± 1.2 6.2 ± 0.7 3.4 ± 0.3 16.6 ± 0.2 

Mixture 2 7.8 ± 0.5 13.4 ± 1.2 11.7 ± 1.0 1.7 ± 0.4 4.9 ± 0.5 0.3 ± 0.1 5.6 ± 1.1 6.5 ± 1.1 4.1 ± 0.1 16.8 ± 0.1 

Mixture 3 7.8 ± 0.5 13.6 ± 1.1 19.9 ± 4.5 2.4 ± 0.4 5.2 ± 0.6 0.4 ± 0.1 6.1 ± 1.3 7.4 ± 0.7 9.1 ± 0.8 16.8 ± 0.1 

Mixture 4 7.5 ± 0.3 12.4 ± 1.1 13.6 ± 1.5 2.0 ± 0.3 4.9 ± 0.6 0.4 ± 0.1 6.2 ± 0.9 7.3 ± 0.7 3.6 ± 0.5 16.8 ± 0.2 

Mixture 5 7.5 ± 0.2 12.4 ± 1.0 13.3 ± 1.0 2.0 ± 0.2 4.9 ± 0.5 0.4 ± 0.1 6.1 ± 1.4 8.3 ± 1.2 3.1 ± 0.1 16.7 ± 0.2 

Mixture 6 7.4 ± 0.3 11.3 ± 0.8 15.9 ± 1.3 2.2 ± 0.3 5.0 ± 0.6 0.4 ± 0.1 6.3 ± 1.3 9.6 ± 1.6 4.0 ± 0.3 16.6 ± 0.2 
a Average values ± standard deviations are reported 
DOC = Dissolved Organic Carbon; DIC = Dissolved Inorganic Carbon 
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When examining the consistent NOECabundance values, we can observe that the abundance of two 

Cyanobacteria (Pseudanabaenoideae sp. and Aphanothece sp.) were positively affected by the two 

highest mixture treatments whereas the Cyanobacteria Oscillatoria sp. 1 was adversely affected by 

Mixture 1 and upwards. The abundance of most Chlorophyta were positively affected by the highest 

mixture treatment (Table 4.5) except for the unknown Chlorophyta colony that was negatively affected 

at the Mixture 5 and 6 treatments. The Chrysophyta species Chrysococcus sp. and the single cell 

diatoms were both positively affected from the lowest tested mixture concentration (Table 4.5). The only 

two species that were significantly negatively affected by the mixture treatment (i.e. Oscillatoria sp. 1 

and the unknown Chlorophyta colony) both belong to the filamentous algae, indicating that this group 

might be negatively affected by the mixture. Indeed, when dividing the phytoplankton taxa between 

filamentous algae and non-filamentous, we can observe that the abundance of both groups is 

significantly affected. That of the former is negatively affected while that of the latter is positively affected 

by the mixture treatment 1 and upwards (Table 4.5). The lowest consistent NOECabundance (< Mixture 1) 

was calculated for the Cyanobacteria species Oscillatoria sp. 1, for the Chlorophyta species unknown 

Flagellate sp. 3, for the Chrysophyta species Chrysococcus sp. and for the single cell diatoms. 

Community-structure  

Zooplankton community  

Figure 4.2A shows the PRC graph for the mixture treatments for the zooplankton. Of the variation in 

zooplankton community composition,  33% was explained by treatment regime, while 38% was 

explained by exposure time. Table 4.6 shows the results from the NOECcomposition analyses. A 

NOECcomposition for the specific mixture of metals was obtained. The deviation in community composition 

from the control increased with time. In the second week of exposure, a significant difference is found 

for the Mixture 5 treatment and upwards, while in week 4, 6 and 8, a significant difference is found for 

the Mixture 6, 3 and 2 treatments and upwards, respectively. The consistent NOECcomposition for the 

mixture treatment was equal to Mixture 2 (Table 4.6). 

When investigating Figure 4.2A we can observe that most cladoceran taxa (e.g. Alonella nana, C. 

sphaericus and S. vetulus) showed a positive weight in the PRC curve, indicating that their abundances 

decreased in the mixture regime. The abundance of most rotifer taxa (e.g. Lecane group lunaris, 

Lepadella patella and Mytina ventralis) also decreased. An exception is found for the rotifer Cephalodella 

gibba, for which the abundance increased. The adult Copepoda showed a low positive species weight 

(bk < 0.5), suggesting a small influence of the metals on Copepoda abundance. 

Phytoplankton community  

Figure 4.2B shows the PRC graph of the mixture treatments for the phytoplankton. Of the variation in 

phytoplankton community composition,  35% was explained by treatment regime, while 25% was 

explained by exposure time.  Table 4.6 shows the results from the NOECcomposition analyses. The effect 

of the mixture increases with time. In the second week of exposure, a significant difference is found for 

the Mixture 4 treatment and upwards, while in week 4, 6 and 8, a significant difference is found for the 

Mixture 3, 1 and 2 treatments and upwards, respectively. The consistent NOECcomposition for the mixture 



Chapter 4 

 

114 
 

treatments was equal to Mixture 1 (Table 4.5). The species weights (Figure 4.2B) indicated that in 

general, the abundance of most phytoplankton groups increased (positive bk). The only species that 

were adversely affected by most metal treatments include Oscillatoria sp. 1, Mougeotia sp. and the 

unknown Chlorophyta colony (Figure 4.2B). 

Table 4.5. Lowest-observed effect concentrations (LOEC; Williams test, p <0.05) and consistent no-

observed-effect-concentration (NOEC) and LOEC per sampling date for the different plankton endpoints 

and speciesa for the environmental ratio mixture treatments. 

   LOECb 
Consistent 
NOECb,d 

Consistent 
LOECb   As a group As a taxon -1c 14 28 42 56 

Zooplankton          
 Cladocerans  > 6 5↓ > 6 > 6 5↓ ≥6  
  Daphnia longispina > 6 6↓ 5↓ 6↓ > 6 5 6↓ 

  Acroperus harpae > 6 6↓ 6↓ 6↓ 4↓ 5 6↓ 

 Rotifera  > 6 > 6 1 ↓ 4 ↓ 4 ↓ 3 4↓ 

  Lecane group Lunaris  > 6 > 6 6↓ 3↓  1↓ 2 3↓ 

  Lepadella patella  > 6 > 6 6↓ 3↓ 1↓ 2 3↓ 

  Trichotria pocillum  > 6 > 6 2↓ 6↓  1↓ 5 6↓ 

  group Aspancha 6↓ > 6 6↓ 6↓  2↓ 5 6↓ 

  

Trichocerca group 
similis  > 6  1↓ 1↓ > 6  2↓ <1 1↓ 

  Colurella unicate > 6 > 6 > 6 2↓  2↓ 1 2↓ 

  Cephalodella gibba  > 6 > 6 5↑ 6↑ > 6 5 6↑ 

  Mytilina ventralis  > 6 > 6 2↓  1↓  4↓ 1 2↓ 

  Dissotrocha sp. > 6 > 6 > 6  1↓ 1↓ <1 1↓ 

 Copepoda  > 6 6↑ > 6 6↓ 6↓ 5 6↓ 

  Nauplii > 6 5↑ 3↑ 6↓  6↓ 4 5↑ 

 Ostracoda Ostracoda sp. 2 X 5↓ 1↓ X X 4 5↓ 

Phytoplankton          
 Cyanobacteria  > 6 6↓ 1↓ 1↓ 2↓ <1 1↓ 

  

Pseudanabaenoideae 
sp. 

> 6 5↓ 3↑ 5↑ 5↑ 4 5↑ 

  Aphanothece sp. > 6 > 6 4↑ 5↑ > 6 4 5↑ 

  Oscillatoria sp. 1 > 6 4↓ 1↓ 1↓ 2↓ <1 1↓ 

 Chlorophyta  > 6 > 6 > 6 > 6 > 6 ≥6  

  Desmodesmus sp. X 6↑ 3↑ 6↑ 6↑ 5 6↑ 

  Cryptomonas sp. > 6 > 6 > 6 5↑ 6↑ 5 6↑ 

  

Unknown flagellate sp. 
3 

> 6 6↑ 3↑ 1↑ 1↑ <1 1↑ 

  Haematococcus sp. > 6 6↑ 6↑ > 6 > 6 5 6↑ 

  Westella botryoides > 6 > 6 > 6 5↑ 5↑ 4 5↑ 

  Unknown colony 5↓ 6↓ 6↓ 4↓ 5↓ 4 5↓ 

 Chrysophyta  > 6 > 6 > 6 1↑ 1↑ <1 1↑ 

  Chrysococcus sp. > 6 > 6 > 6 1↑ 1↑ <1 1↑ 

 Charophyta  > 6 1↑ > 6 > 6 > 6 ≥6  

  Cosmarium sp. > 6 1↑ 4↑ 5↑ 3↑ 4 5↑ 

 Diatoms  > 6 > 6 1↑ 1↑ 1↑ <1 1↑ 
  Single cell diatoms > 6 6↑ 1↑ 1↑ 1↑ <1 1↑ 
 Cryptophyta  > 6 > 6 3↑ 1↑ 1↑ <1 1↑ 
          

 
Filamentous 
algae  > 6 6↓ 1↓ 1↓ 1↓ <1 1↓ 

 

Non 
filamentous 
algae  > 6 6↑ 1↑ 1↑ 1↑ <1 1↑ 

a Only species that showed a consistent no-observed-effect concentration (NOEC) are shown; b The numbers 

indicate the following: ‘<1’ denotes an unbounded NOEC that is lower than the lowest tested concentration; ‘≥6’ 

denotes an unbounded NOEC that is higher or equal to the highest tested concentration, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ and 6’ = 

Mixture 1, 2, 3, 4, 5 or 6 treatment, respectively; X = no individuals of this taxon were counted in this week.  

The direction of the deviation is denoted as follows: ↓ decrease; ↑ increase.; c The numbers refer to the day of the 

experimental period; dNOECs were considered as consistent if statistical significant deviations in the same direction 

were observed for at least 2 consecutive sampling days.  



Freshwater microcosm exposed to Cu-Ni-Zn mixture 
 

115 
 

Figure 4.1. Population dynamics of the different zooplankton and phytoplankton groups. The means of the ln-
transformed sum of abundances per treatment concentrations are given (ln(1.2n+1) for zooplankton and 
ln(0.001n+1) for phytoplankton, see text) for (A) Cladocera, (B) Rotifera, (C) Copepoda, (D) Cyanobacteria, (E) 
Chlorophyta, (F) Chrysophyta, (G) Charophyta and (H) Diatoms, (I) Cryptophyta, (J) Filamentous algae and (K) 
Non-filamentous algae. Calculated lowest-observed-effect concentrations are plotted above the figures (Williams 
test, p<0.05) 
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Figure 4.2.  Principal response curves (PRC) for the community effects analysis resulting from analysis of 

the zooplankton data (A) and phytoplankton data (B) for mixture treatments, indicating the effects of the 

different metal concentrations. The vertical axis represents  the difference in community composition of 

the treatments compared to the control, expressed as the canonical regression coefficients (Cdt). The 

affinity of a taxon in the PRC is expressed as the species weight (bk; only species for which absolute bk > 

0.5 are shown). Asterisks indicate  a difference in community structure from the control (Williams test, p < 

0.05).  
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Table 4.6. Lowest-observed-effect concentrations (LOECcomposition) of the zooplankton and phytoplankton 

community for the different metal treatments and sampling dates.  

 LOECcomposition
a 

 
Consistent 

LOECcomposition
a,b 

Consistent 
LOECcomposition

b  -1 14 28 42 56 
 

Zooplankton >6 5 6 3 2  2 3 

Phytoplankton >6 4 3 1 2  1 2 
a The numbers indicate the following: ‘>6’ denotes an unbounded LOEC that is higher than the highest tested 

concentration, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ and ‘6’ = Mixture 1, 2, 3, 4, 5 or 6 treatment, respectively 
b NOECs and LOECs were considered as consistent if statistical significant deviations in the same direction were 

observed for at least 2 consecutive sampling days.  

LOECcomposition values indicated in bold are significant (Williams test, p<0.05)  
 

Species diversity and richness 

Table 4.7 gives the consistent NOEC values of the zooplankton and phytoplankton species diversity and 

richness. Figure 4.3 shows the change in species diversity and richness during the exposure period. 

The zooplankton community diversity and richness is only affected at or above the highest tested 

concentration. The phytoplankton species richness is affected from Mixture 5 upwards. 

 

Figure 4.3. Species diversity (Shannon index) and species richness (number of species) for zooplankton 
(A,B) and phytoplankton (C,D) for the control and mixture treatments. Calculated lowest-observed-effect 
concentrations (Table 4.5) are plotted above the figures (Williams test, p<0.05) 
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Indirect physico-chemical proxies for community functioning 

Average dissolved oxygen (DO) concentration decreased in the first week of exposure, although less 

so for the control treatment compared to the metal treatments (Figure 4.4A). After the first week, the DO 

concentration steadily increased in all treatments, however, the DO concentration in the mixture 

treatments stayed below that of the controls. The ΔDO as proxy for the community respiration increased 

in the control treatment during the entire exposure period, but showed an initial decrease followed by 

an increase at the end of the exposure period for most metal treatments (Figure 4.4B). The consistent 

LOEC values calculated using the Williams test (p<0.05) are given in Table .4.8. A significant effect on 

the ΔDO was observed from the lowest tested mixture concentration upwards. 

In the first week of exposure, the pH in all microcosms showed a decrease (Figure 4.4D). After this, the 

pH was stable between 7.4 and 8.2 except for the control in which the pH increased to ~8.5 at the end 

of exposure. The difference in pH between morning and evening (ΔpH), which is here seen as a proxy 

for phytoplankton and bacteria abundance, is also affected by the metal addition (Figure 4.4E). The ΔpH 

is affected at the lowest tested mixture concentration (Table 4.8). 

Dissolved Organic Carbon concentration, which is regarded as proxy for the microbial loop, decreased 

during the experimental period for most treatments (Figure 4.4C), except for the control and the Mixture 

1 treatment. Based on the consistent LOECs (Table 4.8), the DOC was significantly affected at the 

Mixture 2 treatment and upwards. 



 

 
 

Table 4.7. Lowest-observed-effect concentrations (LOEC) of the species diversity (Shannon index) and species richness (number of species) for the different metal 

treatments and sampling dates. In addition, consistent no-observed-effect concentration (NOEC) and consistent LOEC for the period day 14-56.  

 

 
 

LOECa 
Consistent 
NOECa,b 

Consistent 
LOECb  

 
-1 14 28 42 56 

Zooplankton 
Species diversity >6 >6 4↓ >6 1↓ ≥6  

Species richness >6 >6 1↓ 6↓ 1↓ 5 6↓ 

Phytoplankton 
Species diversity >6 >6 >6 >6 6↓ ≥6  

Species richness >6 >6 3↑ 5↑ >6 4 5 
a The numbers indicate the following: ‘>6’ denotes an unbounded LOEC that is higher than the highest tested concentration, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ and ‘6’ = Mixture 1, 2, 3, 4, 5 or 6 

treatment, respectively 
b NOECs and LOECs were considered as consistent if statistical significant deviations in the same direction were observed for at least 2 consecutive sampling days.  

LOEC values indicated in bold are significant (Williams test, p<0.05)  
 
 
Table 4.8. Lowest-observed-effect concentrations (LOEC) of the ΔDO ΔpH and DOC for the different sampling dates.  

  

 
LOECa 

Consistent 
NOECb 

Consistent 
LOECb 

 
-1 14 28 42 56 

ΔDO X 4↓ 1↓ 1↓ 1↓ <1 1↓ 

ΔpH X 3↓ 2↓ 1↓ 1↓ <1  1↓ 

DOC >6 6↓ 2↓ 1↓ 2↓ 1 2↓ 

 
ΔDO = 𝐷𝑂𝑒𝑣𝑒𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥 − 𝐷𝑂𝑚𝑜𝑟𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥+1  as proxy for the community respiration 

ΔpH as proxy for the abundance of phytoplankton and bacteria  
DOC = dissolved organic carbon as proxy for the microbial loop 
a The numbers indicate the following: ‘<1’ denotes an unbounded NOEC value lower than the lowest tested concentration; ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ and ‘6’ = Mixture 1, 2, 3, 4, 5 or 6 

treatment, respectively 

 LOEC values indicated in bold are significant (Williams test, p<0.05);  
aNOECs and LOECs were considered as consistent if statistical significant deviations in the same direction were observed for at least 2 consecutive sampling days.  
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Figure 4.4. Overview of the average dissolved oxygen (DO) (A), ΔDO as proxy for the community 
respiration (B), pH (C), ΔpH as proxy for the phytoplankton and bacteria abundance and (D) dissolved 
organic carbon (DOC) as proxy for the microbial loop, per treatment during the 56d exposure period. 
Calculated lowest-observed-effect concentrations (Table 8) are plotted above the figures (Williams test, 
p<0.05) 

Predicted msPAF versus LOEC values 

To examine from which msPAF value effects on the community as a result of exposure to a metal mixture 

are observed, the “initial msPAF value” are compared to the LOEC values of the different structural 

endpoints (species groups abundances, community composition, species diversity and species 

richness) and indirect physico-chemical proxies for community functioning endpoints (ΔDO, ΔpH and 

DOC). The initial msPAF values are calculated for every replicate of every treatment separately and are 

based on the measured water chemistry and metal concentrations of every microcosm at the start of 

the experiment (see Supplementary 5 in the online repository at mda.vliz.be). An overview of the nominal 

msPAF and the average initial PAF and msPAF values per treatment is given in Table 4.9. A full 

overview of predicted initial msPAF values for the different replicates per treatment and sampling date 

can be found in the supplementary material (see Supplementary 6 in the online repository at 

mda.vliz.be). The initial msPAF values are higher than the nominal msPAF value in some treatments. 
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This can be attributed to the difference in water chemistry between the average chemistry before the 

start of the experiment (Table 4.1) that was used to calculate the nominal msPAF values and the water 

chemistry of the individual microcosms after addition of the metals, as well as the difference between 

nominal and measured metal concentrations.  

The different LOEC values for the tested endpoints can be found in the tables 4.5, 4.6, 4.7 and 4.8. The 

initial msPAF values corresponding to these LOEC values for the different endpoints are given in Table 

4.10. Table 4.10 shows that the functional community endpoints are more sensitive to metal exposure 

than most of the structural endpoints. When examining the structural community endpoints, the species 

diversity and richness are in general less sensitive compared to measures of abundance (i.e. most group 

abundances and the community composition). The lowest msPAF value at which an effect occurs is 

equal to 0.03 for the structural community endpoints for some phytoplankton species groups (i.e. 

Cyanobacteria, Chrysophyta, Diatoms and Cryptophyta). However, the overall phytoplankton 

community composition is only affected from the Mixture 2 treatment, which corresponds to an msPAF 

value of 0.15 (Table 4.10). The zooplankton species groups abundances and zooplankton community 

composition are less sensitive than the phytoplankton group abundances and community composition, 

as effects only occur from an initial msPAF value of 0.61 and 0.38, respectively (Table 4.10). The indirect 

proxies for the functional community endpoints are affected at lower initial msPAF values. The ΔDO and 

ΔpH are already affected by the mixture at initial msPAF values of 0.03, while the DOC is affected from 

an initial msPAF value of 0.15 (Table 4.10). 

Table 4.9. Nominal msPAF value and average (± sd) initial msPAF values calculated with the CASSD 

method (Van Regenmortel et al. 2017) for the different treatments.  

 nominal msPAFCASSD 
a initial msPAFCASSD,AllSpecies 

b initial msPAFCASSD,plankton 
c 

Control 0.00 <0.01 ± <0.01 <0.01 ± <0.01 

Mixture 1 0.01 0.03 ± 0.05 0.05 ± 0.03 

Mixture 2 0.05 0.15 ± 0.07 0.20 ± 0.08 

Mixture 3 0.26 0.38 ± 0.14 0.48 ± 0.17 

Mixture 4 0.50 0.61 ± 0.05 0.72 ± 0.05 

Mixture 5 0.68 0.77 ± 0.01 0.86 ± 0.01 

Mixture 6 0.91 0.89 ± 0.03 0.94 ± 0.02 

msPAFCASSD = multi substance potentially affected fraction of species calculated using the CASSD method (Van 

Regenmortel et al. 2017);  
a msPAF values calculated based on all chronic toxicity data (i.e. fish, invertebrates, algae), using the average 

water chemistry of the 40 microcosms measured the day before the start of the experiment 
b msPAF values calculated based on all chronic toxicity data (i.e. fish, invertebrates, algae), using the water 

chemistry measured in each microcosm separately after spiking the metals on day 1 
c msPAF values calculated based on chronic toxicity data of planktonic species, using the water chemistry 

measured in each microcosm separately after spiking the metals on day 1 
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Table 4.10. Overview of the initial msPAF value corresponding to the consistent Lowest-observed-effect 

concentration (LOEC) of the structural and functional community endpoints for the mixture treatments 

 Effect on Variable  initial msPAF  

Structural 
community 
endpoints 

Species groups abundances  

Cladocera >0.89 >0.94 

Rotifera 0.61 0.72 

Copepoda 0.77 0.86 

Cyanobacteria 0.03 0.05 

Chlorophyta >0.89 >0.94 

Chrysophyta 0.03 0.05 

Charophyta 0.77 0.86 

Diatoms 0.03 0.05 

Cryptophyta 0.03 0.05 

Community composition 

Zooplankton 
community  

0.38 
0.48 

Phytoplankton 
community  

0.15 
0.20 

Species diversity 
Zooplankton  >0.89 >0.94 

Phytoplankton  0.77 0.86 

Species richness 
Zooplankton  0.89 0.94 

Phytoplankton  0.77 0.86 

Functional 
community 
endpoints 

ΔDO (community respiration)  0.03 0.05 

ΔpH (phytoplankton + bacteria 
abundance) 

 
0.03 0.05 

DOC (microbial loop)  0.15 0.20 

msPAF = multisubstance potentially affected fraction of species; DO = dissolved oxygen; DOC = dissolved 

organic carbon 

 

4.4. Discussion 

 

In this discussion we focus on the two main research questions posed in the Introduction and examine 

whether our expectations hold true. In addition, we discuss possible explanations when the data did not 

match with our  expectations.  

Research question 1: what are the direct and indirect effects on the community? 

When examining Table 4.5, the community level interactions seem to differ between the 2 lowest mixture 

treatments which should rather be considered as Ni-Zn mixtures, and the 3 highest mixture treatments 

which can be regarded as Cu-Ni-Zn mixtures. Indeed, at the two lowest mixture treatments (Mixture 1 

and 2), a consistent LOEC of “1” or “2” (see Table 4.5) is mainly found for the phytoplankton groups, 

while the zooplankton groups only become affected at the higher mixture treatments (see Table 4.5, 

consistent LOEC values of “4”,”5” and “6”). Therefore, the direct and indirect effects on the planktonic 

community in these two groups (Mixture 1-2 vs Mixture 4-5-6) will be discussed separately. As the effect 

patterns do not seem to change between mixture treatments 2 and 3 (i.e. the addition of Cu above its 

concentration in the control does not seem to have an effect in treatment 3 but only from treatment 4 

onwards), we will not discuss mixture treatment 3 separately. 

In Figure 4.5 a schematic overview of the effects of the 2 lowest mixture treatments (Mixture 1 and 2) 

(Ni-Zn mixture) on the zooplankton and phytoplankton community structure and functioning in the 
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microcosms is given. At the 2 lowest mixture treatments, the zooplankton groups are not affected (Table 

4.5). Most phytoplankton groups and taxa were positively affected by the mixture and showed a 

significant increase in abundance during the exposure period (Table 4.5). This is not expected because 

phytoplankton species are usually amongst the most sensitive species according to the SSDs (mainly 

for Zn; Figure Appendix C2) although only Chlorophyta species are represented in these SSDs. This 

increase in phytoplankton abundance can possibly be explained by the indirect effects of the decrease 

in Cyanobacteria abundance. From week 4 onwards Cyanobacteria as a group were directly negatively 

affected by the Mixture 1 treatment and upwards (Table 4.5). The main driver behind the decrease in 

Cyanobacteria abundance is possibly the decrease in the abundance of Oscillatoria sp. 1, as the relative 

abundance of this species comprises a large fraction of the total Cyanobacteria abundance (Figure 

4.6A). These negative effects could have caused a positive effect on the abundance of the Chrysophyta, 

Diatoms and Cryptophyta (Table 4.5) which could have been the result of a reduction in nutrient 

competition. The decrease in Cyanobacteria abundance might also have indirectly influenced the 

proxies for community functioning (ΔDO, ΔpH and DOC). Although most algae species showed an 

increase in abundance (Table 4.5) and we would therefore expect an increase in the proxies for 

community functioning (see Material and Methods section), these proxies showed a significant decrease 

compared to the control treatment from the Mixture 1 or 2 treatment and upwards (Table 4.8). This 

decrease in ΔDO (as proxy for community respiration) and ΔpH (as proxy for phytoplankton and bacteria 

abundance) were therefore most likely the result of a decrease in the abundance of a dominant algae 

species. When examining the relative abundance of Oscillatoria sp. 1 compared to all other 

phytoplankton species (54 in total) we can observe that this species comprises approximately 40% of 

the total phytoplankton abundance in the control treatment (Figure 4.6B). This species can therefore be 

regarded as a dominant algae species in terms of biomass, which is even enhanced by the fact that 

during counting, the filamentous algae were counted as single individuals and the larger biomass of 

these individuals compared to non-filamentous algae were therefore not accounted for (Figure Appendix 

C3). The decrease in DOC concentration might also be indirectly linked to the decrease in the 

abundance of this dominant algae species (i.e. Oscillatoria sp. 1). When regarding the microbial loop 

and pelagic food web interactions, a decrease in DOC concentration is expected when the degradation 

of DOC is higher than the production of DOC (Kayambo et al. 2002). As the abundance and biomass of 

the dominant algal species Oscillatoria sp. 1 is lower in the mixture treatments compared to the control, 

the production of DOC by these algae as input for the microbial loop is smaller compared to the 

degradation of the DOC by bacteria. As such, the decrease in DOC concentration could perhaps be 

explained by the decrease in Cyanobacteria abundance. Thus, overall, our results suggest that a single 

highly Ni and/or Zn sensitive Cyanobacteria species, i.e. Oscillatoria sp. 1, may have been at the basis 

of all the community level changes in these Ni-Zn mixture treatments. As this species is not included in 

the SSDs, this points to a problem with SSDs in general (Forbes and Calow 2002): that SSDs may not 

necessarily be a good basis for protecting functioning of ecosystems that contain sensitive dominant 

species, if these are not included in the SSD. Indeed, when this dominant species is lost (or its 

abundance decreased), this will result in a disproportional effect on ecosystem functioning. It has been 

shown that this can especially occur in cases when dominant species rank among the most sensitive 
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species in the system (Pimm 1984, Baert 2017), as is the case in our microcosm system for Oscillatoria 

sp. 1.  

 

 

 

Figure 4.5. Schematic overview of the observed direct and indirect effects of the 2 lowest metal treatments 

(Mixture 1 and 2) on the zooplankton and phytoplankton community structure and functioning. ↑= 

increase;↓ = decrease 

 

 

Figure 4.6. Relative abundance of Oscillatoria sp. 1 compared to the total abundance of all species within 

the Cyanobacteria group (A) and compared to the total abundance of all phytoplankton species (B) during 

the exposure period for the control and mixture treatments. 

In Figure 4.7 a schematic overview of the effects of the highest mixture treatments (Mixture 4-6) (Cu-Ni-

Zn mixture) on the zooplankton and phytoplankton community composition in the microcosms is given. 

The same direct effects of the mixture on the Cyanobacteria and the indirect effects of Cyanobacteria 

on Chrysophyta, Diatoms and Cryptophyta and on the proxies of community functioning are also visible 

at the highest mixture treatments. In addition, different zooplankton groups now also seem directly and 
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indirectly affected by the mixture. As a result, the community-level interactions at the highest mixture 

treatments are more complex than those at the lowest mixture treatments. 

From week 2 onwards some cladocerans species were negatively affected by the highest mixture 

treatment (Table 4.5). These negative effects most likely caused an initial, positive effect on copepod 

abundances, as these seemed to be initially less sensitive to metal stress, which is mainly reflected in 

the increase in nauplii abundance (Table 4.5; Figure 4.7). This initial increase in abundance was possibly 

the result of a reduction in competition for food, which has been reported in numerous other cosm studies 

(Van de Perre et al. 2016, Fleeger et al. 2003, Van Wijngaarden et al. 2005). In addition, the increase 

in edible, non-filamentous algae (i.e. Chrysophyta, Diatoms and Cryptophyta) due to the decrease in 

non-edible, filamentous Cyanobacteria (mainly Oscillatoria sp. 1) via reduced nutrient competition (see 

above) might also have enhanced the food sources for these copepods. 

Following this initial increase in copepod abundances, the abundances of copepods, and mainly nauplii, 

decreased most likely due to the direct effects of the metal mixture exposure. This delay in time of toxic 

effects on copepods due to the mixture could be attributed to the longer life cycle of copepods compared 

to rotifers and cladocerans. The latter two groups reproduce parthenogenetically and therefore have 

short life cycles while the former group reproduces sexually and as a result exhibits longer life cycles 

and fewer generations (Allan et al. 1976). This direct negative effect on copepod species has been 

confirmed in single species exposures (e.g. Xu et al. 2014, Wong and Pak 2004). However, this is in 

contrast to what was observed in microcosm studies exposed to single Zn (Van de Perre et al. 2016) 

and single Ni (Hommen et al. 2016) in which indirect positive effect of reduced food competition were 

observed and no negative direct effect of the metal exposure were detected. Schäfers (2001) on the 

other hand did observe direct negative effects of Cu on the copepod abundances in his microcosm 

study. As the highest mixture treatments in our study include Cu in the mixture (compared to the absence 

of Cu in the binary Ni-Zn mixtures of the lowest mixture treatments), these negative effects on copepods 

are in accordance to what was seen by Schäfers (2001) in his Cu-exposed microcosm experiments. 

The decrease in copepod abundance might again have enhanced the increase in abundance of the 

Chrysophyta, Diatoms and Cryptophyta (Figure 4.7). The initial increase in copepod abundances might 

have caused the decrease in rotifer abundance from week 4 onwards (Table 4.5), possibly due to an 

increase in competition for food (Figure 4.7). However, this would not explain why the abundance of 

rotifers does not increase again as a response to the decrease in copepod abundance from week 6 

onwards. An alternative explanation might be that at high mixture treatments, the rotifers are directly 

affected by the mixture due to the addition of Cu in these highest mixture treatments. Rotifers are indeed 

known to be very sensitive to Cu toxicity (ECI 2008, De Schamphelaere et al. 2006b). In this scenario, 

the decrease in rotifer abundance might have enhanced the increase in abundance of the Chrysophyta, 

Diatoms and Cryptophyta via reduced consumption (Figure 4.7). It is clear that the interactions between 

all species groups at the highest mixture treatments are complex and that it is not possible to 

mechanistically explain all observed effects (and their sequence) with the available data.    

Overall, our study demonstrates that community responses are influenced by both the direct sensitivity 

of the organisms to the mixture of toxicants and by interspecific interactions (De Schamphelaere et al. 

2003, De Schamphelaere et al. 2005, De Laender et al. 2008).  
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Figure 4.7. Schematic overview of the observed direct and indirect effects of the 3 highest metal treatments 

(Mixture 4, 5 and 6) on the zooplankton and phytoplankton community structure and functioning. ↑= 

increase;↓ = decrease 

Research question 2: As of which msPAF value do effects on structural and 

functional endpoints occur, and which of these endpoints are most sensitive? 

 

Table 4.10 shows the initial msPAF value as of which effects on the community occur. When regarding 

the structural community endpoints, the species diversity and richness are in general less sensitive 

compared to the other structural community endpoints (i.e. community composition and species groups 

abundances). This has also been reported previously for experimental streams (Clements 2004, Hickey 

and Golding 2002, Carlisle and Clements 1999). For the structural community endpoints, the 

zooplankton community composition is less sensitive than the phytoplankton community composition, 

as effects only occur from an initial msPAF value of 0.38 for zooplankton while effects observed from 

an initial msPAF of 0.15 for the phytoplankton (Table 4.10). Although some phytoplankton groups show 

an initial msPAF value below 0.05 (i.e. 0.03) the overall phytoplankton and zooplankton community 

composition does thus not seem affected below 0.05. The observation that phytoplankton are more 

sensitive than zooplankton was also observed for a plankton community exposed to single Cu (Schäfers 

2001). In a plankton community exposed to single Ni, the opposite was observed (Hommen et al. 2016), 

while the phytoplankton and zooplankton were equally sensitive when exposed to single Zn (Van de 

Perre et al. 2016). Table 4.10 also shows that the functional community endpoints are more sensitive to 

metal exposure than the structural endpoints. This phenomenon was also observed by Clements (2004) 

for a macroinvertebrate community exposed to a Zn+Cd mixture, and confirms our expectation. The 

proxy’s for functional community endpoints were affected by the mixture at lower initial msPAF values. 

The ΔDO and ΔpH were already affected at initial msPAF values of 0.03, while the DOC was affected 
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from an initial msPAF value of 0.15 (Table 4.10). Based on both structural and functional endpoints, for 

a community exposed to a mixture of Ni and Zn, the msPAF value from which effects occur is 0.03 

(Mixture 1; Table 4.10). Our results show that significant effects on the community already occur at 

msPAF values below 0.05, which is in regulatory terms regarded as the protective threshold below which 

no significant long-term effects on the community are expected to occur. Based on these results, the 

cut-off value of 0.05 does not seem protective for the community structure and functioning when the 

community is exposed to a mixture of Ni and Zn (i.e. effects at msPAF 0.03). As mentioned in the 

Introduction, we expected effects could occur at or below an msPAF value of 0.05 as a result of different 

parts of the food web being targeted by the different single mixture components, analogous to what was 

seen for pesticide mixtures (Verbruggen and Van den Brink 2010). However, this does not seem to be 

the explanation in our microcosm system, as only one group/species (Cyanobacteria/Oscillatoria sp. 1) 

seems to have been directly affected by the Ni-Zn mixture. Below, we will explore possible explanations 

for this result.  

A first explanation concerns the species sensitivity distribution used for msPAF calculations. First of all, 

the msPAF values in Table 4.9 are calculated based on species sensitivity distributions for Cu, Ni and 

Zn containing chronic toxicity data of fish, invertebrates and algae (Van Regenmortel et al. 2017), from 

now on referred to as “msPAFAllSpecies”. Because the microcosms in the present study only contained a 

planktonic community, and not for example fish species, amphibians or benthic invertebrate species, 

we also calculated msPAF values based on chronic toxicity data of planktonic species alone (see 

Appendix C4 for details) (from now on referred to as “msPAFplankton”). In the study by Van de Perre et al. 

(2016), the authors also only considered the toxicity data of planktonic species to calculate their HC5 

values. Table 4.9 shows the initial predicted msPAFplankton values (full overview in supplementary 

material S.6 in the online repository at mda.vliz.be). When comparing to the initial msPAFAllSpecies values, 

we can observe that the msPAFplankton values are higher for all treatments. This is logical, as the 

planktonic species are on average more sensitive to metal toxicity compared to vertebrates and non-

planktonic invertebrates (ECI 2008, Van Sprang et al. 2009, DEPA 2008), and as a result the HC5 

values calculated from the SSDs are lower and therefore the msPAFCASSD values are higher. When 

comparing the LOEC of the different community endpoints to the msPAFplankton values, the lowest 

msPAFplankton value at which effects occur in the mixture treatments is now equal to 0.05. Calculating the 

msPAF values based on planktonic toxicity data alone increased the msPAF value from which effects 

on the community occur. Yet, the effects are still observed at the HC5 threshold value (msPAF 0.05) 

which is regarded as protective in many regulatory frameworks. Hence, leaving vertebrates and non-

planktonic species out of the SSDs does not explain why community-level effects were observed below 

an msPAF value of 0.05.   

A second explanation concerns the mismatch between the planktonic species in the toxicity database 

and the SSDs and those in our microcosm community. This issue regarding SSDs was also mentioned 

by Forbes and Calow (2002) who stated that “SSDs usually contain species that are generally not 

derived from any known community”. When examining the planktonic species in the toxicity databases 

(see Appendix C4) we can see that most zooplankton species belong to the Cladocera and most 

phytoplankton species belong to the Chlorophyta. Although these species might be the most sensitive 
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of those in the chronic toxicity databases, they do not necessarily belong to the most sensitive species 

in our experiment. Indeed, when examining Table 4.5 we can see that the Cladocera as a group and 

the Chlorophyta as a group are the least sensitive of the zooplankton and phytoplankton groups within 

the tested community context, respectively. In addition, those groups that are most sensitive, although 

maybe not via direct effects of the mixtures but more likely via indirect routes, are the Rotifera and 

Cyanobacteria. The species of these groups are underrepresented in the chronic toxicity databases. 

This suggests that additional research concerning the sensitivity of these species to metals should be 

conducted, especially regarding the most dominant species in our system, i.e. Oscillatoria sp. 1, which 

seems to be the most sensitive species. As research has shown that the effects on ecosystem 

functioning are very large when keystone/dominant species that at the same time rank among the most 

sensitive species are affected or lost (Pimm 1984, Baert 2017), it is important that the direct toxicity of 

metals to this organism is examined. Another group of species that is not represented in the SSDs are 

some of those that take part in the microbial loop. Indeed, chronic toxicity data concerning the sensitivity 

of bacteria and protozoa to metals is lacking in the SSDs. However, it has been suggested that metals 

may interfere with the functioning of bacteria and protozoa (Morgan et al. 1958, Larsen and Nilsson 

1983) and many studies conducted on heavy metal-polluted waters have revealed changes in the 

dynamics of protozoan (Cairns et al. 1980, Fernandez-Leborans and Novillo 1993, 1996). The mismatch 

in sensitive species between the chronic toxicity databases and our microcosms may explain why our 

community is more sensitive than expected based on the SSD and the calculated msPAF values. This 

is most clear when examining the effect of the Ni-Zn mixture on the filamentous species Oscillatoria sp. 

1. This species, which is not represented in the chronic toxicity databases and thus not represented in 

the SSDs, seems to be the driver and at the basis of all effects in the two lowest (Ni-Zn) mixture 

treatments. Another issue regarding SSDs that was also mentioned by Forbes and Calow (2002) is that 

they do not account for interactions between species, and as such the msPAF values based on these 

SSDs also do not. The effects of these interactions on a community exposed to metal stress, could alter 

the sensitivity of the community and make it more or less sensitive than expected based on the predicted 

msPAF values. 

A third possible explanation is that our microcosm systems might be more sensitive than other, larger 

systems, because we tested in aquaria filled with a relatively small volume of water, i.e. 5L. Microcosm 

experiments that tested the individual effects of Cu (Schäfers 2001), Ni (Hommen et al. 2016) and Zn 

(Van de Perre et al. 2016) used larger test systems, i.e. 750L, 750L and 14L, respectively. It has been 

shown that communities with fewer species per functional group, which is more likely to occur in smaller 

systems, are less stable and more sensitive than those with more species (Van den Brink 2008, Naeem 

and Li 1997). This is because when the number of species per functional group increases, the probability 

that compensatory growth will occur by remaining species in the functional group increases (Naeem and 

Li 1997). As such, effects might occur at lower msPAF values in the present study because our system 

small is intrinsically more sensitive. 

In summary, we showed that our first possible explanation, i.e. to only include phytoplankton and 

zooplankton species in the SSD, did increase the msPAF values. However, the effects were still 

observed at the HC5 threshold value (msPAF 0.05). Our second explanation, i.e. the mismatch between 
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the species in the SSD and in our experiment, and especially regarding species that are at the same 

time dominant and sensitive (i.e. Oscillatoria sp. 1), is most likely the reason why our microcosm system 

is affected at an msPAF value of 0.05. In addition, our third explanation, i.e. the relatively small systems, 

could also have contributed as to why our microcosm system is affected at an msPAF value of 0.05. 

Although we found effects of the Ni-Zn mixture at an msPAF value of 0.05, we do emphasise that this 

result should only be extrapolated cautiously to other systems because information whether dominant 

species in other systems are typically also sensitive species is usually lacking. The main reason for the 

community-level effects found in our study appears to be the presence of a dominant species in the 

microcosm that appears to be very sensitive to the mixture at an msPAF value of 0.05. This also 

suggests that the explanation by Verbruggen and Van den Brink (2010) as to why synergistic mixture 

effects at community-level can occur, is not the only possible explanation as to why effects at or below 

msPAF=0.05 can occur.  

 

 

Next to the CASSD method Van Regenmortel et al. (2017a/Chapter 2) described 3 other methods to 

calculate msPAF values. These methods are less conservative than the CASSD method (at msPAF 

values below 0.15, see Van Regenmortel et al. 2017a/Chapter 2) and some are considered more 

accurate (i.e. CADRC and IADRC) . In the CADRC and IADRC methods the CA and IA models are first applied 

to the dose-response curves of the individual species before calculating the msPAF, respectively. In the 

IASSD method the IA model is applied directly to the SSD (Van Regenmortel et al. 2017a/Chapter 2). 

Table 4.11 gives an overview of the initial msPAFplankton values calculated with the CADRC, IADRC and 

IASSD methods. Most msPAFplankton values calculated using the CADRC, IADRC and IASSD methods are quite 

similar to those calculated using the CASSD method. At high msPAF values (>0.48), the CASSD method 

is no longer the most conservative method, as was seen by Van Regenmortel et al. (2017a/Chapter 2). 

At the Mixture 1 treatment, the lowest treatment at which effects on some functional and structural 

endpoints were observed, and which showed an initial msPAFCASSD,plankton of 0.05, the 3 other methods 

give initial msPAFplankton values below 0.05. This implies that based on the other methods, the 0.05 

threshold is not protective for some structural and functional long-term effects on the community. 

However, these methods are protective for community composition, species diversity, species richness 

and DOC (microbial loop). 

In addition, also for these methods, the issue of the more sensitive system (i.e. more sensitive species, 

more bioavailable metals and small test systems) than expected based on msPAF values implies. 
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Table 4.11. Average (± sd) initial msPAF values based on toxicity data of planktonic species (Appendix 

C4) calculated with the CASSD, CADRC , IADRC and IASSD methods (Van Regenmortel et al. 2017) for the 

different treatments.  

 
msPAFCASSD,plankton a msPAFCADRC,plankton 

a msPAFIADRC,plankton
 a msPAFIASSD,plankton 

a 

Control <0.01 ± <0.01 
<0.01 ± <0.01 <0.01 ± <0.01 <0.01 ± <0.01 

Mixture 1 0.05 ± 0.03 0.03 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 
Mixture 2 

0.20 ± 0.08 0.19 ± 0.10 0.15 ± 0.08 0.14 ± 0.08 
Mixture 3 

0.48 ± 0.17 0.52 ± 0.22 0.40 ± 0.23 0.37 ± 0.23 
Mixture 4 

0.72 ± 0.05 0.84 ± 0.05 0.69 ± 0.07 0.64 ± 0.08 
Mixture 5 

0.86 ± 0.01 0.97 ± 0.01 0.87 ± 0.01 0.81 ± 0.01 
Mixture 6 

0.94 ± 0.02 1.00 ± 0.00 0.96 ± 0.02 0.92 ± 0.05 

msPAF = multi substance potentially affected fraction of species  

msPAFCADRC = msPAF calculated using concentration addition applied to the individual dose response curves 

(CADRC) (Van Regenmortel et al. 2017);  

msPAFIADRC = msPAF calculated using independent action applied to the individual dose response curves (IADRC) 

(Van Regenmortel et al. 2017);  

msPAFIASSD = msPAF calculated using independent action applied to the species sensitivity distribution (IASSD) 

(Van Regenmortel et al. 2017);  

HC5 = concentration hazardous for 5% of the species; HC50 = concentration hazardous for 50% of the species; 

Env Ratio = mixture with metal concentration ratio’s based on Dommel monitoring dataset; 
a msPAF values calculated based on chronic toxicity data of planktonic species, using the water chemistry 

measured in each microcosm separately after spiking the metals on day 1 

 

 

Metal addition can influence its own bioavailability and therefore its toxicity  

The addition of metals to the microcosms most likely changed the metal bioavailability during the 

exposure period (Figure 5) which could have led to a higher sensitivity of the species than expected 

based on the SSD and msPAF values. Indeed, when examining Figure 4.4, we can see that the DOC 

concentration decreased relative to the control treatment during the course of the exposure period. The 

lower DOC concentration indicates that the mixture treatments had a significant effect on the microbial 

loop (Jumars et al. 1989, Brönmark and Hansson 2005). A similar effect of metal addition on the DOC 

concentration was observed in a microcosm experiment with Zn (Van de Perre et al. 2016). In general, 

when the DOC concentration is lowered, metals become more bioavailable and as a result more toxic 

for plankton (e.g. De Schamphelaere et al. 2005, De Schamphelaere et al. 2003, Deleebeeck et al. 

2007a and 2008, Van Sprang et al. 2009). As such, metals can influence their own toxicity by changing 

the water chemistry. This can be observed when calculating the HC5 concentrations of the single metals 

based on the measured physico-chemistry of the water on the different sampling dates (Figure 4.8). The 

decrease in HC5 values already starts at the beginning of the exposure period for Cu and Zn. For Ni, 

the HC5 value does not seem to change with time. This might be explained by the low affinity of Ni for 

DOC compared to Cu and Zn (Tipping et al. 2011), which results in a smaller influence of the decrease 

in DOC concentration on the Ni HC5 concentration. The decrease in HC5 values is associated with in 

an increase in the msPAFCASSD values during the course of the experiment (Figure 4.9). The initial 

decrease of the msPAF values (Figure 4.9) in most treatments is due to the initial increase in DOC 

concentration in most microcosms (Figure 4.4). This change in msPAFCASSD values is thus the result of 

the indirect effect of the changing water chemistry due to the addition of metals. This might also partially 
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explain the higher effects on species abundances towards the end of the exposure period in the present 

study (e.g. Colurella unicata, Chrysococcus sp.). 

 
Figure 4.8. Overview of the change in HC5 concentration in time (blue lines) for the mixture treatments. The 
dashed line indicates the nominal HC5 concentrations in the treatments. The circles indicate the measured 
metal concentrations in the control treatment. Error bars denote standard deviations.   

 

 
Figure 4.9. Overview of the change in initial msPAFCASSD values during the exposure period. 

Conclusion 

In the present study, a microcosm experiment was performed in which a freshwater planktonic 

community was exposed to a mixture of Cu, Ni and Zn with metal concentration ratio’s based on the 

average dissolved metal concentrations found in a European river basin. The pattern of community-level 

effects of the mixture differed between the low mixture treatments, which should be regarded as Ni-Zn 

mixtures, and the high mixture treatments, which should be regarded as Cu-Ni-Zn mixtures. In the low 

mixture treatments (Ni-Zn mixtures), only effects on the phytoplankton community were observed. In 

these treatments, direct effects of the mixture on Cyanobacteria (mainly Oscillatoria sp. 1) were 

observed and the decrease in Cyanobacteria abundance led to an increase of the abundance of non-

filamentous algae. In the high mixture treatments (Cu-Ni-Zn mixtures), more complex effects were 
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observed. Next to the direct effect on Cyanobacteria, the mixture also negatively affected Cladocera. In 

addition, although delayed in time, the mixture most likely also directly affected Copepoda and Rotifera 

abundance. Indirect effects were most likely attributed to reduced food and nutrient competition.  

In our microcosm systems many structural community endpoints (e.g. community composition, species 

diversity, species richness) and one functional community endpoint (i.e. DOC) did not show effects at 

or below an msPAF value of 0.05 (i.e. these endpoints can be considered protective). For two other 

functional community endpoints however (i.e. ΔDO and  ΔpH), effects at this msPAF value of 0.05, 

which is regarded as protective in many regulatory frameworks, were observed. For these two functional 

community endpoints, significant community-level effects were observed at an msPAF value of 0.03 (a 

Ni-Zn mixture) when the SSDs contained all species (i.e. both planktonic and non-planktonic) and at an 

msPAF value of 0.05 when the SSDs only contained planktonic species (phytoplankton and 

zooplankton). A likely explanation for the effects observed at or below this cut-off value of 0.05 is the 

mismatch between the species in the SSD and those in the microcosm community. Especially the 

presence of the cyanobacteria species Oscillatoria sp. 1 in our community, which is not represented in 

the SSD, seems to have been the driver for the observed effects on community-function at these low 

msPAF values. Although the decrease in abundance of Oscillatoria sp. 1 due to the direct effects of the 

Ni-Zn mixture resulted in an increase in abundance of other algae species, a significant decrease in 

community functioning was observed because the species was very dominant.  

Our results show that SSDs are not necessarily a good predictor of effects on all types of communities 

and that the presence of dominant sensitive species may result in significant effects on community 

functioning endpoints at an msPAF value (0.05) that is generally considered protective. In addition, our 

results should only be extrapolated cautiously to other systems because information whether dominant 

species in other systems are typically also sensitive species is usually lacking and it is often the loss of 

species that are both dominant and sensitive that can result in a disproportionally large decrease in 

ecosystem functioning. 
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Part II 

In Part II of this work, two additional limitations encountered in Chapter 2 were addressed. First, the 

bioavailability models that were used in Chapter 2 to normalize toxicity data were evaluated and 

improved (Chapter 5). Second, as these bioavailability models were based on different software to 

model speciation, we evaluated whether the chronic daphnid, fish and algae metal bioavailability models 

could all be updated to the WHAM VII speciation software, without loss of predictive capacity (Chapter 

7). 

In addition, we evaluated the impact of the implementation of the models developed in Chapter 5 and 

the update of all models to WHAM VII on risk estimations (Chapters 6 and 8). 

For these four chapters in Part II, improved and newly developed bioavailability models for invertebrates 

and fish for the metals Cu and Zn in combination with the existing models for algae for Cu, Ni and Zn 

and for invertebrates and fish for Ni were used that have also been used in risk assessment procedures. 
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Five 
TOXICITY OF SINGLE METALS TO SINGLE SPECIES: EVALUATION AND 

EXTENSION OF BIOAVAILABILITY MODELS 
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Section Five.One  
CHRONIC CU DAPHNIA MAGNA BIOAVAILABILITY MODEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Redrafted from:   

Van Regenmortel T, Janssen CR, De Schamphelaere KAC. 2015. Comparison of the capacity of two 

biotic ligand models to predict chronic copper toxicity to two Daphnia magna clones and formulation of 

a generalized bioavailability model. Environmental Toxicology and Chemistry 34(7): 1597-1608
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5.1. Chronic Cu Daphnia magna bioavailability model 

Introduction 

Biotic ligand models (BLM) have, during the past years, increasingly been used to account for the 

influence of water chemistry variables (e.g., pH, water hardness and dissolved organic carbon, DOC) in 

the evaluation of ecological risks of copper in surface waters. For instance, copper BLMs have been 

implemented to derive predicted no effect concentrations (PNEC) in the  risk assessments performed in 

the European Union (E.U.) (ECI 2008) and in the derivation of Water Quality Criteria (WQC) in the United 

States (U.S.), including the Criteria Continuous Concentration (CCC) (US EPA 2007). Although both 

frameworks use a similar approach to derive bioavailability-based PNEC or WQC values for copper, 

there are some underlying differences. One of these differences is the structural formulation and 

parameterization of the BLMs used. The BLM used in the U.S. was originally developed based on gill 

binding and acute toxicity data for fish and has also been shown applicable to predict acute toxicity data 

to invertebrates, following calibration of a species-specific lethal accumulation on the biotic ligand 

(Santore et al. 2001; Di Tore et al. 2001). In addition, U.S. guidelines allow for the derivation of the CCC 

based on acute BLM output (i.e. acute WQC) by applying a single acute to chronic ratio (ACR), which 

is assumed constant across all species and water chemistries (U.S. EPA 2007). Thus, the acute BLM 

is essentially implemented as a chronic BLM. In comparison, the E.U. risk assessment of copper uses 

three different chronic BLMs depending on the taxonomic affiliation of the (chronic) toxicity test species. 

It uses a fish BLM to normalize fish toxicity data to site-specific water chemistry (De Schamphelaere 

and Janssen 2006) and an algae bioavailability model to normalize alga data (De Schamphelaere and 

Janssen 2008). Furthermore, it uses a specific chronic Daphnia magna copper BLM (De Schamphelaere 

and Janssen 2004), which was developed based on chronic toxicity data with D. magna and which was 

successfully cross-validated with other invertebrates (De Schamphelaere et al. 2006b; Van Sprang et 

al. 2008), to normalize chronic toxicity data for other invertebrates. These normalized toxicity data are 

then used concurrently with chronic toxicity data for algae and fish, also normalized with chronic 

bioavailability models for these specific groups (De Schamphelaere and Janssen 2006; De 

Schamphelaere and Janssen 2008), to calculate the PNEC (ECI 2008). Thus, in the E.U. risk 

assessment, specific chronic BLMs developed based on chronic toxicity are implemented. 

The purpose of the present study was to evaluate the capacity of these two different copper BLMs (i.e. 

the ones used in the E.U. and U.S) to predict chronic toxicity of copper. For this purpose, a dataset of 

chronic copper toxicity to D. magna was compiled that contained 21-day 50% effective concentrations 

as dissolved copper (21-day EC50) and corresponding water chemistry of the test media for each of 

these. Subsequently, both the acute BLM (Santore et al. 2001; Di Toro et al. 2001) and the chronic D. 

magna BLM (De Schamphelaere and Janssen 2004) were evaluated using this dataset. It was 

hypothesized that the chronic D. magna BLM has a better predictive capacity than the acute BLM, since 

it was specifically developed based on chronic toxicity data  with D. magna (De Schamphelaere and 

Janssen 2004). 



Evaluation and extension of bioavailability models 

139 
 

Based on initial model comparisons it appeared that additional experiments were needed to directly 

compare the effect of pH on the chronic Cu toxicity to the  two different D. magna clones represented in 

the dataset. The results of these experiments are also reported in the present paper. Finally, through a 

combination of all studies on both D. magna clones, we explored the ability of a generalized 

BioAvailability Model (gBAM) as an alternative for the existing BLMs to predict chronic effect 

concentrations for copper in both D. magna clones. 

Materials and Methods 

Comparison of BLM predictive capacity 

Data selection.  

To ensure that the data used for modeling was of high quality, different quality criteria were set to which 

the data was met. When measured metal concentrations were not reported or when important 

bioavailability influencing characteristics, such as DOC, were not measured, the data were not 

considered for use.  

Chronic toxicity data were collected from the following 5 datasets. De Schamphelaere and Janssen (De 

Schamphelaere and Janssen 2004c) investigated the effect of organic carbon concentrations and 

source (3 types of natural organic matter, NOM), pH and water hardness on the chronic toxicity of copper 

to D. magna (K6 clone). A total of 35 test media were investigated. The water chemistry and 

corresponding 21-day EC50 values were taken from their Table 4. De Schamphelaere and Janssen 

(2004c) also reported on the 21-day toxicity of copper to D. magna (K6 clone) in 3 exposure media 

containing Aldrich humic acid at 3 different sodium concentrations. Chemical composition of the test 

media and corresponding 21-day EC50 values were taken from their Table 3. Rodriguez et al. 

(Rodriguez and Arbildua 2012) investigated the effect of hardness on the toxicity of copper to D. magna 

(ARO clone). In total, 3 test media, each with a different hardness level, were investigated. The water 

chemistry and corresponding 21-day EC50 values were taken from their Tables 5 and 1, respectively. 

Villavicencio et al. (2011) reported on the 21-day toxicity of copper to D. magna (ARO clone) in 20 spiked 

natural and 19 reconstituted waters. The chemical composition of these tested waters and the 

corresponding 21-day EC50 values were taken from their Table 3 and 4. Heijerick et al. (2002) reported 

on the chronic toxicity of copper to D. magna (K6 clone) in 10 spiked natural waters. Water chemistry 

was taken from their supplementary info and 21-day EC50 data were taken from their Tables 8, 10, 16, 

18, 20, 22 and 26. All details on the chemical composition of the different test media used for modeling 

can be found in the online database (DOI: 10.1002/etc.2952; Supplementary 1). For the comparison of 

the predictive performances of the two BLMs, the data that were used to develop the UGent BLM, i.e. 

the chronic toxicity data with the 17 test media that contained “Ankeveen” Natural Organic Matter (NOM) 

reported by De Schamphelaere and Janssen (2004b) and the toxicity data obtained at 3 different sodium 

concentrations reported by De Schamphelaere and Janssen (2004c), were excluded from the dataset. 

As such, the comparison between both BLMs is done on the basis of model performance evaluations 

with a dataset that is independent from the development of both BLMs.   
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BLM modeling 

To predict effect concentrations (21-day EC50s), we used the software BLM Version 2.1.2. (HydroQual 

2005; incorporating WHAM 5 speciation software). In all cases, we maintained all stability constants for 

cation binding to the biotic ligand at their original values and only adjusted the critical accumulation of 

copper to the biotic ligand. Stability constants were taken from the parameter sets for the chronic Cu-

BLM specifically developed for D. magna (K6 clone) (De Schamphelaere and Janssen 2004a; i.e. “Cu-

BLM-3”) or the acute Cu-BLM that was described by Santore et al. (2001), with addition of Mg2+ and 

CuOH+ constants as described in the software (Malmberg and Maryott 1956). For simplicity, these two 

BLMs will be referred to as the “UGent BLM” and the “HydroQual BLM”, respectively (Table 5.1). The 

critical accumulation value resulting in 50% reproductive inhibition, i.e. the intrinsic sensitivity or the 

EA50, was calibrated for all available D. magna EC50 data by using the input dataset constructed from 

the measured water chemistry (De Schamphelaere and Janssen 2004c; De Schamphelaere and 

Janssen 2004a; Rodriguez and Arbildua 2012; Villavicencio et al. 2011; Heijerick et al. 2002b) and 

subsequently calculating an ‘average’ EA50.  How this was done is explained in detail in Appendix D 

(D1.1). The EA50 represents the amount of Cu bound to the biotic ligand that results in 50% effect and 

is expressed in nanomoles Cu per gram wet weight of the biotic ligand. After this calibration, the BLM 

was run using the calibrated EA50 value and the same input water chemistry dataset to make predictions 

of EC50s. When necessary, alkalinity was calculated based on pH, temperature and inorganic carbon 

(IC) (Stumm and Morgan 1996). Dissolved Organic Matter (DOM) was always assumed to consist of 

50% carbon (on a weight basis). For the HydroQual BLM, the amount of natural DOM was assumed to 

be composed of 100 % active humic substances. Of these humic substances, 10% was assumed to be 

humic acid (HA) and 90% fulvic acid (FA) (default model inputs for HydroQual BLM, according to 

(Santore et al. 2001) and the BLM software (HydroQaul 2005)). For the UGent BLM, 50% of natural 

DOM was assumed to be composed of humic substances and of the latter 0% was assumed to be HA 

and 100 % FA (default model inputs for UGent BLM, according to De Schamphelaere et al. 2004c).  

For example, for running the 2 BLMs with the BLM software (HydroQual 2005) for a medium in which 

3.6 mg DOC/L was measured in test medium, 3.6 mg DOC/L and 10% HA were set as model inputs for 

the HydroQual BLM while 1.8 mg DOC/L and 0% HA were set as inputs for the UGent BLM. Additions 

of DOC to media in the form of Aldrich humic acid (AHA, Sigma Aldrich Chemie, Steinheim, Germany) 

were assumed to be 100% humic acid for both BLMs, in accordance with De Schamphelaere and 

Janssen 2004a. Inorganic binding constants used by both BLMs are also slightly different. These 

differences can be found in the online database (DOI: 10.1002/etc.2952; Supplementary 3). 

The predicted effect concentrations were first compared with observed effect concentrations based on 

free ion concentrations. Subsequently, the relations between pH, Ca2+, Mg2+ , Na+ activities and 

observed effect concentrations expressed as free ion activities were examined. Since free ion activities 

are not provided as BLM output, Cu2+, Ca2+, Mg2+ and Na+ activities were calculated with the Davies 

Equation (Stumm and Morgan 1996; Malmberg and Maryott 1956) as explained in Appendix D (D1.2).  

Finally, predicted chronic 21-day EC50 values were compared with observed 21-day EC50 values to 

evaluate the predictive capacity of both BLMs. 



 

 
 

Table 5.1. Biotic ligand model (BLM) copper constants, competition constants, thermodynamic parameters, and humic material assumptions of the UGent BLM (De 
Schamphelaere and Janssen 2006) and HydroQual BLM (Santore et al. 2001; Di Toro et al. 2001) that were used for modeling, as well as parameter values for all 
generalized bioavailability models (gBAM) used 

Parameter 

UGent BLM 
Daphnia magna 
(chronic) 

HydroQual BLM 
All organisms 
(acute) 

gBAM-A  gBAM-B  gBAM-C 

gBAM-
AK6 

gBAM-
AARO 

gBAM-
Auni 

 
gBAM-
BK6 

gBAM-
BARO 

gBAM-
Buni 

 
gBAM-
CK6 

gBAM-
CARO 

gBAM-
Cuni 

Biotic ligand (BL) species 
 Log KCuBL 8.02a 7.4 a NA NA NA  NA NA NA  NA NA NA 

 Log KCuHBL 8.02b (–0.5) 6.22 b, c (–1.3) NA NA NA  NA NA NA  NA NA NA 
 Log KCuCO

3
BL 7.44d (–14.21) NA NA NA NA  NA NA NA  NA NA NA 

 Log KCaBL NA 3.6 NA NA NA  NA NA NA  3.53 3.53 3.53 

 Log KMgBL  NA 3.6c NA NA NA  NA NA NA  3.53 3.53 3.53 

 Log KHBL 6.67 5.4 NA NA NA  NA NA NA  NA NA NA 

 Log KNaBL 2.91 3 NA NA NA  2.67 2.67 2.67  2.67 2.67 2.67 

 SpH NA NA 0.77 0.53 0.65  0.77 0.53 0.65  0.77 0.53 0.65 

 Q50, K6 clone NA NA 2.73 NA 3.59  3.24 NA 4.04  3.46 NA 4.38 

 Q50, ARO clone NA NA NA 5.08 4.12  NA 5.21 4.24  NA 5.52 4.55 

 Bioavailable species that can bind to 
the biotic ligand 

Cu2+, CuOH+, CuCO3
0 Cu2+, CuOH+ NA NA NA  NA NA NA  NA NA NA 

Thermodynamic database 
 pKMHA Cu-HA 1.9 1.5 1.9 1.9 1.9  1.9 1.9 1.9  1.9 1.9 1.9 

 pKMHA CuOH-HA 1.9 1.5 1.9 1.9 1.9  1.9 1.9 1.9  1.9 1.9 1.9 

 log K for CuCO3
0 (aq) 6.77 6.75 6.77 6.77 6.77  6.77 6.77 6.77  6.77 6.77 6.77 

 log K for Cu(CO3)2
–2 (aq) 10.2 9.92 10.2 10.2 10.2  10.2 10.2 10.2  10.2 10.2 10.2 

 log K for CuHCO3
+ (aq) 12.13 14.62 12.13 12.13 12.13  12.13 12.13 12.13  12.13 12.13 12.13 

Humic material assumptions 
 % of natural DOM composed of humic 

substancese 
50% 100% 50% 50% 50%  50% 50% 50%  50% 50% 50% 

 % of the humic substances that is HA 
(rest is FA)f 

0% 10% 0% 0% 0%  0% 0% 0%  0% 0% 0% 

a Reaction: BL-Cu = Cu2+ + BL; b First constant refers to the reaction: BL-CuOH = CuOH+ + BL. The constant in parentheses refers to the reaction BL-CuOH + H+ = Cu2+ + H2O + BL; c These constants 

were not reported in Santore et al. (2001) but are described in the BLM software (HydroQaul 2005); d First constant refers to the reaction: BL-CuCO3 = CuCO3
0 + BL. The constant in parentheses 

refers to the reaction BL-CuCO3 = Cu2+ + CO3
2- + BL; e Exception: When humic acid is added to the medium, all models assume 100% of the DOM to be composed of humic substances; f Exception: 

When humic acid is added to the medium, all models assume 100% of the humic substances to be composed of humic acid; NA = not applicable as constant in the UGent BLM, HydroQual BLM, or 
gBAM; DOM = dissolved organic matter; HA = humic acid; FA = fulvic acid. 
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Experimental testing of two D. magna clones 

Preparation of test media.  

To investigate the individual effect of pH on chronic copper toxicity to two D. magna clones, tests were 

conducted in synthetic test solutions, based on the M4 medium (Muyssen and Janssen 2001). All test 

solutions were prepared using deionized water and reagent-grade chemicals purchased from VWR 

International. The M4 medium was modified compared to its original composition (Muyssen and Janssen 

2001) as follows: the background Zn concentration was increased to 13 µg/L as the original concentration 

(6 µg/L) causes Zn deficiency (Elendt and Bias 1990), hardness was reduced to 180 mg CaCO3/L (keeping 

the Ca:Mg ratio at its original value), EDTA was omitted and replaced with Bihain River NOM (Ruisseau de 

Saint Martin, Belgium) at a nominal concentration of approximately 5 mg DOC/L. Tests were conducted at 

pH 6.5 and pH 8.3. Test solutions were adjusted to the required pH of 6.5 by adding 3-N-

morpholinopropanesulfonic acid (MOPS) and the required amount of NaOH or HCl. MOPS has the property 

not to affect metal speciation (Kandegedara and Rorabacher 1999), nor is it toxic or does it affect Cu toxicity 

to freshwater organisms (De Schamphelaere et al 2004). Because the buffering capacity of MOPS is 

restricted to a pH range of 6.5 – 7.9 (pKa = 7.2), test solutions for pH 8.3 were adjusted to the required pH 

by adding NaHCO3 (3 mmol/L) and the required amount of NaOH or HCl. For each test, a copper 

concentration series was prepared by adding CuCl2. Each test series consisted of a control treatment and 

7 or 8 copper treatments. For the test at pH 6.5 the following nominal Cu concentrations were used: 20, 28, 

40, 57, 80, 113 and 160 µg/L for the K6 clone and 13, 20, 28, 40, 57, 80, 113 and 160 µg/L for the ARO 

clone. For the test at pH 8.3 the following nominal Cu concentrations were used: 40, 57, 80, 113, 160, 226 

and 320 µg/L for both clones. To allow equilibration, solutions were spiked with copper 48 hours prior to 

testing.  

 

Daphnia magna chronic toxicity testing.  

Toxicity tests were performed with 2 D. magna clones. The K6 clone was originally collected from a pond 

in Kiel (Antwerp, Belgium) and has been cultured at the Laboratory for Environmental Toxicology and 

Aquatic Ecology (University of Ghent, Belgium) for the past 20 years under standardized conditions. The 

culture medium consisted of aerated and filtered Ghent (Belgium) city tap water to which a selenium (0.1 

µg/L) and vitamin solution (7.5 mg/L thiamine, 100 µg/L cyanocobalamin and 75 µg/L biotin) was added 

(pH 7.7, DOC 2.1-3.3 mg/L, hardness 127-136 mg/L as CaCO3). The ARO clone was obtained from the 

Chilean Mining and Metallurgy Research Center (CIMM) who purchases the clone from Aquatic Research 

Organisms (Hampton, New Hampshire, USA). At the moment we received the ARO clone, it had been 

cultured at CIMM for one-and-a-half years. For both clones, cultures were kept at 20 ± 1 °C, with a 12:12 

light:dark photoperiod. Daphnids were maintained in 5 L culture glass vessels with 4 L medium, each 

containing 200 individuals. The medium was changed 3 times a week. The daphnids were fed with a mixture 
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of Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii in a 3:1 ratio based on cell number 

(3.75 x 106 cells/daphnid from day 0 to day 8 and 7.5 x 106 cells/daphnid from day 9 onward). 

Prior to testing, all organisms from both clones were acclimated to the test media (i.e. pH 6.5 or pH 8.3) 

without extra copper for 1 generation. In that way individuals used in the actual tests were offspring from 

mothers that had been held in the test medium since their birth. Nominal concentrations of major cations 

and anions in the medium were 57.7 mg Ca/L, 8.8 mg Mg/L, 17.9 mg Na/L, 3.2 mg K/L, 35 mg SO4/L and 

91.7 mg Cl/L. 

Chronic D. magna tests were performed according to the Organization of Economic Cooperation and 

Development test guideline 211 (OECD 2012). For each treatment, 10 juvenile animals (< 24h old) were 

held individually in polyethylene cups containing 50 mL of test medium. Animals were fed daily with an algal 

mixture of P.subcapitata and C. reinhardtii in a 3:1 ratio (based on cell number). Each cup received 250, 

500 or 750 µg dry weight of food per day in the first, second and third week of exposure, respectively. The 

total duration of the test was 21 days. Tests were started on Tuesday and the medium was renewed and 

parent mortality and number of produced juveniles was counted on Friday of the first week and every 

Monday, Wednesday and Friday during the subsequent weeks.  

Chemical analysis.  

From the toxicity test vessels, samples of fresh (sample of new medium just before transfer of daphnids to 

the cup) and old (sample taken of medium just after transfer of daphnids to a new cup) test medium were 

collected regularly for analysis of Cu, IC and organic carbon (OC). Total and dissolved Cu (0.45 µm, Gelman 

Sciences, Ann Arbor, MI, USA) samples of fresh medium were taken on day 0, 7, 14 and 19. Dissolved Cu 

samples of old medium were taken on day 2, 9, 16 and 21. The copper samples were acidified to 0.14 

mol/L HNO3 (Normaton quality, VWR International) immediately after sampling. Copper concentrations 

were measured using flame atomic absorption spectrophotometry (SpectrAA800; Varian; reference 

material TMDA-70; for nominal concentrations > 50 µg Cu/L; Limit of Quantification 60 µg Cu/L; Method 

Detection Limit 20 µg Cu/L) or graphite furnace atomic absorption spectrophotometry (GFAAS Furnace 

Autosampler, Thermo Fisher Scientific; reference material TM-24.3; for nominal concentrations < 50 µg 

Cu/L; Limit of Quantification 1 µg Cu/L; Method Detection Limit 0.3 µg Cu/L). Calibration standards and a 

reagent blank were analyzed with every 25 samples. Inorganic carbon and dissolved organic carbon (DOC) 

samples were taken on day 0, 3, 7, 9, 14, 16 and 21. These samples were analyzed with a Total Organic 

Carbon analyzer following the NPOC method (TOC-5000, Shimadzu; Limit of Quantification 1.5 mg DOC/L; 

Method Detection Limit 0.5 mg DOC/L). The NPOC method (Non-Purgeable Organic Carbon) entails that 

after purging the sample with air (to remove inorganic carbon), the remaining organic carbon is measured. 

