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Abstract. Currently, most of white-box machine learning techniques
are purely data-driven and ignore prior background and expert knowl-
edge. A lot of this knowledge has already been captured in domain mod-
els, i.e. ontologies, using Semantic Web technologies. The goal of this
research proposal is to enhance the predictive performance and required
training time of white-box models by incorporating the vast amount of
available knowledge in the pre-processing, feature extraction and selec-
tion phase of a machine learning process.
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1 Introduction

Most machine learning techniques are data-driven and thus ignore most of the
vast amounts of existing available knowledge already captured in domain mod-
els [1], such as SNOMED [2], SSN [3] and UMLS [4]. The advantage of applying
a purely data-driven approach is that the model is robust to outliers and noise.
The disadvantage is that a computationally expensive training phase needs to be
executed and that valuable prior knowledge is not taken into account. In many
critical domains such as electronic health care and law enforcement, wherein
wrong decisions made can have significant repercussions, knowledge-based sys-
tems such as expert systems were long preferred [5] as they can easily give
a comprehensible corresponding explanation with their predictions. Moreover,
they can be deployed without requiring a lot of data, which was rather hard to
collect prior to the big data era. The main disadvantage of a purely knowledge-
based approach is that the performance is completely biased to the content of
the knowledge base [6], which can take a lot of time to construct and maintain,
and that it is not able to learn new patterns or insights. Moreover, this approach
is often not robust, e.g. in the case of conflicting rules or samples that do not
comply to any of the defined rules.

Within the data-driven approaches, two large families of techniques can be dis-
tinguished. First, there are black-box techniques, such as artificial neural net-
works, which are often able to learn features automatically, thus not requiring
a feature extraction and selection phase, and tend to achieve high predictive
performances [7]. However, they cannot provide an explanation for their predic-
tions, making them impractical in applications where decision support, instead
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of decision making, is crucial. Secondly, white-box techniques, such as decision
tree induction and classification rule mining, construct an easily comprehensi-
ble predictive model from the data. While the predictive performance of these
technique tends to be lower than their counterpart, they are able to give a corre-
sponding explanation, therefore being ideally suited to provide decision support
for experts within critical domains.

Given the advantages of both data-driven and knowledge-based approaches, ad-
vancements within the machine learning domain, the growth of data within all
domains [8] and the vast amount of prior knowledge already available on the
Semantic Web, a hybrid approach seems to be ideal. In such an approach, a
white-box predictive model, such as a decision tree or an ordered rule list, is
constructed from the given data with incorporation of prior knowledge in each
of its steps. Ideally, the advantages of both approaches would be retained, i.e.
robustness to outliers and noise, ability to give a corresponding explanation, a
less expensive and more performant training phase and the ability to deduce
new insights and knowledge.

The remainder of this paper is as follows. A use case which will be used as a
running example throughout the rest of this paper is presented in Section 2,
followed by a discussion of the related work in Section 3. A problem statement
with corresponding hypotheses and research questions are presented in Section 4.
A methodology to provide an answer on these research questions in proposed in
Section 5. Then, we discuss how our future research will be evaluated in Section
6 and finally, a conclusion is given in Section 7.

2 Use case: primary headache diagnosis

Primary headaches [9] are an increasingly common health issue in modern soci-
ety, having a large prejudicial impact. In Europe, it has a prevalence of more than
50% and according to the World Health Organization (WHO), severe headache
attacks are one of the top 10 most disabling conditions [10]. Currently, it costs
a lot of time to diagnose a patient correctly because a lot of different aspects
need to be taken into account and because many different types of primary
headache exist. Furthermore, a lot of research by medical experts has already
been done in the headache domain, resulting in a vast amount of available prior
domain and expert knowledge [11]. Therefore, the automatic diagnosis of pri-
mary headaches seems an ideal use case to combine both the data-driven and
knowledge-driven approach which can have a very positive impact. For my mas-
ter dissertation, a mobile headache journal1 was developed that allows headache
patients to register their headache attacks and medicine consumptions. The se-
mantically annotated data generated by this mobile application, in combination
with background knowledge [4], can be used to generate a decision tree in order
to support an expert in making a correct diagnosis. An overview of this work-
flow can be found in Figure 1. This use case will be used as a running example
throughout this paper and, in addition to well-known benchmark datasets, to
evaluate the different proposed techniques.
1 https://play.google.com/store/apps/details?id=be.ugent.chronicals&hl=en
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Fig. 1: Schematic overview of the machine learning work-flow, with incorporation
of prior knowledge into the different phases, to diagnose a patient with primary
headache.

