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Introduction 

 

For many centuries, micro-organisms (and their enzymes) have been employed 

for the production of bread, beer, vinegar, etc. without any understanding of the 

underlying biochemical principles. At present, we know that enzymes are 

nature’s highly efficient and specific catalysts, performing a diverse array of 

reactions. Enzymes catalyze all processes essential for life such as DNA 

replication and transcription, protein synthesis, metabolism, etc. Conventional 

enzyme applications include the addition of proteases and lipases to laundry 

detergents, the clarification of fruit juices by pectinases or denim washing by 

cellulases (bio-stonewashing). 

 

More recently, enzymes have gained interest as industrial biocatalysts, due to 

their ability to perform highly specific chemical reactions in aqueous media with 

low energy inputs, which makes biocatalysis more cost effective and eco-friendly 

than conventional chemical synthesis1,2. Moreover, the advent of recombinant 

DNA technology made it possible to produce enzymes in relatively large 

quantities, in order to meet the constantly increasing demand3. Initial drawbacks 

of biocatalysts, such as low operational stabilities and limited substrate 

specificities, can be overcome by enzyme engineering technologies, such as 

directed evolution, high-throughput screening of mutant libraries and in silico 

rational design4. In 2014, the global market for industrial enzymes was estimated 

to have a value of roughly $4.2 billion. A compound annual growth rate (CAGR) 

of approximately 7% was predicted, reaching a market of nearly $6.2 billion by 

20205.  

 

A fine example of a biocatalytic process with industrial potential is the enzymatic 

glycosylation of small molecules. In vivo, glycosylation is a way to structurally 

diversify natural products, such as alkaloids, steroids, flavonoids and antibiotics. 

Glycosylated molecules typically display different physicochemical and biological 

properties than their non-glycosylated aglycons6. The most obvious effect of 

glycosylation is the improved solubility of hydrophobic compounds, which has a 
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direct impact on their bio-availability. Moreover, the stability of labile molecules 

against light and oxidation can be enhanced. For example, glycosylated ascorbic 

acid is much more stable against oxidative degradation than the aglycon, making 

high-value applications of ascorbic acid in cosmetics possible7. Interestingly, the 

flavor of many food ingredients is modified by glycosylation. For example, steviol 

glycosides, the molecules which give the leaves of Stevia rebaudiana its sweet 

taste, display different degrees of sweetness, bitterness and other off-flavors 

depending on the number, location and configuration of the attached glycosyl 

moieties8. Glycosylation, more specifically galactosylation, offers the possibility to 

target compounds towards the liver as a way of site-specific drug delivery9. 

Furthermore, it has been demonstrated that glycosylation is an effective tool for 

the modulation of the activity spectrum of glycopeptide antibiotics, a process 

known as “glycorandomization”10. These examples illustrate the need for cheap 

and efficient glycosylation technologies, useful both in the laboratory and in 

industry. This PhD study focused on the optimization of glycosylation reactions 

catalyzed by glucansucrase Gtf180 from Lactobacillus reuteri 180 and the 

characterization of its glycoside products, with an important emphasis on the 

glycosylation of steviol glycosides. This introductory chapter explores the state of 

the art glycosylation technologies after which glucansucrase-mediated glycoside 

synthesis is further elaborated. The scope of the thesis is presented at the end of 

this chapter. 

 

Synthesis of glycosides: state of the art technologies 

 

A wide diversity of glycosides occurs in nature and could in theory be extracted 

from their production host (mostly plants). However, extraction is a labor-

intensive, low-yielding process, restricting its application to highly priced 

compounds such as anthocyanins11 and certain polyphenol glycosides12. The 

quest for alternative approaches has led to the development of chemical, 

enzymatic –and in vivo (bioconversion and fermentation) synthesis of glycosides, 

each briefly discussed below. 
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Chemical glycosylation 

 

Although a large variety of chemical glycosylation protocols has been developed 

over the years, chemical glycoside synthesis still largely relies on four reactions, 

differing in the glycosyl donors and the activation agents applied13 (Figure 1). 

 

Figure 1. Glycosyl donors and corresponding activation agents applied in chemical 

glycoside synthesis. Ac = acetyl. 

 

Chemical glycosylations generally follow a unimolecular SN1 mechanism 

(unimolecular nucleophilic substitution). The activation agent assists in the 

departure of the leaving group, resulting in the formation of an oxocarbenium ion 

which is then attacked by the nucleophilic acceptor substrate14. Chemists face 

two big challenges when developing chemical glycosylation reactions: regio –and 

linkage (α or β linkage) selectivity. The former is adequately dealt with by the 

application of appropriate protective groups. The latter is determined by the 

nature of the protecting group on the C-2 of the donor substrate, i.e. by 
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anchimeric assistance or neighboring-group participation. In short: a participating 

group, traditionally an acyl moiety, sterically hinders one face of the glycosyl ring, 

which results in the stereoselective formation of a 1,2-trans –or 1,2-cis linkage. 

Depending on the nature of the donor substrate (e.g. glucose or mannose), this 

stereoselectivity is translated into α –or β-selectivity15,16. 

 

The chemical synthesis of glycosides typically includes multiple steps (resulting 

in low overall yields), time-consuming activation and protection procedures, the 

use of toxic catalysts and solvents and the production of a considerable amount 

of waste15. Alternatively, several carbohydrate-active enzymes (CAZymes; 

http://www.cazy.org) can be applied for glycoside synthesis, without the 

limitations associated with chemical glycosylation. CAZymes display a high regio 

–and stereospecificity, which makes labor-intensive protection steps 

unnecessary, and act in eco-friendly, aqueous media. This results in a 

remarkable improvement in efficiency, as 5-fold less waste is generated and a 

15-fold higher space-time yield is obtained, compared to chemical glycoside 

synthesis17. 

 

Enzymatic glycosylation 

 

Four classes of CAZymes, each displaying different advantages and drawbacks, 

are applied in glycosylation reactions (Figure 2).  
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Figure 2. CAZymes and corresponding donor substrates used for enzymatic glycoside 

synthesis. GH Glycoside hydrolases; TG Transglycosidases; GP Glycoside 

phosphorylases; GT “Leloir” Glycosyl transferases. 

 

Nature’s glycosylation catalysts are known as “Leloir” glycosyl transferases (GT, 

EC 2.4)18. Despite their high specificity and efficiency, their industrial 

breakthrough is hampered by their use of expensive nucleotide-activated sugars 

(mostly UDP-sugars) as donor substrates. GT-mediated glycosylation with in situ 

regeneration of nucleotide-activated sugars by sucrose synthase has been 

proposed as most interesting solution, and was demonstrated for the synthesis of 

a number of glycosides, e.g. curcumin glucosides19 and quercetin glycosides20. 

This strategy not only permits the use of catalytic amounts of UDP, also the 

glycosylation yields are increased as reverse glycosylation and inhibition of GT 

by high concentrations of UDP are suppressed. Nevertheless, product 

concentrations (~ 5 mM) and space-time yields (~ 0.1 g L-1 h-1) are still very low, 

complicating scale-up to an industrial level. Heterologous enzyme expression (in 

e.g. Escherichia coli), the poor water solubility of many acceptor substrates, and 

the inhibition of GTs by substrates and products have been identified as most 
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important bottlenecks, with an urgent need for adequate reaction –and enzyme 

engineering21.  

 

Glycoside phosphorylases (GP, EC 2.4), on the other hand, utilize glycosyl 

phosphates (e.g. glucose-1-phosphate) for the transfer of a glycosyl moiety, 

compounds that are easily synthesized in large quantities. Sucrose 

phosphorylase (SP) can even use inexpensive sucrose as glucose donor 

substrate for the synthesis of glycosides. Moreover, SP displays activity towards 

a wide array of acceptor substrates, which makes it the most interesting GP for 

glycoside synthesis22,23. The main disadvantage of GP is that their glycosylation 

yields are significantly lower than those of “Leloir” glycosyl transferases, which is 

caused by their low affinity for alternative acceptor substrates24. Recently, 

improved glycosylation yields were achieved by the construction of two SP 

mutants with a better accessibility of the active site, allowing the efficient 

synthesis of e.g. resveratrol glycosides25,26. 

 

Glycoside hydrolases (GH, EC 3.2.1), in vivo catalyzing the hydrolysis of 

carbohydrates, can be manipulated by dynamic or kinetic control to perform 

glycosylation reactions in vitro. The former strategy, also called reverse 

hydrolysis, consists of shifting the reaction equilibrium towards glycoside 

synthesis by increasing the donor and acceptor substrate concentrations, or by 

lowering the water content27. This approach is typically used for the glycosylation 

of primary and secondary alcohols by exploiting the high operational stability and 

robustness of GH towards acceptor substrates and solvents28. For example, allyl-

β-D-glucoside was synthesized by almond β-glucosidase in a 90% allyl alcohol 

solution with high yield29. Kinetic control implies that the donor substrate is 

activated by a leaving group, e.g. a para-nitrophenyl moiety. The leaving group is 

released, yielding an activated anomeric center which is then attacked by the 

acceptor substrate. The resulting yield is consequently higher than the 

equilibrium yield. However, the reaction has to be stopped on time, otherwise the 

thermodynamically favored hydrolytic reaction takes over28. To cope with the 

inherent hydrolytic nature of GH, many successful enzyme engineering strategies 

have been developed over the past years, most notably resulting in the 
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development of glycosynthases30. These enzymes constitute a class of GH 

mutants that promote glycosidic bond formation, provided a suitable activated 

glycosyl donor is supplied, but do not hydrolyze the newly formed glycosidic 

linkage. A famous example is the E197S mutant of cellulase Cel7B from 

Humicola insolens, capable of efficiently glycosylating several flavonoids with 

reaction rates that are comparable with those of “Leloir” glycosyltransferases31. 

 

Last but not least, transglycosidases (TG, EC 2.4) constitute an interesting class 

of glycosylation biocatalysts. They only require readily available, non-activated 

carbohydrates (e.g. sucrose) as donor substrates for glycoside synthesis. TG are 

in fact retaining glycoside hydrolases that are able to avoid water as acceptor 

substrate, instead catalyzing the glycosylation of carbohydrates by an intra- or 

intermolecular substitution at the anomeric position of a certain glycoside32. In 

addition, they can also be applied for glycoside synthesis. Cyclodextrin 

glucanotransferases (CGTase, family GH13) have for example been used for the 

glycosylation of resveratrol into α-glycosylated products with a conversion degree 

of 50%33. Another interesting group of TG are glucansucrase enzymes (family 

GH70). The glucansucrase Gtf180-ΔN (an N-terminally truncated version of the 

Gtf180 enzyme) from L. reuteri 180 was the glycosylation biocatalyst studied in 

this PhD project, therefore glucansucrases are discussed in more detail below.   

 

In vivo glycosylation 

 

The third option to glycosylate small molecules is in vivo synthesis, either by 

bioconversion (resting cells) or fermentation (actively growing cells). Most 

technologies are based on the overexpression of UDP-glycosyl transferases 

(UGTs) in a micro-organism, consequently making use of its intracellular UDP-

sugar pool. As such, this technology intends to exploit the high specificity of 

UGTs while circumventing their main constraint for application in vitro (i.e. high 

cost of UDP-sugars)34.  

 

Three major types can be distinguished, differing by the number of micro-

organisms used and whether the aglycon is added or not: bacterial coupling, 
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single cell glycosylation and de novo fermentation. As the name suggests, the 

bacterial coupling strategy consists of combining different hosts, each fulfilling 

one of three steps in the formation of glycosides (i.e. UTP formation, UDP-sugar 

formation and UGT-mediated glycosylation).35 Although successfully applied for 

the production of oligosaccharides35,36, the inherent complexity of this system 

(separate fermentations to obtain high cell densities of each host involved) 

makes it an instable and relatively costly process. The development of single cell 

glycosylations, merging all steps in one organism, thus is a logical next step. 

Depending on the metabolic state of the cell, bioconversion (resting cells) and 

fermentation (actively growing cells) can be distinguished. Of the two, 

fermentation is preferred as it omits some of the disadvantages associated with 

bioconversion. Indeed, the latter often requires permeabilization of the host and 

suffers from decreasing productivities over time, caused by cell decay. In 

contrast, actively growing cells display enhanced productivities over time34. Later 

on, the advances in the field of metabolic engineering even resulted in the 

development of de novo fermentation of glycosides, thereby eliminating the need 

for the addition of acceptor substrates. A limited number of successful examples, 

applying the traditional hosts E. coli and Saccharomyces cerevisiae, are 

reported, e.g. vanillin glucoside37, resveratrol glucosides38 and steviol 

glycosides8,39. 

 

In general, the currently developed in vivo glycosylation processes all suffer from 

very low product concentrations (~ 1 g/L), which can partly be explained by the 

low solubility and toxicity of many of the target compounds37-42. On the other 

hand, the described processes lack the ability to efficiently (re)generate UDP-

sugars, which results in their rapid depletion and, hence, low product yields. 

Much effort is thus still required to turn in vivo glycosylation, in whatever form, 

into an economically feasible process.  
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Case study: Glycosylation of steviol glycosides 

 

The various advantages and disadvantages of the previously discussed 

glycosylation technologies are nicely illustrated by using the glycosylation of 

Stevia glycosides as case study. The steviol glycosides of the plant Stevia 

rebaudiana, native in Paraguay and Brazil, were approved for use as high-

intensity sweetener (HIS) in food products by the European Commission in 

201143. Although the share of HIS in the global sweetener market, estimated at 

US$ 68 billion annually, is currently not significant (Figure 3), the HIS market is 

predicted to grow significantly over the next years, due to increased consumption 

of low-calorie food products, fueled by increased consumer awareness of diet-

related diseases. Stevia is currently the fastest growing HIS and is expected to 

reach a value of US$ 565 million by 2020, reflecting a CAGR of 8.5% during 

2014-2020, a significantly faster growth than the total sweetener market, 

registering a CAGR of 5.7% during the forecast period. The volume consumption 

of stevia is expected to reach 8507 tons on an annual basis by the end of 2020, 

the majority of which will be used in beverages and table top sweeteners, 

collectively accounting for around 72% of the global stevia market44. Stevia is 

projected by the World Health Organization to eventually replace 20% of the 

sugar segment, equaling a US$ 10 billion industry45. This is significantly greater 

than 2014 sales, estimated at around US$ 347 million44. 

 

Figure 3. Global sweetener market, estimated at $68 billion, and global high-intensity 

sweetener (HIS) market in 201444. 
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Steviol glycoside R1 (C-19) R2 (C-13) 

Stevioside Glc(β1→ Glc(β1→2)Glc(β1→ 

Steviolbioside H Glc(β1→2)Glc(β1→ 

Rebaudioside A Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside B H Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside C Glc(β1→ Rha(α1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside D Glc(β1→2)Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside E Glc(β1→2)Glc(β1→ Glc(β1→2)Glc(β1→ 

Rebaudioside F Glc(β1→ Xyl(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside M Glc(β1→2)[Glc(β1→3)]Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rubusoside Glc(β1→ Glc(β1→ 

Dulcoside A Glc(β1→ Rha(α1→2)Glc(β1→ 

 

 

 

 

 

 

 

Figure 4. Chemical structures of the most prevalent steviol glycosides found in the leaves of 

Stevia rebaudiana. They are, without exception, glycosides of steviol, a diterpene compound. 

Glucose (Glc), xylose (Xyl) and rhamnose (Rha) occur in the pyranose ring form. Glc and Xyl 

have the D configuration and Rha the L configuration. 
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Stevia extract mainly consists of the steviol glycosides rebaudioside A (RebA, 2-

4 % of leaf dry weight) and stevioside (5-10% of leaf dry weight) (Figure 4). As 

most steviol glycosides, they display a lingering bitterness which has limited their 

successful commercialization46. Solving the taste issue of Stevia holds the 

potential to greatly expand its use, for example by allowing the creation of zero-

calorie stevia soft drinks. Although the correlation between the structure of steviol 

glycosides and their taste quality is still not fully understood, it is clear that the 

latter depends on the number, location and configuration of the glycosyl 

moieties8. In general, the bitterness is correlated with the total number of 

attached glycosyl units: steviol glycosides with fewer glycosyl residues are more 

bitter than steviol glycosides with more glycosyl residues46. Glycosylation of 

steviol glycosides has consequently been proposed multiple times as bitterness-

eliminating and taste-improving process.  

 

Chemical glycosylation of steviol glycosides  

 

Chemical glycosylation of steviol glycosides has – unsurprisingly – not been 

widely reported since this strategy is characterized by a vast complexity of 

(de)protection steps and the use of many toxic chemical reagents, which is 

undesired for food applications. The importance of these studies is therefore 

merely academic8. However, one patent application, reporting the chemical 

synthesis of rebaudioside D (RebD) from RebA, has to be noted47,48. RebD is 

considered the “holy grail” of Stevia glycosides due to its superior taste profile 

compared to RebA and stevioside. Unfortunately, its low presence in the Stevia 

plant (around 0.3% of leaf dry weight or 2.5% of total steviol glycosides) makes 

RebD extraction impractical and costly, urging the need for its synthesis49. In 

short, the reported chemical synthesis of RebD included 4 main steps (Figure 5): 

1 conversion of RebA into rebaudioside B by alkaline treatment, 2 acetylation of 

the free hydroxyl groups at the C-13 site, 3 glycosylation of the free C-19 

carboxyl group with acetylated α-sophorosyl bromide by activation with silver 

carbonate, and 4 deacetylation yielding RebD, resulting in a low overall yield of 

8.1%, illustrative for chemical glycosylations in general47,48.  
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Enzymatic glycosylation of steviol glycosides 

 

Due to the many disadvantages of chemical glycosylation routes, enzymatic 

glycosylation has been applied – with and without success - to improve the taste 

Figure 5. Chemical synthesis of rebaudioside D from rebaudioside A47. 
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profile of steviol glycosides, mainly by using cyclodextrin glucanotransferases 

(CGTases)50-56, UDP-glycosyltransferases (UGTs)57-59 and glycoside hydrolases 

(GHs)60-65. Although CGTase-catalyzed glycosylations often result in high yields, 

a poor C-13/C-19-regiospecificity is obtained51, which has been shown to be of 

major influence for the taste quality of the glycosylated products. For example, 

(α1→4)-glycosylation of stevioside and rubusoside at the C-13 steviol position 

yielded products with improved intensity and quality of sweetness, whereas 

(α1→4)-glycosylation at the C-19 position resulted in an increased bitterness52-54. 

Moreover, several studies reported that the many multiglycosylated products 

synthesized by CGTases were perceived as more bitter than their 

monoglycosylated counterparts50,53. This lack of selectivity resulted in a 

complicated and costly purification process to obtain the monoglycosylated 

product with improved taste, limiting the industrial application of CGTases for the 

glycosylation of steviol glycosides. Some progress has been made by using 

micro-wave assisted glycosylation with a CGTase from Bacillus firmus (from 46% 

to 66% monoglycosylation)55 and, more recently, by application of a CGTase 

found in a Paenibacillus sp. isolated from Stevia farmland, yielding a single 

monoglycosylated product but, unfortunately, also displaying a low total 

conversion56. To this date, the shortcomings of CGTase-catalyzed glycosylation 

of steviol glycosides largely remain. Improvement of the product specificity by 

mutational engineering is consequently strongly required. 

