
A genetic algorithm for interpretable model
extraction from decision tree ensembles

Gilles Vandewiele, Kiani Lannoye, Olivier Janssens,
Femke Ongenae, Filip De Turck, and Sofie Van Hoecke

Department of Information Technology
Ghent University - imec, IDLab

{firstname}.{lastname}@UGent.be

Abstract. Models obtained by decision tree induction techniques excel
in being interpretable. However, they can be prone to overfitting, which
results in a low predictive performance. Ensemble techniques provide a
solution to this problem, and are hence able to achieve higher accuracies.
However, this comes at a cost of losing the excellent interpretability of the
resulting model, making ensemble techniques impractical in applications
where decision support, instead of decision making, is crucial.
To bridge this gap, we present the genesim algorithm that transforms
an ensemble of decision trees into a single decision tree with an enhanced
predictive performance while maintaining interpretability by using a ge-
netic algorithm. We compared genesim to prevalent decision tree in-
duction algorithms, ensemble techniques and a similar technique, called
ism, using twelve publicly available data sets. The results show that
genesim achieves better predictive performance on most of these data
sets compared to decision tree induction techniques & ism. The results
also show that genesim’s predictive performance is in the same order of
magnitude as the ensemble techniques. However, the resulting model of
genesim outperforms the ensemble techniques regarding interpretability
as it has a very low complexity.

Keywords: decision support, decision tree merging, genetic algorithms

1 Introduction

Decision tree induction is a white-box machine learning technique that obtains
an easily interpretable model after training. For each prediction from the model,
an accompanying explanation can be given. Moreover, as opposed to rule extrac-
tion algorithms, the complete structure of the model is easy to analyze as it is
encoded in a decision tree.

In domains where the decisions that need to be made are critical, the emphasis
of machine learning is on offering support and advice to the experts instead of
making the decisions for them. As such, the interpretability and comprehensi-
bility of the obtained models are of primal importance for the experts that need



2 genesim: genetic extraction of a single, interpretable model

to base their decision on them. Therefore, a white-box approach is preferred.
Examples of critical domains include the medical domain (e.g. cardiology and
oncology), the financial domain (e.g. claim management and risk assessment)
and law enforcement.

One of the disadvantages of decision trees is that they are prone to overfit [1].
To overcome this shortcoming, ensemble techniques have been proposed. These
techniques combine the results of different classifiers, leading to an improve-
ment in the prediction performance because of three reasons [2]. First, when the
amount of training data is small compared to the size of the hypothesis space, a
learning algorithm can find many different hypotheses that correctly classify all
the training data, while not performing well on unseen data. By averaging the
results of the different hypotheses, the risk of choosing a wrong hypothesis can
be reduced. Second, many learning algorithms can get stuck in local optima. By
constructing different models from different starting points, the chance to find
the global optimum is increased. Third, because of the finite size of the train-
ing data set, the optimal hypothesis can be outside of the space searched by
the learning algorithm. By combining classifiers, the search space gets extended,
again increasing the chance to find the optimal classifier. Nevertheless, ensem-
ble techniques also have disadvantages. First, they take considerably longer to
train and make a prediction. Second, their resulting models require more stor-
age. The third and most important disadvantage is that the obtained model
consists either out of many decision trees or only one decision tree that contains
uninterpretable nodes (which is the case for stacking), making it infeasible or im-
possible for experts to interpret and comprehend the obtained model. To bridge
the gap between decision tree induction algorithms and ensemble techniques,
post-processing methods are required that can convert the ensemble into a sin-
gle model. By first constructing an ensemble from the data and then applying
this post-processing method, a better predictive performance can possibly be
achieved compared to constructing a decision tree from the data directly.

This post-processing technique is not only useful to increase the predictive per-
formance while maintaining excellent interpretability. It can also be used in a
big data setting where an interpretable model is required and the size of the
training data set is too large to construct a predictive model on a single node in
a feasible amount of time. To solve this, the data set can be partitioned and a
predictive model can be constructed for each of these partitions in a distributed
fashion. Finally, the different models can be combined together.

