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Abstract 

Although TiO2, ZrO2 and HfO2 nanocrystals are often synthesized in tri-n-

octylphosphine oxide (TOPO), it is unclear whether TOPO also serves as ligand. 

Using liquid and solid state 1H and 31P nuclear magnetic resonance spectroscopy 

and X-ray fluorescence spectroscopy, we show that the nanocrystal surface is 

capped by several derivatives of TOPO. In the 31P NMR spectrum, di-n-

octylphosphinate (δ = 57 ppm) and P,P’-(di-n-octyl) pyrophosphonate (δ = 20 ppm) 

are found coordinated to the nanocrystal. In addition, hydrogen chloride associates 

with the metal oxide nanocrystal surface and protonates TOPO. The resulting 

hydroxyl-tri-n-octylphosphonium, [HO-PR3]
+, is tightly associated with the 

nanocrystal surface (δ(31P) = 73 ppm) due to electrostatic interactions and hydrogen 

bonding. To simplify the complex surface composition, we exchange the original 

surface species for carboxylate or phosphonate ligands. The protonation of TOPO 

is an unexpected example of lyophilic ion pairing between an acidic metal oxide 

nanocrystal and a weakly basic ligand molecule that is formed in nonpolar solution. 

Our results contrast with the classically envisaged L-type binding motif of TOPO 

to surface metal ions. The generality of this stabilization mode and its relevance to 

catalysis is discussed.  
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1. Introduction 

The metal oxides of group 4 (TiO2, ZrO2 and HfO2) constitute a widely-used class of materials, 

characterized by a wide band gap, a high melting point, high dielectric constant and excellent 

chemical and thermal stability. TiO2 is used as an electron transporting layer in solar cells1-4 

and LEDs4 due its low work function and intrinsic n-type doping. In addition, TiO2,
5-10 ZrO2

11-

12 and HfO2
13 nanostructures are involved in (photo)catalytic processes and display 

photoluminescence associated with either defects or dopants.14-17 Due to their high thermal and 

chemical stability, ZrO2 and HfO2 nanocrystals (NCs) are used in superconducting 

nanocomposites18-19 and oncology.20 HfO2 is employed in γ-ray scintillators for its high 

absorption cross section.21 Because of their high refractive index, all group IVB metal oxides 

find applications in optical nanocomposites.22-27 In these examples and others,28 the surface 

chemistry, i.e., the coordination of organic ligands to nanocrystal surfaces,29 is key to their 

function and is often determined by the synthesis route.  

Many syntheses of group 4 metal oxide NCs have been developed, yielding materials of varying 

quality. Aqueous syntheses occur quickly and typically give NCs with poor particle size 

distributions and low crystallinity.10, 30 Syntheses in benzyl alcohol solution produce highly 

crystalline but aggregated NCs14, 25, 31-35 that can be dispersed with surfactants.36-38 Both the NC 

size14, 31, 33 and crystal structure39 can be tuned by varying the metal precursor. A variety of 

group 4 metal oxide NCs can also be synthesized in organic surfactants, including oleylamine21, 

23 or tri-n-octylphosphine oxide (TOPO). For example, TiO2 and ZrO2 NCs were recently 

synthesized from a mixture of the corresponding metal halide and metal alkoxide in TOPO and 

heptadecane.40,16 HfO2 nanorods41-43 and solid solutions42, 44 of HfxZr1-xO2 can also be 

synthesized in TOPO. NCs synthesized in TOPO stand out in terms of monodispersity, 

crystallinity, scalability, and colloidal stability, which is perhaps surprising given the weak 

Lewis basicity of this solvent.  

The surface chemistry of group IVB metal oxide NCs has proven essential to nanocrystal 

assembly,45 charge transport in nanocrystalline solar cells,1 and their activity as 

photocatalysts.46 For these reasons, the surface chemistry of ZrO2 and HfO2 NCs, particularly 

with carboxylic acid ligands, has been carefully studied.38, 47-48 On the other hand, the surface 

chemistry of metal oxide NCs synthesized in TOPO, is less well understood.1, 6-8, 45-46, 49-50 It is 

unclear whether TOPO is the surface ligand, particularly given a recent study showing that 

stoichiometric CdSe NCs are unstable to aggregation in neat TOPO.51 Furthermore, it was 



reported that wurtzite CdSe NCs, synthesized in TOPO, are bound by phosphinic and 

phosphonic acid impurities in the TOPO surfactant.52-55 Therefore, we sought to understand 

whether TOPO acts as the stabilizing ligand for metal oxide NCs synthesized in TOPO.  