 

Few studies report the glycosylation of steviol glycosides by UGTs in vitro57-59. Of 

industrial interest is the application of UGT76G1 from S. rebaudiana in 

combination with sucrose synthase from Arabidopsis thaliana, regenerating the 

costly UDP-glucose, for the conversion of stevioside into the better-tasting RebA. 

Although a reasonably high conversion degree was obtained (78%), the 

productivity was very low: less than 2 mM RebA was synthesized in 30 h59. 

Similarly, UGT91D2 from S. rebaudiana has been used for the synthesis of RebD 

from RebA, however, only a 4.7% conversion was obtained57. In order to 

circumvent the usage of UDP-glucose as donor substrate, UGT76G1 and 

UGT91D2 have been applied in vivo for the synthesis of RebD and rebaudioside 

M (RebM), as described in detail below.  
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The substrate promiscuity of glycoside hydrolases has been exploited for the 

glycosylation of various alternative acceptor substrates, including steviol 

glycosides. For example, incubation of stevioside with maltose in the presence of 

Biozyme L, a commercially available β-amylase preparation, resulted in the 

(α1→6)-glycosylation at the C-19 site and the (α1→6) –and (α1→3)-glycosylation 

at the C-13 site. Only the former product displayed an improved taste profile, 

again illustrating the importance of regio –and linkage specificity on the sensory 

properties60. More recently, an α-amylase from B. amyloliquefaciens was applied 

as biocatalyst for the glycosylation of stevioside, using soluble starch as donor 

substrate (38% conversion)61. Remarkably, RebA turned out to be a much poorer 

acceptor substrate (1% conversion), results that were repeated with an α-

amylase from A. oryzae62. A biocatalyst capable of glycosylating stevioside and 

RebA holds great commercial potential since it could be applied for the 

glycosylation of Stevia extract instead of the more expensive high-purity steviol 

glycosides. To date, no biocatalyst has been shown to efficiently glycosylate both 

steviol glycosides.  

 

Also of great potential value is the application of β-glucosidases for the 

glycosylation of steviol glycosides, as these enzymes introduce the naturally 

occurring β-linkages. However, the currently described processes suffer from 

several drawbacks, including low conversions, the use of rare donor substrates 

(e.g. curdlan, a (β1→3)-glucan), very long incubation times, but most importantly, 

the hydrolysis of the steviol glycoside substrates63-65. For example, the cell-free 

extract from the fungus Gibberella fujikuroi used stevioside as acceptor substrate 

and as donor substrate, resulting not only in the formation of RebA but also of 

steviolbioside, steviolmonoside and finally even steviol, all of which are unwanted 

side-products with an inferior taste profile65. Despite their own shortcomings, 

UGTs are therefore more suitable for the β-glycosylation of steviol glycosides, as 

they display mainly transglycosylation activity. 

 

The presented examples illustrate that industrial biocatalysts for the glycosylation 

of steviol glycosides need to combine an adequate regio –and linkage specificity 

with high conversion degrees and product yields. This PhD research therefore 
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studied in more detail the potential of glucansucrase Gtf180-ΔN (mutants) of L. 

reuteri 180 to glycosylate RebA and stevioside, and the sensory properties of the 

glycosylated products (Chapters 4, 5 and 6). To date, only two studies have 

reported the glycosylation of stevioside with glucansucrases, whereas RebA 

glycosylation with glucansucrases has only been described once8. A 

dextransucrase from Leuconostoc citreum converted stevioside with a high 

conversion degree (94%), but its volumetric productivity was low (< 2 g/L/h), 

despite the addition of 4500 U/mL enzyme66. Additionally, glycosylation of 

stevioside was achieved with an alternansucrase from L. citreum, displaying an 

insufficient conversion degree of 44%67. In contrast, the patented L. reuteri 

glucansucrase Gtf180-ΔN based process appears to be much more promising 

(Chapters 4, 5 and 6)68-70. 

 

In vivo production of steviol glycosides 

 

In addition, de novo fermentation of RebD and RebM, steviol glycosides with 

improved taste compared to RebA and stevioside, has been reported. The 

patented process applies S. cerevisiae to express the complete steviol glycoside 

pathway, using (mutants of) UGT76G1 as key enzyme39,58,71. One of the main 

challenges faced is that RebD and RebM are not formed in a linear pathway from 

steviol, but result from a metabolic glycosylation grid. Their formation is directly 

dependent on the promiscuous “chameleon” enzyme UGT76G1, not only 

involved in the synthesis of RebD and RebM, but also catalyzing the formation of 

many side products, e.g. 1,3-bioside (Figure 6). Homology modelling of 

UGT76G1 followed by docking of RebD and RebM into the active site of the 

obtained 3D model, revealed 38 amino acid residues which may play a role in 

UGT76G1’s acceptor substrate specificity. A site-saturation library of these 

residues was generated in order to create mutants favoring the synthesis of 

RebD and RebM. Several mutants indeed displayed an increased accumulation 

of e.g. RebD, however, this was typically accompanied with a decrease of RebM, 

and vice versa. Moreover, these same mutants often displayed an increased 

accumulation of e.g. stevioside, which is obviously undesired71. In addition, the 

product concentrations reported in the patent application are in the range of 0.5 
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to 3 g/L, which should be improved in order for the process to reach a viable 

scale58. Nevertheless, a joint-venture of Switzerland-based Evolva, the patent 

holder, and Cargill, offering its facilities, has announced to launch fermentation-

based RebD and RebM (EverSweet™) in 2018 (http://www.evolva.com). It 

should be noted that the initial launching date was set back several times since 

2013. The joint venture has indicated that the production costs are still 

problematic, due to inadequate strain characteristics and too high fermentation 

and downstream processing costs. 

 

 

Figure 6. Steviol and the metabolic grid of glycosylation reactions resulting in the 

synthesis of rebaudioside D and rebaudioside M71. 

 

Conclusions 

 

From the discussion it is clear that the glycosylation of steviol glycosides holds 

great commercial potential, resulting in an ongoing development of novel and 

improved glycosylation processes, enzymatic as well as fermentation-based. The 

main advantage of de novo fermentation over most enzymatic glycosylation 

reactions is that nature-identical steviol glycosides, i.e. RebD and RebM, are 

synthesized. On the other hand, these processes may suffer from disputes 

concerning their GMO nature, possibly resulting in their (partial) rejection by 

consumers72. In contrast, many enzymatic glycosylation reactions yield products 

which will be classified as novel food, requiring additional regulatory approval by 
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e.g. the European Food Safety Agency (EFSA). To their advantage, biocatalysts 

are generally classified as a processing aid, omitting the obligation for labelling.    

 

Glucansucrases 

 

Glucansucrases are glycoside hydrolase enzymes (GH70) from bacterial origin 

with an average molecular weight of approximately 160 kDa. They catalyze the 

conversion of sucrose into α-glucan polysaccharides, linking the α-D-

glucopyranosyl units by (α1→2), (α1→3), (α1→4), or (α1→6) bonds, depending 

on the enzyme specificity73,74. In addition, they catalyze the so called acceptor 

reaction, thereby glycosylating a wide array of carbohydrate and non-

carbohydrate acceptor molecules, using sucrose as donor substrate. As such, 

they form a cheaper alternative for “Leloir” glycosyltransferases, which require 

rare and expensive nucleotide-activated sugars as donor substrate. Their 

promiscuity towards different acceptor substrates and their use of inexpensive 

sucrose as donor substrate have attracted interest from industry for the 

application of glucansucrases as glycosylation biocatalyst. This section 

discusses their distribution, structure, reaction mechanism and in particular the 

acceptor reaction and the optimization thereof. 

  

Distribution of glucansucrases 

 

Glucansucrases have only been isolated from Gram-positive lactic acid bacteria 

(LAB), such as Lactobacillus, Leuconostoc, Streptococcus and Weissella75. As 

their name suggests, LAB produce lactic acid as the major metabolic end product 

of carbohydrate metabolism. For centuries, this trait has been exploited for the 

fermentation of food products, such as yogurt and sour beer. The importance of 

LAB for the food industry is further evidenced by their use as probiotics, as such 

conferring health benefits on the consumer76. More recently, LAB have attracted 

interest for their production of various exopolysaccharides, compounds attributed 

with health-enhancing properties. Many of these LAB exopolysaccharides are 
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produced by glucansucrases, extracellular enzymes which are, depending on the 

bacterial source, either cell wall-attached, free or both77.    

 

Up until the beginning of 2017, 63 GH70 glucansucrases had been 

characterized, representing a wide variety of linkage specificities, and are listed 

in the CAZy database (http://www.cazy.org). Most of them were obtained from 

the genera Leuconostoc (24 of 63) and Streptococcus (21 of 63) and a minority 

from Lactobacillus (13 of 63) and Weissella (5 of 63). Some LAB strains express 

more than one glucansucrase. For example, L. citreum NRRL B-1299 (originally 

L. mesenteroides NRRL B-1299) is known to produce six different 

glucansucrases78 whereas Streptococcus mutans produces three79.    

 

Structure of glucansucrases 

 

The primary structure of all glucansucrase proteins can be divided in four distinct 

regions: 1) signal peptide (SP), 2) N-terminal variable region (VR), 3) conserved 

catalytic domain (CD) and 4) C-terminal glucan-binding domain (GBD)80. As 

glucansucrases are extracellular enzymes, their N-terminus contains a signal 

peptide, typical for Gram-positive bacteria, of 36 to 40 amino acids. Adjacent to 

SP is a highly variable region which contains between 200 and 700 amino acids, 

depending on the glucansucrase. Exception to the rule is glucansucrase DsrA 

from L. citreum NRRL B-1299 which has no VR, suggesting that this region is not 

essential for glucansucrase activity81. Deleting the VR of several glucansucrases 

confirmed this hypothesis, since no effect on the enzyme activity nor structure of 

the α-glucans synthesized could be determined. For example, deleting the VR 

(residues 0-742) of Gtf180 from L. reuteri 180 resulted in an enzyme (Gtf180-ΔN) 

with nearly identical biochemical characteristics. Moreover, the N-terminally 

truncated enzyme could be produced in E. coli with a higher yield, compared to 

production of the WT enzyme80,82. 

 

The crystal structures of four GH70 glucansucrases are currently available 

(Figure 7): Gtf180-ΔN from L. reuteri 18083, GtfA-ΔN from L. reuteri 12184, Gtf-SI 

(amino acid residues 244-1163) from S. mutans85 and the ΔN123-glucan-binding 
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domain-catalytic domain 2, a truncated form of DsrE from L. citreum NRRL B-

129986. They all share a common domain organization and a common 

architecture. Interestingly, the elucidation of these crystal structures revealed a 

different domain organization than the one predicted by sequence alignment: all 

crystal structures represent a U-shape, composed of five domains (A, B, C, IV 

and V). Domains A, B, IV and V are formed by discontiguous N- and C-terminal 

stretches of the polypeptide chain, while domain C consists of a contiguous 

polypeptide chain, forming the bottom part of the tertiary U-shape structure.  

 

Figure 7. Three-dimensional structures and schematic domain organization of GH70 

glucansucrases (Gtf180-ΔN (PDB: 3KLK, 1.65 Å), GtfA-ΔN (PDB: 4AMC, 3.60 Å), Gtf-SI 

(PDB: 3AIE, 2.1 Å) and DsrE ΔN123-GBD-CD2 (PDB: 3TTQ, 1.90 Å). Domains are colored 

in blue (A), green (B), magenta (C), yellow (IV) and red (V). This figure has been adapted 

from Leemhuis et al. 201375. 

 

Similarly to GH13 enzymes, domains A, B and C form the catalytic core. In 

contrast, enzymes from family GH13, including amylosucrases, lack domains IV 

and V. Their role in GH70 glucansucrases has remained largely unknown, 

however, it was proposed that domain IV acts as a hinge, supporting the rotation 

of domain V, thereby allowing the latter to bring the bound glucan chain in 

proximity of the catalytic site85. This hypothesis is supported by the positional 

variability of domain V among the different crystal structures83-86. Moreover, the 

flexibility of domain V was demonstrated by the elucidation of an alternative 

crystal structure of Gtf180-ΔN: a 120° rotation of domain V was observed 

compared to the previously elucidated crystal structure87. Deletion of Gtf180-ΔN’s 

domain V also heavily impaired its polysaccharide forming ability, confirming the 
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hinge hypothesis yet again88. Domain A adopts a circularly permuted (β/α)8-barrel 

fold, as predicted by sequence alignment with GH13 enzymes89, containing the 

three catalytic residues (nucleophile, acid/base catalyst and transition state 

stabilizer) at loops following β-strands β4, β5 and β7, respectively. The complete 

active site is located in a pocket-shaped cavity at the interface of domains A and 

B. In fact, several amino acids belonging to domain B assist in shaping the 

substrate binding sites, consequently influencing the reaction specificity83. 

Additionally, some amino acids between domains A and B form a calcium binding 

site near the nucleophilic residue; the Ca2+ ion is absolutely essential for 

glucansucrase activity75. The function of domain C is not known yet, although it is 

widely distributed within G13 and G70 enzymes. It is composed out of an eight-

stranded β-sheet with a Greek key motif83.     

 

Catalytic mechanism of glucansucrases 

 

According to the CAZy classification system which is based on amino acid 

sequence similarity90, glucansucrases are classified as glycoside hydrolase 

family GH70. Structurally, mechanistically and evolutionary, they are closely 

related to enzymes of the GH13 and GH77 families, together forming the GH-H 

clan91. Typical for members of the GH-H clan is their use of the α-retaining 

double-displacement reaction mechanism, involving 3 catalytic residues: a 

nucleophile, an acid/base catalyst and a transition state stabilizer74,92 (Figure 8). 

Firstly, the glycosidic linkage of donor substrate sucrose is cleaved by the 

nucleophile. Simultaneously, the acid/base catalyst protonates the fructosyl 

moiety, resulting in the release of fructose. An β-glucosyl enzyme intermediate, 

stabilized by the transition state stabilizing residue, is consequently formed. In 

the next step, this β-glucosyl enzyme intermediate is attacked by the non-

reducing end of the acceptor substrate (i.e. sucrose, or a growing 

oligosaccharide or polysaccharide chain), resulting in product formation with 

retention of the α-anomeric configuration. 
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Figure 8. Reaction mechanism used by glucansucrases for α-glucan synthesis. 1 Donor 

substrate binding, 2 Transition state, 3 β-glucosyl intermediate, 4 Acceptor substrate 

binding, 5 Transition state, 6 Product formation. 

 

This reaction mechanism is supported by the observed interactions of the 

catalytic triad (D1025, E1063 and D1136) of the inactive mutant Gtf180-ΔN-

D1025N from L. reuteri 180 with donor substrate sucrose83. The latter is bound in 

subsites −1 and +1, which results in the adoption of a distorted half-chair 

conformation by the −1 glucosyl ring. The seven strictly conserved residues 

found in subsite −1 (R1023, D1025, H1135, D1136, E1063, Y1465 and Q1509) 

all interact with the glucosyl moiety of sucrose, orienting the substrate in such 
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manner that the formation of the covalent intermediate is favored. The anomeric 

C1 carbon of the glucosyl unit is attacked by the nucleophilic residue (D1025), 

resulting in the formation of the covalent β-glucosyl enzyme intermediate via an 

oxocarbenium ion-like transition state. Residue E1063 serves as the acid/base 

catalyst initially donating a proton to activate fructose as leaving group and 

subsequently deprotonating the acceptor substrate to increase its nucleophilicity. 

The partly planar transition state is stabilized by interactions with the transition 

state stabilizer (D1136), an arginine residue (R1023) and a glutamine residue 

(Q1509). 

 

The active site of Gtf180-ΔN stretches no further than subsite −1 due to 

adequate “blocking” by residues Q1140, N1411 and D1458. This creates a 

pocket-like shape which is also observed in Neisseria polysaccharea 

amylosucrase (belonging to GH13) and is the reason why glucansucrases can 

only transfer one single glucose moiety per catalytic cycle, while GH13 α-

amylases, which have a longer binding groove, can also transfer 

oligosaccharides. In contrast to subsite −1, the residues found in subsite +1 are 

much less conserved, which is reflected in the different product specificities that 

are displayed by glucansucrases and which can be exploited for the glycosylation 

of alternative acceptor substrates. 

 

Reactions catalyzed by glucansucrases 

 

The β-glucosyl enzyme intermediate, formed in the first step of the catalytic 

cycle, can not only react with a growing glucan chain to form polysaccharides but 

also with the hydroxyl group of several carbohydrate and non-carbohydrate 

acceptor substrates, resulting in the synthesis of oligosaccharides and α-D-

glucosides, respectively. Furthermore, also water can act as acceptor substrate, 

with the hydrolysis of sucrose into glucose and fructose as result73,75 (Figure 9). 
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Figure 9. Reactions catalyzed by glucansucrases using sucrose as donor substrate. 

 

α-Glucan synthesis   

 

The dominant reaction of glucansucrases is α-glucan synthesis, also referred to 

as polymerization reaction. Glucansucrases synthesize a remarkably large 

diversity of α-glucans, differing in the type of α-glycosidic linkages connecting the 

glucose moieties (1→2, 1→3, 1→4 or 1→6), the types and degrees of branching 

and the molecular mass. Furthermore, the ratios of α-glycosidic bonds and the 

frequency and length of the branches also vary greatly75. The α-glucan structures 

are classified according to their predominant linkage type. Dextran contains 

mainly α(1→6) bonds, mutan mainly α(1→3) and reuteran mainly α(1→4). As the 

name suggests, alternan is composed of alternating α(1→3) and α(1→6) bonds. 

Except for the latter, the different glycosidic linkages are more or less randomly 

distributed within the polymers93,94. Very often glucansucrases are also named 

after the product they synthesize, e.g. dextransucrase (EC 2.4.1.5) or 

alternansucrase (EC 2.4.1.140). The above mentioned parameters have an 

impact on the physicochemical properties of the α-glucans, such as viscosity, 

stickiness, solubility, mass, etc.75. 

 

Despite the elucidation of several glucansucrase crystal structures and the 

structural characterization of their α-glucan products, it is still not entirely clear 
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how glucansucrases synthesize such a wide array of α-glucans. Essentially, α-

glucan synthesis is the step-wise addition of glucose moieties to a growing α-

glucan chain74. Every catalytic cycle starts with the cleavage of the glycosidic 

bond of sucrose which results in the covalent attachment of the glucosyl moiety 

at subsite −1, forming the so called β-glucosyl enzyme intermediate. Which type 

of glycosidic linkage is subsequently formed depends on the orientation of the 

acceptor substrate. Hence, it is the architecture of the active site, and in 

particular that of acceptor subsite +1, that determines the glycosidic linkage 

specificity95. Indeed, it has repeatedly been shown that mutations in residues of 

subsite +1 and +2 lead to the synthesis of α-glucans with altered ratios of 

glycosidic linkages96-102. Unfortunately, there is still little understanding about how 

the glycosidic linkage specificity is affected by such mutations. Rational design of 

glucansucrase mutants for the synthesis of pre-defined α-glucan products is thus 

still very complicated. 