In this paper, we present a novel post-processing technique for ensembles, called
GENetic Extraction of a Single, Interpretable Model (genesim), which is able to
convert the different models from the ensemble into a single, interpretable model.
Since each of the models in the ensemble being merged will have an impact on
the predictive performance of the final combined model, a genetic approach is
applied which combines models from different subsets of an ensemble. The out-
line of the rest of this paper is as follows. First, in Section 2, work related to
genetic decision tree evolving and decision tree merging is discussed. Then, in



genesim: genetic extraction of a single, interpretable model 3

Section 3, the different steps of genesim are described. In Section 4, a compar-
ison regarding predictive performance and model complexity is made between
genesim, a similar technique called ism and prevalent ensemble & decision tree
induction techniques. Finally, in Section 5, a conclusion and possible future work
are presented.

2 Related work

In the work of Kargupta et al. [3], decision trees are merged by first converting
them to the spectral domain using a Fourier transformation. Next, the obtained
spectra of different trees are added together and the inverse Fourier transfor-
mation converts the spectrum back to a decision tree. Although promising, this
method has not yet been applied successfully in any real-life application.

J.R. Quinlan proposed MiniBoosting [4], wherein three boosting iterations are
applied and the small resulting decision trees are merged into one very large
tree, which can finally be pruned to enhance generalization. This technique has
a higher accuracy than a single decision tree for the largest part of twenty-seven
tested data sets, but a lower accuracy than the boosting implementation Ad-
aBoost.

A more straight-forward technique is proposed by Quinlan [5] which translates
the decision trees in production rules that are much easier to simplify than the
trees themselves. Next, the production rules are either represented as a decision
table, or transformed in a set of k-dimensional hyperplanes, and subsequently
merged using algorithms such as the MIL algorithm [6] or respectively by calcu-
lating the intersection of the hyperplanes [7].

In the work of Van Assche et al. [8], a technique called Interpretable Single
Model (ism) is proposed. This technique is very similar to an induction algo-
rithm, as it constructs a decision tree recursively top-down, by first extracting a
fixed set of possible candidate tests from the trees in the ensemble. For each of
these candidate tests, a split criterion is calculated by estimating the parameters
using information from the ensemble instead of the training data. Then, the test
with the optimal split criterion is chosen and the algorithm continues recursively
until a pre-prune condition is met. Two shortcomings of this approach can be
identified. First, information from all models, including the ones that will have
a negative impact, are used to construct a final model. Second, because of the
similarity with induction algorithms, it is possible to get stuck in the same local
optimum as these algorithms.

Deng [9] introduced stel, which converts an ensemble into an ordered rule list
using the following steps. First, for each tree in the ensemble, each path from the
root to a leaf is converted into a classification rule. After all rules are extracted,
they are pruned and ranked to create an ordered rule list. This sorted rule set can



4 genesim: genetic extraction of a single, interpretable model

then be used for classification by iterating over each rule and returning the target
when a matching rule is found. While a good predictive performance is reported
for this technique, it is much harder to grasp an ordered rule list completely than
a decision tree, as can be seen in Figure 1. Therefore, when interpretability is of
primal importance, the post-processing technique, that converts the ensemble of
models into a single model, should result in a decision tree.

