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Abstract 

 

The role of imitation in autism spectrum disorder (ASD) is controversial. 

Researchers have argued that deficient control of self-and other-related motor 

representations (self-other distinction) might explain imitation difficulties. In a recent 

EEG study, we showed that control of imitation relies on high-level as well as on low-

level cognitive processes. Here, we aimed to further our insights into control of 

imitation deficits in ASD. We focused on congruency effects in the P3 (high-level), 

the N190 and the Readiness Potential (RP; low-level). We predicted smaller 

congruency effects within the P3 in the ASD group. However, we found differences 

in the RP but not in the P3-component. Thus, high-level self-other distinction may be 

preserved in ASD, while impairments are reflected during motor preparation.  
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Abstract 

 

The role of imitation in autism spectrum disorder (ASD) is controversial. 

Researchers have argued that deficient control of self-and other-related motor 

representations (self-other distinction) might explain imitation difficulties. In a recent 

EEG study, we showed that control of imitation relies on high-level as well as on low-

level cognitive processes. Here, we aimed to further our insights into control of 

imitation deficits in ASD. We focused on congruency effects in the P3 (high-level), 

the N190 and the Readiness Potential (RP; low-level). We predicted smaller 

congruency effects within the P3 in the ASD group. However, we found differences 

in the RP but not in the P3-component. Thus, high-level self-other distinction centred 

on motor actions may be preserved in ASD, while impairments are reflected during 

motor preparation.  
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Introduction 
 

Whether imitation is impaired in ASD is a controversial issue (Hamilton, 

2013; Southgate & Hamilton, 2008). Autism spectrum disorder (ASD) is a severe 

developmental disorder, with social difficulties as one of its hallmark features 

(American Psychiatric Association, 2013). The disorder has been related to imitation 

deficits, assumed by some to be caused by a deficient mirror neuron system (Iacoboni 

& Dapretto, 2006; Oberman, Ramachandran, & Pineda, 2008; Williams, Whiten, & 

Singh, 2004), but also to strong imitative response tendencies. (e.g., echopraxia, 

echolalia, Lord et al., 2000; Spengler et al., 2010). Such ‘hyperimitation’ has been 

demonstrated in studies using so-called automatic imitation tasks such as the imitation 

inhibition task (Brass, Bekkering, Wohlschläger, & Prinz, 2000). In imitation 

inhibition paradigms, individuals react slower and make more errors when observing 

a movement that is incompatible to an own intended movement, as compared to when 

the observed and intended movement are compatible. This so-called motor 

interference effect is seen as a reflection of the ability to suppress externally triggered 

automatic imitative tendencies (i.e., motor control). While some studies have reported 

a larger-than-typical motor interference effect for individuals with ASD in imitation 

inhibition paradigms (e.g., Bird et al., 2007; Sowden, Koehne, Catmur, Dziobek, & 

Bird, 2015; Spengler et al., 2010) others have reported normal interference in this 

population (Gowen, Stanley, & Miall, 2008; Grecucci et al., 2013; Press, Richardson, 

& Bird, 2010; Sowden et al., 2015).  

A compelling theory has attempted to explain increased interference effects in 

ASD populations, by suggesting that individuals with ASD may have problems with 

self-other distinction centred on motor representations (Brass, Ruby, & Spengler, 

2009; Spengler et al., 2010; Spengler, Von Cramon, & Brass, 2009). The increased 
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motor interference effect in ASD is seen by this theory as a reflection of diminished 

high-level control over own and others’ represented motor representations (Brass, 

Derrfuss, & Von Cramon, 2005; Hamilton, 2013; Southgate & Hamilton, 2008; 

Spengler et al., 2010, 2009). In other words, individuals with ASD may experience 

difficulties to disentangle own action intentions from externally triggered motor 

programs: they may be less able to reinforce own action intentions by indicating that 

externally triggered representations are other-related. This view has received support 

by fMRI studies, which reported the involvement of the temporoparietal junction 

(TPJ) and anterior medial frontal cortex (aMFC) of neurotypical adults within the 

imitation inhibition task (Brass et al., 2005; Spengler et al., 2009, 2010), areas which 

are core to social cognition (Saxe & Wexler, 2005). The TPJ and the MPFC are 

known to engage in mental state attribution and perspective taking (Van der Meer, 

Groenewold, Nolen, Pijnenborg, & Aleman, 2011; Zaitchik et al., 2010). In 

individuals with ASD, the strenght of the motor interference effect has shown a 

functional relationship with activity in these areas during mentalizing (Brass et al., 

2009; Spengler et al., 2010). As such, the findings added to the claim that self-other 

distinction centered on motor processes might be disturbed in individuals with ASD 

(Spengler et al., 2009), an ability which may prove crucial for high-level social 

cognitive skills such as mental state attribution and perspective taking (Brass et al., 

2009; Spengler et al., 2009).  