 

For many years, it remained unclear how α-glucan synthesis is initiated, or in 

other words, which molecule acts as primer. Several studies have since been 

performed on the structural characterization of the initially formed products, 

revealing that the formation of α-glucans most typically starts with the 

glycosylation of sucrose103,104. The latter is thus not only the donor substrate of 

glucansucrases but at the same time also the acceptor substrate. The 

consequence is that the glycosylation of alternative acceptor substrates will 

unavoidably face competition from the synthesis of α-glucans, unless the latter is 

adequately suppressed by reaction –or enzyme engineering. It has to be noted 

that one study, investigating the mechanism of DsrS from L. mesenteroides, has 

proposed both sucrose and glucose as primers for α-glucan synthesis, however, 

it is still unknown if this can be extended to other glucansucrases105. During the 

initial phase of α-glucan synthesis, hydrolysis of sucrose into fructose and 

glucose is the dominant reaction, as the affinity of glucansucrases for sucrose as 

acceptor substrate is relatively low. Once the preferred acceptor substrates, i.e. 

α-glucan oligosaccharides, have been formed in sufficient quantities, the 

hydrolytic activity is suppressed in favor of α-glucan synthesis and α-glucan 

polysaccharides are efficiently synthesized103.  
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Whether glucansucrases function as a processive or non-processive enzyme has 

been subject to considerable debate. A number of studies revealed that high-

molecular-mass (HMM) glucans reached maximum size after a relatively short 

time, suggesting that glucansucrases act processively103,105,106. However, also 

oligosaccharides could be detected in the reaction mixture, indicating a non-

processive mode of action105. Interestingly, no intermediate size α-glucan 

products were detected. Taking into account all the available information, 

Remaud-Siméon et al. suggested that glucansucrases follow a semi-processive 

mechanism: in the initial phase of the reaction, oligosaccharides are synthesized 

non-processively. When the oligosaccharides reach a certain size, 

polysaccharides are formed in a processive mode105. The structural basis of this 

mechanism is proposed to lie in both domain V and the acceptor binding sites, 

representing remote and close binding sites for glucan chains, respectively. This 

was nicely illustrated for Gtf180-ΔN: the truncation of its domain V heavily 

impaired polysaccharide synthesis in favor of oligosaccharide formation88. 

However, mutations of residues located in the acceptor binding sites (in particular 

L940 mutants) partially restored the polysaccharide synthesis of the ΔV-

truncated enzyme98,106. The elucidation of glucansucrase crystal structures with 

HMM glucan chains bound to the enzyme is necessary to shed more light on the 

mechanism of α-glucan synthesis and will without doubt offer new opportunities 

to engineer the reaction specificity of glucansucrases. The following study serves 

as good example: the crystal structure of amylosucrase, a special glucansucrase 

belonging to family GH13, bound with maltoheptaose revealed the absence of 

domains IV and V but the presence of three oligosaccharide binding sites (OB1, 

OB2 and OB3)107,108. Molecular modeling and mutational studies confirmed the 

importance of OB1 and OB2 for polysaccharide synthesis, suggesting that OB2 

provides an anchoring platform for the polysaccharide107,109. 

 

Additionally, the elucidation of several glucansucrase crystal structures has 

revealed that their acceptor substrate binding region is reasonably spacious83,84. 

Indeed, the synthesis of branched α-glucans demands an acceptor substrate 

binding region which is capable of accommodating bulky α-glucan chains. As a 

consequence, glucansucrases display a broad acceptor substrate specificity, 



Chapter 1: General introduction 
 

 

33 

 

which is exploited in the glycosylation of alternative acceptor substrates such as 

phenolic compounds, sugar alcohols, etc. Here again, it is still not clear how the 

formation of branches is triggered in favor of chain elongation.  

 

Hydrolysis  

 

Glucansucrases also are able to catalyze the hydrolysis of sucrose into glucose 

an fructose, basically acting as a hydrolase enzyme. Especially at low acceptor 

substrate concentrations, hydrolysis is the dominant reaction. When 

oligosaccharide products become available, glucansucrases preferentially 

transfer the glucosyl moiety to these growing α-glucan chains103. The crystal 

structure of the inactive mutant Gtf180-ΔN-D1025N revealed that residue 

W1065, located at subsite +2, is an important structural determinant for 

hydrolysis, interacting with the carbohydrate acceptor substrate through 

hydrophobic stacking. The mutation of W1065 to non-aromatic residues resulted 

in a significantly increased hydrolysis102. Also the mutations of residues N1029, 

providing a direct hydrogen bond to carbohydrate acceptor substrates at subsite 

+1, and L981, strictly conserved in all glucansucrases, substantially enhanced 

hydrolysis99. The application of these mutants for the glycosylation of non-

carbohydrates (such as catechol or hexanol) resulted in improved (mono)-

glycosylation yields (Chapter 2)110.      

 

Acceptor reaction 

 

Glucansucrases are not only able to utilize growing α-glucan chains and water as 

acceptor substrate. Due to their rather wide acceptor substrate binding region, 

they show a relatively high promiscuity towards several other acceptor 

substrates111-113. This promiscuity can be exploited for the glycosylation of 

carbohydrates and non-carbohydrates, resulting in the synthesis of 

oligosaccharides and α-D-glucosides, respectively. Enzymes are particularly 

suited for glycosylation reactions as they display a high regio –and 

stereospecificity, a feature that is hard to achieve by chemical synthesis13. In 

nature, glycosylation is performed by “Leloir” glycosyltransferase enzymes (EC 
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2.4.-.-). Their industrial use is hampered by the high price of their donor 

substrates, nucleotide-activated sugars21. Glucansucrases offer a cheaper 

alternative, since they only require the energy stored in the glycosidic linkage of 

sucrose (~ 27.6 kJ.mol-1) to synthesize their glycosylated products114. In 1953, 

this so called acceptor reaction was first reported by Koepsell et al115. Their study 

demonstrated the glycosylation of a large number of sugars and sugar 

derivatives such as maltose, isomaltose, glucose, and methyl glucoside by a 

dextransucrase from L. mesenteroides NRRL B-512F. Since then, many other 

carbohydrates were added to the list of acceptor substrates. This makes 

glucansucrase-mediated glycosylation an effective tool for the production of a 

wide array of interesting oligosaccharides. Isomalto-oligosaccharides (IMO) of 

controlled size are produced from sucrose plus maltose or glucose, using a 

dextransucrase from L. mesenteroides NRRL B-512F116. They are attributed with 

prebiotic properties (i.e. altering the composition and/or activity of the 

gastrointestinal microflora, as such conferring health benefits upon the 

consumer) and used as a low calorie sweetener in a variety of foods like bakery 

and cereal products117. Also lactulosucrose, another prebiotic oligosaccharide, is 

effectively synthesized by this dextransucrase enzyme, using lactulose as 

acceptor substrate118. Another example is the glycosylation of the bitter prebiotic 

gentiobiose with alternansucrase, producing several oligosaccharides with 

reduced or even eliminated bitterness119. 

 

Glycosylation of non-carbohydrate compounds 

 

The glycosylation of non-carbohydrates, such as aromatic or aliphatic 

compounds, is a valuable tool for the glycodiversification of these molecules (for 

examples, see 1. Introduction). A wide range of (poly)phenolic and aliphatic 

compounds are glycosylated by glucansucrases. The highest conversions are 

obtained with phenolic compounds with two vicinal (ortho-substituted) hydroxyl 

groups as acceptor substrate (Figure 10). Meta –and para-substituted phenolics 

as well as aliphatic compounds are typically not very well glycosylated110,120. 

Examples of compounds that are glycosylated by glucansucrases are listed in 

Table I. To obtain insight into the economic viability of these glycosylation 
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processes, the respective conversion degrees and product yields are given. 

Although medium to high conversions are obtained, the product yields are 

usually low. This is partly due to a lack of reaction engineering: the water 

solubilities of many acceptor substrates are low, which could be improved by the 

addition of cosolvents.       

 

Figure 10. Phenolic compounds with two vicinal hydroxyl groups (ortho-substituted) are 

preferred over meta –and para-substituted phenolic compounds. A catechol, B resorcinol, 

C hydroquinone. 

 

Engineering glucansucrase reaction specificity 

 

Glucansucrases are capable of catalyzing three reactions, using sucrose as 

donor substrate: α-glucan synthesis, hydrolysis and glycosylation of acceptor 

substrates. The ratio between these reactions is first of all dependent on the 

enzyme specificity but can be altered by reaction engineering and enzyme 

engineering. The former strategy consists of optimizing the reaction conditions 

(donor/acceptor ratio, cosolvent concentration, agitation rate, etc.) whereas the 

latter strategy alters the enzyme specificity by mutational engineering. In case 

the glycosylation of acceptor substrates is targeted, α-glucan synthesis and 

hydrolysis become unwanted side reactions, lowering the yield of the 

glycosylated acceptor substrates and complicating their downstream processing.  
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Reaction engineering 

 

Dealing with the low affinity for alternative acceptor substrates 

 

Although many alternative acceptor substrates are indeed glycosylated by 

glucansucrases, very often incomplete conversions, with low to moderate yields, 

are obtained. Alternative acceptor substrates are per definition not the natural 

acceptor substrates of glucansucrases and, hence, they generally have rather 

high Km values (Chapter 2)110. High concentrations of acceptor substrate are 

consequently required to outcompete α-glucan synthesis and hydrolysis as 

possible glucansucrase reactions. In this way, the relative balance between the 3 

reactions may shift towards the acceptor reaction, as was already shown in 1993 

by Su and Robyt132. Moreover, high volumetric productivities (space-time yields), 

which greatly reduce production costs, can only be achieved if the acceptor 

substrate concentrations are sufficiently high. However, glucansucrases may be 

inhibited by high concentrations of non-carbohydrate acceptor substrates. 

Phenolic compounds, such as catechol, displayed inhibitory effects on 

glucansucrase GtfD from S. mutans GS-5 at a concentration of 200 mM but not 

at a concentration of 40 mM125. A similar effect was obtained for the glycosylation 

of catechol by Gtf180 from L. reuteri 180, which was inhibited at concentrations 

of catechol higher than 400 mM (Chapter 2)110. The inhibition of amylosucrase 

from N. polysaccharea by several flavonoids was also reported124. 

 

Many (poly)phenolic and aliphatic acceptor substrates have limited water 

solubilities, which complicates their glycosylation. A common strategy to increase 

the solubility of the acceptor substrate is the addition of organic solvents such as 

DMSO, ethanol, acetone, etc. Since the 1980s it has been repeatedly shown that 

enzymes can be used in solvent systems with great efficiency133. However, 

enzyme activity and stability typically decrease with increasing solvent 

concentration. Hence, a compromise between substrate solubility and enzyme 

activity needs to be found for each individual case. The determination of the 

initial activity of the dextransucrase from L. mesenteroides NRRL B-512F in the 

presence of organic solvents, revealed a 50% loss in activity in 20% DMSO, 15% 
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ethanol, 15% acetone, 10% DMF and 7% acetonitrile134. Diglyme or bis(2-

methoxyethyl) ether (MEE) displayed lower inhibitory effects on glucansucrases: 

the dextransucrase from L. mesenteroides NRRL B-512F and the 

alternansucrase from L. mesenteroides NRRL B-23192 retained more than 50% 

of their activity at a MEE concentration of 30%120. It is clear that the combined 

use of high concentrations of certain acceptor substrates and high solvent 

concentrations will be even more detrimental for glucansucrase activity. Hence, 

the optimal balance between acceptor substrate concentration, solvent 

concentration and enzyme activity will differ for every individual case. 

 

Dealing with unwanted side reactions 

 

Applying glucansucrases for the glycosylation of alternative acceptor substrates 

usually requires high concentrations of donor substrate sucrose to drive the 

glycosylation reaction. This is not without negative consequences: the 

unavoidable accumulation of relatively high concentrations of fructose results in 

competitive inhibition of the desired glycosylation reaction by fructose. In other 

words, fructose is under these circumstances used by glucansucrases as 

acceptor substrate, resulting in the synthesis of sucrose isomers such as 

leucrose and trehalulose135. For example, a Ki value (inhibitor constant) for 

fructose as low as 9.3 mM has been observed for GtfD from S. mutans. 

Surprisingly, in the same study, glucose did not act as an inhibitor123. It is clear 

from the reaction mechanism of glucansucrases that formation of fructose is 

inevitable. The solution to this problem is therefore found externally, i.e. by the 

addition of a micro-organism that removes fructose from the reaction mixture and 

consequently reduces its inhibiting effect. In order for this strategy to work 

properly, it is essential that sucrose itself is not metabolized by the micro-

organism. The methylotrophic yeast Pichia pastoris and the mutant S. cerevisiae 

T2-3D136 are viable options as both strains are incapable of fermenting sucrose. 

In addition, these micro-organisms should not be inhibited themselves by the 

presence of acceptor substrates nor metabolize the glycosylated product. The 

incubation of P. pastoris and S. cerevisiae T2-3D in a (+)-catechin glycosylation 

reaction mixture revealed that their fructose consumption resulted in a 
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prolongation of the transglucosylation activity of GtfD. However, the (+)-catechin 

glucoside yield was only slightly improved, indicating that the conversion of 

alternative acceptor substrates is dependent on other factors as well123. 

 

The main glucansucrase catalyzed reaction, i.e. the synthesis of α-glucan oligo –

and polysaccharides from sucrose, is the most important side reaction and 

strongly impedes the efficient glycosylation of alternative acceptor substrates. As 

previously discussed, sucrose acts as primer for α-glucan synthesis, and 

increased concentrations of sucrose will result in the formation of more (growing 

chains of) α-glucan oligosaccharides, the preferred acceptor substrates of 

glucansucrases103,104,135. Their generation initiates a vicious circle of increased α-

glucan synthesis and, hence, needs to be avoided. Suppressing α-glucan 

synthesis can be accomplished by performing a “fed-batch” reaction, in which the 

donor substrate sucrose is gradually added to the reaction mixture. In this way, 

an excess of acceptor substrate relative to sucrose is maintained throughout the 

complete reaction, conditions which theoretically favor the glycosylation of the 

acceptor substrate by suppressing the synthesis of α-glucans. Successful 

attempts include the glycosylation of stevioside with dextransucrase from L. 

citreum66 and the glycosylation of rebaudioside A with the Q1140E-mutant of 

Gtf180-ΔN from L. reuteri70. However, performing glucansucrase-catalyzed 

glycosylation reactions in fed-batch mode is mostly limited to the glycosylation of 

highly soluble compounds, which in addition display very little inhibitory effects on 

the enzyme. High ratios of non-carbohydrate acceptor substrate over sucrose are 

indeed known to strongly inhibit glucansucrases, as described previously110,125.  

 

Furthermore, te Poele et al. have demonstrated that, upon sucrose depletion, 

glucansucrases from L. reuteri use several phenolic glucosides as donor 

substrate for the synthesis of α-glucans and the further glycosylation of these 

phenolic glucosides into multiglycosylated products137. Hence, the incubation 

time and enzyme loading (U/mL) of glucansucrase catalyzed glycosylations need 

to be carefully selected in order to prevent suboptimal conversion degrees. 

Another remarkable characteristic displayed by glucansucrases is their ability to 

add multiple α-D-glucosyl moieties to one acceptor substrate, forming α-D-
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glucosides of different sizes and structures. A prominent example concerns GtfA-

ΔN of L. reuteri 12180: after incubation with catechol and sucrose, several 

glycosylated catechol products up to DP5, differing in their combination of 

(α1→4) and (α1→6) linkages, were characterized138. From an industrial point of 

view, the synthesis of only one glycoside, typically the monoglycosylated product, 

is desired in order to facilitate downstream processing. Indeed, the 

monoglycosylated product often displays better functional properties than 

multiglycosylated products. A comprehensive study on the anti-oxidant activities 

of various phenolic glucosides revealed that an increasing level of glycosylation 

results in reduced radical-scavenging abilities139. The number of glycosyl 

moieties attached to steviol glycosides is also known to have pronounced effects 

on their taste8.         

 

Dealing with low operational stability: Enzyme immobilization 

 

Immobilization is an established strategy to increase the operational activity and 

stability of enzymes. In this way, immobilization may compensate for the 

decrease of enzyme activity and stability provoked by high solvent and acceptor 

substrate concentrations140. An additional advantage is the reusability of the 

immobilized biocatalyst, which can drastically lower the economic cost of the 

enzymatic process141. A number of immobilization methods can be distinguished: 

reversible methods (adsorption and affinity binding) and irreversible methods 

(entrapment, aggregation and covalent binding). Reversible immobilization 

methods typically result in enzyme leaching, preventing biocatalyst reuse and 

representing economic loss. On the contrary, irreversible immobilization methods 

minimize enzyme leaching due to much stronger interactions between enzyme 

and support, which also stabilizes the enzyme more effectively. On the downside, 

enzyme activity may decrease due to active site occlusion and inherent diffusion 

limitations142.  

 

Glucansucrases have been described as difficult to covalently immobilize, mainly 

due to inactivation of the enzyme, e.g. by the participation of a lysine residue in 

the active site. Typical immobilization yields (ratio of activity of immobilized 
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enzyme to the activity of enzyme prior immobilization) range from 3% to 22%143-

146. In contrast, encapsulation of glucansucrases in alginate beads has been 

more successfully applied as immobilization method. Several studies report 

immobilization yields up to 90%147,148. However, this method cannot be used for 

the production of α-glucan polysaccharides as their accumulation in alginate 

results in rupture of the beads.  

 

Enzyme engineering 

 

Although of value, applying reaction engineering to optimize the acceptor 

reaction of glucansucrases is faced with limitations. Enzyme engineering offers 

an alternative, more direct optimization method, by altering the reaction 

specificity of the enzyme itself. Over the years, many studies have reported 

successful attempts to engineer the specificity of enzymes. For example, the 

affinity of sucrose phosphorylase (SP) for glucose as acceptor substrate could be 

dramatically enhanced by a double mutation, resulting in the efficient synthesis of 

the rare disaccharide kojibiose149. Additionally, SP has been engineered twice 

towards the more efficient synthesis of polyphenolic glycosides. The first study 

attributed the enhanced yields to a better accessibility of the active site, caused 

by a single mutation removing a sterically hindering active site loop, more 

specifically by the mutation of an arginine residue into an alanine residue (R134A 

mutant)25. As such, it forms a good example of loop engineering, i.e. the 

alteration of loops, a diverse class of very flexible secondary structures 

comprising turns, random coils, and strands connecting the main secondary 

protein structures (α-helices and β-strands) and which very often play a vital role 

in the catalytic function of the enzyme150. Also the single mutation used in the 

second study yielded a loop shift in the active site of SP, as revealed by analysis 

of the crystal structure of the mutant. It was argued that the loop shift resulted 

from a cascade of structural changes arising from the Q345F exchange, 

ultimately causing a widened access channel26. This nicely illustrates how 

substantial the effect can be of a – at first sight – simple single mutation, 

demonstrating the great power of enzyme engineering, but also revealing one of 

the difficulties to rationally design biocatalysts.      
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To date, only a few enzyme engineering studies on glucansucrases have been 

dedicated to the glycosylation of non-carbohydrate acceptor substrates. This is 

partly due to the lack of available crystal structures (and consequently lack of 

docking experiments) with bound acceptor substrates, complicating rational 

design of glucansucrase mutants for the synthesis of glycosides. In theory, 

glucansucrases can be engineered towards a more efficient acceptor reaction in 

three distinguishable ways: lowering their affinity to catalyze side-reactions (in 

particular α-glucan synthesis), enhancing their affinity for alternative acceptor 

substrates, or both simultaneously. In 2016, Liang et al. expanded the acceptor 

substrate promiscuity of GtfD from S. mutans by simultaneous site saturation 

mutagenesis of residues Y418 and N469. Significant improvements in 

glycosylation yield of several flavonoids were obtained with the best double 

mutant (Y418R and N469C), the major products being monoglycosylated. 