∗ serum ch o l e s t o r a l <= 298.5 & max hea r t r a t e <= 145.5 &

oldpeak > 0 .55 & v e s s e l s > 0 .5 ==> 1

∗ age <= 57.5 & r e s t i n g blood pr e s su r e > 113 .5 &

serum ch o l e s t o r a l > 154 .5 & oldpeak <= 3.2 &

tha l <= 4.5 ==> 0

∗ che s t pain type <= 3.5 & serum ch o l e s t o r a l <= 242.5 &

oldpeak < 3 .10 & tha l <= 6.5 ==> 0

∗ che s t pain type > 1 .5 & oldpeak > 0 .75 &

v e s s e l s <= 0.5 & tha l > 6 .5 ==> 1

∗ r e s t i n g e l e c t r o c a r d i o > 0 .0 &

v e s s e l s > 1 .20 ==> 1

∗ age > 61 .5 & serum ch o l e s t o r a l > 175 .5 &

f a s t i n g blood sugar <= 0.5 &

max hea r t r a t e <= 162 &

v e s s e l s <= 0.5 ==> 0

∗ True == True ==> 0

(a) The resulting model for stel for one
of the three folds for the heart disease
data set.

chest pain type <= 3.0
{'1': 39.0, '0': 50.0}

vessels <= 0.5
{'1': 10.0, '0': 35.0}

true

thal <= 6.5
{'1': 29.0, '0': 15.0}

false

0
{'1': 4.0, '0': 28.0}

true

thal <= 4.5
{'1': 6.0, '0': 7.0}

false

0
{'1': 1.0, '0': 5.0}

true

1
{'1': 5.0, '0': 2.0}

false

max heartrate <= 142.0
{'1': 9.0, '0': 13.0}

true

1
{'1': 20.0, '0': 2.0}

false

1
{'1': 6.0, '0': 2.0}

true

0
{'1': 3.0, '0': 11.0}

false

(b) The resulting model for genesim for
one of the three folds for the heart disease
data set.

Fig. 1: Comparison of the resulting models of stel and genesim regarding
model complexity

It is impossible to know a priori which subset of decision trees should be merged
to obtain the most accurate model. A brute-force approach that tries every
possible combination would require an infeasible amount of computation time.
Therefore, a genetic approach is applied that merges different decision trees
for several iterations. Genetic (or evolutionary) algorithms are meta-heuristics
most often used in optimization problems [10]. A recent and thorough survey of
evolutionary algorithms for decision tree evolving can be found in [11].

3 genesim: GENetic Extraction of a Single, Interpretable
Model

While in Barros et al. [11], genetic algorithms are discussed to construct deci-
sion trees from the data directly, in this paper, a genetic algorithm is applied on
an ensemble of decision trees, created by using well-known induction algorithms
combined with techniques such as bagging and boosting. Applying a genetic
approach allows to efficiently traverse the very large search space of possible
model combinations. This results in an innovative approach for merging decision
trees which takes advantage of the positive properties of creating an ensemble.
By exploiting multi-objective optimization, the resulting algorithm increases the
accuracy ánd decreases the decision tree size at the same time, while most of the
state-of-the-art succeeds in only one of the two.



genesim: genetic extraction of a single, interpretable model 5

A genetic algorithm generally consists of 6 phases, which are repeated iteratively.
First, in an initialization phase, the population of candidate solutions is gener-
ated. It is important that the initial population is diverse enough, to allow for
an extensive search space and reduce the chance of being stuck at local optima.
Second, in each iteration, the individuals are evaluated using a fitness function.
Then, in a selection phase, pairs of individuals are selected based on their fitness
in order to combine them. In a fourth phase, the selected individuals are recom-
bined, resulting in new offsprings. Furthermore, in each iteration, an individual
has a certain probability to be mutated. Finally, in the end of each iteration,
new offsprings are added to the population and the least fit individuals are dis-
carded. In the subsequent subsections, each of the genetic algorithm phases are
elaborated, and discussed in context of genesim1.

3.1 Initialization phase

First, the training data is divided into a new training set and a validation set.
Then, different induction algorithms, including c4.5, cart, quest and guide
are applied on the training data in combination with bagging. Moreover, an
AdaBoost classifier is trained and each of the decision trees of its resulting
model is added to the population.