Our studies show that the highly acidic conditions produced by the MCl4 precursor (M = Ti, Zr 

or Hf) can convert pure TOPO to octylphosphinic acid and pyrophosphonate, which both bind 

strongly to the nanocrystal surface. Moreover, hydrogen chloride produced by the precursor 

conversion associates with the product nanocrystal and protonates TOPO. The latter remains 

bound to the nanocrystal by hydrogen bonding and electrostatic interactions (Scheme 1). By 

means of ligand exchange with phosphonic and carboxylic acids, the complex surface 

composition is simplified and chloride is removed from the dispersion. We thus obtain 

nanocrystals with well-defined phosphonate ligand shells. This study underscores the 

importance of lyophilic electrostatic stabilization51 as a binding motif and suggests protonated 

TOPO as a potentially interesting ligand for applications in acid catalyzed processes.  

 

Scheme 1. Reversible protonation of TOPO by the hydrogen chloride adduct of MO2 (M = Ti, 

Zr or Hf). 

2. Results  

Quasi-spherical ZrO2 NCs, with a tetragonal crystal structure (average diameter = 3.5 nm,   = 

11%) are synthesized from ZrCl4 and Zr(OiPr)4.iPrOH in TOPO according to a published 

procedure (Figures 1 and S1).16 Alternatively, to avoid impurities in TOPO and to tackle 

reproducibility problems associated with the dissolution of ZrCl4, we used recrystallized TOPO 

and the well-defined bis-tetrahydrofuran complex, ZrCl4(THF)2. The latter is a white crystalline 

powder that readily dissolves in TOPO at 80 °C. Following purification, the 1H nuclear 

magnetic resonance (NMR) spectrum of a ZrO2 NC dispersion shows only broadened 

resonances from surface bound ligands (Figure 1C). These molecules are tightly bound to the 

NC surface since they are retained in a diffusion filtered spectrum (Figure 1C). A diffusion 

coefficient of 117 µm²/s was estimated from the mono-exponential decay of the NMR intensity 

in a diffusion ordered spectroscopy (DOSY) measurement (Figure S2). According to the 

Stokes-Einstein relation, this diffusion coefficient corresponds to a solvodynamic diameter of 



6.3 nm, which agrees with a NC core diameter of 3.5 nm and a ligand shell thickness of 1.4 nm. 

Dynamic light scattering measurements support a similar solvodynamic diameter (Figure 1D). 

The organic ligand content in a typical purified sample is 19 ± 1 mass %, which could be 

measured using thermogravimetric analysis (TGA). From the TGA analysis, the NC diameter, 

and the concentration of CH3 units (30.6 mmol/L) we calculate a NC concentration (280 

µmol/L) and surface ligand density of 3 ± 0.5 alkyl chains nm-2 (see Supporting Information). 

Similar coverages have been reported on HfO2 and CdSe NCs.38, 56  

 

Figure 1. (A) TEM, (B) XRD, (C) solution 1H NMR spectrum (α denotes the CH3 resonance of toluene) and (D) 

DLS size distributions of ZrO2 NCs, synthesized in TOPO, purified three times and dispersed in toluene.  

Elucidation of the surface chemistry. 31P NMR spectroscopy is a powerful method with which 

to assign the types of surface ligands.52-53, 57-58 The 31P NMR spectrum of a ZrO2 NC dispersion 

in toluene-d8, features three broad peaks centered at 73, 57 and 20 ppm (Figure 2A). This 

suggests that multiple phosphorus-containing species are bound to the nanocrystals, in contrast 

to the general assumption of a uniform TOPO capping.16, 45, 49-50, 59 A variety of chemical tests 

described below allowed us to assign the resonance at 73 ppm to hydroxyl-tri-n-

octylphosphonium ([HO-PR3]
+, R = n-octyl) cations that are associated with the nanocrystal 

surface. The other two resonances are assigned to di-n-octylphosphinic acid (DOPA, = 57 

ppm) and P,P’-(di-n-octyl) pyrophosphonate (PPA,  = 20 ppm). The relative abundance of the 

phosphorus species is affected by the relative ratio of ZrCl4 and Zr(OiPr)4.iPrOH precursors 

where a ratio of 1.25:1 leads to a maximal content of  [HO-PR3]
+ (Figure S3).  