Docking studies based on the crystal structure of Gtf180-ΔN from L. reuteri 180 

suggested that the mutant enzyme formed three additional hydrogen bonds with 

the flavonoid acceptor substrate, resulting in an increased catalytic efficiency of 

the mutant enzyme compared to the wild type151. Another study reported that the 

I228A mutant of the amylosucrase (EC 2.4.1.4) from N. polysaccharea displayed 

a significant improvement in luteolin monoglycosylation, compared to the wild-

type enzyme. Docking studies revealed that the introduction of the alanine 

residue reduced the steric hindrance, resulting in a better positioning of luteolin in 

the catalytic pocket129. Finally, Devlamynck et al. reported that applying Gtf180-

ΔN mutants with an impaired α-glucan synthesis resulted in an improved 

glycosylation of several non-carbohydrate acceptor substrates (Chapter 2)110.   

 

Other enzyme engineering studies with glucansucrases have focused on the 

formation of oligosaccharides. Their synthesis is of considerable interest for the 

food industry, which already produces prebiotic oligosaccharides such as 

isomaltooligosaccharides (IMO)152, leucrose153 and isomaltulose (palatinose)154. 

Random mutagenesis of the most conserved motif around the transition state 

stabilizer in glucansucrases (RAHDSEV motif) yielded variants of GtfR from 

Streptococcus oralis with altered reaction specificity. In particular the S628D 

mutant displayed a drastic 25-fold increase of conversion degrees for the 
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synthesis of isomaltose and leucrose, using glucose and fructose as acceptor 

substrate, respectively. In contrast, this variant lost most of its ability to 

synthesize α-glucan polysaccharides. Unfortunately, the absence of the GtfR 

crystal structure prevented a rational explanation of the obtained results155. The 

mutational improvement of Gtf180-ΔN for the glycosylation of rebaudioside A, 

with the steviol glycoside here considered as an oligosaccharide, has also been 

reported8,68-70. The increased conversion degree from approximately 50% to 95% 

was attributed to the improved deprotonation of the HO-6 of the C-19 glucosyl 

moiety of rebaudioside A, caused by the mutation of a glutamine residue into a 

glutamate residue (Q1140E mutant)68,70.  

 

Although some progress has been made in the rational design of enzymes, 

enzyme engineering still mostly relies on directed evolution, i.e. mimicking 

natural selection through random mutagenesis and subsequent screening of the 

resulting enzyme libraries156-158. High-throughput screening for the identification 

of improved variants is thus a key factor. For glucansucrases, glycosylation 

reactions can in theory be screened by measuring the release of fructose from 

sucrose. However, no distinction can then be made between the glycosylation of 

the desired acceptor substrate and α-glucan synthesis, possibly resulting in an 

overestimation of the glycosylation potential. Directly screening the formation of 

α-D-glucosides is thus preferred. For example, Seibel et al. identified new 

acceptor specificities of GtfR with the aid of substrate microarrays. Firstly, the 

acceptor substrates were immobilized on the surface of a microtiter plate. After 

incubation of GtfR with sucrose and subsequent removal of the reaction mixture, 

fluorescein-labelled (FITC) concanavalin A, a glucose-specific lectin, was added. 

Hence, successful glycosylation reactions could be detected by an increase of 

fluorescence159.  

 

Conclusions 

 

The broad acceptor substrate specificity of glucansucrases offers a good starting 

point to engineer their reaction specificity towards the synthesis of 
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oligosaccharides and α-D-glucosides, using carbohydrates and non-

carbohydrates as acceptor substrate, respectively. The structural diversity of 

alternative acceptor substrates requires a similar diversity of optimal reaction 

conditions and optimal (mutant) glucansucrases. The combination of reaction –

and enzyme engineering is thus essential to meet the industrial requirements of 

high conversion degrees and product yields. The operational stability of enzymes 

is an equally crucial factor for industrial applications. Glycosylation biocatalysts in 

particular need to be sufficiently robust to withstand the harsh conditions that are 

typically applied: high temperatures of 55-60 °C to avoid microbial contamination 

and the presence of organic cosolvents, added to the reaction mixture to 

solubilize hydrophobic acceptor substrates.  

 

Scope of the thesis  

 

As discussed in this chapter, GH70 glucansucrases have been repeatedly shown 

to glycosylate several carbohydrate and non-carbohydrate molecules with low to 

moderate yields. From the discussion, it was clear that an important impediment 

to the efficient glycosylation of these molecules is the competition from the main 

glucansucrase catalyzed reaction, i.e. α-glucan synthesis. Furthermore, it was 

illustrated that another drawback in the use of GH70 glucansucrases as 

glycosylation biocatalyst is their relatively low operational stability. Chapters 2 

and 3 of this PhD thesis address these issues by applying a combination of 

reaction –and enzyme engineering. In order to select a GH70 glucansucrase 

enzyme from our in-house collection (Gtf180-ΔN from L. reuteri 180, GtfA-ΔN 

from L. reuteri 121 and GtfO-ΔN from L. reuteri ATCC 55730), their potential to 

glycosylate catechol was examined (Figure 11). Based on the obtained results, 

Gtf180-ΔN was preferred since it demonstrated a higher operational stability 

(deactivated by catechol concentrations higher than 400 mM, compared to 300 

and 200 mM for GtfA-ΔN and GtfO-ΔN, respectively) and a higher glycosylation 

productivity, compared to the other enzymes. 
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Figure 11. Time-course synthesis of monoglycosylated catechol (catechol-G1) by ● 

Gtf180-ΔN (400 mM catechol), ○ GtfA-ΔN (300 mM catechol) and ▼ GtfO-ΔN (200 mM 

catechol). 1000 mM sucrose, 4 U/mL enzyme (total activity), T = 37 °C, pH = 4.7.  

 

This introductory chapter also illustrated the commercial potential of glycosylating 

steviol glycosides to improve their sensory characteristics. Therefore, our in-

house collection of GH70 glucansucrases was screened for their ability to 

glycosylate the most prevalent steviol glycosides, rebaudioside A (RebA) and 

stevioside. Once again, Gtf180-ΔN demonstrated most potential. In fact, it was 

the only GH70 glucansucrase of our collection capable of glycosylating RebA. 

The second part of this PhD thesis (Chapters 4, 5 and 6) consequently focusses 

on the use of Gtf180-ΔN and derived mutants to glycosylate RebA and 

stevioside. Chapter 7 is another illustration of the relatively high acceptor 

substrate promiscuity of Gtf180-ΔN; also the high-intensity sweetener 

neohesperidin dihydrochalcone (NHDC) was glycosylated in order to improve its 

sensory –and physicochemical properties. Conclusively, this PhD thesis 

describes the improvement of glucansucrase Gtf180-ΔN from L. reuteri 180 as 

glycosylation biocatalyst by applying mutational engineering, optimization of 

reaction conditions and development of downstream processing. Furthermore, 

the sensory properties of the glycosylated products were determined by a trained 

panel.  
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Chapter 1 discusses the state of the art glycosylation technologies, illustrating 

their respective advantages and drawbacks by using the glycosylation of steviol 

glycosides as case study. Secondly, it reviews current knowledge of GH70 

glucansucrases and in particular their use as biocatalyst for the glycosylation of 

non-carbohydrate compounds, such as (+)-catechin, and Stevia glycosides, such 

as stevioside and rebaudioside A. Conclusively, reaction –and enzyme 

engineering are discussed as strategies to improve the glycosylation potential of 

GH70 glucansucrases.  

 

Chapter 2 demonstrates that suppressing α-glucan synthesis by mutational 

engineering of the Gtf180-ΔN enzyme of Lactobacillus reuteri 180 resulted in the 

improved glycosylation of several non-carbohydrate acceptor substrates, such as 

catechol and butanol. Three mutants (L938F, L981A and N1029M) were selected 

from a previously constructed library of 61 mutants with single amino acid 

residue changes, targeting 10 amino acid residues of the Gtf180-ΔN acceptor 

binding sites +1 and +293,94. Kinetic analysis revealed that impairing α-glucan 

synthesis resulted in a higher affinity of the mutant enzymes for the model 

acceptor substrate catechol, explaining the improved monoglycosylation yields. 

Finally, the chemical structures of the glycosylated acceptor substrates were 

elucidated by NMR spectroscopy. 

 

Chapter 3 discusses solvent engineering strategies (biphasic and cosolvents 

systems) for the glycosylation of poorly soluble acceptor substrates by Gtf180-

ΔN of L. reuteri 180. Also the immobilization of this enzyme onto mesoporous 

silica particles is described. The covalently immobilized WT enzyme retained 

most of its activity at 60 °C, whereas the free WT enzyme lost all activity at 

temperatures above 50 °C. Moreover, the covalently immobilized WT enzyme 

was much more active at high DMSO concentrations and high acceptor substrate 

concentrations than the free WT enzyme, allowing the glycosylation at higher 

acceptor substrate concentrations of poorly soluble acceptor substrates, such as 

ethyl gallate, gallic acid and (+)-catechin.  
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Chapter 4 reports the glycosylation of rebaudioside A (RebA), a natural high-

intensity sweetener obtained from the leaves of Stevia rebaudiana, by Gtf180-ΔN 

and its Q1140E-mutant, which was selected from a mutant library99,100 in view of 

its reduced α-glucan synthesis, enhanced RebA glycosylation potential and 

introduction of a single extra glucose unit. Structural analysis of the main product 

showed that both enzymes exclusively glucosylate RebA at the Glc(β1C-19  

position, with the formation of an (α16)  linkage. This result was explained by 

docking of RebA in the enzyme’s active site, using its high resolution 3D 

structure78: only the steviol C-19 β-D-glucosyl moiety is available for 

glycosylation. The reaction conditions for the batch process were optimized by 

response surface methodology (RSM), revealing the importance of the ratio of 

donor substrate sucrose over acceptor substrate RebA to obtain high RebA 

conversions. The product yield could be further enhanced by developing a fed-

batch reaction, which further suppressed the remaining and competing α-glucan 

synthesis still present in mutant Q1140E. Sensory analysis of the glycosylated 

RebA product by a trained taste panel revealed a near complete removal of 

bitterness, compared to RebA. In other words, an efficient process for the 

synthesis of a novel steviol glycoside (RebA-G1), displaying a superior taste 

profile, was developed. 

 

Chapter 5 continues the work on Stevia glycosides by reporting the glycosylation 

of stevioside, the most abundant steviol glycoside extracted from the leaves of 

Stevia rebaudiana, with the Gtf180-ΔN-Q1140E enzyme. The chemical 

structures of the glycosylated stevioside products were elucidated by NMR 

spectroscopy, revealing an identical regiospecificity as with RebA glycosylation. 

Surprisingly, a minor diglycosylated product with an (α14) linkage was isolated 

from the glycosylation reaction mixture, a specificity that is normally not displayed 

by the Gtf180-ΔN enzyme. The reaction conditions for the batch process were 

again optimized using RSM, indicating that stevioside glycosylation is 

significantly less productive than RebA glycosylation. Analysis of the sensory 

properties of the glycosylated stevioside product by a trained taste panel 

revealed a substantial decrease in bitterness compared to stevioside and RebA. 
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Equally important, its taste profile was nearly identical to that of the glycosylated 

RebA product.  

 

Chapter 6 discusses the scale-up of the Gtf180-ΔN-ΔV-Q1140E-catalyzed 

glycosylation of RebA and stevioside. Firstly, the enzyme production was 

investigated. It was shown that the N- and V-terminally truncated Gtf180-ΔN-ΔV-

Q1140E protein was more efficiently produced than the N-terminally truncated 

enzyme, whereas its biocatalytic potential was identical. Secondly, an eco-

friendly and efficient downstream processing of the glycosylated products was 

developed and demonstrated at pilot-plant scale, allowing the production of 200 g 

glycosylated RebA product. A cost analysis demonstrated the economic 

feasibility of the process and pointed out the steviol glycoside substrate (RebA, 

stevioside) cost as major factor in the total production cost. The use of low-grade 

stevia extract, half the price of high-purity RebA, was therefore proposed as cost 

reducing strategy. In this context, the simultaneous glycosylation of stevioside 

and RebA was demonstrated, a technology which holds strong commercial 

potential.   

 

Chapter 7 illustrates the potential of Gtf180-ΔN-Q1140E to glycosylate 

neohesperidin dihydrochalcone (NHDC), a high-intensity sweetener obtained 

from citrus fruits. NHDC finds many applications as flavor enhancer (E959) in the 

food- and pharmaceutical industry due to its ability to suppress bitterness and 

astringency, but also draws interest due to its strong anti-oxidant capacity. The 

main drawback of NHDC, its low water solubility, was overcome by its 

glycosylation, while the glycosides retained strong anti-oxidant capacities. 

Sensory analysis of the flavor enhancing effects of NHDC and the NHDC 

glycosides on RebA by a trained panel revealed a slight decrease of bitterness 

and an increased sweetness. Although the obtained conversion degree of 

roughly 65% was not of the same order as for RebA and stevioside glycosylation 

(95%), it forms a good starting point for a profound optimization of the reaction 

conditions. 

 

Chapter 8 summarizes and discusses the results presented in this PhD thesis.  
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Chapter 2 
 

 

 

Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: 

suppressing α-glucan synthesis results in improved 

glycosylation yields 
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Abstract 

 

Glucansucrases have a broad acceptor substrate specificity and receive 

increased attention as biocatalysts for the glycosylation of small non-

carbohydrate molecules using sucrose as donor substrate. However, the main 

glucansucrase catalyzed reaction results in synthesis of α-glucan 

polysaccharides from sucrose and this strongly impedes the efficient 

glycosylation of non-carbohydrate molecules and complicates downstream 

processing of glucosylated products. This chapter reports that suppressing α-

glucan synthesis by mutational engineering of the Gtf180-ΔN enzyme of 

Lactobacillus reuteri 180 results in the construction of more efficient glycosylation 

biocatalysts. Gtf180-ΔN mutants (L938F, L981A and N1029M) with an impaired 

α-glucan synthesis displayed a substantial increase in monoglycosylation yields 

for several phenolic and alcoholic compounds. Kinetic analysis revealed that 

these mutants possess a higher affinity for the model acceptor substrate catechol 

but a lower affinity for its mono-α-D-glucoside product, explaining the improved 

monoglycosylation yields. Analysis of the available high resolution 3D crystal 

structure of the Gtf180-ΔN protein provided a clear understanding of how 

mutagenesis of residues L938, L981 and N1029 impaired α-glucan synthesis, 

thus yielding mutants with an improved glycosylation potential.    
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1. Introduction 

 

Glycosylation is a versatile tool to enhance the physicochemical and biological 

properties of small non-carbohydrate molecules
13

. This may result in an 

increased solubility of hydrophobic compounds
33

 and an improved stability of 

labile molecules against light and oxidation
7
. Furthermore, glycosylating medium- 

and long-chain alcohols yields alkyl glycosides or alkyl polyglycosides, a class of 

eco-friendly and non-ionic surfactants displaying a high surface activity and good 

biodegradability
160

. 

  

The chemical synthesis of glycosides requires the use of toxic catalysts and 

involves many protection and deprotection steps, resulting in low overall yields. 

Biocatalysis offers an alternative method circumventing multistep-synthesis and 

generating 5-fold less waste
17

. In nature, glycosylation is catalyzed by Leloir 

glycosyltransferase enzymes (EC 2.4.-.-), using nucleotide-activated sugars as 

donor substrates. Despite their high efficiency and specificity, the breakthrough 

as glycosylation catalysts is hampered by the high price of their donor 

substrates
18

. Glycosidases (EC 3.2.-.-) in turn suffer from low yields when applied 

in the synthetic direction
161

.  

 

Glycoside hydrolase enzymes such as glucansucrases (GS) provide an excellent 

alternative for enzymatic glycoside synthesis. These enzymes belong to 

glycoside hydrolase family 70 (GH70)
90

 and catalyze the conversion of the cheap 

donor substrate sucrose into α-glucan polysaccharides, thereby linking the α-D-

glucopyranosyl units by (α1→2), (α1→3), (α1→4) or (α1→6) bonds, depending 

on the enzyme specificity
73,74

. Moreover, GS are promiscuous towards a wide 

range of acceptor substrates
75,162

. They can use saccharides such as maltose as 

acceptor substrate to catalyze the synthesis of various oligosaccharides
163

. 

Glycosylation of non-carbohydrate acceptor substrates, such as L-ascorbic 

acid
164

 and luteolin
120

, also has been reported. The usefulness of GS enzymes as 

a glycosylation biocatalyst is further demonstrated by a number of patent 
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applications by Auriol et al. (2012), in which the synthesis of a wide array of 

phenolic compounds with Leuconostoc glucansucrases is claimed
165

.   

 

A remarkable characteristic shared by all GS is their ability to add multiple α-D-

glucopyranosyl moieties to one acceptor substrate, forming α-D-glucosides of 

different sizes and structures. A prominent example concerns the glycosylation of 

acceptor substrates by the GtfA enzyme of Lactobacillus reuteri 121
80

: after 

incubation with catechol and sucrose, several glycosylated catechol products up 

to DP5, differing in their combination of (α1→4) and (α1→6) linkages, were 

characterized
138

. From an industrial perspective, the synthesis of only one 

glycoside is desired in order to facilitate downstream processing. In addition to 

the production of a mixture of α-D-glucosides, glucansucrases also synthesize 

rather large amounts of α-glucan polysaccharides from sucrose under these 

conditions. This is in fact their main reaction but in this case an unwanted side 

reaction lowering the yield of the glycosylated acceptor substrates and 

complicating their downstream processing. In this chapter, a combination of 

reaction- and enzyme engineering was applied to explore the potential of the N-

terminally truncated glucansucrase Gtf180 from Lactobacillus reuteri 180 

(Gtf180-ΔN, retaining wild type activity and specificity)
82

 as a glycosylation 

biocatalyst, aiming to suppress the competing α-glucan synthesis reaction as 

much as possible. Screening of a previously constructed mutant library, targeting 

10 amino acid residues involved in the acceptor substrate binding subsites +1 

and +2
99,100

, yielded mutants with an impaired α-glucan synthesis. As will be 

demonstrated, this substantially enhanced the conversion of a wide range of 

phenolic and alcoholic molecules into their α-D-glucosides, and also shifted the 

glycoside distribution pattern towards monoglycosylation.  
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2. Materials and methods 

 

2.1. Production and purification of recombinant Gtf180-ΔN (mutants) 

 

Recombinant, N-terminally truncated Gtf180-ΔN from Lactobacillus reuteri 180 

and derived mutant enzymes (Table S1) were produced and purified as 

described previously
80,99

.  