3.2 Evaluation phase

The fitness function in genesim is defined to be the classification rate on the
validation set:

accuracy =
1

N
∗

N∑
1

1g(xi)=yi

with N the length of the validation data set and g() the hypothesis of the
individual. When two individuals have the same accuracy, the one with the
lowest model complexity (expressed as number of nodes in the tree) is preferred.

3.3 Selection phase

In each iteration, deterministic tournament selection is applied to select the in-
dividuals which will get recombined in the next phase. Tournament selection
has two hyper-parameters: k and p. It chooses k individuals from the popula-
tion at random and sorts them by their fitness. Then, the best individual from
the tournament is returned with probability p, the second best individual with
probability p ∗ (1− p), the third best with probability p ∗ (1− p)2, and so on. In
deterministic tournament selection, p is equal to 1 and thus the best individual
from the tournament is always returned.

1 https://github.com/IBCNServices/GENESIM



6 genesim: genetic extraction of a single, interpretable model

3.4 Recombination phase

To merge decision trees together, they are first converted to sets of k-dimensional
hyperplanes (called the decision space), k being the number of features, by defin-
ing a unidirectional one-to-one mapping. Each node in a decision tree corre-
sponds to a hyperplane in the decision space. Consequently, each leaf of the
decision tree corresponds to a hyperrectangle in the decision space. An example
of such a conversion can be seen in Figure 2.

max heartrate <= 147.0

resting blood pressure <= 115.0

true

1
{'1': 0.72, '2': 0.28}

false

max heartrate <= 120.0

true

2
{'1': 0.25, '2': 0.75}

false

2
{'1': 0.0, '2': 1.0}

true

1
{'1': 0.75, '2': 0.25}

false

1

2 3

4
4

1

2 3

Fig. 2: Converting a decision tree to its set of k-dimensional hyperplanes. The
decision tree is generated using C4.5, on the heart disease data set with two
features: maximum heart rate and resting blood pressure. The color red in the
decision space corresponds to class 1, the color blue corresponds to class 2. The
purple tint, which consists out of a certain percentage of blue and red color,
corresponds to the distribution of the two classes in a leaf.

When all the nodes from all the trees are converted to their corresponding hy-
perplane, the different decision spaces can be merged together by calculating
their intersection using a sweep line approach discussed in [7]. In this approach,
each hyperplane is projected on a line segment in each dimension. These line seg-
ments are then sorted, making it easy to find the intersecting line segments in one
specific dimension. In the end, if the projected line segments of two hyperplanes
intersect in each dimension, the hyperplanes intersect as well. Subsequently, their
intersection can be calculated and added to the resulting decision space. This
method requires O(k ∗n∗ log(n)) computational time, with k the dimensionality
of the data and n the number of planes in the sets, opposed to the quadratic
complexity of a naive approach which calculates the intersection of each possible
pair of planes.

The resulting decision spaces can contain many different regions as the num-
ber of regions in a merged space can increase quadratically in worst-case with
the amount of regions in the original spaces. In order to reduce the amount of



genesim: genetic extraction of a single, interpretable model 7

regions in the resulting space, and thus the amount of nodes in the merged de-
cision tree (possibly leading to better generalization), the decision space should
be pruned. Pruning can be achieved by combining two regions with similar class
distributions (i.e. color in Figure 2) that are next to each other. Similarity of
class distributions can be measured by using a distance metric such as the Eu-
clidean distance and subsequently comparing it with a threshold or by applying
similarity metrics. It is important to note that all regions are hyperrectangles,
thus the combined region should be a hyperrectangle as well. In other words,
the lower and upper bound for all dimensions should be equal for both regions,
except for one dimension where the lower bound in that dimension of one region
is equal to the upper bound in the same dimension of the other region. For ex-
ample, two candidate regions in Figure 2 are the regions 2 and 3 (but they differ
too much in their class distribution to be merged).