However, several processes may underlie motor interference in automatic 

imitation tasks. In a recent study with neurotypical adults, we aimed to disentangle 

different processes underlying the motor interference effect, by submitting the 

imitation inhibition task to electro-encephalography (EEG; Deschrijver, Wiersema & 

Brass, in press). Owing to the excellent temporal resolution of this technique, we 
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could show that not only high level cognitive processes underlie the motor 

interference effect, but also low-level perceptual and motor preparation processes. 

More specifically, we identified congruency differences in the amplitudes of three 

distinct event related potentials (ERPs): First, the P3 component has proven sensitive 

to self-related processing and mechanisms of self-other distinction (Deschrijver, 

Wiersema, & Brass, 2015; 2016; in press; Holeckova, Fischer, Giard, Delpuech, & 

Morlet, 2006; Knyazev, 2013; Perrin et al., 2005; Sebanz, Knoblich, Prinz, & 

Wascher, 2006; Tacikowski, Cygan, & Nowicka, 2014; Tacikowski & Nowicka, 

2010). In our study (Deschrijver, Wiersema & Brass, 2016), the parietal P3 (mostly 

referred to as the P3b; Polich, 2007; Volpe et al., 2007) showed larger amplitudes for 

congruent than for incongruent trials. This is consistent with the claim that imitation 

inhibition involves high-level processes related to self other distinction, as suggested 

by earlier fMRI studies (Brass et al., 2005; Spengler et al., 2010, 2009). Second, the 

N190 component, an ERP-component related to the visual processing images of the 

human body (Thierry et al., 2006), showed a congruency difference as well. This 

suggests that a participant’s action intention affected early visual processing of the 

observed action, indicating an influence of action on perception. Third, we found a 

congruency-related difference in the Readiness Potential (RP; with the spatial 

resolution of the EEG-signal increased by means of Laplacian transformations; 

Rigoni et al., 2013; Tandonnet et al., 2005; Vidal et al., 2003, see also Methods). This 

is a component which typically magnifies with increasing complexities of motor 

preparation (Rigoni, Brass, Roger, Vidal, & Sartori, 2013; Tandonnet, Burle, 

Hasbroucq, & Vidal, 2005; Vidal, Grapperon, Bonnet, & Hasbroucq, 2003). The 

congruency effect in RP might reflect an influence of perception on action. In sum, 
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we showed at least three distinct processes might underlie the motor interference 

effect, of which high-level self-other distinction is just one. 

In ASD, it has never been investigated whether processes other than high-level 

social cognitive processes are affected during imitative control. Moreover, to the best 

of our knowledge, imitation inhibition tasks have never been assessed in this 

population by means of a neuroimaging technique. In the current study, we therefore 

aimed to disentangle the different processes underlying automatic imitation by means 

of EEG, in a group of adults with high-functioning autism (HFA) and matched 

controls. Following up on our earlier findings (Deschrijver et al., in press), we 

focused on congruency effects in the P3 component, the N190 component and the RP. 

As a primary hypothesis, we expected that the group with HFA would show a 

decreased congruency effect within the P3 component, as a reflection of diminished 

high-level self-other distinction abilities (Deschrijver et al., 2015; 2016; in press; 

Spengler et al., 2010). Moreover, we wanted to investigate the role of low-level 

perceptual and motor preparation processes in imitative control in ASD (Deschrijver 

et al., in press), by evaluating N190 and RP potentials, respectively.  

 

Methods 

 

Participants 

We recruited 23 adults with HFA by means of a recruiting announcement 

distributed by the Flemish Autism Association and our own research database. The 23 

participants with HFA were individually matched with a neurotypical control 

participant (CON) on demographic measures of age (±5 years, range: 22 - 46 in both 

groups), gender and handedness (as measured by the Edinburgh Handedness 
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Inventory; Oldfield, 1971). We screened participants in the CON group (24 

neurotypical individuals in total) on several exclusion criteria prior to participation 

(the use of psychiatric medication and neurological, psychiatric, sensory or motoric 

problems). Before entering the study, all participants with HFA had received a formal 

clinical diagnosis of ASD (including autism, Asperger’s syndrome and PDD-NOS) 

from a multidisciplinary team and were free of any additional neurological disorder. 