 

2.2. Glucansucrase activity assays  

 

Enzyme activity assays were performed at 37°C with 100 mM sucrose in 25 mM 

sodium acetate (pH 4.7) and 1 mM CaCl2 unless stated otherwise. Samples of 

100 μl were taken every min over a period of 8 min and immediately inactivated 

with 20 μl 1 M NaOH for 30 min. The released glucose and fructose were 

quantified enzymatically by monitoring the reduction of NADP with the 

hexokinase and glucose-6-phosphate dehydrogenase/phosphoglucose 

isomerase assay (Roche) as described previously
166,167

, allowing the 

determination of the total- (fructose release) and hydrolytic (glucose release) 

activities, and calculation of the transglycosylation activity. The α-glucan 

synthesis potential (α-GSP) is defined as the ratio of transglycosylation activity 

over total activity.  

 

One unit (U) of total activity corresponds to the release of 1 μmole fructose from 

100 mM sucrose in 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2 at 37 °C. 

For the comparison of different reaction conditions and mutants, 4 U/mL enzyme 

was added to the incubations, unless stated otherwise. 

 

2.3. Production and purification of glycoside products 

 

The glycosylation of catechol, resorcinol, hydroquinone and butanol was carried 

out at 100 mL scale, by incubating 1 U/mL Gtf180-ΔN at 37°C in 25 mM sodium 

acetate (pH 4.7) and 1 mM CaCl2 with 400 mM acceptor substrate and 1000 mM 
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sucrose for 2 h. Alternatively, hexanol and octanol were glycosylated in a 

biphasic system consisting of 20% alcohol, 25 mM sodium acetate (pH 4.7), 1 

mM CaCl2 and 1000 mM sucrose, while stirring was achieved in a shaker at 100 

rpm. The reactions were terminated by incubating the reaction mixture at 95°C 

for 10 min. Most of the fermentable sugars were subsequently removed by 

fermentation with the yeast Saccharomyces cerevisiae (Fermentis Ethanol 

Red®) at pH 4.0 and 30°C
168

. Twenty g/L peptone and 10 g/L yeast extract were 

added to support growth. After 24 h incubation the yeast cells were removed by 

centrifugation (10000 x g, 4 °C, 10 min) after which the supernatant was 

concentrated by evaporating in vacuo. The glycoside products were 

subsequently purified from the residue by column chromatography using silica 

gel (pore size 60 Å, particle size 230-400 mesh) as the stationary phase. The 

eluent consisted of ethyl acetate-methanol-water (30:5:4 by volume) in case 

monoglucosides were purified and ethyl acetate-methanol-water (30:6:4 by 

volume) for the purification of diglucosides. 

 

2.4. HPLC analysis 

 

HPLC analysis of phenolic acceptor molecules and their α-D-glucosides was 

performed on an Adsorbil amine column (250 mm × 4.6 mm, 10 μm) with 

acetonitrile (solvent A) and 50 mM ammonium formate (pH 4.4, solvent B) as the 

mobile phase. The flow rate and temperature were set at 1.0 mL/min and 35°C, 

respectively. The following gradient elution was used: 95% of solvent A (0−5 

min), 5-40% solvent B (5−22 min), 80% solvent B (22-25 min) and again 95% of 

solvent A (25-29 min). Detection of the phenolic acceptor substrates and their α-

D-glucosides was achieved with an UV detector (276 nm). Before being 

subjected to HPLC analysis the samples were diluted 200 times in 80% 

methanol. Calibration of the obtained peaks was accomplished using standard 

curves of the purified glycosides. All HPLC analyses were performed in duplicate.  
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2.5. TLC analysis 

 

TLC analysis was performed on silica gel 60 F254 plates (Merck). The eluent 

consisted of ethyl acetate-methanol-water (30:5:4 by volume). Detection was 

achieved by UV absorption (254 nm) and/or staining with 10% (v/v) H2SO4 

containing 2 g/L orcinol. The concentration of the alkyl α-D-glucosides was 

determined by scanning the charred plates with a ChemiDoc
TM

 MP imaging 

system and subsequently analyzing the spots with Image Lab 4.0 software. 

Calibration of the obtained spots was accomplished using standard curves of the 

purified alkyl α-D-glucosides. There was a linear response in the range of 1-10 

mM alkyl glucoside (determined experimentally). All TLC analyses were 

performed in triplicate. 

 

2.6. Kinetic analysis of Gtf180-ΔN (mutants)  

 

Kinetic analysis of the Gtf180-ΔN (mutants) was based upon the method 

described by Dirks-Hofmeister et al. (2015) for the glycosylation of resveratrol 

with sucrose phophorylase
25

. Kinetic parameters (Km and kcat values) for the 

acceptor substrates catechol and the mono-α-D-glucoside of catechol (catechol-

G1), purified as described above, were determined using 10 different catechol(-

G1) concentrations (ranging from 6.25 to 400 mM), while the concentration of the 

donor substrate sucrose had a constant value of 1000 mM. One U/mL of Gtf180-

ΔN (mutants) was added. Four samples were taken over a period of 3 min and 

immediately inactivated by incubating for 10 min at 95 °C. All samples were 

subjected to TLC analysis as described above. The charred plates were scanned 

with a ChemiDoc
TM

 MP imaging system allowing analysis of the spots with Image 

Lab 4.0 software. Calibration of the obtained spots was accomplished using 

standard curves of the purified catechol-G1. Kinetic parameters were calculated 

by non-linear regression of the Michaelis-Menten equation with SigmaPlot v12.0. 
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2.7. Structural characterization of purified α-D-glucosides 

 

The structures of the purified α-D-glucosides were elucidated by a combination of 

1D NMR (
1
H NMR and 

13
C NMR) and 2D NMR spectroscopy. Samples were 

exchanged twice in 300 μL D2O 99.9 %atom (Cambridge Isotope Laboratories, 

Andover, MA) with intermediate lyophilisation. Finally, samples were dissolved in 

650 μL D2O, containing acetone as internal standard (δ
1
H 2.225; δ

13
C 31.08). 

1
H 

NMR spectra, including 
1
H-

1
H and 

13
C-

1
H correlation spectra were recorded at a 

probe temperature of 298K on a Varian Inova 600 spectrometer (NMR 

Department, University of Groningen, The Netherlands). 1D 600-MHz 
1
H NMR 

spectra were recorded with 5000 Hz spectral width at 16k complex data points, 

using a WET1D pulse to suppress the HOD signal. 2D 
1
H-

1
H COSY spectra were 

recorded in 256 increments in 4000 complex data points with a spectral width of 

5000 Hz. 2D 
1
H-

1
H TOCSY spectra were recorded with MLEV17 mixing 

sequences with 50, 90, and 150 ms spin-lock times. 2D 
13

C-
1
H HSQC spectra 

were recorded with a spectral width of 5000 Hz in t2 and 10,000 Hz in t1 direction. 

2D 
1
H-

1
H ROESY spectra with a mixing time of 300 ms were recorded in 128 

increments of 4000 complex data points with a spectral width of 5000 Hz. All 

spectra were processed using MestReNova 5.3 (Mestrelabs Research SL, 

Santiago de Compostela, Spain), using Whittaker Smoother baseline correction. 

 

3. Results 

 

Glucansucrases prefer non-carbohydrate acceptor substrates with two vicinal 

hydroxyl groups
120

, such as catechol. The latter has a high water solubility at 

room temperature, rendering the addition of co-solvents unnecessary. 

Glycosylation of catechol with the N-terminally truncated glucansucrase of 

Lactobacillus reuteri 180 (Gtf180-ΔN)
82

 was chosen as the model reaction. 

Firstly, the reaction conditions were optimized towards maximal 

monoglycosylation and minimal α-glucan synthesis. Subsequently, the mutant 

library was screened, applying these optimal reaction conditions. Finally, the 
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optimal reaction conditions identified for catechol glycosylation were also tested 

for glycosylation of other acceptor substrates.  

 

3.1. Reaction engineering of catechol glycosylation by wild-type Gtf180-ΔN  

 

The catechol acceptor concentration was optimized towards maximal 

monoglycosylation and minimal α-glucan synthesis. As shown in Figure 1, 

formation of the monoglucoside of catechol (catechol-G1) is kinetically controlled. 

Incubation for 20 min was sufficient to reach maximal catechol-G1 production, 

coinciding with catechol depletion. Catechol-G1 was subsequently irreversibly 

converted into diglucoside (catechol-3`G2 and catechol-6`G2) and further 

(catechol-G3+). The donor substrate sucrose was not depleted yet (data not 

shown).     

 

Figure 1. Time-course synthesis of α-D-glucosides of catechol by WT Gtf180-ΔN (400 mM 

catechol; 1000 mM sucrose; 4 U/mL Gtf180-ΔN). T = 37 °C, pH = 4.7. 

 

Glycosylation reactions catalyzed by glucansucrases suffer from low 

thermodynamic favorability as pointed out by Liang et al. (2016)
151

. The 

production of high catechol-G1 concentrations therefore requires an excess of 

donor substrate sucrose to drive the reaction. We observed that the latter also 

had a stabilizing effect on the enzyme, allowing addition of relatively high 

acceptor substrate concentrations which would otherwise be detrimental for the 



Chapter 2: Suppressing α-glucan synthesis by mutational engineering 

 

58 

 

enzyme activity as described previously
125

. Therefore, the sucrose concentration 

was set at 1000 mM. Kinetic analysis revealed that Gtf180-ΔN follows Michaelis-

Menten kinetics at catechol acceptor substrate concentrations between 6.25 and 

400 mM (Figure S1). The Km value of Gtf180-ΔN for catechol was 103.3 mM 

which illustrated the need for high acceptor substrate concentrations (Table 1). 

Therefore, the catechol concentration was varied from 100 mM to 1000 mM while 

the sucrose concentration was kept constant at 1000 mM (Table 2). At catechol 

concentrations higher than 600 mM no glycosylated product was formed due to 

severe inhibition of enzyme activity by catechol. A catechol concentration of 500 

mM and 600 mM only allowed partial conversion of catechol with 

monoglycosylation yields of 17% and 7% respectively. Reaction mixtures 

containing 400 mM catechol or less, displayed complete conversion of this 

acceptor substrate into α-D-glucoside products. Increasing the acceptor 

concentration from 100 to 400 mM resulted in an improvement in 

monoglycosylation yield from 49% to 60%, whereas the synthesis of 

triglucosylated products was reduced (Table 2). At higher catechol 

concentrations there indeed is an increased chance that the enzyme glycosylates 

a new acceptor substrate rather than glycosylating catechol-G1. Consequently, 

400 mM catechol was chosen as the optimal acceptor concentration for the 

production of monoglucosides. 

 

The Km value of Gtf180-ΔN for the catechol-G1 acceptor substrate was 88.8 mM, 

which is lower than the value for catechol (103.3 mM). The kcat values were 863.3 

s
-1

 and 757.4 s
-1

 respectively (Table 1). Hence, under these conditions Gtf180-

ΔN glycosylation of catechol-G1 into catechol-G2 and further is inevitable. In the 

next step we optimized monoglucoside synthesis by applying Gtf180-ΔN 

mutants, aiming to increase the Km value for catechol-G1 and/or decrease the Km 

value for catechol.  
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Table 1. Kinetic parameters of WT Gtf180-ΔN and mutants derived for catechol (6.25 - 

400 mM) and catechol-G1 (6.25 - 400 mM) as acceptor substrates (with sucrose as donor 

substrate at 1000 mM), and α-GSP
1
 of Gtf180-ΔN WT and mutants for sucrose as both 

donor and acceptor substrate. T = 37 °C, pH = 4.7. 

 

Enzymes Catechol Catechol-G1 

 
Km 

(mM) 

kcat 

(s
-1
) 

kcat/Km 

(s
-1
.mM

-1
) 

Km 

(mM) 

kcat 

(s
-1
) 

kcat/Km 

(s
-1
.mM

-1
) 

α-GSP 

WT 
103.3 ± 

8.5 

757.4 ± 

12.4 
7.4 

88.8 ± 

17.1 

863.3 ± 

39.3 
10.2 0.556 

L938F 
85.5 ± 

4.0 

1872.5 ± 

74.7 
21.9 

91.1 ± 

7.3 

576.2 ± 

44.0 
6.3 0.341 

N1029M 
58.9 ± 

6.4 

449.4 ± 

4.9 
7.7 

146.9 ± 

19.3 

126.2 ± 

11.0 
0.9 0.192 

L981A 
11.0 ± 

1.3 

203.2 ± 

8.1 
18.7 

177.4 ± 

7.0 

69.4 ± 

2.4 
0.4 0.049 

1
 α-GSP is defined as the ratio of the transglycosylation activity over the total activity (measured with 

1000 mM sucrose only).  

 

Table 2. Effects of acceptor substrate concentration on the glycosylation yields and 

glucoside distribution
1
 of WT Gtf180-ΔN for the model acceptor substrate catechol (1000 

mM sucrose; 4 U/mL Gtf180-ΔN). T = 37 °C, pH = 4.7. 

 

Catechol (mM) Catechol glucoside (mM) Catechol glucoside distribution (%) 

 G1 G2α1→3 G2α1→6 G3+ G1 G2 G3+ 

600 39.6 - - - 100 - - 

500 86.8 < 10.0 < 10.0 - 96 4 4 

400 241.1 33.8 68.0 57.3 60 25 14 

300 170.1 27.5 56.0 46.3 57 28 15 

200 107.2 17.9 37.6 37.2 54 28 19 

100 49.4 9.3 18.1 23.1 49 27 23 

  1
 All data given at maximal catechol-G1 yield (20 min incubation).  
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3.2. Mutational engineering of the Gtf180-ΔN enzyme 

 

3.2.1. Selection of Gtf180-ΔN mutants  

 

A library of 61 mutants with single amino acid residue changes (Table S1), 

targeting 10 amino acid residues of the Gtf180-ΔN acceptor binding sites +1 and 

+2, has been constructed previously
99,100

. A quick and qualitative screening was 

performed to identify mutants displaying a relative increase in monoglycosylation 

and a decrease in α-glucan synthesis. For this purpose, 1 U/mL of every mutant 

was incubated for 1 h at the optimal reaction conditions (400 mM catechol, 1000 

mM sucrose). The resulting reaction mixtures were subsequently spotted on TLC 

plates and mutually compared after staining (Figure S2).  

 

Mutants of residues D1085, R1088 and N1089 were not affected in catechol 

glycosylation, since their product profiles were nearly identical to those of the WT 

Gtf180-ΔN. Mutants of W1065, a residue proven to be essential for both activity 

and acceptor binding by interacting with maltose through aromatic stacking
83,95

, 

displayed a very low total activity. Although the product profiles of these mutants 

were improved (more catechol-G1), their low total conversion and low specific 

activity rendered them less useful as glycosylation biocatalyst. Mutating D1028 

yielded mutants with an enhanced oligosaccharide synthesis, as suggested by 

the more intense α-glucan oligosaccharide tail visible on TLC (Figure S2). Since 

this was the opposite of what was aimed for, these mutants were not selected for 

further analysis. Mutants of L940 all showed a shift in diglucoside linkage type, 

forming almost exclusively (α1→6) bonds. Indeed, the crucial role of L940 for 

linkage specificity in α-glucan synthesis was demonstrated previously
98

. 

However, no relative increase in monoglycosylation yield was detected.  

 

Mutants of residues L938, L981 and N1029 provided the most interesting results. 

Every L938 mutant tested showed an increased monoglucoside synthesis and a 

decreased formation of di- and triglucosides; the strongest effect was observed 

for mutant L938F (Figure S2). Similar effects were obtained with L981 mutants, 

especially when the leucine residue was replaced by alanine. In case of N1029 
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mutations, two different effects were observed. Firstly, when replacing 

asparagine by either glycine or threonine, almost exclusively (α1→3) 

diglucosides were synthesized, as was also seen for α-glucan synthesis
99

. 

Secondly, when asparagine was replaced by methionine and to a lesser extent 

by tyrosine, the formation of di- and triglucosides was significantly reduced in 

favor of monoglucoside synthesis (Figure S2). From each mutant group the best 

representative (L938F, L981A and N1029M) was selected for further 

characterization and subjected to detailed analysis of products formed.   

 

3.2.2. Characterization of Gtf180-ΔN mutants: increased catechol 

monoglycosylation  

 

The L938F mutant displayed a higher total activity on sucrose as both acceptor 

and donor substrate than Gtf180-ΔN WT (132%) at 1000 mM sucrose, whereas 

the L981A and N1029M mutants had reduced activity, retaining 23% and 32% of 

the Gtf180-ΔN WT activity respectively (data not shown). To compare the 

mutants with WT Gtf180-ΔN, 4 U/mL of every Gtf180-ΔN mutant enzyme was 

incubated at optimal reaction conditions (400 mM catechol, 1000 mM sucrose), 

allowing analysis of the time-course synthesis of α-D-glucosides of catechol 

(Figure 2). The corresponding glycosylation yields and glucoside distributions are 

given in Table 3. 
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Figure 2. Time-course synthesis of α-D-Glcp-catechol by WT Gtf180-ΔN and mutants 

derived (400 mM catechol; 1000 mM sucrose; 4 U/mL Gtf180-ΔN). T = 37 °C, pH = 4.7. 

 

Similarly to Gtf180-ΔN WT, all mutants completely converted catechol into α-D-

glucosides. However, the glucoside distribution was altered: the mutants 

displayed higher monoglycosylation yields. Up to 93% catechol was converted 

into solely monoglucoside for the best performing mutant (L981A), compared to 

60% for Gtf180-ΔN. Interestingly, each of these mutants exhibited a shift in 

diglucoside linkage type compared to Gtf180-ΔN, favouring the formation of α-1,3 

linkages (Table 3).  

 

Table 3. Glycosylation yields and glucoside distribution
1
 of WT Gtf180-ΔN and mutants 

derived (400 mM catechol; 1000 mM sucrose; 4 U/mL Gtf180-ΔN). T = 37 °C, pH = 4.7. 

 

      
 
1
 All data given at maximal catechol-G1 yield (20 min incubation). 

 

Gtf180-ΔN Catechol glucoside (mM) Catechol glucoside distribution (%) 

 G1 G2α-1,3 G2α-1,6 G3+ G1 G2 G3 

WT 241.1 33.8 68.0 57.3 60 25 15 

L938F 311.3 51.8 10.0 26.9 78 15 7 

N1029M 338.6 36.1 < 10.0 19.6 85 10 5 

L981A 373.5 < 10.0 17.9 < 10.0 93 6 1 
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Determination of the kinetic parameters (Table 1) revealed that two opposite but 

related effects form the basis for the improved monoglycosylation yields. Except 

for the L938F mutant, the mutants had lower kcat values for the acceptor reaction 

with catechol and sucrose (Table 1), mainly representing a reduction in total 

activity with sucrose alone as shown above. However, all mutants displayed 

much lower Km values for catechol than the Gtf180-ΔN WT. In particular the 

L981A mutant had a low Km value of 11.0 mM for catechol, representing a 9-fold 

improvement compared to the Gtf180-ΔN WT. Despite the relatively low total 

activity of mutant L981A (23% of Gtf180-ΔN), its catalytic efficiency (kcat/Km) for 

the acceptor reaction with catechol (plus sucrose) was 2.5-fold higher than of 

Gtf180-ΔN WT. The exact opposite was observed when comparing the kinetic 

parameters of the mutants with Gtf180-ΔN WT for catechol-G1 as acceptor 

substrate: all mutants displayed higher Km values for catechol-G1 whereas their 

catalytic efficiencies were substantially lower.  