3 Related work

Combining the advantages of knowledge-driven and data-driven approaches,
sometimes referred to as semantic meta-mining, has been investigated before.
Two very thorough and recent surveys can be found in [12, 13]. A traditional
white-box data-driven approach consists of several main steps, which can be
identified in Figure 2. In a first step, numerical features that have a high discrim-
inative power are extracted from the raw data, which is optionally pre-processed
first. Pre-processing examples include applying transformations to the data or
generating and removing samples to balance the dataset. When all features are
extracted, a selection phase is applied in order to discard the uninformative fea-
tures, which allows for better generalization. Finally, a white-box model is con-
structed from the selected features. In the following subsections, related work
for each these phases is presented.

Fig. 2: The different steps of a white-box machine learning approach and how
prior knowledge can be incorporated.
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3.1 Automatic feature discovery

In a typical machine learning work-flow, a very large amount of time is spent on
data cleaning and feature extraction. Generic features, which can be applied in
a large number of problems, are available, but often, the most efficient features
require some prior knowledge about the task to solve. Facilitating this feature
extraction process by exploiting the concept of linked data to automatically
discover new informative features could therefore significantly reduce the time
required to create a predictive model. In order to do this, entities in the training
set are mapped to a URI which corresponds to a node in the graph of linked data.
From here, we can traverse edges to discover new features [14–16]. While this
is a very interesting approach, there are many possible optimizations left, such
as automatic measurements of feature importance, heuristics to decide when to
stop traversing the immensely large graph and pruning parts of the graph in
order to reduce the gigantic search space.

3.2 Class balancing

In the classification domain, a dataset is called imbalanced when the distribu-
tion of the classes in the training set is skewed. An imbalanced dataset is very
common in the financial and medical domain, e.g. fraud and epilepsy detection
respectively. Class imbalance gives rise to a few potential problems. First, the
classifier will be biased towards the largest populated class as this has the highest
impact on the objective function it is trying to optimize, while this is often the
class of least importance to the expert. Second, general metrics, such as accu-
racy, to evaluate the model give a wrong representation of the predictive perfor-
mance [17,18]. Two large approaches to tackle with data imbalance can be iden-
tified. On the one hand sampling techniques can remove or create new samples
in order to make the distribution of the classes more uniform [19]. On the other
hand, the classification algorithm can be modified (e.g. adapting the objective
function) to pay more attention to samples in the minor class [20,21]. Sampling
techniques are very interesting, as they can be applied as a pre-processing step
of the machine learning work-flow, and can therefore be seen as model-agnostic.
Sampling techniques can be divided in either oversampling, where the number of
samples in the minor class in increased, or undersampling, where the number of
samples in the major class is decreased. In current state-of-the-art oversampling
algorithms, such as SMOTE [22] and its adaptations and ADASYN [23], virtual
samples of the minority class are generated by using the small amount of data
available and thus no prior knowledge is used. On the other hand, researchers
have already attempted to generate ‘virtual’ samples solely based on the prior
knowledge available [24–28]. While the latter research attempts were not done
in the context of imbalanced dataset but more in the context of data augmen-
tation, a hybrid approach, which combines the positive characteristics of both
approaches, can be very interesting.

3.3 Feature selection

When all of the possible features are extracted from the raw data, a selection
phase can optionally be applied in order to remove uninformative features. This
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can mitigate the curse of dimensionality and thus possibly increases the gen-
eralization capability of the model while reducing the amount of training time
required. Research for incorporating prior knowledge into the selection phase
is a very young and pre-mature research field. In Ringsquandl et al. [29], the
Semantic Sensor Network (SSN) ontology [3] is adapted to allow for automatic
feature selection. Here, features are selected based on dependency relations de-
fined by an expert between predictor variables or between a predictor variable
and the target variable. This technique has a lower computational complexity
than current feature selection techniques, as it is dependent only on the number
of features and not on the number of data samples, which can become very large
in many cases. Moreover, in contrast to dimensionality reduction techniques such
as t-SNE [30] and PCA [31], interpretability of the features is maintained and
the selection phase only has to be re-applied when new features are added to
the model, instead of when a certain amount of new samples is added. Unfortu-
nately, this technique is still rather simplistic and is equivalent to manual feature
selection.