To verify the ASD diagnosis, the Autism Diagnostic Observational Schedule (ADOS; 

Lord et al., 2000) Module 4 was administered by a trained researcher. In addition, all 

participants filled out self-report questionnaire forms: the Edinburgh Handedness 

Inventory (Oldfield, 1971), the AQ (Baron-Cohen, Wheelwright, Skinner, Martin, & 

Clubley, 2001), and the SRS-A (Bölte, Poustka, & Constantino, 2008). All 

participants gave written informed consent before participation and were financially 

compensated for their participation. The local ethics committee approved the study.  

Similar to previous studies of HFA (e.g., Deschrijver, Bardi, Wiersema, & 

Brass, 2015; Magnée, De Gelder, Van Engeland, & Kemner, 2008; Zwickel, White, 

Coniston, Senju, & Frith, 2011), we included in our main analyses HFA participants 

who scored above or one point below cut-off on one subscale of the ADOS and 

attained an ADOS score of minimum 6, and their individually matched control 

participant. As such, the data of 19 pairs of participants were included in our analyses 

(with 14 HFA participants meeting full ADOS criteria, of which 3 women). While not 

all participants met ADOS criteria, individuals with HFA often score just below the 

threshold (Magnée et al., 2008; Zwickel et al., 2011): it is not only likely that many of 

them have learned to compensate, intervention may also have improved their 

functioning. Moreover, recent studies have shown that female individuals with HFA 

have even more difficulties to reach cut-off scores of diagnostic instruments derived 
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from studying the disorder in males (Dworzynski, Ronald, Bolton, & Happé, 2012; 

Kopp & Gillberg, 2011). Our initial ASD group contained a roughly equal number of 

males and females (10 out of 23 individuals), while only 5 females reached 6 as a 

minimum total ADOS score (out of 19 individuals). Two participants from the HFA 

group were additionally excluded from analyses, respectively because we retained 

less than 30% of one individual’s data due to a technical error and because of the 

other showing an overall mean reaction time that was more than 3 standard deviations 

from the group average. The remaining participant groups (CON: n = 19; HFA: n = 

17), were well matched for gender, handedness, age, and full-scale IQ score (see table 

1). Due to missing data, the SRS-A questionnaire data of 2 individuals from the CON 

group, the AQ questionnaire data of 1 participant with HFA. On average, individuals 

in the HFA group scored well above ADOS and autism cut-offs of the AQ (Baron-

Cohen et al., 2001; Lord et al., 2000). As one could expect, t-tests showed highly 

significant differences between the mean total dimensional scores on the SRS-A and 

on the AQ questionnaires. Participant characteristics and statistics are summarized in 

table 1.  

 

Procedure 

For both groups, the EEG-experiment was part of a larger battery of tasks (not 

presented here), which took place in two experimental sessions (with approximately 3 

weeks time in between). Both sessions took place in a dimly lit and sound-attenuated 

room. In the first session, the EEG-data were gathered, with this study being the 

second of two unrelated EEG-studies. In the second session, each participant 

completed 2 behavioral tasks (not reported here) and demographic data were gathered 

(ADOS-interview, IQ-assessment and questionnaires). We derived the participants’ 
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status as ‘high functioning’ from an IQ-score estimation using the KAUFMAN 2 

short form Wechsler Adult Intelligence Scale III (full scale IQ ≥ 85; see (Minshew, 

Turner, & Goldstein, 2005) for the use in ASD), if no recent standardized cognitive 

assessment was performed (within 5 years prior to participation). A formally trained 

researcher administered the ADOS-Module 4 with participants belonging to the HFA 

group (Lord et al., 2000). 

 

Stimuli and task 

The established imitation inhibition paradigm was adopted for this study (see 

figure 1; Brass et al., 2000). We instructed participants to execute finger movements 

in response to symbolic cues displayed between the index and middle finger of a 

videotaped hand. More specifically, participants had to respond to the digit ‘1’ by 

lifting their index finger and to a ‘2’ by lifting their middle finger. At the same time, 

the hand on the computer screen executed either an index finger movement, a middle 

finger movement or no movement at all. Each trial started with a frame showing a 

hand in a resting position (2000ms), mirroring the right hand of the participant. Two 

consecutive frames (34 ms each) followed that frame, showing the finger movement 

with the number (for congruent and incongruent trials) or just the number (for 

baseline trials). Then, a picture showing the end position of the hand and the number 

was presented (1300 ms). The three movement frames gave the impression of a lifting 

movement of the index or middle finger, respectively. In between trials, a black 

screen was presented (2000 ms.). 