Finally, we need to convert our merged decision space back to a decision tree.
Unfortunately, the one-to-one mapping from tree to space is not bidirectional,
as it is not possible to convert the set of k-dimensional hyperplanes, after the
merge operation, to a uniquely defined decision tree. To solve this shortcoming,
a heuristic approach is taken which identifies candidate splitting planes to create
a node from, and then picks one from these candidates. To select a candidate,
a metric (such as information gain) could be used, but this would introduce a
bias. Therefore, a candidate is selected randomly. The candidate hyperplanes
need to fulfill the constraint that they have no boundaries in all dimensions (or
bounds equal to the lower and upper bound of the range of each dimension)
except for one. To illustrate this, only one line can be identified as candidate
line for the root node in the decision space in Figure 2. This line is unbounded
in the dimension of resting blood pressure but with a value of 147 as maximum
heart rate (the line left of region 4).

3.5 Mutation phase

In each iteration, an individual has a certain probability to be mutated. This
can be seen as an ‘exploration’ parameter to escape local minima. Two mutation
operations are defined in genesim: either the threshold value of a random node
in the decision tree is replaced with another value or two random subtrees are
swapped.

3.6 Replacement phase

The population for the next iteration is created by sorting the individuals by
their fitness and only selecting the first population_size individuals.

4 Evaluation & results

The proposed algorithm genesim is compared, regarding the predictive perfor-
mance and model complexity, to two ensemble methods (Random Forests (rf) [12]



8 genesim: genetic extraction of a single, interpretable model

& eXtreme Gradient Boosting (xgb) [13]) and four decision tree induction algo-
rithms (c4.5 [14], cart [15], guide [16] and quest [17]). Moreover, genesim
is compared to ism, which we extended with cost-complexity pruning [15]. For
this, twelve data sets, having very distinct properties, from the UCI Machine
Learning Repository [18] were used. An overview of the characteristics of each
data set can be found in Table 1.

name #samples #cont #disc class distribution
iris 150 4 0 33.3 - 33.3 - 33.3

austra 690 5 9 55.5 - 44.5
cars 1727 0 6 70.0 - 22.2 - 4.0 - 3.8
ecoli 326 5 2 43.6 - 23.6 - 16.0 - 10.7 - 6.1
glass 213 9 0 32.4 - 35.7 - 8.0 - 6.1 - 4.2 - 13.6
heart 269 5 8 55.8 - 44.2
led7 2563 0 7 12.7 - 13.0 - 12.4 - 10.5 - 13.1 - 13.1 - 13.3 - 11.9
lymph 142 0 18 57.0 - 43.0
pima 768 7 1 65.1 - 34.9
vehicle 846 14 4 25.1 - 25.7 - 25.8 - 23.5
wine 177 13 0 32.8 - 40.1 - 27.1

wisconsinBreast 698 0 9 65.5 - 34.5
Table 1: Table with the characteristics for each data set. (#cont = number of
continuous features, #disc = number of discrete features)

When the number of possible combinations was not too high, the hyper-parameters
of the decision tree induction and ensemble techniques were tuned using a Grid
Search technique, else Bayesian optimization was used. Unfortunately, because
of a rather high complexity of genesim and ism, hyper-parameter optimization
could not be applied to these techniques, giving a performance advantage to
the other techniques. The ensemble that was transformed into a single model
by genesim was constructed using different induction algorithms (c4.5, cart,
quest and guide) combined with bagging and boosting. We applied 3-fold cross
validation 10 times on each of the data sets and stored the mean accuracy and
model complexity for the 3 folds. The mean accuracy and mean model complex-
ity (and their corresponding standard deviations) over these 10 measurements
can be found in Table 2 and Table 3. In the latter table, the average number of
nodes (including the leaves) for the produced decision trees is depicted for each
of the decision tree induction algorithms. For the ensemble techniques, the aver-
age number of decision trees in the constructed ensemble is depicted. Bootstrap
statistical significance testing was applied to construct a Win-Tie-Loss matrix,
which can be seen in Figure 3. Algorithm A wins over B for a certain data set
when the mean accuracy is higher than B on that data set and the ρ-value for
the bootstrap test is lower than 0.05. When an algorithm has more wins than
losses compared to another algorithm, the cell is colored green (and shaded using
stripes). Else, the cell is colored red (and shaded using dots). The darker the
green, the more wins the algorithm has over the other. Similarly, the darker the
red, the more losses an algorithm has over the other.