The pH of fresh medium was measured on day 0, 7, 14 and 21 and that of old medium on day 2, 9, 16 and 

23. Measurements of pH were performed with a pH glass electrode (P407, Consort).  
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Data treatment and analysis. 

Effect concentrations (21-day EC10, EC20 and EC50) were calculated based on average dissolved Cu 

concentrations in fresh and old test media. The dissolved copper concentrations in old test medium was 

33% lower than in fresh medium at pH 6.5 and 35% lower at pH 8.3.  The total reproduction (i.e. number of 

offspring per female) was used as endpoint. The mean number of offspring in the control treatment was 

always greater than 60, as is prescribed by OECD guideline 211 (2012). Effect concentrations and 

corresponding confidence intervals were determined with the drc-package in R 2.15.2 (R Development 

Core Team) with a Weibull concentration response model with three parameters (Equation 5.1), as this 

best fitted our concentration-response data (i.e. highest log likelihood).  

𝑦 = 𝑑 × exp (−
𝑥

𝑘
)𝑏                                                                                                                (5.1) 

Where y = predicted reproduction (number of offspring per female), d = the value of the maximal response 

(i.e. in the control), b = a slope parameter, k = a scale parameter  and x = the dissolved Cu concentration 

(µg/L). The function drm in R 2.15.2 was used to calculate the ECx values. 

Results and Discussion 

Comparison of BLM predictive capacity 

Across the entire D. magna chronic toxicity dataset, measured 21-day EC50 values ranged from 7.4 to 367 

µg/L. First, a single EA50 value was calibrated to this entire dataset for both BLMs. For the UGent and 

HydroQual BLM this value was 7.01 nmol/g and 0.046 nmol/g, respectively. All parameter files for running 

the models in the BLM software (HydroQual 2005) are available in the online database (DOI: 

10.1002/etc.2952; Supplementary 3). 

Predictions of copper toxicity to D. magna with both BLMs were compared with observed 21-day EC50 

values. The UGent BLM predictions for chronic toxicity are plotted in Figure 5.1A. The UGent BLM was 

able to predict 79% of the toxicity data within twofold error and showed a mean prediction error of 1.7-fold. 

In comparison, the HydroQual BLM predictions for chronic toxicity are plotted in Figure 5.1B. The model 

was able to predict 63% of the toxicity data within twofold error and showed a mean prediction error of 2.4-

fold. These results suggest that the UGent BLM is able to predict chronic toxicity somewhat more accurately 

than the HydroQual BLM. However, when examining Figure 5.1 in more detail, a bias is noted in the relation 

between observed and predicted 21-day EC50 values for both models. The UGent BLM predicts the higher 

21-day EC50 values more accurately, while the HydroQual BLM predicts lower 21-day EC50 values better. 

Furthermore, regardless of the BLM that is used for making predictions, the data points appear to cluster 

in two groups, with each group corresponding to one of the two clones used in the datasets. The ARO and 

the K6 clone data cluster at lower and higher observed EC50 values, respectively. Rodriguez et al. (2012) 

and Villavicencio et al. (2011) used the D. magna ARO clone in all their toxicity tests while De 

Schamphelaere and Janssen (2004b) and Heijerick et al. (2002) always used the D. magna K6 clone. 
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Without doing a more in-depth analysis, one could attribute this clustering to two factors. First, one could 

attribute it to differences in bioavailability conditions between the toxicity tests done with the K6 clone and 

the ARO clone. Indeed, in most tests with the ARO clone copper could have been generally more 

bioavailable (e.g., due to lower DOC concentrations), relative to the conditions in which the K6 clone was 

tested. Second, one could also attribute this clustering could also be due to the fact that these two D. magna 

clones exhibit differences in their intrinsic sensitivity to copper (due to genetic differences), as has been 

shown extensively in several other metal toxicity studies (Baird et al. 1991; Barata et al. 1998; Muyssen et 

al. 2002; Bossuyt and Janssen 2005; Messiaen et al. 2013). To be able to discriminate between those two 

factors, we repeated our calculations, but now by calibrating a separate intrinsic sensitivity for both clones, 

followed by BLM toxicity predictions.  

 

Figure 5.1. Predictive capacity of the UGent (A) and HydroQual (B) biotic ligand models (BLMs) as shown by 
observed versus predicted 21-d 50% effective concentrations (EC50s) of copper to Daphnia magna (K6 clone 
[triangles] and ARO clone [circles]). The solid line is the 1:1 reference line indicating a perfect match between 
observed and predicted values; the dashed lines indicate an error of a factor of 2 between observed and 
predicted values. UGent BLM = the chronic D. magna BLM (De Schamphelaere and Janssen 2006); HydroQual 
BLM = the acute BLM (Santore et al. 2001; Di Toro et al. 2001). 

 

The obtained intrinsic sensitivities for each clone separately are given in Appendix D (D1.3) and are 7.70 

nmol/g (K6 clone) and 6.57 nmol/g (ARO clone) for the UGent BLM and 0.089 nmol/g (K6 clone) and 0.031 



Chapter 5 

146 
 

nmol/g (ARO clone) for the HydroQual BLM. Again, the predictions of copper toxicity to the two D. magna 

clones by both BLMs were compared with measured 21-day EC50 values. The UGent BLM predictions are 

plotted in Figure 5.2A. The UGent BLM was now able to predict 77% of all data within twofold prediction 

error (mean prediction error = 1.7-fold). However, when the data with the K6 and ARO clone were 

considered separately, it was clear that the model more accurately predicted the K6 clone data than the 

ARO clone data (82% and 74% within twofold error, respectively and 1.6-fold and 1.8-fold mean prediction 

error, respectively). The HydroQual predictions can be found in Figure 5.2B. The HydroQual BLM now 

predicted 70% within twofold prediction error (mean prediction error = 2.0-fold). However, considering the 

data with both clones separately shows that this model more accurately predicted the ARO clone data than 

the K6 clone data (83% and 50% within twofold error, respectively and 1.6-fold and 2.6-fold mean prediction 

error, respectively). 

In addition to possible differences in intrinsic sensitivity between D. magna clones, it is recognized that 

metal sensitivities of D. magna laboratory populations may change with time (i.e. between two or more 

studies performed in the same laboratory, but separated in time (e.g. Deleebeeck et al. 2008; Baird and 

Barrate 1997)) which could be due to differences in culture environment (e.g. temperature, food). Therefore, 

it is recognized that this should also be accounted for. To explore the influence of this on the predictive 

capacity of both BLMs, we also calculated intrinsic sensitivities per clone and per study (for the UGent BLM 

these are 5.76 nmol/g for the study by De Schamphelaere and Janssen (2004b), 3.98 nmol/g for Rodriguez 

and Arbildua (2012), 6.81 nmol/g for Villavicencio et a. (2011) and 12.10 nmol/g for Heijerick et al. (2002); 

for the HydroQual BLM these are equal to 0.058 nmol/g for the study by De Schamphelaere and Janssen 

(2004b), 0.15 nmol/g for Rodriguez et al. (2012), 0.027 nmol/g for Villavicencio et al. (2011) and 0.16 nmol/g 

for Heijerick et al. (2002)). The obtained intrinsic sensitivities can also be found in Appendix D (D1.3). The 

UGent BLM was now able to predict 81% of all data within twofold prediction error (mean prediction error 

= 1.7-fold) (Appendix D1.4). However, when the data with the K6 and ARO clone were considered 

separately, 93% of the K6 clone and 74% of the ARO clone data were predicted within twofold error (mean 

prediction error = 1.6-fold and 1.8-fold, respectively). The HydroQual BLM predicted 76% within twofold 

prediction error (mean prediction error = 1.6-fold). However, considering the data with both clones 

separately showed 91% of the ARO clone data and 54% of the K6 clone data were predicted within twofold 

error (mean prediction error = 1.3-fold and 2.5-fold, respectively). Based on all these comparisons, it is 

clear that the predictive capacity of both BLMs is considerably influenced by the clone considered. The 

UGent BLM, which was developed based on a K6 clone chronic toxicity dataset, performs best for this 

clone. The HydroQual BLM on the other hand, which has the same stability constants as the acute fish 

BLM, performs best for the ARO clone. This strongly suggests that both BLMs not only differ in how they 

take into account the influence of water chemistry for predicting chronic copper toxicity, but also that the 

two clones differ in how copper bioavailability to them is influenced by water chemistry. 
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Figure 5.2. Predictive capacity of the UGent (A) and HydroQual (B) biotic ligand models (BLMs) as shown by 
observed versus predicted 21-d 50% effective concentrations (EC50s) of copper to Daphnia magna. Intrinsic 
sensitivities of the BLMs were calculated from data grouped by D. magna clone (K6 clone [triangles] and ARO 
clone [circles]). The solid line is the 1:1 reference line indicating a perfect match between observed and 
predicted values; the dashed lines indicate an error of a factor of 2 between observed and predicted values. 
UGent BLM (De Schamphelaere and Janssen 2006); HydroQual BLM = the acute BLM (Santore et al. 2001; Di 
Toro et al. 2001). 

 

To investigate these differences in more detail, we examined the relation between logarithmic model-

measurement deviations (i.e. log observed EC50 – log predicted EC50; further denoted O/P) and the 

chemistry of the test media for the two BLMs and two clones. To this end, the correlation (r²) was determined 

between O/P and pH, Na+ activity, Ca2+ activity and Mg2+ activity. Figure 5.3 shows that there is a clear 

difference in how both BLMs account for copper bioavailability with increasing pH. According to the UGent 

BLM O/P data, the influence of pH on the Cu toxicity to the K6 clone is appropriately accounted for by the 

UGent BLM, whereas the toxicity to the ARO clone is underestimated at pH < 8 and overestimated at pH > 

8. The opposite is seen for the HydroQual BLM O/P data. Here the influence of pH on the Cu toxicity to the 

ARO clone data is appropriately accounted for by the HydroQual BLM whereas toxicity to the K6 clone is 

underestimated at pH < 7 and overestimated at pH > 7. The influence of the other physico-chemical 

parameters on the responses of the two clones is not as clear as for pH (smaller r² or non-significant 
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correlation). These results indicate that there is a fundamental difference between both BLMs in how they 

predict the change of bioavailability of Cu with increasing pH. To illustrate this further we performed 

simulations with both BLMs using the original intrinsic sensitivity values of these BLMs (i.e. 11.78 nmol/g 

for the UGent BLM and 0.069 nmol/g for the HydroQual BLM). For the BLM input file, the average water 

chemistry of all the toxicity data (De Schamphelaere and Janssen 2004c; De Schamphelaere and Janssen 

2004a; Rodriguez and Arbildua 2012; Villavicentio et al. 2001; Heijerick et al. 2002b) was used, i.e. 5.8 mg 

DOC/L, 49.6 mg Ca/L, 11.2 mg Mg/L, 80.0 mg Na/L, 2.4 mg K/L, 67.9 mg SO4/L and 148,7 mg Cl/L. 

However, the pH was varied between 5.5 and 8.5 and the alkalinity was calculated based on this pH value 

(Stumm and Morgan 1996). Results from these simulations can be seen in Figure 5.4, from which it is again 

clear that both BLMs differ in how they predict changes of bioavailability of Cu with increasing pH. 

 

Figure 5.3. Logarithmic differences of the observed and predicted 21-d 50% effective concentrations (EC50) of 

copper to Daphnia magna [i.e., log(observed EC50) – log(predicted EC50)] against pH for the UGent biotic 

ligand model (BLM; top) and HydroQual BLM (bottom) for the 2 clones (K6 clone [triangles] and ARO clone 

[circles]). Predicted EC50s were calculated with intrinsic sensitivities calculated per clone and per study.  See 

Appendix D.4 for the plot of the corresponding observed 21-d EC50s versus predicted 21-d EC50s. 
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Figure 5.4. Influence of pH on the predictive capacity of the UGent (circles) and HydroQual (plus signs) biotic 

ligand models (BLMs) as shown by (A) the predicted 21-d 50% effective concentrations (EC50s) of copper to 

Daphnia magna and (B) the free Cu2+ ion activity at the predicted 21-d EC50s of copper to Daphnia magna. 

Water chemistry input for the BLMs was held constant at the average water chemistry of all the toxicity data 

(De Schamphelaere and Janssen 2004c; De Schamphelaere and Janssen 2004a; Rodriguez and Arbildua 2012; 

Villavicencio et al. 2011), with the exception of pH, which was varied between 5.5 and 8.5. UGent BLM (De 

Schamphelaere and Janssen 2006); HydroQual BLM = the acute BLM (Santore et al. 2001; Di Toro et al. 2001). 

 

To investigate this difference even further, we examined the linear relations between log10(21-day 

EC50𝐶𝑢2+) versus pH for both D. magna clones (Figure 5.5A). However, a correlation between pH and Na+ 

activity in certain datasets was observed. This correlation could influence the analysis of the relation 

between the copper toxicity and pH of the water, and thus the interpretation of the effect of pH on copper 

toxicity to both clones. Therefore, the Cu2+ activity was “corrected” for the sodium effect (Figure 5.5B) 

(Equation 5.2). 

𝐸𝐶50𝐶𝑢2+
∗ =  

𝐸𝐶50
𝐶𝑢2+

1+ 𝐾𝑁𝑎𝐵𝐿×(𝑁𝑎+)
                                                                                  (5.2) 

Where EC50Cu2+ = the observed 21-day EC50 as Cu2+ activity (mol ∙ L−1), (Na+) the sodium activity 

(mol ∙ L−1) and KNaBL = the competition constants for sodium of 471 (L ∙ mol−1) (Log KNaBL = 2.67), taken 

from a study by De Schamphelaere and Janssen (2004a).  
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Figure 5.5. Free Cu2+ ion activity at the 21-d 50% effective concentration (EC50) as a function of pH for the K6 

(triangles) and ARO (circles) Daphnia magna clone. (A) Chronic toxicity data from the studies used to compare 

the UGent and HydroQual BLM (De Schamphelaere and Janssen 2004c; De Schamphelaere and Janssen 2004a; 

Rodriguez and Arbildua 2012; Villavicencio et al. 2011), with exclusion of the data used to develop the UGent 

BLM; (B) same data as panel (A) with correction of the Cu2+ activity for the sodium effect (Equation 5.2) and 

(C) same data as panel (A) with correction of the Cu2+ activity for the sodium, calcium, and magnesium effects 

(Equation 5.3).  
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Further examination of the data showed us a correlation between pH and Mg2+ and Ca2+ activity. This 

correlation could also influence the analysis of the relation between the copper toxicity and pH of the water, 

and thus the interpretation of the effect of pH on copper toxicity to both clones. The Cu2+ activity was 

therefore corrected for the sodium, calcium and magnesium effects (Figure 5.5C) (Equation 5.3). 

𝐸𝐶50𝐶𝑢2+
∗∗ =  

𝐸𝐶50
𝐶𝑢2+

1+(𝐾𝑁𝑎𝐵𝐿×(𝑁𝑎+)+𝐾𝐶𝑎𝐵𝐿×(𝐶𝑎2+)+𝐾𝑀𝑔𝐵𝐿×(𝑀𝑔2+)) 
                                                                         (5.3) 

Where EC50Cu2+ = the observed 21-day EC50 as Cu2+ activity (mol x L-1), (Na+), (Ca2+) and (Mg2+) are the 

sodium, calcium and magnesium activities (mol x L-1), KNaBL= the competition constant for sodium (mol x L-

1) and KCaBL and KMgBL are the competition constants for calcium and magnesium of 3409 (mol x L-1) 

(Rodriguez and Arbildua 2012), respectively. The latter two were calculated based on data by Rodriguez 

and Arbildua (2012). These authors have demonstrated a significant effect of hardness on chronic copper 

toxicity in a univariate experiment with the ARO clone, although the effect is considerably smaller than its 

effect on acute toxicity. The competition by Ca and Mg ions may be of a specific chemical nature (De 

Schamphelaere and Janssen 2004a), but may also take place at specific membrane transporter uptake 

routes (e.g. Divalent Metal Transporters (DMI)) (Deleebeeck et al. 2007a). These constants were calculated 

according to De Schamphelaere and Janssen (Grosell 2011) by performing a linear regression between 

the 21-day EC50𝐶𝑢2+ and the sum of the Mg2+ and Ca2+ activities. Both Mg2+ and Ca2+ were evaluated 

together because their activities in this experiment were correlated as a consequence of the experimental 

test design. The values of both constants were assumed the same as no data was available to determine 

separate values. 

The results shown in Figure 5.5 suggest a different effect of pH on chronic Cu toxicity for the two D. magna 

clones that should be further investigated. As mentioned earlier, this different effect of pH could be attributed 

to one of the following: (1) there are true inter-clonal differences due to genetic factors or (2) the observed 

differences are due to differences in experimental design, i.e. the clones could respond differently to pH 

because the clone K6 was tested in other experimental conditions (e.g., most media were pH buffered with 

a strong pH buffer) than the ARO clone (most test media were not strongly pH buffered). Indeed, the latter 

has recently been examined by Esbaugh and colleagues (Esbaugh et al. 2013) who tested the effect of 

three pH buffer methods on the acute toxicity of Pb to P. promelas. They found that a strong pH buffer 

(MOPS, also used in our experiments) had a large impact on the acute Pb toxicity. However, we believe 

that their results do not necessarily apply to our study because of the following reasons: (a) tests were 

performed on lead, (b) their three buffer methods were not tested simultaneously and with different batches 

of fish test populations and (c) the ion concentrations (e.g. Ca concentrations) in the test water of the MOPS-

tests were lower than those of the other two buffers which could have influenced the LC50. Furthermore, 

De Schamphelaere et al. (OECD 2012) demonstrated that when evaluating the effect of using MOPS and 

NaHCO3 pH buffering on acute Cu (and Zn) toxicity to D.magna, there was no significant difference 

observed between MOPS or NaHCO3 buffered test media. Since acute to chronic ratios are low for copper 

for D. magna (ECI 2008), it is reasonable to believe that the use of 750 mg/L MOPS in chronic experiments 

(as was done for all K6 clone tests) does not influence the chronic copper toxicity to D. magna. However, 
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in order to exclude this explanation further and to be conclusive on the above, we performed an additional 

experiment to test if the difference in effects of pH on chronic Cu toxicity among both clones suggested by 

this modeling effort could be attributed to true inter-clonal differences (i.e. genetic factors) by excluding the 

experimental differences. This was done by testing both clones simultaneously and in exactly the same 

conditions in a single laboratory (UGent). 

 

Experimental testing of two D. magna clones 

Physico-chemical composition of the test media and 21-day EC10, EC20 and EC50 are given in Table 5.2. 

The control reproduction in all chronic toxicity assays was > 60 offspring per parent animal surviving after 

21 days and parental mortality was less than 20%, as is required by the OECD guideline (OECD 2012). At 

a pH of 6.5, the K6 clone had a significantly higher 21-day ECx than the ARO clone (p < 0.05, Wheeler test, 

Wheeler et al. 2006), indicating clonal differences in sensitivity to copper of approximately 2-fold. However, 

this difference is not observed at a pH of 8.3, which emphasizes the importance of examining interclonal 

sensitivity differences at different physico-chemical compositions. As mentioned before, clonal differences 

in sensitivity have been studied extensively. However, most studies have focused on clonal differences at 

a single physico-chemical test medium composition (Baird et al. 1991; Barata et a. 1998; Muyssen et al. 

2002; Bossuyt and Janssen 2005; Messiaen et al. 2013), whereas few studies have examined sensitivity 

shifts at different compositions. One exception is Barrata et al. (1998) who observed differences in the effect 

of hardness (soft, moderate-hard and hard waters) on acute Cu toxicity between different D. magna clones.  

When examining the ratio 
𝑈𝐺𝑒𝑛𝑡 𝐸𝐶𝑥

𝐶𝐼𝑀𝑀 𝐸𝐶𝑥
, we see that this value decreases with increasing pH. This indicates that 

the copper bioavailability relations with pH between both clones are different. This is confirmed in Figure 

5.6, which shows the 21-day EC50 as Cu2+ activity (Eqn. D1.7) against the pH. Here, the slope of the 

regression in the K6 clone is steeper, which corresponds to a stronger pH effect in the K6 clone (Sokal and 

Rohlf 1995). The effect of pH on Cu2+ ion toxicity is larger for the K6 clone compared to the ARO clone. 

Thus, our results confirm the hypothesis generated by the above-reported modeling efforts and the trends 

observed in Figure 5.3, i.e. that it is unlikely that the differences in experimental design (i.e. pH buffering 

method) caused the different effects of pH on chronic copper toxicity, but that true inter-clonal differences 

between both D. magna clones exist in how pH influences the chronic copper toxicity. One could therefore 

raise the question as to how adequate the D. magna BLMs are to predict chronic Cu toxicity to all 

invertebrates, after recalibrating for intrinsic sensitivity differences, as is done in the EU Risk Assessment 

(ECI 2008). However, all cross-species validations that have so far been conducted with the UGent BLM 

(De Schamphelaere et al. 2006b Van Sprang et al. 2008) show that extrapolation of the Daphnia BLM to 

other invertebrates give predictions of chronic copper toxicity that fall within a factor 2 of the observed 

toxicity. Therefore, we believe that the extrapolation from Daphnia to all invertebrates is an assumption that 

has no dramatically erroneous implications. 
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Table 5.2. pH of the test media and 21-day 50%, 20% and 10% effective concentrations (EC50, EC20 and EC10) 

for chronic copper toxicity tests with two Daphnia magna clonesa 

          

Clone pH EC50 (µg Cu/L)a EC20 (µg Cu/L)a EC10 (µg Cu/L)a 

K6 6.4 41.7 (37.8-45.6) 36.1 (26.6-45.6) 32.9 (20.1-45.6) 

K6 8.4 83.9 (68.2-99.5) 79.6 (43.7-115.6) 76.9 (28.7-125.1) 

ARO 6.4 14.4 (13.3-15.5) 12.0 (10.3-13.7) 10.7 (8.7-12.6) 

ARO 8.5 73.6 (69.3-77.9) 62.1 (55.8-68.4) 55.4 (47.9-62.9) 
b For EC50s, EC20s and EC10s, 95% confidence intervals are reported in parentheses. 

However, in addition, this log-linear pH effects suggests that the Biotic Ligand within the BLM concept is 

not adequately represented by a chemical parameter alone, i.e. binding constants for Cu and H+ for a single 

monodentate binding site (De Schamphelaere and Janssen 2004a), as a single-site competitive effect 

would yield a linear relationship between H+ and Cu. It suggests that there are interactions between 

thermodynamic principles and physiological processes. Some possible processes that may explain this 

non-linearity have been suggested by others (e.g. Deleebeeck et al. 2007). For example, the differences in 

pH may result  in a change of membrane permeability and ion transport or the possible existence of a 

Mg2+/HCO3
- transporter (found in Yoshida ascites tumor cells (Günther et al. 1986)) which could transport 

Zn2+ as Mg analogue, could increase uptake and toxicity of Zn2+ at increased HCO3
- concentrations, which 

occur at increased pH. There are a few papers that express similar thoughts, in particular for algae. For 

zinc (De Schamphelaere et al. 2005), the effect of pH could not be fully explained by H+ competition for a 

single zinc-binding site. In addition, it was suggested that the cell wall of algae consists of different types of 

metal-binding sites. Furthermore, similar results were found for copper (De Schamphelaere et al. 2003) and 

nickel (Deleebeeck et al. 2009). 

A generalized BioAvailability Model (gBAM) 

In the previous sections, we have demonstrated that the UGent and HydroQual BLMs differ in their 

predictive capacity depending on the clone (K6 or ARO) for which chronic Cu toxicity predictions are made. 

However, as risk assessment typically aims to protect natural populations (consisting of various clones) 

instead of a single clone, it would be beneficial to have a single bioavailability model that predicts copper 

toxicity to genetically variable populations. In what follows, we take a first step towards such a model, by 

constructing and calibrating an ‘average’ model that can predict chronic toxicity to both clones investigated 

here with reasonable accuracy.   

Unfortunately, unifying the UGent and HydroQual BLMs (i.e. creating an ‘average’ model of both to be able 

to predict both clones accurately) by simply averaging model parameter values is not possible, since the 

UGent and HydroQual BLM are structurally different (Santore et al. 2001; De Schamphelaere and Janssen 

2006). Indeed, the HydroQual model does not have a log 𝐾𝐶𝑢𝐶𝑂3−𝐵𝐿(while the UGent BLM does), and the 

UGent BLM does not have a log KCaBL or a log KMgBL (while the HydroQual BLM) does. 



Chapter 5 

154 
 

Therefore, in this section we develop a model with a different structure which we call the generalized 

BioAvailability Model (gBAM), with the aim of accurately predicting chronic effects of copper in both D. 

magna clones. This will be done by first developing two separate models, 1 for each clone, and then unifying 

these to create an ‘average’ model to predict chronic Cu toxicity to both clones with a single set of parameter 

values. In summary, 3 types of gBAM models were created: (1) one only including a pH parameter: gBAM-

A, (2) one including a pH and a sodium parameter: gBAM-B and (3) one including a pH, a sodium, a calcium 

and a magnesium parameter: gBAM-C. For all 3 models the assumptions of the UGent BLM concerning 

the HA and FA composition of the DOM were applied. 

The first type of model only incorporated a pH constant and is structurally similar to bioavailability models 

developed with algae for Cu (De Schamphelaere et al. 2003), Zn (De Schamphelaere et al. 2005) and Ni 

(Deleebeeck et al. 2009) (Equation 5.4). This model will be referred to as gBAM-A. 

log10(𝐸𝐶50𝐶𝑢2+) = 𝑄50 − 𝑆𝑝𝐻 × 𝑝𝐻                                                                                                  (5.4) 

With 𝐸𝐶50𝐶𝑢2+ the 21-day EC50 expressed as Cu2+ activity (mol x L-1), Q50 = the intrinsic sensitivity of the 

D. magna clone and SpH = the pH slope parameter. To obtain this SpH parameter, we investigated the 

experimental data generated in the present study as the Ca, Mg, Na and DOC concentrations were kept 

constant and only the pH was varied. The linear relations (p < 0.05) between log10(21-day EC50𝐶𝑢2+) versus 

pH generated the SpH values for both D. magna clones (Figure 5.6), resulting in SpH values of 0.77 for K6 

and 0.53 for ARO.  

The SpH values specified above were used to develop the models that will be referred to as gBAM-AK6 and 

gBAM-AARO. To be able to compare the predictive performances of the gBAMs with that of the two BLMs, 

the data that were used to develop the UGent BLM (De Schamphelaere and Janssen 2004c, De 

Schamphelaere and Janssen 2004a) and the data that were used to develop all gBAM models (data from 

this study and Rodriguez and Arbildua 2012) were excluded from the dataset. As such, the comparison 

between both BLMs and the gBAMs is done on the basis of model performance evaluations with an 

independent dataset. All parameter files with calibrated values for running the model in the BLM software 

(HydroQual 2005) are available in the online database (DOI: 10.1002/etc.2952; Supplementary 3) and an 

overview of all parameters is given in Table 5.1. Figure 5.7A shows the performance of both toxicity models 

in predicting Cu toxicity for the clone that they were developed for. 
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Figure 5.6 Free Cu2+ ion activity at the 21-d 50% effective concentration (EC50) as a function of pH for the K6 

(triangles) and ARO (circles) Daphnia magna clone for the data generated in the present study (Table 5.13). 

The gBAM-AK6 model predicts 96% of the K6 clone data within twofold prediction error (mean prediction 

error = 1.5-fold; Table 5.3), which is 14% higher than the UGent BLM and 46% higher than the HydroQual 

BLM (compare with Figure 5.1). The gBAM-AARO model predicts 92% of the ARO clone data within twofold 

prediction error (mean prediction error = 1.5-fold; Table 5.3), which is 18% higher than predictions with the 

UGent BLM and 9% higher than those of the HydroQual BLM. 

These first results suggest that the gBAM-A, which only incorporates a pH slope parameter is, in general, 

more accurate than BLMs that have many more parameters for interactions at the biotic ligand (i.e. 5 for 

the UGent BLM and 6 for the HydroQual BLM).  

Yet it is recognized that factors other than the pH may be important for predicting chronic copper toxicity to 

D. magna. For instance, gBAM-A does not account for some of the bioavailability effects that have been 

observed in studies where individual effects of some water quality variables were studied, notably Ca 

(Rodriguez and Arbildua 2012), Mg (Rodriguez and Arbildua 2012) and Na (De Schamphelaere and 

Janssen 2004a). De Schamphelaere and Janssen (2004a) performed a test in 3 test media with different 

sodium concentrations, but otherwise identical water chemistry (with the exception of the Cl- concentration). 

These authors found a protective effect of sodium on chronic copper toxicity with the K6 clone. The same 

authors were able to derive a sodium stability constant (log KNaBL) from these data. We used this value to 

extend gBAM-A into gBAM-B. 

Although we acknowledge that the sodium constant may, just like the pH effect, also be clone-specific, we 

here assume that the constant derived for the K6 clone is the same for the ARO clone. Thus, gBAM-B 

includes not only a pH slope parameter but also a sodium parameter and the assumption was made that 

there is no interactive effect between pH and sodium on chronic copper toxicity. The Na effect is 

incorporated as a conventional BLM-type competition constant (i.e. as in both the UGent BLM (De 

Schamphelaere and Janssen 2004c) and HydroQual BLM (Santore et al. 2001)). This model is structurally 
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similar to the chronic Ni bioavailability model for Daphnia (Deleebeeck et al. 2008) and fish (De 

Schamphelaere and Janssen 2002) (Equation 5.5).   

log10(𝐸𝐶50𝐶𝑢2+) = (𝑄50 −  𝑆𝑝𝐻 × 𝑝𝐻 ) + 𝑙𝑜𝑔10(1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+))                                                       (5.5a) 

Or, formulated alternatively, but equivalently 

𝐸𝐶50𝐶𝑢2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) × [1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+)]                                                                                 (5.5b) 

With KNaBL the competition constant for sodium of 471 (L ∙ mol−1) (log KNaBL = 2.67) (De Schamphelaere 

and Janssen 2004a) and (Na+) the sodium activity (mol ∙ L−1), Q50 = the intrinsic sensitivity of the D. magna 

clone and SpH = the pH slope parameter.  



 

 
 

 

Table 5.3. Prediction statistics (% of data predicted within twofold prediction error and mean fold prediction error) of the UGent BLM, HydroQual BLM and gBAMs 

for Daphnia magna chronic copper toxicity data. 

Intrinsic sensitivity 
calculated based on: 

Data considered in 
calculation of 
predictive capacity 

UGent 
BLM 

HydroQual 
BLM gBAM-A gBAM-B gBAM-C gBAM-Auni gBAM-Buni gBAM-Cuni 

All data all data 79 (1.7)a 63 (2.4) NA NA NA NA NA NA 

Data per clone 

all data 77 (1.7) 70 (2.0) NA NA NA 93 (1.5) 85 (1.5) 91 (1.4) 

K6 clone 82 (1.6) 50 (2.6) 96 (1.6) 79 (1.7) 89 (1.5) 96 (1.6) 75 (1.6) 89 (1.5) 

ARO clone 74 (1.8) 83 (1.6) 92 (1.5) 92 (1.5) 92 (1.3) 90 (1.5) 92 (1.5) 92 (1.3) 

Data per clone and 
per study 

all data 81 (1.7) 76 (1.6) NA NA NA NA NA NA 

K6 clone 93 (1.6) 54 (2.5) NA NA NA NA NA NA 

ARO clone 74 (1.8) 90 (1.3) NA NA NA NA NA NA 

a Percentage of data predicted within twofold prediction error; mean fold prediction error is reported in parentheses 

NA = Not Applicable; BLM = Biotic Ligand Model; gBAM = generic BioAvailability Model 
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Figure 5.7. Predictive capacity of the models gBAM-XK6 and gBAM-XARO as shown by observed versus 

predicted 21-d 50% effective concentrations (EC50s) of copper to Daphnia magna. The K6 clone data 

(triangles) were predicted with the gBAM-AK6 (A), gBAM-BK6 (B), and gBAM-CK6 (C) models; the ARO clone 

data (circles) were predicted with the gBAM-AARO (A), gBAM-BARO (B), and gBAM-CARO (C) models. The solid 

line is the 1:1 reference line indicating a perfect match between observed and predicted values; the dashed 

lines indicate an error of a factor of 2 between observed and predicted values. gBAM = generalized 

bioavailability model. 

 

The developed models will be referred to as gBAM-BK6 and gBAM-BARO (Appendix D1.3, Table D1.1). 

Figure 5.7B shows the performance of the toxicity models in predicting Cu toxicity for the D. magna 

clones. The gBAM-BK6 model now predicts 79% of the K6 clone data within twofold prediction error 
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(mean prediction error = 1.7-fold; Table 5.3) while the gBAM-BARO model predicts 92% of the ARO clone 

data within twofold error (mean prediction error = 1.5-fold; Table 5.3). Incorporating the sodium constant 

did not further improve model predictions for the K6 clone or the ARO clone. 

Next to the effect of Na demonstrated by De Schamphelaere and Janssen (2008), Rodriguez and 

Arbildua (2012) have demonstrated a significant effect of hardness on chronic copper toxicity in a 

univariate experiment with the ARO clone. A calcium and a magnesium competition constant (KCaBL and 

KMgBL) were calculated based on their data, as was explained previously. These calcium and 

magnesium constants were included in a third type of gBAM, i.e. gBAM-C (Equation 5.6a). It should be 

noted, however, that these constants may be ARO clone-specific. Here we assume that these constant 

are the same for the K6 clone. 

log10(𝐸𝐶50𝐶𝑢2+) = (𝑄50 − 𝑆𝑝𝐻 × 𝑝𝐻 ) 𝑙𝑜𝑔10(1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+) + 𝐾𝐶𝑎𝐵𝐿 ×  (𝐶𝑎2+) + 𝐾𝑀𝑔𝐵𝐿 × (𝑀𝑔2+))               

(5.6a) 

Or, formulated alternatively, but equivalently 

𝐸𝐶50𝐶𝑢2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) ∙ [1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+) + 𝐾𝐶𝑎𝐵𝐿 ×  (𝐶𝑎2+) + 𝐾𝑀𝑔𝐵𝐿 ×  (𝑀𝑔2+)]                       

(5.6b) 

With KCaBL = the calcium competition constant and KMgBL = the magnesium competition constant both 

of 3409 (L ∙ mol−1) (log KCaBL = log KMgBL = 3.53) and (Ca2+) and (Mg2+) the calcium and magnesium 

activities (mol ∙ L−1), respectively. Q50 = the intrinsic sensitivity of the D. magna clone and SpH = the pH 

slope parameter. The developed models will be referred to as gBAM-CK6 and gBAM-CARO (Appendix 

D1.3, Table D1.1). Figure 5.7C shows the performance of the toxicity models in predicting Cu toxicity 

for the D. magna clones. The gBAM-CK6 model now predicts 89% of the K6 clone data within twofold 

prediction error (mean prediction error = 1.5-fold; Table 5.3) while the gBAM-CARO model predicts 92% 

of the ARO clone data within twofold error (mean prediction error = 1.3-fold; Table 5.3). Incorporating a 

sodium, a calcium and a magnesium constant gives a similar model output as the gBAM-A model for 

the ARO clone, but shows a lower predictive capacity for the K6 clone. 

Finally, our aim was to develop a model that could accurately predict toxicity for both clones. Therefore, 

an ‘average’ model was created based on the gBAM-XK6 and gBAM-XARO models, i.e. the gBAM-Xuni 

model (where ‘X’ stand for A, B or C). This average model incorporated a SpH value that was the average 

of the SpH values from the gBAM-XK6 and gBAM-XARO models, i.e. 0.65, but with an intrinsic sensitivity 

value that was kept separate for each clone. These intrinsic sensitivity values were kept separate as 

we acknowledge that both clones originated from possibly different environmental conditions and 

showed a different genotype, which could imply a different sensitivity to metal exposure. The output of 

the gBAM-Auni is given in Figure 5.8A. The generalized model was able to predict most of the 21-day 

EC50s within a factor of 2 from the observed values (93% of all data; mean prediction error = 1.5-fold; 

Table 5.3). For one surface water the model yielded a large underprediction of toxicity, i.e. the predicted 

21-day EC50 was 5 times higher than the observed value. This was also observed in De 

Schamphelaere and Janssen (2004a), who attributed the phenomenon to the large amount of iron and 

aluminum in the sample, which could reduce copper complexation to DOM (Gable and Schnitzer 1973). 
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The predictive capacity of the gBAM-Auni (93 %) is a clear improvement compared to the UGent BLM 

(77%) and the HydroQual BLM (70%).  

The gBAM-Buni model (Figure 5.8B) lost some predictive capacity compared to the gBAM-Auni model 

(i.e. 85% within twofold prediction error; mean prediction error = 1.5-fold; Table 5.3). The gBAM-Cuni 

model (Figure 5.8C) predicts 91% within twofold prediction error (mean prediction error = 1.4-fold; Table 

5.3) and has thus overall similar predictive capacity as that of gBAM-Auni, but is more accurate than the 

UGent and HydroQual BLMs. Furthermore, the 21-day EC50 of the surface water that was 

overestimated by a factor 5 in the gBAM-Auni model and a factor of up to 8 by the UGent BLM (De 

Schamphelaere and Janssen 2004a), was now also predicted within twofold prediction error. Therefore, 

it is possible that not only the large amount of iron and aluminum in this sample had an influence on the 

predictive capacity of gBAM-Auni and the UGent BLM (De Schamphelaere and Janssen 2004a), but that 

hardness, which is included in the gBAM-Cuni as a calcium and a magnesium constant, may also have 

an influence on the predictive capacity of the models. Indeed, the hardness in this test medium was 

very low, i.e. 2.4 mg/L Ca and 0.5 mg/L Mg, compared to all other toxicity tests, which could explain the 

lower 21-day EC50 value due to low competition between Ca, Mg and Cu for the biotic ligand. 

The gBAM-Xuni models could be considered as a first step toward a relatively simple alternative model 

to predict copper toxicity to different clones or even true populations of  D. magna (so far only 2 clones, 

however). In addition, based on all model calculations evaluated above, we recommend the gBAM-Cuni 

model as a valuable (and improved) alternative model for the BLMs. This suggestion is made based on 

2 qualities of the model. (1) The predictive capacity of this model is at least as good or better than the 

BLMs and at least as good as the most simple gBAM (i.e. gBAM-Auni); (2) furthermore, it incorporates 

demonstrated effects of Na, Ca and Mg that have been shown in univariate experiments (De 

Schamphelaere and Janssen 2006; Rodriguez and Arbildua 2012) (although only with 1 clone and for 

a single water chemistry). Due to the latter, further research should therefore aim to investigate 

individual effects of these ions (and pH) in other clones and for other water chemistry variables. 

Furthermore, the assumption of non-interactive effects between pH and these ions (an assumption 

made in the model structure formation of the gBAM) should also be tested. 
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Figure 5.8. Predictive capacity of the models gBAM-Xuni as shown by observed versus predicted 21-d 50% 

effective concentrations (EC50s) of copper to 2 Daphnia magna clones (K6 clone [triangles] and ARO clone 

[circles]). Both clone data were predicted with the gBAM-Auni (A), gBAM-Buni (B), and gBAM-Cuni (C) models. 

The solid line is the 1:1 reference line indicating a perfect match between observed and predicted values; 

the dashed lines indicate an error of a factor of 2 between observed and predicted values. gBAM = 

generalized bioavailability model.
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Conclusion 

Our modeling analysis of chronic toxicity of copper to D. magna suggests that there is an important 

difference between the UGent BLM and HydroQual BLM in how they predict the change of chronic 

bioavailability of copper with increasing pH. Furthermore, it suggests the existence of a different effect 

of pH on chronic Cu toxicity between two D. magna clones. The latter was confirmed with a chronic 

copper toxicity experiment with these clones, K6 and ARO, conducted at two pH levels.  

On the basis of all these results 3 new models, which we call generalized BioAvailability Models, were 

developed. The predictive capacity of these models, i.e. gBAM-Auni, gBAM-Buni and gBAM-Cuni was quite 

similar and all models were more accurate than the UGent BLM and HydroQual BLM. Furthermore, they 

could be considered a first step in predicting toxicity to different clones or even natural populations of D. 

magna. Although more research is needed to (i) further optimize the competition constants, (ii) to test 

the underlying assumption that there is no interactive effect between pH and competitive ions, (iii) to 

test the effect of pH on copper toxicity at intermediate pH levels and (iv) to expand to more clones than 

just the two investigated here, we recommend gBAM-Cuni as a valuable alternative model for the current 

BLMs for further improving methods for criteria derivation and for use in regulatory applications. This 

because the gBAM-Cuni is even more accurate than those already robust current BLMs and since it also 

incorporates demonstrated effects of competing ions whereas the two other gBAMs do not. Furthermore, 

the use of this model would be analogous to the use of similarly structured Nickel bioavailability models 

that are being used to derive EQS values and risk assessments in Europe (DEPI 2008).
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5.2. Chronic Zn Daphnia magna bioavailability model 

Introduction 

Different chronic Zn bioavailability models have been developed and validated for several aquatic 

organisms: Daphnia magna (invertebrate) (Heijerick et al. 2005b), Onchorhynchus mykiss (fish) (De 

Schamphelaere and Janssen 2004b) and Pseudokirchneriella subcapitata (algae) (De Schamphelaere 

et al. 2005). These bioavailability models account for the influence of water chemistry variables of 

surface waters on chronic toxicity of Zn. In general Ca, Mg and Na are protective against chronic Zn 

toxicity to aquatic organisms, whereas an increase in pH increases the chronic Zn toxicity (Heijerick et 

al. 2005b; De Schamphelaere and Janssen 2004b; De Schamphelaere et al. 2005). It has been shown 

that chronic Zn bioavailability models can be extrapolated to several other species, including Lymnaea 

stagnalis (snail) (De Schamphelaere and Janssen 2010), Brachionus calyciflorus (rotifer) (De 

Schamphelaere and Janssen 2010) and Chlorella sp. (algae) (Wilde et al. 2006). This makes so-called 

‘read-across’ during normalization of toxicity data possible to any given target water chemistry (Van 

Sprang et al. 2009).  

Bioavailability models have, during the past years, increasingly been used in the evaluation of ecological 

risks of Zn in surface waters. For instance, Zn bioavailability models have been implemented to derive 

bioavailability-normalized predicted no effect concentrations (PNEC) in the risk assessments performed 

in the European Union (Van Sprang et al. 2009; RAR Zn 2006). However, the bioavailability models 

used in risk assessments have only been validated within certain ranges of water chemistry. For 

instance, the D. magna and P.subcapitata models are both validated for a pH up to 8.0 and Ca 

concentrations between 5 and 160 mg/L (Heijerick et al. 2005b; De Schamphelaere et al. 2005).  Yet, 

28% and 20% of the European surface waters have a pH above or a Ca concentration below this 

‘validation boundary’, respectively (Salminen et al. 2005). This means that a considerable number of 

European waters falls outside the applicability range of the bioavailability models. Therefore, the use of 

the bioavailability normalization in regulatory frameworks for Zn involves uncertainty for these waters. 

The purpose of the present study was therefore to evaluate if the Zn bioavailability models, i.e. that for 

D. magna and P.subcapitata, can be extrapolated to pH above 8 and a Ca concentration below 5 mg/L 

or if modifications of the current chronic bioavailability models are needed.  For this purpose, chronic 

toxicity experiments were conducted with natural surface waters representative for high pH and low Ca 

concentration waters.  

Based on the results, we also explored the ability of a generalized BioAvailability Model (gBAM) as an 

alternative for biotic ligand model to predict chronic effect concentrations for Zn to D. magna. In addition, 

the cross-validation of the gBAM to species other than D. magna was also evaluated. 
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Materials and Methods  

Collection of test media 

Test media were sampled in two time periods. In April 2013 (from now referred to as ‘first time period’), 

water was sampled for tests with D. magna and P.subcapitata and in October 2014 (from now referred 

to as ‘second time period’), water was sampled for additional tests with P.subcapitata. Samples of 

natural surface waters were taken at nine locations in France and two locations in Belgium (Table 5.4), 

of which was known that yearly average pH values were above 8 and/or yearly average Ca 

concentrations were below 5 mg/L. The natural waters were sequentially filtered on site through 10 µm, 

1 µm and 0.2 µm filters (Eurowater, FZ 2001-010, 2021-001, 3005-020)  and were collected in acid-

washed (1% HNO3) polyethylene vessels. The water was stored in total darkness until use.  

Ecotoxicity testing with D. magna  

Preparation of test media.  

To investigate the individual effect of pH and Ca on chronic zinc toxicity to D. magna, tests were 

conducted in 7 natural waters as well as two synthetic test solutions based on the EEG medium (Elendt 

and Bias 1990). Both synthetic test solutions were prepared using deionized water and reagent-grade 

chemicals purchased from VWR International. Tests with synthetic test media were conducted at pH 8.4 

and pH 7.2 (reference EEG medium). The latter test solution was adjusted to the required pH of 7.2 by 

adding 750 mg/L of 3-N-morpholinopropanesulfonic acid (MOPS) and the required amount of NaOH or 

HCl. MOPS has the property not to affect metal speciation (Kandegedara and Rorabacher 1999), nor is 

it toxic or does it affect Zn toxicity to freshwater organisms (De Schamphelaere et al. 2004). All test 

solutions were adjusted to the target pH by adding dilute HCl or NaOH.  

For each test, a zinc concentration series was prepared by adding ZnCl2. Each test series consisted of 

a control treatment and 7 zinc treatments. To allow equilibration, solutions were spiked with zinc 48 

hours prior to testing.  

 

D. magna culturing.  

Toxicity tests were performed with the D. magna K6 clone which was originally collected from a pond in 

Kiel (Antwerp, Belgium) and has been cultured at the Laboratory for Environmental Toxicology and 

Aquatic Ecology (University of Ghent, Belgium) for more than 20 years under standardized conditions. 

The culture medium consisted of aerated and filtered Ghent (Belgium) city tap water to which selenium 

(1 µg/L) and vitamins (75 µg/L thiamine, 1 µg/L cyanocobalamin and 0.75 µg/L biotin) was added (pH 

7.7, DOC 2.1-3.3 mg/L, hardness 127-136 mg/L as CaCO3, 5-7 µg/L zinc dissolved (Muyssen et al. 

2006)). Cultures were kept at 20 ± 1 °C, with a 12:12 light:dark photoperiod. Daphnids were maintained 

in 5 L culture glass vessels with 4 L medium, each containing 200 individuals. The medium was changed 

3 times a week. The daphnids were fed with a mixture of P.subcapitata and Chlamydomonas reinhardtii 

in a 3:1 ratio based on cell number (3.75 x 106 cells/daphnid from day 0 to day 8 and 7.5 x 106 

cells/daphnid from day 9 onward). 



 

 
 

Table 5.4. Overview of the locations and sampling dates of the natural surface waters with which toxicity tests were performed. 

Site ID 
Coordinates 

Location 
District, country 
codea 

Waterbasin 
Sampling date 

Latitude Longitude (dd-mm-yyyy) 

La Voyon 50° 6' 4.9'' 4° 5' 51.3'' Eppe-Sauvage 
Nord-Pas-de-
Calais, F 

Meuse 28-10-2014 

La Brisy 50° 14' 27.3'' 5° 48' 30.6'' Brisy Luxembourg, B Meuse 28-10-2014 
Le Bihain 50° 8' 52.9'' 5° 50' 46'' Bihain Luxembourg, B Meuse 28-10-2014 
La Seille 48° 56' 30.93'' 6° 7' 30.10'' Tomblaine Lorraine, F Rhine 8/04/2013 and 29-10-2014 
Le Madon 48° 34' 33.78'' 6° 6' 29.63'' Xeuilley Lorraine, F Rhine 8/04/2013 and 29-10-2014 
Le Loire 58° 22' 17.3'' 4° 11' 45.5'' Aurec-Sur-Loire Auvergne, F Loire 29-10-2014 
La Moselotte 47° 58' 4.87'' 6° 43' 47.32'' Saulxure-sur-Moselotte Lorraine, F Rhine 9/04/2013 
La Dolaizon 45° 0' 53.86'' 3° 50' 21.33'' Saint-Christophe-sur-Dolaison Auvergne, F Loire 10/04/2013 and 30-10-2014 
Le Taurion 45° 47' 27.95'' 2° 1' 59.13'' Gentioux-Pigerolles Limousin, F Loire 11/04/2013 and 30-10-2014 
La Maulde 45° 50' 55.79'' 1° 48' 16.23'' Saint-Martin-Chateau Limousin, F Loire 11/04/2013 and  30-10-2014 
La Gartempe 46° 4' 18.96'' 1° 55' 21.50'' Lépinas Limousin, F Loire 11/04/2013 

a F = France, B = Belgium 
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Ecotoxicity testing.  

Chronic D. magna tests were performed according to the Organization of Economic Cooperation and 

Development (OECD) test guideline 211 (2012). For each treatment, 10 juvenile animals (< 24h old) 

were held individually in polyethylene cups containing 50 mL of test medium. Animals were fed daily 

with an algal mixture of P.subcapitata and C. reinhardtii in a 3:1 ratio (based on cell number). Each cup 

received 250, 500 or 750 µg dry weight of food per day in the first, second and third week of exposure, 

respectively. The total duration of the test was 21 days. The medium was renewed three times a week 

during the experimental period (i.e. day 3, 6, 8, 10, 13, 15, 17 and 19). Parent mortality and number of 

produced juveniles was recorded daily. Total reproduction per daphnid was measured by counting the 

juveniles in each daphnid test unit. Test validity was evaluated as described by the OECD guidelines 

(2012). 

Ecotoxicity testing with P.subcapitata  

Preparation of test media.  

To investigate the individual effect of pH and Ca on chronic zinc toxicity to P.subcapitata, tests were 

conducted in 15 natural waters showing high pH or low Ca concentrations. In addition, three waters 

were tested that showed pH and Ca concentrations that fell inside the bioavailability model ‘validity 

ranges’ 

A reference water (OECD growth medium) was prepared according to the standard protocol 201 of the 

OECD for testing with P.subcapitata (OECD 2011). However, some adjustments were made. (1)  Stock 

C was made without addition of Zn and (2) Na-EDTA was omitted from Stock B as EDTA is known to 

be a very strong metal complexing ligand and is therefore not appropriate for metal toxicity testing. All 

OECD stock solutions were subsequently added to the natural waters at the concentrations as indicated 

in the OECD guideline, to provide extra nutrients during testing. 

Natural waters that fell within BLM boundaries (pH 5.7 – 8, Ca 5 – 160 mg/L) as well as those with low 

Ca concentrations (Ca < 5 mg/L) were adjusted to the required pH by adding MOPS (Kandegedara and 

Rorabacher 1999; De Schamphelaere et al. 2004) and the required amount of NaOH or HCl. High pH 

waters (pH > 8) were not MOPS-buffered and were adjusted to the required pH by adding NaOH or HCl 

only. 

For each test, a zinc concentration series was prepared by adding ZnCl2. Each test series consisted of 

a control treatment and 6 zinc treatments. To allow equilibration, solutions were spiked with zinc 24 

hours prior to testing.  

P.subcapitata culturing.  

Toxicity tests were performed with a P.subcapitata strain (CCAP 278/4) that was obtained from the 

Culture Collection of Algae and Protozoa (CCAP, at the Scottish Association for Marine Science, Argyll, 

Scotland, United Kingdom). A culture of the algae was set up 4 days prior to testing in aerated tap water 

(Gent, Belgium) that was passed sequentially through an activated carbon and a 0.45 µm filter to which 

the modified Provasoli’s ES enrichment (Bold and Wynne, 1978) at 1/2 strength and, additionally, 1.4 

mg/L FeSO4.7H2O, 15 mg/L NaH2PO4.2H2O, 150 mg/L NaNO3 and 2.35 mg/L MnCl2.4H2O were added. 
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The flasks containing the algae were placed on a shaking device under continuous light (120 µmol 

photons.m-2.s-1) at 25°C. 

Ecotoxicity testing. 

The chronic toxicity tests with P.subcapitata were conducted following the OECD Guideline 201 (2011). 

Algal tests were performed in 100 mL Erlenmeyer flasks containing 50 mL of test medium. Each 

concentration had three replicates. In addition, 5 replicates with a blank correction (no algae) were 

tested. All replicates, except the blank corrections, were inoculated with 104 cells/mL (= cell density N0 

at the start (t0) of testing). Afterwards, all Erlenmeyer flasks were incubated at 24 °C on a light table (24 

h light, 120 µmol photons.m-2.s-1) and were manually shaken two times per day. During the test, the pH 

was adjusted daily by adding NaOH or HCl. Cell densities (N1, N2 and N3) were measured using a 

particle counter (Coulter Counter  Z1, Beckman) after 24 (t1), 48 (t2) and 72 (t3) hours. Growth rate µ (d-

1) was determined in each replicate of each treatment as the slope of the linear regression of the natural 

logarithm of cell density versus time (in days). Test validity was evaluated as described by the OECD 

guidelines (2011). 

Chemical analysis  

During the test period, samples of fresh (sample of new medium just before transfer of daphnids to the 

cup or inoculating the algae to the Erlenmeyer flask) and old (sample taken of medium just after transfer 

of daphnids to a new cup or at the end of the experimental period for P.subcapitata) test media were 

collected regularly for analysis of total (unfiltered) and dissolved (filtered through 0.45 µm; Acrodisc, 

PALL Life Sciences) metals, major ions, organic carbon (OC) and inorganic carbon (IC). For 

P.subcapitata, total samples of media were taken at test initiation and dissolved samples both at test 

initiation, and after 48h and 72h. However, for tests in natural waters with addition of MOPS, samples 

for analysis of DOC (Dissolved Organic Carbon) and TOC (Total Organic Carbon) were taken before 

addition of MOPS. For D. magna, total and dissolved samples of fresh media were taken during the first 

renewal of each week. Dissolved samples of old media were taken during the second renewal of each 

week. 

Samples for metal analysis were acidified to 0.14 mol/L HNO3 (Normatom quality, VWR Prolabo). All Zn 

concentrations above 20 µg/L were measured using flame atomic absorption spectrophotometry 

(SpectrAA100, Varian, Mulgrave, Australia). Zinc concentrations below 20 µg/L were measured with 

inductively coupled plasma mass spectrometry (ICP-MS; Agilent 7700x, in the He mode using 72Ge as 

internal standard).  OC and IC were measured with a Total Organic Carbon analyser following the NPOC 

method (TOC-5000, Shimadzu, Duisburg, Germany; Limit of Quantification 1.5 mg DOC/L; Method 

Detection Limit 0.5 mg DOC/L). The NPOC method (Non-Purgeable Organic Carbon) entails that after 

purging the sample with air (to remove inorganic carbon), the remaining organic carbon is measured. 

Samples for calcium and magnesium were taken at the start and at the end of the test, and were 

measured with flame atomic absorption spectrophotometry. for sodium and potassium were also taken 

at the start and at the end of the test, and were measured with inductively coupled plasma mass 

spectrometry (ICP-MS; Agilent 7700x, in the He mode using 72Ge as internal standard). Chloride and 

sulphate samples were taken at the start and at the end of the test, and were measured with 
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spectrophotometry (Aquamate, Thermo Electron Corporation; Chloride: Merck, Spectroquant 

1.14897.001; Sulphate: Merck, Spectroquant 1.14548.001). The pH of fresh and old media were 

measured daily with a pH glass electrode (Hanna Instruments, Temse, Belgium). 

Data analysis 

Effect concentrations (EC10 and EC50) were calculated based on average measured dissolved metal 

concentrations. For D. magna this is the average zinc concentration of new and old medium, for 

P.subcapitata this is the average zinc concentration at the start of the test and after 72 or 48 hours. Total 

number of juveniles per female was used as the endpoint for the D. magna experiments. Relative growth 

rate (relative to the mean control reproduction, %) was used as the endpoint for the P.subcapitata 

experiments.  

EC50, EC10 and corresponding confidence intervals were determined for Zn using the drc-package in 

R 2.14.1 (R Development Core Team, Vienna, Austria) with a log-logistic concentration response model 

with two parameters (Equation 5.7). 

𝑦 =
100

1+𝑒𝑥𝑝(𝑏(ln(𝑥)−ln(𝐸𝐶50)))                                      (5.7) 

Where y is the total number of juveniles (D. magna) or the predicted relative growth rate (%) 

(P.subcapitata); b is a slope parameter; x is the dissolved metal concentration (µg/L) and EC50 is the 

50% effect concentration (µg dissolved metal/L).  

Bioavailability modeling 

To investigate whether the chronic Zn bioavailability models can be reliably extrapolated to pH above 8 

and Ca concentrations below 5 mg/L, predictions of Zn toxicity were made using the existing chronic Zn 

Biotic Ligand Model (BLM) for D. magna (Heijerick et al. 2005b) and the existing chronic bioavailability 

model for P.subcapitata (De Schamphelaere et al. 2005). In all cases, we maintained all stability 

constants for cation binding to the biotic ligand as well as the critical accumulation of zinc to the biotic 

ligand at their original values. 

For D. magna,  chronic EC50 values were estimated using Equation 5.8. 

𝐸𝐶50(𝑍𝑛2+) =
𝑓𝑍𝑛𝐵𝐿

50%

(1−𝑓𝑍𝑛𝐵𝐿
50% )∙𝐾𝑍𝑛𝐵𝐿

 ∙ {1 + 𝐾𝐶𝑎𝐵𝐿 ∙ (𝐶𝑎2+) +  𝐾𝑀𝑔𝐵𝐿 ∙ (𝑀𝑔2+) +  𝐾𝑁𝑎𝐵𝐿 ∙ (𝑁𝑎+) + 𝐾𝐻𝐵𝐿 ∙ (𝐻+)}  (5.8) 

Where 𝑓𝑍𝑛𝐵𝐿
50% is the fraction of the total number of zinc binding sites of the BLM occupied by zinc resulting 

in a 50% effect, and KXBL is the stability constant of cation X (i.e., Ca2+, Mg2+, Na+ or H+) reacting with 

the BL sites. Stability constants and 𝑓𝑍𝑛𝐵𝐿
50%  values that were used in this equation were taken from 

Heijerick et al. (2005) and are given in Table 5.5. We would like to remark however, that in the paper by 

Heijerick et al. (2005), a slightly wrong constant for  𝑓𝑍𝑛𝐵𝐿
50%  was reported, likely due to a typographic error, 

i.e. 0.127 was reported while the correct value of 0.117 has always been used in the BLM parameter 

files for modeling in our previous bioavailability studies with D. magna (Heijerick et al. 2005b; De 

Schamphelaere et al. 2005). In the present study too, the correct value of 0.117 was used. All 

computations were executed with the available BLM software (HydroQual 2005), for which the 

parameter files can be found in the online database (DOI 10.1002/etc.3840, Supplementary 1).  
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Table 5.5. Bioavailability model constants for chronic Zn exposure of Daphnia magna and 

Pseudokirchneriella subcapitata 

 Daphnia magna BLMa 
Pseudokirchneriella subcapitata 

Bioavailability modelb 

 EC10c EC50d EC10 EC50 

Log KZnBL
e 5.31 5.31 NIf NI 

Log KCaBL 3.22 3.22 NI NI 

Log KMgBL 2.69 2.69 NI NI 

Log KNaBL 1.9 1.9 NI NI 

Log KHBL 5.77 5.77 NI NI 

ƒ𝑍𝑛𝐵𝐿
𝑥%  0.0979 g 0.117 h NI NI 

SpH
i NI NI -0.754 -0.652 

Qj NI NI 1.294 1.197 
a Endpoint: 21-d reproduction, Heijerick et al. [3] 
b Endpoint = 72-h growth rate, De Schamphelaere et al. [5] 
c EC10 = the 10% effective concentration 
d EC50 = the 50% effective concentration   
e Log KXBL = stability constant of cation X (Zn2+, Ca2+, Mg2+, Na+ or H+) to the biotic ligand. 
f NI = Not Included in the model 
g faction of biotic ligand sites occupied by Zn at 10% effect, calculated from data reported in De Schamphelaere et al. [5] 
h fraction of biotic ligand sites occupied by Zn at 50% effect. 
i The slope of the linear regression between the log (𝐸𝐶𝑥)𝑍𝑛2+ and pH, for the EC10 and EC50, respectively. 
j Intrinsic sensitivity of P.subcapitata at the EC10 and EC50, respectively. 

To predict the EC10s of the natural waters, the observed EC10 of the synthetic water in De 

Schamphelaere  et al. (2005) was used to generate a 𝑓𝑍𝑛𝐵𝐿
10% . This was done by using the BLM software 

in speciation mode, with the physico-chemistry of the synthetic water and the observed EC10 as input. 

The 𝑓𝑍𝑛𝐵𝐿
10%  is given in Table 5.5. 

For P.subcapitata,  chronic effect concentrations resulting in x% effect (ECx) were estimated using 

Equation 5.9. 

log (𝐸𝐶𝑥(𝑍𝑛2+)) =  𝑆𝑝𝐻 ∙ 𝑝𝐻 − 𝑄𝑥                                                                                                           (5.9) 

Where SpH is the slope of the pH-regression and Qx is a measure for the intrinsic sensitivity that 

corresponds with x% growth inhibition. The interpretation of the Qx value is analogous to that of the 

critical accumulation on the biotic ligand in the BLM (where it is, for instance, called the LA50 at 50% 

effect). Likewise, the Qx value is also (just like the LA50) assumed to be independent of water chemistry 

and hence an intrinsic property of the organism. Slopes and intrinsic sensitivities that were used in this 

equation can be found in De Schamphelaere et al. (2005) and are given in Table 5.7. Computations 

were executed with available BLM software (HydroQual 2005), for which the parameter files can be 

found in the online database (DOI: 10.1002/etc.3840 , Supplementary 1). 

The predicted chronic ECx values were compared with the observed ECx values to evaluate the 

predictive capacity of both bioavailabity models. In addition, the relations between pH, Ca2+, Mg2+ , Na+ 

activities and observed effect concentrations expressed as free ion activities were examined. Since free 

ion activities are not provided as BLM output, Zn2+, Ca2+, Mg2+ and Na+ activities were calculated from 

the BLM software output with the Davies Equation (Stumm and Morgan 1996; Malmberg and Maryott 

1956) as explained in Appendix D (D1.2).  
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Results and Discussion 

Evaluation of D. magna BLM predictive capacity 

The validity criteria of the standard tests for D. magna were met for all waters with high pH, but only in 

1 out of 4 waters with low Ca concentrations. The latter is most likely due to calcium deficiency of D. 

magna in the softwater test waters (Alstad et al. 1999; Hessen et al. 2000; Hooper et al. 2008; Muyssen 

et al. 2009). Therefore, to assess the effect of low calcium concentrations on chronic Zn toxicity, 

experiments should in the future be conducted with a species such as Daphnia pulex, which is a native 

to Europe (Colbourne et al. 1998). This species has previously been successfully tested in our lab (De 

Coninck et al. 2014) and originates from a softwater environment (Edwards et al. 2015). Results from 

the experiments with D. magna in low Ca concentration waters will therefore not be investigated or 

discussed in further detail in this manuscript. 

Concentration response data and fitted concentration response curves for D. magna based on dissolved 

Zn concentrations are shown in Appendix D (D2.1). EC10 and EC50, expressed as dissolved Zn, as 

well as the water chemistry data are summarized in Table 5.6. DOC levels for the synthetic waters are 

given as a range of DOC values between the approximate background DOC concentration in deionized 

water used for preparing the synthetic test waters (0.3 mg/L DOC) [24] and the Limit of Quantification 

(LOQ) of the TOC analyzer (2.1 mg/L DOC). This was done because all DOC measurements were 

below the LOQ, but DOC concentrations can increase during the test due to DOC excretion by D. magna 

and  P.subcapitata (as food organism). All calculations were executed with this range of DOC values. 

 

Predictions of Zn toxicity to D. magna were compared with observed 21-day EC50 and EC10 values. 

The ECx data on D. magna reported in Heijerick et al. (2005) and De Schamphelaere et al. (2005) were 

also included in the comparison. The BLM predictions for chronic toxicity are plotted in Figure 5.9. A 

bioavailability model is in general accepted to be sufficiently accurate and applicable in risk assessment 

when the majority of ECxMediss is predicted within twofold error (RAR Zn 2006; ECI 2008; DEPI 2008). 

The BLM was able to predict 91% of the EC50 toxicity data within twofold error and showed a mean 

prediction error of 1.39-fold (Table 5.7). Futhermore, the BLM was able to predict 36% of the EC10 

toxicity data within twofold error and showed a mean prediction error of 2.44-fold (Table 5.7). A range 

of predictions for the reference EEG and the synthetic water are given due to the DOC assumptions 

made earlier. It is clear that for D. magna, the influence of this DOC range on the toxicity predictions is 

limited (i.e. 1.13 fold for the EC50 of the reference EEG medium and 1.23 fold for the EC50 of the 

synthetic water).  

A trend of underestimation of toxicity (overestimation of EC50) at higher pH levels can be observed in 

the data generated in this study, which confirms previous results by De Schamphelaere et al. (2005), 

who also found the same trend in their toxicity data.  



 

 
 

Table 5.6. Physico-chemistry and effect concentrations of zinc (µg/L as dissolved) obtained for the toxicity tests in 7 natural and 2 synthetic waters with Daphnia 

magna (numbers between parentheses are 95% confidence limits) a 

  
 

pHc 
 

DOCc Cac Mgc Nac Kc SO4
c Clc DICc 21-d 21-d 

Slope 

Test water Boundariesb (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) EC10 EC50 
β 

La Seille High pH 8.2 3.93 155.89 53.03 245.40 4.96 195.75 366.13 48.90 165 (73-257) 340 (261-420) 3.03 
Le Madon High pH 8.07 3.13 131.50 40.27 33.13 2.83 182.78 38.04 48.62 203 (165-242) 311 (283-339) 5.17 
La Dolaizon High pH 8.07 4.26 15.03 13.00 11.22 1.81 5.14 10.39 16.84 109 (71-146) 173 (150-197) 4.71 
Synthetic water High pH 8.4 0.3-2.1d 68.02 11.67 59.57 3.21 46.22 154.85 29.97 NCe 126 (58-194) 1.45 
La Moselotte  Low Ca 7.15 5.13 4.75 1.31 7.78 0.81 5.56 10.7 2.89 58 (49-67) 64 (33-95) 22.44 
Le Taurion f Low Ca 6.48 6.26 1.88 0.59 4.61 0.69 4.64 5.65 1.26 < 58.2 < 58.2 NDg 
La Maulde f Low Ca 6.51 6.37 1.87 0.5 3.76 0.8 4.57 7.30 1.49 < 66.2 < 66.2 NDg 
La Gartempe f Low Ca 7.02 10.14 2.81 0.94 6.11 1.19 5.72 6.05 2.77 < 96.5 < 96.5 NDg 
EEG reference Within 7.21 0.3-2.1d 92.08 14.11 85.03 3.51 57.95 161.65 9.41 312 (234 -390) 376 (333-419) 11.87 

a EC10 and EC50 = the 10% and 50% effective concentration, respectively. 
b Does the water fall within the BLM boundaries, or does is represent a water with high pH or low Ca concentrations 
c pH, Dissolved Organic Carbon, cations, anions and Dissolved Ionrganic Carbon, given as the mean value between the start and the end of the test. 
d DOC concentration between the approximate background DOC concentration in deionized water used for preparing this synthetic test water [20] and the LOQ (Limit of Quantification) of the TOC 

(Total Organic Carbon) analyzer. 
e NC = could not be calculated due to high mortality or only partial effects observed in the toxicity tests. 
f Toxicity tests performed in these waters did not pass validity criteria, as the mean reproduction of the control treatment did not exceed the required 60 offspring. 
g ND = value could not be determined because the toxicity tests did not pass validity criteria
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To assess the effects of physico-chemical parameters in more detail, we examined the relation between 

logarithmic model-measurement deviations (i.e. log Observed 𝐸𝐶50𝑍𝑛2+  – log Predicted 𝐸𝐶50𝑍𝑛2+; 

further denoted O/P) and the chemistry of the test media. To this end, the correlation (r²) was determined 

between O/P and pH, H+ activity, DOC, Na+ activity, Ca2+ activity and Mg2+ activity. Figure 5.10 shows 

that there is a high and significant correlation between O/P and pH (r² = 0.58, p < 0.001). According to 

the BLM O/P data, the BLM tends to overestimate the EC50 (as Zn2+ activity) at high pH and therefore 

underestimates toxicity, which again confirms results from De Schamphelaere et al. (2005). The 

influence of the other physico-chemical parameters on the responses of D. magna is not as clear as for 

pH (much smaller r² or non-significant correlation).  

The trend of underestimation of toxicity at higher pH levels is also observed in the significant correlation 

between the observed Zn2+ activities and pH  (r²= 0.4, p<0.001) (Figure 5.11). Data generated in the 

present study fall within the range of observed data points from previous studies, suggesting that there 

is no shift in sensitivity between studies. Predictions made by the BLM are also indicated on Figure 5.11 

(for a water with high Ca concentration (160.3 mg/L) and low Ca concentration (1.87 mg/L); orange 

dashed lines). It is clear from this figure, that the BLM predicts almost no change of the 𝐸𝐶50𝑍𝑛2+ as a 

function of pH, once pH gets above a value of about 6.5. Indeed the BLM only predicts an important 

effect of pH on 𝐸𝐶50𝑍𝑛2+below pH 6.5, due to the H+ competition included in the BLM (2005). Yet, this 

contrasts with the data (dots and dashed linear regression in Figure 5.3), that indicate a more or less 

continuous decrease of 𝐸𝐶50𝑍𝑛2+ with increasing pH over the entire pH range (0.17 log units per pH 

unit), and certainly above pH>6.5. This suggests that the current chronic Zn BLM for D. magna is not 

able to reflect the observed pH effect over such a broad pH range (5.5-8.5) and that a refinement of this 

model is justified.  
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Figure 5.9. Observed versus predicted effect concentrations (EC) of zinc (as dissolved Zn) for four natural 

and two synthetic waters, and for four natural and one synthetic water, for the 21-d EC50 (○) (top) and the 

21 d EC10 (∆) (bottom) for Daphnia magna, respectively. Full symbols indicate data for which the tests did 

not pass validity criteria. ECx values reported in De Schamphelaere et al. (2005) (X) and Heijerick et al. 