The experiment was conducted in an electrically shielded, dimly lit and sound 

attenuated room. All visual stimuli were 300x200 pixels large and were centrally 

presented at approximately 60 cm distance from the participant on a 17 inch monitor. 
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The participant’s index and middle finger of the right hand were placed on a 

response-box with four light sensors. Reaction times of the onset of the finger lifting 

movements were recorded with the two leftmost light sensors of this device. A 

keyboard was placed within reach of the left hand. Stimulus delivery and data 

acquisition were achieved by means of the program Presentation (Neurobs), ran on a 

HP Compaq desktop with Windows XP driver. A 24-trial practice phase preceded the 

experiment. After this, 50 congruent trials (C), 50 incongruent trials (I) and 50 

baseline trials (B) were randomly presented, leading to 150 experimental trials in 

total. Index finger and middle finger movement pictures were equiprobable per 

condition. Intermittent breaks occurred after 50 trials, resulting into 2 self-paced 

pauses.  

 

EEG recording and analyses 

The EEG-data were recorded with a Biosemi ActiveTwo system (at a 

sampling rate of 1024 Hz). We placed 64 active Biosemi EEG-electrodes according to 

the International 10-10 system using an elastic cap. For offline re-referencing, two 

electrodes were placed on the mastoids, fixed with two-sided adhesive collars. Bipolar 

electrodes were placed with left and right canthal montage and additionally above and 

below the left eye to measure eye movements, all fixed with two-sided adhesive 

collars. Electrode offsets were kept between -25 and 25 µV at all electrodes. We used 

BrainVision Analyzer 2 (BVA 2; Brain Products) to analyze the data. We re-

referenced the data offline to the average of the left and right mastoid. Following our 

earlier study (Deschrijver et al., in press), we then applied a high pass filter of 0.1 Hz 

(time constant 1.5915, slope 48dB/octave), a low pass filter of 30 Hz (slope 

24dB/octave), and a notch filter of 50 Hz. Bad channels were estimated from the 
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signals of all other electrodes using spherical splines. Prior to averaging, we used the 

Gratton and Coles algorithm (Gratton, Coles, & Donchin, 1983), as implemented in 

Brainvision Analyzer 2.0, for automatically correction epochs containing eye 

movements by means of the bipolar electrodes around the eyes. For all other 

electrodes, an automatic artifact rejection included a gradient check (maximum 

allowed voltage step: 50 µV/ms within 200 ms before and after the locked event), a 

minimum/maximum amplitude check (-100 µV and 100 µV respectively), and a low 

activity check (0.5 µV within an interval length of 100ms). We time-locked the 

stimulus-related ERP components (N190 and P3) to the onset of the first frame with 

an instruction number (directly following the resting position frame) and the 

response-related RP to the moment at which the participant’s finger is lifted off the 

response box, as measured by the light sensors. We collapsed the data over left and 

right finger movement observations because we were primarily interested in 

congruency-related processes. Only trials for which the participants produced the 

correct response between 200 and 1200 ms after stimulus onset were included in the 

analyses. All epochs received a baseline correction of 100 ms before stimulus onset. 

On average, the CON group lost 6.19 out of 50 trials per condition due to erroneous 

responses and/or artefact rejection, while the HFA group lost 4.86 out of 50 trials per 

condition. Groups did not differ in the number of trials excluded (t(34) = 0.88; p = 

0.38). 

All statistical analyses were performed with SPSS Statistics 22. For the N190 

and P3, we identified time windows and relevant electrode sites at stable peak 

topographies (see figure 2) and performed analyses on exported mean area 

amplitudes. For the N190, we focused on the time window from 190 to 210 ms, and 

for the left N190, we pooled the activity per condition at left hemispheric electrodes 
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P5, P7 and PO7; for the right N190, we pooled the activity per condition at the right 

hemispheric electrodes P6, P8 and PO8. For the stimulus-locked P3, we pooled the 

activity at electrodes CPz, Pz and POz per condition in the time window from 350 to 

400 ms. Based on earlier research (Leuthold & Schröter, 2011; Rigoni et al., 2013; 

Shibasaki & Hallett, 2006), we identified the RP component in the response-locked 

segments as the gradient shift preceding the steep negative slope before response 

onset at electrode FCz (i.e., from -400 to -100 ms for the current dataset). To 

disentangle the activity of the supplementary motor area, related to motor preparation 

processes, from contaminating activity related to motor execution processes in the 

M1, we increased the spatial resolution of the EEG-signal by means of Laplacian 

transformations (Rigoni et al., 2013; Tandonnet et al., 2005; Vidal et al., 2003). Due 

to the poor spatial resolution of the EEG-signal, volume conduction effects smear the 

distribution of the potentials at the scalp level, therefore producing overlapping 

effects of motor execution and motor preparation processes within the RP (Rigoni et 

al., 2013). The Laplacian transformation removes the blurring effect of the diffusion 

of currents through the skull and acts as a high-pass filter. We estimated surface 

Laplacians from the averaged monopolar EEG signal. First, we interpolated the signal 

with the spherical spline interpolation procedure, and then computed second 

derivatives in the two dimensions of the space (degree of spline = 3, maximum 

degrees the Legendre Polynomial = 15. Conform earlier studies (e.g., Rigoni et al., 

2013; Vidal et al., 2003) and the observed topography (figure 2), we conducted the 

RP-analyses on electrode FCz.   