genesim: genetic extraction of a single, interpretable model 9

XGB CART QUEST GENESIM RF ISM C4.5 GUIDE

heart 0.8257
±0.01σ

0.7441
±0.02σ

0.7585
±0.02σ

0.7982
±0.02σ

0.8129
±0.01σ

0.8024
±0.02σ

0.7877
±0.03σ

0.7829
±0.02σ

led7 0.8018
±0.0σ

0.7997
±0.0σ

0.7986
±0.0σ

0.7926
±0.0σ

0.8027
±0.0σ

0.7996
±0.0σ

0.8012
±0.0σ

0.761
±0.01σ

iris 0.9505
±0.01σ

0.9504
±0.01σ

0.9562
±0.0σ

0.9463
±0.01σ

0.95
±0.01σ

0.9519
±0.01σ

0.9395
±0.01σ

0.9467
±0.01σ

cars 0.9842
±0.0σ

0.9749
±0.0σ

0.9411
±0.01σ

0.9543
±0.01σ

0.9701
±0.01σ

0.9685
±0.0σ

0.966
±0.0σ

0.9426
±0.01σ

ecoli 0.8651
±0.01σ

0.8196
±0.02σ

0.8195
±0.01σ

0.8325
±0.02σ

0.8486
±0.01σ

0.7507
±0.04σ

0.817
±0.03σ

0.8319
±0.01σ

glass 0.7494
±0.02σ

0.6667
±0.03σ

0.649
±0.03σ

0.6696
±0.03σ

0.7526
±0.03σ

0.6489
±0.03σ

0.6763
±0.03σ

0.6557
±0.02σ

austra 0.8686
±0.01σ

0.8506
±0.01σ

0.8547
±0.01σ

0.8553
±0.01σ

0.8663
±0.01σ

0.8557
±0.01σ

0.8528
±0.01σ

0.8582
±0.01σ

vehicle 0.7606
±0.01σ

0.6988
±0.01σ

0.6986
±0.01σ

0.6834
±0.01σ

0.7383
±0.01σ

0.6672
±0.01σ

0.7115
±0.01σ

0.6821
±0.01σ

breast 0.9591
±0.0σ

0.94
±0.01σ

0.947
±0.01σ

0.9496
±0.01σ

0.958
±0.01σ

0.9466
±0.0σ

0.9443
±0.0σ

0.937
±0.01σ

lymph 0.8354
±0.02σ

0.7686
±0.02σ

0.7907
±0.03σ

0.7866
±0.02σ

0.817
±0.02σ

0.7822
±0.03σ

0.7839
±0.03σ

0.7659
±0.04σ

pima 0.7543
±0.01σ

0.7174
±0.02σ

0.7385
±0.01σ

0.7266
±0.01σ

0.7626
±0.01σ

0.7346
±0.01σ

0.7348
±0.01σ

0.7285
±0.02σ

wine 0.9709
±0.01σ

0.9072
±0.01σ

0.9055
±0.03σ

0.9128
±0.03σ

0.9603
±0.01σ

0.8838
±0.01σ

0.9217
±0.01σ

0.8828
±0.03σ

Table 2: Mean accuracies for the different data sets and algorithms using 10
measurements

(a) WTL matrix for the accuracies (b) WTL matrix for the complexities

Fig. 3: Win-Tie-Loss matrices for the different algorithms for accuracies and
model complexities