 

To elucidate the underlying molecular mechanism, the transglycosylation and 

total activities of the Gtf180-ΔN (mutants), incubated with sucrose only, were 

determined. Subsequently, the α-glucan synthesis potential (α-GSP) was 

calculated, defined as the ratio of the transglycosylation activity over the total 

activity, revealing the potential of the enzyme to use the donor substrate sucrose 

for α-glucan synthesis (and not for hydrolysis). As shown in Table 1, the mutants 

showed a decrease in α-GSP compared to the Gtf180-ΔN WT.  

 

In conclusion, mutant L981A represents a highly efficient biocatalyst for the 

glycosylation of catechol, yielding roughly 100 g/L catechol-G1 (373 mM) with a 

yield of 93%. 

 

3.2.3. Characterization of Gtf180-ΔN mutants: increased acceptor 

substrate conversion 

 

Due to an increased affinity for catechol which resulted from an impaired α-GSP, 

the monoglycosylation yield of Gtf180-ΔN mutants for the glycosylation of 

catechol was significantly improved. Subsequently, we determined whether the 
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same effects could be observed when the L981A mutant was incubated with 

other acceptor substrates. Suppressing α-glucan synthesis by glucansucrase 

enzymes may provide a general strategy resulting in higher conversions of a 

wide range of non-carbohydrate acceptor substrates into α-D-glucosides, more 

specifically into monoglucosides. A diverse range of small non-carbohydrate 

molecules (resorcinol, hydroquinone, butanol, hexanol, octanol, pyridoxine and 

resveratrol) were incubated with wild type Gtf180-ΔN and the L981A mutant, plus 

sucrose. Indeed, compared to WT enzyme the L981A mutant displayed 

increased monoglycosylation yields, from 17% to 53% for resorcinol, 1% to 7% 

for hydroquinone, 4% to 39% for butanol, 4% to 19% for hexanol and 5% to 24% 

for octanol (Figure 3). To our knowledge, this is the first report of the enzymatic 

synthesis of hexyl- and octyl α-D-glucosides with a glucansucrase enzyme. Also 

in case of pyridoxine- and resveratrol glycosylation, an increase in 

monoglycosylation yield was observed by TLC analysis (not shown).  

 

Figure 3. Monoglycosylation yields of WT Gtf180-ΔN and the L981A mutant derived (400 

mM catechol/resorcinol/hydroquinone/butanol, 58 mM hexanol, 4 mM octanol; 1000 mM 

sucrose; 4 U/mL Gtf180-ΔN). All monoglycosylation yields represent maximum values 

(incubation time dependent on acceptor substrate). T = 37 °C, pH = 4.7. 
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As illustrated for the glycosylation of resorcinol, two effects contributed to the 

enhancement of the monoglycosylation yields by the L981A mutant enzyme 

(Figure 4). Firstly, the conversion of resorcinol acceptor substrate into α-D-

glucosides was increased from 53% by WT to 87% by the mutant. Secondly, and 

similar to catechol glycosylation, the glycoside distribution was shifted towards 

mainly G1 production. With Gtf180-ΔN WT, 32% of the glycosylated resorcinol 

consisted of monoglucoside after 4 h of incubation, whereas the L981A mutant 

had converted 61% of the resorcinol into monoglucoside at t = 4 h. The 

production of monoglucoside reached its maximum long before the maximal 

resorcinol conversion (Figure 4). The two effects of the mutagenesis are clearly 

illustrated by TLC analysis of the products obtained (Figure S3): during a 4 h 

incubation, L981A synthesized fewer oligo- and polysaccharides than Gtf180-ΔN. 

Instead, more resorcinol was converted into α-D-glucosides.  

 

Figure 4. Conversion of the resorcinol acceptor substrate and G1 production by WT 

Gtf180-ΔN and the L981A mutant derived (400 mM resorcinol; 1000 mM sucrose; 4 U/mL 

Gtf180-ΔN (mutant)). T = 37 °C, pH = 4.7. 

 

3.3. Structural characterization of purified α-D-glucosides  

 

The biocatalytic synthesis of the α-D-glucosides of catechol, resorcinol, 

hydroquinone, butanol, hexanol and octanol was confirmed by a combination of 

1D NMR (
1
H NMR and 

13
C NMR) and 2D NMR spectroscopy. Figure 5 depicts 

the 1D 
1
H NMR spectra of the α-D-glucosides. The corresponding

 1
H and 

13
C 

chemical shifts are presented in the supplementary information (Tables S2 and 
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S3). Figures S4-S9 of the supplementary information represent the 1D 
1
H NMR 

spectrum, and 2D 
1
H-

1
H COSY, TOCSY (150 ms mixing time), ROESY (300 ms 

mixing time) and 
13

C-
1
H HSQC spectra of butyl glucoside, hexyl glucoside, octyl 

glucoside, resorcinol-G1, hydroquinone-G1 and catechol-3`G2, respectively. The 

1D 
1
H NMR spectra of catechol-G1 and catechol-6`G2 matched with those found 

previously by te Poele et al. (2016)
138

 and are presented there. For a detailed 

analysis of the NMR spectra, see supplementary information.   
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Figure 5. 1D 
1
H NMR spectra of A. butyl glucoside, B. hexyl glucoside, C. octyl glucoside, 

D. catechol-G1, E. resorcinol-G1, F. hydroquinone-G1, G. catechol-3`G2, H. catechol-

6`G2. 
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4. Discussion 

 

In view of their broad acceptor substrate specificity, glucansucrases are 

considered promising glycosylation biocatalysts. However, the typical synthesis 

of a mixture of α-D-glucosides, oligosaccharides and α-D-glucans remains a 

bottleneck in their industrial application. α-Glucan synthesis is the main 

glucansucrase reaction but an undesired side reaction when aiming to 

glycosylate non-carbohydrate acceptor substrates, lowering glycosylation yields 

and complicating downstream processing. For example, when applying salicin 

and salicyl alcohol as acceptor substrates, B-1355C2 and B-1299CB-BF563 

dextransucrases from Leuconostoc mensenteroides synthesized at least 12 and 

9 different kinds of glycosides, respectively
169

.  

 

So far, few enzyme engineering studies with glucansucrases have focused on 

glycosylation of non-carbohydrate acceptor substrates. In 2014, Malbert et al. 

reported a significant improvement of luteolin monoglycosylation by the I228A 

NpAS mutant compared to the wild type enzyme. Docking studies attributed this 

enhancement to the introduction of a less hindering residue, assisting in a better 

positioning of luteolin in the catalytic pocket
129

. In 2016, Liang et al. expanded the 

acceptor substrate promiscuity of GtfD from S. mutans by simultaneous site-

saturation mutagenesis of residues Y418 and N469. The best mutant (Y418R 

and N469C) exhibited a significant improvement in transglycosylation activities 

towards several flavonoids, the major products being monoglucosylated. Docking 

studies were based on the crystal structure of Gtf180-ΔN and revealed three 

additional hydrogen bonds with the flavonoid acceptor substrate compared to the 

wild type, resulting in the increased catalytic efficiency of the mutant enzyme
151

. 

Recently, two substantial improvements were made in sucrose phosphorylase 

mediated glycosylation of phenolic compounds. The enhanced performance was 

realized by the construction of mutants with a better accessibility of the active 

site
25,26

.  

 



Chapter 2: Suppressing α-glucan synthesis by mutational engineering  
 

 

69 

 

In the present study, the aim was to improve glycosylation yields by suppressing 

the competing α-glucan synthesis reaction, rather than engineering the active site 

to make it more suitable for non-carbohydrate acceptor substrates. As presented 

in Results, this resulted in a strong optimization of monoglycosylated product 

synthesis by the glucansucrase Gtf180-ΔN. The model acceptor substrate 

catechol was almost completely glycosylated into monoglycosylated product by 

the L981A mutant (93% compared to 60% for the wild type enzyme), 

substantially higher than previously reported for catechol glycosylation by GtfD 

from S. mutans (65%)
125

. In comparison, the I228A NpAS mutant only displayed 

a luteolin monoglycosylation yield of 53%
129

, whereas the GtfD mutant showed a 

catechin monoglycosylation yield of 90%
151

.   

 

Kinetic analysis indicated that the Gtf180-ΔN mutants (partly) lost their ability to 

synthesize α-glucan polysaccharides, as was previously shown by Meng et al. 

(2015)
99

. However, this positively influenced the glycosylation of catechol. 

Indeed, a positive correlation could be established between α-GSP and the Km 

values for catechol, whereas a negative correlation was found between α-GSP 

and the monoglycosylation yields with catechol (Figure 6). This shows that these 

mutations (partly) suppressed the competing α-glucan synthesis, yielding 

mutants with an improved affinity for catechol as acceptor substrate. Moreover, 

the increased Km values of these mutants for catechol-G1 also revealed a 

reduced α-GSP. Indeed, in the active site of glucansucrase enzymes, α-D-

glucosides will basically behave like saccharides. Therefore, the affinities of 

these mutants for catechol-G1 and for saccharides are positively correlated. The 

combination of an improved affinity for catechol with a decreased affinity for 

catechol-G1 thus resulted in the higher monoglycosylation yields of these Gtf180-

ΔN mutants.   
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Figure 6. Correlation between α-GSP for sucrose as acceptor substrate, Km for catechol 

as acceptor substrate and G1 yield of WT Gtf180-ΔN and mutants derived. Data are listed 

in Tables 1 and 3. ● G1 yield (%) ○ Km for catechol (mM) □ Km for catechol-G1 (mM)  

 

Moreover, suppressing α-glucan synthesis by mutagenesis of Gtf180-ΔN (L981A) 

clearly resulted in improved monoglycosylation yields for all the phenolic and 

alcoholic compounds tested here. Mutagenesis of the +1 and +2 acceptor 

substrate binding sites thus provides a general strategy to improve the 

monoglycosylation yields of non-carbohydrate acceptor substrates of 

glucansucrase enzymes. 

 

The architecture of the +1 acceptor substrate binding site is the main determinant 

of whether an acceptor substrate will bind to the active site or not, and 

consequently react with the covalently attached glucosyl moiety
95

. The crystal 

structure of Gtf180-ΔN in complex with maltose, representing a typical 

saccharide acceptor substrate
83

, was studied with the aim to understand how 

mutagenesis of the discussed residues impairs α-glucan synthesis (Figure 7). 

Firstly, N1029 interacts with the non-reducing end glucosyl moiety of maltose by 

means of direct and indirect hydrogen bonds with the C4 and C3 hydroxyl 

groups. Mutating the asparagine to a methionine removes this interaction, 
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lowering the affinity of the enzyme for maltose. Hence, α-glucan synthesis is 

suppressed which improves the glycosylation of non-carbohydrate acceptor 

substrates. In contrast, L981 and L938 do not provide maltose with hydrogen 

bond interactions. Due to their hydrophobic nature, they contribute by shaping 

the active site near subsite +1. Introducing an alanine at position 981 presumably 

reduces the hydrophobic interaction with the C6 of the non-reducing end glucosyl 

moiety of maltose. Apparently, this severely impairs α-glucan synthesis yielding a 

Gtf180-ΔN variant with enhanced glycosylation of non-carbohydrate acceptor 

substrates. On the other hand, mutating L938 to a bulky residue like 

phenylalanine partially blocks the +1 subsite thereby preventing maltose to 

efficiently interact with the other residues. This has a smaller effect on α-glucan 

synthesis than L981A and N1029M, resulting in a limited improvement of the 

glycosylation of non-carbohydrate acceptor substrates. 

 

 

Figure 7. Stereo view of Gtf180-ΔN with the acceptor maltose (yellow carbon atoms) 

bound in subsites +1 and +2 (PDB: 3KLL). Residue N1029 from domain A (blue) provides 

direct and indirect (water-mediated) hydrogen bonds to the non-reducing end glucosyl unit 

bound at subsite +1. Residues L938 and L981 from domain B (green) are also near 

subsite +1. This figure has been adapted from Meng et al. (2015)
99

. 

 

In conclusion, by applying the optimal reaction conditions and using the best 

Gtf180-ΔN mutant, a wide range of non-carbohydrate acceptor substrates could 
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more efficiently be converted into mainly monoglycosylated products. 

Consequently, the glycosylation potential of the Gtf180-ΔN enzyme was strongly 

improved. Furthermore, the screening strategy applied in this chapter yielded 

mutants that can be used as templates to further engineer the Gtf180-ΔN active 

site for improved glycosylation of specific acceptor substrates.  
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5. Supplementary information 

 

5.1. Detailed analysis of the NMR spectra 

 

5.1.1. Alkyl glucosides 

 

The 1D 
1
H NMR spectrum of the isolated product from the incubation with 

butanol (Figure S4) showed one anomeric signal at δ 4.901 ppm (A H-1; 
3
J1,2 

3.91 Hz), indicative of an α-anomeric residue. The signal at δ 0.908 (X H-4, t) 

with an intensity corresponding with 3 protons, fits with the butanol CH3 signal. 

Starting from A H-1 for the glucose moiety and X H-4 for the butanol moiety, all 

1
H chemical shifts with their corresponding 

13
C chemical shifts could be 

determined from 2D 
1
H-

1
H and 2D 

13
C-

1
H NMR spectra (Table S2, Figure S4). 

The pattern of 
1
H and 

13
C chemical shifts fits with a non-reducing terminal α-D-

Glcp-residue
170

. Due to the influence of the Glc-moiety linked to the butanol the 

H-1 protons are shifted to X H-1a (δ 3.73) and X H-1b (δ 3.53). The 2D 
1
H-

1
H 

ROESY spectrum (Figure S4) showed correlations between A H-1 and X H-1a 

and between A H-1 and X H-2. These data confirm the successful coupling of a 

Glc-residue to butanol, via an α-linkage. 

 

The 1D 
1
H NMR spectrum of the isolated product of the reaction with hexanol 

(Figure S5) showed a pattern similar to that of α-D-Glcp-butanol, with an 

anomeric signal at δ 4.903 (A H-1; 
3
J1,2 3.87 Hz), fitting with an α-anomeric 

residue. The signal at δ 0.868 (X H-6, t), with an intensity corresponding with 3 

protons fits with the hexanol CH3 signal. Using 2D 
1
H-

1
H and 2D 

13
C-

1
H NMR 

spectroscopy all 
1
H and 

13
C chemical shifts were determined (Table S2, Figure 

S5). The pattern for residue A fits again with a non-reducing terminal α-D-Glcp-

residue. The 2D 
1
H-

1
H ROESY spectrum revealed correlations between A H-1 

and X H-1a and between A H-1 and X H-2, confirming the coupling of an α-D-

Glcp-residue to hexanol. 
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The 1D 
1
H NMR spectrum of the isolated product of the reaction with octanol 

(Figure S6) showed a more complex pattern of peaks. Here the signal for A H-1 

was observed at δ 4.898 (
3
J1,2 3.76 Hz), similar to the butanol and hexanol 

products. The octanol CH3 signal (X H-8) is found at δ 0.855 (t). Using 2D NMR 

spectroscopy all 
1
H and 

13
C chemical shifts for A and X were found (Table S2, 

Figure S6). The patterns for residue A and X are again comparable to those of 

the other alkyl glucosides. The coupling of the α-D-Glcp residue is confirmed by 

2D 
1
H-

1
H ROESY cross-peaks between A H-1 and X H-1a and A H-1 and X H-2. 

 

5.1.2. Benzenediol glucosides 

 

The 1D 
1
H NMR spectra of the reaction products catechol-G1 and catechol-6`G2 

from the reaction with catechol match with those found previously for α-D-Glcp-

catechol and α-D-Glcp-(1→6)-α-D-Glcp-catechol, respectively
138

. All 
1
H and 

13
C 

chemical shifts are presented in Table S3. 

 

The 1D 
1
H NMR spectrum of the structure isolated from the reaction with 

resorcinol as acceptor (Figure S7) showed one anomeric signal at δ 5.634 (A1; 

3
J1,2 3.78 Hz) indicating an α-linked residue. Using 2D 

1
H-

1
H and 

13
C-

1
H NMR 

spectroscopy all 
1
H and 

13
C chemical shifts were assigned (Table S3, Figure S7). 

Compared to free Glc
170

 the glucose H-2 signal is shifted significantly downfield 

(δ 3.722), probably as a result of interactions with the resorcinol aromatic ring, as 

observed previously for catechol glucoside
138

. The pattern of 
1
H and 

13
C chemical 

shifts of residue A fit with a non-reducing terminal α-D-Glcp-residue. In the 2D 

1
H-

1
H ROESY spectrum (Figure S7) interactions are observed between A H-1 

and X H-2 and between A H-1 and X H-6, confirming the successful coupling of 

α-D-Glcp to resorcinol. 

 

The 1D 
1
H NMR spectrum of the product isolated from the reaction with 

hydroquinone (Figure S8) showed one α-anomeric signal at δ 5.490 (A H-1; 
3
J1,2 

3.62 Hz) and hydroquinone signals at δ 7.078 (X H-2 and H-6) and at δ 6.871 (X 

H-3 and H-5). Using 2D 
1
H-

1
H and 

13
C-

1
H NMR spectroscopy all 

1
H and their 
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corresponding 
13

C chemical shifts were determined (Table S3, Figure S8). The 

pattern of 
13

C chemical shifts of residue A fits with a terminal α-D-Glcp-residue. 

The 
1
H chemical shifts of residue A fit best with a residue linked to an aromatic 

moiety, note A H-2 at δ 3.75, which is significantly downfield, as was observed 

for the catechol and resorcinol glucosides as well. The successful coupling of α-

D-Glcp to hydroquinone is further supported by the 2D 
1
H-

1
H ROESY correlations 

(Figure S8) between A H-1 and X H-2 and H-6.  

 

The 1D 
1
H NMR spectrum of the third structure isolated from the incubation with 

catechol (Figure S9) showed two α-anomeric signals at δ 5.635 (A H-1; 
3
J1,2 3.76 

Hz) and δ 5.421 (B H-1; 
3
J1,2 3.83 Hz), fitting with two α-D-Glcp-residues. All 

1
H 

and their corresponding 
13

C chemical shifts were determined from 2D NMR 

spectra (Table S3, Figure S9). The pattern of chemical shifts for residue A 

showed significant downfield shifts of A H-2 (δ 3.86; Δδ + 0.11), A H-3 (δ 4.116; 

Δδ + 0.13) and A H-4 (δ 3.79; Δδ + 0.25), compared with residue A in α-D-Glcp-

catechol (Table S3). This fits best with a 3-substitution of residue A
170

. Residue B 

has a pattern of 
1
H chemical shifts fitting with a terminal residue involved in an 

(α1→3)-linkage. The position of B H-5 at δ 4.050, significantly downfield 

compared to terminal residues involved in a (α1→4) or (α1→6)-linkage (δ 3.73-

3.76)
170

 is typical for such a residue. The 3-substitution of residue A is also 

reflected in the 
13

C chemical shift of C-3, significantly downfield at δ 80.6
171

. 

Furthermore, the 2D 
1
H-

1
H ROESY spectrum (Figure S9) showed correlations 

between B H-1 and A H-3 and between A H-1 and X H-6, confirming the 

structure as α-D-Glcp-(1→3)-α-D-Glcp-catechol. 
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5.2. Tables 

 

Table S1. List of mutants
1
 of Gtf180-ΔN screened for their glycosylation potential. 