We analyzed results of both behavioral and EEG-data by means of one-way 

within-subjects ANOVAs with Condition as a within-subjects factor (including the 

levels: B, C, I) and Group as a between-subjects factor. For the N190 analyses, we 
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additionally included a factor Hemisphere (with the levels left and right). 

Greenhouse-Geisser corrections were applied where needed. We used repeated-

measures t-tests for paired comparisons. Because of the non-parametric (non-normal) 

distribution of the data, Spearman correlation coefficients were used for correlational 

tests.  

 

Results 

Behavioral results 

An ANOVA on the reaction time data yielded a significant effect of Condition 

(F(2, 68) = 79.54, p < 0.000). Reaction times for incongruent trials were larger (M = 

565.11, SD = 112.68 across groups) than for baseline trials (M = 536,84 SD = 101.85 

across groups), whereas the congruent trials elicited the fastest responses (M = 

485.89, SD = 85.16 across groups). Though the interference effect was numerically 

larger in the HFA group (93ms) than in the CON group (66 ms), the Condition by 

group effect only trended to significance (F(2, 68) = 2.63, p = 0.08). To investigate 

this trending effect further, we decided to test this effect in the initial broader ASD 

group (also including adults with an ASD diagnosis who scored lower than 6 on the 

ADOS) and its matched controls. In these groups, the interaction between condition 

and group was significant (F(2, 86) = 3.39, p < 0.05), suggesting that the previous 

analyses might have lacked sufficient power. Paired comparisons of this effect 

showed that the reaction time difference between congruent and baseline trials was 

larger in the initial ASD group than in its matched CON group (t(43) = 2.05, p < 

0.05), while there was no group difference between the incongruent and baseline 

difference (t(43) = 0.34, p = 0.74). As such, the initial broader ASD group did show a 

larger behavioral motor interference effect: the group reacted faster than its matched 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Neural sources of the motor interference effect in HFA 

13 

control individuals in congruent trials where a compatible movement was observed, 

as compared to baseline trials where no movement was observed. For all other 

analyses, we returned to the restricted HFA group that was selected on the basis of an 

ADOS score of mimimum 6 (see participant characteristics). 

Analyses on the error percentages in the HFA group and their matched 

controls (including erroneous as well as missed responses) showed a significant 

difference between the 3 conditions (F(2,68) = 15.66, p < .000) that did not show any 

modulations by Group (F(2, 68) = 0.02, p = 0.98). More specifically, across groups, 

we found that the incongruent trials elicited more errors (M = 0.03%, SD = 0,03%) 

than the congruent (M = 0.01%, SD = 0,02%) or baseline trials (M = 0.01%, SD = 

0,02%). No other effects reached significance. 

 

EEG-results 

P3  

In the P3 component, the HFA group and their matched controls showed 

significant differences between the three conditions overall (F(1.5,51.4) = 9.95, p = 

.001), which did not interact with the factor Group (F(1.5,51.4) = 0.17, p = 0.78; see 

figure 4 and 5). The congruent trials and the incongruent trials elicited larger P3 

amplitudes than baseline trials (t(35) = 3.83, p = .001 and t(35) = 3.60, p = .001 

respectively), replicating our findings in neurotypical adults (Deschrijver et al., in 

press). Incongruent trials elicited a numerically smaller P3 amplitude than congruent 

trials across groups, a difference which trended to significance (t(35) = 1.93, p = .06). 

No other effects reached significance. 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Neural sources of the motor interference effect in HFA 

14 

 

RP  

An ANOVA on the RP Laplacians showed a significant difference between 

the three conditions (F(2, 68) = 6.91, p < .005). Importantly, the interaction of 

Condition and Group was also significant (F(2, 68) = 5.60, p < .01, see figure 4 and 

5). Surprisingly, the difference between the congruent and the incongruent condition 

was not significantly altered in the HFA group (t(35) = 0.57, p = .46). Instead, paired 

comparisons showed that the difference between the congruent condition and the 

baseline reversed in the HFA group as compared to the CON group (t(35) = 9.09, p = 

0.05): While RP Laplacians for the congruent condition were numerically smaller 

than those for the baseline condition in the CON group, congruent trials elicited 

numerically larger RP Laplacians than the baseline condition in the HFA group. 