 

Figure 2. (A) Solution 31P NMR spectra of ZrO2 NCs in toluene-d8 and CDCl3. The NCs are synthesized with a 

1:1 mixture of ZrCl4 and Zr(iPrO)4.iPrOH. (B) Ligands stripped from ZrO2 NCs by refluxing in methanol/water 

with tetramethylammonium hydroxide, dissolved in CDCl3. 

Several observations support the assignment of surface associated [HO-PR3]
+ to the resonance 

at  = 73 ppm. First, a similar chemical shift is observed in CDCl3 solutions of TOPO and 

trifluoroacetic acid. Second, when the ZrO2 NCs are transferred from toluene-d8 to CDCl3, 

sharp 1H and 31P resonances appear ( = 48 ppm) that correspond to freely diffusing, neutral 

TOPO (Figure 2A, S4 and S5).52, 55 Concomitantly, the resonance at  = 73 ppm decreases in 

intensity, thus proving that it is derived from (protonated) TOPO. Similarly, TOPO desorbs 

upon heating NCs in dichlorobenzene-d4 to 130 °C and reverts to the protonated state at lower 

temperatures. This behavior in chloroform or at elevated temperatures is consistent with the 

equilibrium shown in Scheme 1. Furthermore, using X-ray fluorescence measurements, 

chloride can be observed in the purified nanocrystals (Figure S6). These anions help provide 

charge balance for the associated [HO-PR3]
+ and suggest that it is electrostatically associated 

with a negatively charged NC (Scheme 1).  

To assign the other 31P NMR signals, benzyltrimethylammonium propionate52 and tetramethyl 

ammonium hydroxide were used to displace the ligands (Scheme 2). For example, 

benzyltrimethylammonium propionate releases TOPO and di-n-octylphosphinate ( = 40 ppm), 



causing a decrease in the broad resonances at 73 and 57 ppm (Figure S7). Refluxing the ZrO2 

NCs in a solution of methanol/water and tetramethylammonium hydroxide (see Scheme 2 and 

experimental section) removes all the phosphorus containing ligands. In addition to TOPO and 

di-n-octylphosphinate, the 31P NMR spectrum now features a resonance from n-

octylphosphonate ( = 22 ppm) (Figure 2B). Alternatively, hydrolysis of P,P’-(di-n-

octyl)pyrophosphonic acid (an anhydride of n-octylphosphonic acid) can explain the result. 

Given the strong binding affinity and reported chemical shift of alkylphosphonates bound to 

zirconia (25 ppm),60-61 we attribute the 20 ppm resonance to P,P’-(di-n-octyl)pyrophosphonate. 

Our assignment is confirmed by the appearance of pyropshophonate upon exchange with 

phosphonic acids (vide infra) and by the increase of the 20 ppm resonance upon addition of 

separately synthesized P,P’-(di-n-dodecyl)pyrophosphonate (Figure S8). However, we cannot 

fully exclude traces of n-octylphosphonate. It is important to note that while phosphinic and 

phosphonic acids are often found as impurities in TOPO,54-55 the above ligands do not originate 

from the used TOPO since the TOPO solvent has been recrystallized and the impurities 

removed (see experimental section).53 However, we still retrieve phosphinic and phosphonic 

acids on the nanocrystal surface, and therefore, we infer that these ligands arise from the 

decomposition of TOPO under the highly Lewis and Brønsted acidic conditions. 

 

Scheme 2. The binding of TOPO, DOPA and PPA to ZrO2 NCs. Note the stoichiometry of the surface; 

stoichiometric for TOPO and DOPA binding sites and cation rich for PPA binding sites. Also, the stripped ligands 

are displayed upon addition of benzyltrimethylammonium propionate or after reflux in water/methanol solution of 

tetramethylammonium hydroxyide.   