4 Problem statement

By analysis of the state of the art, one open problem can be identified:

P1 Current white-box machine learning techniques learn from scratch and often
only use a limited amount of information (i.e. the training set) as they do not
make full use of the vast amount of prior background and expert knowledge
available in ontologies and on the web of linked data [32].

From this, the following hypotheses can be deducted:

H1 The automatic discovery of new features by exploiting the concept of linked
data can lead to a reduction in the labor needed for feature extraction while
resulting in an increase in the predictive performance of the model.

H2 Balancing the dataset using both knowledge and the limited amount of
samples in the minority class will result in a better predictive performance
for the minority class than sampling methods that are based only on this
limited amount of samples.

H3 Applying feature selection based on a ranked list of features, generated by
applying a ranking algorithm on a graph of features defined by an expert,
will require less time than current feature selection techniques and result
in a better generalization capability. Moreover, it allows for experts to have
more control of the algorithm, which can increase their will to adopt such
a system.

To deliver proof for the given hypotheses, the following research questions will
be resolved:

Q1 Can we improve existing or develop new techniques that map the entities
in the dataset to a URI identifiable on the web of linked data in order to
traverse the graph of data to extract new relevant, discriminant features for
the task to solve.

Q2 Can we develop a hybrid technique that uses both the limited amount of
samples in the minority class and the knowledge about the minority class in
order to generate new samples to balance the dataset? Moreover, how does
this hybrid technique compare to the techniques where only one of the two
is used?
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Q3 Is it possible to improve the feature selection phase by creating a new al-
gorithm that ranks the different features based on their relations defined by
an expert?

5 Methodology

5.1 Automatic feature discovery

In order to augment the data with information from the web of linked data, a
mapping phase must first be applied. Here, the entities in the initial dataset are
mapped on a URI identifiable on the web of linked data or on a semantically
annotated electronic health record in the medical domain. This mapping has to
occur with minimal user interaction. When each of the samples are mapped on
a URI, we can try to find new features by doing a breadth-first search in the
graph of linked data. The reason for a breadth-first strategy is because of the
almost infinite depth of the graph. In order for a new candidate feature to be in-
formative, not too many missing values may occur and there must be correlation
with the target variable (or must improve the cluster quality in the unsupervised
case). Since counting the number of missing values and calculating correlations
between a new candidate predictor and the target variable for a large dataset
can take a significant amount of time, a subset of the initial dataset can be used
to provide an approximation. Moreover, to decide heuristically which feature-
threshold combination results in the most optimal split of data from all possible
candidates, the Hoeffding bound [33,34] can be applied. Since the graph we are
traversing has an immense size, we need to define conditions when to stop the
search, e.g. stop when we traversed k levels deeper in the graph without finding
a new usable feature. Finally, pruning of the graph can optionally be applied
by calculating semantic concept relatedness [35, 36] between a new subject and
the target concept. When there is almost no semantic relation between a new
concept and the target concept, that part of the graph can already be pruned.
Many different metrics exist to calculate this relatedness [37, 38]. I will perform
a clear evaluation of different metrics in order to find the most suited one for
this task.

For the headache use case, a user profile in the mobile headache journal needs
to be mapped to the patient’s corresponding semantically annotated electronic
health record. This can be done by joining on unique identifiable information
such as the combination of name and email. As the electronic health record is
semantically annotated, it can be seen as a graph, which can be traversed to
discover new informative features that help in formulating a correct diagnosis
for a primary headache patient. Moreover, datasets ideally suited for evaluation
of this technique exist. Examples include the zoo dataset from UCI [39] and
the datasets curated by the University of Mannheim [40]. The property of these
datasets is that they contain a limited amount of information about rich concepts
(such as cities or animals), and therefore rely on automatic feature discovery to
obtain reasonable results.