Additionally, paired comparisons showed that the difference between the baseline and 

the incongruent condition was larger in the HFA group than in the CON group (t(35) 

= 8.33, p < 0.01): incongruent trials were associated with a larger RP in individuals 

with ASD than in CON individuals, as compared to baseline trials. No other effects 

reached significance. 

 

N190 

We identified clear N190 topographies in both the HFA and the CON group 

(see figure 2). The ANOVA yielded a significant main effect of Condition (F(1.63,70) 

= 16.27, p < 0.001) and of Hemisphere (F(1,43) = 10.85, p < 0.005), but no main 

effect of Group (F(1,43) =24.37, p = 0.15). No interaction between Condition and 

Group was present (F(1.6,69.93) = 0.73, p = 0.46). When collapsed over groups and 

hemispheres, the baseline condition elicited smaller N190-amplitudes than the 
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congruent and the incongruent condition (t(44)= 2.84, p < 0.01; and t(44)= 2.94, p = 

0.005 respectively). No difference existed between the congruent and incongruent 

conditions when collapsed over groups and hemispheres (t(44)= 1.03, p = 0.31). In 

other words, overall, we did not observe a congruency difference within the N190 

component. No other effects reached significance (see figure 5). 

 

Correlational results 

Given the results of the Laplacian RP potential in the HFA group, we 

computed an index for the difference between incongruent and baseline condition (I-

B) and for the difference between congruent and baseline condition (C-B), as well as 

an index for the congruency difference (I-C). We also computed an index for the 

behavioral interference effect within the reaction times (C-I). We tested for 

correlations between these measures and ASD symptoms as assessed with the ADOS 

total score and self-report measures of (social) autistic traits (AQ total score and SRS-

A). None of these correlations were found significant.  

 

Discussion 

  

The current study examined aberrant neural processes underlying motor 

interference in adults with ASD. To our knowledge, this is the first study that tested 

the imitation inhibition task in ASD via a neuroimaging technique. We used EEG to 

disentangle low-level perceptual and motor from high-level social processes. On the 

behavioral level, the HFA group showed a numerically increased motor interference 

effect in reaction times, though this effect only reached significance in the initial 

broader ASD group (including adults with an ASD diagnosis who scored lower than 6 
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on the ADOS). On the neurophysiological level we found a similar congruency-

related P3 in the HFA and control group, indicating no deficit in self-other distinction 

in the imitation-inhibition task in HFA. Interestingly, however, we found that the 

HFA group differed from the control group in the amplitude of the RP.  

 

The motor interference effect: behavioral results 

The HFA group showed a numerically larger motor interference effect than 

the CON group, a group difference that trended to significance. In the inital broader 

group with an ASD diagnosis group (including adults with an ASD diagnosis who 

scored lower than 6 on the ADOS), we did observe a significantly larger congruency 

difference, indicating that the previous analyses might have lacked power. In this 

initial broader ASD group, the observation of a compatible hand action lead to 

relatively faster responses, reflected in a larger reaction time difference between 

congruent and baseline trials for this group as compared to their matched controls. 

The findings are in line with some earlier empirical studies that showed increased 

motor interference effects in ASD (e.g. Bird et al., 2007; Sowden, Koehne, Catmur, 

Dziobek, & Bird, 2015; Spengler et al., 2010) and with clinical observations of 

hyperimitation such as echolalia and echopraxia (Lord et al., 2000; Spengler et al., 

2010). Other studies on automatic imitation in ASD, however have reported typical or 

near-typical motor interference effects in autistic groups (Gowen et al., 2008; 

Grecucci et al., 2013; Press et al., 2010; Sowden et al., 2015). As noted by Sowden 

and colleagues (2015), this may be due to the use of small sample sizes, or 

incorporation of emotional/face materials (Gowen et al., 2008; Grecucci et al., 2013; 

Press et al., 2010; Sowden et al., 2015), which might have affected neural processes 

more strongly than automatic action imitation mechanisms. To reach a final 
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conclusion about the hyperimitation effect in ASD, a meta-analytic approach seems 

advisable. 

 

High-level social cognitive processes: P3 results 

In contrast to our main hypothesis, we did not detect differences between the 

HFA and the CON group in the P3 ERP-component. Observed hand movements that 

were compatible to own motor intentions yielded numerically larger P3-components 

than observed hand movements that were incompatible to own motor intentions over 

both groups. This suggests that, at high levels of processing, individuals with HFA 

may be able to differentiate observed hand actions that are incompatible to planned 

hand actions from observed hand actions that are compatible to planned hand actions. 

Indeed, the HFA group showed a congruency difference within the P3 component that 

was at least equally strong and numerically even larger than that in the CON group. 