(2005) (+) are also included in the figure. The full line and dashed lines indicate a perfect match and a factor 

two difference between the observed and predicted EC. EC50 = the 50% effective concentration, EC10 = the 

10% effective concentration. A range of predicted EC50 values is given for the synthetic waters (those 

marked with “synthetic” or “EEG”) as a consequence of the range of DOC values of these waters, which 

lied between the approximate background DOC concentration in deionized water used for preparing the 

synthetic test waters (0.3 mg/L DOC) [20] and the Limit of Quantification (LOQ) of the TOC analyzer (2.1 

mg/L DOC). As all DOC measurements were below the LOQ, but DOC concentrations can increase during 

the test due to DOC excretion by D. magna and  P.subcapitata (as food organism), all calculations were 

executed with this range of DOC values.



 

 

 

Table 5.7. Prediction statistics (fold prediction error) of the BLM for Daphnia magna (Heijerick et al. 2005b)  and the bioavailability model for Pseudokirchneriella 
subcapitata (De Schamphelaere et al. 2005) 

 Daphnia magnaa 

 EC50e EC10e 

  
All f 

(n = 33)  
New g 

(n=5) 
All  

(n=11) 
New  

(n=4) 
Mean prediction error 1.39 1.82 2.44 2.31 
Median prediction error 1.23 1.7 2.04 2.11 
75th percentile error 1.41 2.15 2.77 2.58 
90th percentile error 1.78 2.4 3.74 3.28 
Predicted within 2-fold error (%) 91 60 36 25 

 

 

Pseudokirchneriella 
subcapitatab 

Existing model 

Pseudokirchneriella 
subcapitatac 

Model with new intrinsic sensitivity 

Pseudokirchneriella 
subcapitatad 

Model with new intrinsic sensitivity and 
slope value 

 EC50 EC10 EC50 EC10 EC50 EC10 

SpH
e -0.752 -0.652 -0.752 -0.652 -0.727 -0.816 

Qf 1.294 1.197 2.231, 1.816g 2.144, 1.646g 1.720, 1.260, 0.796h 1.769, 1.186, 0.943h 

  
All i 

(n = 30) 
Newj 
(n=23) 

All i 

 (n = 27) 
Newj 
(n = 20) 

All i 

 (n = 30) 
Newj 
(n=23) 

All i 

(n = 27) 
Newj 
(n = 20) 

All i 

 (n = 30) 
Newj 
(n=23) 

All i 

 (n = 27) 
Newj 
(n = 20) 

Mean prediction error 3.55 4.18 2.54 2.99 1.54 1.56 1.60 1.72 1.50 1.53 1.55 1.65 
Median prediction error 2.80 3.32 1.62 2.46 1.49 1.52 1.44 1.65 1.41 1.42 1.48 1.56 
75th percentile error 3.91 4.08 3.11 3.48 1.70 1.77 1.85 1.96 1.65 1.64 1.65 1.84 
90th percentile error 6.16 9.16 4.63 5.63 2.18 2.15 2.12 2.23 1.86 1.87 1.93 2.08 
Predicted within 2-fold error (%) 30 13 56 40 87 87 81 75 93 91 89 85 

a Prediction statistics for the existing D. magna BLM [1] (see Table 5.2); b Prediction statistics for the existing P.subcapitata bioavailability model (De Schamphelaere et al. 2005) (see Table 5.2); c 

Prediction statistics for the existing P.subcapitata bioavailability model (De Schamphelaere et al. 2005) with recalibrated intrinsic sensitivity (Q); d Prediction statistics for the existing P.subcapitata 

bioavailability model (De Schamphelaere et al. 2005) with recalibrated intrinsic sensitivity (Q) and SpH value;  e The slope of the linear regression between the log (𝐸𝐶𝑥)𝑍𝑛2+ and pH, for the EC0 and 

EC10, for the different bioavailability models; j Intrinsic sensitivity of P.subcapitata at the EC50 and EC0, for the different bioavailability models; g Intrinsic sensitivity for the first time period and the 

second time period, respectively; h Intrinsic sensitivity for the first time period, the second time period, and the data reported in De Schamphelaere et al (2005), respectively;  i All data reported in De 

Schamphelaere et al (2005), Heijerick et al (2005) and this study (data that passed validity criteria); jAll data that passed validity criteria generated in this study; EC50 = 50% effective concentration, 

EC10 = 10% effective concentration
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Figure 5.10. Logarithmic differences (i.e. log Observed Zn2+ activity – log Predicted Zn2+ activity) against 

different chemical parameters (pH, H+ activity, DOC (mg/L), Na+ activity, Ca2+ activity and Mg2+ activity). 

Blue symbols indicate data from De Schamphelaere et al. (2005)  and Heijerick et al. (2005), green 

symbols indicate data from this study for D. magna that passed the validity criteria. 

 

Figure 5.11. Zinc activity at the 72-h 50% effective concentration (EC50) as a function of pH for three 

natural and two synthetic waters (green symbols). Data reported in De Schamphelaere et al. (2005) and 

Heijerick et al. (2005) are indicated with blue symbols. Orange dashed lines give the range of predictions 

made by the BLM for a water with low Ca concentration (1.87 mg/L) and high Ca concentration (160.3 

mg/L).  
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Evaluation of P.subcapitata BLM predictive capacity 

The validity criteria of the standard tests for P.subcapitata were not met for some waters (D2.2). 

However, if the growth rate of P.subcapitata for the control treatments did not pass validity criteria after 

72-h, the OECD guideline permits that the tests may be shortened to 48-h to maintain unlimited, 

exponential growth during the test as long as the validity criteria are met. Therefore, the 48-h growth 

rate, for which all criteria were met, was used to calculate effect concentrations. Concentration response 

data and fitted concentration response curves for P.subcapitata based on dissolved Zn concentrations 

are shown in Appendix D (D2.1). EC10 and EC50, expressed as dissolved Zn, as well as the water 

chemistry data are summarized in Table 5.8. 

Predictions of Zn toxicity to P.subcapitata were compared with observed 48-h or 72-h EC50 and EC10 

values. The ECx data on P.subcapitata reported in De Schamphelaere et al. (2005) were also included 

in the comparison. The bioavailability model predictions for chronic toxicity are plotted in Figure 5.12. 

The bioavailability model was able to predict 30% of the EC50 toxicity data within twofold error and 

showed a mean prediction error of 3.6-fold (Table 5.7). Furthermore, the bioavailability model was able 

to predict 56% of the EC10 toxicity data within twofold error and showed a mean prediction error of 2.5-

fold (Table 5.7). 

It is clear from Figure 5.12 that the predicted toxicity data for waters that have a water chemistry (pH 

and calcium) that fall within the bioavailability model boundaries (green color) do generally not fall within 

a factor 2 prediction error. This suggests that the sensitivity of the algae have shifted compared to the 

tests performed by De Schamphelaere et al. (2005), as has been observed previously (Deleebeeck et 

al. 2009). Therefore, bioavailability model predictions were repeated after recalibration of the intrinsic 

sensitivity of the algae for the toxicity data generated in the present study. As the intrinsic sensitivity for 

those waters that fell within bioavailability model boundaries was similar to that for waters that fell outside 

bioavailability model boundaries, an intrinsic sensitivity value was calculated based on all data. 

Furthermore, as the intrinsic sensitivity for the 48-h and 72-h tests were similar, we chose to calculate 

one average value for both test durations. A separate intrinsic sensitivity value was calculated for the 2 

time periods in which experiments were conducted, because metal sensitivities of P.subcapitata 

laboratory populations may change with time (i.e. between two or more studies performed in the same 

laboratory, but separated in time).



 

 
 

Table 5.8. Physico-chemistry and effect concentrations of zinc (µg/L as dissolved) obtained for the toxicity tests in nine natural Pseudokirchneriella subcapitata 

(numbers between parentheses are 95% confidence limits) a 

a EC10 and EC50 = the 10% and 50% effective concentration, respectively; b Time period in which the tests were conducted: first time period = 2013, second time period = 
2014; c Does the water fall within the BLM boundaries, or does is represent a water with high pH or low Ca concentrations; d Did the toxicity test pass validity criteria after 
72-hours and/or 48-hours; e pH, Dissolved Organic Carbon, cations, anions and Dissolved Inorganic Carbon, given as the mean value between the start and the end of the 
test; f NC = could not be calculated due to insufficient number of tested Zn concentrations with a low effect (cf. high confidence limits); g EC10 value is below the 
concentration of the first treatment, i.e. it is an extrapolated effect concentration 

 

 

 

Time periodb Test water 
  

Boundariesc Validityd T pHe DOCe Cae Mge Nae Ke SO4e Cle DICe EC10a EC50a Slope 
      °C   mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L b 

First Madon high pH 72-h 25 8.31 3 135.7 46.2 134.4 5.6 210.6 53.7 38.9 NCf 25 (4-41) 0.67 

First Dolaizon high pH 72-h 25 8.4 4.3 13.8 12.8 14.0 2.3 10.3 18.1 19.8 NCf 22 (19-25) 1.44 
First Moselotte low Ca 48-h 25 5.85 2.9 5.1 1.6 7.7 11.1 6.7 32.5 0.4 62 (36-89)g 169 (143-194) 2.20 
First Taurion low Ca 72-h 25 6.08 4.5 2.8 0.4 15.4 1.3 <5 19.5 0.5 22 (18-27)g 72 (66-77) 1.88 
First Maulde low Ca 72-h 25 6.01 4.4 2.9 0.4 12.6 1.1 <5 17 0.4 32 (12-51)g 90 (73-106) 2.11 
First Gartempe low Ca 48-h 25 5.83 8.6 2.9 0.8 7.6 1.7 <5 14.5 0.8 NCf 124 (81-167) 1.44 
Second Voyon within 48-h 25 6.98 9.5 17.1 7.9 44.3 2.7 19.9 47.3 8.7 89 (74-104) 231 (211-250) 2.29 
Second Brisy within 48-h 25 7.26 12 8.8 5.6 72.5 2.8 5.2 34.8 1.5 36 (30-42) 100 (89-112) 2.15 
Second Bihain low Ca 48-h 25 6.26 4.1 3 3.4 151.2 1.7 13.5 34.4 7 116 (98-134) 395 (356-433) 1.80 
Second Voyon high pH 48-h 25 8.54 9 15.2 7.9 37.8 2.8 21.3 25 13.3 17 (15-18)g 62 (59-65) 1.66 
Second Voyon high pH 72-h 25 8.54 9 15.2 7.9 39 2.8 21.3 25 13.3 14 (10-17)g 54 (49-59) 1.61 
Second Bihain low Ca 48-h 25 6.16 11.3 3 3.7 140.3 1.8 7.2 26.2 0.4 89 (54-123)g 398 (331-466) 1.46 
Second Brisy within 48-h 25 7.13 9.9 8.9 6.2 72.8 2.9 15.1 25.8 2.3 51 (44-58) 110 (103-117) 2.89 
Second Brisy within 72-h 25 7.15 9.9 8.9 6.2 73.8 2.9 15.1 25.8 2.3 55 (50-60) 138 (132-143) 2.41 
Second Loire high pH 48-h 25 8.27 4.5 8.3 6.3 40.8 3.8 14.1 32.8 9 6 (4-9)g 49 (40-58) 1.06 
Second Loire high pH 72-h 25 8.32 4.5 8.3 6.3 41.4 3.8 14.1 32.8 9 10 (8-12) 45 (41-50) 1.42 
Second Loire high pH 48-h 25 8.51 4.8 8.1 6.3 39.2 3.8 14.8 27 9.4 16 (13-18)g 38 (33-44) 2.42 
Second Loire high pH 72-h 25 8.53 4.8 8.1 6.3 39.9 3.8 14.8 27 9.4 16 (15-17) 33 (32-35) 2.97 
Second Bihain low Ca 48-h 25 6.23 9.3 2.2 3.3 147.1 1.8 4.7 24.6 0.6 80 (58-101)g 284 (254-314) 1.73 
Second Bihain low Ca 72-h 25 6.23 9.3 2.2 3.3 148.4 1.8 4.7 24.6 0.6 131 (116-146) 310 (294-326) 2.55 
Second Madon high pH 48-h 25 8.32 7 159.1 28.2 55.7 6.8 172.3 76.1 39.2 34 (29-39) 123 (115-130) 1.72 
Second Taurion low Ca 48-h 25 6.67 2.3 0.8 3 42 1.3 7.8 35.9 1.1 65 (44-86) 161 (141-180) 2.41 
Second Maulde low Ca 48-h 25 6.72 3.7 0.9 2.8 45.7 1.3 7.7 23.9 1.7 68 (60-76) 154 (143-164) 2.70 



 

 

 

 

  
 
Figure 5.12. Observed versus predicted 50% effect concentrations (EC50) (top left) and 10% effect concentrations (EC10) (top right) of zinc (as dissolved Zn) for data generated in this 

study and De Schamphelaere et al. [3], for predictions made with the existing bioavailability model [3]. In addition, observed versus predicted 50% effect concentrations (EC50) (bottom 

left) and 10% effect concentrations (EC10) (bottom right) of zinc (as dissolved Zn) for data generated in this study and De Schamphelaere et al. [3], for predictions made with the 

recalibrated BLM. Filled symbols indicate 72-h ECx for Pseudokirchneriella subcapitata, open symbols indicate 48-h ECx for Pseudokirchneriella subcapitata. Symbols in green indicate 

waters with water chemistry that fall within the BLM boundaries (pH and calcium), blue symbols indicate waters with high pH values, orange symbols indicate waters with low calcium 

concentrations. The full line and dashed lines indicate a perfect match and a factor two difference between the observed and predicted EC50.
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New intrinsic sensitivity values were equal to 2.144 for QEC10 and 2.231 for QEC50 for the first time period 

and equal to 1.646 for QEC10 and 1.816 for QEC50 for the second time period (see online database DOI 

10.1002/etc.3840 Supplementary 1).  

Figure 5.12 shows the performance of the recalibrated bioavailability model in predicting Zn toxicity for 

P.subcapitata for EC50 and EC10 data. Now, for all EC50 data, the bioavailability model predicts 87% 

within twofold error and a mean prediction error of 1.6-fold (Table 5.8). For all EC10 data, the 

bioavailability model predicts 81% within twofold error and a mean prediction error of 1.6-fold (Table 

5.8). Now, data points within the bioavailability model boundaries (green points) and data points with Ca 

concentrations below the Ca boundary (orange points) are predicted more evenly around the 1:1 line 

(Figure 5.12), whereas zinc toxicity for waters with pH values above the pH boundary (blue points) is in 

general again underpredicted. These results suggest that the bioavailability model in its current form is 

capable to predict toxicity for waters outside its bioavailability model boundaries. However, a bias in 

toxicity predictions does exist and therefore it should be evaluated whether the bioavailability model 

should be refined to cover the wider chemistry range. 

This was done by examining whether deviations in predictive capacity are influenced by parameters that 

are not incorporated in the model. To assess these effects of physico-chemical parameters, we 

examined the relation between logarithmic model-measurement deviations (O/P) and the chemistry of 

the test media. To this end, the correlation (r²) was determined between O/P and pH, DOC, Na+ activity, 

Ca2+ activity and Mg2+ activity (Figure 5.13). Figure 5.13 shows no significant correlation between O/P 

and pH (r²=0.02, p=0.42). A significant correlation was found between O/P and Na2+ activity (r²=0.14, 

p=0.043), Ca2+ activity (r²=0.22, p=0.01) and Mg2+ activity (r²=0.15, p=0.036), although r² values were 

small. No significant correlation was found between O/P and DOC (r²=0.004, p=0.73). When the 

observed Zn2+ activities were used to perform a correlation analysis with pH, the relation between 

log (𝐸𝐶50)𝑍𝑛2+ and pH was significant (r²=0.8, p<0.001) (Figure 5.14). Correlations between (𝐸𝐶50)𝑍𝑛2+ 

and Ca and Na were not significant (p > 0.05), with r²=0.05 and r² < 0.001, respectively. Correlations 

between  (𝐸𝐶50)𝑍𝑛2+ and Mg were significant (p < 0.05), but r² was small, i.e. 0.17. This confirms, as in 

previous studies (De Schamphelaere et al. 2005; Heijerick et al. 2002a), that pH is much more important 

than Ca, Mg and Na for determining Zn2+ ion toxicity to P.subcapitata. 

Figure 5.14 shows that at lower pH, the data points generated in the second time period nicely fit within 

the existing data, whereas those of the first time period do not. Those at higher pH also do so less, 

especially at pH above 8. Therefore, the bioavailability model should be recalibrated with a new SpH 

value calculated based on all this data. This slope could be obtained from Figure 5.14, i.e. SpH = -0.75 

(the average slope value). However, we prefer to calculate a SpH value based on the weighted mean of 

the slopes of the different datasets, because smaller datasets (e.g. that of time period 1) behave 

differently from the other datasets and might have a large influence on the slope value. Equation 5.10 

shows the calculations for the weighted mean slope: 

𝑆𝑝𝐻 =
(𝑛𝑎∗𝑆𝑝𝐻−𝑎)+(𝑛𝑏∗𝑆𝑝𝐻−𝑏)+(𝑛𝑐∗𝑆𝑝𝐻−𝑐)

𝑛𝑎+𝑛𝑏+𝑛𝑐
                                                           (5.10) 

Where a, b and c are the different datasets, i.e. data from the first time period, the second time period 

and De Schamphelaere et al. (2005), respectively; SpH-x is the slope value calculated for each dataset x 
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separately, with SpH-a = -0.55, SpH-b = -0.81 and SpH-c = -0.66; nx is the number of data points within the 

dataset x, i.e. na = 6, nb = 17 and nc = 6. The new SpH value is equal to -0.727 and was implemented 

into the bioavailability model to predict zinc toxicity. Intrinsic sensitivities were recalibrated based on this 

SpH value and were equal to 1.720 for the data from the first time period, 1.260 for the data from the 

second time period and 0.796 for the data from De Schamphelaere et al. (2005) (see online database 

DOI 10.1002/etc.3840 Supplementary 1). 

Figure 5.13. Logarithmic differences (i.e. log Observed Zn2+ activity – log Predicted Zn2+ activity) against 

different chemical parameters (pH, DOC (mg/L), Na+ activity (mM), Ca2+ activity (mM) and Mg2+ activity (mM)). 

Squares indicate toxicity data generated in the first time period, circles indicate data generated in the 

second time period, crosses indicate toxicity data generated in De Schamphelaere et al. (2005). Filled 

symbols indicate 72-h EC50 for Pseudokirchneriella subcapitata, open symbols indicate 48-h EC50 for 

Pseudokirchneriella subcapitata. Symbols in green indicate waters with water chemistry that fall within the 

BLM boundaries (pH and calcium), blue symbols indicate waters with high pH values, orange symbols 

indicate waters with low calcium concentrations. 



Chapter 5 

182 
 

 

Figure 5.14. Free Zn2+ ion activity at the 72-h and 48-h 50% effective concentration (EC50) as a function of 

pH. Squares indicate toxicity data generated in the first time period, circles indicate data generated in the 

second time period, crosses indicate toxicity data generated in De Schamphelaere et al. (2005). Filled 

symbols indicate 72-h EC50 for Pseudokirchneriella subcapitata, open symbols indicate 48-h EC50 for 

Pseudokirchneriella subcapitata. Symbols in green indicate waters with water chemistry that fall within the 

BLM boundaries (pH and calcium), blue symbols indicate waters with high pH values, orange symbols 

indicate waters with low calcium concentrations. Regressions are fitted for every dataset separately and 

for all data together, i.e. solid line = first time period, dotted line = second time period , dotted dashed line 

(=top line) is De Schamphelaere et al. (2005) and dashed line = all data. 

Figure 5.15, corresponding to the toxicity predictions made with the bioavailability model with new pH 

slope parameter and new intrinsic sensitivities, shows the performance of the bioavailability model in 

predicting Zn toxicity for EC50 data. Now, 93% of all data are predicted within a factor two prediction 

error (mean prediction error of 1.50-fold) (Table 5.7), which is 6% better than the original bioavailability 

model (De Schamphelaere et al. 2005) (Figure 5.13), and which indicates that the new slope used in 

the log-linear bioavailability model is able to make a slightly more optimal prediction of toxicity when a 

wide range of chemistry is considered. However, when examining Figure 5.15 more closely we see that 

two data points are not predicted well. This could already be observed in Figure 5.13 which showed that 

the toxicity for two data points, both performed with water from the Madon, is overpredicted. Indeed, the 

EC50 is underestimated by a factor of 3.0 (Madon time period 1) and 3.1 (Madon time period 2), 

respectively. When examining the water chemistry of the Madon tests, we see that the calcium 

concentrations, i.e. 159.1 mg/L and 135.7 mg/L, are much higher than that of the other waters (0.8-17.1 

mg/L). Furthermore, the magnesium concentrations, i.e. 28.2 mg/L and 46.2 mg/L, also lie higher than 

that of the other waters (0.4-12.8 mg/L). A possible explanation could be that at very high calcium and/or 

magnesium concentrations, the calcium and/or magnesium ions provide a protective effect from zinc, 

which is not incorporated in the current algae bioavailability model.  
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Figure 5.15. Observed versus predicted 50% effect concentrations (EC50) of zinc (as dissolved Zn). 

Predictions were made with the recalibrated BLM with new SpH value and intrinsic sensitivities. Squares 

indicate toxicity data generated in the first time period, circles indicate data generated in the second time 

period, crosses indicate toxicity data generated in De Schamphelaere et al. (2005). Filled symbols indicate 

72-h EC50 for Pseudokirchneriella subcapitata, open symbols indicate 48-h EC50 for Pseudokirchneriella 

subcapitata. Symbols in green indicate waters with water chemistry that fall within the BLM boundaries (pH 

and calcium), blue symbols indicate waters with high pH values, orange symbols indicate waters with low 

calcium concentrations. The full line and dashed lines indicate a perfect match and a factor two difference 

between the observed and predicted EC50. 

To further examine the influence of calcium and magnesium, we determined the intrinsic sensitivity (i.e. 

Q50,i ) of the algae and plotted this against the Ca2+ and Mg2+ activity (Figure 5.16). To calculate the 

bioavailability corrected Q50,i, we used the pH-slope in combination with Equation 5.11. 

𝑄50,𝑖 =  𝑆𝑝𝐻 ∙ 𝑝𝐻𝑖 + log (𝐸𝐶50(𝑍𝑛2+),𝑖)                                 (5.11) 

Where Q50,i is the sensitivity of the algae for water body i; SpH is the slope of -0.727; pHi is the pH value 

of water body i and 𝐸𝐶50(𝑍𝑛2+),𝑖 is the observed EC50 as Zn2+ activity for water body i. Figure 5.16 shows 

that the Q50,i of the algae during the test with Madon water was very different from the intrinsic 

sensitivities of the algae for the other natural waters within the same experiment. This suggests that at 

very high calcium and/or magnesium concentrations, the calcium and/or magnesium ions provide a 

protective effect from zinc. However, as calcium and magnesium activities are correlated amongst each 

other in this dataset (r² = 0.8), it is not clear now which parameter might be most important. Incorporating 

a calcium and/or magnesium competition constant into the bioavailability model is for the time being not 

considered. However, the influence of calcium and magnesium on chronic zinc toxicity to P.subcapitata 

should be further investigated in the future. Possibly, the influence of calcium and/or magnesium might 

be important at high pH values. However, for now we only have two data points, tested with the same 

water, to support this. Therefore, whether or not a competition constant for either of these two 

parameters should be included, should be subject for further research. 
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Figure 5.16. Intrinsic sensitivity Q of the algae as a function of Ca2+ activity (mM) and Mg2+ activity (mM). 

Filled symbols indicate 72-h EC50 for Pseudokirchneriella subcapitata, open symbols indicate 48-h EC50 

for Pseudokirchneriella subcapitata. Squares indicate toxicity data generated in the first time period, circles 

indicate data generated in the second time period, crosses indicate toxicity data generated in De 

Schamphelaere et al. (2005). 

Similar calculations as above were performed for the EC10 data (Appendix D.2.2). No significant 

correlation between O/P and pH, DOC, Na+ activity, Ca2+ activity and Mg2+ activity (p > 0.05) were 

observed. When the observed Zn2+ activities were used to perform a correlation analysis with pH, the 

relation between log (𝐸𝐶10)𝑍𝑛2+ and pH was significant (r²=0.87, p<0.001). The slope value was used 

as new SpH value (-0.816) for recalibration of the bioavailability model. Intrinsic sensitivities were 

recalibrated based on this SpH value and were equal to 1.769 for the data from the first time period, 

1.186 for the data from the second time period and 0.943 for the data from De Schamphelaere et al. 

(2005). 

For all EC10 data, the bioavailability model now predicts 89% within twofold error (mean prediction error 

of 1.6-fold) which is only 8% better than the original bioavailability model (De Schamphelaere et al. 

2005) (Table 5.7). Here too, the chronic zinc toxicity for the data point from the Madon water is 

overpredicted. 

As the refined bioavailability model performs only slightly better than the existing bioavailability model 

(i.e. 6% and 8% more EC50 and EC10 data predicted within twofold prediction error, respectively, and 

a difference in average x-fold prediction error of 0.1 and 0 for EC50 and EC10 data, respectively), the 

existing algae bioavailability model (i.e. with SpH values of -0.754 for EC50 data and -0.652 for EC10 

data (De Schamphelaere et al. 2005) can be continued to be used for the wider range of water chemistry 

variables, i.e. low calcium concentrations (down to 0.8 mg/L) and high pH values (pH up to 8.54). 

A generalized BioAvailability Model (gBAM) 

Evaluation of the predictive capacity of the chronic D. magna Zn BLM suggested that the current BLM 

is not able to reflect the observed pH effect over a broad pH range (5.5-8.5) and that a refinement of 

this model may be warranted. To do this, all available data from the previous BLM development and 

validation work (Heijerick et al. 2005b; De Schamphelaere et al. 2005) and from this study was compiled 

to evaluate if an adapted BLM structure would perform better than the current BLM. A model consisting 

of a log-linear pH effect, combined with competitive Ca, Mg and/or Na effects, as is the case for the Ni 
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D. magna BLM (DEPI 2008) and was recently developed for the Cu D. magna BLM (Van Regenmortel 

et al. 2015/Chapter 5.1; Section 5.1), might work better over a wider range of chemistry (i.e. outside the 

pH boundaries). Therefore, the predictive capacity of this type of model, referred to as a generalized 

BioAvailability Model (gBAM) (Van Regenmortel et al. 2015/Chapter 5.1; Section 5.1), will be compared 

to the predictive capacity of the chronic D. magna BLM in the following sections. To be able to compare 

the predictive performances of the gBAMs with that of the BLM, the data that were used to develop the 

BLM and the data that were used to develop all gBAM models (i.e. data from Heijerick et al. 2005b) 

were excluded from the dataset. As such, the comparison between the BLM and the gBAMs is done on 

the basis of model performance evaluations with an independent dataset. 

Predictive capacity of the chronic D. magna BLM.  

To start off, the predictive capacity of the chronic D. magna BLM was tested, so comparison with the 

predictive capacity of the gBAMs is possible. To predict effect concentrations (21-day EC50s), we 

maintained all stability constants for cation binding to the biotic ligand at their original values (Heijerick 

et al. 2005b) and only adjusted the critical accumulation of zinc to the biotic ligand. The BLM was 

recalibrated based on the data by De Schamphelaere et al. (2005) and the data generated in this study. 

The intrinsic sensitivity ƒ𝑍𝑛𝐵𝐿
50%  was equal to 0.085. Figure 5.17 shows the performance of the BLM in 

predicting Zn toxicity for D. magna. The model predicts 91% of all data within twofold prediction error 

(mean prediction error = 1.5-fold). 

 

Figure 5.17. Predictive capacity of the BLM as shown by observed versus predicted 21-day 50% effective 

concentrations (EC50s) of zinc to Daphnia magna. The intrinsic sensitivity of D. magna was calculated 

based on data by De Schamphelaere et al (2005) (Δ) and data from this study (○). Data by Heijerick et al 

(2005) (+) is also plotted. Red data points indicate toxicity tests performed in synthetic water, black data 

points indicate toxicity tests performed in natural water. The solid line is the 1:1 reference line indicating a 

perfect match between observed and predicted values; the dashed lines indicate an error of a factor of two 

between observed and predicted values. BLM = Biotic Ligand Model. 
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Development of a gBAM.  

The development of the gBAM was done in a same way as is described in Section 5.1 (Van Regenmortel 

et al. 2015). The first type of model (gBAM-A) only incorporates a pH constant and is structurally similar 

to bioavailability models developed with algae for Zn (Heijerick et al. 2005b), Cu (De Schamphelaere et 

al. 2003) and Ni (Deleebeeck et al. 2009) and recently with D. magna for Cu (Van Regenmortel et al. 

2015; Section 5.1) (Equation 5.12).  

log10(𝐸𝐶50𝑍𝑛2+) = 𝑄50 − 𝑆𝑝𝐻 × 𝑝𝐻                                                      (5.12) 

Where 𝐸𝐶50𝑍𝑛2+ is the 21-day EC50 expressed as Zn2+ activity (mol x L-1); Q50 is the intrinsic sensitivity 

of D. magna and SpH is the pH slope parameter. To obtain this SpH parameter, we used the data from 

the pH-series reported by Heijerick et al. (2005) as the Ca, Mg, Na and DOC concentrations were kept 

constant and only the pH was varied. The linear relations (p < 0.05) between log10(21-day EC50𝑍𝑛2+) 

versus pH generated the SpH value for D. magna of 0.13 (Figure 5.18A), that was incorporated into the 

gBAM-A. All parameter files with calibrated values for running the model in the BLM software (HydroQual 

2005) are available in the online database (DOI: 10.1002/etc.3840; Supplementary 5) and an overview 

of all parameters is given in Table 5.9. Figure 5.19 shows the performance of the toxicity model in 

predicting Zn toxicity for D. magna.  

Table 5.9. Biotic ligand model (BLM) zinc constants, competition constants, thermodynamic parameters 

and humic material assumptions of the chronic Daphnia magna BLM (De Schamphelaere et al. 2005) that 

were used for modelling, as well as parameter values for all generalized BioAvailability Models (gBAM) 

used 

Parameter 

Daphnia 
magna 

(chronic) 
BLM 

gBAM-A gBAM-B1 gBAM-B2 gBAM-B3 gBAM-C gBAM-D 

Biotic Ligand (BL) Species        

Log 𝐾𝑍𝑛𝐵𝐿 5.31a NA NA NA NA NA NA 

Log 𝐾𝐶𝑎𝐵𝐿 3.22 NA NA 3.22 NA 3.22 3.22 

Log 𝐾𝑀𝑔𝐵𝐿 2.69 NA NA NA 2.69 2.69 2.69 

Log 𝐾𝐻𝐵𝐿 5.77 NA NA NA NA NA NA 

Log 𝐾𝑁𝑎𝐵𝐿 1.90 NA 1.90 NA NA NA 1.90 

SpH NA 0.13 0.13 0.11 0.12 0.12 0.13 

Q50 NA 4.963 5.00 5.45 5.07 5.45 5.38 

ƒ𝑍𝑛𝐵𝐿
50%  0.085 NA NA NA NA NA NA 

Bioavailable species that can bind 
to the biotic ligand 

Zn2+ NA NA NA NA NA NA 

Thermodynamic Database       

pKMHA Zn-HA 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

Humic Material 
Assumptions 

      

% of natural DOM composed of 
humic substances b 

50% 50% 50% 50% 50% 50% 50% 

% of the humic substances that is 
HA (rest is FA) c 

0% 0% 0% 0% 0% 0% 0% 

a Reaction: BL-Zn = Zn2+ + BL; b Exception: when humic acid is added to the medium, all models assume 100% of the DOM to be 

composed of humic substances; c Exception: when humic acid is added to the medium, all models assume 100% of the humic 

substances to be composed of humic acid ; NA = Not Applicable as constant in the Chronic BLM or gBAM; DOM = Dissolved 

Organic Matter; HA = Humic Acid; FA = Fulvic Acid 
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Figure 5.18. Free Zn2+ ion activity at the 21-day 50% effective concentration (EC50) as a function of pH for 

Daphnia magna for the data from the pH-series (A),  the pH-series and Na-series (B), the pH-series and Ca-

series (C), the pH-series and Mg-series (D), the pH-series, Ca-series and Mg-series (E) and the pH-series, 

Na-series, Ca-series and Mg-series (F) by Heijerick et al. (2005). 
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Figure 5.19 Predictive capacity of the gBAM-A (A), gBAM-B1 (B), gBAM-B2 (C), gBAM-B3 (D), gBAM-C (E) 

and gBAM-D (F) models as shown by observed versus predicted 21-day 50% effective concentrations 

(EC50s) of zinc to Daphnia magna. The intrinsic sensitivity of D. magna was calculated based on data by 

De Schamphelaere et al. (2005) (Δ) and data from this study (2005) (○). Data by Heijerick et al. (2005) (+) is 

also plotted. Red data points indicate toxicity tests performed in synthetic water, black data points indicate 

toxicity tests performed in natural water. The solid line is the 1:1 reference line indicating a perfect match 

between observed and predicted values; the dashed lines indicate an error of a factor of two between 

observed and predicted values. gBAM = generalized BioAvailability Model. 

The gBAM-A model predicts 83% of the data from De Schamphelaere et al. (2005) and this study within 

twofold prediction error (mean prediction error = 1.5-fold). The model predicts 91% of all data (Heijerick 

et al. 2005b; De Schamphelaere et al. 2005 and the present study) within twofold prediction error (mean 

prediction error = 1.3-fold), which is as accurate as the chronic BLM (Figure 5.17). 
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These results suggest that the gBAM-A, which only incorporates a pH slope parameter is, in general, 

as accurate as the BLM that has many more parameters for interactions at the biotic ligand (i.e. 5 for 

the chronic D. magna BLM).  

However, factors other than the pH may be important for predicting chronic zinc toxicity to D. magna. 

Indeed, Heijerick et al. (2005) demonstrated the individual effects of Na, Ca and Mg on Zn toxicity to D. 

magna. These authors were able to derive a sodium (log KNaBL), calcium (log KCaBL) and magnesium 

(log KMgBL) stability constant from their data. In the following steps of the gBAM development, we will 

add these constants individually, and thereby create gBAM-B1, gBAM-B2 and gBAM-B3. 

Heijerick et al. (2005) performed a test in 4 test media with different sodium concentrations, but 

otherwise identical water chemistry. A protective effect of sodium on chronic zinc toxicity was observed, 

although less pronounced than the protective effect of calcium and magnesium. The same authors were 

able to derive a sodium stability constant (log KNaBL) from these data.  

We used this value to extend gBAM-A into gBAM-B1. The latter model now includes a pH slope 

parameter and a sodium parameter and the assumption was made that there is no interactive effect 

between pH and sodium on chronic zinc toxicity. The Na effect is incorporated as a conventional BLM-

type competition constant (i.e. as in the chronic BLM (Heijerick et al. 2005b)). This model is structurally 

similar to the chronic Ni bioavailability model for Daphnia (ECI 2008) and fish (Heijerick et al. 2002a) 

(Equation 5.13).   

𝐸𝐶50𝑍𝑛2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) × [1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+)]                                          (5.13) 

Where KNaBL is the competition constant for sodium of 79 (L ∙ mol−1; log KNaBL = 1.9) (Heijerick et al. 

2005b) and (Na+) is the sodium activity (mol ∙ L−1); Q50 is the intrinsic sensitivity of D. magna and SpH is 

the pH slope parameter. The latter was recalculated based on EC50 data (as Zn2+ activity) that has been 

corrected for the sodium effect (Equation 5.14). 

𝐸𝐶50𝑍𝑛2+
∗ =

𝐸𝐶50
𝑍𝑛2+

1+𝐾𝑁𝑎𝐵𝐿∙(𝑁𝑎+)
                                                                    (5.14) 

Where 𝐸𝐶50𝑍𝑛2+ is the observed EC50 as Zn2+ activity (𝑚𝑜𝑙 ∙ 𝐿−1); (Na+) is the sodium, activity (𝑚𝑜𝑙 ∙

𝐿−1) and KNaBL is the competition constant for sodium (L ∙ mol−1). The new correlation between pH and 

the EC50 as Zn2+ activity is given in Figure 5.18B. The SpH and intrinsic sensitivity that are obtained from 

this log linear relation (i.e. SpH = 0.13 and Qx = 5.00) are used in the gBAM-B1 (Table 5.9). Figure 5.19B 

shows the performance of the toxicity model in predicting Zn toxicity for D. magna. The gBAM-B1 model 

predicts 83% of the data from De Schamphelaere et al. (2005) and from this study within twofold 

prediction error (mean prediction error = 1.5-fold). The model predicts 91% of all data (Heijerick et al. 

2005b; De Schamphelaere et al. 2005 and the present study) within twofold prediction error (mean 

prediction error = 1.3-fold). Incorporating the sodium constant did not further improve model predictions 

for D. magna. 

Next to the effect of Na, Heijerick et al. (2005) also demonstrated a significant effect of calcium on 

chronic zinc toxicity in a univariate experiment with D. magna. These authors were able to derive a 

calcium stability constant (log KCaBL) from these data. We used this value to extend gBAM-A into gBAM-
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B2. The latter model now includes a pH slope parameter and a calcium parameter and the assumption 

was made that there is no interactive effect between pH and calcium on chronic zinc toxicity. The Ca 

effect is also incorporated as a conventional BLM-type competition constant (i.e. as in the chronic BLM 

(Heijerick et al. 2005b)).  

𝐸𝐶50𝑍𝑛2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) × [1 + 𝐾𝐶𝑎𝐵𝐿 × (𝐶𝑎2+)]                                          (5.15) 

Where KCaBL is the competition constant for calcium of 1660 (L ∙ mol−1; log KCaBL = 3.22) (Heijerick et al. 

2005b) and (Ca2+) is the calcium activity (mol ∙ L−1); Q50 is the intrinsic sensitivity of D. magna and SpH 

is the pH slope parameter. The latter was recalculated based on EC50 data (as Zn2+ activity) that has 

been corrected for the calcium effect (Equation 5.16). 

𝐸𝐶50𝑍𝑛2+
∗ =

𝐸𝐶50
𝑍𝑛2+

1+𝐾𝐶𝑎𝐵𝐿∙(𝐶𝑎2+)
                                                                    (5.16) 

Where 𝐸𝐶50𝑍𝑛2+ is the observed EC50 as Zn2+ activity (𝑚𝑜𝑙 ∙ 𝐿−1); (Ca2+) is the calcium, activity (𝑚𝑜𝑙 ∙

𝐿−1) and KCaBL is the competition constant for calcium (L ∙ mol−1). The new correlation between pH and 

the EC50 as Zn2+ activity is given in Figure 5.18C. The SpH and intrinsic sensitivity that are obtained from 

this log linear relation (i.e. SpH = 0.11 and Qx = 5.45) are used in the gBAM-B2 (Table 5.9). Figure 5.19C 

shows the performance of the toxicity model in predicting Zn toxicity for D. magna. The gBAM-B2 model 

predicts 100% of the data from De Schamphelaere et al. (2005) and from this study within twofold 

prediction error (mean prediction error = 1.3-fold). However, the model predicts only 79% of all data 

(Heijerick et al. 2005b; De Schamphelaere et al. 2005 and the present study) within twofold prediction 

error (mean prediction error = 1.6-fold). Incorporating the calcium constant improved model predictions 

for D. magna for the data by De Schamphelaere et al. (2005) and this study but not for the data from 

the study by Heijerick et al. (2005). 

Next to the effect of Na and Ca, Heijerick et al. (2005) were also able to derive a magnesium stability 

constant (log KMgBL) from their data. We used this value to extend gBAM-A into gBAM-B3. The latter 

model now includes a pH slope parameter and a magnesium parameter and the assumption was made 

that there is no interactive effect between pH and magnesium on chronic zinc toxicity. The Mg effect is 

again incorporated as a conventional BLM-type competition constant (i.e. as in the chronic BLM 

(Heijerick et al. 2005b)).  

𝐸𝐶50𝑍𝑛2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) × [1 + 𝐾𝑀𝑔𝐵𝐿 × (𝑀𝑔2+)]                                          (5.17) 

Where KMgBL is the competition constant for calcium of 490 (L ∙ mol−1; log KMgBL = 2.69) (Heijerick et al. 

2005b) and (Mg2+) is the magnesium activity (mol ∙ L−1); Q50 is the intrinsic sensitivity of D. magna and 

SpH is the pH slope parameter. The latter was again recalculated based on EC50 data (as Zn2+ activity) 

that has been corrected for the magnesium effect (Equation 5.18). 

𝐸𝐶50𝑍𝑛2+
∗ =

𝐸𝐶50
𝑍𝑛2+

1+𝐾𝑀𝑔𝐵𝐿∙(𝑀𝑔2+)
                                                                    (5.18) 

Where 𝐸𝐶50𝑍𝑛2+ is the observed EC50 as Zn2+ activity (𝑚𝑜𝑙 ∙ 𝐿−1); (Mg2+) is the magnesium, activity 

(𝑚𝑜𝑙 ∙ 𝐿−1) and KMgBL is the competition constant for magnesium (L ∙ mol−1). The new correlation 

between pH and the EC50 as Zn2+ activity is given in Figure 5.18D. The SpH and intrinsic sensitivity that 
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are obtained from this log linear relation (i.e. SpH = 0.12 and Qx = 5.07) are used in the gBAM-B3 (Table 

5.9). Figure 5.19D shows the performance of the toxicity model in predicting Zn toxicity for D. magna. 

The gBAM-B3 model predicts 83% of the data from De Schamphelaere et al. (2005) and from this study 

within twofold prediction error (mean prediction error = 1.5-fold). The model predicts 91% of all data 

(Heijerick et al. 2005b; De Schamphelaere et al. 2005 and the present study) within twofold prediction 

error (mean prediction error = 1.3-fold). Incorporating the magnesium constant did not further improve 

model predictions for D. magna. 

Incorporating the protective effect of Na and Mg individually into the gBAM did not further improve model 

predictions for D. magna. Incorporating the protective effect of Ca into the gBAM did improve model 

predictions for the data by De Schamphelaere et al. (2005) and this study, but not for the data generated 

by Heijerick et al. (2005). Heijerick et al. (2005) showed that the protective effect of calcium and 

magnesium was more pronounced than that of sodium. Therefore, we will include the calcium and 

magnesium constants in a third type of gBAM, i.e. gBAM-C (Equation 5.19).  

𝐸𝐶50𝑍𝑛2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) ∙ [1 + 𝐾𝐶𝑎𝐵𝐿 × (𝐶𝑎2+) + 𝐾𝑀𝑔𝐵𝐿 ×  (𝑀𝑔2+)]                                                  (5.19) 

Where KCaBL is the competition constant for calcium of 1660 (L ∙ mol−1; log KCaBL = 3.22); KMgBL is the 

magnesium competition constant of 490 (L ∙ mol−1; log KMgBL = 2.69) and (Ca2+) and (Mg2+) are the 

calcium and magnesium activities (mol ∙ L−1), respectively; Q50 is the intrinsic sensitivity of D. magna 

and SpH is the pH slope parameter.  

Also here, the latter was recalculated based on EC50 data (as Zn2+ activity) that has been corrected for 

the calcium and magnesium effect (Equation 5.20). 

𝐸𝐶50𝑍𝑛2+
∗ =

𝐸𝐶50
𝑍𝑛2+

1+𝐾𝐶𝑎𝐵𝐿∙(𝐶𝑎2+)+𝐾𝑀𝑔𝐵𝐿∙(𝑀𝑔2+)
                                                       (5.20) 

Where 𝐸𝐶50𝑍𝑛2+ is the observed EC50 as Zn2+ activity (mol ∙ L−1), (Ca2+) and (Mg2+) are the calcium 

and magnesium activities (mol ∙ L−1), respectively and KCaBL and KMgBL are the competition constants for 

calcium (L ∙ mol−1) and magnesium (L ∙ mol−1), respectively. The new correlation between pH and the 

EC50 as Zn2+ activity is given in Figure 5.18E. The SpH and intrinsic sensitivity that are obtained from 

this log linear relation (i.e. SpH = 0.12 and Qx = 5.45) are used in the gBAM-C (Table 5.9). Figure 5.19E 

shows the performance of the toxicity model in predicting Zn toxicity for D. magna. The gBAM-C model 

now predicts 100% of the data from De Schamphelaere et al. (2005) and from this study within twofold 

prediction error (mean prediction error = 1.3-fold). The model predicts 91% of all data (Heijerick et al. 

2005b; De Schamphelaere et al. 2005 and the present study) within twofold prediction error (mean 

prediction error = 1.5-fold). Incorporating the calcium and magnesium constant improved model 

predictions for D. magna for the data from De Schamphelaere et al. (2005) and from this study. However, 

when investigating all data (Heijerick et al. 2005b; De Schamphelaere et al. 2005 and the present study), 

the gBAM-C performance is still as accurate as that of the gBAM-A and that of the chronic D. magna 

BLM (Figure 5.17). 

Although the effect of Na on Zn toxicity was less pronounced than the effect of Ca and Mg (Heijerick et 

al. 2005b), it was still shown that it had a protective effect. Therefore, in a final step, the effect of Na on 



Chapter 5 

192 
 

chronic zinc toxicity Heijerick et al. 2005b) should also be incorporated into the gBAM. Including the 

sodium gives us a fourth type of gBAM, i.e. gBAM-D (Equation 5.21).  

𝐸𝐶50𝑍𝑛2+ = 10(𝑄50−𝑆𝑝𝐻×𝑝𝐻) ∙ [1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+) + 𝐾𝐶𝑎𝐵𝐿 × (𝐶𝑎2+) + 𝐾𝑀𝑔𝐵𝐿 ×  (𝑀𝑔2+)]                    (5.21) 

Where KNaBL is the competition constant for sodium of 79 (L ∙ mol−1; log KNaBL = 1.9); KCaBL is the calcium 

competition constant of 1660 (L ∙ mol−1; log KCaBL = 3.22); KMgBL is the magnesium competition constant 

of 490 (L ∙ mol−1; log KMgBL = 2.69) and (Na+), (Ca2+) and (Mg2+) are the sodium, calcium and magnesium 

activities (mol ∙ L−1), respectively; Q50 is the intrinsic sensitivity of D. magna and SpH is the pH slope 

parameter.  

Again, the latter was recalculated based on EC50 data (as Zn2+ activity) that has been corrected for the 

sodium, calcium and magnesium effect (Equation 5.22). 

𝐸𝐶50𝑍𝑛2+
∗ =

𝐸𝐶50
𝑍𝑛2+

1+𝐾𝑁𝑎𝐵𝐿∙(𝑁𝑎+)+𝐾𝐶𝑎𝐵𝐿∙(𝐶𝑎2+)+𝐾𝑀𝑔𝐵𝐿∙(𝑀𝑔2+)
                                          (5.22) 

Where 𝐸𝐶50𝑍𝑛2+ is the observed EC50 as Zn2+ activity (𝑚𝑜𝑙 ∙ 𝐿−1), (Na+), (Ca2+) and (Mg2+) are the 

sodium, calcium and magnesium activities (mol ∙ L−1), respectively; KNaBL, KCaBL and KMgBL are the 

competition constant (L ∙ mol−1) for sodium, calcium and magnesium, respectively. The new correlation 

between pH and the EC50 as Zn2+ activity is given in Figure 5.18F. The SpH and intrinsic sensitivity that 

are obtained from this log linear relation (i.e. SpH = 0.13 and Qx = 5.38) are used in the gBAM-D (Table 

5.9). Figure 5.19F shows the performance of the toxicity model in predicting Zn toxicity for D. magna. 

The gBAM-D model now predicts 100% of the data from De Schamphelaere et al. (2005) and from this 

study within twofold prediction error (mean prediction error = 1.3-fold). The model predicts 100% of all 

data (Heijerick et al; 2005; De Schamphelaere et al. 2005 and the present study) within twofold 

prediction error (mean prediction error = 1.4-fold). Incorporating the sodium, calcium and magnesium 

constant improved model predictions for D. magna. The predictive capacity of the gBAM-D model is now 

19% better than that of the chronic D. magna BLM (Figure 5.17). 

Based on the above, the gBAM models could be considered as a first step toward an alternative model 

to predict zinc toxicity to D. magna. In addition, based on all model calculations evaluated above, we 

recommend the gBAM-D model as a valuable (and improved) alternative model for the BLM. However, 

prior to implementing the gBAM-D, a read-across of the model to other invertebrate species should 

preferably be evaluated. Read-across of the existing D. magna chronic Zn BLM (Heijerick et al. 2005b) 

to Lymnaea stagnalis and Brachionus calyciflorus was successful (De Schamphelaere and Janssen 

2010). The latter should preferably also be examined for the gBAM-D. 

Read across of the gBAM-D  

In this section, we investigated if the chronic zinc gBAM-D developed for D. magna could be extrapolated 

to predict chronic toxicity of zinc as a function of water chemistry to two species from other phyla, i.e. 

the mollusc L. stagnalis and the rotifer B. calyciflorus. 

Toxicity data for these two species was taken from De Schamphelaere and Janssen (2010). These 

authors reported on the chronic, 28-day toxicity of Zn to L. stagnalis in 6 natural surface waters and the 

chronic, 2-day toxicity of Zn to B. calyciflorus in 5 natural surface waters.  
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The cross-species predictive capacity of the developed gBAM-D was compared to that of the chronic D. 

magna BLM by comparing with the results found in De Schamphelaere and Janssen (2010). The 

constants and intrinsic sensitivities that were used for modelling with gBAM-D can be found in Appendix 

D (D2.3), the parameter files used for modelling can be found in the online database (DOI 

10.1002/etc.3840, Supplementary 5). Although the SpH parameter was calibrated on EC50 data, we 

additionally investigated whether this value could also be used to predict EC10 values for both L. 

stagnalis as well as B. calyciflorus. The gBAM-D was calibrated to reflect the intrinsic sensitivities (i.e. 

Qx values) of L. stagnalis and B. calyciflorus. These Qx values were calculated based on observed Zn2+ 

activities and Equation 5.17. 

All predictions of EC10s and EC50s were within 1.5-fold difference from observations for L. stagnalis. 

Average prediction errors for EC10 and EC50 values were 1.24 and 1.16-fold, respectively (Appendix 

D2.3). These predictions are slightly better than the predictions made with the chronic D. magna BLM 

(Appendix D2.3), which showed an average prediction error of 1.31 and 1.19-fold for EC10 and EC50 

values, respectively (De Schamphelaere and Janssen 2010). All predictions for B. calyciflorus were also 

within 1.3-fold prediction error Appendix D2.3. Average prediction error for EC10 and EC50 values were 

1.22 and 1.18-fold, respectively (Appendix D2.3). These predictions are also slightly better than the 

predictions made with the chronic D. magna BLM (Appendix D2.3), i.e. average prediction error of 1.29 

and 1.33-fold for EC10 and EC50 values, respectively (De Schamphelaere and Janssen 2010).  

The above results show that the gBAM-D model was able to predict all ECx values within less than a 

1.5-fold error, which is slightly better than the chronic BLM for D. magna and which demonstrates that 

the gBAM-D can be extrapolated to other invertebrate phyla. Furthermore, it demonstrates that the SpH 

parameter value that was calculated based on EC50 data can be used to calculate EC10 values for both 

L. stagnalis and B. calyciflorus. 

Conclusion 

Chronic zinc toxicity to D. magna was underestimated by the BLM for waters with high pH. This is a 

confirmation of previous work done by De Schamphelaere et al. (2005) who also found overestimation 

of the EC50 at higher pH levels in their dataset. This suggests that the current chronic Zn BLM for D. 

magna is not able to reflect the observed pH effect over such a broad pH range (5.5-8.5) and that a 

refinement of this model is justified. 

Low calcium tests on D. magna were not successful due to calcium deficiency at such low Ca 

concentrations. We propose to conduct tests with a species that does occur in softwater environments 

(e.g. D. pulex).  

The chronic zinc bioavailability model for algae with recalibrated intrinsic sensitivities was able to predict 

almost all chronic toxicity data for P.subcapitata within twofold prediction error. Examination of the model 

deviations revealed significant deviations with increasing Ca2+, Mg2+ and Na+ activity. Yet, a significant 

correlation between the observed Zn2+ activity and pH showed that pH is much more important than Ca, 

Mg and Na for determination of Zn2+ ion toxicity to P.subcapitata. A recalibrated bioavailability model, 

with new slope value based on all previous and newly generated data, was capable of predicting Zn 

toxicity to P.subcapitata slightly more accurate than the original bioavailability model. However, the 
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improvement of predictive capacity was rather limited. In addition, an overprediction of toxicity was 

observed for two data points that were tested with the same natural water. This could be attributed to 

the high calcium and/or magnesium concentrations that were observed in this water. To be able to 

conclude on the above, future research should focus on examining the influence of calcium and 

magnesium on chronic zinc toxicity to P.subcapitata. As the refined bioavailability model performs only 

slightly better than the existing bioavailability model, we recommend to continue the use of the existing 

algae bioavailability model (i.e. SpH = -0.754 for EC50 data and -0.652 for EC10 data (De 

Schamphelaere et al. 2010)) for the wider range of water chemistry variables, i.e. low calcium 

concentrations (< 5 mg/L) and high pH values (pH up to 8.54). Furthermore, it should be kept in mind 

that conservative predictions of toxicity are made for hard waters. 

Our modeling analysis of chronic toxicity of zinc to D. magna suggested that a refinement of this model 

is warranted. On the basis of data by Heijerick et al. (2005), 4 new models, generalized BioAvailability 

Models, were developed. The predictive capacity of these models, i.e. gBAM-A, gBAM-B, gBAM-C and 

gBAM-D was quite similar or more accurate than the existing BLM. Therefore, the gBAM models could 

be considered as a first step toward an alternative model to predict zinc toxicity to D. magna. In addition, 

based on all model calculations evaluated, we recommend the gBAM-D model as a valuable (and 

improved) alternative model for the BLM for Zn toxicity predictions for waters with pH values up to 8.4. 

This suggestion is made based on 4 qualities of the model. (1) The predictive capacity of this model is 

better than the BLM and the most simple gBAM (i.e. gBAM-A); (2) the model incorporates demonstrated 

effects of Na, Ca and Mg that have been shown in univariate experiments [1]. (3) Furthermore, the 

model can be extrapolated to other invertebrate phyla, as was demonstrated in a read-across evaluation. 

(4) In addition, the use of this model would be analogous to the use of similarly structured Nickel 

bioavailability models that are being used to derive EQS values and risk assessments in Europe (DEPI 

2008; Bio-met 2017).  
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5.3 Chronic Zn and Cu Fish bioavailability models 

Introduction 

In the previous sections in this chapter we developed a gBAM for Daphnia magna for the metals Zn and 

Cu. This type of model incorporates a pH slope parameter in addition to competition constants for ions 

such as Ca and Mg. We showed that these gBAMs were more accurate in predicting toxicity to D. magna 

than their BLM-counterparts. By adapting the BLM for D. magna for Zn and Cu to a gBAM, we made the 

models structurally similar to the bioavailability models for algae for Zn (De Schamphelaere et al. 2005), 

Ni (Deleebeeck et al. 2009) and Cu (De Schamphelaere et al. 2003), for D. magna for Ni (Deleebeeck 

et al. 2008) and for fish for Ni (Deleebeeck et al. 2003). The uniformisation of the bioavailability models 

to a gBAM-like structure is therefore almost complete. The models that as yet do not incorporate a pH 

slope parameter are the bioavailability models for fish for Zn and Cu. Because we previously showed 

for D. magna that the predictive capacity of a gBAM is higher compared to a BLM, we hypothesize that 

this will also be the case for fish. In addition, the development of a gBAM will contribute to the 

uniformisation of all bioavailability models for the metals Zn, Cu and Ni. Therefore, in this section, the 

aim is to develop and validate a gBAM for the metals Zn and Cu for fish. 

Material and Methods 

Fish gBAM development for Zn 

For the development of the Zn gBAM for fish (i.e. Oncorhynchus mykiss), all available data from the 

previous BLM development and validation work (De Schamphelaere and Janssen 2004b; De 

Schamphelaere et al. 2005; most sensitive endpoint mortality) was compiled to evaluate if an adapted 

BLM structure would perform better than the current BLM. The BLM incorporated biotic ligand constants 

for the competitive Ca, Mg and Na effects. Therefore, for the gBAM, we developed a model consisting 

of a log-linear pH effect, combined with competitive Ca, Mg and Na effects (Equation 5.23). 

𝐿𝐶𝑥𝑍𝑛2+ = 10(𝑄𝑥−𝑆𝑝𝐻×𝑝𝐻) ∙ [1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+) + 𝐾𝐶𝑎𝐵𝐿 ×  (𝐶𝑎2+) + 𝐾𝑀𝑔𝐵𝐿 ×  (𝑀𝑔2+)]                       (5.23) 

Where KNaBL is the competition constant for sodium of 251 (L ∙ mol−1; log KNaBL = 2.4); KCaBL is the calcium 

competition constant of 3981 (L ∙ mol−1; log KCaBL = 3.6); KMgBL is the magnesium competition constant 

of 1259 (L ∙ mol−1; log KMgBL = 3.1) (De Schamphelaere and Janssen 2004b) and (Na+), (Ca2+) and 

(Mg2+) are the sodium, calcium and magnesium activities (mol ∙ L−1), respectively; Qx is the intrinsic 

sensitivity of O. mykiss for the x% lethal concentration and SpH is the pH slope parameter.  

To obtain this SpH parameter, we used the LC50 and LC10 data from the pH test-series reported by De 

Schamphelaere and Janssen (2004b) as the Ca, Mg, Na and DOC concentrations were kept constant 

in this series and only the pH was varied. The linear relations between log10(21-day LCx𝑍𝑛2+) versus pH 

generated the SpH value for O. mykiss. 

Predictions of Zn toxicity expressed as LCx values were made using the chronic Zn fish gBAM linked to 

WHAM V. The predictive capacity of the gBAM was compared to the predictive capacity of the original 

chronic fish BLM (De Schamphelaere and Janssen 2004b). 
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Fish gBAM development for Cu 

In the Cu Risk Assessment Report (Cu RAR, 2008), it was shown that chronic toxicity of Cu to fish is 

best predicted with the acute Cu BLM developed for D. magna calibrated to account for the different 

sensitivity for fish (De Schamphelaere et al. 2002). The data for which this was investigated was taken 

from an experiment with Pimephales promelas performed by Erickson et al (1996), in which Cu2+ 

activities were measured.  

The fish BLM (i.e. acute D. magna BLM) incorporated biotic ligand constants for the competitive Ca, Mg 

and Na effects. Therefore, for the gBAM, we developed a model consisting of a log-linear pH effect, 

combined with competitive Ca, Mg and Na effects (Equation 5.24). 

𝐸𝐶60𝐶𝑢2+ = 10(𝑄60−𝑆𝑝𝐻×𝑝𝐻) ∙ [1 + 𝐾𝑁𝑎𝐵𝐿 × (𝑁𝑎+) + 𝐾𝐶𝑎𝐵𝐿 ×  (𝐶𝑎2+) + 𝐾𝑀𝑔𝐵𝐿 ×  (𝑀𝑔2+)]                     (5.24) 

Where KNaBL is the competition constant for sodium of 1549 (L ∙ mol−1; log KNaBL = 3.19); KCaBL is the 

calcium competition constant of 2951 (L ∙ mol−1; log KCaBL = 3.47); KMgBL is the magnesium competition 

constant of 3802 (L ∙ mol−1; log KMgBL = 3.58) (De Schamphelaere and Janssen 2002) and (Na+), (Ca2+) 

and (Mg2+) are the sodium, calcium and magnesium activities (mol ∙ L−1), respectively; Q60 is the intrinsic 

sensitivity of P. promelas for the 60% effect concentration and SpH is the pH slope parameter. 

To obtain this SpH parameter, we used the EC60 data from the pH-series reported by Erickson et al 

(1996) as the Ca, Mg, Na and DOC concentrations were kept constant and only the pH was varied. The 

linear relation between log10(7-day EC60𝐶𝑢2+) versus pH generated the SpH value for P. promelas. 

Predictions of Cu toxicity expressed as EC50 values were made using the chronic Cu fish gBAM in 

combination with the measured Cu2+ activities. The predictive capacity of the gBAM was compared to 

the predictive capacity of the original chronic fish BLM (De Schamphelaere et al. 2002). 

Results and Discussion 

gBAM for Zn 

Figure 5.20 shows the linear relation between log10(21-day LCx𝑍𝑛2+) versus pH for O. mykiss. The SpH 

value for O. mykiss is equal to 0.22 and 0.37 for LC50 and LC10 data, respectively. These values were 

incorporated into the gBAM. 

A separate intrinsic sensitivity (Qx) was calculated for the natural and synthetic waters. The Q50 was 

equal to -4.35 and -4.11 for synthetic and natural waters, respectively. The Q10 was equal to -3.76 and 

-3.44 for natural and synthetic waters, respectively. Figure 5.21 shows the performance of the toxicity 

model in predicting Zn toxicity for O. mykiss. The model performance is compared to the performance 

of the BLM in Table 5.10. For the synthetic media, the gBAM model predicts 90% and 93% of the LC50 

and LC10 data within twofold prediction error, respectively (mean prediction error = 1.37 and 1.40 for 

LC50 and LC10 data, respectively). This is approximately 10% less accurate than the fish BLM, that 

was able to predict 100% of the LC50 and LC10 data for synthetic media within twofold prediction error.  

The ultimate aim of the developed model, however, is to accurately predict Zn toxicity in natural surface 

water samples. For natural media, the gBAM model predicts 100% of the LC50 and LC10 data within 

twofold prediction error (mean prediction error = 1.32 and 1.30 for LC50 and LC10 data, respectively). 
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For the LC50 data, this is as accurate as the original fish BLM. However, for the LC10 data, the gBAM 

is 20% more accurate than the BLM in predicting Zn toxicity to O. mykiss. 

 

Figure 5.20. Free Zn2+ ion activity at the 21-day 50% and 10% lethal concentration (LC50 and LC10) as a 

function of pH for Oncorhynchus mykiss for the data from the pH-series by De Schamphelaere and Janssen 

(2004b). 

 

Figure 5.21. Predictive capacity of the generalized BioAvailability Model as shown by observed versus 

predicted 21-day x% lethal concentrations (LCxs) of zinc to Oncorhynchus mykiss. The intrinsic sensitivity 

of O. mykiss was calculated based on data of the natural water series and the synthetic water series 

separately. Predictions were made using the chronic Zn fish gBAM linked to WHAM V. The solid line is the 

1:1 reference line indicating a perfect match between observed and predicted values; the dashed lines 

indicate an error of a factor of two between observed and predicted values.  
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Table 5.10. Prediction statistics of the LCxZndiss dataa predicted with the chronic Zn fish BLM and gBAM in 

WHAM V 

 Fish BLM Fish gBAM 

 Synthetic waters Natural waters Synthetic waters Natural waters 

 LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

Mean prediction error 1.41 1.31 1.43 1.61 1.37 1.40 1.32 1.30 

Median prediction error 1.40 1.27 1.42 1.52 1.28 1.26 1.32 1.35 

% predicted within twofold error 100 100 100 80 90 93 100 100 

a Data from De Schamphelaere and Janssen (2004b) and from De Schamphelaere et al. 2005 

 

gBAM for Cu 

Figure 5.22 shows the the linear relation between log10(7-day EC60𝑍𝑛2+) versus pH for P. promelas. The 

SpH value for P. promelas is equal to 0.38. This value were incorporated into the gBAM. 

 

Figure 5.22 Free Cu2+ ion activity at the 7-day 60% effective concentration (EC60) as a function of pH for 

Pimephales promelas for the data from the pH-series by Erickson et al (1996). 

The intrinsic sensitivity (Q60) was equal to -5.65. Figure 5.23 shows the performance of the toxicity 

model in predicting Cu toxicity for P. promelas. The model performance is compared to the performance 

of the BLM in Table 5.11. The gBAM predicts 78% of the EC60 data within twofold prediction error, 

which is 11% more accurate than the original fish BLM, which is able to predict 68% of the data within 

twofold prediction error.  
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Figure 5.23. Predictive capacity of the generalized BioAvailability Model as shown by observed versus 

predicted 7-day 60% effective concentrations (EC60) of Cu as Cu2+ activity to Pimephales promelas. 

Predictions were made using the chronic Cu fish gBAM linked to WHAM V. The solid line is the 1:1 reference 

line indicating a perfect match between observed and predicted values; the dashed lines indicate an error 

of a factor of two between observed and predicted values.  

Table 5.11. Prediction statistics of the EC60CuAct dataa predicted with the chronic Cu fish BLM and in 

WHAM V 

 Fish BLM (=acute D. magna BLM) Fish gBAM 

Mean prediction error 1.68 1.70 

Median prediction error 1.38 1.16 

% predicted within twofold error 67 78 

Comparison of the fish BLM and gBAM is not possible based on dissolved concentrations but only based 

on free metal ion activities, which were measured in the study by Erickson et al (1996). This is because 

of the very low reaction time allowed between Cu and DOC (i.e. a hydraulic residence time of 

approximately 45 minutes) during the test. This resulted in the fact that the Cu spiked in the test media 

was not able to attain equilibrium with the DOC present in the test media. Therefore, equilibrium 

speciation calculations conducted with speciation software (i.e. WHAM V) cannot be used to accurately 

estimate the complexation of Cu with the organic matter present in the water (due to the non-equilibrium 

situation). More recently however, new datasets concerning Cu toxicity to fish have become available. 

This data includes chronic toxicity data on additional life stages and endpoints than the one investigated 

here. As such, the gBAM developed in the present study should in the future be validated using this 

data. 

Conclusion 
In this section, we developed a gBAM for fish for the metals Zn and Cu. Although the Zn gBAM was 

slightly less accurate than the Zn BLM in predicting Zn toxicity within synthetic media, it was more 

accurate for natural media. As predicting toxicity accurately within natural media is the ultimate aim of 

the developed model, the Zn gBAM for fish is a worthy and at least equally good alternative compared 

to the Zn BLM. The Cu gBAM was also more accurate than the Cu BLM for predicting Cu toxicity to fish.  

By developing these two gBAMs for Zn and Cu for fish, we have completed the uniformisation of the 

bioavailability models for Ni, Zn and Cu for algae, daphnids and fish to the gBAM structure. These 

models are structurally identical to the use of similarly structured Ni bioavailability models that are being 

used to derive EQS values and perform risk assessments in Europe (EU RAR Ni, 2008; De 

Schamphelaere and Janssen, 2010).  
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OVERALL CONCLUSION CHAPTER 5 

 

In Chapter 5, four gBAMs were developed that showed improvements compared to the original BLMs 

to predict single metal toxicity of Zn and Cu to invertebrates and fish. Table 5.12 gives an overview of 

the main characteristics and differences between the BLM and gBAM. First, in the BLM the relation 

between H+ activity and Me2+ activity is linear, assuming single-site competition, whereas in the gBAM 

this relation is non-linear and thus the assumption of multiple binding sites is made. On the other hand, 

both models assume single-site competition for other constants such as Ca and Mg.  

In addition, some improvements were made to the model constants in the gBAMs which can be seen 

as advantages for the gBAM compared to the BLM. First, instead of a KHBL parameter calculated based 

on data for one D. magna clone, the Cu D. magna gBAM incorporates a SpH parameter that was 

calibrated on data for two different D. magna clones. Second, because recent research unambiguously 

showed the influence of hardness on Cu toxicity to D. magna (Rodriguez and Arbildua 2012), the Cu D. 

magna gBAM rightfully contains Ca and Mg competition parameters (Van Regenmortel et al. 

2015/Chapter 5.1), whereas the original Cu D. magna BLM does not (De Schamphelaere and Janssen 

2004a). Third, in contrast to the Cu fish BLM, for which the pH effect was calibrated on acute D. magna 

data, the pH effect of the Cu fish gBAM was specifically calibrated on chronic fish toxicity data. Fourth, 

the Zn D. magna gBAM is applicable to a broader range of water chemistry compared to the original 

BLM. Finally, for all four newly developed gBAMs we showed that they were equally or more accurate 

than the original BLMs in predicting metal toxicity. 

Table 5.12. Overview of some characteristics and differences between the original Daphnia magna and 

Oncorhynchus mykiss BLMs for Cu and Zn and the newly developed gBAMs 

 Cu & Zn Daphnia and Fish BLM Cu and Zn Daphnia and Fish gBAM 

Relation between Me2+ and H+? 

Linear relationship (single-site 

competition) 

 H+ biotic ligand constant 

Relation seen as non-linear 

(relation between Me2+ and pH 

linear) 

 SpH slope value 

Other constants 

Single-site competition (linear 

relationship) 

 “BLM-type” constants 

Single-site competition (linear 

relationship) 

“BLM-type” constants 

Mathematical formula   

Intrinsic sensitivity 

f50% 

Gill metal concentration; “median 

lethal concentration” 

Q50 

Intrinsic sensitivity 

Some advantages of the gBAM 

compared to the BLM 

 SpH value in Cu D. magna gBAM calculated on data of two clones 

 Additional constants based on new research  

 Cu fish gBAM based on fish data instead of acute D. magna data 

 Usually more accurate than BLM in predicting single metal toxicity 
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6. IMPLICATIONS FOR RISK ASSESSMENT WHEN BIOAVAILABILITY MODELS ARE ADAPTED TO 

GBAMS 

 
6.1. Introduction 

In Chapter 2, 4 mixture risk assessment methodologies were compared for risk estimations of mixtures 

of copper, zinc and nickel across 4 different monitoring datasets and a natural baseline database. We 

estimated that between 0% and 52% of the target water samples were at risk because of single metals 

or their mixtures; when the most conservative method was used (i.e., CASSD).  