Having identified three phosphorus containing surface ligands, we set out to identify the extent 

to which these ligands are protonated. The solid state cross polarization magic angle spinning 

(CP-MAS) 31P NMR spectrum and a solid state 1H-31P heteronuclear correlation spectrum of 

dried ZrO2 nanocrystals are shown in Figure 3. The line shape resembles the solution state 

spectrum in toluene-d8. Cross peaks can be observed between the phosphorus resonances of 

[HO-PR3]
+, di-n-octylphosphinate, and a broad 1H signal centered near 6 ppm. This signal is 

presumably a convolution of multiple acidic hydrogens in the sample. A resonance at a similar 



chemical shift was previously assigned to a hydroxyl group on the surface of ZrO2.
60, 62 In 

contrast, the pyrophosphonate signal has little cross correlation with the 1H NMR spectrum. 

Based on these cross correlations we tentatively conclude that di-n-octylphosphinate adsorbs 

on the oxide surface and forms a hydrogen bond to surface hydroxyls, while the 

pyrophosphonate ligands do not participate in hydrogen bonding (Scheme 2). Our assignment 

of the deprotonated anionic ligand form is consistent with the following arguments: (1) the 

ligands are not removed by the purification process, suggesting they are not simply datively 

bound phosphinic or phosphonic acids, and (2) coordination to Lewis acidic zirconium centers 

will stabilize the phosphinate and phosphonate anions over their protonated phosphinic and 

phosphonic acid forms. This assignment is analogous to the dissociation of carboxylic acids on 

ZrO2 and HfO2 NC surfaces reported previously.29, 38, 62  

 

Figure 3. 31P CP MAS solid state NMR spectrum of the ZrO2 NC powder. 18 kHz spinning rate, 1 ms contact time 

and the HETCOR spectrum, 1 ms contact time 

Generality of surface chemistry model. To investigate the generality of our conclusions, TiO2 

and HfO2 nanocrystals were synthesized according to the same strategy. Both types of NCs are 

slightly elongated and the final size is about 9.1 ± 2.3 nm for TiO2 and 8 nm ± 2.4 nm for 

HfO2, both larger than the ZrO2 NCs (Figure 4). The larger size and the irregular surface causes 

even broader NMR signals, so highly concentrated samples were required to obtain 31P NMR 

spectra with sufficient signal to noise. A similar distribution of ligands is found, including [HO–

PR3]
+ (δ = 73 ppm) and di-n-octylphosphinate (δ = 57 ppm). To unambiguously demonstrate 

their identity, the ligands were displaced by ammonium carboxylate (Figure S9). 

Pyrophosphonate ligands were not detected in the TiO2 sample, while a measurable amount is 

found in the HfO2 sample. The difference may reflect the greater acidity of the transition metal 

halide complexes and their ability to activate TOPO toward decomposition.  



 

Figure 4. (A) TiO2 NCs (B) HfO2 NCs and (C) The 31P spectrum of TiO2 (with [HO–PR3]+and di-n-octylphosphinic 

acid). The small peak at 45 ppm is most likely TOPO that is not tightly bound but in dynamic exchange. The 31P 

spectrum of HfO2 NCs (with [HO–PR3]+, di-n-octylphosphinic acid and pyrophosphonate).  

Ligand exchange for carboxylic acids. On the basis of these assignments, we sought to 

perform a ligand exchange to simplify the ligand shell of the ZrO2 NCs, since its complexity 

can obscure structure-function relationships.46 In addition, we sought methods that remove 

hydrogen chloride, which is not easily removed from nanocrystalline thin films using O2/plasma 

treatments.45, 49 For these reasons we explored the exchange of surface ligands under basic 

conditions (Figure 5). Adding n-octylamine to a ZrO2 NC dispersion in chloroform liberates 

neutral TOPO molecules from the surface and di-n-octylphosphinate partially desorbs (Figure 

5B), most likely as an n-octylammonium ion pair.48, 51 Addition of oleic acid with the n-

octylamine more completely removes the di-n-octylphosphinate from the surface along with 

the TOPO, although the pyrophosphonate ligands remain intact (Figure S10 and S11). 

Following purification and isolation of the ligand exchange product, the 1H NMR spectrum of 

the dispersion carries the finger print of surface bound oleyl chains (Figure 5C), while the XRF 

spectrum lacks the signals from chloride (Figure S12). We conclude that the amine deprotonates 

the [HO–PR3]
+ ions, liberating TOPO from the nanocrystal, and carboxylate anions displace the 

di-n-octylphosphinate and chloride ligands. Moreover, we conclude that the carboxylate anions 

do not preferentially displace the pyrophosphonate ligands, suggesting they have especially 

strong affinity for the ZrO2 NC surface. However, in the case of TiO2 NCs, which lack 

pyrophosphonate ligands (Figure 4), we could prepare a pure carboxylate ligand shell (Figure 

S13).  