Because of this unexpected result, we cannot conclude from our data that (all) 

individuals with ASD show diminished abilities to distinguish between self and others 

based on actions at higher levels of processing (Hamilton, 2013; Southgate & 

Hamilton, 2008; Spengler et al., 2010).  

While EEG and fMRI shouldn’t be expected to yield overlapping results, they 

can be seen as complimentary: We had hypothesized that the P3 may be able to 

capture high-level self-other distinction deficits in adults with HFA, since the TPJ and 

aMFC have been noted among others as neural sources of the P3-component (Blanke 

et al., 2005; Bledowski et al., 2004; Longo et al., 2012; Mulert et al., 2004; Verleger, 

2008). The involvement of the TPJ and aMFC in the imitation inhibition task has been 

demonstrated in neurotypical individuals (Brass et al., 2005) yet there is no study to 

our knowledge that shows reduced activity in these areas during the task in 
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individuals with ASD: It has only been shown that the motor interference effect is 

functionally related to activity in the TPJ and MPC areas during mentalizing (Brass et 

al., 2009; Spengler et al., 2010). As such, it might be the case that individuals with 

ASD (or individuals with HFA in specific) will not show reduced brain activity at 

high-level social cognitive brain areas within the imitation inhibition task. Future 

research in this area, potentially combining EEG and fMRI techniques, is warranted.  

 

The effect of perception on action: RP results 

The response-locked Readiness Potential (RP) Laplacian is known to magnify 

with increasing complexities of motor preparation (Leuthold & Schröter, 2011; 

Rigoni et al., 2013). As was observed in our previous study (Deschrijver et al., in 

press), neurotypical adults in the current study showed (numerically) smaller RP 

Laplacians for congruent trials as compared to incongruent trials (or baseline trials), 

suggesting facilitated motor preparation for own hand actions after observing a 

compatible hand action. RP Laplacians in the HFA group were significantly different 

from those in the CON group. In the HFA group, the RP Laplacian for congruent 

trials was (numerically) larger than for the baseline trials, suggesting that motor 

preparation might have been more ‘complex’ for these individuals when observing 

compatible finger movements as compared to when no hand action was observed. So 

in contrast to individuals without ASD (see also Deschrijver et al., 2016), the group 

with HFA did not experience any facilitating effect by a human hand observation that 

‘mirrored’ their own hand movement. Moreover, incongruent trials elicited larger RP 

Laplacians than the baseline trials in the HFA group. This suggests that trials showing 

incompatible hand movements interfered with action preparation of own actions for 

individuals with HFA. In the control group, we did not observe such an interference 
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effect for incongruent trials within the RP Laplacians (nor in the current study nor in 

the healthy adults of our earlier study; Deschrijver et al., 2016). In sum, it seems that 

in the HFA group, any observed human hand movement was experienced as more 

strongly interfering with one’s own action preparation, when compared to trials where 

no hand action was observed. Surprisingly however, the difference between the 

congruent and the incongruent conditions was not significantly different between the 

two groups. As such, it is not likely that motor preparation differences will account 

for increased motor interference effects observed in individuals with ASD in this or 

other studies (Bird et al., 2007; Sowden et al., 2015; Spengler et al., 2010). 

ASD has long been associated with movement abnormalities (Rinehart, 

Bradshaw, Brereton, & Tonge, 2001), and studies have ascribed this to atypical 

movement preparation (Dowd, McGinley, Taffe, & Rinehart, 2012; Nazarali, 

Glazebrook, & Elliott, 2009; Rinehart et al., 2006, 2001). Atypical motor preparation 

abilities in ASD have primarily been related to disturbances in the supplementary 

motor area circuity (Rinehart et al., 2001), the neural area which is thought to underlie 

the RP Laplacian (Rigoni et al., 2013; Vidal et al., 2003). It should be noted that the 

original imitation inhibition paradigm we used (Brass et al., 2000; Brass, Zysset, & 

von Cramon, 2001) does not include a non-social control condition. This would have 

allowed us to exclude the possibility that the observed group difference is due to a 

non-social effect, that is, the mere observation of (non-biological) movement as 

compared to when no movement is observed (baseline condition). However, a 

previous study showed that individuals with ASD show no difference as compared to 

control individuals in the brain activity in response to non-social arrows in the flanker 

task (Dichter & Belger, 2007). Moreover, interference tasks that included non-social 

control conditions did not observe differences for ASD individuals within these 
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conditions (Gowen et al., 2008), which suggest that they generally have no heightened 

sensitivity for non-social conditions. As such, we consider non-social effects not 

likely to account for the current results. 