In Chapter 5, 4 generalized BioAvailability models (gBAMs) were developed. It was shown that these 

gBAMs for D. magna and for fish, for the individual metals Cu and Zn, showed a higher accuracy in 

predicting metal toxicity than their BLM-counterparts. In addition, the development of these models 

contributed to the uniformisation of all bioavailability models for Ni, Zn and Cu to the gBAM-structure. 

The use of these newly developed models in risk assessments would be analogous to the use of similarly 

structured Nickel bioavailability models that are being used to derive EQS values and perform risk 

assessments in Europe (DEPA 2008; Bio-met 2017). 

To understand the impact of the implementation of these models on risk estimations, the calculations 

performed in Chapter 2 were repeated. The purpose of the present study was therefore to evaluate how 

the msPAF values changed when implementing the gBAMs for D. magna and fish for the metals Cu and 

Zn. These gBAMs differ from the original BLMs in certain aspects. First of all, all BLMs and gBAMs differ 

in how the effect of pH on free metal ion toxicity is described. In the BLM, the relationship between free 

metal ion toxicity and proton (H+) activity is linear. However, the relationship between metal ion toxicity 

and proton activity is not always linear, but can also be curvilinear, which suggests that also other factors 

besides the competitive effect of H+ may be important in determining the effect of pH on free metal ion 

toxicity. Therefore, in the gBAM, the effect of H+ on the free metal ion is expressed as a log-linear effect 

of pH (SpH). The Cu D. magna BLM and gBAM also differ in the presence of a competition parameter 

for Ca and Mg in the gBAM and not in the BLM. Because of these differences between the BLM and 

gBAM models, we hypothesized that a correlation would be found between the difference in msPAF 

between both models and pH and/or Ca and Mg. 

6.2. Materials and Methods 

Small adaptation for Chapter 2 results 

In Chapter 2, all chronic toxicity data where normalized to the specific physico-chemistry of each 

individual water sample (the target water sample) in each of the 5 monitoring databases before risks for 

the monitoring sites could be calculated. For Ni, this was done using the Ni normalization tool developed 

by Nys et al. (2014). However, a refined tool was recently published (Nys et al. 2016), in which the SpH 

slope values that are used to calculate Ni toxicity for pH > 8.2 were optimized compared to those 

reported in Nys et al. (2014). In line with this adaptation, the calculations performed in Chapter 2 were 

first redone using this adapted tool for Ni, before the comparison with the gBAM-adaptations for this 

chapter was made. These calculations, in which all originally published bioavailability models were used, 

will be referred to as “Scenario A”. 
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Adaptation of parameter files 

In risk assessments, toxicity data of D. magna, C. dubia, O. mykiss, P. promelas and P.subcapitata are 

normalized with the BLMs developed for these specific species, respectively. However, the chronic 

toxicity databases contain several species other than the ones listed above. As it is infeasible to develop 

specific BLMs for each separate species, the assumption is made that the intrinsic sensitivity (i.e. ƒ𝑀𝑒𝐵𝐿,𝑖,𝑥 

or Qi,x) between related species is different but that the interactions between the metals and other cations 

(e.g. Ca2+, Mg2+, Na+, H+) at the biotic ligand are equal among related species (i.e. invertebrates, fish 

and algae) (Van Sprang et al. 2009). The cross-validation of the specific BLMs to related species has 

shown to be successful (De Schamphelaere and Janssen 2010; De Schamphelaere et al. 2006b; 

Schlekat et al. 2010). Therefore, all invertebrate EC10 values are normalized with the D. magna or C. 

dubia bioavailability models, all vertebrate (fish) EC10 values with the O. mykiss or P. promelas 

bioavailability models and all algae EC10 values with the P.subcapitata bioavailability models. Before 

the gBAMs are implemented, it should therefore be checked whether the cross-validation of these 

models to related species is successful. For the Zn D. magna gBAM, this was confirmed in Chapter 5 

(Van Regenmortel et al. 2017b). For the Cu D. magna gBAM, the cross-validation was also successful 

(Appendix E.1). 

For Cu and Zn, the bioavailability model parameter files for invertebrates and fish were modified to 

reflect the adaptations that were made to the models, i.e. adaptation to the gBAMs. The WHAM-Model 

V speciation software (Tipping 1994) was used.  

The calculations, in which the originally published bioavailability models for invertebrates and fish for 

the metals Zn and Cu were replaced by gBAMs developed in Chapter 5, will be referred to as “Scenario 

B”. 

Ecoregions 

To examine the influence of the possible implementation of the gBAMs on the HC5 values, we calculated 

HC5 values for the different European Union (EU) ecoregions (Table 6.1). This procedure, in which a 

model is tested in different EU ecoregions, was also followed in the Cu and Ni Risk Assessment Reports 

(ECI 2008, DEPA 2008). These seven surface waters show a diverse physico-chemistry and are 

representative for waters found in the EU. 

Table 6.1.  Summary of the physico-chemistry characteristic of the different surface waters selected for 

HC5 calculations. 

Type Name Country pH DOC Na Mg K Ca Cl SO4 CO3 

        (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Lake (oligotrophic) Lake Monate Italy 7.7 2.5 2.3 3.5 0.8 13.6 3.2 18.8 63.8 

River (Large) River Rhine the Netherlands 7.8 2.8 36.8 10.9 5.7 68.9 81.5 51.9 147.8 

River (medium) River Otter United Kingdom 8.1 3.2 14.2 11.6 5.4 46.9 23.5 34.0 141.1 

River (medium) River Teme United Kingdom 7.6 8.0 12.9 8.4 3.7 49.9 22.3 22.7 149.9 

Lake (acidic) / Sweden 6.7 3.8 7.7 1.5 0.9 8.7 11.6 10.7 24.2 

River (Mediterranean) River Ebro Spain 8.2 3.7 5.3 22.1 1.1 72.9 5.6 6.6 43.2 

River (ditches) / the Netherlands 6.9 12.0 59.8 31.6 8.4 88.2 113.4 76.0 413.8 

 



Chapter 6 

206 
 

In a first step, all the original bioavailability models were used to calculate the HC5 values for Cu and 

Zn. Subsequently, the newly developed gBAMs (i.e. those for D. magna and fish, for Cu and Zn) were 

used one by one, to examine the individual effect of the gBAM on the HC5 values. In addition, the newly 

developed gBAMs were both used simultaneously, to examine the effect of both gBAMs on the HC5 

values 

Toxic pressure (msPAF) calculations 

As was done in Chapter 2, the toxic pressure of the metal mixture for the different target water samples 

within the monitoring databases was calculated with 4 different methods. The R code used to apply 

these methods was the same as was applied in Chapter 2. The only difference was the implementation 

of the gBAMs for D. magna and fish for the normalization of the chronic toxicity data for the metals Cu 

and Zn (i.e. Scenario B) (Figure 6.1). 

The results of Chapter 2 showed that use of the log-normal species sensitivity distribution (SSD) instead 

of the best-fit distribution had little impact on risk estimates. Therefore, for this chapter, we will only use 

the log-normal SSD to calculate HC5 values. 

 

Figure 6.1 Overview of the methodology used for the calculations in Scenario A for which all original 

bioavailability models are used to normalize toxicity data (orange) and Scenario B for which the gBAMs 

for D. magna and fish for the metals Cu and Zn developed in Chapter 5 are implemented together with all 

original bioavailability models for Ni and the original bioavailability models for algae for Cu and Zn for 

(blue) (these original bioavailability models for Ni and Cu already had the gBAM-structure).  



Implications when gBAMs are implemented 

207 
 

6.3. Results and Discussion 

Small adaptation for Chapter 2 results 

The use of the refined Ni normalization tool only brought about small changes in absolute msPAF values 

(Appendix E.2). In addition, the main conclusions of Chapter 2, related to the comparison of the four 

methods, were not affected. For example, the order of conservatism of our four methods, the tiered 

metal-mixtures risk evaluation scheme and the MoS provided by the CASSD method were not affected. 

The results obtained when using the refined Ni normalization tool, and not the results from Chapter 2 in 

which the former Ni normalization tool was implemented, will be used for the comparison with the 

calculations made with the adapted bioavailability models (i.e. gBAMs; Scenario B). 

 

Ecoregions 

Application of the Cu gBAMs 

Table 6.2 shows the HC5 values for Cu when all original bioavailability models were used to calculate 

the HC5 values. Furthermore, it also shows the HC5 values when the Cu gBAM was implemented for 

D. magna, together with the original algae and fish bioavailability models, when the Cu gBAM was 

implemented for fish, together with the original D. magna and algae bioavailability models and when the 

Cu gBAM was implemented for D. magna and for fish, together with the original algae bioavailability 

models. 

Implementing the gBAM for invertebrates has considerable influence on the average HC5 values (i.e. 

average difference of 47.5%). When investigating the correlation between (1) the factor difference 

between the gBAM and BLM HC5 results and (2) the pH, Ca concentration and Mg concentration (Figure 

6.2; blue lines; circles), it is clear that Ca has a significant influence on the difference between both 

models. At the highest Ca concentration (i.e. for the ditch in the Netherlands) the gBAM predicts a 60% 

higher HC5 value compared to the BLM, while at the lowest Ca concentration (i.e. the Swedish lake) a 

decrease in HC5 concentration of 40% is observed. The influence of Ca on the difference between the 

BLM and gBAM results is in line with expectations, as the BLM does not incorporate a Ca competition 

constant (De Schamphelaere et al. 2004) while the gBAM does (Chapter 5, Van Regenmortel et al. 

2015). 
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Figure 6.2 Factor differences (i.e. HC5 calculated with gBAM / HC5 calculated with BLM) against different 

chemical parameters (pH, Ca concentration (mg/L) and Mg concentration (mg/L)). Circles (blue), triangles 

(red) and crosses (green) indicate the factor differences when HC5 values are calculated with (1) a 

combination of the Cu gBAM for invertebrates and the original Cu bioavailability models for algae and fish 

(blue), (2) a combination of the Cu gBAM for fish and the original Cu bioavailability models for invertebrates 

and algae (red) and (3) a combination of the Cu gBAM for invertebrates and fish and the original Cu 

bioavailability model for algae (green).



 

 
 

Table 6.2. Overview of the HC5 values for copper for the different EU ecoregions calculated with (1)a a combination of all original bioavailability models for copper, 

(2)b a combination of the gBAM for invertebrates and the original bioavailability models for algae and fish, (3)c a combination of the gBAM for fish and the original 

bioavailability models for invertebrates and algae and (4)d a combination of the gBAM for invertebrates and fish and the original bioavailability model for algae. The 

percentage difference and the factor differences between combination (1) and (2), between combination (1) and (3) and between combination (1) and (4) are given.  

Type Name Country 
original 

bioavailability 
modelsa 

gBAM 
Daphniab 

% 
difference 

Factor 
difference 

gBAM 
Fishc 

% 
difference 

Factor 
difference 

gBAM 
Daphnia 
and Fishd 

% 
difference 

Factor 
difference 

      HC5 (µg/L) 
HC5 

(µg/L) 
  HC5 

(µg/L) 
  HC5 

(µg/L) 
  

Lake (oligotrophic) Lake Monate Italy 10.32 9.24 -10.48 0.9 10.02 -2.90 1.0 9.00 -12.84 0.9 

River (Large) River Rhine The Netherlands 8.46 11.87 40.30 1.4 8.39 -0.77 1.0 12.04 42.41 1.4 

River (medium) River Otter United Kingdom 8.29 13.96 68.37 1.7 8.14 -1.77 1.0 14.46 74.48 1.7 

River (medium) River Teme United Kingdom 22.06 33.40 51.38 1.5 22.15 0.40 1.0 33.73 52.91 1.5 

Lake (acidic) / Sweden 11.25 6.77 -39.80 0.6 10.58 -5.92 0.9 6.50 -42.22 0.6 

River (Mediterranean) River Ebro Spain 12.52 20.30 62.21 1.6 12.52 -0.01 1.0 20.17 61.13 1.6 

River (ditches) / The Netherlands 25.99 41.55 59.85 1.6 26.46 1.81 1.0 43.11 65.86 1.7 

     
Mean:   Mean   Mean:  

     
47.5   1.9   50.3  
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Implementing the gBAM for fish does not have a large influence on the average HC5 values (i.e. average 

difference of 1.9%; Table 6.2). In addition, no significant correlation between the factor differences and 

the physico-chemical parameters is observed (Figure 6.2; red line; triangles). This can be explained by 

the less sensitive nature of fish to Cu compared to invertebrates. The majority fish species that are 

present in the chronic Cu toxicity database are situated in the middle of the SSD curve. This implies that 

a change in the EC10 value of these fish between the calculations with the BLM and the gBAM, has a 

small influence on the HC5 value. Therefore, implementing the gBAM for fish does not have a large 

influence on the HC5 values. 

As was expected from the above results, implementing both the Cu D. magna and fish BLM has an even 

larger influence on the HC5 values (Table 6.2) than when implementing the gBAMs separately (i.e. up 

to 75% difference). However, the largest influence on the HC5 values in due to the D. magna gBAM. 

Again, a significant correlation between the factor difference of both models and the Ca concentration 

is observed (Figure 6.2; green line; crosses). In addition, a significant correlation with Mg concentration 

is found (Figure 6.2). Implementing both gBAMs has the largest influence on waters with high hardness. 

In those waters, the HC5 is higher when estimated using the gBAM than with the BLM. In waters with 

low hardness however, the HC5 is lower when estimated with the gBAM than with the BLM.  

Application of the Zn gBAMs 

Table 6.3 shows the HC5 values for Zn when all original bioavailability models were used to calculate 

the HC5 values. Furthermore, it also shows the HC5 values when the Zn gBAM was implemented for 

D. magna, together with the original algae and fish bioavailability models, when the Zn gBAM was 

implemented for fish, together with the original D. magna and algae bioavailability models and when the 

Zn gBAM was implemented for D. magna and for fish, together with the original algae bioavailability 

models. 

Implementing the Zn gBAM for invertebrates has a smaller influence on the HC5 values than 

implementing the Cu gBAM for invertebrates. However, an average difference of 6.9% is still observed 

when implementing the Zn gBAM for invertebrates. When investigating the correlation between (1) the 

factor difference between the gBAM and BLM HC5 results and (2) the pH, Ca concentration and Mg 

concentration (Figure 6.3; blue lines; circles), it is clear that pH has a significant influence on the 

difference between both models. At the lowest pH (i.e. the Swedish lake) the gBAM predicts a 17% 

higher HC5 value compared to the BLM, while at the highest pH (i.e. the river Ebro) a decrease in HC5 

concentration of 6.5% is observed. This was somewhat expected, as Heijerick et al. (2005) calculated 

a stability constant for H+ based on a linear regression between the EC50 as Zn2+ activity and the H+ 

activity (Figure 6.4), whereas it seemed that a non-linear relationship may have better fitted the data. 

The relation between Zn toxicity and pH is therefore better explained by a log-linear relationship 

implemented in the gBAM.  

As was observed for Cu, implementing the Zn gBAM for fish does not have a large influence on the 

average HC5 values (i.e. average difference of 3.1%; Table 6.3). Again, this can be explained by the 

fact that fish are less sensitive to Zn toxicity than invertebrates and algae. This implies that the a change 
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in the normalized EC10 value of these fish between the calculations with the BLM and the gBAM, has a 

small influence on the HC5 value.  

 
Figure 6.3. Factor differences (i.e. HC5 calculated with gBAM / HC5 calculated with BLM) against different 

chemical parameters (pH, Ca concentration (mg/L) and Mg concentration (mg/L)). Circles (blue) and crosses 

(green) indicate the factor differences when HC5 values are (1) calculated with a combination of the Zn 

gBAM for invertebrates and the original Zn bioavailability models for algae and fish and (2) calculated with 

a combination of the Zn gBAM for invertebrates and fish and the original Zn bioavailability model for algae, 

respectively.
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Figure 6.4. Relationship between the 21-day EC50 (µM Zn2+ activity) and the proton concentrations (as free 

ion activity) in the test medium (H+ in µM). Full line = linear function; dotted line = logarithmic function 

(taken from Heijerick et al. 2005). 

As was expected from the above results, implementing both the Zn D. magna and fish BLM has an even 

larger influence on the HC5 values (Table 6.3) than when implementing the gBAMs separately (up to 

22% difference). However, the influence is smaller than compared to implementation of the Cu gBAMs. 

Again, a significant correlation between the factor difference of both models and the pH is observed 

(Figure 6.3; green line; crosses). Implementing both gBAMs has the largest influence on waters with low 

pH. In those waters, the HC5 is overestimated using the BLM. In waters with high pH however, the HC5 

is underestimated with the BLM. Therefore, in these waters, the HC5 calculated with the BLM is not 

protective for 5% of the species within the communities.  

 

Application of the gBAMs for the Ecoregions 

Implementing the newly developed gBAMs to calculate HC5 values for the Ecoregions is a procedure 

that is applied in risk assessments (ECI 2008, DEPI 2008). However, it only gives a first impression of 

the implications of these gBAMs for risk estimations because only 7 waters are considered. For more 

robust results, monitoring datasets including data for numerous waters should be assessed. In the 

following section, this was done for the monitoring databases described in Chapter 2.



 

 
 

Table 6.3. Overview of the HC5 values for zinc for the different EU ecoregions calculated with (1)a a combination of all original bioavailability models for copper, (2)b 

a combination of the gBAM for invertebrates and the original bioavailability models for algae and fish,   (3)c a combination of the gBAM for fish and the original 

bioavailability models for invertebrates and algae and (4)d a combination of the gBAM for invertebrates and fish and the original bioavailability model for algae. The 

percentage difference and the factor differences between combination (1) and (2), between combination (1) and (3) and between combination (1) and (4) are given.  

Type Name Country 
original 
bioavailability 
models a 

gBAM 
Daphnia b 

% 
difference 

Factor 
difference 

gBAM 
Fish c 

% 
difference 

Factor 
difference 

gBAM 
Daphnia 
and Fishd 

% 
difference 

Factor 
difference 

      HC5 (µg/L) HC5 (µg/L)     
HC5 
(µg/L) 

   HC5 (µg/L)    

Lake (oligotrophic) Lake Monate Italy 18.31 18.40 0.47 1.0 17.66 -3.57 1.0 17.76 -2.99 1.0 

River (Large) River Rhine the Netherlands 25.09 24.67 -1.69 1.0 24.47 -2.47 1.0 24.17 -3.70 1.0 

River (medium) River Otter United Kingdom 27.05 25.53 -5.62 0.9 25.80 -4.63 1.0 24.78 -8.39 0.9 

River (medium) River Teme United Kingdom 44.32 44.95 1.43 1.0 43.60 -1.62 1.0 44.23 -0.19 1.0 

Lake (acidic) / Sweden 14.69 17.17 16.86 1.2 15.08 2.60 1.0 17.95 22.13 1.2 

River 
(Mediterranean) 

River Ebro Spain 
28.35 26.50 -6.54 

0.9 
27.21 -4.01 

1.0 25.99 -8.32 0.9 

River (ditches) / the Netherlands 46.78 54.07 15.58 1.2 45.50 -2.75 1.0 53.34 14.02 1.1 

     Mean:   Mean:   Mean:  

     6.9   3.1   8.5  

 



Chapter 6 

214 
 

Toxic pressure (msPAF) calculations 

Figure 6.5 shows the differences in HC5 values when calculations were performed with Scenario A and 

B for Cu, in relation to the Ca concentration. As was observed for the Ecoregions (see above), the factor 

difference is influenced by the Ca concentration, which was explained by the presence of a competition 

parameter for Ca in the D. magna gBAM and not in the D. magna BLM. However, for 2 monitoring 

databases (i.e. the Rhine and the Dommel database) no clear pattern can be observed. In Figure 6.6 

the differences in HC5 values when calculations were performed with Scenario A and B for Cu, in relation 

to the pH is plotted. For all monitoring databases, including the Rhine and Dommel, the influence of pH 

on the factor difference can be observed. From Figure 6.5 and 6.6 it can be deducted that a combination 

of Ca concentration and pH determines the difference between the results using Scenario A and B, 

although for most monitoring databases these differences are mostly within 2-fold error. For Cu, 

Scenario B predicts a higher HC5 value at high Ca concentration and high pH and a lower HC5 value 

at low Ca concentration and low pH compared to Scenario A. In Chapter 5, we showed that the predictive 

accuracy of the gBAMs for D. magna and fish is higher than that of the BLMs. Therefore, in current risk 

assessment procedures for Cu in which Scenario A is implemented, risk estimates of Cu might be 

somewhat over-conservative for high Ca concentration and high pH waters, but somewhat under-

conservative for low Ca and low pH waters.  

Figure 6.7 shows the differences in HC5 values when calculations were performed with Scenario A and 

B for Zn, in relation to the pH. The difference between both scenarios is smaller for Zn than for Cu. For 

Zn these differences are within 2-fold error for all monitoring databases. As was observed and explained 

above for the Ecoregions, the difference in HC5 values is influenced by pH. For Zn, Scenario B predicts 

a lower HC5 value at low pH and high pH and a higher HC5 value at intermediate pH compared to 

Scenario A. Here too, this implies that risk estimates for Zn in which Scenario A is implemented, could 

somewhat underestimate risk due to Zn in waters with low and high pH and somewhat overestimate risk 

in waters with intermediate pH. However, the over or underestimations will in any case be less 

pronounced for zinc than for copper. 

Table 6.4 shows the distribution of toxic pressure (expressed as msPAF values) for all 4 methods for 

the different monitoring datasets, when calculations were performed with Scenario B. Table 4 also 

shows the absolute difference in median msPAF, % target water samples affected and MoS between 

Scenario B and Scenario A. A positive difference implies that the value calculated with Scenario B is 

higher than when calculated with Scenario A. A negative value implies the opposite. It can be deducted 

from Table 4 that the influence of adapting the bioavailability models to gBAMs for invertebrates and 

fish for the metals Cu and Zn on the risk estimation is small. This can be explained by the individual 

toxic unit contribution (TU= ci/HC5i) of the three metals to the mixture. Averaged over all 5 monitoring 

databases, the toxic unit contribution (TUHC5) of Zn, Cu and Ni is equal to 45% ± 26%, 22% ± 22% and 

32%± 21% (average ± sd), respectively. Therefore, although the influence of the implementation of the 

Cu D. magna and fish gBAM on the HC5 values is considerable (mostly 2-fold, but up to 4-fold for some 

monitoring databases), the influence on the calculated risk estimations is low because the contribution 

of Cu to the mixtures in these monitoring datasets is the lowest of all three metals. 
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Figure 6.5 Difference in HC5 value (µg/L) for Cu when HC5 values are calculated with Scenario B (i.e. 

toxicity data for invertebrates and fish normalized with the gBAMs developed in Chapter 5 and the toxicity 

data for algae were normalized with the original algae bioavailability model) and Scenario A (i.e. toxicity 

data normalized with all original bioavailability models) (Scenario B/Scenario A), in relation to Ca 

concentration, for the different monitoring databases. 

 



Chapter 6 

216 
 

 

Figure 6.6 Difference in HC5 value (µg/L) for Cu when HC5 values are calculated with Scenario B (i.e. 

toxicity data for invertebrates and fish normalized with the gBAMs developed in Chapter 5 and the toxicity 

data for algae were normalized with the original algae bioavailability model) and Scenario A (i.e. toxicity 

data normalized with all original bioavailability models) (Scenario B/Scenario A), in relation to pH, for the 

different monitoring databases. 
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Figure 6.7 Difference in HC5 value (µg/L) for Zn when HC5 values are calculated with Scenario B (i.e. 

toxicity data for invertebrates and fish normalized with the gBAMs developed in Chapter 5 and the toxicity 

data for algae were normalized with the original algae bioavailability model) and Scenario A (i.e. toxicity 

data normalized with all original bioavailability models) (Scenario B/Scenario A), in relation to pH, for the 

different monitoring databases. 

 

 

 

 



 

 
 

Table 6.4 Toxic pressure expressed as multisubstance potentially affected fraction of species (msPAF) for the Dommel, Flanders (VMM), Rhine, Austria, and 

FOREGS database obtained with the different methods. Normalisation of the toxicity data was performed with Scenario B, i.e. the Cu and Zn toxicity data for 

invertebrates and fish were normalized with the gBAMs developed in Chapter 5 and the Cu and Zn toxicity data for algae were normalized with the original algae 

bioavailability models. The Ni toxicity data was normalized with the original bioavailability models in both scenarios. The values between parentheses indicate the 

absolute difference in results between Scenario B and Scenario A (B-A). in the latter method, the toxicity data were normalized with all original bioavailability 

models. A positive difference implies that the msPAF value calculated with Scenario B is higher than when calculated with Scenario A. 

 Dommel VMM Rhine 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 
0.063 
(0.009) 

0.042 

(0.007) 

0.028 

(0.0045) 

0.031 

(0.005) 
0.008 
 (-0.001) 

0.004 
(0.000) 

0.002  
(0.000) 

0.003  
(0.000) 

0.004 
(0.000) 

0.001 
(0.000) 

0.001 
(0.000) 

0.001 
(0.000) 

% Samples affected 
(msPAF > 0.05) 

55 (3.4) 47 (2.6) 41 (1.7) 42 (1.6) 27 (0.0) 25 (0.7) 21 (-1.9) 23 (-1.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

% Samples affected 
by mixture of metals 
and not by any 
individual metals 

17 (2.1) 10 (1.2) 3 (0.5) 4 (0.4) 8 (1.3) 6 (2.6) 2 (-0.7) 4 (1.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

MoS provided by the 
CASSD approach 

NA 
1.23 

(0.021) 

1.53 

(0.045) 

1.45 

(0.039) 
NA 

1.16 
 (-0.019) 

1.59  
(0.013) 

1.46  
(0.004) 

NA 
1.22 
 (-0.032) 

1.76 
(0.043) 

1.64  
(0.031) 

 

 Austria FOREGS 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 
0.003  
(-0.001) 

0.001 
(-0.001) 

0.001 
(0.000) 

0.001 
(0.000) 

0.003 
(0.000) 

0.001  
(0.000) 

0.001 
 (0.000) 

0.001 
 (0.000) 

% Samples affected 
(msPAF > 0.05) 

7 (-0.4) 6 (-0.1) 5 (-0.1) 5 (-0.1) 9 (0.4) 6 (-0.1) 4 (0.1) 4 (0.0) 

% Samples affected 
by mixture of metals 
and not by any 
individual metals 

3 (-0.4) 1 (-0.1) 0.2 (-0.1) 0.4 (-0.0) 5 (0.3) 2 (-0.3) 0.3 (0.0) 0.4 (-0.1) 

MoS provided by the 
CASSD approach 

NA 
1.20 
 (-0.014) 

1.55 
(0.099) 

1.48  
(-0.036) 

NA 
1.21 
 (-0.025) 

1.56 
 (0.004) 

1.46  
(-0.004) 

 

CA = Concentration Addition, IA = Independent Action, SSD = Species Sensitivity Distribution, DRC = Dose-Response Curve, msPAF = multisubstance Potentially Affected 

Fraction of species, MoS = Margin of Safety, NA = Not Applicable
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6.4. Conclusion  

In the present chapter, Scenario B, in which the toxicity data for Cu and Zn for invertebrates and fish in 

the chronic toxicity databases were normalized with the gBAMs developed in Chapter 5, was 

implemented for bioavailability-based risk calculations. Implementing Scenario B generally showed a 

less than 2-fold difference of HC5 values compared to Scenario A, in which all original bioavailability 

models were implemented. The largest differences were found for Cu (up to 4-fold in some monitoring 

databases), which was related to the experimental evidence-based incorporation of a Ca competition 

parameter in the Daphnia gBAM. Yet, despite these differences, implementing Scenario B only had a 

small influence on median msPAF values and on the % of target water samples that are predicted to be 

affected by the mixture of Zn, Cu and Ni. The latter is a result of the relatively low contribution of Cu to 

the mixture effects in the investigated monitoring databases. 

Because the newly developed gBAMs for Cu and Zn for invertebrates and fish more accurately predict 

single metal toxicity, we recommend Scenario B (with the gBAMs) instead of Scenario A (with the original 

BLMs) to normalize toxicity data for Cu and Zn prior to metal mixture risk calculations.
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CALIBRATION OF THE CU, NI AND ZN BIOAVAILABILITY MODELS IN 

WHAM VII 
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7. Calibration of the Cu, Ni and Zn bioavailability models in WHAM VII 

 
7.1. Introduction 

Our calculations of msPAFs have so far been based on bioavailability-normalized dissolved metal 

concentrations (Van Regenmortel et al. 2017/Chapter 2). However, an important aspect to consider is 

that in a mixture of metals, metals may compete with each other for the binding sites of Dissolved 

Organic Carbon (DOC). As a consequence, a risk assessment based on dissolved concentrations might 

lead to some underestimation of metal mixture risks.  Hence, metal mixture risks should ideally be 

evaluated on the free ion activity level. However, an evaluation based on free ion activities is currently 

limited due to the use of different speciation programs in the chronic biotic ligand models (BLMs) for the 

individual metals, i.e. WHAM V for Zn (Van Sprang et al. 2009) and Cu (ECI, 2008) and WHAM VI for 

Ni (DEPA, 2008). In addition, the use of different speciation assumptions regarding DOC ‘activity’ for 

the different individual metals also limits an evaluation based on free ion activities. Indeed, for Ni, it was 

shown that a % active fulvic acid (%AFA) of 40% resulted in the best fit between measured and WHAM 

VI calculated Ni2+ activities (De Schamphelaere et al. 2006a), whereas for Zn it is assumed that 61% of 

the FA in natural water is reactive (De Schamphelaere et al. 2005) and for Cu, even another %AFA is 

used, i.e. 50% (De Schamphelaere and Janssen, 2004b). 

 

Only a uniformisation of the speciation calculations performed for the individual metals will enable to 

account for the competing effects between metals at the binding sites of DOC. This uniformisation 

should include both the uniform use of a single speciation program for all metals as well as the uniform 

use of a single %AFA assumption. Nys (2016) showed that recalibrating the daphnid bioavailability 

models of Ni, Zn and Pb in WHAM VII (the most recent version of the Windermere Humic Aqueous 

model) using the same speciation assumptions for each metal resulted in similar predictive capacities 

as the original bioavailability models. Nys (2016) used the assumption of 65% active fulvic acid (AFA). 

Indeed, assumptions of 60% to 70% AFA have been shown to work best for predicting metal toxicity in 

natural waters (Tipping, 2002) and the assumption of 65% AFA has been used in most recent metal 

mixture studies (Tipping and Lofts, 2013, 2015; Nys, 2016). In addition, Nys (2016) compared the 

predictive capacity of WHAM VII using default inorganic complexing stability constants and NIST 

updated inorganic binding stability constants for Ni, Zn and Pb.  

Confirmation of the observations by Nys (2016) for other bioavailability models (i.e. for other species 

and metals) used in the risk assessment approaches for metals (e.g. Van Regenmortel et al. 

2017/Chapter 2) would allow a metal mixture risk assessment that accounts for metal-metal competitive 

interactions at the DOC binding sites (i.e. “simultaneous speciation calculations”). Therefore, we 

evaluated if metal toxicity can be predicted using a single speciation software (i.e. WHAM VII) and a 

single set of speciation assumptions regarding the DOC ‘activity’ (i.e. 65% AFA) for all bioavailability 

models (Table 7.1), without significantly decreasing the predictive capacity of each of the individual 

bioavailability models. WHAM VII is the most recent version of the Windermere Humic Aqueous Model  

(Tipping et al. 2011) and it was shown that it can be used to accurately calculate free metal ion activity 

in natural waters (Lofts and Tipping, 2011).  
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Nys (2016) evaluated the performance of WHAM VII using EC50 data only. However, as the risk 

assessment that was performed in Chapter 2 (Van Regenmortel et al. 2017) uses EC10 values reported 

in toxicity databases to eventually calculate msPAF values, we considered it important to also evaluate 

the performance of WHAM VII using EC10 (or NOEC) data. In addition, as was done in Nys (2016), to 

assess the importance of inorganic complexation stability constants we evaluated the impact of two 

speciation scenarios on the prediction capacity of the bioavailability models: (1) using the default WHAM 

VII thermodynamic database for inorganic complexation and (2) using the stability constants for 

inorganic complexation reported by NIST (Smith et al. 2004). 

In the present study, the predictive performance of the bioavailability models coupled with WHAM VII 

was compared to the predictive performances reported in the original publications.  

7.2. Methodology 

Data selection 

Data to test the validity of the bioavailability models in WHAM VII was taken from the original publications 

in which the bioavailability models were developed and validated (Table 7.1). For the Cu and Zn D. 

magna BLM, in addition to the data that is specified in Table 7.1, the data that was used to validate the 

Cu and Zn D. magna gBAM (Table 7.1) was also used to validate the Cu and Zn D. magna BLM. This 

was done to make the comparison in predictive capacity between the D. magna BLM and gBAM 

possible. For the Cu fish BLM (De Schamphelaere & Janssen, 2008), as was mentioned in Chapter 5, 

equilibrium speciation calculations conducted with speciation software (e.g. WHAM V or WHAM VII) 

can’t be used to accurately estimate the complexation of Cu with the organic matter present in the water. 

This is because of the very low reaction time (i.e. a hydraulic residence time of approximately 45 

minutes) during the test which resulted in the fact that the Cu spiked in the test media was not able to 

attain equilibrium with the DOC present in the test media. Therefore, in this Chapter, it is not possible to 

validate whether the fish BLM can be used in combination with WHAM VII to accurately predict Cu 

toxicity. However, we do know from Chapter 5 that the BLM predictions for the fish BLM are accurate. 

Therefore, we will assume that the model can be used in combination with WHAM VII when the Cu 

bioavailability models for species other than fish (i.e. Daphnia and algae) are accurate in predicting Cu 

toxicity when coupled to WHAM VII. 

Speciation calculations 

Speciation calculations were performed as is explained in Nys 2016. WHAM VII (Tipping et al. 2011) 

was used to calculate the chemical metal speciation in the different test waters. MOPS was added to 

the default solute database (pKa of 7.2). The default complexation parameters for the metal - dissolved 

organic matter (DOM) complexation were used. For DOM from natural origin it was assumed that  65% 

of the DOM is reactive and behaves as isolated fulvic acid (FA; 65% AFA). This % was chosen as 

assumptions of 60% to 70% reactive FA have been shown to work best for predicting metal toxicity in 

natural waters (Tipping 2002). In addition, it was assumed that DOM contains 50% carbon on a weight 

basis. Therefore, the measured DOC concentration was multiplied by 1.3 to obtain the FA concentration 

to be used as the input for speciation calculations. Activities of the metal cation Fe3+ were assumed to 
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be controlled by colloidal Fe(OH)3 precipitates using the default equation and solubility product 

embedded in WHAM VII; i.e. Fe3+ activity is a function of pH only (Lofts & Tipping 2011) (Equation 7.1). 

Fe(OH)n + nH+ → Fe3+ + nH2O with n = 2.49 and logK = -0.52 = 
{𝐹𝑒3+}

{𝐻+}𝑛                                              (7.1) 

As was done in Nys 2016, two speciation scenarios were evaluated in the present study. A first scenario 

(“Speciation Scenario I”) used the WHAM VII default parameters for inorganic ligand-metal complexation 

(Table 7.2). A second scenario (“Speciation Scenario II”) used stability constants for inorganic-metal 

complexation that were adapted to those reported by the National Institute for Standards and 

Technology (Table 7.2).  

Both scenarios were used to recalibrate the pH slope parameter to WHAM VII for all models containing 

this type of value. For Cu and Zn, this includes the bioavailability models for algae and the gBAMs for 

Daphnia and fish. For Ni, this includes the bioavailability models for algae, Daphnia, Ceriodaphnia and 

Fish. To recalibrate the SpH value to WHAM VII, all data that was used in the original papers to calibrate 

the SpH value were used. All biotic ligand constants other than the SpH value were kept as in the original 

publications. 

Both scenarios were used to calculate metal speciation and predict chronic Cu, Ni and Zn toxicity to 

daphnids, algae, fish, rotifers, snails and midges using the metal-specific bioavailability models. 

Comparing bioavailability-model predicted ECxMediss using both speciation scenarios with observed 

ECxMediss made it possible to evaluate the predictive performance of the models. 
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Table 7.1. Overview of the data for the different individual chronic bioavailability models that were calibrated in WHAM 

VII for the metals Cu, Ni and Zn in the present study. 

 
a Information on the location (e.g. Table number) where the effect concentrations can be found in the respective reference 
b The species for which the bioavailability mode was calibrated in WHAM VII 
c The effect concentrations for which the bioavailability model was calibrated in WHAM VII 
d The total number of waters (natural and synthetic) for which the bioavailability mode was calibrated in WHAM VII 
e The number of natural waters out of the total number of waters 
f The number of synthetic waters out of the total number of waters 
g when numbers are separated by a “ ; ” this refers to the respective effect concentrations that are considered 
h numbers are separated by a “ - ” when more than one species is considered  
i calibration of EC50 data to WHAM VII for this species and bioavailability model was performed by Nys et al (2016) 
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Table 7.2 Default and adapted stability constants for Cu, Ni and Zn for inorganic complexes used for 

speciation calculations in WHAM VII 

Element Parameter 
Default stability constant 

in WHAM VII (log K) 

Adapted stability 

constant (log K)a 

Cu 
K = [CuCO3]/{[Cu2+].[CO3

2-]} 6.75 6.77 

K = [CuHCO3
+]/{[Cu2+].[H+].[CO3

2-]} 14.62 12.13 

Ni 
K = [NiCO3]/{[Ni2+].[CO3

2-]} 5.78 4.57 

K = [NiHCO3
+]/{[Ni2+].[H+].[CO3

2-]} 13.41 12.42 

Zn 

K = [ZnCO3]/{[Zn2+].[CO3
2-]} 4.76 4.76 

K = [ZnHCO3
+]/{[Zn2+].[H+].[CO3

2-]} 13.12 11.83 

K = [Zn(OH)2]/{[Zn2+].[OH-].[OH-]} 11.1 10.2 
a As proposed by the National Institute of Standards and Technology (Smith et al. 2004) 

Bioavailability modelling 

Cu bioavailability modelling 

Cu2+ toxicity to D. magna was predicted using the BLM reported by De Schamphelaere and Janssen 

(2004b) (Equation 7.2).   

 𝐸𝐶𝑥𝐶𝑢2+,𝑖 =  𝐸𝐶𝑥𝐶𝑢2+
∗  ∙ {

1+𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)
𝑖
+𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)

𝑖
+𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)

𝑖
+𝐾𝐻𝐵𝐿(𝐻+)

𝑖

1 + 𝐾𝐶𝑢𝐵𝐿+𝐾𝐶𝑢𝑂𝐻𝐵𝐿 𝐾𝐶𝑢𝑂𝐻 (𝑂𝐻−)𝑖+𝐾𝐶𝑢𝐶𝑂3𝐵𝐿 𝐾𝐶𝑢𝐶𝑂3 (𝐶𝑂3
2−)

𝑖

}                                   (7.2) 

In Equation 7.2, 𝐸𝐶𝑥𝐶𝑢2+,𝑖 is the  x% effective concentration of Cu2+ in test solution i. KCaBL, KMgBL, KNaBL, 

KHBL KCuOHBL and KCuCO3BL are the stability constants for binding of Ca2+, Mg2+, Na+, H+, CuOH+ and 

CuCO3 to the Cu biotic ligand, respectively (L/mol) (Table 7.3). KCuOH and KCuCO3 are stability constants 

for the formation of the CuOH+ and CuCO3 complex, respectively (L/mol). (Ca2+), (Mg2+), (Na+) and (H+) 

are the chemical activities of Ca2+, Mg2+, Na+ and  H+ in test solution i (mol/L). 𝐸𝐶𝑥𝐶𝑢2+
∗  is a measure of 

the intrinsic sensitivity of a species in the Cu BLM, which can be regarded as the 𝐸𝐶𝑥𝑐𝑢2+ value 

expressed as Cu2+ in the hypothetical situation without cation competition and in the absence of CuOH+ 

and CuCO3 in the solution. The intrinsic sensitivity 𝐸𝐶𝑥𝐶𝑢2+
∗   was calibrated from a number of observed 

ECx across various test waters using Equation 7.3: 

 𝐸𝐶𝑥𝐶𝑢2+
∗ =  ∏ (

 𝐸𝐶𝑥
𝐶𝑢2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

{
1+𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖+𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖+𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖+𝐾𝐻𝐵𝐿(𝐻+)𝑖

1+𝑅𝐶𝑢𝑂𝐻 𝐾𝐶𝑢𝑂𝐻 (𝑂𝐻−)+𝑅𝐶𝑢𝐶𝑂3
 𝐾𝐶𝑢𝐶𝑂3 (𝐶𝑂3

2−)
}

)
1

𝑛𝑛
𝑖                                                        (7.3) 

In Equation 7.3, n is the number of test solutions considered. 𝐸𝐶𝑥𝐶𝑢2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed Cu2+ 

activity in test solution i (mol/L).  

For the D. magna dataset, the EC50 value for the “Ankeveen 12” medium was not included in the 

modelling efforts, as the EC50 value was extrapolated. The intrinsic sensitivity was calculated based on 

the “Ankeveen” synthetic media reported in De Schamphelaere et al (2004a). All synthetic media 

reported in De Schamphelaere et al (2004a) and the natural media reported in De Schamphelaere et al 

(2004b) were predicted using this intrinsic sensitivity value. The predicted 𝐸𝐶50𝐶𝑢2+,𝑖 and 

𝑁𝑂𝐸𝐶𝐶𝑢2+,𝑖  values were transformed to EC50Cudiss,i,pred and NOECCudiss,i,pred values using WHAM VII and 

compared to the EC50Cudiss,i,observed and NOECCudiss,i,observed. In addition to the above, we also wanted to 

be able to compare the results of the Cu D. magna BLM to those of the Cu D. magna gBAM. Therefore, 

in a separate validation series, the D. magna dataset that was used for the validation of the Cu gBAM 
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was also used for validation of the Cu BLM (see 6.2.1.3 for more information on the intrinsic sensitivity 

calculations). 

Table 7.3. Model parameters of the chronic Cu BLM for Daphnia magnaa, the chronic Cu bioavailability 

model for algaeb, the chronic Cu gBAM for D. magnac  

 Cu D. magna 

BLMa 
Cu Algae Modelb 

Cu D. magna 

gBAMc 

Log KMgBL - - 3.53 

Log KCaBL - - 3.53 

Log KNaBL 2.91 - 2.67 

Log KHBL 6.67 - - 

SpH - 0.985/0.998d 0.14/0.22 d 

𝑅𝐶𝑢𝑂𝐻 =
𝐾𝐶𝑢𝑂𝐻𝐵𝐿

𝐾𝐶𝑢𝐵𝐿
 1 - - 

𝑅𝐶𝑢𝐶𝑂3
=

𝐾𝐶𝑢𝐶𝑂3𝐵𝐿

𝐾𝐶𝑢𝐵𝐿
 0.26 - - 

KCuOHBL 8.02 - - 

𝐾𝐶𝑢𝐶𝑂3𝐵𝐿 7.44 - - 

a De Schamphelaere & Janssen (2004a); Equation 7.2 
b De Schamphelaere et al. (2008); Equation 7.3 
c Van Regenmortel et al (2015); Chapter 5; Equation 7.4 
d the SpH parameter recalibrated in WHAM VII using Speciation Scenario I/ Speciation Scenario II 

Cu2+ toxicity to P.subcapitata, C. vulgaris and C. reinhartii was predicted using the bioavailability model 

reported by De Schamphelaere & Janssen (2006b) (Equation 7.4). 

𝐸𝐶𝑥𝐶𝑢2+,𝑖 = 10
−(𝑆𝑝𝐻𝐶𝑢

∙𝑝𝐻𝑖+𝑄𝑥𝐶𝑢)
                                                                                                              (7.4) 

In Equation 7.4, 𝐸𝐶𝑥𝐶𝑢2+,𝑖 is the predicted x% effective concentration of Cu2+ in test solution i. QxCu is 

the intrinsic sensitivity of the chronic Cu bioavailability model. The intrinsic sensitivity of the Cu 

bioavailability model is the intercept of the linear relationship between the log ECxCu2+ and pH (De 

Schamphelaere and Janssen, 2005). SpHCu is the pH slope of Cu toxicity in the Cu bioavailability model 

(Table 7.3) and pH is the pH of test solution i.  

The intrinsic sensitivity, Qxcu2+, was calibrated from the observed ECxCu2+, from all test solutions  using 

Equation 7.5. 

𝑄𝑥𝐶𝑢 =  
∑ (− log(𝐸𝐶𝑥

𝐶𝑢2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)−𝑆𝑝𝐻𝑐𝑢

∙𝑝𝐻𝑖)𝑛
𝑖

𝑛
                                                                                             (7.5) 

In this equation, 𝐸𝐶𝑥𝐶𝑢2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed Cu2+ activity in test solution i at the x% effective 

concentration (mol/L). The intrinsic sensitivity, QxCu2+, for P.subcapitata (growth rate endpoint) was 

calculated based on the observed ECx values of all synthetic waters reported in De Schamphelaere and 

Janssen (2006b), except for the EC50 value of the “Ankeveen 11” medium, as no reliable EC50 could 

be calculated because the highest test concentration resulted in less than 30% reduction of growth rate 

(De Schamphelaere and Janssen, 2006). The intrinsic sensitivity, QxCu2+, for C. vulgaris was calculated 

based on the observed ECx values of all synthetic waters reported in De Schamphelaere and Janssen 
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(2006). The intrinsic sensitivity, QxCu2+, for C. reinhardtii was calculated based on the observed ECx 

values of all synthetic waters reported in De Schamphelaere and Janssen (2006b). The intrinsic 

sensitivity, QxCu2+, for P.subcapitata (biomass yield endpoint) was calculated based on the observed 

ECx values of all natural waters reported in Heijerick et al. (2005), except for the data from the test 

waters Bihain and Somerain for which the pH shifted more than 0.5 pH units during the exposure, in 

addition to the data from the test water Skarsjön because of the suspected influence of high Fe and/or 

Al concentrations on the test results (De Schamphelaere and Janssen, 2006b). 

Cu2+ toxicity to D. magna was also predicted using the chronic Cu D. magna gBAM developed in Chapter 

5.1 (Van Regenmortel et al. 2015) (Equation 7.6). 

𝐸𝐶𝑥𝐶𝑢2+,𝑖 = 10
−(𝑆𝑝𝐻𝐶𝑢

∙𝑝𝐻𝑖+𝑄𝑥𝐶𝑢)
{1 + 𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖 + 𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖 + 𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖}                            (7.6) 

In Equation 7.6, 𝐸𝐶𝑥𝐶𝑢2+,𝑖 is the predicted x% effective concentration of Cu2+ in test solution i. QxCu is 

the intrinsic sensitivity of the chronic Cu gBAM. The intrinsic sensitivity of the Cu gBAM is the intercept 

of the linear relationship between the log ECxCu2+ and pH (Van Regenmortel et al. 2015/Chapter 5.1), 

after correction for Ca2+, Mg2+ and Na+ competition. KCaBL, KMgBL and KNaBL are the stability constants for 

binding of Ca2+, Mg2+ and Na+ to the Cu gBAM, respectively (L/mol) (Table 7.3). (Ca2+)i, (Mg2+)i and 

(Na+)i are the chemical activities of Ca2+, Mg2+ and Na+ in test solution i (mol/L), respectively. SpHCu is 

the pH slope of Cu toxicity in the Cu gBAM (Table 7.3) and pH is the pH of test solution i.  

The intrinsic sensitivity, QxCu2+, was calibrated from the observed ECxCu2+ using Equation 7.7. 

𝑄𝑥𝐶𝑢 =  
∑ (− log(

𝐸𝐶𝑥
𝐶𝑢2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

1+𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖+𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖+𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖
)−𝑆𝑝𝐻𝐶𝑢

∙𝑝𝐻𝑖)𝑛
𝑖

𝑛
                                                           (7.7) 

In this equation, 𝐸𝐶𝑥𝐶𝑢2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed Cu2+ activity in test solution i at the x% effective 

concentration (mol/L). One intrinsic sensitivity, QxCu2+, for D. magna was calculated based on the data 

reported for the K6 D. magna clone and one QxCu2+ was calculated based on the data reported for the 

ARO D. magna clone.  

In addition to validating the chronic Cu D. magna gBAM with EC50 values, we also attempted to validate 

the gBAM with EC10 values. However, the gBAM was developed based on EC50 values (i.e. SpH value 

based on EC50 values; Van Regenmortel et al. 2015/Chapter 5). Therefore, we also used this SpH 

value for EC10 values. For the EC10 dataset, intrinsic sensitivities were calibrated for the same data 

subsets as was done for the EC50 dataset.  

The predicted 𝐸𝐶𝑥𝐶𝑢2+,𝑖 were transformed to ECxCudiss,i,pred using WHAM VII and compared to the 

ECxCudiss,i,observed. 

Cu2+ toxicity to B. calyciflorus was predicted using the Cu D. magna BLM and gBAM (Equations 7.2 and 

7.6). The intrinsic sensitivities were calculated using Equations 7.3 and 7.7. The intrinsic sensitivity of 

B. calyciflorus was calculated based on the observed NOEC and LOEC values of all synthetic waters 

reported By De Schamphelaere et al (2006c). The predicted 𝑁(𝐿)𝑂𝐸𝐶𝐶𝑢2+,𝑖 were transformed to 

N(L)OECCudiss,i,pred using WHAM VII and compared to the N(L)OECCudiss,i,observed. 
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Ni bioavailability modelling 

Ni2+ toxicity to D. magna, P.subcapitata, O. mykiss and C. dubia was predicted using the bioavailability 

models reported by Deleebeeck et al (2008, 2009, 2007) and De Schamphelaere et al (2006a). All BLMs 

have the same model structure (Equation 7.8), but differ in the magnitude of the slope of the effect of 

pH on Ni2+ toxicity (SpH) and the magnitude of the effect of the cations on Ni2+ toxicity (KCaBL, KMgBL, KNaBL 

and KHBL). 

𝐸𝐶𝑥𝑁𝑖2+,𝑖 = 10
−(𝑆𝑝𝐻𝑁𝑖

∙𝑝𝐻𝑖+𝑄𝑥𝑁𝑖)
{1 + 𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖 + 𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖}                                                       (7.8) 

In Equation 7.8 𝐸𝐶𝑥𝑁𝑖2+,𝑖 is the predicted x% effective concentration of Ni2+ in test solution i. QxNi is the 

intrinsic sensitivity of the chronic Ni bioavailability model. The intrinsic sensitivity of the Ni bioavailability 

model is the intercept of the linear relationship between the log ECxNi2+ and pH, after correction for Ca2+ 

and Mg2+ competition. KCaBL and KMgBL are the stability constants for binding of Ca2+ and Mg2+ to the Ni 

bioavailability model (L/mol), respectively. (Ca2+)i and (Mg2+)i are the chemical activities of Ca2+ and 

Mg2+ in test solution i (mol/L), respectively. SpHNi is the pH slope of Ni toxicity in the the Ni bioavailability 

model and pH is the pH of test solution i. All model parameters can be found in Table 7.4.  

The intrinsic sensitivity, QxNi2+, was calibrated from a number of the observed ECxNi2+ across various 

test waters from using Equation 7.9. 

𝑄𝑥𝑁𝑖 =  
∑ (− log(

𝐸𝐶𝑥
𝑁𝑖2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

1+𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖+𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖
)−𝑆𝑝𝐻𝑁𝑖

∙𝑝𝐻𝑖)𝑛
𝑖

𝑛
                                                                                  (7.9) 

In this equation, 𝐸𝐶𝑥𝑁𝑖2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed Ni2+ activity in test solution i at the x% effective 

concentration (mol/L).  

For D. magna, as was done in Deleebeeck et al (2008), a separate intrinsic sensitivity was calculated 

for the synthetic media and the natural media. This was done by these authors because they suspected 

that the sensitivity of the D. magna clone could have temporally shifted between the two types of test 

media, as the tests in the natural surface waters were conducted approximately a year earlier that those 

in the artificial waters. For the calculation of the intrinsic sensitivities the data for the tests conducted at 

the highest Ca and Mg concentrations as well as the test conducted at pH 5.87 was not included in the 

modelling efforts (Deleebeeck et al 2008). In addition, the test conducted in the Bihain medium was not 

included in modelling efforts, as it had a pH below the lower boundary of the model (Deleebeeck et al 

2008). A first intrinsic sensitivity was calculated based on the synthetic media reported by Deleebeeck 

et al (2008) in combination with the SpH value of 0.1987 (Table 7.4). Subsequently, EC10Ni2+ values 

were predicted for all synthetic waters using this intrinsic sensitivity. A second intrinsic sensitivity was 

calculated based on the natural media reported by Deleebeeck et al (2008) in combination with the SpH 

value of 0.3335 (Table 7.4). Subsequently, EC10Ni2+ values were predicted for the natural waters using 

this intrinsic sensitivity. The predicted 𝐸𝐶10𝑁𝑖2+,𝑖 values were transformed to EC10Nidiss,i,pred using WHAM 

VII and compared to the EC10Nidiss,i,observed. 

For P.subcapitata, as was done in Deleebeeck et al (2009), two different intrinsic sensitivities were 

calculated. One intrinsic sensitivity was calculated based on data points used for model development 

(i.e. all data points obtained in the univariate Mg and pH test series). This intrinsic sensitivity was used 
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to predict 𝐸𝐶𝑥𝑁𝑖2+values for the synthetic test media. A second intrinsic sensitivity was calculated based 

on test results obtained in OECD test media. This intrinsic sensitivity was used to predict 𝐸𝐶𝑥𝑁𝑖2+values 

in the natural test media. The predicted 𝐸𝐶𝑥𝑁𝑖2+ values were transformed to ECxNidiss,i,pred using WHAM 

VII and compared to the ECxNidiss,i,observed. 

For O. mykiss, data for the test media “Mg 0.5 mM”, “Mg 1.0 mM” and “Mg 3.0 mM” were not included 

in the calculation of the Q50Ni, as LC50s could not be calculated due to no or limited mortality at the 

highest exposure concentration (Deleebeeck et al 2007). Data for the test media “Mg 1.0 mM” and “Mg 

3.0 mM” were not included in the calculation of the QNOECNi, as NOECs could not be calculated 

because no significant mortality was observed (Deleebeeck et al 2007). As was done by Deleebeeck et 

al (2007), the intrinsic sensitivities (Q50 and QNOEC) were based on the synthetic media. These 

intrinsic sensitivities were used to predict LC50 and NOEC values in the synthetic and natural test media. 

The predicted 𝐿𝐶50𝑁𝑖2+ values and 𝑁𝑂𝐸𝐶𝑁𝑖2+ values were transformed to LC50Nidiss,i,pred and 

NOECNidiss,i,pred using WHAM VII and compared to the LC50Nidiss,i,observed NOECNidiss,i,observed. 

For C. dubia, data for the test media Eppe and Markermeer were not included in modelling efforts as 

ECx values were extrapolated below the lowest test concentration. (De Schamphelaere et al. 2006). 

The intrinsic sensitivities were calculated based on the observed ECx values of all remaining field waters 

reported by De Schamphelaere et al (2006a). The predicted 𝐸𝐶𝑥𝑁𝑖2+ values were transformed to 

ECxNidiss,i,pred using WHAM VII and compared to the ECxNidiss,i,observed. 

 

Ni2+ toxicity to C. tentans was predicted using the D. magna and C. dubia bioavailability models 

(Equation 7.8 , Table 7.4). Ni2+ toxicity to L. stagnalis was predicted using the C. dubia bioavailability 

model (Equation 7.8 , Table 7.4). Ni2+ toxicity to B. calyciflorus and L. minor was predicted using the D. 

magna bioavailability model (Equation 7.8 , Table 7.4). Data from the pH-adjusted S. Platte River were 

not included in modelling efforts as it was suggested that high toxicity in this water was caused by pH-

sensitive contaminants in the river (Schlekat et al 2010). The intrinsic sensitivities were calculated using 

Equations 7.9. The intrinsic sensitivities of C. tentans, L. stagnalis, B. calyciflorus and L. minor were 

calculated based on the observed ECx  values of all remaining  field and synthetic waters reported by 

Schlekat et al. (2010). The predicted 𝐸𝐶𝑥𝑁𝑖2+ values were transformed to ECxNidiss,i,pred using WHAM VII 

and compared to the ECxNidiss,i,observed. 

Table 7.4 Model parameters of the chronic Ni bioavailability model for Daphnia magnaa, Pseudokirchneriella 

subcapitatab, Oncorhynchus mykiss and Pimephales promelasc and Ceriodaphnia dubiad. 

 Ni D. magna modela Ni Algae 

modelb 

Ni Fish modelc Ni C. dubia modeld 

Log KMgBL 3.57 3.30 3.60 3.57 

Log KCaBL 3.53 - 3.60 3.53 

SpH 0.1987e;0.617/0.305f 0.1430f 0.3240f 1.046/0.662f 

a Deleebeeck et al (2008); Equation 7.8; b Deleebeeck et al (2009); Equation 7.8; c Deleebeeck et al (2007); 

Equation 7.8 d; De Schamphelaere et al (2006a); Equation 7.8; e Slope reported by Deleebeeck et al (2008) for 

synthetic waters. The slope value was not adapted as the value was calibrated for synthetic media, without the 

addition of natural DOC; f the SpH parameter recalibrated in WHAM VII using Speciation Scenario I/ Speciation 

Scenario II 
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Zn bioavailability modelling 

Zn2+ toxicity to D. magna and O. mykiss was predicted using the BLMs reported by Heijerick et al (2005b) 

and De Schamphelaere & Janssen (2004). Both BLMs have the same model structure (Equation 7.10), 

but differ in the magnitude of the effect of the cations on Zn2+ toxicity (KCaBL, KMgBL, KNaBL and KHBL). 

𝑁𝑂𝐸𝐶𝑍𝑛2+,𝑖𝑜𝑟 𝐿𝐶𝑥𝑍𝑛2+,𝑖 = 𝑁𝑂𝐸𝐶𝑍𝑛2+
∗  𝑜𝑟 𝐿𝐶𝑥𝑍𝑛2+

∗  ∙ {1 + 𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖 + 𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖 + 𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖 +

𝐾𝐻𝐵𝐿(𝐻+)𝑖}                                                                                     (7.10) 

In Equation 7.10, 𝑁𝑂𝐸𝐶𝑍𝑛2+,𝑖 and 𝐿𝐶𝑥𝑍𝑛2+,𝑖 are the predicted No Observed Effect Concentration and the 

x% Lethal Concentration of Zn2+ in test solution i, respectively. KCaBL, KMgBL, KNaBL and KHBL are the 

stability constants (L/mol) for binding of Ca2+, Mg2+, Na+ and H+ to the Zn biotic ligand, respectively 

(Table 7.5). (Ca2+), (Mg2+), (Na+) and (H+) are the chemical activities of Ca2+, Mg2+, Na+ and  H+ in test 

solution i (mol/L). 𝑁𝑂𝐸𝐶𝑍𝑛2+
∗ 𝑜𝑟 𝐿𝐶𝑥𝑍𝑛2+

∗  are the intrinsic sensitivities of the Zn BLM, which can be 

regarded as the 𝑁𝑂𝐸𝐶𝑍𝑛2+𝑜𝑟 𝐿𝐶𝑥𝑍𝑛2+ of the organism in a solution where all cationic competition effects 

are absent (Heijerick et al. 2005). The intrinsic sensitivity 𝑁𝑂𝐸𝐶𝑍𝑛2+
∗ 𝑜𝑟 𝐿𝐶𝑥𝑍𝑛2+

∗   was calibrated from a 

number of the observed NOEC or LCx values using Equation 7.11: 

𝑁𝑂𝐸𝐶𝑍𝑛2+
∗ 𝑜𝑟 𝐿𝐶𝑥𝑍𝑛2+

∗ =  ∏ (
𝑁𝑂𝐸𝐶

𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 𝑜𝑟 𝐿𝐶𝑥

𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

1+𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖+𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖+𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖+𝐾𝐻𝐵𝐿(𝐻+)𝑖
)

1

𝑛  𝑛
𝑖                                    (7.11) 

In Equation 7.11, n is the number of test solutions considered. 𝑁𝑂𝐸𝐶𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 or 𝐿𝐶𝑥𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is 

the observed Zn2+ activity in test solution i (mol/L).  

For the calculation of the intrinsic sensitivity for D. magna, data from the “Ca-series” reported in Heijerick 

et al (2005b) for the highest Ca concentration tested was not included in the modelling efforts due to 

high Ca toxicity. In addition, the test conducted in the Rhine and Voyon media (De Schamphelaere et al 

2005) were not included in modelling efforts, as they have a pH above the upper boundary of the model. 

For D. magna two separate intrinsic sensitivities were calculated. One intrinsic sensitivity was calculated 

for the Heijerick et al. (2005) dataset. A second intrinsic sensitivity was calculated for the De 

Schamphelaere et al. (2005) dataset. The predicted 𝑁𝑂𝐸𝐶𝑍𝑛2+,𝑖 and 𝐿𝐶𝑥𝑍𝑛2+,𝑖 were transformed to 

NOECZndiss,i,pred and LCxZndiss,i,pred using WHAM VII and compared to the NOECZndiss,i,observed and 

LCxZndiss,i,observed. In addition to the above, we also wanted to be able to compare the results of the Zn D. 

magna BLM to those of the Zn D. magna gBAM. Therefore, in a separate validation series, the D. magna 

dataset that was used for the validation of the Zn gBAM was also used for validation of the Zn BLM. 

For O. mykiss, a data-specific intrinsic sensitivity was calculated for the data of De Schamphelaere and 

Janssen (2004c) and De Schamphelaere and Janssen (2005) separately. The predicted 𝐿𝐶𝑥𝑍𝑛2+,𝑖 were 

transformed to LCxZndiss,i,pred using WHAM VII and compared to the LCxZndiss,i,observed. 
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Table 7.5 Model parameters of the chronic Zn BLM for Daphnia magnaa, the chronic Zn bioavailability model 

for algaeb, the chronic Zn BLM for fishc , the chronic Zn gBAM for D. magnad and the chronic Zn gBAM for 

fishe 

 Zn D. magna 

BLM 
Zn Algae BLM 

Zn Fish 

BLM 

Zn D. magna 

gBAM 
Zn Fish gBAM 

Log KMgBL 2.69 - 3.10 2.69 3.10 

Log KCaBL 3.22 - 3.60 3.22 3.60 

Log KNaBL 1.90 - 2.40 1.90 2.40 

Log KHBL 5.77 - 6.30 - - 

SpH-EC50 ; SpH-EC10 
- 

0.598; 0.626f/ 

0.541; 0.581g 
- 0.1165; 0.1518/ - 

0.25;0.41/ 

0.21;0.36 

a Heijerick et al. (2005b); Equation 7.10 
b De Schamphelaere et al. (2005); Equation 7.12 
c De Schamphelaere & Janssen (2004c); Equation 7.10 
d Van Regenmortel et al (2017b); Equation 7.14 
e Chapter 5 
f  when seperated by a “;” the SpH is given for EC50 and EC10 data, respectively 
g when seperated by a “/” the SpH parameters were recalibrated in WHAM VII using Speciation Scenario 

I/Speciation Scenario II 

Zn2+ toxicity to P.subcapitata was predicted using the bioavailability model reported by De 

Schamphelaere & Janssen (2005) (Equation 7.12). 

𝐸𝐶𝑥𝑍𝑛2+,𝑖 = 10
−(𝑆𝑝𝐻𝑍𝑛

∙𝑝𝐻𝑖+𝑄𝑥𝑍𝑛)
                      (7.12) 

In Equation 7.12, 𝐸𝐶𝑥𝑍𝑛2+,𝑖 is the predicted x% effective concentration of Zn2+ in test solution i. QxZn is 

the intrinsic sensitivity of the chronic Zn bioavailability model. The intrinsic sensitivity of the Zn 

bioavailability model is the intercept of the linear relationship between the log ECxZn2+ and pH (De 

Schamphelaere and Janssen, 2005). SpHZn is the pH slope of Zn toxicity in the Zn bioavailability model 

(Table 7.5) and pH is the pH of test solution i.  

The intrinsic sensitivity, QxZn2+, was calibrated from a number of the observed ECxZn2+ using Equation 

7.13. 

𝑄𝑥𝑍𝑛2+ =  
∑ (− log(𝐸𝐶𝑥

𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)−𝑆𝑝𝐻𝑍𝑛

∙𝑝𝐻𝑖)𝑛
𝑖

𝑛
                      (7.13) 

In this equation, 𝐸𝐶𝑥𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed Zn2+ activity in test solution i at the x% effective 

concentration (mol/L). The intrinsic sensitivity, QxZn2+, for P.subcapitata was calculated based on the 

observed ECx values of all field waters reported in De Schamphelaere and Janssen (2005), except for 

the Brisy medium (also excluded by De Schamphelaere and Janssen (2005) for model development). 

The predicted 𝐸𝐶𝑥𝑍𝑛2+,𝑖 were transformed to ECxZndiss,i,pred using WHAM VII and compared to the 

ECxZndiss,i,observed. 

Zn2+ toxicity to D. magna  and O. mykiss was also predicted using the chronic Zn D. magna and fish 

gBAM developed in Chapter 5  (Equation 7.14). 

𝐸𝐶𝑥𝑍𝑛2+,𝑖 = 10
−(𝑆𝑝𝐻𝑍𝑛

∙𝑝𝐻𝑖+𝑄𝑥𝑍𝑛)
{1 + 𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖 + 𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖 + 𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖}                          (7.14) 
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In Equation 7.14, 𝐸𝐶𝑥𝑍𝑛2+,𝑖 is the predicted x% effective concentration of Zn2+ in test solution i. QxZn is 

the intrinsic sensitivity of the chronic Zn gBAM. The intrinsic sensitivity of the Zn gBAM is the intercept 

of the linear relationship between the log ECxZn2+ and pH (Van Regenmortel et al. 2017b/Chapter 5.2), 

after correction for Ca2+, Mg2+ and Na+ competition. KCaBL, KMgBL and KNaBL are the stability constants 

(L/mol) for binding of Ca2+, Mg2+ and Na+ to the Zn gBAM, respectively (Table 7.5). (Ca2+)i, (Mg2+)i and 

(Na+)i are the chemical activities of Ca2+, Mg2+ and Na+ in test solution i (mol/L), respectively. SpHZn is 

the pH slope of Zn toxicity in the Zn gBAM (Table 7.5) and pH is the pH of test solution i.  

The intrinsic sensitivity, QxZn2+, was calibrated from a number of the observed ECxZn2+ using Equation 

7.15. 

𝑄𝑥𝑍𝑛2+ =  
∑ (− log(

𝐸𝐶𝑥
𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

1+𝐾𝐶𝑎𝐵𝐿(𝐶𝑎2+)𝑖+𝐾𝑀𝑔𝐵𝐿(𝑀𝑔2+)𝑖+𝐾𝑁𝑎𝐵𝐿(𝑁𝑎+)𝑖
)−𝑆𝑝𝐻𝑍𝑛

∙𝑝𝐻𝑖)𝑛
𝑖

𝑛
                                                      (7.15) 

In this equation, 𝐸𝐶𝑥𝑍𝑛2+,𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed Zn2+ activity in test solution i at the x% effective 

concentration (mol/L).  

For D. magna, one intrinsic sensitivity, Q50Zn2+, was calculated based on the combined dataset of the 

observed EC50 values of all field waters reported in De Schamphelaere and Janssen (2005) and of the 

field and synthetic waters reported in Chapter 5 (Van Regenmortel et al. 2017b). Subsequently, this 

Q50Zn2+ was used to predict the EC50 data for this combined dataset as well as the waters reported in 

De Schamphelaere et al (2003). 

In addition to validating the chronic Zn D. magna gBAM with EC50 values, we also attempted to validate 

the gBAM with EC10 values. However, the gBAM was developed based on EC50 values (i.e. SpH value 

based on EC50 values; Chapter 5). Therefore, we also used this SpH value for EC10 values. For the 

EC10 dataset, one intrinsic sensitivity, Q10Zn2+, for D. magna was calculated based on the combined 

dataset of the observed EC10 values of all field waters reported in De Schamphelaere and Janssen 

(2005) and of the field and synthetic waters reported in Chapter 5 (Van Regenmortel et al. 2017b). 

Subsequently, this Q10Zn2+ was used to predict the EC10 data for this combined dataset as well as the 

waters reported in De Schamphelaere et al (2003). 

In addition, a separate intrinsic sensitivity was calculated based on the data reported in De 

Schamphelaere et al (2003). This Q10Zn2+ was used to predict the EC10 data for the waters reported in 

De Schamphelaere et al (2003). The predicted 𝐸𝐶𝑥𝑍𝑛2+,𝑖 were transformed to ECxZndiss,i,pred using WHAM 

VII and compared to the ECxZndiss,i,observed. 

For O. mykiss, a data-specific intrinsic sensitivity was calculated for the data of De Schamphelaere and 

Janssen (2004c) and De Schamphelaere and Janssen (2005) separately. 

Zn2+ toxicity to L. stagnalis and B. calyciflorus was predicted using the D. magna BLM and gBAM 

(Equations 7.10 and 7.12). The intrinsic sensitivities were calculated using Equations 7.11 and 7.13. 

The intrinsic sensitivities of L. stagnalis and B. calyciflorus were calculated based on the observed ECx 

values of all field waters reported By De Schamphelaere and Janssen (2010). The predicted 

𝐸𝐶𝑥𝑍𝑛2+,𝑖 were transformed to ECxZndiss,i,pred using WHAM VII and compared to the ECxZndiss,i,observed. 
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7.3. Results 

Calibration of the Cu bioavailability models in WHAM VII 

Validation of the chronic Cu D. magna BLM in WHAM VII 

The intrinsic sensitivities (Q10Cu2+) for the Speciation Scenario I and II are reported in Table 7.6. For the 

synthetic waters, both speciation scenarios predicted chronic Cu toxicity to D. magna less accurately 

compared to WHAM V for the Ankeveen water, but more accurately for the Bihain and Ossenkolk water 

(Figure 7.1; Table 7.7). For natural waters, both speciation scenarios predicted chronic Cu toxicity to D. 

magna inaccurately (i.e. maximum 20% and 30% of the data is predicted within twofold error for 

Speciation Scenario I and II, respectively).  