1 L938A 14 A978F 27 D1028G 40 D1085Q 53 N1089D 

2 L938S 15 A978S 28 D1028N 41 R1088H 54 N1089P 

3 L938F 16 A978G 29 N1029Y 42 R1088K 55 W1065F 

4 L938K 17 A978L 30 N1029G 43 R1088E 56 W1065K 

5 L938M 18 A978P 31 N1029T 44 R1088W 57 W1065L 

6 L940A 19 A978Y 32 N1029M 45 R1088T 58 W1065Q 

7 L940S 20 L981A 33 N1029R 46 R1088N 59 W1065E 

8 L940E 21 L981N 34 D1085Y 47 R1088G 60 W1065M 

9 L940F 22 L981E 35 D1085V 48 N1089Y 61 W1065G 

10 L940W 23 D1028Y 36 D1085A 49 N1089G   

11 L940G 24 D1028W 37 D1085E 50 N1089S   

12 L940M 25 D1028L 38 D1085H 51 N1089L   

13 L940C 26 D1028K 39 D1085L 52 N1089R   

1
For construction and partial characterization of these mutants, see Meng et al. (2015

99
 and 2016

100
). 
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Table S2. 
1
H and 

13
C chemical shifts of alkyl glucosides, relative to internal acetone (δ

1
H 

2.225, δ
13

C 31.08). 

 But-G1 

 

Hex-G1 

 

Oct-G1 

 

  
1
H   

13
C  

1
H   

13
C  

1
H   

13
C 

A 1 4.901 98.8 4.903 98.8 4.898 98.7 

A 2 3.52 72.0 3.540 72.0 3.54 72.0 

A 3 3.69 73.9 3.694 73.8 3.70 73.8 

A 4 3.398 70.2 3.402 70.3 3.401 70.1 

A 5 3.68 72.4 3.68 72.4 3.68 72.5 

A 6a 3.845 61.2 3.844 61.1 3.840 61.1 

A 6b 3.75  3.758  3.76  

       

X 1a 3.73 68.8 3.73 69.1 3.72 69.0 

X 1b 3.53 68.8 3.53 69.1 3.53 69.0 

X 2 1.613 31.4 1.629 29.3 1.621 29.2 

X 3 1.378 19.5 1.366 35.9 1.354 26.1 

X 4 0.908 13.8 1.30 31.7 1.27 31.9 

X 5 - - 1.30 22.7 1.28 29.0 

X 6 - - 0.868 14.1 1.30 29.0 

X 7 - - - - 1.30 22.8 

X 8 - - - - 0.855 13.9 
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Table S3. 
1
H and 

13
C chemical shifts of glucosides of benzenediols, relative to internal 

acetone (δ
1
H 2.225, δ

13
C 31.08). 

 Res-G1 

 

HQ-G1 

 

Cat-G1 

 

Cat-3`G2 

 

Cat-6`G2 

 

  
1
H   

13
C  

1
H   

13
C  

1
H   

13
C  

1
H   

13
C  

1
H   

13
C 

A 1 5.634 97.8 5.490 99.2 5.626 99.0 5.635 99.1 5.648  99.1 

A 2 3.722 72.1 3.701 72.0 3.75 72.2 3.86 70.8 3.78 72.3 

A 3 3.916 73.8 3.898 73.9 3.986 73.9 4.116 80.6 3.984  73.9 

A 4 3.518 70.4 3.510 70.3 3.536 70.2 3.79 70.6 3.596 70.1 

A 5 3.76 73.4 3.839 73.2 3.84 73.5 3.85 73.1 4.043 71.9 

A 6a 3.78 61.1 3.798 61.1 3.81 61.2 3.83 61.1 3.70 66.4 

A 6b 3.74  3.757  3.78  3.76  3.944  

           

B 1 - - - - - - 5.421 100.3 4.901 98.5 

B 2 - - - - - - 3.591 72.7 3.508 72.4 

B 3 - - - - - - 3.79 73.4 3.668 73.9 

B 4 - - - - - - 3.485 70.2 3.419 70.4 

B 5 - - - - - - 4.050 72.7 3.72 72.9 

B 6a - - - - - - 3.86 61.1 3.827 61.5 

B 6b -  -  -  3.80  3.76  

           

X 2 6.689 105.2 7.078 120.0 - - - - - - 

X 3 - - 6.871 117.1 6.995 117.8 6.992 117.8 7.015 117.8 

X 4 6.737 111.1 - - 7.041 124.8 7.040 124.8 7.056 124.9 

X 5 7.258 131.7 6.871 117.1 6.951 121.9 6.944 121.6 6.974 121.7 

X 6 6.754 110.0 7.078 120.0 7.266 118.2 7.268 118.1 7.274 118.3 
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5.3. Figures 

 

Figure S1. Lineweaver-Burk plots for the glycosylation of catechol and catechol-G1 with 

Gtf180-ΔN. R
2
 is 0.97 and 0.99, respectively. The corresponding kinetic data are listed in 

Table I. 
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Figure S2. TLC analysis of glycosylated products synthesized by Gtf180-ΔN and mutants 

derived after 1 h of incubation (400 mM catechol; 1000 mM sucrose; 1 U/mL Gtf180-ΔN 

(mutants)). Numbers refer to mutants listed in Table I. G1 and G2 refer to the mono- and 

diglycosylated catechol products. Upper G2 spot: diglycosylated product with (α1→3) 

bond. Lower G2 spot: diglycosylated product with (α1→6) bond. 
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Figure S3. TLC analysis of products of resorcinol glycosylation by WT Gtf180-ΔN and the 

L981A mutant derived (400 mM resorcinol; 1000 mM sucrose; 4 U/mL Gtf180-ΔN 

(mutant)). G1 and G2 refer to the mono- and diglycosylated resorcinol products. 
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Figure S4. 1D 
1
H NMR spectrum, and 2D 

1
H-

1
H COSY, TOCSY (150 ms mixing time), 

ROESY (300 ms mixing time) and 
13

C-
1
H HSQC spectra of butyl glucoside.  
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Figure S5. 1D 
1
H NMR spectrum, and 2D 

1
H-

1
H COSY, TOCSY (150 ms mixing time), 

ROESY (300 ms mixing time) and 
13

C-
1
H HSQC spectra of hexyl glucoside. 
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Figure S6. 1D 
1
H NMR spectrum, and 2D 

1
H-

1
H COSY, TOCSY (150 ms mixing time), 

ROESY (300 ms mixing time) and 
13

C-
1
H HSQC spectra of octyl glucoside. 
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Figure S8 1D 
1
H NMR spectrum, and 2D 

1
H-

1
H COSY, TOCSY (150 ms mixing time), 

ROESY (300 ms mixing time) and 
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C-
1
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Abstract 

 

Glucansucrases are increasingly targeted as biocatalyst for the glycosylation of 

non-carbohydrate acceptor substrates. A major obstacle in their industrial use 

remains their relatively low operational stability at high temperatures and in 

systems containing cosolvents and high acceptor substrate concentrations. As a 

consequence, glycosylation of poorly soluble compounds results in low yields 

and productivities as only low concentrations of these acceptor substrates can be 

supplied in the reaction mixture. This chapter focused on overcoming the low 

operational stability of Gtf180-ΔN from Lactobacillus reuteri 180 by cross-linking 

the enzyme to mesoporous silica particles, yielding an immobilized enzyme with 

enhanced activity at temperatures above 50 °C and in systems containing 20% 

DMSO, reaction conditions detrimental for the free enzyme. As a result, the 

glycosylation of gallic acid (GA), caffeic acid (CA) and catechin (CT) could be 

performed in reaction mixtures containing much higher concentrations of 

acceptor substrate. Their conversion was improved accordingly: from 63% to 

82%, from 59% to 80%, and from 4% to 11%, for GA, CA and CT, respectively.  
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1. Introduction 

 

Glucansucrases are glycoside hydrolase enzymes (GH70), catalyzing sucrose 

hydrolysis (minor activity) and the conversion of sucrose into α-glucan 

polysaccharides (major activity), linking the α-D-glucopyranosyl units by (α1→2), 

(α1→3), (α1→4) or (α1→6) bonds, depending on the enzyme specificity
73,74

. In 

addition, they catalyze so called acceptor reactions, thereby glycosylating various 

(poly)phenolic and aliphatic compounds, using sucrose as donor substrate
111-114

. 

As such, glucansucrases offer a cheap alternative for “Leloir” 

glycosyltransferases
18

, which require rare and expensive nucleotide-activated 

sugars as donor substrate
13

. Due to their broad acceptor substrate specificity and 

their use of inexpensive sucrose as donor substrate, glucansucrases have 

attracted considerable interest from academia and industry for their application 

as glycosylation biocatalyst. Glycosylation may result in an increased solubility of 

hydrophobic compounds
33

, an improved stability of labile molecules against light 

and oxidation
7
, or a modified taste profile

8
. 

 

Although several alternative acceptor substrates are indeed glycosylated by 

glucansucrases, very often incomplete conversions, with low to moderate yields, 

are obtained. Alternative acceptor substrates are per definition not the natural 

acceptor substrates of glucansucrases and, hence, they generally have rather 

high Km values (Chapter 2)
110

. To outcompete α-glucan synthesis and hydrolysis 

as possible glucansucrase reactions, high concentrations of acceptor substrate 

are consequently required. Shifting the relative balance between the three 

glucansucrase reactions towards the acceptor reaction by applying high acceptor 

substrate concentrations was demonstrated as early as 1993 by Su and Robyt
132

. 

Furthermore, high space-time yields, which greatly reduce production costs, can 

only be achieved if the acceptor substrate concentrations are correspondingly 

high. It was demonstrated in Chapter 2 that suppressing α-glucan synthesis by 

mutational engineering enhanced the glycosylation of several phenolic and 

aliphatic compounds
110

. The biggest improvements were observed for small 

molecules such as catechol and butanol. The glycosylation of larger molecules, 
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such as flavonoids, was still problematic, mostly due to the low water solubility of 

these compounds, preventing their addition in higher concentrations. Chapter 2 

also revealed that glucansucrases were inhibited by high concentrations of non-

carbohydrate acceptor substrates: the glycosylation of catechol by Gtf180-ΔN 

from Lactobacillus reuteri 180 was inhibited at concentrations of catechol higher 

than 400 mM
110

. Similarly, catechol displayed inhibitory effects on glucansucrase 

GtfD from Streptococcus mutans GS-5 at a concentration of 200 mM
125

. Finally, 

also the inhibition of amylosucrase (GH13) from Neisseria polysaccharea by 

several flavonoids has been reported
124

.   

 

As mentioned earlier, the limited water solubilities of many (poly)phenolic and 

aliphatic acceptor substrates complicate their glycosylation by glucansucrases. 

Increasing the solubility of acceptor substrates can be achieved by the addition of 

organic cosolvents such as DMSO, ethanol, acetone, etc. The main drawback of 

this strategy is that enzyme activity –and stability typically decrease with 

increasing solvent concentrations
172

. Determination of the initial activity of the 

dextransucrase from Leuconostoc mesenteroides NRRL B-512F in the presence 

of organic solvents revealed a 50% loss in activity in 20% DMSO, 15% ethanol, 

15% acetone, 10% DMF and 7% acetonitrile
134

. Diglyme or bis(2-methoxyethyl) 

ether (MEE) displayed a lower inhibitory effect on glucansucrases: the 

dextransucrase from L. mesenteroides NRRL B-512F and the alternansucrase 

from L. mesenteroides NRRL B-23192 retained more than 50% activity at an 

MEE concentration of 30%
120

. The previous examples indicate that the combined 

use of high concentrations of certain acceptor substrates and high solvent 

concentrations may be even more detrimental for glucansucrase activity. Hence, 

a compromise between acceptor substrate concentration, solvent concentration 

and enzyme activity needed to be found. 

 

An alternative approach comprises the application of a biphasic glycosylation 

system. In this way, the inhibitory effect of cosolvents can be circumvented while 

the solubility of the acceptor substrates is still enhanced. In a biphasic 

glycosylation system, the aqueous phase contains the biocatalyst and the donor 

substrate sucrose, whereas the organic phase contains the hydrophobic acceptor 
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substrates. Upon stirring, the acceptor substrates are transferred to the aqueous 

phase, where they are enzymatically glycosylated. Enzyme stability is correlated 

with solvent polarity: water miscible cosolvents distort the essential water layer 

that stabilizes the enzyme, whereas hydrophobic solvents will leave this layer of 

water molecules intact, resulting in a higher enzyme stability. Solvent polarity is 

expressed by the logarithm of the octanol/water partition coefficient (log P). 

Solvents with a log P < 2 will deactivate enzymes more distinctly than 

hydrophobic solvents with a log P > 4
173

. Furthermore, the use of a biphasic 

glycosylation system minimizes enzyme inhibition by acceptor substrates due to 

their low actual concentration in the aqueous phase; hydrophobic compounds are 

only slowly released from the organic phase, which acts as a substrate 

reservoir
174,175

. The use of a biphasic glycosylation system was already 

demonstrated for the glycosylation of several phenolic and aliphatic compounds 

with sucrose phosphorylase from Bifidobacterium adolescentis, resulting in 

enhanced glycosylation yields
23

. 

 

Immobilization is a well-known strategy to increase the operational activity and 

stability of an enzyme. It may alleviate the decrease of enzyme activity and 

stability provoked by high solvent and acceptor substrate concentrations
140

. An 

additional advantage is the possibility of recycling the immobilized biocatalyst, 

which can drastically lower the economic cost of the enzymatic process
141

. 

Glucansucrases have been described as troublesome to covalently immobilize, 

mainly due to inactivation of the enzyme during immobilization, e.g. by the 

participation of a lysine residue in the active site. Typical immobilization yields 

(ratio of activity of immobilized enzyme to the activity of enzyme prior 

immobilization) range from 3% to 22%
143-146

. In contrast, encapsulation of 

glucansucrases in alginate has been more successfully applied: several studies 

report immobilization yields up to 90%
147,148

. However, the resulting alginate 

beads are not durable, since the accumulation of α-glucan polysaccharides 

inside the beads ultimately results in their rupture.  

 

To our knowledge, the inhibitory effects of acceptor substrates and cosolvents on 

glucansucrases have never been countered by applying enzyme immobilization 
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nor by using a biphasic system. This chapter investigates both strategies to 

overcome the low operational stability of Gtf180-ΔN from L. reuteri 180: the 

application of a biphasic system with ethyl acetate as second phase, and the 

covalent immobilization of this enzyme on mesoporous silica particles.  

 

2. Materials and methods 

 

2.1. Production and purification of recombinant Gtf180-ΔN 

 

Recombinant, N-terminally truncated Gtf180-ΔN from Lactobacillus reuteri 180 

was produced and purified as described previously
80

. 

 

2.2. Protein determination 

 

Protein concentration was determined using the BCATM Protein Assay kit from 

Pierce. The protocol as described in the kit was used. In short, 200 µL of freshly 

prepared assay solution was added to 25 µL of protein sample. After incubation 

at 37 °C for 30 min, the absorbance was measured at 562 nm. As standard 

series, bovine serum albumin (BSA) was used in a range from 0-2 mg/mL. 

 

2.3. Activity assay for free and immobilized Gtf180-ΔN 

  

Enzyme activity assays were performed at 37°C with 100 mM sucrose in 25 mM 

sodium acetate (pH 4.7) and 1 mM CaCl2 unless indicated otherwise. Samples of 

100 μL were taken every min over a period of 8 min and immediately inactivated 

with 20 μL 1 M NaOH for 30 min. The released glucose and fructose were 

quantified enzymatically by monitoring the reduction of NADP with the 

hexokinase and glucose-6-phosphate dehydrogenase/phosphoglucose 

isomerase assay (Roche) as described previously
166,167

, allowing the 

determination of the total- (fructose release) and hydrolytic (glucose release) 

activities, and calculation of the transglycosylation activity.  
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One unit (U) of total activity corresponds to the release of 1 μmole fructose from 

100 mM sucrose in 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2 at 37 °C.  

 

2.4. TLC analysis  

 

TLC analysis of transglycosylation products was performed on silica gel 60 F254 

plates (Merck). The eluent consisted of n-butanol-acetic acid-water (2:1:1 by 

volume). Detection was achieved by UV absorption (254 nm) and/or staining with 

10 % (v/v) H2SO4 containing 2 g/L orcinol.  

 

2.5. HPLC analysis 

 

An Agilent MetaCarb 67H column (300 mm × 6.5 mm) was used under isocratic 

conditions with 2.5 mM H2SO4 as the mobile phase. The flow rate and 

temperature were set at 0.8 mL/min and 35 °C, respectively. Detection was 

achieved with an RID detector. Calibration of the obtained peaks was 

accomplished using the corresponding standard curves. 

 

2.6. Solubility measurements 

 

The solubility of gallic acid (GA) was determined in 250 μL of ultrapure water, 

incubated in a thermoblock at 20 °C. GA was added until clear precipitation was 

noticeable, after which the samples were vortexed multiple times and allowed to 

equilibrate for 24 h. The supernatants were diluted in ethanol and subsequently 

subjected to HPLC analysis. Calibration was accomplished using the appropriate 

standard curve. The analysis was performed in duplicate. 

 

2.7. Immobilization of Gtf180-ΔN on silanized silica particles 

 

Before silanization (the functionalization of the silica surface with alkoxysilane 

molecules), the silica particles (10 g) were boiled in distilled water for 30 min. The 

wetted particles were then dissolved in 750 mL of a 10% solution of (3-

aminopropyl)triethoxysilane (APTES) at pH 4 and subsequently heated in a water 
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bath at 75 °C for 4 h. The particles were washed three times with water and dried 

overnight at 80 °C. The silanized particles were stored at room temperature until 

further use. 

 

Immobilization consisted of two steps: (1) adsorption of the enzyme on the 

support and (2) cross-linking of the adsorbed enzyme onto the support. In a 1.5 

mL-Eppendorf tube, a suspension of 2 mg of silanized particles and 1 mL of 

buffered enzyme solution (containing 0.2 mg enzyme/mL) was shaken at room 

temperature for 1 h to ensure that adsorption equilibrium was reached. 

Subsequently, 10 µL of cross-linker (glutaraldehyde) was added and the 

suspension was shaken at room temperature for another hour. Afterwards, the 

supernatant was decanted using a benchtop centrifuge (10,000 g, 2 min) and the 

particles were washed with distilled water until no enzyme activity was detected 

(see 2.3.) in the wash solution. 

 

3. Results and discussion 

 

3.1. Solvent engineering: Applying Gtf180-ΔN in a biphasic –or cosolvent 

system  

 

To improve the solubility of acceptor substrates, cosolvents such as DMSO and 

acetone are typically added to the glycosylation reaction mixture. The 

disadvantage of this strategy is that enzyme activity and stability decrease 

substantially. Alternatively, a biphasic glycosylation system can be implemented; 

hydrophobic solvents provoke less inhibition than hydrophilic ones. In 2014, De 

Winter et al. reported the application of a biphasic glycosylation system with 

sucrose phosphorylase, using ethyl acetate as second phase
23

. The effect of 

using this system on Gtf180-ΔN catalyzed glycosylation reactions was 

consequently investigated. The glycosylation of ethyl gallate (EG), added to food 

products as antioxidant (E313) and representing a poorly soluble acceptor 

substrate with inhibitory effects on Gtf180-ΔN, was demonstrated previously
137

 

and chosen as model reaction. The enzyme was each time incubated with 1000 
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mM sucrose, while the concentration of EG and ethyl acetate (0 or 37.5% v/v) 

was varied (Figure 1). 