 

The effect of action on perception: N190 results 

 Previous fMRI studies of the imitation inhibition task (Brass et al., 2005; 

Spengler et al., 2010) have not reported an influence of action intention on visual 

processes, which makes it likely that such processes are rather subtle (see also 

Deschrijver et al., in press). In the current study, we could not replicate our earlier 

finding that action intentions affect early visual processes (Deschrijver et al., in 

press), as reflected in the absence of a congruency effect within the N190-amplitudes. 

Given this failure to replicate this finding, it is difficult to draw any conclusion about 

a potential impairment of effects of action on perception in ASD. Further research 

with larger sample sizes is warranted to explore the role of this potental neural source 

of imitative control mechanisms in populations with and without ASD.  

 

Conclusion 

 

  In sum, the current results suggest that neural differences within automatic 

imitation paradigms in ASD populations might be situated on the level of motor 

preparation, rather than (only) at high-level social cognitive levels (Spengler et al., 

2010). Overall, the findings contrast with theoretical views where individuals with 

ASD are thought to have an impaired mirror neuron system per se (Iacoboni & 

Dapretto, 2006; Oberman et al., 2008; Williams et al., 2004). In the future, if 

replicated, the findings may lead to the development of interventions centred around 
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movement preparation difficulties in ASD, though follow-up research is certainly 

needed here (for a review on the efficacy of currently existing motor interventions in 

ASD, see Baranek, 2002). The results may have important implications for research to 

control over imitation as well, because they highlight the importance of intact motor 

preparation processes that are at play in the imitation inhibition task.  
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Figure Captions 

Figure 1. Design of the paradigm 
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Neural sources of the motor interference effect in HFA 

Figure 2. Topographies of the visual N190, the P3 and the RP Laplacian in their 

respective time frames of interest. Top: CON-group. Bottom: HFA group. Viewpoint 

from above, front of the head at the top. Left (L) and right (R) side of the head 

indicated. Electrodes of interest are marked in black. 

 

 

 

 

 

 

 

 

 

 



Neural sources of the motor interference effect in HFA 

Figure 3. Results and correlation charts. Data of the groups restricted on the basis of 

the ADOS (see Participant). (Error bars denote standard error. ** : test is significant at 

the 0.01 level, *: test is significant at the 0.05 level, + test is significant at the 0.10 

level (2-tailed).) Legend: ‘C’ for congruent; ‘B’ for baseline; ‘I’ for incongruent. A. 

Reaction times chart. B. P3 amplitude chart. C. RP Laplacian chart. 
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Figure 4. P3 and RP components. Pooled ERPs over the relevant electrodes for the 

P3.  
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Figure 5. N190 components. Pooled ERPs over the relevant electrodes. 
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Tables 

 

Table 1: Participant details (*** : test is significant at the 0.001 level (2-tailed)). 

 HFA CON t p-value 

Number of male participants 11 12 N.A. N.A. 

Number of right-handed 

participants 
15 18 N.A. N.A. 

Mean age (S.D.) 33.06 (6.54) 31.79 (6.54) 0.58 0.57 

Mean full-scale IQ (S.D.) 
111.88 

(15.10) 

117.74 

(13.84) 
1.21 0.23 

Mean ADOS communication 

(S.D.) 
2.59 (1.12) N.A. N.A. N.A. 

Mean ADOS social interaction 

(S.D.) 
6.41 (2.15) N.A. N.A. N.A. 

Total score Autism 

Questionnaire (S.D.) 
33.19 (8.29) 11.16 (4.21) 9.69 0.00***  

Total score Social 

Responsiveness Scale (S.D.) 

162.63 

(35.59) 

93.82 

(14.05) 
7.22 0.00***  

     

 

 

 

 

 

Table Click here to download Table
elianeASS_Imit_final_TABLES.docx



 

Neural sources of the motor interference effect in HFA 

1 

 

Eliane Deschrijver, Department of Experimental Psychology, Ghent University, 

Henri-Dunantlaan 2, 9000, Ghent, Belgium 

Jan R. Wiersema, Department of Experimental-Clinical and Health Psychology, Ghent 

University, Henri-Dunantlaan 2, 9000, Ghent, Belgium 

Marcel Brass, Department of Experimental Psychology, Ghent University, Henri- 

Dunantlaan 2, 9000, Ghent, Belgium 

 

 

 

The research was supported by Research Foundation Flanders (Grant 

FWO11/ASP/255 to E.D.).  

 

Correspondence concerning this article should be addressed to Eliane Deschrijver,, 

Department of Experimental Psychology, Ghent University, Henri-Dunantlaan 2, 

9000, Ghent, Belgium, eliane.deschrijver@ugent.be, +32 9 264 86 46  

 

 

 

 

 

 

 

 

Author Note

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