Overall, the Cu D. magna BLM coupled with WHAM VII (Speciation Scenario II) was comparable in 

predictive capacity to the original Cu D. magna BLM coupled with WHAM V (Table 7.7) for synthetic 

waters but predicted Cu toxicity less well than the WHAM V calculations for natural waters. 

Table 7.6 Average calibrated intrinsic Cu2+ sensitivities for Daphnia magna (𝑬𝑪𝟓𝟎𝑪𝒖𝟐+
∗  and  𝑵𝑶𝑬𝑪𝑪𝒖𝟐+

∗  

(nmol/L); calculated using Equation 7.3) under Speciation Scenario I and II 

 Synthetic watersa  

 𝐸𝐶50𝐶𝑢2+
∗  𝑁𝑂𝐸𝐶𝐶𝑢2+

∗  

Speciation Scenario Ib 74 48 

Speciation Scenario IIc 87 55 

a Data from De Schamphelaere and Janssen (2004a); c Speciation Scenario I: default WHAM VII stability constants 

for inorganic complexation; d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.1. Predicted versus observed 50% effective concentration (EC50Cudiss) and no observed effect 

concentration (NOECCudiss) for Daphnia magna using Speciation Scenario I (i.e. using the default WHAM VII 

stability constants for inorganic complexation; left graph) and Speciation Scenario II (i.e. using stability 

constants for inorganic complexation reported by NIST; right graph). Predictions were made using the 

chronic Cu D. magna BLM linked to WHAM VII (Equation 7.8). The solid line represents a perfect fit between 

the observed and predicted data, the dashed lines represent a difference of a factor 2 between the observed 

and predicted data.  
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Table 7.7 Prediction statistics of the EC50Cudiss and NOECCudiss predicted with the chronic Cu D. magna BLM 

(Equation 7.2) in WHAM Va and in WHAM VII using Speciation Scenario Ib and Speciation Scenario IIc 

 WHAM V 

 Ankeveen Bihain Ossenkolk Natural waters 

 NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

Mean prediction error 1.35 1.23 2.50 2.26 1.89 1.86 2.09 2.13 

Median prediction error 1.30 1.12 2.23 2.09 1.92 1.81 1.51 1.36 

% predicted within twofold error 94 100 22 44 67 56 70 80 
 

 WHAM VII 

Speciation Scenario I 

 Ankeveen Bihain Ossenkolk Natural waters 

 
NOEC 

data 

EC50 

data 

NOE

C 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

Mean prediction error 1.90 1.97 2.21 2.15 2.08 1.93 7.49 6.23 

Median prediction error 1.68 1.89 1.55 1.53 1.69 1.43 3.19 3.15 

% predicted within twofold error 65 59 78 78 67 67 20 10 
 

 WHAM VII 

Speciation Scenario II 

 Ankeveen Bihain Ossenkolk Natural waters 

 NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

NOEC 

data 

EC50 

data 

Mean prediction error 1.94 2.02 2.26 222 2.11 1.97 4.86 7.36 

Median prediction error 1.65 1.89 1.54 1.56 1.76 1.41 3.02 2.54 

% predicted within twofold error 65 59 67 78 67 67 20 30 
a Data from De Schamphelaere and Janssen (2004a) and Heijerick et al (2002) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

To be able to compare the accuracy of the D. magna BLM and gBAM coupled with WHAM VII, a 

separate validation was performed, as was explained in the Material and Methods section. For this 

validation, the data that was used to validate the gBAM was used. The intrinsic sensitivities (QxCu2+) for 

the Speciation Scenario I and II are reported in Table 7.8.   

Table 7.8 Average calibrated intrinsic Cu2+ sensitivities for Daphnia magnaa (QxCu2+ calculated using 

Equation 7.3) under Speciation Scenario I and II.  

 K6 clone ARO clone 

 Q50Cu2+
b Q10Cu2+

c Q50Cu2+
b Q10Cu2+

c 

Speciation Scenario Ib 46 27 82 - 

Speciation Scenario IIc 52 31 93 - 
a  Data from Van Regenmortel et al (2015; Chapter 5) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

The prediction statistics for the chronic Cu D. magna BLM for both speciation scenarios are given in 

Table 7.9. For the EC50 data, the Cu toxicity to the K6 and ARO D. magna clones is not accurately 

predicted using the BLM coupled to WHAM VII, i.e. only 50% of the data predicted within twofold 

prediction error (Table 7.9). Cu toxicity is predicted a little more accurate for the NOEC data compared 

to the EC50 data. These results will make it possible to compare the predictive capacity of the Cu 

Daphnia BLM to that of the gBAM. This comparison will be done in a next section (7.3 Discussion). 
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Table 7.9 Prediction statistics of the EC50Cudiss and NOECCudiss predicted with the chronic Cu Daphnia 

magna BLMa (Equation 7.2) in WHAM V and in WHAM VII using Speciation Scenario Ib and Speciation 

Scenario IIc 

 WHAM VII 

Speciation Scenario I 

 K6 clone ARO clone 

 EC50 data NOEC data EC50 data NOEC data 

 All data Bihain Ossenkolk All data  

Mean prediction error 4.15 2.29 2.07 3.80 - 

Median prediction error 2.10 1.67 1.52 1.98 - 

% predicted within twofold error 50 78 67 51 - 

 

 WHAM VII 

Speciation Scenario II 

 K6 clone ARO clone 

 EC50 data NOEC data EC50 data NOEC data 

 All data Bihain Ossenkolk All data  

Mean prediction error 5.29 2.36 2.11 5.31 - 

Median prediction error 2.10 1.72 1.58 2.01 - 

% predicted within twofold error 50 78 67 49 - 

a  Data from Van Regenmortel et al (2015 Chapter 5) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation  
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST; 

 

Validation of the Cu bioavailability model for freshwater green microalgae in WHAM VII 

The intrinsic sensitivities (Q10Cu2+) for the Speciation Scenario I and II are reported in Table 7.10. Both 

speciation scenarios predicted chronic Cu toxicity to P.  subcapitata, C. vulgaris and C. reinhardtti with 

reasonable accuracy (Figure 7.2; Table 7.11). The Speciation Scenario I and II, predicted the ECxCudiss 

values with comparable accuracy. When comparing with the predictions made by WHAM V, we see that 

for P.subcapitata and C. vulgaris, the prediction errors of WHAM VII are a little less accurate. However, 

for C. reinhardtti, the prediction errors made by WHAM VII are similar to those of WHAM V. 

Overall, the Cu bioavailability model coupled with WHAM VII (Speciation Scenario II) predicted Cu 

toxicity to P.  subcapitata, C. vulgaris and C. reinhardtti with comparable accuracy as the original Cu 

bioavailability model coupled with WHAM V (Table 7.11). 

Table 7.10 Average calibrated intrinsic Cu2+ sensitivities for Pseudokirchneriella subcapitata, Chlorella 

vulgaris and Chlamydomonas reinhardtti (QxCu2+; calculated using Equation 7.5) under Speciation Scenario 

I and II 

 P.subcapitataa C. vulgarisa C. reinhardtiia P.subcapitatab  

 Q10Cu2+ Q50Cu2+ Q10Cu2+ Q50Cu2+ Q10Cu2+ Q50Cu2+ QNOECCu2+ 

Speciation 

Scenario Ic 
-1.17 -0.40 -0.67 -0.03 -0.76 -0.11 -1.12 

Speciation 

Scenario IId 
-1.24 -0.44 -0.73 -0.05 -0.82 0.15 -1.18 

a Data from De Schamphelaere and Janssen (2006b); P.subcapitata growth rate endpoint 
b Data from Heijerick et al (2005a); P.subcapitata biomass yield endpoint 
c Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 
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Figure 7.2 Predicted versus observed x% effective concentration (ECxCudiss) and no observed effect 

concentration (NOECCudiss) for Pseudokirchneriella subcapitata, Chlorella vulgaris and Chlamydomonas 

reinhardtti using Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic 

complexation; left graph) and Speciation Scenario II (i.e. using stability constants for inorganic 

complexation reported by NIST; right graph). Predictions were made using the chronic Cu freshwater green 

migroalgae bioavailablilty model linked to WHAM VII (Equation 7.2). The solid line represents a perfect fit 

between the observed and predicted data, the dashed lines represent a difference of a factor 2 between the 

observed and predicted data. 
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Table 7.11 Prediction statistics of the ECxCudiss and NOECCudiss values predicted with the chronic Cu 

freshwater green microalgae bioavailability model (Equation 7.4) in WHAM Va and in WHAM VII using 

Speciation Scenario Ib and Speciation Scenario IIc 

 WHAM V  

 P.subcapitata C. vulgaris C. reinhardtii P.subcapitata  

 EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 
NOEC data 

Mean prediction error 1.32 1.30 1.36 1.28 1.09 1.32 1.39 

% predicted within one-and-a-half 

fold error 
86 82 71 88 100 100 70 

% predicted within twofold error 97 94 94 94 100 100 90 
 

 WHAM VII 

Speciation Scenario I 
 

 P.subcapitata C. vulgaris C. reinhardtii P.subcapitata  

 EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 
NOEC data 

Mean prediction error 1.44 1.52 1.39 1.30 1.15 1.20 1.37 

Median prediction error 1.41 1.47 1.41 1.27 1.19 1.15 1.28 

% predicted within one-and-a-half 

fold error 
74 53 71 76 100 100 90 

% predicted within twofold error 91 88 100 94 100 100 90 
 

 WHAM VII 

Speciation Scenario II 
 

 P.subcapitata C. vulgaris C. reinhardtii P.subcapitata  

 EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 
NOEC data 

Mean prediction error 1.45 1.50 1.40 1.30 1.15 1.22 1.38 

Median prediction error 1.41 1.42 1.38 1.24 1.20 1.18 1.27 

% predicted within one-and-a-half 

fold error 
74 53 65 76 100 100 90 

% predicted within twofold error 91 88 100 94 100 100 90 
a Data from De Schamphelaere and Janssen  (2006b) for the growth rate endpoint and Heijerick et al (2005a) for 

the biomass endpoint  (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

 

Validation of the chronic Cu D. magna gBAM in WHAM VII 

The intrinsic sensitivities (QxCu2+) for the Speciation Scenario I and II are reported in Table 7.12. The 

prediction statistics for the chronic Cu D. magna gBAM for both speciation scenarios are given in Table 

7.13. For the EC50 and NOEC data, the Cu toxicity to the K6 and ARO D. magna clones is almost as 

accurately predicted using the gBAM coupled to WHAM VII using Speciation Scenario II compared to 

Speciation Scenario I (Figure 7.3; Table 7.13). When comparing with results from the gBAM coupled to 

WHAM V, we see that the WHAM VII predictions are less accurate but still comparable. 

Overall, the Cu D. magna gBAM coupled with WHAM VII predicted Cu toxicity almost as accurate as 

the original Cu D. magna gBAM coupled with WHAM V for EC50 data. 
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Table 7.12 Average calibrated intrinsic Cu2+ sensitivities for Daphnia magnaa (QxCu2+ calculated using 

Equation 7.7) under Speciation Scenario I and II.  

 K6 clone ARO clone 

 Q50Cu2+
b Q10Cu2+

c Q50Cu2+
b Q10Cu2+

c 

Speciation Scenario Ib -7.69 -7.91 -8.27 - 

Speciation Scenario IIc -7.06 -7.29 -7.58 - 
a  Data from Van Regenmortel et al (2015; Chapter 5) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

 
Figure 7.3. Predicted versus observed 50% effect concentration (EC50Cudiss) and no observed effect 

concentration (NOECCudiss) for Daphnia magna using the gBAM coupled to WHAM V (left graphs); 

Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic complexation; 

middle graphs) and Speciation Scenario II (i.e. using stability constants for inorganic complexation 

reported by NIST; right graphs). Predictions were made using the chronic Cu gBAM linked to WHAM VII 

(Equation 7.4). The solid line represents a perfect fit between the observed and predicted data, the dashed 

lines represent a difference of a factor 2 between the observed and predicted data. 

 

 

 

 

 

 

 

 



Chapter 7 

240 
 

Table 7.13 Prediction statistics of the EC50Cudiss and NOECCudiss predicted with the chronic Cu Daphnia 

magna gBAMa (Equation 7.6) in WHAM V and in WHAM VII using Speciation Scenario Ib and Speciation 

Scenario IIc 

 
WHAM V 

 K6 clone ARO clone 

 EC50 data NOEC datad EC50 data NOEC data 

 All data Bihain Ossenkolk All data  

Mean prediction error 1.5 1.47 1.31 1.3 - 

Median prediction error - 1.15 1.29 - - 

% predicted within twofold error 89 78 100 92 - 

 

 WHAM VII 

Speciation Scenario I 

 K6 clone ARO clone 

 EC50 data NOEC data EC50 data NOEC data 

 All data Bihain Ossenkolk All data  

Mean prediction error 1.57 1.59 1.37 1.41 - 

Median prediction error 1.37 1.23 1.19 1.21 - 

% predicted within twofold error 82 67 100 90 - 

 

 WHAM VII 

Speciation Scenario II 

 K6 clone ARO clone 

 EC50 data NOEC data EC50 data NOEC data 

 All data Bihain Ossenkolk All data  

Mean prediction error 1.52 1.55 1.31 1.42 - 

Median prediction error 1.40 1.20 1.14 1.22 - 

% predicted within twofold error 86 67 100 87 - 

a  Data from Van Regenmortel et al (2015; Chapter 5) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation  
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST; 
d prediction statistics not given in Van Regenmortel et al (2015; Chapter 5) but calculated for this Chapter 

 

Validation of the read-across to B. calyciflorus using the D. magna BLM and gBAM in WHAM 

VII  

For the validation of the read-across of the D. magna BLM, the intrinsic sensitivities (𝑁(𝐿)𝑂𝐸𝐶𝐶𝑢2+
∗ ) for 

the Speciation Scenario I and II are reported in Table 7.14. Both speciation scenarios were not accurate 

in predicting chronic Cu toxicity to B. calyciflorus (Figure 7.4; Table 7.15), i.e. only 25% of the NOEC 

and LOEC values were predicted within twofold prediction error for B.   

For the validation of the D. magna gBAM, the intrinsic sensitivities (QN(L)OECCu2+ for the Speciation 

Scenario I and II are reported in Table 7.15. The chronic Cu toxicity to B. calyciflorus was predicted with 

comparable accuracy using Speciation Scenario I and II compared to predictions using WHAM V. When 

comparing the predictions from the D. magna BLM and gBAM for B. calyciflorus, we see that the Cu D. 

magna gBAM is more accurate. 
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Table 7.14 Average calibrated intrinsic Cu2+ sensitivities for Brachionus calyciflorus (𝑵(𝑳)𝑶𝑬𝑪𝑪𝒖𝟐+
∗  and 

QN(L)OECCu2+; calculated using Equations 7.3 and 7.7) under Speciation Scenario I and II 

 B. calyciflorusa  

 D. magna BLM (nmol/L)  D. magna gBAM  

 𝑁𝑂𝐸𝐶𝐶𝑢2+
∗  𝐿𝑂𝐸𝐶𝐶𝑢2+

∗   QNOECCu2+ QLOECCu2+  

Speciation Scenario Ib 3.70 7.91  -8.45 -8.12  

Speciation Scenario IIc 3.76 8.10  -7.89 -7.56  
a Data from De Schamphelaere & Janssen (2010) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.4. Predicted versus observed no (lowest) observed effect concentration (N(L)OECCudiss) for 

Brachionus calyciflorus using Speciation Scenario I (i.e. using the default WHAM VII stability constants for 

inorganic complexation; left graph) and Speciation Scenario II (i.e. using stability constants for inorganic 

complexation reported by NIST; right graph). Predictions were made using the chronic Cu D. magna BLM 

(upper graphs) and gBAM (lower graphs) linked to WHAM VII (Equations 7.1 and 7.4). The solid line 

represents a perfect fit between the observed and predicted data, the dashed lines represent a difference 

of a factor 2 between the observed and predicted data. 



 

 
 

 

Table 7.15 Prediction statistics of the N(L)OECCudiss predicted with the chronic Cu D. magna BLM and gBAM a (Equations 7.2 and 7.6) in WHAM V and in WHAM VII 

using Speciation Scenario Ib and Speciation Scenario IIc 

 
WHAM V 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 
D. magna BLM D. magna gBAM D. magna BLM D. magna gBAM D. magna BLM D. magna gBAM 

 
NOEC data 

LOEC 

data 

NOEC 

data 

LOEC 

data 

NOEC 

data 

LOEC 

data 

NOEC 

data 

LOEC 

data 

NOEC 

data 

LOEC 

data 

NOEC 

data 

LOEC 

data 

Mean prediction error 1.18 1.14 1.16 1.12 3.72 2.90 1.17 1.15 3.72 2.90 1.25 1.23 

Median prediction error - - 1.15 1.09 3.77 3.17 1.18 1.11 2.78 3.16 1.24 1.25 

Minimum prediction error 1.03 1.02 1.05 1.04 1.24 1.79 1.02 1.11 1.23 1.78 1.10 1.04 

% predicted within twofold error 100 100 100 100 25 25 100 100 25 25 100 100 

a Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
b Speciation Scenario II: stability constants for inorganic complexation reported by NIST 
c Data from De Schamphelaere et al (2006c) and Van Regenmortel et al (2017b)  (see Table 7.1) 
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Calibration of the Ni bioavailability models in WHAM VII 

Validation of the chronic Ni D. magna bioavailability model in WHAM VII 

The intrinsic sensitivities (Q10Ni2+) for the Speciation Scenario I and II are reported in Table 7.16. Both 

speciation scenarios predicted chronic Ni toxicity to D. magna with reasonable accuracy (Figure 7.5; 

Table 7.17). The Speciation Scenario II, using the NIST stability constants for inorganic ligand 

complexation predicted the EC10Nidiss values more accurate than the Speciation Scenario I, certainly for 

the synthetic water dataset. When comparing with the predictions made by WHAM VI, we see that the 

mean prediction errors of WHAM VI and WHAM VII using Speciation Scenario II are quite similar. 

Overall, the Ni D. magna bioavailability model coupled with WHAM VII (Speciation Scenario II) predicted 

Ni toxicity in natural and synthetic waters almost as accurate as the original Ni D. magna bioavailability 

model coupled with WHAM VI (Table 7.17). 

Table 7.16 Average calibrated intrinsic Ni2+ sensitivities for Daphnia magna (Q10Ni2+; calculated using 

Equation 7.9) under Speciation Scenario I and II 

 Synthetic waters a Natural waters a  

 Q10Ni2+
b Q10Ni2+

c 

Speciation Scenario Id 5.72 4.63 

Speciation Scenario IIe 5.64 4.24 

a Data from Deleebeeck et al (2008) 
b Q10Ni2+ for synthetic waters calculated based on data for synthetic waters and an SpH of 0.1987 (Table 7.4) 
c Q10Ni2+ for natural waters calculated based on data for natural waters and an SpH of 0.3335 (Table 7.4) 
d Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
e Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.5. Predicted versus observed 10% effective concentration (EC10Nidiss) for Daphnia magna using 

Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic complexation; left 

graph) and Speciation Scenario II (i.e. using stability constants for inorganic complexation reported by 

NIST; right graph). Predictions were made using the chronic Ni D. magna bioavailability model linked to 

WHAM VII (Equation 7.8). The solid line represents a perfect fit between the observed and predicted data, 

the dashed lines represent a difference of a factor 2 between the observed and predicted data.  
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Table 7.17 Prediction statistics of the EC10Nidiss predicted with the chronic Ni Daphnia magna bioavailability 

model (Equation 7.8) in WHAM VIa and in WHAM VII using Speciation Scenario Ib and Speciation Scenario 

IIc 

 
WHAM VI 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 Synthetic 

waters 

Natural 

waters 

Synthetic 

waters 

Natural 

waters 

Synthetic 

waters 

Natural 

waters 

Mean prediction error 1.4 1.4 1.63 1.69 1.48 1.46 

Median prediction error - - 1.42 1.64 1.31 1.17 

Minimum prediction error 1.0 1.1 1.08 1.19 1.03 1.06 

% predicted within twofold error - - 80 83 87 83 

a Data from Deleebeeck et al (2008) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Validation of the Ni bioavailability model for P.subcapitata in WHAM VII 

The intrinsic sensitivities (QxNi2+) for the Speciation Scenario I and II are reported in Table 7.18. Both 

speciation scenarios predicted chronic Ni toxicity to P.subcapitata with reasonable accuracy (Figure 7.6; 

Table 7.19). For the univariate Mg, pH and Ca test series, both speciation scenarios showed comparable 

accuracy or more accuracy compared to the WHAM VI results. For the bivariate pH-Mg test series 

Speciation Scenario II was more accurate than the results with WHAM VI. For the validation waters, 

Speciation Scenario I was less accurate than WHAM VI, while Speciation Scenario II showed 

comparable and less accuracy compared to WHAM VI for EC50 and EC10 data, respectively. 

Overall, the prediction performance of the Ni P.subcapitata bioavailability model coupled with WHAM 

VII under Speciation Scenario II was relatively comparable with the performance of the original model. 

(Table 7.19). 

Table 7.18 Average calibrated intrinsic Ni2+ sensitivities for Daphnia magna (QxNi2+; calculated using 

Equation 7.9) under Speciation Scenario I and II 

 Synthetic waters a Validation waters b  

 Q50Ni2+
c Q10Ni2+

c Q50Ni2+
d Q10Ni2+

d 

Speciation Scenario Ie 5.03 5.51 4.48 5.39 

Speciation Scenario IIf 4.82 5.29 4.33 5.14 
a Data from Deleebeeck et al (2009): univariate Ca, Mg and pH test series and the bivariate pH-Mg test series 
b Data from Deleebeeck et al (2009): the OECD waters and natural waters used in the validation test series 
c QxNi2+ for synthetic waters was calculated based on data for the univariate Mg and pH test series (Deleebeeck et 

al (2009) 
d QxNi2+ for natural waters was calculated based on the OECD waters used in the validation test series (Deleebeeck 

et al (2009) 
e Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
f Speciation Scenario II: stability constants for inorganic complexation reported by NIST 
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Figure 7.6. Predicted versus observed x% effective concentration (ECxNidiss) for Pseudokircherniella 

subcapitata using Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic 

complexation; left graph) and Speciation Scenario II (i.e. using stability constants for inorganic 

complexation reported by NIST; right graph). Predictions were made using the chronic Ni P.subcapitata 

bioavailability model linked to WHAM VII (Equation 7.8). Top graphs: model performance for the synthetic 

waters used in the univariate Ca, Mg and pH test series and the bivariate pH-Mg test series. Lower graphs: 

model performance for the OECD waters and natural waters used in the validation test series. The solid line 

represents a perfect fit between the observed and predicted data, the dashed lines represent a difference 

of a factor 2 between the observed and predicted data.  
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Table 7.19 Prediction statistics of the ECxNidiss predicted with the chronic Ni Pseudokirchneriella 

subcapitata bioavailability model (Equation 7.8) in WHAM VIa and in WHAM VII using Speciation Scenario Ib 

and Speciation Scenario IIc 

 WHAM VI 

 Synthetic waters Validation waters 

 Mg and pH series Ca series pH-Mg series   

 EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 data 

Mean prediction error 1.3 1.2 1.2 1.3 1.3 1.7 1.2 1.3 

Median prediction error - - - - - - - - 

Minimum prediction error 1.0 1.1 1.0 1.1 1.1 1.1 1.0 1.0 

% predicted within twofold error 100 100 100 100 100 - 100 100 

 

 WHAM VII 

Speciation Scenario I 

 Synthetic waters Validation waters 

 Mg and pH series Ca series pH-Mg series   

 EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

Mean prediction error 1.33 1.24 1.15 1.26 1.53 1.90 1.50 1.81 

Median prediction error 1.30 1.15 1.15 1.22 1.50 1.71 1.30 1.42 

Minimum prediction error 1.01 1.04 1.01 1.12 1.17 1.18 1.00 1.07 

% predicted within twofold error 100 100 100 100 89 67 77 69 

 

 WHAM VII 

Speciation Scenario II 

 Synthetic waters Validation waters 

 Mg and pH series Ca series pH-Mg series   

 EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

Mean prediction error 1.33 1.24 1.17 1.29 1.31 1.70 1.27 1.51 

Median prediction error 1.36 1.18 1.19 1.22 1.33 1.72 1.17 1.29 

Minimum prediction error 1.01 1.07 1.04 1.09 1.07 1.11 1.05 1.01 

% predicted within twofold error 100 100 100 100 100 67 100 85 

a Data from Deleebeeck et al (2008 and 2009) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Validation of the Ni fish bioavailability model in WHAM VII 

The intrinsic sensitivities (QxNi2+) for the Speciation Scenario I and II are reported in Table 7.20. Both 

speciation scenarios predicted chronic Ni toxicity to O. mykiss with reasonable accuracy (Figure 7.7; 

Table 7.21). For the LC50 data, Speciation Scenario II was as accurate compared to the WHAM VI 

results, for both synthetic and natural waters. For the NOEC data, no information was given on the 

prediction statistics in Deleebeeck et al (2007). However, Speciation Scenario II showed high accuracy, 

i.e. all waters within twofold prediction error, for the synthetic waters. For the natural waters, Speciation 

Scenario II showed little less accuracy (i.e. 80% within twofold error), which is still better than the 

prediction statistics of the LC50 data for the natural waters using WHAM VI. 

Overall, the prediction performance of the Ni fish bioavailability model coupled with WHAM VII under 

Speciation Scenario II was relatively comparable with the performance of the original model. (Table 

7.21). 
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Table 7.20 Average calibrated intrinsic Ni2+ sensitivities for Oncorhynchus mykiss (QxNi2+; calculated using 

Equation 7.9) under Speciation Scenario I and II 

 Q50Ni2+
a QNOECNi2+

a 

Speciation Scenario Ib 3.15 3.63 

Speciation Scenario IIc 2.93 3.40 
a Data from Deleebeeck et al (2007): QxNi2+ calculated based on synthetic test media 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.7. Predicted versus observed 50% lethal concentration (LC50Nidiss) and no observed effect 

concentration (NOECNidiss) for Oncorhynchus mykiss using Speciation Scenario I (i.e. using the default 

WHAM VII stability constants for inorganic complexation; left graph) and Speciation Scenario II (i.e. using 

stability constants for inorganic complexation reported by NIST; right graph). Predictions were made using 

the chronic Ni fish  bioavailability model linked to WHAM VII (Equation 7.8). The solid line represents a 

perfect fit between the observed and predicted data, the dashed lines represent a difference of a factor 2 

between the observed and predicted data.  



 

 
 

 

Table 7.21 Prediction statistics of the LC50Nidiss and NOECNidiss predicted with the chronic Ni fish bioavailability model (Equation 7.8) in WHAM VIa and in WHAM VII 

using Speciation Scenario Ib and Speciation Scenario IIc 

 
WHAM VI 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 Synthetic waters Natural waters Synthetic waters Natural waters Synthetic waters Natural waters 

 LC50 

data 

NOEC data LC50 

data 

NOEC data LC50 data NOEC 

data 

LC50 

data 

NOEC 

data 

LC50 data NOEC 

data 

LC50 

data 

NOEC 

data 

Mean prediction error 1.20 - 1.55 - 1.58 1.73 1.95 2.13 1.19 1.32 1.64 1.68 

Median prediction error - - 1.10 - 1.34 1.41 1.60 1.74 1.14 1.33 1.18 1.40 

Minimum prediction error - - 1.10 - 1.09 1.00 1.14 1.47 1.02 1.03 1.08 1.29 

% predicted within twofold error 100 - 75 - 92 85 75 60 100 100 75 80 

a Data from Deleebeeck et al (2007) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 
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Validation of the chronic Ni C. dubia bioavailability model in WHAM VII 

The intrinsic sensitivities (Q50Ni2+) for the Speciation Scenario I and II are reported in Table 7.22. In 

general, Speciation Scenario I and II predicted Ni toxicity to C. dubia with the same accuracy (Figure 

7.8; Table 7.23). Overall, Ni toxicity to C. dubia for EC50 values was less well predicted when the Ni C. 

dubia bioavailability model was coupled to WHAM VII (Speciation Scenario II) than when it was coupled 

to WHAM VI.  

Table 7.22 Average calibrated intrinsic Ni2+ sensitivities for Ceriodaphnia dubia (Q50Ni2+; calculated using 

Equation 7.9) under Speciation Scenario I and II 

 Q50Ni2+
a 

Speciation Scenario Ib -0.0077 

Speciation Scenario IIc 2.49 

a Data from De Schamphelaere et al (2006a) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

 

Figure 7.8. Predicted versus observed 50% effective concentration (EC50Nidiss)) for Ceriodaphnia dubia 

using Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic complexation; 

left graph) and Speciation Scenario II (i.e. using stability constants for inorganic complexation reported by 

NIST; right graph). Predictions were made using the chronic Ni C. dubia  bioavailability model linked to 

WHAM VII (Equation 7.3). The solid line represents a perfect fit between the observed and predicted data, 

the dashed lines represent a difference of a factor 2 between the observed and predicted data.  
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Table 7.23 Prediction statistics of the EC50Nidiss predicted with the chronic Ni Ceriodubia daphnia 

bioavailability model (Equation 7.8) in WHAM VIa and in WHAM VII using Speciation Scenario Ib and 

Speciation Scenario IIc 

 
WHAM VI 

WHAM VII Speciation 

Scenario I 

WHAM VII Speciation 

Scenario II 

 EC50 data EC50 data EC50 data 

Mean prediction error 1.37 1.82 1.57 

Median prediction error 1.19 1.34 1.27 

Minimum prediction error - 1.06 1.07 

% predicted within twofold error 100 67 67 

a Data from De Schamphelaere et al (2006a) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

 

Validation of the read-across to C. tentans, L. stagnalis, B. calyciflorus and L. minor  using the 

D. magna and C. dubia bioavailability models in WHAM VII  

For the cross-species extrapolation of the chronic Ni D. magna and C. dubia bioavailability models in 

WHAM VII , the intrinsic sensitivities (𝐸𝐶𝑥𝑍𝑛2+
∗ ) for the Speciation Scenario I and II are reported in Table 

7.24. For C. tentans, B. calyciflorus and L. minor, Speciation Scenario II, using the NIST stability 

constants for inorganic ligand complexation, predicted chronic Ni toxicity more accurately than WHAM 

VI (Figure 7.9, Table 7.25). For L. stagnalis, Speciation Scenario II predicted chronic Ni toxicity with 

comparable accurately than WHAM VI. 

Overall, the prediction performance of the Ni D. magna and C. dubia bioavailability models coupled with 

WHAM VII under Speciation Scenario II was relatively comparable with the performance of the original 

models for the EC20 and EC50 data (Table 7.25). 

Table 7.24 Average calibrated intrinsic Ni2+ sensitivities for Chironomus tentans, Brachionus calyciflorus, 

Lemna minor and Lymnaea stagnalis (QxNi2+; calculated using Equation 7.9) under Speciation Scenario I 

and II 

 C. tentansa  B. calyciflorusa 

 D. magna BLM  C. dubia BLM  D. magna BLM 

 Q20Ni2+  Q20Ni2+  Q20Ni2+ 

Speciation Scenario Ib 1.67  -1.57  1.56 

Speciation Scenario IIc 3.57  0.88  3.52 
 

 L. minora  L. stagnalisa 

 D. magna BLM  C. dubia BLM 

 Q50Ni2+  Q50Ni2+ 

Speciation Scenario Ib 2.10  -0.027 

Speciation Scenario IIc 4.01  2.44 
a Data from Schlekat et al (2010) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST



 

 
 

 

Figure 7.9. Predicted versus observed x% effective concentration (ECxNidiss) for Chironomus tentans, Brachionus calyciflorus, Lemna minor and Lymnaea stagnalis 

using Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic complexation; left graph) and Speciation Scenario II (i.e. using stability 

constants for inorganic complexation reported by NIST; right graph). Predictions were made using the chronic Ni D. magna and C. dubia bioavailability models linked 

to WHAM VII (Equation 7.8). The solid line represents a perfect fit between the observed and predicted data, the dashed lines represent a difference of a factor 2 

between the observed and predicted data.  

 

 

 

 



 

 
 

Table 7.25 Prediction statistics of the ECxNidiss predicted with the chronic Ni D. magna and C. dubia bioavailability models (Equation 7.8) in WHAM Va and in WHAM 

VII using Speciation Scenario Ib and Speciation Scenario IIc 

 WHAM V 

 C. tentans  B. calyciflorus  L. minor  L. stagnalis 

 D. magna 

BLM 
 

C. dubia 

BLM 
 D. magna BLM  D. magna BLM  C. dubia BLM 

 EC20 

data 
 EC20 data  EC20 data  EC20 data  EC50 data 

Mean prediction error 1.6  1.6  1.8  1.3  1.5 

Median prediction error -  -  -  -  - 

Maximum prediction error <2 .0  <2 .0  <2 .2  < 1.6  <1.8 
 

 WHAM VII Speciation Scenario I 

 C. tentans  B. calyciflorus  L. minor  L. stagnalis 

 D. magna 

BLM 
 

C. dubia 

BLM 
 D. magna BLM  D. magna BLM  C. dubia BLM 

 EC20 

data 
 EC20 data  EC20 data  EC20 data  EC50 data 

Mean prediction error 1.85  1.36  1.57  1.65  2.22 

Median prediction error 1.85  1.36  1.36  1.59  1.77 

% predicted within twofold error 50  100  86  80  50 

 

 WHAM VII Speciation Scenario II 

 C. tentans  B. calyciflorus  L. minor  L. stagnalis 

 D. magna 

BLM 
 

C. dubia 

BLM 
 D. magna BLM  D. magna BLM  C. dubia BLM 

 EC20 

data 
 EC20 data  EC20 data  EC20 data  EC50 data 

Mean prediction error 1.45  1.31  1.39  1.34  1.76 

Median prediction error 1.42  1.30  1.27  1.35  1.67 

% predicted within twofold error 100  100  86  100  75 
a Data from Schlekat et al (2010) (see Table 7.1); b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation; 
b Speciation Scenario II: stability constants for inorganic complexation reported by NIST;  
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Calibration of the Zn bioavailability models in WHAM VII 

Validation of the chronic Zn D. magna BLM in WHAM VII 

The intrinsic sensitivities (𝑁𝑂𝐸𝐶𝑍𝑛2+
∗ ) for the Speciation Scenario I and II are reported in Table 7.26. Both 

speciation scenarios predicted chronic Zn toxicity to D. magna with better accuracy than predictions 

using WHAM V (Figure 7.10; Table 7.27). Between 62% and 100% of the NOECZndiss values were 

predicted within 2-fold error. The Speciation Scenario II, using the NIST stability constants for inorganic 

ligand complexation predicted the NOECZndiss values more accurate than the Speciation Scenario I and 

the predictions using WHAM V, certainly for the natural water dataset. In De Schamphelaere et al (2005), 

Zn toxicity in the high pH field waters Voyon and Rhine was underestimated, i.e. prediction errors of 

factors of 3.8 and 2.3 were observed. Using WHAM VII, the underestimation of toxicity in these waters 

is much lower; i.e. prediction errors using Speciation Scenario I of factors of 2.1 and 2.1 for Voyon and 

Rhine, respectively, and prediction errors using Speciation Scenario II of factors of 2.1 and 1.7 for Voyon 

and Rhine, respectively.  

Overall, the Zn D. magna BLM coupled with WHAM VII predicted Zn toxicity in natural and synthetic 

waters more accurate than the original Zn D. magna BLM coupled with WHAM V (Table 7.27). 

Table 7.26 Average intrinsic Zn2+ sensitivities for Daphnia magna (21d-𝑵𝑶𝑬𝑪𝒁𝒏𝟐+
∗ ; calculated using Equation 

7.11) under Speciation Scenario I and II 

 Synthetic 

waters 

(nmol/L)a 

Natural 

waters 

(nmol/L)b 

Speciation Scenario Ic 412 352 

Speciation Scenario IId 426 421 
a Data from Heijerick et al (2005b) 
b Data from De Schamphelaere et al (2005) 
c Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

Table 7.27 Prediction statistics of the 21d-NOECZndiss predicted with the chronic Zn Daphnia magna BLM 

(Equation 7.10) in WHAM Va and in WHAM VII using Speciation Scenario Ib and Speciation Scenario IIc 

  
WHAM V 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 All 

data 

Synthetic 

waters 

Natural 

waters 

All 

data 

Synthetic 

waters 

Natural 

waters 

All 

data 

Synthetic 

waters 

Natural 

waters 

Mean prediction error 1.62 1.51 1.93 1.53 1.48 1.66 1.47 1.46 1.50 

Median prediction error 1.63 1.51 1.79 1.48 1.48 1.48 1.49 1.49 1.45 

% predicted within twofold error 83 90 62 90 100 62 93 100 75 

a Data from Heijerick et al (2005b) and De Schamphelaere et al (2005) (see Table 7.1) 

b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 
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Figure 7.10. Predicted versus observed no observed effect concentration (NOECZndiss) for Daphnia magna 

using Speciation Scenraio I (i.e. using the default WHAM VII stability constatns for inorganic complexation; 

left graph) and Speciation Scenario II (i.e. using stability constants for ionrganic complexation reported by 

NIST; right graph). Predictions were made using the chronic Zn D. magna BLM linked to WHAM VII (Equation 

7.9). The solid line represents a perfect fit between the observed and predicted data, the dashed lines 

represent a difference of a factor 2 btween the observed and predicted data. 

 

To be able to compare the accuracy of the D. magna BLM and gBAM coupled with WHAM VII, a 

separate validation was performed, as was explained in the Material and Methods section. For this 

validation, the data that was used to validate the gBAM was used. The intrinsic sensitivities (QxCu2+) for 

the Speciation Scenario I and II are reported in Table 7.28. Prediction statistics are given in Table 7.29. 

Table 7.28 Average intrinsic Zn2+ sensitivities for Daphnia magna (𝑬𝑪𝒙𝒁𝒏𝟐+
∗  (nmol/L); calculated using 

Equation 7.11) under Speciation Scenario I and II 

 𝐸𝐶50𝑍𝑛2+
∗  𝐸𝐶10𝑍𝑛2+

∗  𝐸𝐶10𝑍𝑛2+
∗  

 KDS+TVR KDS+TVR KDS+TVR Heijerick 

Speciation Scenario Ie 423 292 437 2292 

Speciation Scenario IIf 539 361 449 361 
a f Data from Heijerick et al (200b5); De Schamphelaere et al (2005) and Van Regenmortel et al (2017b; Chapter 5) 
c Q50 was calculated based on the “KDS+TVR” data  
d Q10 was calculated based on the “KDS + TVR” data 
e Two separate Q10 values were calculated, one based on the “KDS+TVR” data, and one based on the “Heijerick” 

data 
e Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
f Speciation Scenario II: stability constants for inorganic complexation reported by NIST 



 

 
 

Table 7.29 Prediction statistics of the EC50Zndiss and EC10Zndiss predicted with the chronic Zn Daphnia magna BLM (Equation 7.10) in WHAM Va and in WHAM VII using 

Speciation Scenario Ib and Speciation Scenario IIc 

 

 WHAM VII 

Speciation Scenario I 

 EC50 datad EC10 datae EC10 dataf 

 Heijerick KDS + TVR Heijerick KDS + TVR Heijerick KDS + TVR 

Mean prediction error 1.71 1.83 1.64 2.15 1.53 2.15 

Median prediction error 1.73 1.69 1.54 2.06 1.46 2.06 

% predicted within twofold error 91 58 73 45 95 45 

 

 WHAM VII 

Speciation Scenario II 

 EC50 datad EC10 datae EC10 dataf 

 Heijerick KDS + TVR Heijerick KDS + TVR Heijerick KDS + TVR 

Mean prediction error 1.76 1.59 1.65 1.79 1.51 1.79 

Median prediction error 1.75 1.48 1.58 1.45 1.49 1.45 

% predicted within twofold error 77 75 73 64 95 64 

a Data from Heijerick et al (2005b), De Schamphelaere et al (2005) and Van Regenmortel et al (2017b; Chapter 5) (see Table 7.1); b Speciation Scenario I: default WHAM VII 

stability constants for inorganic complexation ; c Speciation Scenario II: stability constants for inorganic complexation reported by NIST; d Q50 was calculated based on the 

“KDS+TVR” data ; e Q10 was calculated based on the “KDS + TVR” data; f Two separate Q10 values were calculated, one based on the “KDS+TVR” data, and one based on the 

“Heijerick” data 
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Validation of the Zn bioavailability model for P.subcapitata in WHAM VII 

The intrinsic sensitivities (QxZn2+) for the Speciation Scenario I and II are reported in Table 7.30. The 

prediction statistics for the chronic Zn P.subcapitata bioavailability model for both speciation scenarios 

are given in Table 7.31. For the EC50 data, the Zn toxicity to P.subcapitata is better predicted with the 

bioavailability model coupled to WHAM V, i.e. 100% of the data is predicted within twofold prediction 

error using WHAM V while only 86% and of the data is predicted within twofold prediction error using 

Speciation Scenario I and II coupled to WHAM VII (Figure 7.11). For the EC10 data, both speciation 

scenarios predicted chronic Zn toxicity to P.subcapitata as accurate as the bioavailability model coupled 

to WHAM V (Table 7.31). 

Overall, the Zn P.subcapitata bioavailability model coupled with WHAM VII predicted Zn toxicity in 

natural waters less accurate than the original Zn P.subcapitata bioavailability model coupled with WHAM 

V for EC50 data, but as accurate for EC10 data (Table 7.31). 

Table 7.30 Average intrinsic Zn2+ sensitivities for Pseudokircheriella subcapitata (QxZn2+; calculated using 

Equation 7.13) under Speciation Scenario I and II.  

 Natural waters (nmol/L)a 

 Q50Zn2+ Q10Zn2+ 

Speciation Scenario Ib 1.54 2.06 

Speciation Scenario IIc 1.86 2.31 

a Data from De Schamphelaere et al (2005) 
c Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.11. Predicted versus observed 50% and 10% effect concentration (ECxZndiss) for 

Pseudokircherniella subcapitata using Speciation Scenario I (i.e. using the default WHAM VII stability 

constants for inorganic complexation; left graph) and Speciation Scenario II (i.e. using stability constants 

for inorganic complexation reported by NIST; right graph). Predictions were made using the chronic Zn 

Algae bioavailability model linked to WHAM VII (Equation 7.11). The solid line represents a perfect fit 

between the observed and predicted data, the dashed lines represent a difference of a factor 2 between the 

observed and predicted data. 
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Table 7.31 Prediction statistics of the 21d-NOECZndiss predicted with the chronic Zn Daphnia magna BLM 

(Equation 7.12) in WHAM Va and in WHAM VII using Speciation Scenario Ib and Speciation Scenario IIc 

 
WHAM V 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 EC50 data EC10 data EC50 data EC10 data EC50 data EC10 data 

Mean prediction error 1.59 1.36 1.65 1.42 1.42 1.61 

Median prediction error 1.65 1.15 1.71 1.28 1.26 1.53 

% predicted within twofold error 100 86 86 86 86 86 

a Data from De Schamphelaere et al (2005) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

Validation of the Zn fish BLM in WHAM VII 

The intrinsic sensitivities (𝐸𝐶𝑥𝑍𝑛2+
∗ ) for the Speciation Scenario I and II are reported in Table 7.32. Both 

speciation scenarios predicted chronic Zn toxicity to O. mykiss with better accuracy than predictions 

using WHAM V (Figure 7.12; Table 7.33). The Speciation Scenario II, using the NIST stability constants 

for inorganic ligand complexation predicted the ECxZndiss values more accurate than the Speciation 

Scenario I and the predictions using WHAM V, certainly for the natural water dataset.  

Overall, the Zn fish BLM coupled with WHAM VII predicted Zn toxicity in natural and synthetic waters 

more accurate than the original Zn fish BLM coupled with WHAM V (Table 7.33). 

Table 7.32 Average intrinsic Zn2+ sensitivities for Oncorhynchus mykiss (𝑬𝑪𝒙𝒁𝒏𝟐+
∗ ; calculated using 

Equation 7.11) under Speciation Scenario I and II 

 Synthetic waters (nmol/L)a  Natural waters (nmol/L)b 

 𝐸𝐶50𝑍𝑛2+
∗  𝐸𝐶10𝑍𝑛2+

∗   𝐸𝐶50𝑍𝑛2+
∗  𝐸𝐶10𝑍𝑛2+

∗  

Speciation Scenario Ic 791 234  1557 662 

Speciation Scenario IId 987 291  1752 689 
a Data from De Schamphelaere et al (2003); b Data from De Schamphelaere et al (2005) 
c Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.12. Predicted versus observed x% effective concentration (ECxZndiss) for Oncorhynchus mykiss 

using Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic complexation; 

left graph) and Speciation Scenario II (i.e. using stability constants for inorganic complexation reported by 

NIST; right graph). Predictions were made using the chronic Zn fish BLM linked to WHAM VII (Equation 7.9). 

The solid line represents a perfect fit between the observed and predicted data, the dashed lines represent 

a difference of a factor 2 between the observed and predicted data. 
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Table 7.33 Prediction statistics of the ECxZndiss predicted with the chronic Zn fish BLM (Equation 7.10) in 

WHAM Va,b and in WHAM VII using Speciation Scenario Ic and Speciation Scenario IId 

 
WHAM V 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 Synthetic 

watersa 

Natural 

watersb 

Synthetic 

waters 

Natural 

waters 

Synthetic 

waters 

Natural 

waters 

 LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

Mean prediction 

error 
1.41 1.31 1.43 1.61 1.43 1.32 1.12 1.19 1.40 1.29 1.13 1.14 

Median 

prediction error 
1.40 1.27 1.42 1.52 1.38 1.24 1.14 1.16 1.35 1.22 1.14 1.15 

% predicted 

within twofold 

error 
100 100 100 80 100 93 100 100 100 100 100 100 

a Data from De Schamphelaere et al (2004c and 2005) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

Validation of the chronic Zn D. magna gBAM in WHAM VII 

The intrinsic sensitivities (QxZn2+) for the Speciation Scenario I and II are reported in Table 7.34. The 

prediction statistics for the chronic Zn D. magna gBAM for both speciation scenarios are given in Table 

7.35. For the EC50 and EC10 data, the Zn toxicity to D. magna is as accurately predicted using the 

gBAM coupled to WHAM VII with Speciation Scenario II  compared to the gBAM coupled to WHAM V 

(Figure 7.13).  

Overall, the Zn D. magna gBAM coupled with WHAM VII predicted Zn toxicity in natural and synthetic 

media as accurate as the original Zn D. magna gBAM coupled with WHAM V for EC50 data and EC10 

data (Table 7.35). 

Table 7.34 Average intrinsic Zn2+ sensitivities for Daphnia magnaa (QxZn2+ calculated using Equation 7.15) 

under Speciation Scenario I and II.  

 Q50Zn2+
b Q10Zn2+

c Q10Zn2+
d 

 KDS+TVR KDS+TVR KDS+TVR Heijerick 

Speciation Scenario Ie -5.55 -5.75 -5.75 -5.59 

Speciation Scenario IIf -5.13 -5.35 -5.35 -5.34 
a f Data from Heijerick et al (200b5); De Schamphelaere et al (2005) and Van Regenmortel et al (2017b; Chapter 5) 
c Q50 was calculated based on the “KDS+TVR” data; d Q10 was calculated based on the “KDS + TVR” data 
e Two separate Q10 values were calculated, one based on the “KDS+TVR” data, and one based on the “Heijerick” 

data; e Speciation Scenario I: default WHAM VII stability constants for inorganic complexation;  Speciation Scenario 

II: stability constants for inorganic complexation reported by NIST 
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Figure 7.13. Predicted versus observed 50% and 10% effect concentration (ECxZndiss) for Daphnia magna 

using the gBAM coupled to WHAM V (left graphs); Speciation Scenario I (i.e. using the default WHAM VII 

stability constants for inorganic complexation; middle graphs) and Speciation Scenario II (i.e. using 

stability constants for inorganic complexation reported by NIST; right graphs). Predictions were made 

using the chronic Zn gBAM linked to WHAM V and WHAM VII (Equation 7.13). For the top graphs, the Q50Zn2+ 

was calculated based on the data reported by De Schamphelaere et al (2005) and Van Regenmortel et al 

(2017b). For the central graphs, the Q10Zn2+ was calculated based on the data reported by De 

Schamphelaere et al (2005) and Van Regenmortel et al (2017b).  For the bottom graphs, two Q10Zn2+ values 

were calculated, one based on the data reported by De Schamphelaere et al (2005) and Van Regenmortel et 

al (2017b) and one based on the data reported by Herijerick et al (2005). The solid line represents a perfect 

fit between the observed and predicted data, the dashed lines represent a difference of a factor 2 between 

the observed and predicted data. 



 

 
 

Table 7.35 Prediction statistics of the EC50Zndiss and EC10Zndiss predicted with the chronic Zn Daphnia magna gBAM (Equation 7.14) in WHAM Va and in WHAM VII 

using Speciation Scenario Ib and Speciation Scenario IIc 

 WHAM V 

 EC50 data EC10 data EC10 data 

 Heijerick KDS + TVR Heijerick KDS + TVR Heijerick KDS + TVR 

Mean prediction error 1.39 1.32 1.68 1.72 1.52 1.72 

Median prediction error 1.38 1.22 1.69 1.52 1.49 1.52 

% predicted within twofold error 100 100 68 73 95 73 

 

 WHAM VII 

Speciation Scenario I 

 EC50 datad EC10 datae EC10 dataf 

 Heijerick KDS + TVR Heijerick KDS + TVR Heijerick KDS + TVR 

Mean prediction error 1.67 1.59 1.70 1.81 1.53 1.81 

Median prediction error 1.69 1.57 1.71 1.62 1.45 1.62 

% predicted within twofold error 91 83 64 64 95 64 

 

 WHAM VII 

Speciation Scenario II 

 EC50 datad EC10 datae EC10 dataf 

 Heijerick KDS + TVR Heijerick KDS + TVR Heijerick KDS + TVR 

Mean prediction error 1.21 1.38 1.51 1.56 1.51 1.56 

Median prediction error 1.18 1.39 1.44 1.28 1.44 1.28 

% predicted within twofold error 100 92 95 73 95 73 

a Data from Heijerick et al (2005b), De Schamphelaere et al (2005) and Van Regenmortel et al (2017b; Chapter 5) (see Table 7.1); b Speciation Scenario I: default WHAM VII 

stability constants for inorganic complexation ; c Speciation Scenario II: stability constants for inorganic complexation reported by NIST; d Q50 was calculated based on the 

“KDS+TVR” data ; e Q10 was calculated based on the “KDS + TVR” data; f Two separate Q10 values were calculated, one based on the “KDS+TVR” data, and one based on the 

“Heijerick” data 
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Validation of the Zn fish gBAM in WHAM VII 

The intrinsic sensitivities (𝐸𝐶𝑥𝑍𝑛2+
∗ ) for the Speciation Scenario I and II are reported in Table 7.36. Both 

speciation scenarios predicted chronic Zn toxicity to O. mykiss with better accuracy than predictions 

using WHAM V (Figure 7.14; Table 7.37), especially for synthetic waters. The Zn fish gBAM showed a 

comparable accuracy compared to the Zn fish BLM (Table 7.37)  

Overall, the Zn fish gBAM coupled with WHAM VII predicted Zn toxicity in natural and synthetic waters 

more accurate than the original Zn fish BLM coupled with WHAM V (Table 7.37). 

Table 7.36 Average intrinsic Zn2+ sensitivities for Oncorhynchus mykiss (𝑬𝑪𝒙𝒁𝒏𝟐+
∗ ; calculated using 

Equation 7.15) under Speciation Scenario I and II 

 Synthetic waters (nmol/L)a  Natural waters (nmol/L)b 

 𝐿𝐶50𝑍𝑛2+
∗  𝐿𝐶10𝑍𝑛2+

∗   𝐿𝐶50𝑍𝑛2+
∗  𝐿𝐶10𝑍𝑛2+

∗  

Speciation Scenario Ic -4.179 -3.554  -3.928 -3.200 

Speciation Scenario IId -4.412 -3.777  -4.184 -3.463 
a Data from De Schamphelaere et al (2003) 
b Data from De Schamphelaere et al (2005) 
c Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
d Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.14. Predicted versus observed x% effective concentration (ECxZndiss) for Oncorhynchus mykiss 

using Speciation Scenario I (i.e. using the default WHAM VII stability constants for inorganic complexation; 

left graph) and Speciation Scenario II (i.e. using stability constants for inorganic complexation reported by 

NIST; right graph). Predictions were made using the chronic Zn fish BLM linked to WHAM VII (Equation 7.9). 

The solid line represents a perfect fit between the observed and predicted data, the dashed lines represent 

a difference of a factor 2 between the observed and predicted data. 
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Table 7.37 Prediction statistics of the ECxZndiss predicted with the chronic Zn fish gBAM (Equation 7.14) in 

WHAM Va,b and in WHAM VII using Speciation Scenario Ic and Speciation Scenario IId 

 
WHAM V 

WHAM VII 

Speciation Scenario I 

WHAM VII 

Speciation Scenario II 

 Synthetic 

watersa 

Natural 

watersb 

Synthetic 

waters 

Natural 

waters 

Synthetic 

waters 

Natural 

waters 

 LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

LC50 

data 

LC10 

data 

Mean prediction 

error 

1.37 1.40 1.32 1.30 1.38 1.32 1.29 1.38 1.39 1.32 1.26 1.35 

Median 

prediction error 

1.28 1.26 1.32 1.35 1.27 1.27 1.31 1.41 1.34 1.29 1.29 1.39 

% predicted 

within twofold 

error 

90 93 100 100 100 100 100 100 100 100 100 100 

a Data from De Schamphelaere et al (2004c and 2005) (see Table 7.1) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Validation of the read-across to L. stagnalis and B. calyciflorus using the D. magna BLM and 

gBAM in WHAM VII  

For the validation of the read-across of the D. magna BLM, the intrinsic sensitivities (𝐸𝐶𝑥𝑍𝑛2+
∗ ) for the 

Speciation Scenario I and II are reported in Table 7.38 . Both speciation scenarios predicted chronic Zn 

toxicity to L. stagnalis and B. calyciflorus with good accuracy (Figure 7.15; Table 7.39), i.e. all ECxZndiss 

were predicted within twofold prediction error for L. stagnalis and B. calyciflorus (with the exception of 

the EC10 data for B. calyciflorus using Speciation Scenario II). The Speciation Scenario II, using the 

NIST stability constants for inorganic ligand complexation predicted the ECxZndiss values more accurate 

than the Speciation Scenario I  

For the validation of the D. magna gBAM, the intrinsic sensitivities (QxZn2+) for the Speciation Scenario I 

and II are reported in Table 7.38. Both speciation scenarios predicted chronic Zn toxicity to L. stagnalis 

and B. calyciflorus with good accuracy (Figure 7.16; Table 7.40), i.e. all ECxZndiss were predicted within 

twofold prediction error for L. stagnalis and B. calyciflorus. Also here, the Speciation Scenario II 

predicted the ECxZndiss values more accurate than the Speciation Scenario I  

Overall, the prediction performance of the Zn D. magna BLM and gBAM coupled with WHAM VII under 

Speciation Scenario II was relatively comparable with the performance of the original models (Table 

7.37). 

 

 

 

 

 



Calibration of bioavailability models in WHAM VII 

 

263 
 

Table 7.38 Average intrinsic Zn2+ sensitivities for Lymnaea stagnalis and Brachionus calyciflorus (𝑬𝑪𝒙𝒁𝒏𝟐+
∗  

and QxZn2+; calculated using Equation 7.11 and 7.15) under Speciation Scenario I and II 

 L. stagnalisa  B. calyciflorusa 

 D. magna BLM (nmol/L)  D. magna gBAM   D. magna BLM (nmol/L)  D. magna gBAM 

 𝐸𝐶50𝑍𝑛2+
∗  𝐸𝐶10𝑍𝑛2+

∗   Q50Zn2+ Q10Zn2+  𝐸𝐶50𝑍𝑛2+
∗  𝐸𝐶10𝑍𝑛2+

∗   Q50Zn2+ Q10Zn2+ 

Speciation 

Scenario Ib 
1596 979 

 
-4.89 -5.10  720 373  -5.24 -5.53 

Speciation 

Scenario IIc 
2183 1328 

 
-4.48 -4.70  1065 543  -4.80 -5.10 

a Data from De Schamphelaere & Janssen (2010) 
b Speciation Scenario I: default WHAM VII stability constants for inorganic complexation 
c Speciation Scenario II: stability constants for inorganic complexation reported by NIST 

 

Figure 7.15. Predicted versus observed x% effective concentration (ECxZndiss) for Lymnaea stagnalis and 

Brachionus calyciflorus using Speciation Scenario I (i.e. using the default WHAM VII stability constants for 

inorganic complexation; left graph) and Speciation Scenario II (i.e. using stability constants for inorganic 

complexation reported by NIST; right graph). Predictions were made using the chronic Zn D. magna BLM 

linked to WHAM VII (Equations 7.9 and 7.13). The solid line represents a perfect fit between the observed 

and predicted data, the dashed lines represent a difference of a factor 2 between the observed and predicted 

data. For B. calyciflorus, the encircled EC10 is considered unreliable (see De Schamphelaere & Janssen, 

2010). 
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Table 7.39 Prediction statistics of the ECxZndiss predicted with the chronic Zn D. magna BLM (Equation 7.10) 

in WHAM V and in WHAM VII using Speciation Scenario Ia and Speciation Scenario IIb 

 
WHAM V 

WHAM VII 

Speciation Scenario Ia 

WHAM VII 

Speciation Scenario IIb 

 
L. stagnalisc B. calyciflorusc L. stagnalis B. calyciflorus L. stagnalis B. calyciflorus 

 EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

Mean prediction 

error 

1.25 1.34 1.33 1.29 1.41 1.46 1.62 1.77 1.29 1.40 1.39 1.77 

Median 

prediction error 

1.30 1.37 1.38 1.23 1.42 1.58 1.59 1.80 1.30 1.34 1.49 1.88 

% predicted 

within twofold 

error 

100 100 100 100 100 100 100 50 100 100 100 100 

a Speciation Scenario I: default WHAM VII stability constants for inorganic complexation; b Speciation Scenario II: 

stability constants for inorganic complexation reported by NIST; c Data from De Schamphelaere and Janssen (2010) 

(see Table 7.1) 

 

Figure 7.16. Predicted versus observed x% effective concentration (ECxZndiss) for Lymnaea stagnalis and 

Brachionus calyciflorus using Speciation Scenario I (i.e. using the default WHAM VII stability constants for 

inorganic complexation; left graph) and Speciation Scenario II (i.e. using stability constants for inorganic 

complexation reported by NIST; right graph). Predictions were made using the chronic Zn D. magna gBAM 

linked to WHAM VII (Equation 7.14). The solid line represents a perfect fit between the observed and 

predicted data, the dashed lines represent a difference of a factor 2 between the observed and predicted 

data. For B. calyciflorus, the encircled EC10 is considered unreliable (see De Schamphelaere & Janssen, 

2010). 
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Table 7.40 Prediction statistics of the ECxZndiss predicted with the chronic Zn D. magna gBAM (7.14) in 

WHAM V and in WHAM VII using Speciation Scenario Ia and Speciation Scenario IIb 

 
WHAM V 

WHAM VII 

Speciation Scenario Ia 

WHAM VII 

Speciation Scenario IIb 

 
L. stagnalisc B. calyciflorusc L. stagnalis B. calyciflorus L. stagnalis B. calyciflorus 

 EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

EC50 

data 

EC10 

data 

Mean prediction 

error 
1.16 1.24 1.18 1.22 1.29 1.37 1.49 1.62 1.19 1.33 1.26 1.35 

Median 

prediction error 
1.13 1.14 1.16 1.22 1.33 1.35 1.45 1.61 1.12 1.27 1.30 1.40 

% predicted 

within twofold 

error 

100 100 100 100 100 100 100 100 100 100 100 100 

a Speciation Scenario I: default WHAM VII stability constants for inorganic complexation; b Speciation Scenario II: 

stability constants for inorganic complexation reported by NIST; c Data from De Schamphelaere and Janssen (2010) 

(see Table 7.1) 

 

7.4. Discussion 

A bioavailability model is in general accepted to be sufficiently accurate and applicable in risk 

assessment when the majority of EC50Mediss is predicted within twofold error (Di Toro et al. 2001; Santore 

et al. 2001; De Schamphelaere and Janssen, 2004b; De Schamphelaere and Janssen, 2008; De 

Schamphelaere and Janssen, 2005). Often, the predictive capacity of these models is only examined 

based on high % effect concentrations (e.g. 50%) (Di Toro et al. 2001; Santore et al. 2001; Van 

Regenmortel et al. 2015; De Schamphelaere and Janssen, 2008; Deleebeeck et al. 2007) to conclude 

whether a model is applicable. This can be attributed to the fact that EC50 data are usually calculated 

with higher precision (i.e. smaller % confidence interval) than for example EC10 data. However, these 

bioavailability models are in risk assessment not only applied for EC50 data but also for EC10 data (see 

Van Regenmortel et al. 2015; Chapter ). Therefore, in this Chapter, we not only examined whether the 

bioavailability models calibrated on metal speciation with WHAM VII were accurate for predicting EC50 

data but also for predicting EC10 (or NOEC) data.  

For Cu, most bioavailability models performed well when the models were calibrated on metal speciation 

with WHAM VII. An exception was the performance of the D. magna BLM. For natural waters, only 10% 

and 30% of the EC50 data and 20% of the NOEC data was predicted within twofold prediction error 

using the Cu D. magna BLM with Speciation Scenario I and II, respectively (Table 7.7). In comparison, 

80% of the EC50 data and 70% of the NOEC data for the natural waters was predicted within twofold 

error using WHAM V. When comparing the Cu2+ activity from WHAM V and WHAM VII, we see a bias 

toward higher calculated Cu2+ activity by WHAM VII for a high number of test waters (Figure 7.17), while 

a lower number of test waters do show similar Cu2+ activities when calculated with WHAM V and WHAM 

VII. When examining the differences in physico-chemistry between these two groups of test waters, we 

see a significant difference in pH, while there is no significant difference in DOC concentration or Ca 

concentration (Figure 7.18). Apparently, for test waters with a pH > 7,  Cu2+ activity calculated using 

WHAM VII is higher compared to WHAM V, while for waters with pH < 7 Cu2+ activity calculated using 

WHAM VII and WHAM V are similar. Certain differences between the two speciation software’s, such 
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as differences in organic complexation constants, are most likely the reason for the large difference in 

predictive capacity between WHAM V and VII. However, more research should be conducted by 

comparing both speciation software’s to pinpoint the differences that lead to the differences in calculated 

Cu2+ activities. 

 

Figure 7.17. Observed 50% effective concentration expressed as Cu2+ activity (EC50Cuact) for Daphnia magna 

calculated using the speciation software WHAM V and WHAM VII. The solid line represents a perfect 

correspondence between the calculated Cu2+ activities for both models. The orange oval groups data for 

which Cu2+ activity calculated using WHAM VII is higher compared to WHAM V, the green oval groups data 

for which Cu2+ activity calculated using WHAM VII and WHAM V is comparable. Empty symbols = test 

waters with pH > 7, filled symbols = test waters with pH < 7. 

 

 
Figure 7.18. Differences in physico-chemical parameters (i.e. pH, DOC and Ca concentration) for waters for 

which Cu2+ activity is higher when calculated by WHAM VII then WHAM V (orange circle in Figure 7.17) and 

for waters for which the calculated Cu2+ activity is comparable between WHAM VII and WHAM V (green 

circle in Figure 7.17). 

 

Although for D. magna the Cu BLM calibrated on metal speciation calculated with WHAM VII did not 

perform well, the Cu gBAM calibrated on WHAM VII did perform relatively well. The predictive 

performance in WHAM VII approached that reported in the original publication (Van Regenmortel et al. 

2015; Table 7.13). However, to correctly compare the performance of the Cu BLM to that of the Cu 

gBAM calibrated on WHAM VII, the comparison should be based on the same data, which can be done 

by comparing Table 7.9 with Table 7.13. Based on these results, it is clear that the Cu gBAM is not only 

more accurate than the Cu BLM in predicting Cu toxicity to different clones of D. magna when coupled 
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to WHAM V (Van Regenmortel et al. 2015), but that it is also more accurate than the Cu BLM when 

calibrated to WHAM VII.  

For freshwater green microalgae, the Cu bioavailability model performed relatively well when the model 

was calibrated on metal speciation calculated with WHAM VII, i.e. the majority of the data was predicted 

within twofold error. The prediction performance in WHAM VII approached that reported in the original 

publication (De Schamphelaere and Janssen, 2006; Heijerick et al. 2005 Table 7.8). 

For the cross-phylum comparison (read-across) of the D. magna BLM and gBAM coupled to WHAM VII 

for B. calyciflorus, also here, the D. magna BLM did not perform well calibrated on metal speciation 

calculated with WHAM VII (Table 7.15). However, the Cu gBAM did perform well, i.e. 100% of the data 

within twofold prediction error and similar mean prediction error compared to that reported in the original 

publication (De Schamphelaere and Janssen, 2006c). 

Lofts and Tipping (2011) reported for WHAM VII that the agreement between observation and prediction 

for free copper was relatively good at high free copper (> 10-12 M) concentrations. The  free copper 

within the test waters considered here and of relevance for ecotoxicity was always above 10-12 M, which 

confirms the results by Lofts and Tipping (with the exception of the D. magna BLM), also when WHAM 

VII is used with adapted inorganic complexation constants (Speciation Scenario II).   

 

For Ni, overall, the chronic bioavailability models performed well when models were calibrated on metal 

speciation calculated with WHAM VII. For the D. magna, algae and fish bioavailability models, the 

predictive performance in WHAM VII approached or was slightly better than those reported in the original 

publications (Deleebeeck et al. 2007, 2008, 2009, De Schamphelaere et al. 2006; Schlekat et al. 2010). 

For the C. dubia bioavailability model and the read-across of the D. magna bioavailability model to L. 

stagnalis, the performance in WHAM VII showed comparable accuracy to WHAM VI for the EC50 data. 

Lofts and Tipping (2011) also reported that WHAM VII (using the default inorganic complexation 

constants) predicted free Ni2+ activity in natural waters relatively accurate (i.e. 43 of 54 observations 

within one order of magnitude). These authors found that WHAM VII (using the default inorganic 

complexation constants) was a good predictor of Ni2+ activity at high Ni concentrations (> 10-8), but 

overestimation of observed Ni2+ activity was greater at lower Ni concentrations. The  free copper within 

our test waters was always above 10-12 M, which confirms the results by Lofts and Tipping), also when 

WHAM VII is used with adapted inorganic complexation constants (Speciation Scenario II).   

 

For Zn, the chronic bioavailability models performed well when models were calibrated on metal 

speciation calculated with WHAM VII. For the D. magna BLM and gBAM, the algae bioavailability model 

and the fish BLM and gBAM, the predictive performance in WHAM VII approached or was better than 

those reported in the original publications (De Schamphelaere et al. 2005, De Schamphelaere et al. 

2003, Van Regenmortel et al. 2017b).  

Although both models are accurate in their predictive capacity based on the data for which they were 

developed and validated, a correct comparison between the performance of the Daphnia Zn BLM to that 

of the Zn gBAM calibrated on WHAM VII should be based on the same data, which can be done by 

comparing Table 7.29 with Table 7.34. Based on these results, it is clear that the Zn gBAM is more 
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accurate than the Zn BLM when calibrated to WHAM VII. When comparing the fish Zn BLM to that of 

the Zn gBAM (Table 7.33 and 7.37), we see that although the predictive performance is comparable, 

the also here Zn gBAM is more accurate than the Zn BLM. 

For the read-across of the D. magna BLM and gBAM to L. stagnalis and B. calyciflorus, the performance 

in WHAM VII was also more accurate than WHAM V. Lofts and Tipping (2011) also reported that WHAM 

VII (using the default inorganic complexation constants) predicted free Zn2+ activity in natural waters 

relatively accurate (i.e. 72 of 84 observations within one order of magnitude). Our results confirm the 

results by Lofts and Tipping), also when WHAM VII is used with adapted inorganic complexation 

constants (Speciation Scenario II).   

The identity of the inorganic complexation thermodynamic database impacted the predictive 

performance of the chronic Ni and Zn bioavailability models. The predictive performance of these models 

was in general better when the stability constants for inorganic complexation reported by NIST were 

applied (i.e. Speciation Scenario II). The predictive capacity of the Cu bioavailability models were less 

impacted. 

7.5. Conclusion 

For Cu, the bioavailability models performed well when the models were calibrated on metal speciation 

with WHAM VII, with the exception of the D. magna BLM for Cu. However, we have shown that the D. 

magna gBAM is a valuable and in some cases even better alternative for the BLM and that it can be 

used in combination with WHAM VII to accurately predict Cu toxicity to D. magna. Therefore, in the next 

Chapters in this PhD, the gBAM and not the BLM coupled to WHAM VII will be used for calculations. 

Because we have shown that the bioavailability models for Cu are accurate in predicting Cu toxicity 

when coupled to WHAM VII, we can safely assume that the fish gBAM can also be used in combination 

with WHAM VII to accurately predict Cu toxicity. 

For Ni and Zn, overall, the chronic bioavailability models performed well when models were calibrated 

on metal speciation calculated with WHAM VII. In addition, we have shown that Zn toxicity to Daphnia 

and fish is best predicted using the gBAMs instead of the BLMs coupled to WHAM VII. Therefore, in 

future Chapters in this PhD, the gBAMs and not the BLMs coupled to WHAM VII will be used for 

calculations. 