 

Figure 5. (A) Exchange for carboxylic acids under basic conditions. (B) 31P NMR spectrum of ZrO2 NCs + 

octylamine. (C) 1H NMR spectrum of the purified NCs capped with oleic acid in toluene-d8. The α resonance is 

assigned to CH3 of toluene and the γ resonance is assigned to the octyl chain CH3.  

The addition of citric acid – without base – stabilizes ZrO2 NCs in methanol.19 However, this 

ligand exchange strategy leads to a complex mixture, because the acidic nanocrystals 

simultaneously catalyze the esterification of citric acid by methanol. Consequently, the mono-, 

di- and trimethylated citric acid cause a complex pattern in the 1H NMR spectrum ( = 2.5 – 3 

ppm), but are nonetheless separate from the resonances of the native ligands ( = 0.5 – 2 ppm) 

(Figure 6).  Interestingly, in the diffusion filtered spectrum, there is a new resonance at 3.6 ppm 

for the methyl ester (Figure 6). We thus infer that the mono or double ester of citric acid is 

bound to the surface through the remaining carboxylate functionality. In the 31P NMR spectrum 

only one sharp resonance, corresponding to neutral TOPO, is observed (Figure S14). Therefore, 

we conclude that the phosphonic and phosphonic acids remain tightly bound to the surface and 

partially esterified citric acid only displaces TOPO.  



 

 

Figure 6. 1H NMR spectra of a ZrO2 NCs dispersion in methanol-d4, the diffusion filtered spectrum of the 

dispersion and the reference spectrum of citric acid. The resonance indicated by alpha (α) corresponds to the 

solvent; methanol.  

Ligand exchange for phosphonic acids. Given the greater affinity of the phosphonic acid 

ligands for the surface, we studied ligand exchange using n-octadecylphosphonic acid (ODPA) 

(Figure 7). Adding ODPA to ZrO2 NCs displaces all the native ligands leaving ODPA capped 

NCs that could be isolated by precipitation and separated from the TOPO and phosphinate 

byproducts. This approach produces a signal for a free pyrophosphonate (Figure 7B), consistent 

with our assignment above, rather than a surface bound n-octylphosphonate. The 31P NMR 

spectrum of the purified nanocrystal dispersion contains one broad resonance, corresponding to 

bound ODPA (Figure 7C). XRF measurements demonstrate that the ligand exchange and 

purification procedure effectively removes remaining chloride ions (Figure S15). In addition, 

the 1H NMR spectrum is free from the sharp signals of freely diffusing ligands, indicating a 

successful purification (Figure S16). We conclude that the surface ligands are completely 

converted to tightly bound n-octadecylphosphonate ligands, providing a well-defined 

nanocrystal product.  



 

Figure 7. (A) Exchange for n-octadecyphosphonic acid (ODPA). (B) 31P NMR spectrum of the supernatant in 

CDCl3 after addition of excess of ODPA to ZrO2 NCs and purification. (C)  31P NMR spectrum of the purified 

dispersion in toluene-d8. 

3. Discussion 

Although initially assumed to be bound by L-type TOPO ligands, CdSe nanocrystals turned out 

to be stabilized by phosphinic and/or phosphonic acid impurities in TOPO.54-55, 63 Ever since, 

the status of TOPO as a ligand has been under siege, especially given the recent report that 

stoichiometric CdSe NCs are unstable in neat molten TOPO.51 Here, we show that TOPO is not 

inert nor a simple L-type ligand. Under the acidic conditions used to synthesize TiO2, ZrO2 and 

HfO2, pure TOPO undergoes decomposition to di-n-octylphosphinic acid and P,P’-(di-n-octyl) 

pyrophosphonate that bind the NC surface. Although the precise mechanism is uncertain, it is 

likely caused by the high Lewis and Brønsted acidity of the reaction mixture. When considering 

the mass balance of the reaction, the only oxygen source is Zr(OiPr)4.iPrOH and oxygen is 

consumed by both metal oxide formation and by conversion of TOPO to phosphinic and 



phosphonic acids. Although the formation of byproducts is a characteristic of most chemical 

reactions, it is especially problematic in nanocrystal syntheses when a byproduct binds to the 

surface with high affinity, such as in the present case. It is likely that solvent decomposition or 

surface bound reaction byproducts occur more frequently and this warrants more attention to 

nanocrystal surface chemistry in synthetic procedures.    