10 genesim: genetic extraction of a single, interpretable model

XGB(*) CART QUEST GENESIM RF(*) ISM C4.5 GUIDE

heart 408.4815
±188.19σ

35.8148
±12.54σ

9.1852
±2.97σ

17.4444
±4.84σ

448.6113
±154.6σ

35.8889
±10.71σ

23.5556
±6.62σ

9.1481
±2.28σ

led7 459.9792
±152.17σ

201.9583
±1.2σ

57.625
±4.91σ

92.0417
±17.08σ

516.25
±155.4σ

111.2917
±15.45σ

58.9583
±2.09σ

32.9167
±2.55σ

iris 544.5238
±144.62σ

12.2857
±1.34σ

5.8571
±0.59σ

5.9048
±0.65σ

453.2381
±204.4σ

10.5714
±1.91σ

7.3809
±1.06σ

5.3333
±0.55σ

cars 631.2821
±123.71σ

140.1282
±2.66σ

45.6667
±4.7σ

103.1539
±14.42σ

438.4615
±178.3σ

131.4102
±9.62σ

98.4359
±4.6σ

43.6154
±5.07σ

ecoli 487.5625
±202.89σ

35.6667
±11.77σ

14.5833
±3.48σ

19.0833
±4.27σ

447.0623
±147.7σ

60.125
±16.06σ

19.25
±2.84σ

10.0833
±1.43σ

glass 530.7017
±179.2σ

57.8421
±11.27σ

22.4035
±5.66σ

29.6667
±5.75σ

486.9825
±160σ

80.3684
±24.1σ

36.2982
±3.09σ

16.1579
±2.47σ

austra 433.0392
±72.65σ

7.7451
±6.19σ

7.902
±3.23σ

23.7843
±7.37σ

396.3333
±181.5σ

38.8824
±15.73σ

26.7255
±6.82σ

8.2941
±3.12σ

vehicle 465.6667
±119.44σ

177.1111
±22.26σ

81.7778
±14.85σ

83.2222
±9.68σ

485.2778
±146.8σ

345.5556
±45.92σ

92.4444
±12.43σ

33.2222
±8.71σ

breast 563.3333
±170.63σ

30.619
±7.89σ

12.619
±3.73σ

18.5238
±3.49σ

395.5714
±161.4σ

43.7619
±13.31σ

19.4762
±2.38σ

10.4286
±1.65σ

lymph 608.4375
±140.47σ

32.0417
±5.75σ

13.5417
±3.14σ

14.8333
±4.0σ

497.9375
±162.3σ

30.9583
±6.6σ

16.9583
±2.44σ

8.875
±2.81σ

pima 180.0556
±85.5σ

52.4445
±19.8σ

12.0
±4.32σ

45.2222
±8.53σ

434.8334
±68.04σ

101.6667
±18.5σ

26.0
±5.12σ

8.1111
±2.36σ

wine 487.0948
±176.94σ

13.4762
±1.58σ

9.1905
±1.66σ

8.0476
±0.93σ

409.2381
±116.1σ

33.3809
±3.04σ

9.381
±0.33σ

6.8095
±0.77σ

Table 3: Mean model complexities, expressed as either number of nodes in the
resulting decision tree or number of decision trees in the ensemble (*), for the
different data sets and algorithms using 10 measurements

A few things can be deduced from these matrices and tables. First, we can clearly
see that the ensemble techniques rf and xgb have a superior accuracy compared
to all other algorithms on these data sets, and that xgb outperforms rf. While
the accuracy is indeed better, the increase can be of a rather moderate size
(as can be seen in Table 2). However, the resulting model is completely unin-
terpretable. Second, in terms of accuracy, the proposed genesim outperforms
all decision tree induction algorithms, except c4.5. Although, genesim is very
competitive to it. It wins on two data sets while losing on three and has no
optimized hyper-parameters, in contrast to c4.5. For each data set, genesim
used the same hyper-parameters. (such as a limited, fixed amount of iterations
and using 50% of the training data as validation data). As can be seen in Figure
4, running genesim for a higher number of iterations could result in a better
model. Third, the performance of ism, which we extended with a post-pruning
phase, is rather disappointing. Only guide has a worse classification perfor-
mance. Moreover, the complexity of the resulting model is higher than the other
algorithms as well. Finally, genesim produces very interpretable models with a



genesim: genetic extraction of a single, interpretable model 11

very low model complexity (expressed here as the number of nodes in the tree).
The average number of nodes in the resulting tree is lower than in cart and
c4.5, but higher than quest and guide. But the predictive performance of the
two last-mentioned algorithms is much lower than genesim.

