Stability of $Fe_2O_3/MgAl_2O_4$ for CO_2 utilization in super-dry reforming of CH_4

Lukas Buelens¹, A. Dharanipragada¹, V.V. Galvita¹, H. Poelman¹, G.B. Marin¹

¹Laboratory for Chemical Technology

Introduction: super-dry reforming of CH₄

Science (2016), **354**: 449-452.

UNIVERSITY

DRIVING CHEMICAL TECHNOLOG

T = 1023 K ^{2/13}

 \rightarrow Method for valorization of C₁ feedstocks (CH₄ and CO₂) through CO production

→ Isothermal combination of catalytic methane dry reforming and chemical looping

Introduction: oxygen carrier

Iron oxide as oxygen carrier

- High capacity for CO₂ conversion into CO
- Abundantly available (low cost)
- Environmentally sound

However...

Rapid deactivation through sintering

 \rightarrow addition of textural promoter such as Al₂O₃ (MgO)

Formation of FeAl_2O_4 (MgFe₂O₄) leads to continuous deactivation \rightarrow use of MgAl₂O₄ promoter

Incorporation of Fe in the MgAl₂O₄ spinel ➤ Stability and performance of Fe₂O₃/MgAl₂O₄ over several days?

J. Mater. Chem. A (2015), 3: 16251-16262.

Outline

Material synthesis

- One-pot co-precipitation of Fe(NO₃)₃, Mg(NO₃)₂ and Al(NO₃)₃ using NH₄OH
- 3 different materials: $X-Fe_2O_3/MgAl_2O_4$ (with X = 10, 30, 50 w%)
- Denoted as 10FMA, 30FMA and 50FMA

Activity tests: 1000 redox cycles

4H₂C 4CO₂ 3Fe Redox cycle (1023 K, 1 atm) 100% He 10% in He 100% He 40% in He H_2 CO_2 inert inert 1 min 2 min 1 min 2 min Fe₃O₄ 4H₂ **4CO** 1000 1000 1000 50FMA 30FMA 10FMA STY_{co} (mmol s⁻¹ kg_{Fe}⁻¹) STY_{CO} (mmol s⁻¹ kg_{Fe}⁻¹) 800 STY_{CO} (mmol s⁻¹ kg_{Fe}⁻¹) 800 800 cycle 1 ± 28% of CO ± 31% of CO ± 84% of CO cycle 100 600 600 600 yield retained yield retained yield retained cycle 200 400 400 400 cycle 300 -cycle 500 200 200 200 – cycle 1000 0 0 0 0.2 0.3 0.2 0.3 0.4 0.1 0.5 0.2 0.3 0 0.1 0.5 0 0.4 0 0.1 0.4 0.5 Time (min) Time (min) Time (min) stabilization after stabilization after most stable **500 redox cycles** 300 redox cycles

Step response: 100, 200, 500 and 1000 redox cycles (1 min 10% H₂ in He; 2 min purging in 100% He; 1 min 40% CO₂ in He; 2 min purging in 100% He) were performed using $50Fe_2O_3/MgAl_2O_4$, $30Fe_2O_3/MgAl_2O_4$ and $10Fe_2O_3/MgAl_2O_4$ at p = 1.013 bara, T=1023 K, $F_{tot} = 2.35 \ 10^{-4} \ mol \ s^{-1}$

Characterization: N₂ adsorption

○ 10FMA
△ 30FMA
◇ 50FMA

Characterization: X-ray diffraction (Mg-Fe-Al-O spinel)

8.08

0

200

400

Cycle number

600

800

1000

9/13

Characterization: STEM-EDX

10FMA

50FMA

Enrichment of Fe along the surface of Mg-Fe-Al-O spinel

Indicates low surface tension between Fe-rich phase and Mg-Fe-Al-O spinel

10/13

10Fe₂O₃/MgAl₂O₄
✓ Stable redox properties and morphology over 1000 redox cycles
➡ promising oxygen carrier for CO₂ conversion or redox active catalyst support

 $50Fe_2O_3/MgAl_2O_4$

- ✓ Redox activity stabilizes after 300 redox cycles, despite deterioration of morphological properties
- ✓ STEM-EDX analysis suggests a good interaction between the Fe-rich phase and the Mg-Fe-Al-O spinel
 - \rightarrow promising oxygen carrier for CO₂ conversion

X-Fe₂O₃/MgAl₂O₄ ✓ Fe remains (partially) incorporated in the spinel, even after 1000 redox cycles

Institute for the Promotion of Innovation through Science and Technology (IWT) in Flanders

□ Flemish government for long-term structural funding (Methusalem)

Interuniversity Attraction Poles (IAP) from BELgian Science Policy Office (Belspo)

□ Fund for Scientific Research Flanders FWO (Project: G004613N)

Thank you

DRIVING CHEMICAL TECHNOLOGY