Overall, our results show that WHAM VII with an assumption of 65% AFA can be used as a speciation 

model to predict metal toxicity to different species with sufficient accuracy. In addition, the stability 

constants for inorganic complexation reported by NIST (Speciation Scenario II) describe the metal 

toxicity more accurately than the default WHAM VII inorganic stability constants.
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8. RISK ASSESSMENT OF MIXTURES OF CU, ZN AND NI: THE INFLUENCE OF COMPETITION FOR 

DOC BINDING SITES 

 
8.1. Introduction 

In Chapter 6, four mixture risk assessment methodologies were compared for risk estimations of 

mixtures of copper, zinc and nickel. Instead of using the originally published bioavailability models to 

normalize the toxicity data, as was done in Chapter 2, the toxicity data for Cu and Zn for invertebrates 

and fish were normalized with the gBAMs developed in Chapter 5. We showed that this adaptation had 

a small influence on msPAF values and on the % of target water samples that were predicted to be 

affected by the mixture of Cu, Zn and Ni or by the individual metals. However, it had a considerable 

influence on HC5 values. Because the predictive capacity of the gBAMs is in general higher than that 

of the BLMs (Chapter 5), we recommended the use of the newly developed gBAMs to normalize toxicity 

data for Cu and Zn. Therefore, in this chapter, we will follow this recommendation and only use gBAMs 

when normalizing toxicity data. 

The above mentioned calculations were based on bioavailability-normalized dissolved metal 

concentrations. As acknowledged in Chapter 7, it is important to consider that metals can compete with 

each other for binding sites of Dissolved Organic Carbon (DOC) when present in mixtures. Therefore, 

assessing risk based on dissolved concentrations not accounting for competition, may lead to some 

underestimation of metal mixture risks, which is why these risks should in principle be evaluated on the 

basis of free ion activity. However, an evaluation based on free ion activities was previously limited due 

to the use of different speciation programs and different speciation assumptions regarding DOC ‘activity’ 

for the different individual metals. This limitation was tackled in Chapter 7, in which we evaluated the 

predictive performance of the bioavailability models coupled with a single speciation software (i.e. 

Windermere Humic Aqueous Model (WHAM) VII) and with a single speciation assumption regarding 

DOC ‘activity’ (i.e. 65% active fulvic acid (AFA)). We concluded in Chapter 7 that the gBAMs coupled 

with the software WHAM VII with the assumption of 65% AFA can be used to predict single metal toxicity 

to different species with reasonable accuracy. 

 

In the present chapter, our aim was to evaluate the risks of mixtures of Cu, Zn and Ni by taking into 

account the competition between metals for DOC binding sites. This was done by implementing the four 

mixture risk assessment methodologies as described in Chapter 2, in combination with the gBAMs 

developed in Chapter 5 and in combination with the use of a single speciation software to calculate free 

ion activities, as described in Chapter 7. As such, we were able to compare 2 different methodologies 

in which the calculations were based on free metal ion activities: (1) In Scenario C, the monitoring data 

(dissolved) was converted to free ion activity separately for each individual metal. As such, we take into 

account the speciation of the metals, but we assume there is no competition between metals for DOC 

binding sites. (2) In Scenario D, the monitoring data (dissolved) was converted to free ion activity 

simultaneously for all metals. In this case, we do account for the competition between the metals for 

DOC binding sites. 
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Our research question was the following: Is the calculated risk of metal mixtures higher with Scenario D 

(competition) compared to Scenario C (no competition)? We hypothesize that this would indeed be the 

case, as competition between metals for DOC binding sites is taken into account in Scenario D. 

8.2. Material and Methods  

Normalisation tools 

In Chapter 6, normalizations for Zn and Cu were performed using BLM software (HydroQual 2015) that 

incorporates WHAM V (Tipping 1994), and normalizations for Ni were performed using the chronic Ni 

bioavailability and normalization tool (Nys et al. 2014), which incorporates the WHAM Model VI (Tipping 

1998).  

In this chapter, all normalisations were performed using WHAM Model VII (Tipping et al. 2011). For this, 

the chronic Ni bioavailability and normalization tool developed by Nys et al. (2016) was adapted to 

incorporate the WHAM VII speciation software instead of the WHAM VI speciation software. In addition, 

all intrinsic sensitivities of the species for which toxicity data is present in the tool were recalibrated in 

WHAM VII. Finally, the SpH parameters of the bioavailability models that are incorporated in the tool 

were updated to those reported in Chapter 7, where they were recalibrated in WHAM VII. 

The adapted Ni tool (an excel file) that incorporated WHAM VII was used as a template to develop 

similar tools for Cu and Zn. For this, the Cu and Zn toxicity databases were imported into two separate 

files (i.e. two separate tools). In addition, the bioavailability models for algae and gBAMs for 

invertebrates and fish were incorporated into the tool. All intrinsic sensitivities of the species in the Cu 

and Zn toxicity databases were recalibrated in WHAM VII and SpH parameters of the bioavailability 

models for Cu and Zn were updated to those reported in Chapter 7, where they were recalibrated in 

WHAM VII. 

Speciation calculations 

An overview of the different steps is given in Figure 8.1. First, for each individual metal, the dissolved 

EC10 and EC50 values in the chronic toxicity databases were converted to free metal ion activities using 

WHAM VII. The concentrations of other metals possibly present in test media (e.g. Zn, Cd, Co, Ni) were 

not taken into account and were thus assumed to be zero, because no information on this is available 

in the toxicity databases (with the exception of a few data points in the Ni toxicity database). These 

EC10 and EC50 values expressed as free metal activity were then used to calculate slope values of the 

‘activity”-dose-response curves using the log-logistic function (as in Chapter 2). 

Second, the EC10 values in the toxicity databases were normalized to the target water samples in the 

monitoring databases using the adapted bioavailability and normalization tools for Cu, Zn and Ni that 

incorporate WHAM VII speciation software. The normalized EC10 values (dissolved) were then 

converted to free metal ion activities. Also here, the concentrations of other metals possibly present in 

test media (e.g. Zn, Cd, Co, Ni) were not taken into account. The EC10s expressed as free metal ion 

activity were used to fit an ‘activity-SSD’ (log-normal) and this allowed sampling 20000 hypothetical 

species and subsequent analysis as before (Chapter 2). 

Third, the monitoring data (dissolved) for each metal was converted to the corresponding free metal ion 

activity. This was done in two ways: (1) the metal concentrations (dissolved) in the monitoring databases 
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were converted separately for each individual metal and thus competition between metals for DOC 

binding sites was not taken into account (i.e., “no competition calculations”; Scenario C) and (2) the 

metal concentrations (dissolved) in the monitoring databases were converted simultaneously for all 

metals, to allow for competition between the metals for DOC sites (i.e. “competition calculations”; 

Scenario D). To recapitulate, in Scenario A, the metal concentrations in the monitoring databases were 

given in dissolved concentrations and all original bioavailability models were used for the normalization 

procedures (Figure 8.1). In Scenario B, the metal concentrations in the monitoring databases were also 

given in dissolved concentrations and the newly developed gBAMs for D. magna and fish for Cu and Zn 

(Chapter 5) in combination with the original bioavailability models for Ni and for Cu and Zn for algae (i.e. 

gBAMs for all metals and species) were used for the normalization procedures (Figure 8.1). 

Toxic pressure (msPAF) calculations  

As in Chapter 6, the toxic pressure of the metal mixture for the different target water samples within the 

monitoring databases was calculated with 4 different methods. The R code used to apply these methods 

was the same as was applied in Chapter 6. The only difference was that the metal concentrations were 

now not given in dissolved concentrations but in free ion activities. In addition, the toxic pressure 

(expressed as msPAF) was calculated in two ways, specified below for the CADRC method, but applied 

to all methods. 

Scenario C: msPAFact,no-comp is the fraction of species that had a 𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,act larger than 1 

where 

𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,act =  ∑
[𝑐𝑖,𝑎𝑐𝑡,𝑛𝑜−𝑐𝑜𝑚𝑝]

𝐸𝐶10𝑖,𝑎𝑐𝑡
                            (8.1) 

Scenario D: msPAFact,comp is the fraction of species that had a 𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,act larger than 1 where 

𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,act ∑
[𝑐𝑖,𝑎𝑐𝑡,𝑐𝑜𝑚𝑝]

𝐸𝐶10𝑖,𝑎𝑐𝑡
          (8.2) 

To recapitulate, for Scenario B which was evaluated in Chapter 6, the toxic pressure (expressed as 

msPAFdiss,no-comp) was calculated by calculating the fraction of species that had a 𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,jdiss larger 

than 1 where 

𝑆𝑢𝑚𝑇𝑈𝐸𝐶10,diss =  ∑
[𝑐𝑖,𝑑𝑖𝑠𝑠,𝑛𝑜−𝑐𝑜𝑚𝑝]

𝐸𝐶10𝑖,𝑑𝑖𝑠𝑠
            (8.3) 

  



 

 

 

Figure 8.1 Overview of the methodology used for the calculations in (1) Scenario C, for which the monitoring data was converted to free ion activities by not taking into account 
competition between metals for DOC binding sites (light orange) and (2) Scenario D, for which the monitoring data was converted to free ion activities by taking into account 
competition between metals for DOC binding sites (purple). For both Scenario C and D the chronic toxicity data in the toxicity databases (EC10, EC50 and slope values) was converted 
to free ion activities. Scenario A (Chapter 2) and Scenario B (Chapter 6) are also indicated on the figure (see Figure 6.1 for more detail).
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8.3. Results and Discussion 

Toxic pressure calculations  

Table 8.1 shows the distribution of toxic pressure (expressed as msPAF values) for all 4 methods for 

the different monitoring datasets, when calculations were performed with Scenario C and D. 

We hypothesized that the calculated risk of metal mixtures would be higher when calculations were 

performed based on simultaneously calculated free metal ion activities (Scenario D) compared to 

calculations based on separately calculated free metal ion activities (Scenario C), as competition 

between metals for DOC binding sites is taken into account in the former. 

However, when comparing Scenario C to Scenario D (Table 8.1), we can see that the msPAF values 

and the % target water samples affected are similar when metal activities in the monitoring databases 

are calculated accounting for competition (Scenario D) and not accounting for competition (Scenario C).  

This similarity is a result of the small difference in metal activity when the monitoring data is converted 

to activities using Scenario C and D (Figure 8.2). An average increase in metal activity (nM) for the 

metals in the monitoring databases between Scenario C and D of 23%, 1.8% and 1.1% for Cu, Zn and 

Ni was observed, respectively. At environmental relevant metal concentrations, the ratio {𝑀𝑒𝑐𝑜𝑚𝑝
2+ } 

/{𝑀𝑒𝑛𝑜−𝑐𝑜𝑚𝑝
2+  } for Ni and Zn is approximately 1. For these metals, the amount of free ion is therefore 

similar when competition for DOC is not taken into account (Scenario D) and when competition is taken 

into account (Scenario C), which is explained by the low affinity of these metals for DOC (Tipping et al. 

2011). For Cu however, the ratio {𝑀𝑒𝑐𝑜𝑚𝑝
2+ } /{𝑀𝑒𝑛𝑜−𝑐𝑜𝑚𝑝

2+  }  is higher than 1, which means that the amount 

of free ion is higher when competition between metals for DOC is taken into account (Scenario D). When 

Cu does not have to compete for binding to DOC, a large amount of Cu is bound to DOC due to the high 

affinity for Cu to DOC (Tipping et al. 2011). When Cu does have to compete for DOC, less Cu can bind 

to DOC due to the presence of Ni and Zn leading to a higher value of {𝐶𝑢𝑐𝑜𝑚𝑝
2+ } and therefore of the ratio  

{𝐶𝑢𝑐𝑜𝑚𝑝
2+ } /{𝐶𝑢𝑛𝑜−𝑐𝑜𝑚𝑝

2+ } (Figure 8.3). Although the ratio {𝐶𝑢𝑐𝑜𝑚𝑝
2+ } /{𝐶𝑢𝑛𝑜−𝑐𝑜𝑚𝑝

2+ } is above one, due to the 

fact that the environmental Cu concentrations are low and the contribution of Cu to the mixture is small 

compared to that of Ni and Zn, the increase in {Cu2+} when taken into account the competition between 

the metals for DOC does in this case not lead to an increase of the average msPAF to above 0.05 and 

therefore does not lead to an increase of the % of target water samples affected. 

 
Figure 8.2 Metal concentrations in all monitoring databases expressed as free metal ion activity (nM) for 

the different metals when speciation is calculated not accounting for competition (Scenario C) and 

accounting for competition (Scenario D).  



 

 

 

Table 8.1 Toxic pressure expressed as multisubstance potentially affected fraction of species (msPAF) for the Dommel, Flanders (VMM), Rhine, Austria, and FOREGS monitoring databases obtained with 

the different methods. For every result: values on the far left are a result from calculations where monitoring data is given in dissolved concentrations (Scenario B); values in the middle are a result from 

calculations where monitoring data were converted to activities non-simultaneously (Scenario C) and values on the far right are a result from calculations where monitoring data were converted to activities 

simultaneously (Scenario D) 

 Dommel VMM Rhine 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 
0.063/ 
0.093/ 
0.096 

0.042/ 

0.078/ 

0.082 

0.028/ 

0.059/ 

0.061 

0.031/ 

0.077/ 

0.082 

0.008/ 
0.027/ 
0.031 

0.004/ 
0.020/ 
0.021 

0.002/ 
0.015/ 
0.017 

0.003/ 
0.022/ 
0.023 

0.004/ 
0.004/ 
0.005 

0.001/ 
0.002/ 
0.002 

0.001/ 
0.001/ 
0.001 

0.001/ 
0.003/ 
0.003 

% Target water 
samples 
affected 
(msPAF > 0.05) 

55/66/67 47/60/61 41/54/55 42/61/62 27/37/38 25/31/32 21/37/38 23/32/32 0/0/0 0/0/0 0/0/0 0/0/0 

% Target water 
samples 
affected by 
mixture of 
metals and not 
by any 
individual 
metals 

17/19/19 10/12/13 3/6/7 4/13/14 8/11/11 6/5/5 2/1/1 4/5/5 0/0/0 0/0/0 0/0/0 0/0/0 

MoS provided 
by the CASSD 
approach 

NA 

1.23/ 

1.18/ 

1.18 

1.53/ 

1.37/ 

1.37 

1.45/ 

1.14/ 

1.14 

NA 
1.16/ 
1.11/ 
1.12 

1.59/ 
1.35/ 
1.35 

1.42/ 
1.13/ 
1.13 

NA 
1.22/ 
1.20/ 
1.19 

1.76/ 
1.46/ 
1.46 

1.64/ 
1.12/ 
1.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CA = Concentration Addition, IA = Independent Action, SSD = Species Sensitivity Distribution, DRC = Dose-Response Curve, msPAF = multisubstance Potentially Affected Fraction of species,  

MoS = Margin of Safety, NA = Not Applicable

 Austria FOREGS 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 
0.003/ 
0.002/0.002 

0.001/ 
0.001/0.001 

0.001/ 
0.000/0.000 

0.001/ 
0.001/0.001 

0.003/ 
0.006/0.006 

0.001/ 
0.003/0.003 

0.001 
0.002/0.003 

0.001/ 
0.004/0.005 

% Target water 
samples affected 
(msPAF > 0.05) 

7/5/6 6/5/5 5/4/4 5/5/5 9/9/10 6/7/7 4/5/6 4/7/8 

% Target water 
samples affected by 
mixture of metals 
and not by any 
individual metals 

3/1/2 1/0.5/0.6 0.2/0.2/0.2 0.4/1/1 5/4/4 2/2/2 0.3/0.5/0.8 0.4/2/2 

MoS provided by the 
CASSD approach 

NA 1.20/1.19/1.19 1.55/1.39/1.39 1.48/1.12/1.12 NA 1.21/1.17/1.17 1.56/1.37/1.38 1.46/1.12/1.12 
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Figure 8.3 Change in free Cu activity (nmol/L) with increasing dissolved Cu concentration (nmol/L) when 

Cu is present alone (red circles), in a mixture with Zn (blue triangles), in a mixture with Ni (orange squares) 

and in a mixture with Ni and Zn (purple crosses), for an average water in the VMM database with pH 7.3, Ca 

concentration 43 mg/L and DOC concentration 5.5 mg/L. An increase in free Cu activity of 85% between the 

Cu-single and the Cu-Ni-Zn mixture is observed. 

Our hypothesis concerning the influence of taking into account competition between metals for DOC 

binding sites is refuted, as no difference between Scenario C and D was observed. However, another 

unexpected observation can be made by comparing Scenario C with Scenario B, in which the metal 

concentrations were given as dissolved concentrations (Chapter 6). One would expect that the results 

of these two scenario’s would be similar, as both do not take into account the competition between 

metals for DOC binding sites. However, when comparing Scenario B to Scenario C (Table 8.1), we can 

observe that there is a difference in msPAF values, which was beyond our expectation. The msPAF 

values calculated using Scenario C can be both higher and lower than those of Scenario B.  

For the VMM database, the msPAF values and % target water samples increased when speciation of 

the metals was taken into account (Scenario B vs C; Table 8.1). However, this is not necessarily related 

to the speciation effects but more likely to the relative binding affinities of the different metals for binding 

to natural organic matter. To get a better insight into the matter, one should first understand the 

speciation chemistry of the individual metals. For this, the comparison between the normalized EC10 

values in dissolved concentrations (Scenario B) and in free ion activities (Scenario C) is given in Figure 

8.4. For all metals, the relation between EC10diss and EC10act is not parallel to the 1:1 line, although this 

is most pronounced for Cu. At low EC10diss concentrations, less metal is present as free ion activity 

relative to the dissolved concentration, compared to high EC10diss concentrations. Hence, the relation 

between EC10diss and EC10act is non-linear. The reason for the difference between Zn and Ni on the 

one hand and Cu on the other hand (i.e. why this non-linear relation is more pronounced for Cu) is the 

affinity of these metals to DOC (Tipping et al. 2011). The latter metal has the highest affinity (KMA) for 

DOC binding sites and represents the highest heterogeneity in binding strengths (ΔLK2) compared to 

the former metals. Therefore, at low Cudiss concentrations, most Cu2+ in solution is bound to DOC which 

is why the free Cu activity is low (Figure 8.4). As Cudiss concentrations increase, the DOC becomes 
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increasingly saturated and the amount of free Cu activity increases. For Zn and Ni, the same effect of 

DOC can be observed, although much less pronounced than for Cu. For these metals, the DOC is 

saturated at lower Mediss concentrations than for Cu because of the low affinity of these metals for DOC. 

Regarding the CASSD method, because the conversion of EC10diss to EC10act for low EC10diss values 

gives a lower free ion activity relative to high EC10diss values (most pronounced for Cu, but also the case 

for Zn and Ni), the SSD of a target water sample is also influenced. In Figure 8.5 we can see that the 

SSD based on EC10act values (i.e. ‘activity’-SSD) is less steep (higher sd) than the SSD based on 

EC10diss values (i.e. ‘dissolved’ SSD). This is the case for all metals, although the difference is most 

pronounced for Cu. However, because the contribution of Cu to the mixture is in general lower than that 

of Ni and Zn, it is predominantly the influence on the SSD of Ni and Zn that causes the eventual change 

in msPAF values. A consequence of this shift in slope-steepness is that, a less steep slope of the SSD 

will lead to a higher value of the ratio 
𝑐𝑖

𝐻𝐶5
  for the given target water sample. This in turn leads to a higher 

chance of the community to experience risk in that target water sample due to a single metal (i.e. 

TUMe>1) and consequently due to the mixture (SumTUHC5 >1). The increase of the SumTUHC5 will in turn 

lead to a higher msPAFCA,SSD in the given target water sample.  

For the VMM, the ‘activity’-SSD is less steep than the ‘dissolved’-SSD for 100%, 98% and 100% of the 

target water samples for Cu, Zn and Ni, respectively (Table 8.2). As a result, for species that have an 

EC10 below the HC5, the ratio 
𝑐𝑖

𝐻𝐶5
  for Cu, Zn and Ni will increase in almost all target water samples of 

the VMM database. Consequently, this will result in higher msPAFCA,SSD values and therefore in an 

increase of the % target water samples affected by the mixture when calculations are performed on free 

ion activities (Scenario C; Table 8.1). The percentages of less steep ‘activity’-SSDs for the Dommel and 

FOREGS database is similar to that of the VMM database (Table 8.2), which can explain the increase 

in msPAFCA,SSD values and % target water samples affected in those monitoring databases. 

Figure 8.4 Relation between the EC10 values of Cu (red circles), nickel (blue triangles) and zinc (orange 

squares) when expressed as dissolved concentration and free ion activity, for the VMM database. In the left 

figure one target water sample of the VMM database is highlighted, in the right figure all target water 

samples are plotted. The 1:1 line gives a perfect match between EC10diss and EC10act. 
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Figure 8.5 Relation between the standard deviation (sd) of the SSD based on EC10diss values (i.e. 

‘dissolved’-SSD) and on EC10act values (i.e. ‘activity’-SSD) for Cu (red circles), Ni (orange squares) and Zn 

(blue triangles) for the target water samples of the VMM monitoring database. The 1:1 line gives a perfect 

match between the sd of the ‘dissolved’-SSD and ‘activity’-SSD. Values left of the 1:1 line indicate a less 

steep ‘activity’-SSD while values on the right side of the 1:1 line indicate a steeper ‘activity’-SSD 

 
Table 8.2 Percentage of species sensitivity distributions (SSDs) for the target water samples of the Dommel, 

Flanders (VMM), Rhine, Austria, and FOREGS database that show a less steep slope when calculated using 

Scenario C compared to Scenario B. 

 

 Dommel VMM Rhine Austria FOREGS 

Ni 100 100 27 23 76 

Cu 100 100 100 98 100 

Zn 90 98 95 65 89 

 

 

Regarding the CADRC method, because the conversion of EC10diss to EC10act for low EC10diss values 

gives a lower free ion activity relative to high EC10diss values, the TUEC10-Me of a target water sample is 

also influenced. This can be observed for a single target water sample of the VMM database in Figure 

8.6. For Cu, the TUEC10-Cu-distribution shifts to lower TU values when based on {Cu2+} values. However, 

the TUEC10-Cu
 does never exceed 1 in this case, independent of the method used, and therefore does not 

have a high contribution to the msPAF value. For Zn and Ni however, the TUEC10-Me-distribution shifts to 

higher TU values when based on {Me2+} values, therefore a higher percentage of species is affected by 

the single metals (TUEC10-Me >1; PAF > 0.05). In turn, this will lead to a higher SumTUEC10 and therefore 

to a higher msPAFCA,DRC and % target water samples affected. 
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Figure 8.6 Observed cumulative distribution of TUEC10-Me values for a single target water sample in the VMM 

database when metals are given as dissolved concentrations (black distribution) and as free metal activity 

(red distribution). The TUEC10-Me is the ratio of the dissolved concentration or free ion activity of the metal in 

the monitoring database against the EC10 values of the 20.000 hypothetical species generated (in dissolved 

concentration or free ion activity). The vertical black line indicates a TUEC10 of 1. Above this value, the 

species is affected by the metal. 

 

Regarding the IASSD method, because the SSD of a target water sample is influenced as was explained 

above, this also influences the PAF per metal calculated with the IASSD method. This can be observed 

for a single target water sample of the VMM database in Figure 8.7. For all single metals, the PAFIA,SSD 

is higher when based on free ion activities compared to dissolved concentrations. For Zn and Ni, this 

increase in PAFIA,SSD leads to an exceedance of the 0.05 value in a number of water bodies (highlighted 

in yellow in Figure 8.7). The msPAFIA,SSD values also exceed the 0.05 cut-off for a higher number of 

target water samples when calculations are performed on free ion activities, which explains the higher 

% target water samples affected. 

 

For the IADRC method, the conversion to free metal activities does also influence the PAF per metal 

calculated with the IADRC method. This can be observed for a single target water sample of the VMM 

database in Figure 8.8. Also here, for Ni and Zn as well as for the mixture, a number of target water 

samples exceeds the 0.05 cut-off only when calculations are based on free metal activities (highlighted 

in yellow in Figure 8.8). The increase in PAF for all single metals can be explained by the use of the 

slope of the free ion activity dose-response-curve for the IADRC method. As can be observed in Figure 

8.9, although again most pronounced for Cu but also visible for Zn and Ni, the slope of the dose-

response curves are lower when based on free metal ion activities. This can again be explained by the 

affinity of the metals to DOC, which is larger for Cu. Hence, at low Me2+ activity (e.g. EC10 values), more 

Me2+ is bound to DOC resulting in lower free Me2+ activity and therefore a less steep dose-response 

curve. On average, this less steep DRC leads to a higher effect of each single metal on each species. 

This again results in a higher msPAFIA,DRC values and % affected target water samples. 
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Figure 8.7 Potentially affected fraction of species (PAF) calculated with the IASSD method, due to single Cu, 

Zn and Ni and due to the mixture of Cu-Zn-Ni, when calculations are performed on dissolved metal 

concentrations and free ion activities, for the VMM monitoring database. The red lines indicates a PAF or 

msPAF of 0.05. Above this value, the target water sample is affected by the single metal or metal mixture. 

The yellow boxes indicate target water samples that are not affected when calculations are performed on 

dissolved metal concentrations, but are affected when performed on free ion activities. 

 

Figure 8.8 Potentially affected fraction of species (PAF) calculated with the IADRC method, due to single Cu, 

Zn and Ni and due to the mixture of Cu-Zn-Ni, when calculations are performed on dissolved metal 

concentrations and free ion activities, for the VMM monitoring database. The red lines indicates a PAF or 

msPAF of 0.05. Above this value, the target water sample is affected by the single metal or metal mixture. 

The yellow boxes indicate target water samples that are not affected when calculations are performed on 

dissolved metal concentrations, but are affected when performed on free ion activities. 
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Figure 8.9. Distribution of slope values of dose-response-curves (DRC) for the Cu, Zn and Ni chronic toxicity 

databases when metals are given as dissolved concentrations (slopeMe-Diss) and as free ion activities 

(slopeMe-Act). The 1:1 line gives a perfect match between the slope of the ‘dissolved’-DRC and ‘activity’-DRC. 

Values right of the 1:1 line indicate a less steep ‘activity’-DRC while values on the left side of the 1:1 line 

indicate a steeper ‘activity’-DRC. 

 

In contrast to the VMM, Dommel and FOREGS databases, the msPAF values and the % target water 

samples affected by the mixture decreases for the Austria database. Also here, this is not necessarily 

related to the speciation effects but more likely to the relative binding affinities of the different metals for 

binding to natural organic matter. The Austria database shows the lowest concentration of DOC 

compared to the other databases (Figure 8.10).  

The comparison between the EC10 values in dissolved concentrations (Scenario B) and in free ion 

activities (Scenario C) for the Austria database is given in Figure 8.11. Some differences to Figure 8.4 

can be observed. First of all, for Cu, the relation between EC10diss and EC10act is here more parallel to 

the 1:1 line compared to the VMM database (Figure 8.4). Because of the low DOC concentration in the 

Austria database, the DOC is saturated at lower Cudiss concentrations compared to a water with a higher 

DOC concentration, which in turn results in a higher free ion activity at lower Cudiss concentrations. For 

Zn and Ni, the relation between EC10diss and EC10act is not parallel to the 1:1 line (Figure 8.11B). This 

is more clear from Figure 8.11C. At high EC10diss concentrations, the free metal ion activity is relatively 

lower compared to the dissolved EC10diss concentrations than for low EC10diss concentrations. This can 

be explained by the complexation processes of Ni and Zn (Figure 8.12). Although the fraction of metal 

complexed to fulvic acid decreases with increasing metal concentration (Figure 8.12A), the 

concentration of metal that is bound as inorganic complexes increases (Figure 8.12B-C), which explains 

the low metal ion activity at high Mediss concentrations. 

 
Figure 8.10 DOC concentration (mg/L) for the different monitoring databases. 
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Regarding the CASSD method, because the conversion of EC10diss to EC10act is not parallel to the 1:1 

line, the SSD of a target water sample is also influenced. In Figure 8.13 we can see that the SSD based 

on EC10act values (i.e. ‘activity’-SSD) is steeper (lower sd) than the SSD based on EC10diss values (i.e. 

‘dissolved’ SSD) in a number of target water samples. This is the case for all metals, although most 

pronounced for Ni and Zn. The lower boundary for the Cu sd’s is a result of the presence of a lower limit 

(i.e. the detection limit) of the DOC measurements in these target water samples. The reasoning that 

was followed above for the VMM database, can also be applied to the Austria database, be it reversed. 

A consequence of the shift in slope-steepness is that a steeper slope of the SSD will lead to a lower 

value of the ratio 
𝐻𝐶5

𝐸𝐶10
  for the given target water sample. This in turn leads to a lower chance of an 

organism to experience risk in that target water sample due to a single metal (i.e. TUMe<1) or due to the 

mixture (SumTUEC10@HC5 <1). The decrease of the SumTUEC10@HC5 will in turn lead to a lower 

msPAFCA,SSD in the given target water sample.  

For the Austria database, the ‘activity’-SSD is steeper than the ‘dissolved’-SSD for 77% and 25% of the 

target water samples for Ni and Zn, respectively (Table 8.2). As a result, the ratio 
𝐻𝐶5

𝐸𝐶10
 for Ni and Zn will 

decrease in almost all target water samples of the Austria database. Consequently, this will result in 

lower msPAFCA,SSD values and therefore in an decrease of the % target water samples affected by the 

mixture when calculations are performed on free ion activities (Scenario C; Table 8.1).  
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Figure 8.11 Relation between the EC10 values of 
Cu (red circles), nickel (blue triangles) and zinc 
(orange squares) when expressed as dissolved 
concentration and free ion activity, for the Austria 
database. (A) one target water sample of the 
Austria database is highlighted, (B) all target water 
samples are plotted on a log-scale, (C) all target 
water samples are plotted on a linear scale (for 
nickel and zinc). The 1:1 line gives a perfect match 
between EC10diss and EC10act. 
 

 Figure 8.12 Relation between the dissolved 
metal concentration and (1) the fraction of 
metal found to FA (p[Me]FA, (B) the 
concentration of inorganic Ni complexes and 
(C) the concentration of inorganic Zn 
complexes.  
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Figure 8.13 Relation between the standard deviation (sd) of the SSD based on EC10diss values (i.e. 

‘dissolved’-SSD) and on EC10act values (i.e. ‘activity’-SSD) for Cu (red circles), Ni (orange squares) and Zn 

(blue triangles) for the target water samples of the Austria monitoring database. The 1:1 line gives a perfect 

match between the sd of the ‘dissolved’-SSD and ‘activity’-SSD. Values left of the 1:1 line indicate a less 

steep ‘activity’-SSD while values on the right side of the 1:1 line indicate a steeper ‘activity’-SSD 

 

Regarding the CADRC, IASSD and IADRC methods, the same reasoning as was explained for the VMM 

database can be followed for the Austria database, be it reversed.  

 

In the above paragraphs, we explained the underlying reasons for the differences between Scenario C 

and D. However, certain uncertainties in Scenario C calculations can be put forward, that for now hinder 

the use of calculated free metal ion activities as the basis for risk assessment. 

First, as was explained above, at low Cu concentrations, the DOC-binding characteristics of Cu seem 

to be more important than potential competitive effects between metals for DOC binding sites. However, 

it should be noted that based on a comparison between measured {Cu2+} concentrations found in 

literature (Lofts and Tipping 2013) and WHAM-VII predicted {Cu2+} concentrations (Lofts and Tipping 

2011), the predictive performance of the WHAM-VII speciation software to predict {Cu2+} in the low Cu 

concentration range is less accurate than at higher Cu concentrations. For instance, although Lofts and 

Tipping (2013) measured {Cu2+} as low as 10-16 M, WHAM VII did not predict any concentrations below 

10-13 M. The free Cu activity in our monitoring databases predicted by WHAM VII are as low as 10-15 M. 

Thus, the speciation calculations at these low environmental Cu concentrations are associated with a 

certain degree of uncertainty. However, the contribution of Cu to the mixture is low in all monitoring 

databases, and therefore, the influence on Cu on the risk estimations is also low. Therefore, the cause 

for the changes in msPAF values should be sought for with Ni and Zn. Although less pronounced than 

for Cu, the same influence of DOC on Ni and Zn could be observed. However, it should be noted that 

Lofts and Tipping (2013) found that the predictive performance of WHAM VII was also less accurate at 

low Ni and Zn concentrations. These authors found that Zn and Ni free ion activities were well predicted 

when > 10-7 M and >10-8 M, respectively, but were overestimated or scattered at lower activities. The 

free Zn and Ni activity in our monitoring databases predicted by WHAM VII are as low as 10-11 M for 
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both metals. Thus, the speciation calculations at these low environmental Zn and Ni concentrations are 

associated with a certain degree of uncertainty. 

Second, the SSD fit for Cu is different when EC10 values are given as dissolved Cu concentration or as 

free Cu activity, which is a result of the non-linear relation between Cudiss and Cuact (e.g. Figure 8.4). 

This can be observed for a fictitious Cu SSD in Figure 8.14. To create the SSD in Figure 8.14B, the 

dissolved Cu EC10 data underlying the SSD in Figure 8.14A was converted to free Cu activity using 

WHAM VII. For this, a hypothetical water with DOC concentration of 5.5 mg/L, Ca concentration of 43 

mg/L and pH of 7.3 was used. Although the SSD based on the dissolved Cu concentrations (Figure 

8.14A) is fitted perfectly with a log-normal distribution, the SSD based on the free Cu activity (Figure 

8.14B) is not fitted perfectly with the log-normal distribution. Especially around the HC5 concentration, 

which is an important value in risk assessment, the difference between the actual values and the fitted 

distribution is large. This has consequences for the msPAF calculations. Because the HC5 value that is 

fitted based on the log-normal distribution is lower compared to the actual data, this will lead to an 

overestimation of the msPAF values. For Ni and Zn, this different fit of SSDs is not observed, because 

the affinity for these metals for DOC is lower than that of Cu. 

 

Figure 8.14 Species sensitivity distribution of Cu fitted with the log-normal distribution for dissolved Cu 

concentrations (A) and the same concentrations converted to free Cu activity using WHAM VII (B).  

8.4. Research recommendations 

 
The validation of WHAM VII at low environmental metal concentrations is limited (Lofts and Tipping 

2013). Therefore, more research should be conducted in which measured free ion activities are 

compared to WHAM VII predicted free metal activities. This research should include natural waters with 

both high and low environmental concentrations of metals and for a large variation of water chemistry 

parameters and especially of DOC. In addition, we would advise to revise the DOC binding constants 

for the metals at low metal concentrations based on this newly generated data, if validation experiments 

show a need for this. 

The distribution that was fitted to the ‘activity’ SSD was not the same as that of the ‘dissolved’ SSD. As 

such, the fit of the ‘activity’ SSD was not good using the log-normal distribution, which has consequences 

for the HC5 calculation. To overcome this issue, the distribution of the ‘activity” SSD should not be fitted 

with a log-normal distribution but instead the option of non-parametric method to calculate the HC5 value 

should be further investigated. 
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8.5. Conclusions  

A limitation of the four risk assessment methodologies for risk estimations of metal mixtures described 

in Chapter 6 is the fact that calculations of mixture toxicity were performed on the basis of dissolved 

metal concentrations, while possible interactions between metals at DOC sites were not accounted for. 

This limitation could result in higher predicted msPAFs. Improvement of these methodologies required 

the simultaneous computation of speciation for all metals with a single speciation model, in this case 

WHAM VII, which was tackled in Chapter 7. In the present chapter, we performed calculations for all 

monitoring databases described in Chapter 2, but based on free metal ion activities. For this, the 

dissolved metal concentrations in the monitoring databases were converted to free ion activities in two 

ways, one that did not take into account the competition between the metals for DOC binding sites 

(Scenario C) and one that did (Scenario D).   

Although we had expected that taking into account the competition between metals for DOC binding 

sites would result in higher free metal activities, we found that, at environmental concentrations, 

competition between metals for DOC had relatively little effect on free metal ion activity (1.1% - 20%). 

As a consequence, msPAF values calculated with Scenario C were similar to those of Scenario D. Our 

hypothesis is therefore refuted and the main conclusion of the chapter is that competition between 

metals for DOC binding sites has little impact on metal mixture risk estimations. 

However, another surprising observation was made. The msPAF values based on calculated free metal 

ion activities (Scenario C) were, depending on the monitoring database, higher or lower than those 

based on dissolved concentrations (Scenario B). This was not expected, as both scenarios do not take 

into account the competition between metals for DOC binding sites. We explained that this difference is 

likely related to the relative binding affinities of the different metals for binding to natural organic matter. 

As a consequence, the slope of the SSD curves is altered, which in turn has an influence on the msPAF 

values and the % target water samples calculated to be affected by the mixture.  

Although the difference between Scenario B and C can be explained, certain important uncertainties in 

Scenario C calculations remain. First, the predictive performance of the WHAM-VII speciation software 

to predict {Me2+} in the low metal concentration range is less accurate than at higher metal 

concentrations. Thus, the speciation calculations at these low environmental metal concentrations are 

associated with a certain degree of uncertainty. Second, the fit of the Cu SSD is different when based 

on dissolved Cu concentrations compared to free Cu activities. Because the log-normal distribution is 

fitted to both SSDs, the HC5 value resulting from the ‘activity’-SSD is not accurate, which has 

consequences for the risk estimations.    

 

Two essential points currently hinder the use of free metal ion activities instead of dissolved 

concentrations as the basis for risk assessment procedures. First of all, the uncertainties in the free ion 

activity calculations, as explained above. Second, in contrast to dissolved metal concentrations, which 

are commonly measured in environmental monitoring, free metal activities are rarely measured in the 

field (and not at all in routine monitoring programs) and we can only rely on software to calculate them, 

which makes calculations of free metal ion activities less robust. As a consequence, we cannot 
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recommend the use of calculated free ion activities in risk assessment procedures for now and advise 

to continue to perform metal risk assessments on the basis of measured dissolved metal concentrations. 

In addition, we recommend the use of the tiered metal mixture risk assessment scheme on the basis of 

dissolved metal concentrations (Scenario B), that was proposed in Chapter 2, in which competition 

between metals for DOC is assumed not to be important. The latter was confirmed in this chapter:  

competition between metals for DOC binding sites had little impact on metal mixture risk estimations.
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9. General conclusions, integration and future research recommendations 

 

9.1. General conclusions 

The aim of ecological risk assessment is not only to protect single species but to protect entire 

ecosystems. For data-rich substances, such as metals, there is often enough data to construct species 

sensitivity distributions (SSDs), which allows the calculation of HC5 values of potentially affected 

fractions (PAF) of species at a given concentration. The SSD-method can also be applied to mixtures 

and four different methodologies have been proposed by various authors (De Zwart and Posthuma 

2005; Gregorio et al. 2013). In the second chapter of this work, we further adapted these methods 

specifically for metal mixtures by combining bioavailability-normalisation based methods (the procedure 

for metals currently used in the EU) with the mixture reference models concentration addition (CA) and 

independent action (IA). Although these reference models were originally developed to predict mixture 

effects for individual species (Bliss 1939; Loewe and Muischnek 1926; Kortenkamp and Altenburger 

2011), they have also been extended to estimate risks of mixtures for species assemblages (De Zwart 

and Posthuma 2005; Gregorio et al. 2013). The four following methods to evaluate mixture risks were 

proposed in Chapter 2: CASSD (CA applied directly to the SSD), IASSD (IA applied directly to the SSD), 

CADRC (CA applied to the individual Dose Response Curve) and IADRC (IA applied to the individual Dose 

Response Curve). All these models combine SSD-techniques with one of both mixture toxicity reference 

models. As such, the toxic pressure, i.e. the estimated risk of a mixture on a species-assemblage, is 

expressed as the ‘multi-substance Potentially Affected Fraction’ (msPAF), which denotes the fraction of 

species potentially affected by a mixture (De Zwart and Posthuma 2005). Analogously with the criteria 

used in the ecological risk assessment of the individual metals (e.g. Van Sprang et al. 2009; DEPI 2008), 

it has been assumed that risks are ‘acceptable’ if maximally 5% of the species are affected by the metal 

mixture, i.e. no risks predicted as long as the msPAF value < 0.05. 

In the most simple methods, CASSD and IASSD, either CA or IA, respectively, are directly applied to the 

SSDs of the individual mixture components, and the msPAF value is derived by aggregation of the PAF 

value of each of the individual substances in the mixture (De Zwart and Posthuma 2005). The CASSD is 

a mathematically simple way to implement mixtures in environmental regulatory frameworks (e.g. A&NZ 

2000) i.e. it evaluates mixture risks based on a risk quotient (RQSSD) that expresses mixture doses in 

terms of sum of toxic units (∑TU) relative to an SSD-derived environmental threshold  of the different 

metals, such as the HC5 (Equation 9.1). In this method, for a mixture for which the RQSSD equals 1, the 

msPAFCASSD value equals exactly 5%. 

𝑅𝑄𝑆𝑆𝐷 = ∑ 𝑇𝑈𝐻𝐶5 = ∑
𝑐𝑖

𝐻𝐶5𝑖
                                 (9.1) 

The IASSD method applies IA directly to the SSDs of the individual mixture constituents. Hence, 

msPAFIA,SSD values are estimated from the product of the fraction of species not affected by each of the 

individual mixture constituents (Traas et al. 2002). Although CASSD and IASSD are mathematically elegant 

methods, CA and IA are conceptually consistent with the assumptions of CA or IA that apply to single 

organisms (dose–response curves), and not to communities (SSDs) (Gregorio et al. 2013).  
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Theoretically more consistent, but also more complex methods apply CA or IA first to the different 

species in the SSD and subsequently combine the risk to all single-species to calculate risks for species 

assemblages (Gregorio et al. 2013). In the CADRC method, CA is applied directly to the dose-response 

data of each of the individual species in the SSD by calculating a ∑TU relative to the EC10 for each 

species (∑TUspecies j). If the ∑TUspecies j exceeds one, the species is considered to be affected by the 

mixture. Consequently, the msPAFCADRC value is estimated as the fraction of species for which 

∑TUspecies j >1. The IADRC is the most complex method because it applies IA directly to the concentration 

response curves of each substance for each species in the toxicity databases (Gregorio et al. 2013). 

The msPAFIADRC value is then the estimated fraction of species for which more than 10% mixture effect 

is predicted.  

In Chapter 2 we evaluated these four methods by using measured concentrations of Ni, Zn, and Cu of 

monitoring datasets of target water samples in four European regions. We demonstrated that between 

0% and 52% of the target water samples were estimated to be at risk but only between 0% and 15% of 

the target water samples were at risk due to the mixture of metals and not due to any single metals 

individually. In addition, we examined the degree of conservatism of the CASSD-method relative to the 

other more complex methods using the margin of safety (MoS). The MoS expresses the conservatism 

of the CASSD method relative to the other methods for predicting equal effects (i.e. msPAF = 0.05) on 

communities. Based on the MoS provided by the CASSD, the following order of conservatism for the 4 

mixture evaluation methods was determined CASSD > CADRC (MoS = 1.17-1.25) > IADRC (MoS = 1.38-

1.60) > IASSD (MoS = 1.48-1.72). Of these four metal mixture risk prediction methods, the IADRC and 

CADRC are conceptually consistent with the assumptions of the CA or IA mixture reference models, while 

the CASSD and IASSD are not. However, to conclude which one of these two methods (IADRC or CADRC) is 

the most accurate one we therefore have to know which reference model (i.e. IA or CA) predicts mixture 

toxicity to aquatic organisms most accurately. 

In chapter 3 of the present work, we therefore performed ecotoxicity experiments with microalgae, as 

little metal mixture literature concerning these organisms was found. In addition, it is of utmost 

importance to understand the effects of metal mixtures on these organisms as they are primary 

producers and therefore at the base of the food web. The objective was to test if interactive effects (if 

any) of mixtures to Pseudokirchneriella subcapitata were the same or different, across natural waters 

showing diverse water-chemistry characteristics. This was done by performing experiments with ternary 

Cu-Ni-Zn mixtures in 3 natural waters and with binary Cu-Ni mixtures in 5 natural waters. We showed 

that the ternary mixture and binary mixtures acted mostly non-interactively on algal growth. In addition, 

we showed that both the CA and IA model can serve as accurate models for toxicity of ternary Cu-Ni-

Zn and binary Cu-Ni mixtures to P. subcapitata in most cases. Similar results for algae were found by 

Nys et al. (2017d). These authors demonstrated that IA and CA resulted in relatively similar model 

performances for algae (Navicula pelliculosa and P. subcapitata). On the other hand, these authors 

found that IA was clearly the better model for invertebrates (Asellus aquaticus, Ceriodaphnia dubia, and 

Daphnia magna). Overall, Nys et al. (2017d) found that chronic metal mixture toxicity was most 

accurately predicted with IA compared to CA. Therefore, at the single species-level, the IA reference 

model predicts mixture toxicity to aquatic organisms most accurately. This suggests that, at the moment, 
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the IADRC method is scientifically the most defensible choice to asses metal mixture risks at the 

community level. However, IADRC is mathematically relatively complex and requires a high data-

availability. Hence, the more simple method CASSD is at the moment preferred in the regulatory arena, 

such as in the only actual implemented risk assessment framework for metal mixtures so far, in Australia 

and New Zealand (A&NZ 2000).  

However, a limitation of these mathematical methods is that the degree of conservatism compared with 

community-level effects needs to be investigated. A literature search performed prior to the design and 

execution of the present study showed that no studies were appropriate for this investigation (e.g. 

Stockdale et al. 2010, Richardson and Kiffney 2000, Clements et al. 2013,  Hickey et al. 2002; Clements 

2004). One reason is the lack of Dissolved Organic Carbon (DOC) measurements, an important variable 

influencing metal toxicity and needed to calculate metal bioavailability. Therefore, to investigate the 

degree of conservatism, a multispecies microcosm experiment was performed in Chapter 4. In this 

experiment, a naturally occurring planktonic community was exposed to Cu, Ni and Zn mixture, for 8 

weeks. We aimed to answer the following research questions. (1) What are the direct and indirect effects 

of the mixture on the community? The community-level interactions differed between the low mixture 

treatments and the high mixture treatments. In the low mixture treatments, the zooplankton groups were 

not affected. On the other hand, the Cyanobacteria were negatively affected which indirectly increased 

the abundances of the Chrysophyta, Diatoms and Cryptophyta. More complex community-level 

interactions were observed in the high mixture treatments including a decrease in Cladocera which 

indirectly might have resulted in an increase in Copepoda which in turn could have contributed to the 

decrease in Rotifera abundance. (2) When using the classic toxic unit approach, i.e. the CASSD method, 

from which msPAF value onward are effects observed on structural and functional community-level 

endpoints? We showed that many structural community endpoints (e.g. community composition, 

species diversity, species richness) and one functional community endpoint (i.e. DOC) did not show 

effects at or below an msPAF value of 0.05 (i.e. these endpoints can be considered protective). For two 

other functional community endpoints however (i.e. ΔDO and  ΔpH), effects at this msPAF value of 0.05, 

which is regarded as protective in many regulatory frameworks, were observed. For these two functional 

community endpoints, significant community-level effects were observed at an msPAF value of 0.03 (a 

Ni-Zn mixture) when the SSDs contained all species (i.e. both planktonic and non-planktonic) and at an 

msPAF value of 0.05 when the SSDs only contained planktonic species (phytoplankton and 

zooplankton). A likely explanation for the effects observed at or below this cut-off value of 0.05 is the 

mismatch between the species in the SSD and those in the microcosm community. Especially the 

presence of the cyanobacteria species Oscillatoria sp. 1 in our community, which is not represented in 

the SSD, seems to have been the driver for the observed effects on community-function at these low 

msPAF values. Our results show that SSDs are not necessarily a good predictor of effects on all types 

of communities and that the presence of dominant sensitive species may result in significant effects on 

community functioning endpoints at an msPAF value (0.05) that is generally considered protective. In 

addition, our results should only be extrapolated cautiously to other systems because information 

whether dominant species in other systems are typically also sensitive species is usually lacking and it 
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is often the loss of species that are both dominant and sensitive that can result in a disproportionally 

large decrease in ecosystem functioning.  

 

Both the msPAFplankton and the msPAFAllSpecies values are at the moment calculated with chronic 

bioavailability models for individual metals that are currently based on different software to model metal 

speciation: i.e. WHAM V for Zn (Van Sprang et al. 2009) and Cu (ECI 2008) and WHAM VI for Ni (DEPA 

2008). Additionally, some assumptions for chemical speciation calculations differ between these metals. 

Therefore, in chapters 5 these bioavailability models were re-evaluated. The first bioavailability model 

that was evaluated was the D. magna BLM for Cu. Cu BLMs have been applied to derive Water Quality 

Criteria in the US and PNECs in the EU. Although both frameworks use a similar approach to derive 

bioavailability-based WQC or PNEC values for copper, the structural formulation and parameterization 

of the BLMs that is used in both frameworks differ (US EPA 2007; ECI 2008). We evaluated the 

predictive capacity of these two BLMs for a large dataset of chronic copper toxicity data with two Daphnia 

magna clones, further denoted as K6 and ARO. We found that one BLM performed best with clone K6 

data while the other performed best with clone ARO data. We also found that there is an important 

difference between both BLMs in how they predict bioavailability of copper as a function of pH. Finally, 

as fundamental differences in model structure between both BLMs made it impossible to create an 

‘average’ BLM, we developed a generalized BioAvailability Model (gBAM). The developed gBAM was 

more accurate than both BLMs and can be considered a first step in further improving the accuracy of 

chronic toxicity predictions of copper as a function of water chemistry (to a variety of D. magna clones). 

A second and third bioavailability model that was re-evaluated were those for D. magna and P. 

subcapitata for Zn. These models have so far only been validated within a certain range of water 

chemistry. Yet, around 20% of the European surface waters fall outside this ‘validation boundary’ 

(Salminen et al. 2005). The purpose was therefore to evaluate if the Zn bioavailability models can be 

extrapolated outside their bioavailability ranges. Results from D. magna experiments suggested that the 

BLM is not able to reflect the pH effect over a broad pH range (5.5-8.5). In addition, due to calcium 

deficiency of D. magna in the softwater tests, we could not conclude whether the BLM is applicable 

below its Ca boundary. Results for P. subcapitata experiments showed that the bioavailability model 

can accurately predict Zn toxicity for Ca concentrations down to 0.8mg/L and pH values up to 8.5. Based 

on the D. magna results, we developed a generalized BioAvailability Model (gBAM) as an alternative for 

BLM to predict chronic effect concentrations for Zn to D. magna. The developed gBAM was more 

accurate than the original BLM over a broad pH range. 

By developing the gBAMs to predict toxicity of Cu and Zn to D. magna the uniformisation of all 

bioavailability models (i.e. of Cu, Ni and Zn for invertebrates, fish and algae) to a gBAM-structure was 

almost complete. The models that did not yet incorporate a pH slope parameter (i.e. had the gBAM-

structure) were the bioavailability models for fish for Zn and Cu. Therefore, a fourth and fifth 

bioavailability model that was re-evaluated were those for fish for Zn and Cu. Based on the chronic 

toxicity data we developed and validated a gBAM for the metals Zn and Cu for fish. These gBAMs were 

at least as accurate as their BLM counterparts. 
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In Chapter 6, the influence of these newly developed gBAMs on the msPAF values and % of target 

water samples affected was evaluated. Implementing the newly developed gBAMs showed a less than 

2-fold difference of HC5 values compared to implementing all original bioavailability models. The largest 

differences were found for Cu (up to 4-fold in some monitoring databases), which was related to the 

experimental evidence-based incorporation of a Ca competition parameter in the Daphnia gBAM. Yet, 

despite these differences, implementing the new gBAMs only had a small influence on median msPAF 

values and on the % of target water samples that are predicted to be affected by the mixture of Zn, Cu 

and Ni. The latter is a result of the relatively low contribution of Cu to the mixture effects in the 

investigated monitoring databases. 

 

Although all bioavailability models were formulated in a gBAM-structure in Chapter 5, these models were 

still based on different software to model metal speciation. Therefore, in Chapter 7, we evaluated 

whether these models could be updated to the WHAM VII speciation software, without loss of predictive 

capacity. Overall, our results showed that WHAM VII with an assumption of 65% AFA can be used as a 

speciation model to predict metal toxicity to different species with sufficient accuracy.  

In a final chapter, Chapter 8, the bioavailability models integrating WHAM VII were used to perform 

msPAF calculations based on free metal ion activities. For this, the dissolved metal concentrations in 

the monitoring databases were converted to free ion activities in two ways, one that did not take into 

account the competition between the metals for DOC binding sites and one that did. Although we had 

expected that taking into account the competition between metals for DOC binding sites would result in 

higher free metal activities, we found that, at environmental concentrations, competition between metals 

for DOC had relatively little effect on free metal ion activity (1.1% - 20%). As a consequence, msPAF 

values calculated with both scenarios were similar. The main conclusion of the chapter is that 

competition between metals for DOC binding sites has little impact on metal mixture risk estimations. 

Additionally, due to uncertainties in the free ion activity calculations and the lack of measured free metal 

activities in the field we cannot recommend the use of calculated free ion activities in risk assessment 

procedures for now and advise to continue to perform metal risk assessments on the basis of measured 

dissolved metal concentrations.  

 

9.2. Integration of the results 

To integrate all the different steps that were realized in the course of this work, we performed a final 

analysis. In this analysis, msPAF values for the data from the microcosm experiment (Chapter 4) were 

calculated using the following bioavailability models: (A) for Zn and Cu: the original bioavailability models 

for algae (De Schamphelaere et al. 2005a and 2005b) and the newly developed gBAMs for invertebrates 

and fish (Chapter 5) all incorporating the WHAM VII speciation software (Chapter 7), (B) for Ni: the 

original bioavailability models/gBAMs for algae (Deleebeeck et al. 2009), invertebrates (Deleebeeck et 

al. 2008) and fish (Deleebeeck et al. 2007) all incorporating the WHAM VII speciation software (Chapter 

7). We demonstrated in Chapter 5 that the newly developed gBAMs were at least as accurate or more 

accurate than their BLM counterparts. In addition, in Chapter 7, we demonstrated that WHAM VII with 

the assumption of 65% AFA can be used as a speciation model to predict metal toxicity to different 
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species with sufficient accuracy. Based on this, we can conclude that the new msPAF values that are 

calculated for the microcosm experiment are scientifically more robust than those from Chapter 4. 

Table 9.1 shows an analogous table to Table 4.10 but showing the msPAFplankton values instead of the 

msPAFAllSpecies values. In addition, the msPAFplankton values were calculated with the bioavailability 

models listed above. These values are clearly higher than those shown in Table 4.10. This increase has 

multiple possible causes. A first cause can be found in the four gBAMs that were developed in Chapter 

5. First, instead of a KHBL parameter calculated based on data for one D. magna clone, the Cu D. magna 

gBAM incorporates a SpH parameter that was calibrated on data for two different D. magna clones. 

Second, because recent research unambiguously showed the influence of hardness on Cu toxicity to D. 

magna (Rodriguez and Arbildua 2012), the Cu D. magna gBAM rightfully contains Ca and Mg 

competition parameters (Van Regenmortel et al. 2015), whereas the original Cu D. magna BLM does 

not (De Schamphelaere and Janssen 2004a). Third, in contrast to the Cu fish BLM, for which the pH 

effect was calibrated on acute D. magna data, the pH effect of the Cu fish gBAM was specifically 

calibrated on chronic fish toxicity data. Fourth, the Zn D. magna gBAM is applicable to a broader range 

of water chemistry compared to the original BLM. Finally, for all four newly developed gBAMs we showed 

that they were equally or more accurate than the original BLMs in predicting metal toxicity. When 

implementing the newly developed gBAMs in Chapter 6 we showed that up to a 2-fold and 4-fold 

difference in HC5 values compared to the implementation of all original bioavailability models were 

found. For Zn, the largest contributor to the mixture in the microcosm experiment, the ratio HC5 

gBAM/BLM for the monitoring data in Chapter 7 was smaller than one (i.e. lower HC5 value when 

implementing the gBAMs) at the pH of the microcosm experiment (i.e. 8.07). This could possibly explain 

why the msPAF values are higher when implementing the gBAMs for the microcosm experiment (Table 

9.1). 

A second cause can be found in the difference in speciation software used. Whereas the original Cu, Ni 

and Zn bioavailability models incorporated WHAM V, WHAM V and WHAM VII, respectively, all with a 

different %AFA assumption, the models now all incorporate WHAM VII with the same %AFA 

assumption. 

Based on these scientifically more robust calculations, we can conclude that the community structure 

and functioning of the planktonic community is only affected by the Cu-Ni-Zn mixture from an 

msPAFplankton value of 0.28 onwards, respectively. Based on the msPAF calculations with all original 

bioavailability models (Chapter 4) we concluded that effects on some functioning endpoints already 

occurred below the threshold of 0.05. When implementing the new gBAMs developed in Chapter 5 we 

now have to conclude that there is no evidence that this threshold is not protective for these endpoints 

as the lowest tested concentrations showed an msPAF value above this threshold.  

Table 9.2 shows an analogous table to Table 4.11 but with the msPAFplankton values calculated with the 

bioavailability models listed above and gives an overview of the initial msPAFplankton values calculated 

with the CADRC, IADRC and IASSD methods. Most msPAFplankton values calculated using the CADRC, IADRC 

and IASSD methods are quite similar to those calculated using the CASSD method. At high msPAF values 

(>0.60), the CASSD method is no longer the most conservative method, as was seen in Chapter 2 and 4. 

At the Mixture treatment, the lowest treatment at which effects on the community were observed, and 
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which showed an initial msPAFCASSD,plankton value of 0.28 (Table 9.1), the most liberal method (IASSD) 

gives an initial msPAFplankton value of 0.20. This implies that based on the other methods and using the 

newly developed gBAMs and all models incorporating WHAM VII, we cannot conclude whether the 

msPAF threshold of 0.05 is protective for long-term effects on the planktonic community.  

Table 9.1. Overview of the initial msPAFplankton value corresponding to the consistent LOEC of the structural and 

functional community endpoints for the single Cu, Ni and Zn treatments and the Env Ratio mixture treatment.  

 Effect on Variable  initial msPAF 

Structural community 

endpoints 

Species groups abundances  

Cladocera >0.94a/>0.99b 

Rotifera 0.72/0.95 

Copepoda 0.86/0.98 

Cyanobacteria 0.05/0.28 

Chlorophyta >0.94/>0.99 

Chrysophyta 0.05/0.28 

Charophyta 0.86/0.98 

Diatoms 0.05/0.28 

Cryptophyta 0.05/0.28 

Community composition 

Zooplankton 

community  
0.48/0.82 

Phytoplankton 

community  
0.15/0.60 

Species diversity 
Zooplankton  >0.94/>0.99 

Phytoplankton  0.86/0.98 

Species richness 
Zooplankton  0.94/0.99 

Phytoplankton  0.86/0.98 

Functional 

community endpoints 

ΔDO (community respiration)  0.05/0.28 

ΔpH (phytoplankton + bacteria abundance)  0.05/0.28 

DOC (microbial loop)  0.20/0.60 
a For bioavailability normalizations, all original bioavailability models were used 
b For bioavailability normalizations, the newly developed gBAMs incorporating WHAM VII (Chapter 5 and 7) were 

used.  

LOEC = lowest observed effect concentration; Env Ratio = mixture with metal concentration ratio’s based on 

Dommel monitoring dataset; DO = dissolved oxygen; DOC = dissolved organic carbon 
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Table 9.2. Average (± sd) initial msPAF values based on toxicity data of planktonic species (Supplementary C.4) 

calculated with the CASSD, CADRC , IADRC and IASSD methods (Van Regenmortel et al. 2017) for the different 

treatments. For bioavailability normalizations, the newly developed gBAMs incorporating WHAM VII (Chapter 5 and 

7) were used. 

 
initial msPAFCASSD,plankton a initial msPAFCADRC,plankton 

a initial msPAFIADRC,plankton
 a initial msPAFIASSD,plankton 

a 

Control 0.04 ± 0.02 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

Mixture 1 0.28 ± 0.12 0.28 ± 0.13 0.20 ± 0.12 0.20 ± 0.12 

Mixture 2 0.60 ± 0.11 0.67 ± 0.11 0.56 ± 0.13 0.56 ± 0.13 

Mixture 3 0.82 ± 0.13 0.88 ± 0.12 0.78 ± 0.20 0.78 ± 0.20 

Mixture 4 0.95 ± 0.02 0.99 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 

Mixture 5 0.98 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 

Mixture 6 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 

msPAF = multi substance potentially affected fraction of species  

msPAFCADRC = msPAF calculated using concentration addition applied to the individual dose response curves 

(CADRC) (Van Regenmortel et al. 2017);  

msPAFIADRC = msPAF calculated using independent action applied to the individual dose response curves (IADRC) 

(Van Regenmortel et al. 2017);  

msPAFIASSD = msPAF calculated using independent action applied to the species sensitivity distribution (IASSD) (Van 

Regenmortel et al. 2017);  

HC5 = concentration hazardous for 5% of the species; HC50 = concentration hazardous for 50% of the species; 

Env Ratio = mixture with metal concentration ratio’s based on Dommel monitoring dataset; 
a msPAF values calculated based on chronic toxicity data of planktonic species, using the water chemistry measured 

in each microcosm separately after spiking the metals on day 1 

 

Based on the integration of all results in the present study, we can conclude that in general the tiered 

metal mixture risk evaluation scheme presented in Chapter 2 has not changed. A small adaptation to 

the scheme is the change in bioavailability models to normalize the chronic toxicity data. Because the 

newly developed gBAMs for Cu and Zn for invertebrates and fish more accurately predict single metal 

toxicity, we recommend the implementation of the gBAMs instead of all original BLMs to normalize 

toxicity data for Cu and Zn prior to metal mixture risk calculations. In the metal mixture risk assessment 

framework (Figure 9.1) the CASSD method is incorporated as a first conservative level as the method 

tends to build in a relatively high conservatism (Chapter 2). The CASSD method is used to identify the 

monitoring sites where risks are unlikely to occur, i.e. if ∑TUHC5<1 none of the four methods will predict 

risks. Hence, for these monitoring sites no further evaluation is needed. Since IASSD is generally the 

most liberal method, IASSD is built into the second tier. This to identify situations where risks are predicted 

regardless of the method used (msPAF > 0.05). In Tier 3, the more complex, but theoretically consistent 

methods, IADRC or CADRC can be applied, depending on the availability of the data.  

For situations where at the highest tier risks are still predicted, further risk management steps are 

needed. These may involve direct efforts into lowering metal concentrations in affected water bodies. 

Alternatively, if direct prioritization would be too costly, metal mixture toxicity risks in these sites may be 

further evaluated on a more refined level using either targeted experiments (laboratory bioassays in 

natural medium and/or field bioassays) or based on field collected ecological data, or a combination of 

both (Gerhardt et al. 2004, 2008).  
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Figure 9.1. Possible tiered metal mixture risk evaluation scheme. A sample is defined to be at risk when the 

toxic pressure (expressed as multisubstance potentially affected fraction [msPAF]) was higher than 0.05 

(or the sum toxic unit expressed relative to the hazardous concentrations affecting 5% of species within a 

community [SumTUHC5] >1), which is equivalent to the typical protection goal for single substances, that is, 

a maximum of 5% affected species at the HC5 concentration. The msPAF values reported are on the basis 

of EC10 values. gBAMs = generalized bioavailability models; CASSD = concentration addition applied 

directly to the species sensitivity distribution; IASSD = independent action applied directly to the species 

sensitivity distribution; CADRC = concentration addition applied to individual dose-response curves; IADRC 

= independent action applied to individual dose-response curves. a Unless very strong synergisms at low 

effect levels. b Unless very strong antagonisms at low effect levels. 

9.3. Future research recommendations 

Although the recent focus on chronic metal mixture studies has increased the knowledge on metal 

mixture toxicity in a risk assessment context, there still remains a clear need for further research on 

several levels.  

First, reliable chronic toxicity metal mixture toxicity data is at the moment only found for aquatic species 

belonging to the following two trophic levels: algae (Chapter 3 and Nys et al. 2017d), and invertebrates 

(Nys et al. 2017d). Hence, the mixture reference models, IA and CA, remain to be tested for the third 

important trophic level in environmental risk assessments, i.e. fish. Depending on results, it could be 

confirmed (or refuted) whether the IADRC method is also the most accurate method for this trophi level. 

Furthermore, this trophic level should preferably also be added in a multi-species microcosm 

experiment. Effects on community composition or diversity were only observed at msPAF values above 

0.05. However, effects on community functioning (notably community respiration and phytoplankton 
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metabolism) were observed at  msPAF values of 0.05 or lower, i.e. in the Ni-Zn mixture, most likely 

because of the presence of one single dominant and very Zn and/or Ni sensitive species. This indicates 

that the cut-off msPAF value of 0.05 is not necessarily protective for all community level endpoints 

against metal mixture exposure. This should also be examined for a more complex community including 

fish species. 

Second, the lack of chronic metal mixture data for other environmental compartments (soil, sediment 

and marine environments) hinders the extension of our analysis to these compartments.  

Third, to further improve the relevance of metal mixture studies, we recommend to design future metal 

mixture studies by taking into account the following guidelines; i.e. measure dissolved metal 

concentrations and key water chemistry parameters, conduct single metal exposure and mixture 

exposure simultaneously and focus on chronic endpoints during prolonged exposures. 

Fourth, despite the considerable research available, we do not yet fully understand how metals interact 

in mixtures. This is partly due to the fact that mechanistic studies are still largely lacking (but see below). 

Investigations into the mechanistic basis of these mixture interactions (e.g. at the bioaccumulation level) 

may lead to a better understanding of the observed interactive effects as well as the differences in 

observed interactive mixture effects between species. 

Fifth, application of the tiered risk assessment scheme can be hampered by several issues. For 

instance, in reality, environmental monitoring datasets often contain a considerable number of data for 

which environmental concentrations are below the analytical detection limit, so called ‘non-detect’ data. 

This non-detect data increases the uncertainty of the risk predictions, because actual environmental 

concentrations can be any value between the detection limit and zero. In cases with  ∑
𝐷𝐿

𝐻𝐶5
> 1, water 

quality managers might be advised to revisit these sampling locations and measure the metal 

concentrations with more precise equipment.  

Sixth, although we recognize that efforts are taken to monitor the concentrations of metals and water 

chemistry variables throughout the year (e.g. FEA 2013), it is of utmost importance that these variables 

include pH, DOC concentration and Ca concentration as these three variables influence metal toxicity 

the most. In addition, we recommend to measure dissolved metal concentrations and not only total 

concentrations. 

Finally, monitoring datasets may contain metals for which an SSD-based threshold derivation method 

is not available, because reliable toxicity data is limited (so-called ‘data-poor’ metals). For these metals, 

such as for instance tin (Sn) and antimony (Sb), the risk assessment methods explained in Chapter 2 

are not applicable as these rely on SSD-based statistical extrapolation techniques. For these elements 

often only the so-called “base set” of toxicity data (i.e. x% effect concentration for algae, crustacean and 

fish) is used in environmental risk assessment processes. Hence, risks of metal mixtures containing 

these so-called ‘data-poor’ metals cannot be evaluated using the SSD-approach presented in the tiered 

risk assessment scheme (Figure 9.1). Currently, risks for these metals are estimated in metal-by-metal 

risk assessment approaches by calculating an environmental threshold value (ETV), such as the 

Predicted No-Effect Concentration (PNEC) or Environmental quality standard (EQS), based on the 

lowest ECx and applying an assessment factor which depends on the type of data (EC 2003). How risks 

of metal mixtures of data-rich and data-poor metals is addressed is discussed by Nys et al. (2017d). In 
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short, these authors combine the CASSD and CADRC methods from Chapter 2 with the calculations of the 

RQPEC/PNEC and RQSTU as described by Backhaus and Faust (2013) (see Chapter 1 and 2). As such, a 

tiered risk assessment scheme for mixtures combining SSD-metals and ‘data-poor’ metals is presented 

in Nys et al. (2017b). 

 

9.4 Overall contribution of this study to risk assessment 

Overall, several outcomes of the present work may contribute to risk assessment. 

1. Four methods were combined to evaluate risk due to metal mixtures. These methods were 

extended in the present study to evaluate risks for data-rich metals. The methods combine 

chronic toxicity data, bioavailability modeling, SSDs, and CA or IA for ecological risk 

assessment by calculating the toxic pressure (expressed as msPAF values) based on 

measured concentrations of metals. Furthermore, we proposed a metal mixture risk evaluation 

scheme that may guide the incorporation of metal mixture into future risk assessment 

frameworks. The CASSD method could serve as a first (conservative) tier to identify situations 

with likely no potential risk at all, regardless of the method used (SumTUHC5 < 1) and the IASSD 

method could be used to identify situations of potential risk, also regardless of the method 

used (msPAFIA,SSD > 0.05). The CADRC and IADRC methods could be used for site-specific 

assessment for situations that fall in between (SumTUHC5 > 1 and msPAFIA,SSD < 0.05).This 

framework allows to pinpoint the sites that are at risk and to target the sites for which further 

research is necessary.  

2. The chronic metal mixture toxicity data generated in this study increases our overall 

understanding of chronic metal mixture toxicity effects.  

3. We found that metal mixture toxicity in communities is very complex and we argue that a 

mismatch between the species in the SSD and those in natural communities could explain why 

community-level effects can be observed below the cut-off value of 0.05 (msPAF) when these 

are not expected.  

4. Four gBAM models were developed that can accurately predict chronic Cu and Zn toxicity to D. 

magna and O. mykiss. In addition, a metal mixture bioavailability model (MMBM) was developed 

that could accurately predict Cu-Ni-Zn and Cu-Ni toxicity to algae in diverse water 

characteristics. These models could be integrated into risk assessment frameworks to allow an 

ecologically more relevant and more accurate effects assessment of metals and/or metal 

mixtures. For instance, the chronic Zn gBAM for D. magna has recently been integrated in Bio-

met, a tool to assess Environmental Quality Standard compliance of metals under the EU Water 

Framework Directive. 

5. In this study, all bioavailability models were adapted to the “gBAM-structure” and all models 

were calibrated in WHAM VII. This ensures the uniformisation of all models to the same 

structure, the same speciation software and the same assumptions for binding to DOC, which 

can lead to an improvemed risk assessment for these metals.
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Appendix A1. Gathering of monitoring data 

When not present in the database, estimations of Na, Mg, K, Cl and SO4 were based on Ca 

concentrations. These calculations were based on regressions reported in Van Sprang et al. (2009). 