The mechanism of non-hydrolytic oxide formation has been investigated in detail16, 64-65 and 

the reaction between metal chloride and metal isopropoxide yields isopropyl chloride (Equation 

1). Isopropyl chloride can undergo a dehalogenation reaction to form propene16 (Equation 2) 

and HCl, hence the source of acidic protons in the reaction mixture. 

ZrCl4 + Zr(O𝑖Pr)4 → 2 ZrO2 + 4 𝑖PrCl (1) 

𝑖PrCl ⇌ HCl + C3H6 (2) 

Hydrogen chloride associates with the nanocrystal and is sufficiently acidic to protonate even 

weakly basic moieties such as TOPO; pKa(HO-PR3)
+ = -1.5 (in sulfuric acid).66 The [HO–PR3]

+ 

is then electrostatically associated with the nanocrystal, creating an unexpected example of 

lyophilic electrostatic stabilization.51 Considering the weak basicity of TOPO, it is reasonable 

to imagine that many metal, semiconductor and metal oxide nanocrystal syntheses,21, 23, 67-71 

performed in even more basic solvents such as oleylamine, may display a similar motif. Here 

however, the NMR active phosphorus nucleus allowed us to study the fate of the protonated 

moiety in more detail than could be done for e.g., ammonium compounds. For the same reason, 

tri-n-alkylphosphine oxides have been used as probe molecules to assess the acidity of metal 

oxides used in heterogeneous acid catalysis.72-74 Typically, protonated phosphine oxides form 

a hydrogen bond to the oxide surface,73 and thus the  electron cloud is sensitive to the extent of 

proton transfer. Consequently, the 31P chemical shift reflects the acidity of the surface with 

higher chemical shifts representing more acidic surfaces. The chemical shift observed in our 

samples of ZrO2 NCs (δ = 73 ppm) is indicative of a strongly acidic surface, although not as 

acidic as sulfonated zirconia (δ = 94 ppm).74 The latter is the most powerful solid state acid 

known and it is particularly active in hydrocarbon isomerization, alkylation and esterification.75-

76 Nevertheless, given the high acidity of the NC surface and their high surface to volume ratio, 

these NCs might be of interest for acid catalysis. Although in nano-catalysis, ligands – needed 

for colloidal stability – often block catalytically active surface sites,77-78 the desorption of TOPO 

at high temperatures or in more polar solvents is encouraging since this leaves the acidic surface 

bare for catalytic substrates to bind.   



Finally, our attempts to displace the original ligands using carboxylic acids and amines, 

neutralizes the [HO–PR3]
+, liberates TOPO, and also liberates di-n-octylphophinate and 

chloride ions. The latter is especially useful since it appeared particularly difficult to remove in 

earlier reports.45, 49 Our results are consistent with the previously proposed dissociation of acids 

on the metal oxide surface, the NC(X)2 binding motif.13, 29, 38  In addition, we found that 

phosphonates bind better to the surface than carboxylates, which is consistent with the literature 

on bulk metal oxide surfaces.60, 79-80 Given the wealth of available phosphonic acids, they seem 

the most promising candidates to pursue future ligand exchange strategies with.  

4. Conclusion  

Via a combination of liquid state and solid state NMR, we have demonstrated that group 4 metal 

oxide nanocrystals synthesized in TOPO contain a variety of ligands including di-n-

octylphosphinic acid and P,P’-(di-n-octyl)pyrophosphonate which form upon decomposition of 

the TOPO solvent. Moreover, we find that TOPO reacts with Brønsted acid sites on the 

nanocrystal producing adsorbed [HO-PR3]
+ ions that balance charge with the nanocrystal. This 

motif appears to be a consequence of forming HCl under anhydrous conditions, which adsorbs 

to the nanocrystal creating a very acidic surface. Basic conditions then neutralize these acids 

and facilitate desorption of both halide and phosphinate anions and enable partial exchange for 

oleate ligands. However, the phosphonate ligands are more strongly bound and may only be 

displaced by other phosphonic acids. This allowed ZrO2 nanocrystals to be prepared with a pure 

n-octadecylphosphonic acid ligand shell. These insights fuel the discussion on the status of 

TOPO as a ligand. In the present case, the very strong acids generated from the group 4 metal 

halides cause protonation in nonpolar solvent ultimately leading to electrostatically stabilized 

dispersions, rather than a simple dative ligand binding. 

