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Heart of a petrochemical plant
The main source of ethylene, propylene and other valuable hydrocarbon
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Pilot scale steam cracking
e Duration - 6 hour
» Identical process conditions |

7 gas condensate
feedstocks

Coke deposited in TLE is
burned off (800 to 900 °C)
after each experiment

CO and CO2 concentrations
are monitored (0.1 Hz) in the
outlet stream (app. 1.5 hours)

MMc — Molecular Mass of carbon Y, .- Molar concentration of CO

N % (Yco + Ycoz ) D; Q — Volumetric flow rate Yeo, - Molar concentration of CO2
Cokes (g) = MMc p — Pressure T — Temperature
z RT;
i=0 R — Gas Constant
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Compositional Characterization

2nd dimension column
BPX-50, SGE, 2 m, 0.15 mm, 0.15 um

PT§|7 Injector FID

High resolution separation of GC x GC enables
unrevealing the complex nature of petroleum streams

Due to the large number of detected molecules the

number of samples (7) is unfavorable for exploratory
analysis
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Data structure
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Data alignment

Icoshift - applied on complete structure 1D data and
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Tomasi, G., et al. (2011). "Icoshift: An effective tool for the alignment of chromatographic data." Journal of Chromatography A 1218(43): 7832-
7840.
Zhang, D., et al. (2008). "Two-dimensional correlation optimized warping algorithm for aligning GCxGC-MS data." Analytical Chemistry 80(8):
2664-2671.
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Partial least squares regression (PLSR)

Maximize covariance of Xand Y

(NIPALS or SIMPLS algorithms) ;(:EII(;’
! PLS1ifK =1
W PLS2ifK > 1 T=XW
T (: :) U Y: TQ 4
J Y=XW0’
PLSR
X ﬁ B =WQI
e U 1 = ]/[/1 T1 (regression coefficients are not
Vo o independent)
- U, = W,T,
Y=XB

Pl

— ! — !
X=TP +Ey Y=UQ +Ey
Direct multiple linear regression (MLR) cannot handle collinear and large rank matrixes

Wold, S., M. Sjostrom and L. Eriksson (2001). "PLS-regression: A basic tool of chemometrics." Chemometrics and Intelligent Laboratory Systems
58(2): 109-130.



Budapest, Hungary, 26th of May, 2017

Variable selection - Methods that require initially valid PLSR model

Variable importance in projection (VIP) w;s - weight value for variable j of component f

F.,2 . . SSY, - the sum of squares of y for the /" component
Xy Wiy - SSY -] ! .
Vi P] J - the number of variables
SSYtotar * F

SSY, a1 - the sum of squares of the total explained variance of y

SSY; = bitity  SSYipq = BT'T

F - the total number of components, i.e. LVs

Selectivity ratio (SR)

X = XTP + ETP = tTPp',TP + ETP trp — Scores vector
! _ .
B Xb B X'trp B SSexplaine dj Prp - loadings vector
trp = ||_b|| Prp = t,TPtTP j = SS — SS — sum of squares for each variable j
residual,j
SSexplained.j - ”tTPpTP,j” SSresidual,j = ”ETP,j”
Regression Vector

Regression coefficients which are a single measure of association between each variable

and the response can be utilized based on the assumption that variables with larger coefficient are more influential and
therefore more important

The regression vector, VIP and SR were acquired straight from the PLS_Toolbox

Mehmood, T., K. H. Liland, L. Snipen and S. Saebg (2012). "A review of variable selection methods in Partial Least Squares Regression."
Chemometrics and Intelligent Laboratory Systems 118: 62-69.
Rajalahti, T., R. Arneberg, F. S. Berven, K. M. Myhr, R. J. Ulvik and O. M. Kvalheim (2009). "Biomarker discovery in mass spectral profiles by
means of selectivity ratio plot." Chemometrics and Intelligent Laboratory Systems 95(1): 35-48
Farrés, M., S. Platikanov, S. Tsakovski and R. Tauler (2015). "Comparison of the variable importance in projection (VIP) and of the selectivity
ratio (SR) methods for variable selection and interpretation." Journal of Chemometrics 29(10): 528-536.
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Variable selection — Screening methods

RReliefF algorithm

_ Pairg cairr Fy Pairr (1 - PdiffCIdiffFj)PdiffFj

Paisr ¢ 1= Paisrc

F-test statistic or Fisher ratio

MSregression

F =
M Sresiduals

P c - the probability that the two nearest
variables have different predictions

P4 - the probability that the two nearest
variables have different values for the
independent variable