These linear regressions are of the form:  

𝑌 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑙𝑜𝑔 𝐶𝑎                                                                                                             (A1.1) 

Where the units of Ca, Na, Mg, K, Cl and SO4 are equivalents/L.  

Table A1.1 reports the values (intercept and slope) needed to complete the calculations. 

Table A1.1: Intercepts and slopes (equation A1.1)  needed to calculate Na, Mg, K, Cl and SO4 (eq/l) from Ca 

(eq/l). Note that 1 eq/l of Ca, Mg and SO4 corresponds to 0.5 mol/l and 1 eq/l of Na, K and Cl corresponds to 

1 mol/l. 

Y Intercept Slope 

log10 Mg -2.1200 0.45373 

log10 Na -1.7329 0.51924 

log10 K -2.7639 0.50036 

log10 SO4 -1.2878 0.70712 

log10 Cl -1.5126 0.60201 

 

In addition, alkalinity was calculated based on pH (Stumm and Morgan 1996) assuming an open system 

in equilibrium with atmospheric CO2 pressure at a temperature of 20°C (Equations A1.2 and A1.3).  

𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 (𝑀) = 50000 ∙  
1+2∙

𝐾1

10−𝑝𝐻

10−𝑝𝐻

𝐾1
+1+

𝐾2
10−𝑝𝐻

∗ 𝐷𝐼𝐶                                                                                 (A1.2) 

where 

𝐷𝐼𝐶 (𝑀) = 𝐾𝐻 ∙ 𝑝𝐶𝑂2 ∙  (1 + 
𝐾1

10−𝑝𝐻 + 𝐾1 ∙  
𝐾2

(10−𝑝𝐻)
2 )                                                                           (A1.3) 

with KH and pCO2, the Henry’s law constant (0.0316 mol.L-1.atm-1) and partial pressure of CO2 (3.16E-4 

atm), respectively. The temperature corrected (20°C) equilibrium constants K1= ((H+)(HCO3
-)/(H2CO3)) 

and K2= ((H+)(CO3
2-)/(HCO3

-)) at 20°C are equal to 4.17E-07 mol∙L-1 and 4.23E-11 mol∙L-1, respectively.  

A1.1 Dommel database 

The Dommel database represents a local industrial exposure scenario (i.e.  historic pollution). Monitoring 

data for sampling locations in the river Meuse tributary Dommel, the Netherlands, were obtained from 

Verschoor et al (2011) who used the data for a previous study The data spanned a period of 5 years, 

between July 2006 and June 2010. When information on the field pH was not present, the reported pH 

retrieved from lab experiments was used. For 0.3% of the target water samples cation and/or anion 

concentrations were based on reported regression relations with Ca concentrations. In addition, for 

100% of the target water samples, alkalinity had to be estimated based on the pH value. Samples for 

the measurement of concentrations of metals were filtered to 0.45 µm before analysis. Detection limits 

(DL) for the different metals were equal to 1.5 µg/L for Ni, 3 µg/L for Zn and 1 µg/L for Cu. When the 
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target water sample included at least one metal that was reported as below detection limit and the ∑
𝐷𝐿

𝐻𝐶5
 

for the target water sample was larger than 1, the target water sample was not considered for further 

analysis (i.e. 0.3% of the target water samples when the HC5 was calculated using the log-normal or 

the best-fit distribution). For the remaining target water samples (i.e. those that were not removed by 

this filter), concentrations of metals that were reported in the monitoring database to be below the 

detection limit were divided by two. In total, 3176 target water samples were retained covering 97 

sampling locations.  

A1.2 VMM database 

The VMM database represents a regional mixed exposure scenario (i.e. a combination of urban, 

industrial and agricultural pollution). Monitoring data for Flanders (from now on referred to as “VMM”) 

for 2012 was gathered from the online database of the Flemish Environmental Agency (VMM). For 100% 

of the target water samples cation and/or anion concentrations were based on reported regression 

relations with Ca concentrations and alkalinity had to be estimated based on the pH value.  Samples for 

the measurement of concentrations of metals were filtered to 0.45 µm before analysis.  Detection limits 

for the different metals were equal to 2, 4, 5 µg/L for Ni, most likely depending on the measuring 

technique used by the VMM, 5 or 10 µg/L for Zn and 2 µg/L for Cu. When the target water sample 

included at least one metal that was reported as below detection limit and the ∑
𝐷𝐿

𝐻𝐶5
 for the target water 

sample was larger than 1, the target water sample was not considered for further analysis (i.e. 8% and 

10% of the target water samples when the HC5 was calculated using the log-normal and the best-fit 

distribution, respectively). For the remaining target water samples (i.e. those that were not removed by 

this filter), concentrations of metals that were reported in the monitoring database to be below the 

detection limit were divided by two. In total, 155 target water samples were retained covering 48 

sampling locations.   

A1.3 Rhine database 

The Rhine database represents a regional mixed exposure scenario (i.e. urban, industrial and 

agricultural pollution). Monitoring data for seven sampling locations in the Rhine for 2010 and 2011 was 

gathered from the online database of International Commision for the Protection of the Rhine (ICPR). 

For the data of the year 2010, information on all the major water-chemistry variables was present for 

every sampling date for the locations Kampen and Weil am Rhein. As not all water-chemistry variables 

were measured for every sampling date, data was grouped per month for the locations Maassluis, 

Lobith, Koblenz-Mosel, Koblenz-Rhein and Lauterbourg. For the data for the year 2011, data was 

grouped per month for the locations Lobith, Koblenz-Mosel, Koblenz-Rhein and Lauterbourg, but not for 

the locations Kampen, Weil am Rhein and Maassluis. For 5.7% of the target water samples cation and/or 

anion concentrations were based on reported regression relations with Ca concentrations. In addition, 

for 100% of the target water samples, alkalinity had to be estimated based on the pH value. Samples 

for the measurement of concentrations of metals, anions, cations and DOC were filtered to 0.45 µm 

before analysis.  In total, 209 target water samples were retained covering 53 sampling locations.  
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A1.4 Austria database 

The Austria database represents a regional mixed exposure scenario (i.e. urban, industrial and 

agricultural pollution). Monitoring data for Austria for 2006 was received from ARCHE (Assessing Risks 

of Chemicals). Hardness was reported in German hardness degrees (dH). dH was converted to CaCO3 

by multiplying with 17.85. Subsequently, Ca concentrations were calculated based on the combination 

of Equation A1.4 (Clesceri et al. 1989) and Equation A1.5 (assumed Ca:Mg ratio of ≈ 3.3, as in Europe 

based on United Nation Global Environmental Monitoring System (GEMS/WATER) database; see also 

Heijerick et al. (2003), which gives Equation A1.6. Mg concentrations were then calculated based on 

hardness and Ca concentrations with Equation A1.4. 

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝑚𝑔
𝐶𝑎𝐶𝑂3

𝑙
) = 𝐶𝑎 (𝑚𝑔/𝑙) ∗ 2.497 + 𝑀𝑔(𝑚𝑔/𝑙) ∗ 4.118                                                     (A1.4) 

𝐶𝑎 (
𝑚𝑜𝑙

𝐿
)

𝑀𝑔 (
𝑚𝑜𝑙

𝐿
)

= 3.                                                                                                                                       (A1.5) 

𝐶𝑎 (
𝑚𝑔

𝐿
) =

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝑚𝑔
𝐶𝑎𝐶𝑂3

𝑙
)

3.329
                                                                                                              (A1.6) 

For 100% of the target water samples cation and/or anion concentrations were based on reported 

regression relations with Ca concentrations.  Alkalinity was reported in SäureBindungsVermögen (SBV, 

mmol/L) and was converted to CaCO3 (mg/L) by multiplying with 50. Samples for the measurement of 

concentrations of metals were filtered to 0.45 µm before analysis. Detection limits (DL) range between 

0.02 and 1 µg/L for Ni, between 0.16 and 1 µg/L for Cu and between 0.24 and 1 µg/L for Zn, respectively 

(for exact DL per target water sample see Appendix A.1).  When the target water sample included at 

least one metal that was reported as below detection limit and the ∑
𝐷𝐿

𝐻𝐶5
 for the target water sample was 

larger than 1, the target water sample was not considered for further analysis  (i.e. 16% of the target 

water samples when the HC5 was calculated using the log-normal or the best-fit distribution). For the 

remaining target water samples (i.e. those that were not removed by this filter), concentrations of metals 

that were reported in the monitoring database to be below the detection limit were divided by two.  In 

total, 2138 target water samples were retained covering 249 sampling locations within eight regions. 

A1.4 FOREGS database 

The FOREGS-EuroGeoSurveys Geochemical Baseline Database was obtained on the website of the 

Geological Survey of Finland [6] and can also be found in Salminen et al. (2005). The FOREGS 

database (Forum of European Geological Surveys) contains high quality environmental geochemical 

baseline data for Europe for, among other things, stream water. This baseline data set represents the 

natural background concentrations of metals within freshwater streams in Europe. Since this database 

contains information on streams with no anthropogenic enrichments, it is expected that no or negligible 

risk will be observed. Information on cation/anion concentrations was present for 100% of the target 

water samples. Alkalinity had to be estimated based on the pH value for all target water samples.  

Samples for the measurement of concentrations of metals, anions, cations and DOC were filtered to 

0.45 µm before analysis. Detection limits for the different metals were equal to 0.005 µg/L for Ni, 0.01 
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µg/L for Zn and 0.005 µg/L for Cu. None of the target water samples showed metal concentrations below 

the detection limits. The database contains data for 26 different countries in Europe. In total, 784 target 

water samples were retained. 

Appendix A2. Update of and improvements to the chronic ecotoxicity database 

of Cu 
A2.1 Introduction 

Here, more information is given about the adaptations made to the chronic ecotoxicity database of Cu, 

originally reported in the EU RAR (2008). First, those data which were not retained in the database are 

summarized. Then, an overview is given of the adaptations that were made to the data that were retained 

in the database.  

A2.2 Data not retained in the final toxicity database 

First, toxicity data for Pseudokirchneriella subcapitata reporting a NOEC of 23.1 µg/l Cu, was not 

retained, as it was not reported in Heijerick et al. (2005), and it was not clear where the data came from. 

However, another relevant and reliable NOEC (defined as in Van Sprang et al. 2009), obtained in natural 

water from the river Rhine, was available for this species. Therefore P.subcapitata was still represented 

in the toxicity database with approximately the same NOEC. The test result with the cladoceran 

Ceriodaphnia dubia (Belanger and Cherry, 1990) reported for the New River was not retained because 

the NOEC was obtained in test media outside the workable range of the BLM. The chronic toxicity data 

obtained for C. dubia in the natural water from Amy Bayou were also rejected, as was done in the Zn 

RAR (2008). The latter stated that no information could be retrieved about the DOC concentrations of 

the Amy Bayou River, and that this was available for the other natural waters tested in the same study. 

A2.3 Adaptations to data included in the Cu toxicity database 

When creating the Cu database for the EU RAR (2008), assumptions were made regarding the test 

water chemistries. Often, the physico-chemical parameters of test waters were set at “worst case 

scenario’ levels. These levels are not only outdated, but the values at which these levels are set also 

have an effect on the outcome of calculations of HC5 values. For example, Na2+ concentrations were 

frequently set at a ‘worst case level’ of 5.3 mg/l. However, it is known that Na2+ plays an important role 

in the Cu BLM, as it is an effective competing ion (De Schamphelaere and Janssen, 2002), and hence, 

more correct concentrations of Na2+ should be listed in the Cu database.  

Where necessary, alkalinity was recalculated. This was done based on reported pH and T (°C) or based 

on pH, T (°C) and DIC/CO3 when the latter was reported. 

In the table below, the adaptations made to the Cu database are listed and explained.  



 

 
 

REF Species and citation Adaptations 

1 Chlamydomonas reinhardtii 

Schafer et al. (1994) 

The pH was adapted to that reported in the article (pH 6.2). Concentrations of ions were calculated based on 

chemical data provided in the article. Alkalinity was not reported, it was recalculated for an open system based on 

the reported pH and T(°C). 

2 Chlamydomonas reinhardtii 

De Schamphelaere et al. (2006) 

The temperature was adjusted to that reported in the article (T 25°C). Alkalinity was recalculated based on this 

new temperature and the DIC concentrations. Not NOECs, but EC10s were reported. The %AFA was reported in 

this study (41.1%). 

2 Chlorella vulgaris 

De Schamphelaere et al. (2006) 

The temperature was adjusted to that reported in the article (T 25°C). Alkalinity was recalculated based on this 

new temperature and the DIC concentrations. Not NOECs, but EC10s were reported. The %AFA was reported in 

this study (41.1%). 

3 Pseudokirchneriella subcapitata 

Heijerick et al. (2005) 

 

The reference was wrongly reported. Temperature was adapted to that reported in the article (T 23°C). Test water 

chemistry and pH were adapted to that reported in the article: the test water chemistry was calculated as a 

summation of the natural surface water chemistry and the chemistry of the ISO-medium that was added; pH at the 

start of the test was adjusted to the field pH. Alkalinity was recalculated based on reported IC, pH and T at 23°C. 

IC was calculated as the sum of the IC in the natural surface water and the IC in the ISO-medium.  

4 Ceriodaphnia dubia 

Jop et al. (1995) 

Mean alkalinity of test water was adapted for ‘code 39’ and ‘code 42’: 19 mg/l (reconstituted water) and 13 mg/l 

(Great Works River water) CaCO3. pH, hardness and alkalinity of the Great Works River and the reconstituted 

water were reported. DOC values for the Great Works River were retrieved from a monitoring database of the 

Maine Department of Environmental Protection (Maine-DEP). Average values for DOC were used, as calculated 

from the values reported from a monitoring site on the Great Works River. Ca and Mg were kept as in the original 

Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick 

et al., 2003)). Na and SO4 were estimated based on charge balance assumptions and reported electrical 

conductivity of test medium. K and Cl were kept at low levels (0.1 mg/l) 

5 Ceriodaphnia dubia 

Spehar & Fiandt (1985) 

 

Alkalinity of Lester River Water was adapted for ‘code 38’ (97 mg/L as CaCO3). Ca and Mg were kept as in the 

original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also 

Heijerick et al., 2003)). Based on charge balance considerations, missing ions (Na, K, SO4, Cl) were probably too 

low to affect outcome of the calculations. They were set at low levels (0.1 mg/l). 



 

 

 

6 Ceriodaphnia dubia 

Belanger & Cherry (1990) 

 

Test water chemistry for the New River and the Clinch River was adapted to the chemistry used in the Zinc Risk 

Assessment Report (2008): “Alkalinity during the tests was recalculated by accounting for the pH manipulation 

(according to Stumm and Morgan, 1996). Other chemical parameters were retrieved from a monitoring database 

of the Virginia Department of Environmental Quality (Virginia-DEQ) for New River and Clinch River. Average 

values for DOC, SO4, and Cl were used, as calculated from the values reported for the two monitoring sites closely 

encompassing the sampling sites described in the Belanger and Cherry study. Ca and Mg were calculated from 

reported hardness using average Ca:Mg ratios for Clinch River (1.6) and New River (1.2), taken from the same 

database. Based on charge balance considerations, missing ions (Na, K) were probably too low to affect outcome 

of the calculations (both <0.4 mM). They were set at low levels.” 

7 Ceriodaphnia dubia 

Belanger et al. (1998) 

The reference was wrongly reported. Alkalinity was adapted for ‘code 40’ (69.6 mg/l CaCO3). Test water chemistry 

for the New River and the Clinch River was adapted to the chemistry used in the Zn RAR (2008). 

8 Daphnia magna 

van Leeuwen et al. (1988) 

pH and hardness were reported. Other chemical parameters for Lake Ijssel water was taken from the Zn RAR 

(2008) which reported its data from the “United Nation Global Environmental Monitoring System (GEMS/WATER; 

www.gemswater.org); chemistry for Lake Ijssel is also summarized in Heijerick et al. (2003).” 

9 Daphnia magna 

De Schamphelaere & Janssen 

(2004) 

This reference was adapted (used to be reported as ‘Heijerick et al., 2002’) because the original reference was 

not found, and all the data was listed in De Schamphelaere and Janssen (2004). Alkalinity was recalculated based 

on reported CO3 concentrations, pH and T at 20°C. The NOEC of ‘code 55’ was adapted to the values reported in 

De Schamphelaere and Janssen (2004). 

10 Daphnia pulex 

Winner (1985) 

SO4 concentrations were adapted to that reported in the article: 102.1 mg/l for hard water (code 60, 61 and 64) 

and kept low (0.1 mg/l) for soft and medium water (code 58, 59, 62, 63, 65 and 66).  

11 Gammarus pulex 

Maund et al. (1992) 

 

pH was adapted to that reported in the article (pH 7.9). Ca and Mg were kept as in the original Cu-database 

(assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick et al., 2003)). 

Based on charge balance considerations, missing ions (Na, K, SO4, Cl) were probably too low to affect outcome 

of the calculations. They were set at low levels (0.1 mg/l). Alkalinity was recalculated for an open system based 

on the reported pH and T (°C). 

12 Hyalella Azteca 

Deaver & Rodgers (1996) 

 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)). Na and SO4 were estimated based on charge balance 

assumptions and reported electrical conductivity of test medium. K and Cl were kept at low levels (0.1 mg/l) 



 

 
 

13 Salvelinus fontinalis 

Ictalurus punctatus 

Sauter et al. (1976) 

Test water chemistry was not reported in the article. Ca and Mg were kept as in the original Cu-database (assumed 

Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, 

SO4, and Cl were estimated from correlations with Ca found in the GEMS database (see also Heijerick et al., 

2003). 

14 Noemacheilus barbatulus 

Solbe & Cooper (1976) 

 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, SO4, and Cl were estimated from correlations 

with Ca found in the GEMS database (see also Heijerick et al., 2003). Alkalinity was recalculated for an open 

system based on the reported pH and T (°C). 

15 Oncorhynchus mykiss 

Oncorhynchus kisutch 

Mudge et al. (1993) 

 

pH was adapted to the mean values reported in the article. Test water chemistry was not reported in the article. 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)). Na and SO4 were estimated based on charge balance 

assumptions and reported electrical conductivity of test medium. K and Cl were kept at low levels (0.1 mg/l) 

16 Oncorhynchus mykiss 

Seim et al. (1984) 

Alkalinity was adapted to that reported in the article (126 mg CaCO3/L). Ca and Mg were kept as in the original 

Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick 

et al., 2003)). Na, K, SO4, and Cl were estimated from correlations with Ca found in the GEMS database (see also 

Heijerick et al., 2003). 

17 Perca fluviatilis 

Collvin (1985) 

 

Alkalinity was adapted to that reported in the article (129 mg CaCO3/L). Ca and Mg were kept as in the original 

Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick 

et al., 2003)).Based on charge balance considerations, missing ions (Na, K, SO4, Cl) were probably too low to 

affect outcome of the calculations. They were set at low levels (0.1 mg/l). 

18 Perca fluviatilis 

Collvin (1984) 

 

The reference was wrongly reported. Alkalinity was adapted to that reported in the article (131 mg/L CaCO3). Ca 

and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)).Based on charge balance considerations, missing ions 

(Na, K, SO4, Cl) were probably too low to affect outcome of the calculations. They were set at low levels (0.1 mg/l). 

19 Pimephales notatus 

Horning & Neiheisel (1979) 

 

pH adapted to that reported in the article (pH 8.01 ). Ca and Mg were kept as in the original Cu-database (assumed 

Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, 

SO4, and Cl were estimated from correlations with Ca found in the GEMS database (see also Heijerick et al., 

2003). 



 

 

 

20 Pimephales promelas 

Spehar & Fiandt (1985) 

 

pH, alkalinity and hardness of Lake Superior were reported. Other chemical parameters (including Ca:Mg ratio) 

for Lake Superior test water were assumed similar as in Biesinger and Christensen (1972) (As in Zn RAR). DOC 

and S04 were taken from Erickson et al. (1996) as was done in the Zn RAR. 

21 Pimephales promelas 

Mount & Stephan (1969) 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)).Based on charge balance considerations, missing ions 

(Na, K, SO4, Cl) were probably too low to affect outcome of the calculations. They were set at low levels (0.1 mg/l). 

22 Pimephales promelas 

Mount (1968) 

Test water chemistry was adapted to the chemistry reported in the article. 

23 Pimephales promelas 

Pickering et al. (1977) 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, SO4, and Cl were estimated from correlations 

with Ca found in the GEMS database (see also Heijerick et al., 2003). Alkalinity was recalculated for an open 

system based on the reported pH. 

24 Pimephales promelas 

Scudder et al. (1988) 

Alkalinity (211.9 mg CaCO3/L), pH (8.17), Ca2+ (56 mg/L) and S04
2- (59 mg/L) were adjusted to that reported in 

the article. 

25 Salvelinus fontinalis 

McKim & Benoit (1971) 

 

Alkalinity was adapted to that found in the article (41.6 mg CaCO3/L). For the dechlorinated tap water: Ca and Mg 

were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER 

database; see also Heijerick et al., 2003)). Na, K, SO4, and Cl were estimated from correlations with Ca found in 

the GEMS database (see also Heijerick et al., 2003). For the Lake Superior water: pH, alkalinity and hardness of 

Lake Superior were reported. Other chemical parameters (including Ca:Mg ratio) for Lake Superior test water were 

assumed similar as in Biesinger and Christensen (1972) (As in Zn RAR). DOC and S04 were taken from Erickson 

et al. (1996) as was done in the Zn RAR. 

26 Lemna minor 

Teisseire et al. (1998) 

Concentrations of ions were calculated based on chemical data provided in the article. Alkalinity was recalculated 

for an open system based on the reported pH. 

27 Chironomus riparius 

Taylor et al. (1991) 

pH was adapted to that reported in the article (pH 7). Ca and Mg were kept as in the original Cu-database 

(assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick et al., 

2003)).Based on charge balance considerations, missing ions (Na, K, SO4, Cl) were probably too low to affect 

outcome of the calculations. They were set at low levels (0.1 mg/l). Alkalinity was recalculated for an open system 

based on the reported pH.  



 

 
 

28 Clistoronia magnifica 

Nebeker et al. (1984) 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, SO4, and Cl were estimated from correlations 

with Ca found in the GEMS database (see also Heijerick et al., 2003). 

29 Paratanytarsus parthenogeneticus 

Hatakeyama & Yasuno (1981) 

pH was adjusted to that reported in the article (pH 7). Ca and Mg were kept as in the original Cu-database 

(assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick et al., 2003)). 

Na, K, SO4, and Cl were estimated from correlations with Ca found in the GEMS database (see also Heijerick et 

al., 2003). Alkalinity was recalculated for an open system based on the reported pH. 

30 Campeloma decisum 

Arthur & Leonard (1970) 

Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, SO4, and Cl were estimated from correlations 

with Ca found in the GEMS database (see also Heijerick et al., 2003). 

31 Juga plicifera 

Nebeker et al. (1986) 

The reference was wrongly reported. Ca and Mg were kept as in the original Cu-database (assumed Ca:Mg ratio 

of ≈ 3.3, as in Europe (based on GEMS/WATER database; see also Heijerick et al., 2003)). Na, K, SO4, and Cl 

were estimated from correlations with Ca found in the GEMS database (see also Heijerick et al., 2003). 

32 Ceriodaphnia dubia 

Cerda & Olive (1993) 

Alkalinity was adapted to that reported in the article (62.5 mg CaCO3/L). 

33 Brachionus calyciflorus 

De Schamphelaere et al. (2006) 

DOC concentrations are 4.91; 14.5; 4.83 and 14.7 : these for ‘code 132‘ and ‘code 134‘ were adapted. 

34 Hyalella Azteca 

Othman & Pascoe (2002) 

 

Test duration (35 days) and test medium (dechlorinated tap water) were not reported in original database. Ca and 

Mg were kept as in the original Cu-database (assumed Ca:Mg ratio of ≈ 3.3, as in Europe (based on 

GEMS/WATER database; see also Heijerick et al., 2003)).Based on charge balance considerations, missing ions 

(Na, K, SO4, Cl) were probably too low to affect outcome of the calculations. They were set at low levels (0.1 mg/l). 

35 Oncorhynchus mykiss, 

Catostomus commersonii,  

Esox Lucius 

McKim et al. (1978) 

Test durations were adapted to those found in the article (30 days). pH, alkalinity and hardness of Lake Superior 

were reported. Other chemical parameters (including Ca:Mg ratio) for Lake Superior test water were assumed 

similar as in Biesinger and Christensen (1972) (As in Zn RAR). DOC and S04 were taken from Erickson, Benoit et 

al. (1996) as was done in the Zn RAR. 

36 Salvelinus fontinalis 

McKim et al. (1978) 

 

Test duration was adapted to that found in the article (30-60 days). pH, alkalinity and hardness of Lake Superior 

were reported. Other chemical parameters (including Ca:Mg ratio) for Lake Superior test water were assumed 



 

 

 

similar as in Biesinger and Christensen (1972) (As in Zn RAR). DOC and S04 were taken from Erickson, Benoit et 

al. (1996) as was done in the Zn RAR. 

37 Dreissena polymorpha 

Kraak et al. (1994) 

 

NOEC was adjusted to that reported in the article (16 µg/l). Test conducted in natural water from Markermeer (NL). 

Only pH, temperature and water hardness were reported. DOC and other macro-ions were adopted to those 

reported in the Zn RAR (Kraak et al. 1994b): “ DOC was estimated at the average DOC concentration in 

Markermeer reported by Van Tilborgh (2002); other macro-ions and the Ca:Mg ratio were taken from (De 

Schamphelaere, Lofts et al. 2005).” 

38 Villosa iris 

Jacobson et al. (1997) 

 

pH was adjusted to that reported in the article (pH 8.39). Ca:Mg ratio for Clinch River was assumed 1.6 as 

described for Belanger and Cherry (1990). Average DOC was also retrieved from the latter article. Based on 

charge balance considerations, missing ions (Na, K, SO4, Cl) were probably too low to affect outcome of the 

calculations. They were set at low levels (0.1 mg/l). 

39 Lymnaea stagnalis 

Brix et al. (2011) 

This data point was added to the Cu database. Test chemistry was reported. SO4 was based on charge balance 

considerations. Alkalinity was estimated based on pH, T and C03 concentrations.  
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Appendix A3. Calculation of slope data of dose-response curves 

In addition to the chronic toxicity data that was already present in the toxicity databases, i.e. EC10 

values, there is need for additional information, i.e. the slope of the dose-response curves, to be able to 

apply one of the four mixture evaluations tools, i.e. the IADRC method. For this, we retrieved all literature 

present in the toxicity databases for all three metals. However, information on the slope of the curves 

was never present in the peer-reviewed papers. Therefore, other methods were used to retrieve this 

information. These methods were applied in the order listed below.  

(1) When the EC50, LC50 or IC50 value was reported, the slope value, βi, was calculated based on the 

log-logistic function (Equation A3.1 and A3.2) and the EC10 value present in the database: 

y =  
1

1+(
EC10
EC50

)β
                                                                                                                                       (A3.1) 

β = logEC10

EC50

(
1

9
)                                                                                                                                    (A3.2) 

With y = the predicted effect, EC10 and EC50 the 10% and 50% effect concentration, respectively, and 

β the slope value. 

(2) When the raw dose response data was reported, an EC50, LC50 or IC50 value was calculated with 

the drm function in R (version 2.15.2, R Development Core Team, Vienna, Austria). This was done with 

one of the following functions, depending on which one best fitted the data (i.e. highest log likelihood): 

a log-logistic concentration response model with three parameters (Equation A3.3), a log-logistic 

concentration response model with two parameter (Equation A3.4) or a Weibull distribution with three 

parameters (Equation A3.5).   

𝑦 =
𝑑

1+𝑒𝑥𝑝(𝑏(ln(𝑥)−ln(𝑒)))
                                                                                                                            (A3.3) 

𝑦 =
100

1+𝑒𝑥𝑝(𝑏(ln(𝑥)−ln(𝑒)))
                                                                                                                             (A3.4) 

𝑦 = 𝑑 × exp (−
𝑥

𝑘
)

𝑏 

                                                                                                                    (A3.5) 

Where y = the predicted effect, b = a slope parameter, x = the dissolved metal concentration (µg/L), e = 

the EC50, LC50 or IC50 (µg dissolved metal/L), d = the value of the maximal response (i.e. in the control) 

and k = a scale parameter. Subsequently, the slope value was calculated with Equation A1.1. 

(3) When another point effect estimate was available, e.g. the EC20, the βi value was calculation based 

on the log-logistic function (Equation A3.6) and the EC10 value present in the database.  

β = logEC10

EC20

(
4

9
)                                                                                                                                    (A3.6) 

(4) When the paper only reported toxicity data as a figure with the effects, xyExtract software (Wilton P. 

Silva, 2011) was used to extract the x-values (concentrations) and the y-values (effects) from the figure. 

Subsequently, an EC50, LC50 or IC50 value was calculated with the drm function in R (based on highest 

log likelihood) and the slope value was calculation with Equation A3.1. 
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Appendix A4. Correlations between slope values and sensitivities of species 

No correlation was found between slope values and the sensitivities of species, e.g. species that are 

sensitive to a certain metal (low EC10) can show both low or high slope values. 

For copper (Figure A4.1), zinc (Figure A4.2) and nickel (Figure A4.3) Pearson correlations are low, i.e. 

-0.07, 0.24 and -0.4, respectively. 

  

Figure A4.1 Relation between the EC10 values of 
the species within the chronic copper toxicity 
database and the slope values calculated for the 
dose-response of these species. 

Figure A4.2 Relation between the EC10 values of 
the species within the chronic zinc toxicity 
database and the slope values calculated for the 
dose-response of these species. 
 

 

 

Figure A4.3 Relation between the EC10 values of the species within the chronic nickel toxicity database 

and the slope values calculated for the dose-response of these species.
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Appendix A5. Bioavailability Models and Normalization 

Bioavailability normalizations for Cu and Zn with the BLM were carried out with publicly available BLM 

software (HydroQual 2015). For Zn, the BLM parameters files (extension *.dat) that were modified by 

Van Sprang et al. (2009) were used. For Cu, the BLM parameter files were modified to reflect the 

adaptations that were made to the Cu toxicity database (i.e. adaptations to the physico-chemistry of the 

water as well as adaptations to certain EC10 values). The thermodynamic database (extension *.dbs) 

that was modified by Van Sprang et al. (2009) to reflect the stability constants for inorganic Cu and Zn 

complexes from NIST was used. For Zn and Cu the WHAM-Model V speciation software (Tipping 1994) 

was used.  For Ni, the chronic Ni bioavailability and normalization tool (Nys el at. 2012) was used in 

combination with the WHAM-Model VI speciation software (Tipping 1998). Certain stability constants for 

inorganic complexes as well as fulvic acid binding constants in the WHAM-Model VI software were 

adapted to those of NIST (Smith et al. 2004), as explained in Nys et al. (2012). All analyses for 

calculations of msPAF were carried out with R software (version 2.15.2, R Development Core Team, 

Vienna, Austria). 

The process of normalization will be clarified below for all three metals. This process can be divided into 

two subsequent parts: (1) calculation of the ‘intrinsic sensitivity’ of a given species and (2) calculation of 

the normalized dissolved EC10 in the ‘target water’ (Figure A5.1). These steps are explained in brief 

below. 

 

Figure A5.1. Overview of the procedure for normalization of EC10 values obtained in test media x to the 

physico-chemistry of target water y, using biotic ligand models (BLM). Figure adapted from Van Sprang et 

al. (2009) 

Step 1: the ‘intrinsic sensitivity’ for a given species i, which is given by the parameter ƒ or Q, is the 

fraction of the biotic ligand sites that is occupied by a metal at a concentration equal to the EC10 of that 

metal. Simplified equations to calculate this ‘intrinsic sensitivity’ are given in Equation A5.1 and A5.2.  

ƒ𝑀𝑒𝐵𝐿,𝑖,𝑥 =
𝐾𝑀𝑒𝐵𝐿∙𝐸𝐶10

𝑀𝑒2+,𝑖,𝑥

1+𝐾𝑀𝑒𝐵𝐿∙𝐸𝐶10𝑀𝑒2+,𝑖,𝑥+∑ 𝐾𝐶𝑎𝑡𝐵𝐿(𝐶𝑎𝑡2+)𝑖,𝑥
                                                                                      (A5.1) 

𝑄𝑖,𝑥 = 𝑙𝑜𝑔10𝐸𝐶10𝑀𝑒2+,𝑖,𝑥 − 𝑆𝑝𝐻 ∙ 𝑝𝐻𝑖,𝑥                                                                                                       (A5.2) 

Where KMeBL and KCatBL are the stability constants for competitive binding of the metal Me2+ and other 

cations Cat2+ (e.g. Ca2+, Mg2+, Na2+) to the biotic ligand (BL) of species i, respectively and (Cat2+)
i,x are 

the chemical activities of the cations in the test medium x. SpH is the slope of the linear regression 



Supporting information of Chapter 2 
 

331 
 

between the log10-transformed EC10 values (expressed as free metal activity) and pH. The 𝐸𝐶10𝑀𝑒2+,𝑖,𝑥, 

the activity of the free Me2+ ion at the EC10, as well as the chemical activities of the competing cations 

are calculated from the dissolved concentrations within the test medium x using BLM software [1], which 

incorporates either WHAM-Model V (Tipping 1994) or VI (Tipping 1998) as speciation software. 

Assumptions for natural organic matter were different for all three metals. We assumed that natural 

organic matter consisted of 61% (Cheng et al. 2005), 50% (De Schamphelaere and Janssen 2004) and 

40% (De Schamphelaere et al. 2006) active fulvic acid (unless specified differently) for Zn, Cu and Ni, 

respectively. Stability constants for inorganic complexes were taken from the National Institute of 

Standards and Technology (NIST) (Smith et al. 2004). An equivalent of equation 6 is used for Daphnia 

magna for Cu (De Schamphelaere et al. 2004a) and Zn (Heijerick et al. 2005) as well as for 

Onchorynchus mykiss for Cu (De Schamphelaere et al. 2008), Zn (De Schamphelaere and Janssen 

2004b; De Schamphelaere and Janssen 2005) and Ni (Deleebeeck et al. 2007). An equivalent of 

Equation 7 is used for Pseudokirchneriella subcapitata for Cu (De Schamphelaere and Janssen 2006), 

Zn (De Schamphelaere et al. 2005) an Ni (Deleebeeck et al. 2009) as well as for D. magna for Ni 

(Deleebeeck et al. 2008). All parameters of the biotic ligand models can be found in Table A5.1 and all 

parameter files for Zn and Cu (extension *.dat) including the intrinsic sensitivity values can be found in 

the online database at doi:10.1002/etc.3746.. Intrinsic sensitivities for Ni can be consulted in the ‘Ni 

normalisation tool’ provided by Nys et al. (2012). 

Step 2: The calculated ‘intrinsic sensitivity’ is subsequently used to calculate the Me2+ activity in the 

‘target water’ y, which shows another physico-chemistry than the test medium x. Simplified equations to 

calculate this metal activity are given in Equation A5.3 and A5.4.  

𝐸𝐶10𝑀𝑒2+,𝑖,𝑥,𝑦 =
ƒ𝑀𝑒𝐵𝐿,𝑖,𝑥

(1−ƒ𝑀𝑒𝐵𝐿,𝑖,𝑥)∙𝐾𝑀𝑒𝐵𝐿
∙ (1 + ∑ 𝐾𝐶𝑎𝑡𝐵𝐿(𝐶𝑎𝑡2+)𝑦)                                                                        (A5.3) 

𝑙𝑜𝑔10𝐸𝐶10𝑀𝑒2+,𝑖,𝑥,𝑦 = (𝑄𝑖,𝑥 − 𝑆𝑝𝐻 ∙ 𝑝𝐻𝑦)  ∙  {1 + 𝐾𝐶𝑎𝑡𝐵𝐿(𝐶𝑎𝑡2+)𝑦}                                                            (A5.4) 

Where (Cat2+ )y are the chemical activities of cations (e.g. Ca2+, Mg2+, Na2+) in the ‘target water’ y and 

pHy is the pH of the target water y. The chemical activities of the cations are again calculated using BLM 

software that incorporates either WHAM-Model V or VI speciation software. Assumptions for natural 

organic matter were equal to those for Step 1. An equivalent of Equation A5.3 was used for D. magna 

for Cu and Zn as well as for O. mykiss for Cu, Zn and Ni. An equivalent of Equation A5.4 was used for 

P.subcapitata for Cu, Zn and Ni as well as for D. magna for Ni. For the latter, the part of Equation A5.4 

in between brackets “{}” is added to include competition by other cations. For Zn and Cu, the BLM 

software automatically converts the obtained 𝐸𝐶10𝑀𝑒2+,𝑖,𝑥,𝑦 to the dissolved EC10 of the ‘target water’ y, 

i.e. the 𝐸𝐶10𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑,𝑖,𝑥,𝑦, using the WHAM-Model V speciation software. For Ni, the ‘chronic Ni 

bioavailability and normalization tool’ is used together with the WHAM-Model VI speciation software to 

convert the Ni activities to dissolved concentrations. This step concludes the process of normalization 

in which a EC10 value from the ecotoxicity database is ‘converted’ to the physico-chemistry of the ‘target 

water’ in the monitoring database.  

Toxicity data of D. magna, O. mykiss and P.subcapitata are normalized with the BLMs developed for 

these specific species, respectively. However, the chronic toxicity databases contain a numerous 

amount of species other than the three listed above. As it is infeasible to develop specific BLMs for each 
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separate species, the assumption is made that the intrinsic sensitivity (i.e. ƒ𝑀𝑒𝐵𝐿,𝑖,𝑥 or Qi,x) between 

related species is different but that the interactions between the metals and other cations (e.g. Ca2+, 

Mg2+, Na+, H+) at the biotic ligand are equal among related species (i.e. invertebrates, fish and algae), 

as has been done elsewhere (Van Sprang et al. 2004). The cross-validation of the specific BLMs to 

related species has shown to be successful (De Schamphelaere and Janssen 2010, De Schamphelaere 

et al. 2006, Schlekat et al. 2010). Therefore, all invertebrate EC10 values are normalized with the D. 

magna BLMs, all vertebrate (fish) EC10 values with the O. mykiss BLMs and all algae EC10 values with 

the P.subcapitata BLMs.  

Certain waterbodies showed a physico-chemistry outside the ‘workable range’ of the BLMs. These 

‘workable ranges’ for pH and Ca differ between the different metals and are for pH equal to 6-8.4 for Cu, 

5.6-8.7 for Ni and 6-8 for Zn and for Ca equal to 3-160 mg/L for Cu, 5-160 mg/L for Zn and 4-110 mg/L 

for Ni. For all five considered monitoring databases together, 30.8% had a chemistry outside the 

‘workable ranges’ valid for all BLMs, i.e. pH 6-8 and Ca 3-110. 24% showed a pH>8 and 3.7% had a 

Ca>110 mg/L (upper boundaries), while 1.7% showed a pH<6 and 1.9% showed a Ca<3 mg/L (lower 

boundaries). As the physico-chemistry of these waters falls outside the validation range of the BLMs, 

this introduces uncertainty to the normalizations performed with the BLMs as well as to the HC5 and 

msPAF calculations. Validating these BLMs outside these boundaries and therefore extending the 

boundaries would decrease the % of waters outside the boundaries and therefore also the uncertainty 

on the calculations. The largest addition to this uncertainty lies in the upper pH boundary, which is 

determined by the upper boundary for Zn. In relation to this, recent research at our lab has shown that 

the workable range of the algae BLM can be extrapolated from 8 to 8.4 (pers. communication). This 

implies that a considerably lower % of the waterways, i.e. 2%, shows a pH above the upper boundary 

of the BLMs and that now 8.9% of all the waters shows a physico-chemistry outside the ‘workable range’ 

of the BLMs. For this paper, we will assume that the BLMs can be extrapolated slightly outside their 

‘workable ranges’ and that the uncertainty of the calculations is therefore minimal.  



 

 
 

Table A5.1. Biotic ligand model (BLM) zinc, copper and nickel constants, competition constants and humic material assumptions for the Daphnia magna (De 

Schamphelaere et al. 2006; De Schamphelaere and Janssen 2008; De Schamphelaere and Janssen 2004b), Oncorhynchus mykiss (De Schamphelaere and Janssen 

2004b; De Schamphelaere et al. 2005; Deleebeeck et al. 2007; De Schamphelaere and Janssen 2006) and Pseudokirchneriella subcapitata (Deleebeeck et al. 2007; 

Deleebeeck et al. 2009; Deleebeeck et al. 2008) BLMs that were used for modelling. 

 
Daphnia magna BLM Oncorhynchus mykiss BLM Pseudokirchneriella subcapitata BLM 

Parameter Zn Cu Ni Zn Cu Ni Zn Cu Ni 

Biotic ligand (BL) species          

  Log 𝐾𝑀𝑒𝐵𝐿 5.31a 8.02 a NI 5.31 a 8.02 a NI NI NI NI 

  Log 𝐾𝑀𝑒𝐻𝐵𝐿 NI 8.02b (-0.5) NI NI 7.34b (0.18) NI NI NI NI 

  Log 𝐾𝑀𝑒𝐶𝑜3𝐵𝐿  NI 7.44c (-14.21) NI NI 7.01c (-13.78) NI NI NI NI 

  Log 𝐾𝐶𝑎𝐵𝐿 3.22 NI 3.53 3.22 3.47 3.6 NI NI NI 

  Log 𝐾𝑀𝑔𝐵𝐿 2.69 NI 3.57 2.69 3.58 3.6 NI NI 3.3 

  Log 𝐾𝑁𝑎𝐵𝐿 1.9 2.91 NI 1.9 3.19 NI NI NI NI 

  Log 𝐾𝐻𝐵𝐿 5.77 6.67 NI 5.77 5.1 NI NI NI NI 

  SpH NI NI 0.3335 NI NI 0.324 0.754 1.354 0.143 

  Bioavailable species that can  

  bind to the biotic ligand Zn2+ 

Cu2+, CuOH+, 

CuCO30 Ni2+ Zn2+ 

Cu2+, CuOH+, 

CuCO30 Ni2+ Zn2+ Cu2+ Ni2+ 

Humic material  assumptions 
         

     % of natural DOM that is     

     composed of humic substancesd  61% 50% 40% 61% 50% 40% 61% 50% 40% 

     % of humic substances that is  

     HA (rest is FA)e 0% 0% 0% 0% 0% 0% 0% 0% 0% 

a Reaction: BL-Me = Me2+ + BL 
b First constant refers to the reaction: BL-CuOH = CuOH+ + BL. The constant in parentheses refers to the reaction BL-CuOH + H+ = Cu2+ + H2O + BL 
c First constant refers to the reaction: BL-CuCO3 = CUCO3

0 + BL. The constant in parentheses refers to   the reaction BL-CuCO3 = Cu2+ + CO3
2- + BL 

d Exception: when humic acid is added to the medium, all models assume 100% of the DOM to be composed of humic substances 
e Exception: when humic acid is added to the medium, all models assume 100% of the humic substances to be composed of humic acid 

NI = Not Incorporated as constant in the BLM; DOM = Dissolved Organic Matter; HA = Humic Acid; FA = Fulvic Acid 



Appendix A 

334 
 

Appendix A6. Correlations in sensitivity of species to metals 

The figures below show correlations found between the sensitivity of a species for one metal and its 

sensitivity for a second metal, in function of main physico-chemical variables (i.e. pH, DOC (mg/L) and 

Ca (mg/L)). 

R-values for all correlations between binary combinations of metals are given in the top graphs of each 

figure, while p-values of these correlations are given in the bottom graphs of each figure. Correlations 

are significant when p-values corresponding to the r-values are below 0.05. This is the case for 0% of 

the correlations between the sensitivity of a species to Ni and its sensitivity to Zn; for 6.6% of the 

correlations between the sensitivity of a species to Ni and its sensitivity to Cu; and for 0.6% of the 

correlations between the sensitivity of a species to Zn and its sensitivity to Cu. 

 

Figure A6.1. Correlations (Spearman rank) found between the sensitivity of a species for one metal and its 

sensitivity for a second metal, in function of pH. Top graphs give the r values corresponding to the 

correlations, bottom graphs give the p values corresponding to these r values. Correlations are significant 

when the p values are below 0.05. 
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Figure A6.2. Correlations (Spearman rank) found between the sensitivity of a species for one metal and its 

sensitivity for a second metal, in function of Dissolved Organic Carbon (DOC) (mg/L). Top graphs give the 

r values corresponding to the correlations, bottom graphs give the p values corresponding to these r 

values. Correlations are significant when the p values are below 0.05. 

 

Figure A6.3. Correlations (Spearman rank) found between the sensitivity of a species for one metal and its 

sensitivity for a second metal, in function of Ca concentration (mg/L). Top graphs give the r values 

corresponding to the correlations, bottom graphs give the p values corresponding to these r values. 

Correlations are significant when the p values are below 0.05. 
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Appendix A7. Results from best-fit SSD calculations 

This appendix shows the results, distribution of msPAF values for all four methods, for the different 

monitoring datasets using the best-fit SSD calculations.  

In addition, the percentage of waterbodies that is potentially not affected and percentage that is 

potentially affected (msPAF > 0.05) by a mixture of Ni, Zn and/or Cu according to the CASSD method for 

the VMM, Rhine, Austria and FOREGS database, using a log-normal SSD distribution (analogue to 

Table 2.4 for the Dommel database in the main paper) is also given. 

 

Figure A7.1 Toxic Units (TU) for Ni, Zn and Cu for the different samples of the Dommel, VMM, Rhine, Austria 

and FOREGS dataset. SumTU shows the summation of the TUs according to the CASSD method using the 

best-fit SSD distribution. The horizontal line indicates a TU or SumTU of 1. Results are represented as box 

plots: median values are given in bold, bottom and top of the box plots give the 25th and 75th percentile. 

Bottom and top of the error bars represent the 5th and 95th percentile, asterisks are outliers.  
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A7.1 Dommel 

Table A7.1. Toxic pressure expressed as multisubstance potentially affected fraction of species (msPAFa) 

for the Dommel database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) when SSDs 

are fitted with best-fit distributions. The percentage of affected samples is given per method. NA = not 

applicable, a the msPAF values reported are on the basis of EC10 values 

 
CASSD CADRC IASSD IADRC 

median msPAF 0.057 0.044 0.031 0.040 

10th percentile msPAF 0.002 0.001 0.001 0.002 

90th percentile msPAF 0.437 0.478 0.344 0.351 

% samples affected (msPAF>0.05) 53 48 41 46 

% samples affected by mixture of metals and not by any of the individual 

metals 
15 10 4 7 

A7.2 Rhine 

Table A7.2. Toxic pressure expressed as multisubstance potentially affected fraction of species  (msPAFa) 

for the Rhine database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) when SSDs are 

fitted with best-fit distributions. The percentage of affected samples is given per method. NA = not 

applicable, a the msPAF values reported are on the basis of EC10 values 

 
CASSD CADRC IASSD IADRC 

median msPAF 0.009 0.005 0.004 0.005 

10th percentile msPAF 0.003 0.002 0.001 0.002 

90th percentile msPAF 0.015 0.010 0.008 0.008 

% samples affected (msPAF>0.05) 0 0 0 0 

% samples affected by mixture of metals and not by any of the individual 

metals 
0 0 0 0 

A7.3 VMM 

Table A7.3. Toxic pressure expressed as multisubstance potentially affected fraction of species 

(msPAFa) for the VMM database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) when 

SSDs are fitted with best-fit distributions. The percentage of affected samples is given per method. NA = 

not applicable, a the msPAF values reported are on the basis of EC10 values 

 
CASSD CADRC IASSD IADRC 

median msPAF 0.013 0.008  0.006 0.007 

10th percentile msPAF 0.001 <0.001 <0.001 <0.001 

90th percentile msPAf 0.230 0.225 0.166 0.180 

% samples affected (msPAF>0.05) 27 26 26 24 

% samples affected by mixture of metals and not by any of the individual 

metals 
4 3 1 1 
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Table A7.4. Percentage of waterbodies that is potentially not affected and percentage that is potentially 

affected (msPAF > 0.05) by a mixture of Ni, Zn and/or Cu according to the CASSD method for the VMM 

database, using a log-normal SSD distribution. 

 
Percentage (%) 

No effect 72.90 

Effect 27.10 

   Individual metal effects 20.00  

      Only Zinca  18.71 

      Only Nickela 0.65 

      Only Coppera 0.00 

      Both Zinc and Nickelb 0.65  

   Mixture effects 7.10 

      Binary combinationsc 6.45 

      Ternary combinationd 0.65 

      Shows the largest TUe  

          Zn 72.73 

          Ni 27.27 

          Cu 0 
a The Toxic Unit of zinc, nickel or copper is above 1 
b The Toxic Unit of all mentioned metals is above 1 
c At least one of the possible binary combinations (i.e.Zn&Ni, Zn&Cu, Ni&Cu) shows an effect 
d The ternary combination (but none of the 3 possible binary combinations) shows an effect 
e For each metal the percentages of samples is given in which that metal has the largest Toxic Unit in the sample 
affected by a binary or ternary combination, i.e.in which that metal is the largest contributor to the toxic effect 

A7.4 Austria 

Table A7.5. Toxic pressure expressed as multisubstance potentially affected fraction of species 

(msPAFa) for the Austria database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) 

when SSDs are fitted with best-fit distributions. The percentage of affected samples is given per method. 

NA = not applicable, a the msPAF values reported are on the basis of EC10 values 

 
CASSD CADRC IASSD IADRC 

median msPAF 0.006 0.004 0.003 0.004 

10th percentile msPAF 0.001  <0.001 <0.001 <0.001 

90th percentile msPAf 0.036 0.026 0.020 0.021 

% samples affected (msPAF>0.05) 7 6 5 5 

% samples affected by mixture of metals and not by any of the individual 

metals 
3 1 0.3 0.05 
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Table A7.6. Percentage of waterbodies that is potentially not affected and percentage that is 

potentially affected (msPAF > 0.05) by a mixture of Ni, Zn and/or Cu according to the CASSD 

method for the Austria database, using a log-normal SSD distribution. 

 
Percentage (%) 

No effect 92.47 

Effect 7.53 

   Individual metal effects 4.49  

      Only Zinca  2.90 

      Only Nickela 0.37 

      Only Coppera 0.75 

      Both Zinc and Nickelb 0.05  

     Both Zinc and Copperb 0.14  

     Both Nickel and Copperb 0.28  

     Both Zinc, Nickel and Copperb 0.05  

   Mixture effects 3.04  

      Binary combinationsc 1.03 

      Ternary combinationd 2.01 

      Shows the largest TUe  

          Zn 60 

          Ni 14 

          Cu 26 
a The Toxic Unit of zinc, nickel or copper is above 1 
b The Toxic Unit of all mentioned metals is above 1 
c At least one of the possible binary combinations (i.e.Zn&Ni, Zn&Cu, Ni&Cu) shows an effect 
d The ternary combination (but none of the 3 possible binary combinations) shows an effect 
e For each metal the percentages of samples is given in which that metal has the largest Toxic Unit in the sample 
affected by a binary or ternary combination, i.e.in which that metal is the largest contributor to the toxic effect 

A7.5 FOREGS 

Table A7.7. Toxic pressure expressed as multisubstance potentially affected fraction of species 

(msPAFa) for the FOREGS database obtained with the different methods (CASSD; CADRC; IASSD and IADRC) 

when SSDs are fitted with best-fit distributions. The percentage of affected samples is given per method. 

NA = not applicable, a the msPAF values reported are on the basis of EC10 values 

 
CASSD CADRC IASSD IADRC 

median msPAF 0.006 0.003 0.003 0.003 

10th percentile msPAF <0.001  <0.001 <0.001 <0.001 

90th percentile msPAf 0.055 0.043 0.036 0.038 

% samples affected (msPAF>0.05) 1 9 7 7 

% samples affected by mixture of metals and not by any of the individual 

metals 
4 2 0.6 3 
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Table A7.8. Percentage of waterbodies that is potentially not affected and percentage that is 

potentially affected (msPAF > 0.05) by a mixture of Ni, Zn and/or Cu according to the CASSD 

method for the FREGS database, using a log-normal SSD distribution. 

 
Percentage (%) 

No effect 89.80 

Effect 10.20 

   Individual metal effects 6.38  

      Only Zinca  1.66 

      Only Nickela 3.70 

      Only Coppera 0.64 

     Both Zinc and Copperb 0.13  

     Both Zinc, Nickel and Copperb 0.26  

   Mixture effects 3.83  

      Binary combinationsc 2.30 

      Ternary combinationd 1.53 

      Shows the largest TUe  

          Zn 26.7 

          Ni 50.0 

          Cu 23.3 
a The Toxic Unit of zinc, nickel or copper is above 1 
b The Toxic Unit of all mentioned metals is above 1 
c At least one of the possible binary combinations (i.e.Zn&Ni, Zn&Cu, Ni&Cu) shows an effect 
d The ternary combination (but none of the 3 possible binary combinations) shows an effect 
e For each metal the percentages of samples is given in which that metal has the largest Toxic Unit in the sample 

Table  
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Appendix B1. Chemical analyses 

For the ternary mixture experiment, nickel concentrations between 20-200 µg/L, copper concentrations 

between 25-200 µg/L and zinc concentrations below 50 µg/L were measured with inductively coupled 

plasma mass spectrometry (ICP-MS; Agilent 7700x, in the He mode using 72Ge as internal standard; 

reference material TM-27.3; limit of quantification, 0.08 µg Cu/L; 0.26 µgNi/L and 0.17 µg Zn/L; method 

detection limit, 0.02 µg Cu/L; 0.07 µg Ni/L and 0.05 µg Zn/L). Zinc concentrations above 50 µg/L and 

nickel and copper concentrations between 200-1000 µg/L were measured with flame atomic absorption 

spectrophotometry (FAAS, SpectrAA100, Varian, Mulgrave, Australia; reference material TMDA-70; 

limit of quantification, 50 µg Cu/L; 60 µgNi/L and 20 µg Zn/L; method detection limit, 15 µg Cu/L; 18 µg 

Ni/L and 6 µg Zn/L). Nickel and copper concentrations lower than 20 µg/L and 25 µg/L, respectively, 

were measured using graphite furnace atomic absorption spectrophotometry (GFAAS Furnace 

Autosampler, Thermo Fisher Scientific Inc. reference material TM24.3; limit of quantification, 2.5 µg 

Cu/L and 1 µgNi/L; method detection limit, 0.75 µg Cu/L and 0.30 µg Ni/L). Cation samples (Ca, Mg, 

Na, K) were measured with ICP-MS. Anion samples (SO4, Cl) were analysed using ion chromatography 

(DI-ONEX2000i/SP; Dionex, Sunnyvale, CA, VS). 

For the binary mixture experiment, nickel concentrations below 20 µg/L and copper concentrations 

below 25 µg/L concentrations were measured using GFAAS. Nickel concentrations above 200 µg/L and 

copper concentrations above 50 µg/L were measured using FAAS. Cations were analysed using both 

GFAAS and FAAS. Anion samples were analysed using spectrophotometry (Aquamate, Thermo 

Electron Corporation; Chloride: Merck, Spectroquant 1.14897.001; Sulphate: Merck, Spectroquant 

1.14548.001). 

For both the ternary and binary mixture experiment, OC and IC were measured with a Total Organic 

Carbon analyser following the NPOC method (TOC-5000, Shimadzu, Duisburg, Germany; Limit of 

Quantification 1.5 mg DOC/L; Method Detection Limit 0.5 mg DOC/L). 
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Appendix B2. Analyses of combined effects 

The analysis of the interactive effects was made based on both the dissolved concentrations and the 

free ion activities, to identify possible shifts in interactions due to competitive binding of Cu, Ni and Zn 

onto DOC. The mean RGR for every treatment was used as input for the analysis of the combined 

effects, which was performed in three subsequent steps. These steps were performed in the software 

package R-1.0.136 (R development Core Team). A first step entailed the prediction of the RGR for the 

mixture combinations, which was made with the reference models CA (Equation B2.1) and IA (Equation 

B2.2) using the parameters of the individual dose response curves of Cu, Ni and Zn (𝐸𝐶50𝑀𝑒𝑖
 and 𝑏𝑀𝑒𝑖

).  

∑
𝑥𝑀𝑒𝑖

 

𝐸𝐶50𝑀𝑒𝑖
∙(

100−𝑅𝐺𝑅𝑚𝑖𝑥
𝑅𝐺𝑅𝑚𝑖𝑥

)

1
𝑏𝑀𝑒𝑖

= 1𝑛
𝑖=1      (Equation B2.1) 

𝑅𝐺𝑅𝑚𝑖𝑥 = 100 ∙ ∏ (
1

1+(
𝑥𝑀𝑒𝑖

𝐸𝐶50𝑀𝑒𝑖
)

𝑏𝑀𝑒𝑖
)𝑛

𝑖=1     (Equation B2.2) 

Where n is the number of metals in the mixture and RGRmix is the predicted mixture growth rate relative 

to the control. These RGRmix values predicted using the CA and IA reference model as well as the 

observed RGRmix values were plotted as a function of the ∑TUMe, a first step to visualize possible 

interactive mixture effects. 

However, whether these observed mixture effects statistically deviated from non-interactivity had to be 

further investigated, which was done in the second and third step of the mixture analysis framework. In 

the second step, Equation B.2 and B.3 were fitted to all data (i.e. single metals and mixture data). 

Subsequently, in the third step, the CA and IA reference models were extended with a deviation 

parameter (a), which is a measure for the deviation of non-interactivity (Joncker et al 2005, Hochmuth 

et al 2014). To solve step 2 or 3, x random parameter sets (i.e. 𝐸𝐶50𝑀𝑒𝑖
, 𝑏𝑀𝑒𝑖

 and a) were sampled 

simultaneously from a normal distribution with the mean and standard deviation originating from the 

𝐸𝐶50𝑀𝑒𝑖
 and 𝑏𝑀𝑒𝑖

of the single metal dose-response curves, until a total of 5000 parameter sets were 

obtained. Five thousand parameter sets resulted in an adequate reduction of the sum of squared errors 

of the model. This is a small difference to the calculations done by Hochmuch et al (2014) and  Nys et 

al (2017]),in which a fixed number of parameters sets were sampled, i.e. 5000 and 20 000 sets, 

respectively. We deemed it necessary to randomly sample x times, as the desired number of parameter 

sets (5000) was not necessary obtained by sampling 5000 times (i.e. not all sampling turns resulted in 

a fit) (see section below). Based on the lowest sum of squared errors, the best set of parameters was 

then selected from these 5000 parameter sets. To examine whether the deviation from non-interactivity 

was significant, it was checked whether the addition of the deviation parameter a significantly improved 

the predictions of the nested models from step 2 and 3 (Hochmuth et al 2014). This was done by 

performing an F-test, after checking the validity of the assumptions for this test.  

Random sampling 

For the interactive effects analysis, we calculated 5000 random samples of input parameter sets, 

because we observed that this number of samples resulted in an adequate reduction of the sum of 

squared errors of the model and increasing the sample numbers (up to 30000) did not change the model 
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fit largely (only small decreases in lowest SSE; Figure B2.1 for the CA model and Figure B2.2 for the IA 

model). Five thousand samples were previously also used in other metal mixture toxicity work (see 

Hochmuth et al. 2014).  

To obtain these 5000 parameter sets, x random parameter sets (i.e. 𝐸𝐶50𝑀𝑒𝑖
, 𝑏𝑀𝑒𝑖

 and a) were sampled 

simultaneously from a normal distribution with mean and standard deviation origination from the 

𝐸𝐶50𝑀𝑒𝑖
 and 𝑏𝑀𝑒𝑖

of the single metal dose-response curves, until a total of 5000 parameter sets were 

obtained 

This is a small difference to the calculations done by Hochmuch et al (2014) and Nys et al (2017c), in 

which a fixed number of parameters sets were sampled, i.e. 5000 and 20 000 sets, respectively. We 

deemed it necessary to randomly sample x times, as the desired number of parameter sets (5000) was 

not necessary obtained by sampling 5000 times (i.e. not all sampling turns resulted in a fit; Table B2.1). 

 

Figure B2.1: Lowest sum of squared errors (SSE) as a function of the number of runs to sample model 
parameters for the interactive effects analyses for the ternary mixture (Loire; top) and for the binary 
mixture (Bihain; bottom). The reduction in sum of squared error is shown for the CA model: for non-
interaction (left graphs) and for mixture interaction (CA reference model extended with a deviation 
parameter (a); right graphs). 
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Figure B1.2: Lowest sum of squared errors (SSE) as a function of the number of runs to sample model 

parameters for the interactive effects analyses for the ternary mixture (Loire; top) and for the binary 

mixture (Bihain; bottom). The reduction in sum of squared error is shown for the IA model: for non-

interaction (left graphs) and for mixture interaction (IA reference model extended with a deviation 

parameter (a); right graphs). 
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Table B1.1. A range of number of runs necessary to obtain 5000 parameter sets (i.e. 𝑬𝑪𝟓𝟎𝑴𝒆𝒊
, 𝒃𝑴𝒆𝒊

 and a), 

for ternary and binary mixtures for the mixture reference models Concentration Addition (CA; Equation 

3.1) and  independent Action (IA; Equation 3.2). Results are given for dissolved metal concentrations as 

well as free metal ion activities. 

 

  

CA non-

interaction 

CA mixture 

interaction 

IA non-

interaction 

IA mixture 

interaction 

Ternary 
Dissolved 5000-5018 7452-9882 5000 5011-5319 

Activity 5000-5055 6107-8691 5000-5064 5009-5459 

Binary 
Dissolved 5018-6090 33999-60508 5000-5017 7808-8261 

Activity 5017-6680 22037-29008 5000-5107 8093-8178 

 

 

 

 



 

 
 

Appendix B3. Test validity criteria and concentration response data of the individual metal exposures 

 

Table B3.1 Evaluation of compliance with the validation criteria of the Pseudokircherniella subcapitata growth test (OECD 2002) 

 Loire Dolaison Moselotte Bihain Brisy1 Voyon Brisy2 Markermeer 

Validation criteria 72-h 48-h 72-h 48-h 72-h 48-h 72-h 48-h 72-h 48-h 72-h 48-h 72-h 48-h 72-h 48-h 

Control growth rate (d-1) 
1.56 

±0.10 
1.88 

±0.10 
1.68 
±0.02 

1.78 
±0.03 

1.65 
±0.02 

1.91 
±0.04 

1.44 
±0.01 

1.74 
±0.01 

1.60 
±0.00 

1.89 
±0.01 

1.50 
±0.00 

1.79 
±0.01 

1.52 
±0.01 

1.82 
±0.01 

1.55 
±0.01 

1.87 
±0.01 

Control biomass 
increase>16?a 104 43 172 38 108 32 77 32 125 44 91 36 97 38 98 42 

CVgrowth rate, control<7%?b 0.9% 0.7% 1.1% 1.7% 0.7% 1.2% 1.2% 1.2% 1.0% 1.6% 0.8% 1.80% 1.10% 2.0% 2.6% 1.9% 

Mean CVsection≤35%?c 39% 14% 13% 11% 21% 9.5% 43% 28% 37% 26% 39% 26% 39% 24% 41% 13% 

Pass validity criteria? Fail Pass Pass Pass Pass Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass 
a Control biomass should have increased exponentially by a factor of at least 16 within test period. 
b The coefficient of variation of average specific growth rates in the controls (CVgrowth rate, control) must not exceed 7%. 
c The mean coefficient of variation for section-by-section specific growth rates in the controls (CVsection) must not exceed 35%
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Figure B3.1 Concentration response data for relative growth rate (RGR, %) and fitted log-logistic 

concentration response curves of the individual Cu (crosses), Ni (triangles) and Zn (circles) exposures  in 

the Pseudokircherniella subcapitata experiments for the waters Loire (A), Dolaizon (B), Moselotte (C). Left 

panels show data based on dissolved concentrations, right panels based on calculated free ion activities. 

Error bars represent standard errors.  
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Figure B3.1 Concentration response data for relative growth rate (RGR, %) and fitted log-logistic concentration 

response curves of the individual Cu (crosses), Ni (triangles) and Zn (circles) exposures  in the Pseudokircherniella 

subcapitata experiments for the waters Bihain (A), Brisy1 (B), Voyon (C), Brisy2 (D) and Markermeer (E). Left panels 

show data based on dissolved concentrations, right panels based on calculated free ion activities. Error bars represent 

standard errors.  
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Table B3.2 Measured metal concentrations and observed relative growth rate (RGR) in the single metal 
treatments during the ternary experiments with Pseudokircherniella subcapitata. NA = not applicable 

 
 Loire Dolaison Moselotte 

 
Dissolved Me 
concentration 

(µg/L; ± Stdev) 

Observed 
RGR (%; ± 

Stdev) 

Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed RGR 
(%; ± Stdev) 

Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed 
RGR (%; ± 

Stdev) 

Single 
dose 

Ni 

6 ± 0.2 100 ± 0 1 ± 0.0 100 ± 0 0.4 ± 0.0 100 ± 0 

64 ± 2.3 101 ± 1 12 ± 0.0 103 ± 4 11 ± 0.0 101 ± 2 

130 ±0.2 97 ± 3 15 ± 0.2 105 ± 3 15 ± 0.1 98 ± 5 

172 ± 0.3 91 ± 1 19 ± 0.2 100 ± 7 25 ± 0.0 101 ± 2 

256 ± 1.0 80 ± 1 40 ± 0.3 98 ± 1 36 ± 0.1 97 ± 3 

334 ± 2.1 67 ± 1 53 ± 0.7       100 ± 2 50 ± 0.0 97 ± 4 

515 ± 0.7 53 ± 1 83 ± 0.1 99 ± 5 66 ± 0.9 92 ± 1 

657 ± 3.4 39 ± 1 110 ± 0.2 99 ± 0 100 ± 0.8 85 ± 1 

1032 ± 4.2 8 ± 2 170 ± 0.7 95 ± 3 146 ± 0.2 75 ± 2 

NA NA 242 ± 0.4 88 ± 3 232 ± 1.4 58 ± 1 

NA NA 365 ± 1.6 69 ± 2 NA NA 

Single 
dose 
Cu 

1 ± 0.0 100 ± 0 1 ± 0.1 100 ± 0 1 ± 0.0 100 ± 0 

6 ± 0.1 98 ± 1 4 ± 0.4 102 ± 1 2 ± 0.0 97 ± 4 

12 ± 0.1 97 ± 0 4 ± 0.1 102 ± 2 3 ± 0.0 96 ± 2 

18 ± 0.1 97 ± 1 5 ± 0.0 104 ± 4 7 ± 4.3 98 ± 1 

28 ± 0.2 88 ± 1 8 ± 0.3 96 ± 5 5 ± 0.0 96 ± 2 

39 ± 0.1 86 ± 1 10 ± 0.3 94 ± 6 9 ± 0.0 89 ± 3 

68 ± 0.6 68 ± 2 16 ± 0.2 78 ± 10 13 ± 0.2 71 ± 1 

88 ± 0.8 52 ± 1 24 ± 0.1 59 ± 19 22 ± 0.6 51 ± 3 

137 ± 1.6 37 ± 1 40 ± 0.3 36 ± 20 31 ± 0.3 39 ± 2 

NA NA 50 ± 0.6 46 ± 43 48 ± 0.4 29 ± 1 

NA NA 80 ± 1.3 18 ± 14 NA NA 

Single 
dose 
Zn 

1 ± 0.0 100 ± 0 3 ± 0.2 100 ± 0 2 ± 0.5 100 ± 0 

28 ± 0.2 101 ± 1 7 ± 0.2 103 ± 1 7 ± 0.3 100 ± 1 

51 ± 0.6 101 ± 0 7 ± 0.6 95 ± 1 9 ± 0.1 95 ± 2 

71 ± 0.4 91 ± 3 10 ± 0.2 89 ± 4 20 ± 0.6 72 ± 5 

114 ± 1.6 71 ± 2 21 ± 0.6 67 ± 1 30 ± 5.1 64 ± 1 

146 ± 1.1 63 ± 4 28 ± 0.3 63 ± 0 44 ± 0.4 57 ± 1 

198 ± 2.6 49 ± 8 49 ± 1.5 51 ± 1 63 ± 0.3 57 ± 14 

298 ± 0.9 35 ± 11 62 ± 0.3 44 ± 2 95 ± 0.4 29 ± 1 

450 ± 8.0 22 ± 0 96 ± 0.3 26 ± 2 128 ± 0.4 16 ± 0 

NA NA 110 ± 1.2 24 ± 2 196 ± 1.8 11 ± 0 

NA NA 188 ± 4.0 7 ± 2 NA NA 

 

 

 



 

 
 

Table B3.3 Measured metal concentrations and observed relative growth rate (RGR) in the single metal treatments during the binary experiments with 
Pseudokircherniella subcapitata.  