5. Experimental methods 

General considerations. Zr(OiPr)4.iPrOH (99.9%), ZrCl4 (99.9%), Ti(OiPr)4 (99.999%), TiCl4 

(≥99.0%), Hf(OiPr)4.iPrOH (99.9 %), HfCl4 (99.9%), 25w% solution of NMe4OH in methanol, 

oleic acid (technical, 90%), octylamine (99%), toluene (99.5%), acetone (99.8%), methanol 

(99.8%) were purchased from Sigma Aldrich and used without purification.  

Tri-n-octylphosphine oxide (99%) was bought from Strem chemicals and recrystallized 

according to Owen et. al.53 The NMR spectra of recrystallized TOPO are shown in Figure S17: 

{1H}31P NMR (202.5 MHz, CDCl3) δ = 48.5 ppm. {1H}31P NMR (202.5 MHz, toluene-d8) δ = 

41.5 ppm. ZrCl4.(THF)2 was synthesized according to Manzer et al.81 P,P’-(di-n-dodecyl) 



pyrophosphonic acid was synthesized according to Kopping et al.52 TiO2 nanocrystals were 

synthesized according to Trentler et. al. using 15 g TOPO, 0,6 mL Ti(OiPr)4 and 0,22 mL TiCl4 

at 300 °C for 10 min.40 HfO2 nanocrystals were synthesized according to Tirosh et. al. using 10 

g TOPO, 0.95 g Hf(OiPr)4.iPrOH and 0.64 g HfCl4 at 340 °C for 2 hours.43 Ligand exchange 

with citric acid was performed according to Rijckaert et al.19  

For Dynamic Light Scattering (DLS) and zeta potential measurements on suspensions a 

Malvern Nano ZS was used in backscattering mode (173°). Transmission electron microscopy 

(TEM) images (of a drop-cast suspension on a grid) were taken on a JEOL JEM-2200FS TEM 

with Cs corrector. For powder X-ray diffraction (XRD) characterization a Thermo Scientific 

ARL X'tra X-ray diffractometer was used with the CuKα line as the primary source. XRF 

measurements were performed on dried suspensions on a Rigaku CG Energy Dispersive X-ray 

Fluorescence (EDXRF) analyzer. 

Optimized ZrO2 nanocrystal synthesis, adapted from Joo et. al.16 In a nitrogen filled 

glovebox, a 50 mL three-neck-flask is loaded with 5 g recrystallized TOPO, Zr(OiPr)4.iPrOH 

(0.775 g, 2 mmol), followed by another 5 g recrystallized TOPO and ZrCl4.2THF (0.943 g, 2.5 

mmol). A stirring bar is added, and a thermowell, septum and condenser are mounted on the 

three-neck-flask. The top part of the condenser is sealed with a vacuum adapter for easy 

connection to the Schlenk line. The setup is taken out of the box and connected to the Schlenk 

line and the flask is filled with Argon. The temperature is first set to 60 °C to allow the TOPO 

to melt and all the precursors dissolve easily. The temperature is then raised slowly to 340 °C 

and held there for 2 hours. After the reaction has completed, the transparent reaction mixture is 

cooled to 80 °C and toluene (3 mL) is injected. The nanocrystals are purified by the addition of 

acetone (1: 2 in volume) to the reaction mixture, yielding a white precipitate after centrifugation 

(3500 rpm – 3 min). The precipitate is suspended in toluene (10 mL) and precipitated with 

acetone again and redispersed in toluene. The dispersion is centrifuged and filtered (0.25 µm 

PTFE membrane) to discard any insolubles. The resulting suspension is purified two additional 

times with acetone, and suspended in 10 mL of toluene (25.5 mg ZrO2 /mL). Yield: 46 % 

Complete ligand removal by tetramethylammonium hydroxide. 250 µL of ZrO2 NC 

dispersion (12.5 µmol CH3 units) is evaporated and 2 mL of methanol is added and stirred 

resulting in a cloudy suspension. 50 µL of a 25w% solution of tetramethylammonium hydroxide 

solution in methanol (119 µmol) is added and the suspension is refluxed for 4 hours. Water (2 

mL) is added and the suspension is again refluxed for 24 hours. The solvents are removed under 



vacuum and 500 µL CDCl3, 150 µL oleic acid and 50 µL octylamine are added. The suspension 

is centrifuged to remove insolubles and the supernatant is measured in NMR (Figure 2B). 