5.2 Class balancing

In order to balance the classes, oversampling as a pre-processing step will be in-
vestigated, enabling a model-agnostic approach. I will create a hybrid approach
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that combines the positive characteristics of data-based sampling algorithms,
such as SMOTE [22] and ADASYN [23] and knowledge-based sampling algo-
rithms, where samples are generated that comply to a pre-defined knowledge
base. First, consistency of the knowledge base or the given data needs to be
checked by evaluating whether the small amount of samples in the minority class
complies to this knowledge. If this is not the case, there is either an anomaly in
the data or a inconsistency/fault in the knowledge base that needs to be resolved.
When we find that a certain fraction of the samples in the minority class do not
comply to one specific rule in the knowledge base, chance are high that the rule
is inconsistent with the ground truth and we can remove the rule. Else, the sam-
ple is probably an anomaly and can therefore be removed. Alternatively, both
the rule and the sample can be removed. An evaluation is required to determine
which technique (and threshold on the fractions of samples) is most suited for a
dataset with certain properties. After this phase, data can be generated based
on the knowledge base and on the small amount of samples in our dataset. For
each dimension (i.e. feature) for which knowledge is available, these dimensions
of a new virtual sample are set to values that comply to this defined knowledge
(e.g. the value must be in a certain range). Of course, it is infeasible to have
complete information about each dimension. For these dimensions, the values of
samples in our dataset can be used as follows: we find the two nearest neighbors
to our new virtual sample in the feature space defined by the features of which
knowledge is available; then we can generate a random point on the link between
these two neighbors.

One of the most severe primary headache types is cluster headache. It has been
discovered quite recently and is a rather and rare condition, with a prevalence of
1 out of 1000 [41] as opposed to 1 out of 7 for migraine [42], making it very hard
to diagnose. This, in combination with the fact that a lot of domain knowledge
is available [11], makes it an ideal use case to evaluate the new technique on.

5.3 Feature selection

I will design a method that allows to represent the knowledge base as a graph,
where each feature defined in the knowledge base or dataset corresponds to a
node, and each relation between two features (such as dependsOn or indepen-
dentOf) corresponds to an edge between their two corresponding nodes. I will
then rehone a ranking algorithm, similar to e.g. Google PageRank [43], to cal-
culate a weight for each of the nodes (or features) in the graph [44–46]. Finally,
we can sort the features on their rank and return the top k features [47]. An
example is given in Figure 3.

For the headache use case, the newly discovered features (see Subsection 5.1)
and their corresponding descriptions, in combination with the features obtained
from the semantically annotated information produced by the mobile headache
journal, can be visualized for a neurologist in a GUI. The neurologist can then
define relations between these features, analogue to Figure 3. Finally, the ranking
algorithm can be applied to create a list of features, ordered by their importance.
This technique can easily be compared to other feature ranking techniques by
taking the k top ranked features of both approaches and measuring the predictive
performance of the model, trained on these features.
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Fig. 3: Feature selection by applying a technique similar to PageRank to the
knowledge graph of features.

6 Evaluation
To evaluate the impact of prior knowledge incorporation in each of the phases,
a comparison will be done between the process with and without incorporation
regarding the following criteria (sorted by decreasing priority):
– predictive performance of the model: by calculating the accuracy, balanced

accuracy, precision, recall, AUC, F-measure, etc.
– predictive model complexity: by visual inspection and counting the maximal

depth, number of nodes or leaves in the resulting decision tree
– computational time: by timing the execution of each of the phases in the

machine learning process
The evaluation will be done for both incorporation in each phase separately and
incorporation in all (possible subsets) of the phases. To take the no-free-lunch
theorem [48] into account, the evaluation will be done on multiple benchmark
datasets with varying characteristics.

7 Conclusion
In this research proposal, related work and methodologies are presented to incor-
porate prior background and expert knowledge, represented using Semantic Web
technologies, into the different phases of a white-box machine learning approach.
We are convinced that the incorporation of prior knowledge into these phases
will allow for higher predictive performances and reduced training times. An
evaluation regarding computational time, model complexity and predictive per-
formance will be done by comparing the process with and without incorporation
on multiple benchmark datasets and a real-world use cases.
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