Fig. 4: The fitness (classification rate on a validation set) of the fittest population
in function of the number of iterations of genesim

5 Conclusion

In this paper, genesim is proposed, a genetic approach for exploiting the positive
properties of ensembles while keeping the result a single, interpretable model.
genesim is ideally suited to support the decision-making process of experts in
critical domains. Results show that in most cases, an increased predictive perfor-
mance compared to naive induction algorithms can be achieved, while keeping a
very similar model complexity. Results of genesim can still be improved by re-
ducing the computational complexity of our algorithm, allowing hyper-parameter
optimization and enabling our technique to run for more iterations in a feasible
amount of time.



12 genesim: genetic extraction of a single, interpretable model

References

1. Donna K Slonim. From patterns to pathways: gene expression data analysis comes
of age. Nature genetics, 32:502–508, 2002.

2. Thomas G. Dietterich. Multiple Classifier Systems: First International Workshop,
chapter Ensemble Methods in Machine Learning, pages 1–15. Springer Berlin
Heidelberg, 2000.

3. Hillol Kargupta and Byung Hoon Park. A Fourier Spectrum-Based Approach to
Represent Decision Trees for Mining Data Streams in Mobile Environments. IEEE
Transactions on Knowledge and Data Engineering, 16(2):216–229, 2004.

4. J. R. Quinlan. Miniboosting decision trees. Journal of Artificial Intelligence Re-
search, pages 1–15, 1998.

5. J. R. Quinlan. Generating production rules from decision trees. In Proceedings
of the 10th International Joint Conference on Artificial Intelligence - Volume 1,
pages 304–307. Morgan Kaufmann Publishers Inc., 1987.

6. Graham John Williams. Inducing and combining decision structures for expert
systems. Australian National University, 1991.

7. Artur Andrzejak, Felix Langner, and Silvestre Zabala. Interpretable models from
distributed data via merging of decision trees. Proceedings of the 2013 IEEE Sym-
posium on Computational Intelligence and Data Mining, CIDM 2013 - 2013 IEEE
Symposium Series on Computational Intelligence, SSCI 2013, pages 1–9, 2013.

8. Anneleen Van Assche and Hendrik Blockeel. Seeing the forest through the trees.
In International Conference on Inductive Logic Programming, pages 269–279.
Springer, 2007.

9. Houtao Deng. Interpreting tree ensembles with intrees. arXiv preprint
arXiv:1408.5456, 2014.

10. J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

11. Rodrigo Coelho Barros, Marcio Porto Basgalupp, Andre C P L F De Carvalho, and
Alex a. Freitas. A survey of evolutionary algorithms for decision-tree induction.
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and
Reviews, 42(3):291–312, 2012.

12. Leo Breiman. Random Forests. Machine Learning, 45(5):1–35, 1999.
13. Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. arXiv

preprint arXiv:1603.02754, 2016.
14. J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., 1993.
15. Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification

and Regression Trees. Chapman and Hall/CRC, 1984.
16. Wei-Yin Loh. Improving the precision of classification trees. The Annals of Applied

Statistics, pages 1710–1737, 2009.
17. Wei-Yin Loh and Yu-Shan Shih. Split Selection Methods for Classification Trees.

Statistica Sinica, 7(4):815–840, 1997.
18. M. Lichman. UCI machine learning repository, 2013.