 
 Bihain Brisy1 Voyon Brisy2 Markermeer 

 
Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed 
RGR (%; 
Stdev) 

Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed 
RGR (%; 
Stdev) 

Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed 
RGR (%; 
Stdev) 

Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed 
RGR (%; 
Stdev) 

Dissolved Me 
concentration 
(µg/L; Stdev) 

Observed 
RGR (%; 
Stdev) 

Single 
dose 

Ni 

5 ± 2.2 100 ± 0 4 ± 2.9 100 ± 0 5 ± 3.1 100 ± 0 4 ± 2.9 100 ± 0 4 ± 2.9 100 ± 0 

45 ± 0.3 98 ± 0 33 ± 4.4 99 ± 2 43 ± 0.5 98 ± 1 36 ± 3.4 98 ± 1 51 ± 2.4 99 ± 2 

208 ± 3.1 92 ± 2 135 ± 3.4 97 ± 1 159 ± 4.5 94 ± 7 138 ± 14.3 96 ± 1 180 ± 13.8 97 ± 2 

970 ± 37.1 15 ± 7 715 ± 16.6 35 ± 9 952 ± 9.7 62 ± 1 645 ± 38.0 59 ± 1 931 ± 45.6 68 ± 1 

1748 ± 0.7 6 ± 1 1381 ± 4.9 3 ± 2 1815 ± 13.4 15 ± 1 1388 ± 78.5 23 ± 2 1836 ± 83.4 46 ± 1 

2601 ± 31.8 0 ± 0 2052 ± 1.4 5 ± 4 2680 ± 21.2 8 ± 3 2015 ± 51.6 23 ± 1 2634 ± 160.5 26 ± 1 

Single 
dose 
Cu 

5 ± 2.6 100 ± 0 2 ± 0.5 100 ± 0 3 ± 1.3 100 ± 0 2 ± 0.7 100 ± 0 2 ± 0.2 100 ± 0 

38 ± 0.0 95 ± 1 28 ± 0.0 95 ± 1 24 ± 0.0 97 ± 1 18 ± 0.0 97 ± 4 64 ± 0.0 89 ± 6 

146 ± 8.3 77 ± 1 123 ± 6.2 49 ± 1 85 ± 3.5 80 ± 0 74 ± 8.8 77 ± 1 169 ± 16.6 31 ± 2 

223 ± 1.3 79 ± 1 176 ± 2.8 28 ±.3 122 ± 3.5 73 ± 2 92 ± 4.1 65 ± 1 204 ± 18.0 26 ± 1 

418 ± 0.6 43 ± 7 212 ± 6.9 15 ± 1 322 ± 22.1 56 ± 1 183 ± 9.0 26 ± 8 383 ± 22.8 11 ± 1 

659 ± 0.7 22 ± 2 314 ± 11.1 12 ± 4 489 ± 14.5 25 ± 4 290 ± 17.3 12 ± 3 468 ± 8.3 13 ± 3 
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Appendix B4. Analysis of mixture effects 

Table B4.1 Metal concentrations (± st. dev.) and observed relative growth rate (RGR ± st.dev.) used for 
mixture response analysis for the ternary metal mixture of the Pseudokircherniella subcapitata in three 
natural waters. 

Test 
water 

Nominal 
∑TUEC50,Me 

Dissolved Zn 
concentration 
(µg/L; Stdev) 

Dissolved Ni 
concentration 
(µg/L; Stdev) 

Dissolved Cu 
concentration 
(µg/L; Stdev) 

∑TUMediss 
Observed 
RGR (%; 
Stdev) 

Loire 

0.38 26 ± 0.4  62 ± 0.2 7 ± 0.1 0.33 99 ± 1 

0.75 53 ± 0.1 133 ± 0.2 14 ± 0.0 0.63 75 ± 5 

1.00 74 ± 0.7 177 ± 1.0 23 ± 0.2 0.87 47 ± 2 

1.50 113 ± 2.5 265 ± 5.3 34 ± 0.8 1.35 31 ± 1 

2.00 155 ± 0.0 330 ± 0.9 45 ± 0.0  1.78 33 ± 1 

3.00 230 ± 1.2 531 ± 2.3 70 ± 0.6 2.69 27 ± 3  

4.00 299 ± 0.3 695 ± 2.5 88 ± 0.8 3.67 20 ± 2 

6.00 445 ± 0.9 1223 ± 3.0 131 ± 0.2 5.66 11 ± 1 

Dolaizon 

0.19 5 ± 0.2 11 ± 0.0  3 ± 0.0 0.27 102 ± 2 

0.25 8 ± 0.4 14 ± 0.0 4 ± 0.0 0.28 98 ± 3 

0.38 11 ± 0.3 21 ± 0.1 4 ± 0.0 0.37 94 ± 1 

0.75 21 ± 0.7 44 ± 0.1 8 ± 0.0 0.73 66 ± 5 

1.00 26 ± 0.6 56 ± 0.6 8 ± 0.1 0.97 61 ± 2 

1.50 43 ± 0.4 87 ± 0.2 16 ± 0.1 1.62 39 ± 1 

2.00 56 ± 0.5 119 ± 0.3 21 ± 0.1 2.16 27 ± 4 

3.00 95 ± 1.5 179 ± 0.0 39 ± 0.6 3.42 12± 4 

4.00 106 ± 3.8 237 ± 4.0 38 ± 0.7 4.15 9 ± 2 

6.00 183 ± 2.7 352 ± 0.1 82 ± 1.2 6.84 7 ± 1 

Moselotte 

0.30 8 ± 0.0 10 ± 0.2 2 ± 0.1 0.33 97 ± 2 

0.38 10 ± 0.1 13 ± 0.0 2 ± 0.0 0.28 97 ± 1 

0.75 19 ± 0.2 26 ± 0.1 3 ± 0.0 0.50 82 ± 4 

1.00 26 ± 0.1 34 ± 0.1 5 ± 0.0 0.68 73 ± 2 

1.50 42 ± 0.9 50 ± 0.6  7 ± 0.1 1.05 49 ± 1 

2.00 57 ± 0.6 65 ± 0.3 10 ± 0.1 1.48 40 ± 1 

3.00 86 ± 0.4 100 ± 0.4 17 ± 0.1 2.25 33 ± 2 

4.00 120 ± 0.3 132 ± 0.8 24 ± 0.3 3.32 26 ± 1 

6.00 176 ± 5.3 198 ± 3.2 29 ± 0.4 4.83 16 ± 2 
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Table B4.2 Metal concentrations (± st. dev.) and observed relative growth rate (RGR ± st.dev.) used for 
mixture response analysis for the binary metal mixture of the Pseudokircherniella subcapitata in five 
natural waters. 

Test water 
Nominal 

∑TUEC50,Me 

Dissolved Ni 
concentration 
(µg/L; Stdev) 

Dissolved Cu 
concentration 
(µg/L; Stdev) 

∑TUMediss 
Observed 
RGR (%; 
Stdev) 

Bihain 

0.20 40 ± 0.2 13 ± 1.1 0.19 99 ± 1 

0.44 85 ± 0.6 36 ± 0.0 0.81 93 ± 1 

0.92 209 ± 3.5 52 ± 0.4 2.50 53 ± 1 

2.00 468 ± 0.7 137 ± 16.5 4.56 59 ± 3 

4.40 1004 ± 14.1 231 ± 12.4 6.88 32 ± 8 

Brisy1 

0.20 28 ± 0.5 6 ± 0.8 0.29 97 ± 2 

0.44 77 ± 4.7 10 ± 0.2 1.28 98 ± 2 

0.92 154 ± 3.3 19 ± 0.9 2.72 93 ± 2 

2.00 378 ± 37.3 34 ± 4.1 4.17 48 ± 2 

4.40 778 ± 9.7 173 ± 14.5 6.19 9 ± 6 

Voyon 

0.20 36 ± 2.8 8 ± 2.6 0.12 102 ± 7 

0.44 80 ± 2.2 14 ± 2.7 0.45 96 ± 2 

0.92 208 ± 12.1 33 ± 4.4 1.29 93 ± 1 

2.00 463 ± 0.7 63 ± 5.5 2.78 58 ± 2 

4.40 1002 ± 35. 178 ± 9.0 4.15 54 ± 1 

Brisy2 

0.20 36 ± 0.5 6 ± 0.0 0.20 99 ± 1 

0.44 78 ± 0.5 11 ± 2.6 0.79 98 ± 2 

0.92 156 ± 5.9 17 ± 4.1 1.58 85 ± 7 

2.00 351 ± 20.0 42 ± 7.6 3.29 64 ± 2 

4.40 741 ± 19.4 105 ± 4.1 4.97 35 ± 1 

Markermeer 

0.20 46 ± 3.4 10 ± 0.0 0.52 100 ± 0.4 

0.44 107 ± 9.7 24 ± 0.0 1.40 98 ± 3 

0.92 220 ± 13.2 48 ± 8.4 2.15 71 ± 1 

2.00 478 ± 15.2 134 ± 11.4 4.10 35 ± 1 

4.40 1058 ± 39.6 224 ± 16.6 5.26 14 ± 2 



       

 
 

Figure B4.1 Observed and predicted relative reproduction in the ternary Cu-Ni-Zn and binary Cu-Ni mixture combinations as a function of the sum of toxic units 

based on dissolved concentrations for the Pseudokircherniella subcapitata experimental series for the Loire (A), Dolaizon (B), Moselotte (C), Bihain (D), Brisy1 (E), 

Voyon (F), Brisy2 (G) and Markermeer (H) test waters. Symbols are denoted as follows: observed reproduction (orange circles), predictions of concentration addition 

(CA, blue triangles), and predictions of independent action (IA, purple squares). Predictions are based on the parameters (EC50Mediss,i and bMediss,i) of the individual 

concentration-response curves of Cu, Ni and Zn (Table 3.4). Error bars represent standard errors.  
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Table B4.3 Estimated model parameters for the mixture reference models Concentration Addition (CA; 

Equation 2) and  independent Action (IA; Equation 3.3)a fitted to the growth data of Pseudokircherniella 

subcapitata in the ternary mixture. 

  CA non-interaction 
CA mixture 
interaction IA non-interaction 

IA mixture 
interaction 

  Cu Ni Zn Cu Ni Zn Cu Ni Zn Cu Ni Zn 

Loire 

EC50Mediss (µg/L) 102 525 226 105 490 228 98 493 212 92 518 203 

bMediss 1.63 2.16 1.7 1.69 1.91 1.71 1.55 1.8 1.48 1.62 1.88 1.64 

a   1.38  -5.27 

AIC 215 218 230 230 

F-test F = -1.11; p = 1 F = 1.64; p = 0.21 

EC50Me2+ (nmol/L) 28 4809 1263 28 4210 1438 27 4713 1319 31 4740 1159 

bMe2+ 0.83 1.95 1.59 0.8 1.98 1.57 0.82 2.05 1.39 0.76 1.92 1.55 

a   -1.2  3.77 

AIC 213 221 228 232 

F-test F = -3.99; p = 1 F = -1.09; p = 1 

Dolaizon 

EC50Mediss (µg/L) 40 518 55 38 549 56 37 558 48 36 582 49 

bMediss 1.94 3.1 1.32 2.25 2.03 1.26 1.9 1.88 1.24 1.81 1.61 1.15 

a   6.66  5.01 

AIC 259 260 250 254 

F-test F = 0.85; p = 0.36 F = -1.71; p = 0.21 

EC50Me2+ (nmol/L) 0.45 3925 167 0.58 3922 141 0.54 3779 168 0.51 4231 136 

bMe2+ 0.92 1.92 1.24 0.99 1.82 1.23 0.93 1.89 1.17 0.9 1.77 1.19 

a   6.74  15.64 

AIC 260 266 252 256 

F-test F = -3.41; p = 1 F = -1.68; p = 1 

Moselotte 

EC50Mediss (µg/L) 34 276 72 32 239 55 31 235 65 33 247 58 

bMediss 2.29 2.05 1.36 2.54 2.16 1.52 2.29 2.46 1.4 2.28 1.97 1.32 

a   26.97  11.69 

AIC 259 209 234 215 

F-test F = 90.99; p < 0.001 F = 21.73; p < 0.001 

EC50Me2+ (nmol/L) 3.53 2563 394 3 2257 315 4 2237 396 3 2410 326 

bMe2+ 1.04 1.78 1.33 1.03 2.25 1.39 1.1 2.3 1.25 0.93 1.81 1.36 

a   36.07  29.75 

AIC 250 220 248 216 

F-test F = -40.82; p < 0.001 F = 46; p < 0.001 
 a Fitted using the mixture analysis framework of Jonker et al. (2005) as described by Hochmuth et al. (2014); 
EC50= effective concentration causing 50% effect, a=deviation parameter to quantify mixture 
interactions, AIC=akaike information criterion. The F-test compares the nested models CA-non interaction with 
CA-mixture interaction and the IA-non-interaction with the IA-mixture interaction; p < 0.05 indicates significant 
deviation from non-interaction 
b If a<0 the mixture components interact synergistic, if a>0 the mixture components interact antagonistic
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Table B4.4 Estimated model parameters for the mixture reference models Concentration Addition (CA; 

Equation 2) and  independent Action (IA; Equation 3)a fitted to the growth data of Pseudokircherniella 

subcapitata in the binary mixture. 

  CA non-
interaction 

CA mixture 
interaction 

IA non-
interaction 

IA mixture 
interaction 

  Cu Ni Cu Ni Cu Ni Cu Ni 

Bihain 

EC50Mediss 
(µg/L) 

364 521 331 500 364 485 420 450 

bMediss 1.51 1.84 1.63 2.11 2.18 1.57 2.85 1.7 

ab  1.27  -0.35 

AIC 121 123 122 126 

F-test F = 0.18; p = 0.68 F = -1.46; p = 1 

EC50Me2+ 
(nmol/L) 

78 4350 87 3636 99 4667 83 4523 

bMe2+ 0.69 1.52 0.61 1.95 0.75 1.55 0.53 1.6 

ab  5.75  3.23 

AIC 119 118 122 120 

F-test F = 2.16; p = 0.17 F = 3.28; p = 0.10 

Brisy1 

EC50Mediss 
(µg/L) 

166 559 115 628 115 444 130 509 

bMediss 2.39 2.64 1.95 3.62 2.04 2.19 2.48 2.19 

ab  -0.37  -1.04 

AIC 85 89 95 98 

F-test F = -2.08; p = 1 F = -0.70; p = 1 

EC50Me2+ 
(nmol/L) 

66 9155 54 7588 58 9284 62 8459 

bMe2+ 0.99 4.95 0.94 2.67 0.98 4.61 1.01 3.03 

ab  1.26  0.66 

AIC 99 99 88 92 

F-test F = 1.26; p = 0.29 F = -0.82; p = 1 

Voyon 

EC50Mediss 
(µg/L) 

336 1132 374 1097 293 1129 323 984 

bMediss 1.01 2.87 0.85 2.62 1.09 2.4 0.94 2.57 

ab  1.21  0.6 

AIC 114 116 115 119 

F-test F =0.38; p = 0.55 F = -1.07; p = 1 

EC50Me2+ 
(nmol/L) 

250 11591 274 10653 245 12514 213 12876 

bMe2+ 0.57 3 0.5 3.37 0.59 3.03 0.58 3.75 

ab  1.05  0.14 

AIC 106 109 111 114 

F-test F = -0.63; p = 1 F = -0.57; p = 1 

Brisy2 

EC50Mediss 
(µg/L) 

125 826 122 836 121 747 122 760 

bMediss 2.29 1.59 2.52 1.4 2.3 1.41 2.17 1.22 

ab  0.43  0.24 

AIC 90 90 89 94 

F-test F = 1.29; p = 0.28 F = -2.03; p = 1 
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EC50Me2+ 
(nmol/L) 

14 7906 13 7534 14 8096 12 7197 

bMe2+ 1.06 1.42 1.09 1.3 0.99 1.4 1.06 1.25 

ab  0.87  1.19 

AIC 86 88 93 93 

F-test F = -0.302; p = 1 F = 1.37; p = 0.27 

Markermeer 

EC50Mediss 
(µg/L) 

127 1507 123 1548 122 1477 131 1828 

bMediss 2.29 1.5 2.09 1.38 2.13 1.36 2.09 1.62 

ab  -0.75  -1.69 

AIC 94 101 100 102 

F-test F = -2.61; p = 1 F = -0.06; p = 1 

EC50Me2+ 
(nmol/L) 

4 11180 4 11408 4 10775 5 12432 

bMe2+ 1.04 1.44 0.96 1.56 0.96 1.39 1.19 1.68 

ab  -1.58  -1.86 

AIC 93 92 94 97 

F-test F = 2.37; p = 0.15 F = -0.48; p = 1 
a Fitted using the mixture analysis framework of Jonker et al. (2005) as described by Hochmuth et al. (2014); 
EC50= effective concentration causing 50% effect, a=deviation parameter to quantify mixture 
interactions, AIC=akaike information criterion. The F-test compares the nested models CA-non interaction with 
CA-mixture interaction and the IA-non-interaction with the IA-mixture interaction; p < 0.05 indicates significant 
deviation from non-interaction 
b If a<0 the mixture components interact synergistic, if a>0 the mixture components interact antagonistic
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Table B4.5 Root-mean-squared-errors (RMSE) as indicators of best model fit, for the concentration addition 

and independent action reference models, for the ternary Cu-Ni-Zn and binary Cu-Ni mixtures within 

different waters bodies. RMSE is given for model fits based on dissolved concentrations and free ion 

activities. 

  Dissolved concentrations Free ion activities 

  Concentration 
Addition 

Independent 
Action 

Concentration 
Addition 

Independent 
Action 

Ternary 
Loire 9.49 14.14 8.91 13.21 
Dolaizon 8.26 1.95 8.36 6.69 
Moselotte 11.95 9.12 9.69 12.44 

Binary 

Bihain 19.16 19.53 17.86 19.67 
Brisy1 3.58 12.89 9.86 6.15 
Voyon 12.71 13.28 9.59 11.95 
Brisy2 5.33 5.72 4.13 6.01 
Markermeer 4.54 8.50 5.85 6.95 
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Appendix C1. Measured metal concentrations 

 
Figure B1.1. Average measured dissolved copper (A), nickel (B) and zinc (C) concentrations in the 

environmental ratio treatments before spiking (empty symbols) and after spiking (full symbols). Error bars 

denote standard deviations. Horizontal lines indicate nominal concentrations of the environmental ratio 

treatments 
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Appendix C2.  

 

Figure B2.1 Species sensitivity distribution (SSD) of Cu, Ni and Zn including chronic toxicity data of 

algae, invertebrates and fish. 
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Appendix C3. Filamentous algae 

The colonies of filamentous algae were counted as single individuals. This implies that the biomass 

accounted for by these filamentous algae is somewhat underestimated as is seen in Figure B3. 

 

Figure B3 Image of the high abundance of filamentous algae present in the control treatments. At the top 

of the image, a nauplius larvae is visible. 
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Appendix C4. Overview of zoo- and phytoplankton present in chronic toxicity 

databases 

Table B4.1. Zooplankton and phytoplankton species for which chronic toxicity data is present in the 

copper toxicity database (ECI 2008). 

Species Taxon Group 

Chlamydomonas reinhardtii Chlorophyta Phytoplankton 

Pseudokircheneriella subcapitata Chlorophyta Phytoplankton 

Ceriodaphnia dubia Cladocera Zooplankton 

Daphnia magna Cladocera Zooplankton 

Daphnia pulex Cladocera Zooplankton 

Ceriodaphnia dubia Cladocera Zooplankton 

Brachionus calyciflorus Rotifera Zooplankton 

 

Table B4.2. Zooplankton and phytoplankton species for which chronic toxicity data is present in the 

nickel toxicity database (DEPI 2008, Nys et al. 2015). 

Species Taxon Group 

Pseudokircheneriella subcapitata Chlorophyta Phytoplankton 

Daphnia magna Cladocera Zooplankton 

Ceriodaphnia dubia Cladocera Zooplankton 

Ceriodaphnia quadrangula Cladocera Zooplankton 

Peracantha truncata Cladocera Zooplankton 

Daphnia longispina Cladocera Zooplankton 

Alona affinis Cladocera Zooplankton 

Ceriodaphnia pulchella Cladocera Zooplankton 

Simocephalus vetulus Cladocera Zooplankton 

Chlamydomonas sp Chlorophyta Phytoplankton 

Ankistodesmus falcatus Chlorophyta Phytoplankton 

Scenedesmus accuminatus Chlorophyta Phytoplankton 

Chlorella sp. Chlorophyta Phytoplankton 

Desmodesmus spinosus Chlorophyta Phytoplankton 

Pediastrum duplex Chlorophyta Phytoplankton 

Coelastrum microporum Chlorophyta Phytoplankton 

Brachionus calyciflorus Rotifera Zooplankton 
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Table B4.3. Zooplankton and phytoplankton species for which chronic toxicity data is present in the zinc 

toxicity database (Van Sprang et al. 2009). 

Species Taxon Group 

Pseudokircheneriella 
subcapitata 

Chlorophyta Phytoplankton 

Chlorella sp. Chlorophyta Phytoplankton 

Ceriodaphnia dubia Cladocera Zooplankton 

Daphnia magna Cladocera Zooplankton 

Daphnia longispina Cladocera Zooplankton 

Anaeropsis fissa Rotifera Zooplankton 

Brachionus rubens Rotifera Zooplankton 

Brachionus 
calyciflorus 

Rotifera Zooplankton 
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Appendix D1. Chronic Cu Daphnia magna bioavailability model 

 
D1.1 Calculation of the intrinsic sensitivity, i.e. EA50, for D. magna. 

To obtain toxicity predictions, the BLMs were applied in two modes. First, they were run in speciation 

mode to obtain an ‘average’ intrinsic sensitivity for D. magna, i.e. EA50. This ‘average’ intrinsic sensitivity 

was calculated in different steps. (1) For each test medium i, the [𝐸𝐶50𝐶𝑢2+]0,𝑖 was calculated (Equation 

D1.1). 

[𝐸𝐶50𝐶𝑢2+]0,𝑖 =  
ƒ𝐶𝑢𝐵𝐿
50%

(1− ƒ𝐶𝑢𝐵𝐿
50% ) ∙ 𝐾𝐶𝑢𝐵𝐿

                                             (D1.1) 

Where KCuBL = the stability constant for the binding of copper to the biotic ligand (L ∙ mol−1) and ƒCuBL
50% =

[Total Gill−Cu]

30
. Here, [Total BL-Cu] is the ‘critical gill-concentration’ or ‘biotic ligand concentration of copper’ 

(nmol ∙ g−1). This is the amount of accumulation of copper to the biotic ligand that results in a well-

defined effect (here: 50% reduction of reproduction relative to a control without copper). For the UGent 

BLM, the [Total BL-Cu] = [BL-Cu] + [BL-CuOH]  + [BL-CuCO3] because the BLM accounts for binding of 

Cu2+, CuOH+ and CuCO3 to the biotic ligand and thus assumes that Cu2+, CuOH+ and CuCO3 all 

contribute to toxicity. For the HydroQual BLM, the [Total BL-Cu] = [BL-Cu] + [BL-CuOH] because the 

BLM accounts for binding of Cu2+ and CuOH+ to the biotic ligand and thus assumes that only Cu2+ and 

CuOH+ and not CuCO3 contribute to toxicity. Furthermore, the 30 in ƒCuBL
50% =

[Total BL−Cu]

30
 refers to the total 

copper binding capacity of the biotic ligand of 30 nmol Cu/ g wet weight. This means for example that a 

critical fractional biotic ligand occupancy (ƒCuBL
50% ) of 30% would correspond to a critical accumulation of 

9 nmol/g wet weight when using the BLM software. (2) In a second step, the geometric mean of all the 

[𝐸𝐶50𝐶𝑢2+]0,𝑖 values (across all n test media) was calculated. 

𝑔𝑒𝑜𝑚𝑒𝑎𝑛([𝐸𝐶50𝐶𝑢2+]0,𝑖) = √∏ [𝐸𝐶50𝐶𝑢2+]0,𝑖
𝑛
𝑖

𝑛
                                                      (D1.2) 

(3)The final ‘average’  ƒ𝐶𝑢𝐵𝐿
50%  (across all media) was calculated. 

ƒ𝐶𝑢𝐵𝐿
50% = (

𝑔𝑒𝑜𝑚𝑒𝑎𝑛([𝐸𝐶50
𝐶𝑢2+]

0,𝑖
)  ∙ 𝐾𝐶𝑢𝐵𝐿

1+𝑔𝑒𝑜𝑚𝑒𝑎𝑛([𝐸𝐶50𝐶𝑢2+]
0,𝑖

) ∙ 𝐾𝐶𝑢𝐵𝐿
)                                (D1.3) 

(4) This value was multiplied by 30 to obtain the [Total BL-Cu], i.e. EA50, which was entered as 

parameter value into the BLMs. 

After this, in a second phase, the BLMs were run in toxicity mode (using this parameter value) to obtain 

the predictions of toxicity (EC50s) as µg/L dissolved Cu. 
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D1.2 Calculation of Me2+ ion activities based on Me2+ ion concentrations. 

Me2+ activities were calculated from Me2+ concentrations (which is one of the output variables of the 

BLM software) using activity constants calculated with the Davies Equation (Stumm and Morgan 1996; 

Malmberg and Maryott 1956). First, the dielectric constant was calculated. 

𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 87.74 −  0.4008 ∙ 𝑇 + 9.398 ∙ 10−4 ∙ 𝑇2 − 1.41 ∙ 10−6 ∙ 𝑇3                          (D1.4) 

Where T = the temperature in °C. As the temperature was 20°C in all tests, this Dielectric constant is 

constant for all toxicity tests, i.e. 80.14. The Dielectric constant was then used to calculate the Davies 

parameter. 

𝐷𝑎𝑣𝑖𝑒𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 1.82 ∙ 106(𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑇′)−
3

2                            (D1.5) 

Where T’ = the temperature in Kelvin. This Davies parameter is also a constant, i.e. 0.51. The Davies 

parameter was in turn used to calculate the activity coefficient (γ2). 

γ2 =  10
(−𝐷𝑎𝑣𝑖𝑒𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟∙22∙

√𝐼𝑆

1+ √𝐼𝑆
−0.2∙𝐼𝑆)

                                  (D1.6) 

Where IS = the Ionic Strength (𝑚𝑜𝑙 ∙ 𝐿−1) (also an output of the BLM software used). Finally the Me2+ 

activity (𝑚𝑜𝑙 ∙ 𝐿−1) was calculated based on the calculated free metal concentration, “Free Metal”  (𝑚𝑜𝑙 ∙

𝐿−1), an output from the BLM. 

𝑀𝑒2+𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (mol ∙ L−1)   = γ2 ∙ 𝐹𝑟𝑒𝑒 𝑀𝑒𝑡𝑎𝑙                              (D1.7) 

The activities of Ca2+ (mol ∙ L−1) and Mg2+ (mol ∙ L−1)  were calculated by multiplying γ2with the 

concentration of free Ca2+ (mol ∙ L−1)  and Mg2+ (mol ∙ L−1), respectively. The Na+ activity was calculated 

by multiplying γ1 with the concentration of free Na+ (mol ∙ L−1). 

γ1 =  10
(−𝐷𝑎𝑣𝑖𝑒𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟∙12∙

√𝐼𝑆

1+ √𝐼𝑆
−0.2∙𝐼𝑆)

                               (D1.8) 
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D1.3 Intrinsic sensitivities, i.e. EA50’s, for the K6 and ARO clone used in the UGent and 

HydroQual BLMs. 

 

Table D1.1. Assuming an identical sensitivity for both D. magna clones. 

 UGent BLM HydroQual BLM 

EA50 (nmol/g) 7.01 0.046 

 

Table D1.2. Assuming a separate intrinsic sensitivity for both D. magna clones. 

  
UGent BLM HydroQual BLM 

EA50 (nmol/g) 
ARO clone 6.57 0.031 

K6 clone 7.70 0.089 

 

Table D1.3. Assuming separate intrinsic sensitivities per clone and per study. 

 
 

UGent BLM HydroQual BLM 

EA50 

(nmol/g) 

De Schamphelaere & Janssen (2004c) -K6 clone 5.76 0.058 

Rodriguez et al. (2012) - ARO clone 3.98 0.15 

Villavicencio et al. (2011) - ARO clone 6.81 0.027 

Heijerick et al. (2002) - K6 clone 12.10 0.16 
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D1.4  

 

Figure D1.1 Predictive capacity of the UGent (A) and HydroQual (B) biotic ligand models (BLMs) as shown 

by observed versus predicted 21-day 50% effective concentrations (EC50s) of copper to Daphnia magna. 

Intrinsic sensitivities of the BLMs were calculated from data grouped by D. magna clone (i.e. K6 clone (Δ) 

and ARO clone (○)) and by study. The solid line is the 1:1 reference line indicating a perfect match between 

observed and predicted values; the dashed lines indicate an error of a factor of two between observed and 

predicted values. UGent BLM = the chronic D. magna BLM (De Schamphelaere and Janssen 2006); 

HydroQual BLM = the acute BLM (Santore et al. 2001; HydroQual 2005). 
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Appendix D2. Chronic Zn Daphnia magna bioavailability model 

D2.1 Concentration response data and fitted dose response curves for the Daphnia magna and 

Pseudokirchneriella subcapitata experiments 

 

Table D2.1. Zinc concentrations, number of replicates, reproduction and mortality of D. magna during the 

ecotoxicity tests in seven natural and two synthetic waters.  

Site ID Zna (µg/L) nb 

Reproduction 

 (# offspring)c σd 

Mortality  

(# deaths)e vcf 

La Seille 

6.13 9 85.22 19.25 2 p 

189.42 10 58.10 32.65 2  

313.37 10 52.50 20.12 1  

466.83 10 22.80 19.06 2  

690.67 10 2.10 5.38 1  

909.37 10 0.00 0.00 2  

1377.33 10 0.00 0.00 10  

1794.17 10 0.00 0.00 10  

Le Madon 

3.90 10 85.50 26.34 1 p 

275.47 8 56.00 23.95 0  

447.30 9 10.00 11.5 2  

580.77 9 6.00 10.19 3  

908.50 10 0.00 0.00 10  

1346.50 10 0.00 0.00 10  

1910.67 10 0.00 0.00 10  

2598.67 10 0.00 0.00 10  

Le Dolaizon 

7.03 9 87.22 22.08 0 p 

113.18 10 60.10 20.35 0  

152.55 9 61.78 13.85 0  

222.75 9 15.78 20.02 3  

326.15 10 0.00 0.00 10  

435.83 10 0.00 0.00 10  

593.17 10 0.00 0.00 10  

809.73 10 0.00 0.00 10  

La Moselotte 

 5.2 9 55.78 17.33 0 f 

42.48 10 45.80 26.75 3  

59.28 10 43.00 20.4 1  

82.76 10 0.00 0.00 10  

118.55 10 0.00 0.00 10  

166.1 10 0.00 0.00 10  

230 10 0.00 0.00 10  

323.65 10 0.00 0.00 10  

a dissolved zinc, given as the mean value of all samples taken during the test.; b n = the number of replicates. This 
is usually 10, but can be less due to accidental mortality or the organism being male; c number of offspring, given 
as the mean of the offspring of all n replicates; d standard deviation on the number of offspring; e total number of 
deaths (out of n replicates) in each treatment; f vc = validity criteria on the control treatment: p when the validity 
criteria are passed, f when they are failed 
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Table D2.1 (continued) 

Le Taurion 

 6.6 10 31.30 11.35 6 f 

58.2 10 0.00 0.00 10  

97.7 10 0.00 0.00 10  

121.7 10 0.00 0.00 10  

176.4 10 0.00 0.00 10  

243.3 10 0.00 0.00 10  

467.2 10 0.00 0.00 10  

500.5 10 0.00 0.00 10  

La Maulde 

 6.15 10 41.20 18.56 3 f 

66.2 10 0.00 0.00 10  

83.2 10 0.00 0.00 10  

123.1 10 0.00 0.00 10  

163.9 10 0.00 0.00 10  

238.1 10 0.00 0.00 10  

343.9 10 0.00 0.00 10  

491.7 10 0.00 0.00 10  

La Gartempe 

 5.4 10 63.00 10.47 0 p 

96.5 10 0.00 0.00 10  

148.5 10 0.00 0.00 10  

218.7 10 0.00 0.00 10  

290.9 10 0.00 0.00 10  

398.7 10 0.00 0.00 10  

597.1 10 0.00 0.00 10  

844.8 10 0.00 0.00 10  

Synthetic water 

10.2  10 69.80 28.75 1 p 

66.7 10 42.40 27.06 2  

88.2 10 43.80 18.21 1  

136.4 9 34.89 22.59 0  

195.4 10 33.00 24.44 2  

284.2 10 19.30 23.32 6  

394.6 10 6.00 5.54 4  

463.0 10 0.00 0.00 9  

Reference EEG 

10.8 10 67.90 22.24 1 p 

89.0 10 56.90 30.39 1  

127.5 10 79.10 16.97 0  

213.1 9 86.67 13.20 0  

246.3 9 52.56 32.09 4  

350.6 10 48.40 29.45 1  

500.4 10 0.10 0.32 10  

721.6 10 0.10 0.32 10  
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Figure D2.1. Concentration-response curves for Daphnia magna for seven natural waters and two synthetic 

waters. The mean value per treatment is indicated with an X. The EC50 concentration is indicated with a 

blue line. EC50 = the 50% effective concentration. 
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Table D2.2. Validity criteria for the 72-hours and 48-hours chronic toxicity test for Pseudokirchneriella 

subcapitata. Red values give those criteria that were not met. 

 

a Validity criterion 1: the biomass in the control cultures should have increased exponentially by a factor of at least 

16 within the test period 
b Validity criterion 2: the coefficient of variation (CV) of the average specific growth rates of the control replicates 

must not exceed 7% 

c Validity criterion 3: the mean CV of the section-by-section growth rates in the controls may not exceed 35%. 

 

 

 

 

 

 

 

 

Test 

water 

72h 48h 

Factor 

increasea 

CV growth rate 

(%)b 

Mean sectional CV 

(%)c 

Factor 

increasea 

CV growth rate 

(%)b 

Mean sectional 

CV (%)c 

Madon 46.0 3.2 33.9 20.5 8.4 11.6 

Dolaizon 66.9 5.5 35.0 27.2 4.9 18.3 

Moselotte 15.5 1.6 8.6 32.5 2.3 32.8 

Taurion 41.8 1.3 36.0 21.0 0.9 6.7 

Maulde 41.2 3.9 36.0 20.2 4.3 8.0 

Gartempe 32.1 1.4 36.6 16 2.4 7.8 

Voyon 81.0 0.6 42.7 35.0 1.6 24.8 

Bihain 50.1 0.9 49.7 24.5 1.2 35.2 

Brisy 102.9 1.8 36.5 38.9 4.0 21.2 

Voyon 119.9 1.2 12.4 25.5 1.3 16.6 

Bihain 45.3 1.1 44.8 21.6 2.8 31.4 

Brisy 113.3 1.6 29.2 39.2 1.3 7.1 

Loire 122.1 2.5 25.7 36.7 2.4 16.6 

Loire 129.7 2.4 18.0 28.1 3.4 23.5 

Brisy 79.7 1.0 22.6 22.2 2.7 26.4 

Bihain 80.2 4.8 31.3 26.5 2.0 26.5 

Madon 63.2 1.4 44.0 28.0 2.1 30.0 

Taurion 96.7 1.7 41.0 37.2 2.7 30.4 

Maulde 120.8 0.2 38.9 42.0 0.7 30.8 
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Table D2.3. Zinc concentrations and growth rate (µ) of P.subcapitata during the ecotoxicity tests in six 

natural waters tested during the first time period. 

Site ID Zna (µg/L) 72-h growth rate (µ)b σc 48-h growth rate (µ)d σe 

Le Madon 

0.75 1.29 0.04   

11.35 0.8 0.02   

20.00 0.75 0.08   

44.45 0.67 0.02   

70.35 0.50 0.05   

184.70 0.19 0.02   

Le Dolaizon 

0.86 1.40 0.08   

23.83 0.65 0.05   

29.03 0.58 0.08   

47.50 0.35 0.04   

109.90 0.12 004   

270.15 0.05 0.04   

La Moselotte 

5.15 1.19 0.03 1.37 0.02 

77.23 1.13 0.02 1.08 0.02 

139.50 0.88 0.04 0.93 0.11 

253.10 0.33 0.04 0.28 0.03 

473.47 0.09 0.07 0.15 0.01 

877.03 0.08 0.02 0.14 0.03 

1681.33 0.05 0.01 0.11 0.04 

3038.33 0.00 0.00 0.03 0.02 

Le Taurion 

10.50 1.28 0.02   

68.93 0.69 0.02   

126.70 0.32 0.04   

225.57 0.15 0.01   

411.87 0.05 0.03   

724.37 0.00 0.01   

1359.67 0.03 0.01   

2496.00 0.05 0.03   

 

a dissolved zinc, given as the mean value of all samples taken during the test. 
b 72-h growth rate of P.subcapitata, given when all validity criteria after 72-h were valid. Those given in italics did 

not pass validity criteria after 72-hc standard deviation on the 72-h growth rate 
d 48-h growth rate of P.subcapitata for those water that did not pass validity criteria after 72-h 
e standard deviation on the 48-h growth rate 
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Table D2.3 (continued) 

La Maulde 

9.80 1.25 0.05     

73.50 0.84 0.06 
 

  

124.20 0.32 0.01 
 

  

228.37 0.22 0.08 
 

  

406.33 0.05 0.06 
 

  

728.37 0.11 0.06 
 

  

1220.67 0.12 0.07 
 

  

2359.33 0.11 0.09     

La Gartempe 

7.63 1.18 0.02 1.36 0.03 

137.60 0.73 0.00 0.70 0.02 

264.50 0.31 0.06 0.26 0.03 

469.57 0.07 0.01 0.15 0.02 

823.80 0.14 0.07 0.12 0.02 

1560.33 0.15 0.08 0.16 0.01 

2659.33 0.07 0.05 0.04 0.04 

4584.00 0.11 0.06 0.16 0.04 
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Table D2.4. Measured dissolved zinc concentrations during chronic toxicity tests on Pseudokirchneriella 

subcapitata for different natural surface waters tested during the second time period. 

Site ID Treatment Dissolved (µg/L) 72-h growth 

rate (µ)c 
σd 

48-h growth 

rate (µ)e 
σf 

  
48ha 72hb 

Voyon 

Control 14 
 

1.46 0.01 1.78 0.03 

Zn1 37 
 

1.47 0.01 1.79 0.02 

Zn2 51 
 

1.51 0.04 1.77 0.02 

Zn3 87 
 

1.43 0.03 1.63 0.03 

Zn4 344 
 

0.53 0.05 0.45 0.04 

Zn5 702 
 

0.26 0.01 0.23 0.02 

Zn6 1084 
 

0.10 0.04 0.10 0.02 

Brisy 

 

Control 11  1.54 0.03 1.83 0.07 

Zn1 21  1.53 0.03 1.80 0.05 

Zn2 38  1.51 0.02 1.74 0.02 

Zn3 57  1.26 0.02 1.34 0.01 

Zn4 196  0.33 0.07 0.32 0.04 

Zn5 395  0.10 0.07 0.16 0.01 

Zn6 603  0.07 0.03 0.19 0.04 

Bihain 

Control 21 
 

1.29 0.01 1.60 0.02 

Zn1 80 
 

1.30 0.00 1.57 0.01 

Zn2 126 
 

1.28 0.01 1.40 0.04 

Zn3 215 
 

1.07 0.04 1.19 0.04 

Zn4 821 
 

0.31 0.03 0.33 0.10 

Zn5 1629 
 

0.15 0.05 0.11 0.09 

Zn6 2818 
 

0.17 0.01 0.10 0.06 

 

a Average concentration between the start of the test and 48 hours. 
b Average concentration between the start of the test and 72 hours. 
c 72-h growth rate of P.subcapitata, given when all validity criteria after 72-h were valid. Those given in italics did 

not pass validity criteria after 72-h 
d standard deviation on the 72-h growth rate 
e 48-h growth rate of P.subcapitata for those water that did not pass validity criteria after 72-h 
f standard deviation on the 48-h growth rate 
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Table D2.4 (continued) 

Site ID Treatment Dissolved (µg/L) 72-h growth 

rate (µ)c 
σd 

48-h growth 

rate (µ)e 
σf 

  
48ha 72hb 

Voyon8.5 

Control 10 10 1.58 0.02 1.62 0.02 

Zn1 22 18 1.27 0.03 0.36 0.04 

Zn2 40 39 1.04 0.04 1.12 0.03 

Zn3 61 63 0.70 0.01 0.82 0.01 

Zn4 185 194 0.18 0.01 0.20 0.03 

Zn5 373 393 0.04 0.03 0.11 0.04 

Zn6 569 597 0.04 0.08 0.06 0.00 

Bihain 

Control 24 
 

1.26 0.01 1.53 0.04 

Zn1 95 
 

1.28 0.01 1.42 0.02 

Zn2 163 
 

1.21 0.00 1.25 0.01 

Zn3 285 
 

0.95 0.01 0.99 0.01 

Zn4 524 
 

0.46 0.02 0.43 0.03 

Zn5 1048 
 

0.24 0.02 0.35 0.04 

Zn6 2059 
 

0.15 0.05 0.31 0.10 

Brisy 

Control 18 13 1.59 0.03 1.83 0.02 

Zn1 33 29 1.57 0.02 1.75 0.04 

Zn2 53 54 1.46 0.01 1.59 0.01 

Zn3 83 85 1.18 0.02 1.25 0.02 

Zn4 144 150 0.74 0.06 0.67 0.09 

Zn5 224 244 0.32 0.04 0.7 0.06 

Zn6 495 539 0.00 0.00 0.00 0.00 

Loire 

Control 5 5 1.60 0.04 1.80 0.04 

Zn1 9 9 1.50 0.02 1.64 0.01 

Zn2 26 17 1.29 0.03 1.47 0.03 

Zn3 32 32 0.90 0.01 0.94 0.03 

Zn4 97 98 0.44 0.03 0.48 0.08 

Zn5 209 213 0.09 0.07 0.00 0.00 

Zn6 366 359 0.00 0.00 0.00 0.00 

Loire8.6 

Control 7 7 1.60 0.04 1.67 0.06 

Zn1 15 11 1.51 0.04 0.59 0.04 

Zn2 22 19 1.39 0.00 1.46 0.05 

Zn3 27 28 0.97 0.02 1.01 0.04 

Zn4 81 52 0.35 0.02 0.27 0.03 

Zn5 194 208 0.09 0.01 0.12 0.01 

Zn6 325 346 0.01 0.01 0.02 0.01 

a Average concentration between the start of the test and 48 hours. 
b Average concentration between the start of the test and 72 hours. 
c 72-h growth rate of P.subcapitata, given when all validity criteria after 72-h were valid. Those given in italics did 

not pass validity criteria after 72-h 
d standard deviation on the 72-h growth rate 
e 48-h growth rate of P.subcapitata for those water that did not pass validity criteria after 72-h 
f standard deviation on the 48-h growth rate 
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Table D2.4 (continued) 

Site ID Treatment Dissolved (µg/L) 72-h growth 

rate (µ)c 
σd 

48-h growth 

rate (µ)e 
σf 

  
48ha 

 

Bihain 

Control 41 43 1.44 0.07 1.64 0.03 

Zn1 100 101 1.40 0.07 1.41 0.02 

Zn2 169 164 1.16 0.01 1.17 0.01 

Zn3 283 284 0.84 0.02 0.87 0.02 

Zn4 528 539 0.24 0.02 0.30 0.02 

Zn5 1025 1035 0.09 0.02 0.20 0.01 

Zn6 2027 2041 0.05 0.02 0.23 0.03 

Madon 

Control 12 
 

1.37 0.02 1.67 0.03 

Zn1 18 
 

1.31 0.01 1.62 0.02 

Zn2 17 
 

1.29 0.01 1.53 0.01 

Zn3 44 
 

1.23 0.02 1.42 0.03 

Zn4 137 
 

0.66 0.02 0.79 0.03 

Zn5 248 
 

0.28 0.02 0.35 0.02 

Zn6 375 
 

0.11 0.02 0.19 0.01 

Taurion 

Control 9 
 

1.51 0.03 1.81 0.05 

Zn1 43 
 

1.49 0.01 1.74 0.01 

Zn2 67 
 

1.47 0.01 1.63 0.03 

Zn3 132 
 

1.17 0.04 1.22 0.09 

Zn4 209 
 

0.48 0.03 0.43 0.01 

Zn5 422 
 

0.21 0.01 0.36 0.06 

Zn6 855 
 

0.05 0.01 0.16 0.01 

Maulde 

Control 15 
 

1.58 0.00 1.87 0.01 

Zn1 48 
 

1.56 0.01 1.86 0.01 

Zn2 70 
 

1.49 0.00 1.71 0.01 

Zn3 106 
 

1.33 0.02 1.33 0.02 

Zn4 230 
 

0.54 0.01 0.44 0.01 

Zn5 430 
 

0.22 0.01 0.20 0.01 

Zn6 813 
 

0.13 0.01 0.18 0.03 

a Average concentration between the start of the test and 48 hours. 
b Average concentration between the start of the test and 72 hours. 
c 72-h growth rate of P.subcapitata, given when all validity criteria after 72-h were valid. Those given in italics did 

not pass validity criteria after 72-h 
d standard deviation on the 72-h growth rate 
e 48-h growth rate of P.subcapitata for those water that did not pass validity criteria after 72-h 
f standard deviation on the 48-h growth rate 
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Figure D2.2 Concentration-response curves for Pseudokirchneriella subcapitata for five natural waters 

tested during the first time period. The mean value per treatment is indicated with an X. The EC50 

concentration is indicated with a blue line. EC50 = the 50% effective concentration. 
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Figure D2.3. Concentration-response curves for Pseudokirchneriella subcapitata for nine different natural 

waters tested during the second time period. The order of the graphs from left to right and from top to 

bottom corresponds with the order of the waters in Table 5.5. The mean value per treatment is indicated 

with an X. The EC50 concentration is indicated with a dashed line. EC50 = the 50% effective concentration. 
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D2.2 Recalibration of the Pseudokirchneriella subcapitata bioavailability model for EC10 

predictions 

Recalibration of the P.subcapitata bioavailability model was performed for the EC10 data. Figure D2.4 

shows the correlation (r²) between O/P and pH, DOC (mg/l), Na+ activity, Ca2+ activity and Mg2+ activity.  

No significant correlation between O/P and pH, DOC, Na+ activity, Ca2+ activity and Mg2+ activity (p > 

0.05) were observed. 

 

Figure D2.4. Logarithmic differences (i.e. log Observed Zn2+ activity – log Predicted Zn2+ activity) against 

different chemical parameters (pH, DOC (mg/L), Na+ activity (mM), Ca2+ activity (mM) and Mg2+ activity (mM)). 

Squares indicate toxicity data generated in the first time period, circles indicate data generated in the 

second time period, crosses indicate toxicity data generated in De Schamphelaere et al. (2005). Filled 

symbols indicate 72-h EC10 for Pseudokirchneriella subcapitata, open symbols indicate 48-h EC10 for 

Pseudokirchneriella subcapitata. Symbols in green indicate waters with water chemistry that fall within the 

BLM boundaries (pH and calcium), blue symbols indicate waters with high pH values, orange symbols 

indicate waters with low calcium concentrations. 

When the observed Zn2+ activities were used to perform a correlation analysis with pH, the relation 

between log (𝐸𝐶10)𝑍𝑛2+ and pH was significant (r²=0.87, p<0.001) (Figure D2.5). The slope value was 

used as new SpH value (-0.816) for recalibration of the bioavailability model. Intrinsic sensitivities were 

recalibrated based on this SpH value and were equal to 1.769 for the data from the first time period, 

1.186 for the data from the second time period and 0.943 for the data from De Schamphelaere et al. 

(2005). 
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Figure D2.5. Zinc activity at the 72-h and 48-h 10% effective concentration (EC10) as a function of pH. Zinc 

activity was calculated with Equation A1.4. Squares indicate toxicity data generated in the first time period, 

circles indicate data generated in the second time period, crosses indicate toxicity data generated in De 

Schamphelaere et al. (2005). Filled symbols indicate 72-h EC10 for Pseudokirchneriella subcapitata, open 

symbols indicate 48-h EC10 for Pseudokirchneriella subcapitata. Symbols in green indicate waters with 

water chemistry that fall within the BLM boundaries (pH and calcium), blue symbols indicate waters with 

high pH values, orange symbols indicate waters with low calcium concentrations. 

Figure D2.6 shows the performance of the bioavailability model in predicting Zn toxicity for EC10 data. 

For all EC10 data, the bioavailability model now predicts 89% within twofold error (mean prediction error 

of 1.6-fold) which is only 8% better than the original bioavailability model (De Schamphelaere et al. 

2005) Also here, the chronic zinc toxicity for the data point from the Madon water is overpredicted. 

 

Figure D2.6. Observed versus predicted 10% effect concentrations (EC10) of zinc (as dissolved Zn). 

Predictions were made with the recalibrated BLM with new SpH value and intrinsic sensitivities. Squares 

indicate toxicity data generated in the first time period, circles indicate data generated in the second time 

period, crosses indicate toxicity data generated in De Schamphelaere et al. (2005). Filled symbols indicate 

72-h EC10 for Pseudokirchneriella subcapitata, open symbols indicate 48-h EC10 for Pseudokirchneriella 

subcapitata. Symbols in green indicate waters with water chemistry that fall within the BLM boundaries (pH 

and calcium), blue symbols indicate waters with high pH values, orange symbols indicate waters with low 

calcium concentrations. The full line and dashed lines indicate a perfect match and a factor two difference 

between the observed and predicted EC10. 
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D2.3 Read-across of the gBAM to Lymnaea stagnalis and Brachionus calyciflorus 

We investigated if the chronic zinc generalized BioAvailiabity Model version D (gBAM-D) developed for 

Daphnia magna could be extrapolated to predict chronic toxicity of zinc as a function of water chemistry 

to two species from other phyla, i.e. the mollusc Lymnaea stagnalis and the rotifer Brachionus 

calyciflorus. 

Table D2.5 shows the constants and intrinsic sensitivities that were used for modelling with gBAM-D.  

Table D2.5. pH slope constants, competition constants, thermodynamic parameters and humic material 

assumptions of the generalized BioAvailability Model-D (gBAM-D) that were used for modelling. Intercepts 

(Q-values) indicating the intrinsic sensitivity of Lymnaea stagnalis and Brachionus calyciflorus are given 

for the 50% (i.e. Q50) and 10% (i.e. Q10) effective concentrations.  

Parameter gBAM-D gBAM-D 

 L. stagnalis B. calyciflorus 

Biotic Ligand (BL) Species   

Log 𝐾𝐶𝑎𝐵𝐿 3.22 3.22 

Log 𝐾𝑀𝑔𝐵𝐿 2.69 2.69 

Log 𝐾𝑁𝑎𝐵𝐿 1.90 1.90 

SpH 0.13 0.13 

Q50 4.61 4.90 

Q10 4.84 5.23 

Bioavailable species that can 

bind to the biotic ligand 
NA NA 

Thermodynamic 

Database 

  

pKMHA Zn-HA 2.3 2.3 

Humic Material 

Assumptions 

  

% of natural DOM composed 

of active humic substances 

(the rest is inactive) 

50% 50% 

% of the humic substances 

that is HA (rest is FA)  
0%  0%  

 

Figure D2.7 shows the performance of gBAM-D in predicting chronic Zn toxicity to both species. All 

predictions of EC10s and EC50s were within 1.5-fold difference from observations for L. stagnalis. 

Average prediction errors for EC10 and EC50 values were 1.24 and 1.16-fold, respectively (Table D2.6). 

These predictions are slightly better than the predictions made with the chronic D. magna BLM (Figure 

D2.8), which showed an average prediction error of 1.31 and 1.19-fold for EC10 and EC50 values, 

respectively (De Schamphelaere and Janssen 2010). All predictions for B. calyciflorus were also within 

1.3-fold prediction error (Table D2.6). Average prediction error for EC10 and EC50 values were 1.22 and 

1.18-fold, respectively (Table D2.6). These predictions are also slightly better than the predictions made 
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with the chronic D. magna BLM (Figure D2.8), i.e. average prediction error of 1.29 and 1.33-fold for EC10 

and EC50 values, respectively (De Schamphelaere and Janssen 2010). 

 

Figure D2.7. Observed and predicted 10% (EC10) and 50% effective concentrations (EC50) of dissolved Zn 

for Lymaea stagnalis and Brachionus calyciflorus. The predicted values were calculated using gBAM-D. 

The full line indicates a 1:1 ratio between observation and prediction; the dotted lines indicate the range of 

two-fold difference between observation and prediction. For B. calyciflorus, the encircled EC10 was 

considered unreliable because its 95% confidence interval spanned a larger range than the other EC10 

values derived (see [1]), and was therefore not used to calculate prediction statistics.  
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Figure D2.8. Figure taken from De Schamphelaere and Janssen (2010). Observed and Biotic Ligand Model 

predicted 10% (EC10) and 50% effective concentrations (EC50) of dissolved Zn for two species. The full line 

indicates a 1:1 ratio between observation and prediction; the dotted lines indicate the range of two-fold 

difference between observation and prediction. For B. calyciflorus, the encircled EC10 was considered 

unreliable because its 95% confidence interval spanned a larger range than the other EC10 values derived 

(see De Schamphelaere and Janssen 2010), and was therefore not used to calculate prediction statistics. 

The true EC50 of the square marked with an arrow (→) is higher than the depicted square (see De 

Schamphelaere and Janssen 2010), and was therefore also not used to calculate prediction statistics. 

 

Table D2.6. Prediction statistics (fold prediction error) of the gBAM-D and the chronic D. magna BLM for 

Lymnaea stagnalis and Brachionus calyciflorus.  

 gBAM-D BLM 

 
L. stagnalis B. calyciflorus L. stagnalis B. calyciflorus 

 

EC10a 

(n=6) 

EC50

a 

(n=6) 

EC10a 

(n=4) 

EC50

a 

(n=5) 

EC10a 

(n=6) 

EC50a 

(n=6) 

EC10

a 

(n=4) 

EC50a 

(n=5) 

Mean prediction error 1.24 1.16 1.22 1.18 1.31 1.19 1.29 1.33 

Median prediction error 1.14 1.13 1.22 1.16 1.37 1.30 1.23 1.38 

75th percentile error 1.42 1.20 1.24 1.26 1.47 1.32 1.34 1.49 

90th percentile error 1.53 1.27 1.27 1.30 1.50 1.43 1.50 1.50 

Predicted within 2-fold error (%) 100 100 100 100 100 100 100 100 

a EC10 = 10% effective concentration, EC50 = 50% effective concentration
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Appendix E1 Cross-validation of the Cu D. magna gBAM 

To see whether the chronic toxicity models (gBAMs)  developed in Chapter 5 also work for other species, 

a cross-species exercise was done. This was done for five species, Brachionus calyciflorus, 

Ceriodaphnia dubia and Lampsilis siliquoidea  with data from the following datasets: 

a. De Schamphelaere and Janssen (2006) reported on chronic toxicity of copper to B. calyciflorus. 

Physico-chemistry and NOEC and LOEC data for modeling was taken from their Table 1. 

b. Schwartz and Vigneault (2007) reported on the chronic, 7d-toxicity of copper to C. dubia in 

surface waters from Canada and in synthetic waters. Physico-chemistry and IC25 data for the 

natural waters was taken from their Table 1 and that for the synthetic waters was received from 

M. Schwartz (pers. comm.)  

The cross-species predictive capacity of the developed models gBAM-Auni, gBAM-Buni and gBAM-Cuni 

was compared to that of the validated models (UGent and HydroQual BLM). Table E1.1 shows the 

constants and intrinsic sensitivities that were used for the different toxicity models. Intrinsic sensitivities 

for the different species for the UGent BLM and HydroQual BLM were calculated in the same way as 

was done for D. magna and those for the gBAMuni models were adapted in the same way as was done 

for D. magna.  

Furthermore, the HydroQual BLM, UGent BLM and gBAMuni model predictions were compared for a pH-

range between 5.5 and 8.5. This was done for B. calyciflorus (De Schamphelaere et al., 2006) and C. 

dubia (Schwartz and Vigneault, 2007). For every dataset the critical accumulation value was calculated 

based on a test with a pH larger than 7 (Table E1.2). Toxicity predictions were then made for the other 

pH values from the pH range (5.5 to 8.5), with the same critical accumulation value and the same 

physico-chemical parameters (DOC, cations, anions) as the test but with a different alkalinity value. This 

alkalinity value was calculated by first calculating the total carbonate concentration from the pH 

assuming a closed system and then using this total carbonate concentration in combination with the pH 

value to calculate the alkalinity (Stumm and Morgan 1996).  
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Table E1.1. Summary of constants and intrinsic sensitivities for the different toxicity models and BLMs 

used to predict toxicity for B. calyciflorus, C. dubia and L. siliquoidea.  

  
gBAM-Auni gBAM-Buni gBAM-Cuni UGent BLM HydroQual BLM 

SpH   
0.56 0.61 0.62 NA NA 

𝑄𝑥 or ƒ𝐶𝑢𝐵𝐿
50% a 

NOECB.calyciflorus -5.02 -5.09 -5.24 0.045 0.001 

LOECB.calyciflorus -4.76 -4.83 -4.98 0.079 0.002 

IC25C.dubia -7.62 -7.26 -7.57 0.267 0.002  

logKCuBL  NI NI NI 8.02 7.4  

logKCuOHBL  NI NI NI 8.02 6.2  

logKCuCO3BL  NI NI NI 7.44 NI  

logKNaBL  NI 2.67 2.67 2.91 3  

logKCaBL  NI NI 3.53 NI 3.6 
 

logKMgBL  NI NI 3.53 NI 3.6 
 

logKHBL  NA NA NA 6.67 5.4 
 

Humic material assumptions       

- % of natural DOM composed                        
of humic substancesb 

50% 50% 50% 50% 100% 

- % of the humic substances 
that is HA (rest is FA)c 

0% 0% 0% 0% 10% 

a Qx value used in the gBAMs, ƒ𝐶𝑢𝐵𝐿
50%  value used in the BLMs 

b Exception: When humic acid is added to the medium, all models assume 100% of the DOM to be composed of 

humic substances. 
c Exception: When humic acid is added to the medium, all models assume 100% of the humic substances to be 

composed of humic acid. 

NA = not applicable; NI = not included in the model DOM = dissolved organic matter; HA = humic acid; FA = fulvic 

acid. 

Table E1.2. Water chemistry parameters used to calculate critical accumulation values to compare 

HydroQual BLM, UGent BLM and gBAMuni model predicitions for a pH-range between 5.5 and 8.5.  

Parameter De Schamphelaere et al. (2006) Schwartz and Vigneault (2007) 

species B. calyciflorus C. dubia 

T (°C) 25.0 24.5 

pH 7.80 7.63 

DOC (mg/L) 4.84 0.4 

Ca (mg/L) 32.0 6.6 

Mg (mg/L) 4.9 1.7 

Na (mg/L) 93.0 13.9 

K (mg/L) 3.0 0.6 

SO4 (mg/L) 120.0 22 

Cl (mg/L) 64.0 5 

Alkalinitya (mg/L) 15.0 20.4 

NOEC/IC25/EC50 
(µg/L) 

47.8 10.9 

a for other pH values, water chemistry data was held constant except for alkalinity. First, total carbonate was 

calculated from the pH and alkalinity assuming a closed system. This total corbanate was then used to calculate 

the alkalinity at different pH values. 
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E1.1 Read-across for B. calyciflorus 

Figure E1.1 shows the performance of the different models in predicting Cu toxicity for the rotifer B. 

calyciflorus. Overall, the models developed in Chapter 5, gBAM-Auni and gBAM-Buni and gBAM-Cuni, 

perform the best (Table E1.3). They show 100 % of the data within twofold error and the lowest mean 

prediction errors. The UGent BLM also predicts 100% of the data within twofold error, but shows higher 

mean prediction errors. The HydroQual predicts only 28% within twofold error for B. calyciflorus data. 

Table E1.3. Prediction statistics (fold prediction error) of the read across for B. calyciflorus (n=8). 

 gBAM-Auni gBAM-Buni gBAM-Cuni UGent BLM HydroQual BLM 

Mean prediction error 1.14 1.21 1.13 1.28 2.50 

Median prediction error 1.14 1.22 1.13 1.27 2.66 

75th percentile error 1.17 1.27 1.21 1.35 2.82 

90th percentile error 1.18 1.32 1.23 1.46 3.0 

Predicted within 2-fold error (%) 100 100 100 100 28 

Predicted within 3-fold error (%) 100 100 100 100 88 

 

 

Figure E1.1. Observed versus predicted NOEC (○) and LOEC (∆) data for B. calyciflorus according to the 

different models (see Table E.1) for the endpoint ‘intrinsic rate of increase’. Data from De Schamphelaere 

and Janssen (2006). 

Figure E1.2 shows the predictive capacity of all models for a pH range between 5 and 8.5. The observed 

change in NOEC is approximately a factor of 5.8. The UGent and gBAMuni models clearly predict the 

changes in toxicity with pH more accurately than the HydroQual BLM.  
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Figure E1.2. Predicted copper chronic effects and experimental observations (○) for B. calyciflorus (De 

Schamphelaere & Janssen,2006). The solid line indicates predictions by the HydroQual BLM, the dashed 

line indicates predictions by the UGent BLM, dotted lines indicate predictions by the gBAMuni models (green 

= gBAM-Auni, blue = gBAM-Buni, red = gBAM-Cuni. 

E1.2 Read-across for C. dubia 

Toxicity predictions for C. dubia were made with all available models. We would like to remark 

that DOC concentrations reported for the tap waters are very low  (0.4 mg/L). As C. dubia were 

fed with algae and YCT during the test, which increase the amount of DOC in the medium, it 

is likely that C. dubia were tested at on average higher DOC concentrations than reported (De 

Schamphelaere et al. 2006b). To evaluate the effect of a higher DOC level on the toxicity 

predictions, the DOC concentration of all waters was increased with 0.8 mg/L. This value was 

chosen because it is the estimate of DOC addition due to YCT (Keithly et al. 2004). Figure E.3 

shows the performance of the different models in predicting Cu toxicity for the C. dubia. Error 

bars show the influence of an increased DOC concentration (a new critical value was 

calculated). 

Overall, the gBAM-Cuni performs the best  (Table E1.4). Increasing the DOC concentration of 

the waters with 0.8 mg/L has a large influence on the toxicity predictions. This higher, and 

probably more accurate DOC value increased the predictive capacity of the models (Table 

E15).  

When examining Figure E1.3 we see a bias between predictions made for natural waters (at 

the top of the figures) and for synthetic waters (at the bottom of the figures). This is most likely 

due to a shift in sensitivity between both test-series. Therefore, toxicity predictions were also 

made when two separate critical accumulation values were calculated for the synthetic and 

natural waters (Figure E1.4). Now, toxicity predictions are better (Table E1.6 and Table E1.7). 
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Figure E1.3. Observed versus predicted IC25 (○) data for C. dubia according to the different models (see 

Table E.1) for the endpoint ‘reproduction’. Vertical error bars show the influence of adding 0.8 mg/L DOC 

(due to YCT addition) to all waters on the BLM and gBAM predictions. Data from Schwartz & Vigneault 

(2007). 

Table E1.4. Prediction statistics (fold prediction error) of the read across for C. dubia (n=7). 

 gBAM-Auni gBAM-Buni gBAM-Cuni UGent BLM HydroQual BLM 

Mean factor prediction error 3.14 2.95 2.77 2.83 3.09 

Median factor prediction error 2.94 2.72 2.47 2.42 2.49 

75th percentile factor error 3.67 3.71 3.34 3.63 3.99 

90th percentile factor error 5.11 4.78 4.42 4.93 4.08 

Predicted within 2-fold error (%) 24 28 31 38 34 

Predicted within 3-fold error (%) 55 52 66 62 59 

 

Table E1.5. Prediction statistics (fold prediction error) of the read across for C. dubia (n=7) when adding 

0.8 mg/L DOC to the waters due to YCT addition during testing. 

 gBAM-Auni gBAM-Buni gBAM-Cuni UGent BLM HydroQual BLM 

Mean factor prediction error 2.14 1.98 1.78 1.93 1.98 

Median factor prediction error 2.21 1.90 1.77 1.83 1.71 

75th percentile factor error 2.54 2.70 2.17 2.57 2.19 

90th percentile factor error 3.29 2.98 2.46 3.07 2.75 

Predicted within 2-fold error (%) 45 52 69 59 66 

Predicted within 3-fold error (%) 86 90 97 83 93 
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Figure E1.4. Observed versus predicted IC25 (○) data for C. dubia according to the different models (see 

Table E.1) for the endpoint ‘reproduction’ when a separate critical accumulation value is calculated for the 

natural and synthetic waters. Vertical error bars show the influence of adding 0.8 mg/L DOC (due to YCT 

addition) to all waters on the BLM and gBAM predictions. Data from Schwartz and Vigneault (2007). 

Table E1.6. Prediction statistics of the read across for C. dubia (n=7) when a critical accumulation value is 

calculated for the natural and synthetic waters separately.  

 gBAM-Auni gBAM-Buni gBAM-Cuni UGent BLM HydroQual BLM 

Mean factor prediction error 1.37 1.37 1.28 1.58 1.31 

Median factor prediction error 1.36 1.31 1.17 1.39 1.19 

75th percentile factor error 1.50 1.49 1.34 1.74 1.44 

90th percentile factor error 1.60 1.69 1.66 2.00 1.68 

Predicted within 2-fold error (%) 97 97 93 90 97 

Predicted within 3-fold error (%) 100 100 100 97 100 

Table E1.7. Prediction statistics of the read across for C. dubia (n=7) when adding 0.8 mg/L DOC to the 

waters due to YCT addition during testing. A critical accumulation value is calculated for the natural and 

synthetic waters separately. 

 gBAM-Auni gBAM-Buni gBAM-Cuni UGent BLM HydroQual BLM 

Mean factor prediction error 1.37 1.37 1.25 1.57 1.34 

Median factor prediction error 1.38 1.33 1.21 1.52 1.22 

75th percentile factor error 1.52 1.54 1.30 1.70 1.35 

90th percentile factor error 1.66 1.72 1.53 2.00 1.71 

Predicted within 2-fold error (%) 100 97 100 90 97 

Predicted within 3-fold error (%) 100 100 100 97 97 

Figure E1.5 shows the predictive capacity of all models for a pH range between 5 and 8.5. The observed  

effect concentrations are relatively invariable with pH. The UGent BLM and gBAMuni models clearly 

predict this nearly constant toxicity with pH most accurately. 
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Figure E1.5. Predicted copper chronic effects and experimental observations (○) for C. dubia (Schwartz and 

Vigneault, 2007). The solid line indicates predictions by the HydroQual BLM, the dashed line indicated 

predictions by the UGent BLM, dotted lines indicate predictions by the gBAMuni models (green = gBAM-

Auni, blue = gBAM-Buni, red = gBAM-Cuni 

E.1.3 Conclusions 

For the rotifer Brachionus calyciflorus, the three models developed in Chapter 5 (gBAM-Auni and gBAM-

Buni and gBAM-Cuni) predict Cu toxicity best. They predict all data within twofold error and show the 

lowest mean prediction errors. The UGent BLM also predicts all data within twofold error, but shows 

higher mean prediction errors. The HydroQual BLM does not predict the B. calyciflorus data well. 

Cu toxicity to the water flea Ceriodaphnia dubia was best predicted with the gBAM-Cuni model.  

We also remark that the influence of the uncertainty of DOC on all model predictions was important, 

especially at low DOC concentrations. Therefore, we would like to recommend the use of higher DOC 

values during tests with synthetic waters to ensure that BLM and gBAM predictions are accurate. 

 

Overall we can conclude that the gBAMuni models developed in Chapter 5 perform equally well or even 

better than the UGent BLM during chronic toxicity read-across. The HydroQual BLM performs less well 

on chronic toxicity data. This trend is also seen when comparing model predictions for a pH-range. Here, 

the UGent BLM and gBAMuni models could most accurately predict the changes in toxicity with pH for 

chronic toxicity data.  



 

 
 

Appendix E2. Output of Scenario B 
Table E2.1 Toxic pressure expressed as multisubstance potentially affected fraction of species (msPAF) for the Dommel, Flanders (VMM), Rhine, Austria, and 

FOREGS database obtained with the different methods. Normalisation of the toxicity data was performed with Scenario A, i.e. the toxicity data for invertebrates, 

fish and algae were normalized with the original bioavailability models and the refined Ni normalization tool was implemented (Nys et al. 2016). The values between 

parentheses indicate the absolute difference in results between Scenario A and the same calculations but when implementing the ‘old’ Ni normalization tool (Nys 

et al. 2014; Chapter 2). 

 Dommel VMM Rhine 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 
0.054 
(0.000) 

0.035 

 (-0.003) 

0.024 

(0.000) 

0.028 

 (-0.007) 
0.009 
 (0.000) 

0.003 
(0.000) 

0.003  
(0.000) 

0.003  
(0.000) 

0.004 
 (-0.002) 

0.00 
 (-0.001) 

0.00 
 (-0.001) 

0.00 
 (-0.001) 

% Samples affected 
(msPAF > 0.05) 

52 (0.1) 45 (-1.0) 39 (-0.1) 41 (-2.6) 27 (0.0) 25 (0.0) 23 (0.0) 24 (0.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

% Samples affected 
by mixture of metals 
and not by any 
individual metals 

15 (0.1) 9 (-1.0) 2 (-0.1) 5 (-0.6) 7 (0.0) 4 (-0.3) 3 (0.2) 3 (-0.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

MoS provided by the 
CASSD approach 

NA 
1.21 

(0.034) 

1.48 

(0.031) 

1.38 

(0.001) 
NA 

1.18 
 (-0.001) 

1.57  
(0.004) 

1.46  
(-0.004) 

NA 
1.25 
 (-0.002) 

1.72 
(0.000) 

1.61  
(0.003) 

 

 Austria FOREGS 

 CASSD CADRC IASSD IADRC CASSD CADRC IASSD IADRC 

median msPAF 
0.004  
0.000) 

0.001 
(0.000) 

0.001 
(0.000) 

0.001 
(0.000) 

0.003 
 (-0.001) 

0.001  
(0.000) 

0.001 
 (0.000) 

0.001 
 (0.000) 

% Samples affected 
(msPAF > 0.05) 

8 (0.0) 6 (0.1) 5 (0.0) 5 (0.0) 8 (2.0) 6 (-1.7) 4 (-2.7) 4 (-2.7) 

% Samples affected 
by mixture of metals 
and not by any 
individual metals 

3 (0.0) 1 (0.3) 0.2 (0.0) 0.6 (-0.2) 4 (0.7) 3 (1.0) 0.3 (0.1) 0.4 (0.0) 

MoS provided by the 
CASSD approach 

NA 
1.21 
(0.000) 

1.52 
(0.000) 

1.45 
(0.003) 

NA 
1.23 
 (0.011) 

1.56 
 (0.034) 

1.46  
(0.028) 

 

CA = Concentration Addition, IA = Independent Action, SSD = Species Sensitivity Distribution, DRC = Dose-Response Curve, msPAF = multisubstance Potentially Affected 

Fraction of species, MoS = Margin of Safety, NA = Not Applicable
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