Ligand exchange to oleic acid. 2 mL of standard ZrO2 NC dispersion is dried and 0.6 mL of 

CDCl3 is added. First 20 µL of octylamine is added (NMR analysis) and then 40 µL of oleic 

acid (NMR analysis). The NCs are precipitated with acetone and redispersed in 200 µL CHCl3. 

400 µL oleic acid and 200 µL octylamine are added and the NCs are precipitated with 1 mL of 

acetone. This treatment is repeated and the NCs are dispersed in 200 µL CHCl3 and 50 µL oleic 

acid. The NCs are precipitated twice with acetone and redispersed in chloroform. Finally, the 

NCs are dried and dispersed in toluene-d8.  

Ligand exchange to n-octadecylphosphonic acid. 2 mL of optimized ZrO2 NC dispersion (85 

µmol CH3 units) is dried and dispersed in 0.6 mL of toluene-d8. 40 mg of octadecylphosphonic 

acid (120 µmol) is added and the suspension is subjected to 30 minutes of ultrasound treatment, 

followed by heating to the boiling point and followed by 30 additional minutes of ultrasound 

treatment. The NCs are purified three times by precipitation with methanol and redispersion in 

toluene. To get a clear supernatant, add 2 mL methanol to a 0.5 mL dispersion of NCs and let 

the NCs settle before centrifugation. The combined supernatant from all the washes is dried and 

dissolved in CDCl3 with octylamine. The NCs are dried and redispersed in toluene-d8. 

Solution NMR characterization.82 Nuclear Magnetic Resonance (NMR) measurements were 

recorded on Bruker spectrometers operating at a 1H frequency of 500.13 MHz. One dimensional 

(1D) 1H and 31P spectra were acquired using the Bruker pulse sequences zg and zgig (inverse 

gated decoupling) respectively. For the quantitative 1D 1H measurements, 64k data points were 

sampled with the spectral width set to 16 ppm and a relaxation delay of 30 sec. Concentrations 

were obtained using the Digital ERETIC method.83 Diffusion measurements (2D DOSY) were 

performed using a double stimulated echo sequence for convection compensation and with 

monopolar gradient pulses; dstegp2s.84 Smoothed rectangle gradient pulse shapes were used 

throughout. The gradient strength was varied linearly from 2-95% of the probe’s maximum 

value (calibrated at 50.2 G/cm) in 64 steps, with the gradient pulse duration and diffusion delay 

optimized to ensure a final attenuation of the signal in the final increment of less than 10% 

relative to the first increment. The diffusion coefficients were obtained by fitting the Stejskal-

Tanner (ST) equation to the signal intensity decay: 

  𝐼 = 𝐼0𝑒−(𝛾𝛿𝑔𝜉)2𝐷(Δ−0.6𝛿) (1) 



with the gyromagnetic ratio of the observed 1H nucleus γ, the gradient pulse length δ, the 

gradient strength g, the diffusion time ∆ and the diffusion coefficient D.  

Solid state NMR characterization. Solid-state NMR experiments were recorded at the LCC 

(Toulouse) on a Bruker Avance 400 spectrometer equipped with 3.2 mm probes. Samples were 

spun at 18 kHz at the magic angle using ZrO2 rotors. 31P MAS experiment was performed with 

a recycle delay of 60 s. 31P CP MAS spectra were recorded with a recycle delay of 1.5 s and a 

contact time of 2 ms. 31P HETCOR were recorded with a recycle delay of 1.5 s and a contact 

time of 1 ms. All the 31P spectra were recorded under high-power proton decoupling conditions. 

31P chemical shifts were referenced to an external 85% H3PO4 sample. 

6. Associated Content 

Supporting information 

DOSY decay fittings, XRF measurements, additional NMR spectra. This information is 

available free of charge via the internet at http://pubs.acs.org/  
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