Pt ¢ | aiep -the probability that the two nearest

variables have both different values for the
independent and dependent variable

MS - mean squares calculated for each variable

MATLAB Statistics and Machine Learning Toolbox

Patchava, K. C., M. Benaissa and H. Behairy (2015). Improving the prediction performance of PLSR using RReliefF and FSD for the quantitative
analysis of glucose in Near Infrared spectra. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, EMBS.
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Model validation

1. Both X and Y data blocks are Mean Centered (MC)

2. Logarithmical transformation of both blocks

3. Evaluation via calculation of RMSECYV established using leave-one out methodology
4. With increasing the number of LV the threat of overfitting increases

5. Models are build by iterative increase of the relevance cut-off value, with a constrain that the model
must not have less than 10 000 pixels

Preprocessing PLSR - RMSECYV (g deposit/6 h)
Method X-block Y-block 1LV 2LV
Full logio MC logio MC 0.95 0.91
Regression vector logio MC logio MC 0.35 0.44
VIP logio MC logio MC 0.38 0.43
SR logio MC logio MC 0.47 0.45
RReliefF logio MC logio MC 0.42 0.62
Fisher ratio logio MC logio MC 0.38 0.51

MC — mean centered log10 — logarithm base 10
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Fisher ratio

Pixels corresponding to aromatics and naphthenics with long aliphatic side chains and high boiling point
paraffins serve as the best TLE fouling predictors
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Variable importance in projection

Confirms that aromatics and naphthenics with long aliphatic side chains along with poly-aromatics and high
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Regression vector

Same pixels, corresponding to aromatics and naphthenics with long aliphatic side chains, poly-aromatics and
to some extent to high boiling point paraffins serve as good TLE fouling predictors
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The method enabled establishing of the most accurate TLE fouling prediction model with an average relative
error of 20 % 18
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Conclusions

« Pixel-based PLSR models can be applied within the calibration sample range

« Identical analytical method must be used for characterization of each sample,
slight shifts in retention can be aligned

« Variable selection techniques are able to detect the chromatographic regions, i.e.
chemical compounds, with the strongest correlation with the studied
phenomenon

« Monoaromatics and naphthenics with a high boiling point are the best TLE
fouling predictors

« Composition of the feeds is successfully correlated with the TLE fouling,
providing a predictive model with an average relative error of 20 %
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ARTICLE INFO ABSTRACT

AF!TEJ_E history: Fouling tendencies of a series of gas condensates were evaluated using comprehensive two-dimensional
Received 18 October 2016 gas chromatography with flame ionization detection and sulfur chemiluminescence detection. A pixel-
Received in revised form 19 February 2017 based approach was applied in order to identify parts of the chromatograms which were associated

Accepted 11 April 2017

Available online 14 April 2017 with the reactor coil fouling. Particular emphasis is given in this work to evaluate several feature selec-

tion methodologies along with various data preprocessing procedures. It was found that both aspects
were crucial for studying the fouling tendencies and, as part of the subsequent partial least squares

Keywords: . 5 = model development, predominantly the feature selection. Based on the flame ionization detector chro-
Comprehensive two-dimensional 3 g r 5 ¥ 2

chromatography matograms and using the RReliefF algorithm for feature selection, a partial least squares regression model
Pixel-based analysis with one latent variable resulted in a root mean square error of the cross-validation of 0.65 gdeposit/6h
Feature selection (17%). Based on the sulfur chemiluminescence detector chromatograms, the F-statistics feature selec-
Steam cracking tion generated a slightly better partial least squares regression model compared to using RReliefF, thus
Fouling generating a model using one latent variable with a root mean square error of the cross-validation of

0.81 gdeposit/6 h (21%). Heavy aromatic compounds and heavy sulfur containing compounds were neg-
atively associated with the fouling rate. Both were crucial in developing a partial least squares model
with good prediction power, however, worked independently as predictors.

@© 2017 Elsevier B.V. All rights reserved.
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Glossary

BTX — Benzene, Toluene, Xylene

LPG - Liquefied petroleum gas

T - Temperature

P - Pressure

6 — Dilution

TLE — Transfer Line Heat Exchanger

GC x GC - comprehensive two-dimensional gas chromatography
PCA - Principle Component Analysis

PC — Principle component

PLSR - Partial Least Squares Regression

VIP - Variable importance in projection

SR - Selectivity ratio

RMSECYV - Root Mean Square Error of Cross Validation
LV - latent variable

MC - Mean Centered

FR - Fisher Ratio

RC - Regression Coefficients

PTV - Programmed Temperature Vaporising injector
FID - Flame Ionization Detector
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