 

Glycosylating 100 mM EG in the aqueous system resulted in a high conversion 

degree (Figure 1A), whereas the glycosylation of 100 mM EG in 37.5% ethyl 

acetate displayed a much lower conversion (Figure 1B). This effect can be 

explained by diffusion limitations between the ethyl acetate phase and the 

aqueous phase. The actual EG concentration near the enzyme is consequently 

substantially lower than 100 mM, resulting in relatively more α-glucan synthesis 

from sucrose at the expense of the acceptor reaction. Increasing the EG 

concentration to 400 mM yielded a higher product concentration, however, the 

EG conversion degree remained lower than in the aqueous system (Figure 1C). 

Conclusively, the application of a second phase to dissolve poorly soluble 

acceptor substrates should be avoided for glucansucrase mediated glycosylation 

reactions, due to the resulting decrease of acceptor substrate conversions.   

 

 

Figure 1. TLC analysis of ethyl gallate (EG) glycosylation by free Gtf180-ΔN (1000 mM 

sucrose, 4 U/mL enzyme), visualized by UV (254 nm). A 100 mM EG, 0% ethyl acetate; B 

100 mM EG, 37.5% ethyl acetate; C 400 mM EG, 37.5% ethyl acetate. A1, B1, C1 

Incubation mixture without enzyme; A2 60 min incubation; B2, C2 60 min incubation (ethyl 

acetate phase); B3, C3 60 min incubation (aqueous phase). 
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Alternatively, the effect of using DMSO as cosolvent on Gtf180-ΔN catalyzed 

glycosylation reactions was investigated. The glycosylation of gallic acid (GA), a 

potential medicine for the treatment of Alzheimer’s
176

 and Parkinson’s disease
177

, 

served as case study. The solubility of GA in water at 37 °C was determined to 

be roughly 80 mM, which could be increased by using DMSO as cosolvent. 

Reactions with the free enzyme in 0%, 10% and 20% DMSO however illustrated 

the detrimental effect of cosolvent and acceptor substrate on Gtf180-ΔN activity 

(Figure 2).  

 

Figure 2. Depletion of gallic acid (GA) due to its glycosylation by free Gtf180-ΔN (1000 

mM sucrose, 4 U/mL enzyme): ● 80 mM GA, 0% DMSO; ○ 210 mM GA, 10% DMSO; ▼ 

325 mM GA, 20% DMSO; and by immobilized Gtf180-ΔN (1000 mM sucrose, 4 U/mL 

enzyme): ▽ 325 mM GA, 20% DMSO. 

 

Glycosylation of GA by Gtf180-ΔN without the addition of DMSO (80 mM GA) 

resulted in a conversion of 63%. Interestingly, the GA conversion degree in 10% 

DMSO (210 mM GA) was significantly higher (80%) than in 0% DMSO (63%), 

indicating that the relative balance between α-glucan synthesis, sucrose 

hydrolysis and GA glycosylation was shifted towards the latter, due to the 

improved availability of the acceptor substrate GA. Glycosylation in 20% DMSO 

(325 mM GA) displayed a GA conversion degree of only 14%, which can be 

attributed to inactivation of the enzyme. Performing the glycosylation in 20% 
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DMSO might consequently further increase the GA conversion degree, provided 

that the enzyme is sufficiently stabilized. 

 

3.2. Immobilization of Gtf180-ΔN on mesoporous silica particles 

 

Previous paragraph was another illustration of the undesired inhibitory effects of 

acceptor substrates and cosolvents on Gtf180-ΔN, resulting in suboptimal 

glycosylation yields and conversion degrees. Immobilization of Gtf180-ΔN may 

alleviate this inhibition, more specifically by improving enzyme activity at high 

acceptor substrate –and cosolvent concentrations. Of all immobilization 

techniques, covalent immobilization provides the strongest interaction between 

enzyme and support, stabilizing the enzyme most thoroughly. Immobilization of 

Gtf180-ΔN on mesoporous silica particles was therefore first optimized, after 

which the characteristics of the immobilized enzyme were determined.  

 

3.2.1. Optimization of Gtf180-ΔN immobilization 

 

Several factors influence the covalent immobilization of enzymes on mesoporous 

silica, the most important being adsorption pH, concentration of cross-linker 

(mM), and enzyme loading (mg protein/g support)
178

. Immobilizing a single layer 

of proteins (2-3 mg protein/m
2
 support) may result in improved immobilization 

yields due to the reduction of substrate diffusion limitation and undesired 

conformational changes, both associated with multilayers
179

. The specific surface 

area of the applied silica particles was roughly 50 m
2
/g. A single layer of protein 

was consequently formed when 100-150 mg Gtf180-ΔN/g or 4000-6000 U 

Gtf180-ΔN/g was adsorbed.  

 

The pH was found to be crucial for adsorption –and cross-linking of the 

biocatalyst (Figure 3). An enzyme loading of 100 mg/g resulted in a nearly 

complete (>95%) adsorption at a pH range of 5.5-6. At a pH of 4.5 not even half 

of the enzyme was adsorbed, whereas 75% adsorption was achieved at a pH of 

7. These results could only partly explain the sharp immobilization yield optimum: 

at a pH lower than 5.5, the enzyme was not efficiently cross-linked (as could be 



Chapter 3: Immobilization of Gtf180-ΔN 

 

100 

 

visually observed by the absence of a red color, Figure S1), resulting in very low 

immobilization yields. Between a pH of 5.5 and 7, the immobilization yield 

decreased with increasing pH (Figure 3), suggesting that the enzyme was 

‘locked’ in a more active conformation at slightly acidic conditions, as was 

demonstrated by Kondo et al. for α-amylase
180

.  

  

The optimal concentration of cross-linker (glutaraldehyde, GLU) generally is 

strongly dependent on the enzyme and carrier under consideration. For example, 

the immobilization of laccase using a similar protocol only required the use of 1 

µmol GLU per mg silica (~ 10 mM) to maximize the immobilization yield
181

, 

whereas Demarche et al. used 8 µmol GLU per mg silica for laccase 

immobilization
171

. Increasing the concentration of GLU from 10 mM to 100 mM (~ 

2.5 to 25 µmol GLU per mg silica) had no effect on the immobilization yield with 

Gtf180-ΔN nor on its thermo-activity (data not shown). Therefore, 10 mM GLU 

was selected for further experimenting.  

 

Figure 3. Effect of pH on adsorption and cross-linking of Gtf180-ΔN on mesoporous silica 

(4000 U/g, 10 mM GLU). Line graph: enzyme adsorbed (%). Bar graph: activity (U/g) 

after cross-linking. 
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3.2.2. Characterization of immobilized Gtf180-ΔN 

 

Immobilized enzymes display very different characteristics compared to their 

soluble counterparts. Their stability and activity at high temperatures and high 

solvent concentrations is typically enhanced due to the ‘rigidification’ of the 

enzyme
182

, which may be advantageous for the glycosylation of poorly soluble 

acceptor substrates. The properties of glucansucrase Gtf180-ΔN immobilized on 

mesoporous silica were therefore compared with those of the free enzyme. 

 

3.2.2.1. Effect of immobilization on thermo -and solvent activity 

 

The optimal temperature for activity of the immobilized Gtf180-ΔN enzyme was 

found to be 55 °C, compared to 50 °C for the free enzyme. The immobilized 

enzyme even retained activity up to 65 °C, whereas the free enzyme lost all 

activity at 55 °C (Figure 4A). Improved thermo-activities are usually an indication 

of enhanced activities in cosolvent systems. Determination of the activity of 

immobilized and free enzyme in media with different concentrations of DMSO 

confirmed this hypothesis. The immobilized enzyme was remarkably more active 

in the presence of DMSO, retaining 87.3% of its solvent-free activity in 37.5% 

DMSO. In contrast, the free enzyme only retained 24.4% of its solvent-free 

activity in 25% DMSO and lost all activity at 37.5% DMSO (Figure 4B). 

 

Figure 4. A. Thermo-activity of free (●) and immobilized (○) Gtf180-ΔN (100 mM sucrose, 

pH 4.7). B. Activity in solutions containing DMSO of free (●) and immobilized (○) Gtf180-

ΔN (100 mM sucrose, pH 4.7, 50 °C).   
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3.2.2.2. Effect of immobilization on activity at high acceptor concentrations 

 

Glucansucrases are inhibited by high concentrations of non-carbohydrate 

acceptor substrates, as was demonstrated for Gtf180-ΔN: the model substrate 

catechol could not be glycosylated at concentrations above 400 mM due to 

severe inhibition
110

. The immobilized enzyme was incubated with 400, 600 or 800 

mM catechol and 1000 mM sucrose to determine the effect of immobilization on 

the glycosylation of non-carbohydrate acceptor substrates (Figure 5). 

 

Figure 5. Depletion of catechol (CAT) due to its glycosylation by free and immobilized 

Gtf180-ΔN (1000 mM sucrose, 4 U/mL enzyme). ● Immobilized Gtf180-ΔN, 400 mM CAT; 

○ Immobilized Gtf180-ΔN, 600 mM CAT; ▼ Free Gtf180-ΔN, 400 mM CAT; ▽ Free 

Gtf180-ΔN, 600 mM CAT. 

 

Incubation of the immobilized enzyme with 400 mM catechol resulted in a 78% 

conversion of the latter into glycosides compared to 100% for the free enzyme. In 

contrast, sucrose was completely converted in both cases, indicating that the 

immobilized enzyme underwent undesired changes in the active site, resulting in 

a decreased affinity for the acceptor substrate catechol. Furthermore, 600 mM 

catechol was converted by the immobilized enzyme into glycosides with a 

conversion degree of 81%, slightly better than when incubated with 400 mM and 

significantly better than for the free enzyme (7%) (Figure 5). This confirms the 
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results of the thermo –and solvent activity experiments and demonstrates the 

improved operational stability of the immobilized enzyme. A concentration of 800 

mM catechol resulted in deactivation of not only the free but also the immobilized 

enzyme (data not shown). In conclusion, the immobilized enzyme remained 

active at higher acceptor substrate concentrations, higher solvent concentrations 

and higher temperatures, compared to the free enzyme. However, its acceptor 

substrate affinity was altered, possibly due to participation of one or more amino 

acid residues in the active site during cross-linking. In fact, this is known to be 

one of the main disadvantages related to the use of GLU as cross-linker. Due to 

its small size, GLU can penetrate easily into the active site of enzymes and 

subsequently react with amino acid residues.  

 

In order to prevent GLU from causing undesired changes in the active site, 

protecting agents, typically enzyme substrates, are used
183

. Moreover, the 

activity of the immobilized enzyme towards the protecting agent/enzyme 

substrate can be improved by this ‘molecular imprinting’ of the enzyme’s active 

site
184

. It is important that the substrate is not converted during immobilization to 

obtain the optimal protecting effect; catechol and maltose were consequently 

tested in different concentrations (100-400 mM) as protecting agent during 

Gtf180-ΔN immobilization. Unfortunately, the addition of catechol prevented 

cross-linking of the enzyme, whereas the addition of maltose had no effect on 

catechol glycosylation.     

 

3.3. Glycosylation with immobilized Gtf180-ΔN 

 

It was previously shown that GA glycosylation proceeds with improved 

conversion degrees in systems containing high GA concentrations, until DMSO 

and GA reach a concentration that is inhibitory to Gtf180-ΔN. In order to further 

improve GA glycosylation, immobilized Gtf180-ΔN was incubated in 20% DMSO, 

containing 325 mM GA (Figure 2). 

 

Immobilization of Gtf180-ΔN alleviated the inhibiting effect of DMSO and GA, 

resulting in a GA conversion degree of 82%, which is slightly higher than the 
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conversion obtained after incubation of the free enzyme in 10% DMSO. In 

addition, the glycosylation in 20% DMSO of caffeic acid (CA), catechin (CT), and 

quercetin (QU) with immobilized Gtf180-ΔN was evaluated and compared with 

the glycosylation potential of the free enzyme in solvent-free reaction medium 

(Figure 6). 

 

Figure 6. Conversion degrees for the glycosylation of gallic acid (GA), caffeic acid (CA) 

and catechin (CT) by immobilized Gtf180-ΔN in 20% DMSO and free Gtf180-ΔN in 0% 

DMSO (1000 mM sucrose, 4 U/mL enzyme).  

 

CA and CT were glycosylated in 20% DMSO by the immobilized enzyme, and in 

0% DMSO by the free enzyme. Similarly to GA glycosylation, higher conversions 

were obtained by the glycosylation systems containing 20% DMSO. QU was not 

glycosylated by the immobilized enzyme nor by the free enzyme, indicating that 

the applied strategy was ineffective in this case. The apparent very low affinity of 

Gtf180-ΔN for QU is clearly not sufficiently compensated by increasing its 

concentration in the reaction mixture. Also the suppression of α-glucan synthesis 

by mutational engineering (Chapter 2) did not result in improved QU conversion 

degrees, only causing more sucrose hydrolysis (as determined by screening of 

the mutant library described in Chapter 2
99,110

). This indicates that specific 
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mutational engineering of Gtf180-ΔN’s active site is required to enhance the 

glycosylation of QU and other related flavonoids.       

 

4. Conclusions 

 

The relatively low operational stability of Gtf180-ΔN at high temperatures and in 

systems containing cosolvents and high acceptor substrate concentrations 

ultimately results in suboptimal acceptor substrate conversion degrees. By 

means of its immobilization on mesoporous silica particles, the activity of Gtf180-

ΔN under such conditions was substantially improved. The immobilized enzyme 

displayed enhanced activity at temperatures above 50 °C and in systems 

containing 20% DMSO, allowing the glycosylation of GA, CA and CT in systems 

containing much higher acceptor substrate concentrations. As a result, their 

conversion into glycosides was improved substantially: from 63% to 82%, from 

59% to 80%, and from 4% to 11%, for GA, CA and CT, respectively. The 

glycosylation of QU, a compound which was very poorly glycosylated by the free 

enzyme, was also not successful using immobilized Gtf180-ΔN in 20% DMSO. 

Suppressing α-glucan synthesis by enzyme engineering (Chapter 2) nor solvent 

engineering (Chapter 3) were effective strategies to enhance QU’s glycosylation, 

as this most probably requires specific mutational engineering of Gtf180-ΔN in 

order to increase its very low affinity for this molecule. Improving the 

glycosylation of related flavonoids, such as luteolin, or stilbenoids, such as 

resveratrol, will most probably demand the same strategy.  
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5. Supplementary information 

 

 

Figure S1. Successful cross-linking is indicated by the presence of a red color, caused by 

Rayleigh scattering.  
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Abstract 

 

Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-

potency natural sweeteners but suffer from a lingering bitterness. The 

Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its 

Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose 

as donor substrate. Structural analysis of the products by MALDI-TOF mass 

spectrometry, methylation analysis and NMR spectroscopy showed that both 

enzymes exclusively glucosylate the Glc(β1→C-19 residue of RebA, with the 

initial formation of an (α1→6) linkage. Docking of RebA in the active site of the 

enzyme revealed that only the steviol C-19 β-D-glucosyl moiety is available for 

glucosylation. Response surface methodology was applied to optimize the 

Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly 

productive process with a RebA conversion of 95% and a production of 115 g/L 

α-glucosylated products within 3 h. Development of a fed-batch reaction further 

improved the product yield to 270 g/L by suppressing α-glucan synthesis. 

Sensory analysis by a trained panel revealed that glucosylated RebA products 

have a superior taste profile compared to RebA, showing a significant reduction 

in bitterness. The Gtf180-ΔN-Q1140E glucansucrase mutant enzyme thus is an 

efficient biocatalyst for generating α-glucosylated RebA variants with improved 

edulcorant/organoleptic properties.  
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1. Introduction 

 

The world-wide increasing incidence of obesity, diabetes type II, cardiovascular 

diseases, and dental caries leads to an increased consumer demand for food 

products and beverages without high-calorie sugars
46

. Steviol glycosides are 

excellent natural alternatives for sucrose and synthetic sweeteners
185-189

. These 

non-calorie compounds are extracted from the leaves of the herb plant Stevia 

rebaudiana BERTONI, a rhizomatous perennial shrub belonging to the 

Asteraceae [Compositae] family
190,191

. Stevioside (~5-20% w/w of dried leaves) 

and rebaudioside A (RebA) (~2-5% w/w of dried leaves) are the most abundant 

steviol glycosides, followed in lower concentrations by rebaudioside B, C, D, E, 

F, M, steviolbioside, rubusoside and dulcoside A (Figure 1). Stevioside and RebA 

taste about 300 times sweeter than sucrose (0.4% aqueous solution). Steviol 

glycosides are approved as food additives in the USA since 2009 and they are 

on the European market (E 960, European Index) since December 2011
43

. The 

main drawback for their more successful commercialization as sweeteners 

however, is a lingering bitter aftertaste of several steviol glycosides, experienced 

by about half of the human population due to a genetic basis of taste 

perception
46,192

. 

 

Structurally, steviol glycosides have ent-13-hydroxykaur-16-en-19-oic acid as 

aglycon, also called steviol (Figure 1)
191,193

. The presence and composition of the 

different carbohydrate moieties at the C-19-carboxylic acid group (R1) and at the 

C-13-tert-hydroxyl group (R2) of steviol have a relationship with the sweetness as 

well as with the quality of taste of the steviol glycosides
52

. Sweetness increases 

and bitterness perception decreases with the total number of glycosyl residues
46

. 

It has to be noted however, that the correlations bitterness/structure and 

sweetness/structure of steviol glycosides are still not fully understood, particularly 

in combination with the interactions with the human taste receptors
46,192,194,195

. 
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Steviol glycoside R1 (C-19) R2 (C-13) 

Stevioside Glc(β1→ Glc(β1→2)Glc(β1→ 

Steviolbioside H Glc(β1→2)Glc(β1→ 

Rebaudioside A Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside B H Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside C Glc(β1→ Rha(α1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside D Glc(β1→2)Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside E Glc(β1→2)Glc(β1→ Glc(β1→2)Glc(β1→ 

Rebaudioside F Glc(β1→ Xyl(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside M Glc(β1→2)[Glc(β1→3)]Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rubusoside Glc(β1→ Glc(β1→ 

Dulcoside A Glc(β1→ Rha(α1→2)Glc(β1→ 

 

Figure 1. Structures of major steviol glycosides, occurring in the leaves of Stevia 

rebaudiana. Glucose (Glc), xylose (Xyl) and rhamnose (Rha) occur in the pyranose ring 

form. Glc and Xyl have D configuration and Rha L configuration. 

 

To improve the taste of steviol glycosides, especially for food applications, 

various (enzymatic) modifications of the carbohydrate moieties of steviol 

glycosides have been reported, mainly using cyclodextrin glycosyltransferase 
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(CGTase), α- and β-glucosidase, α- and β-galactosidase and β-fructosidase 

transglycosylation and β-glycosyltransferase glycosylation systems as 

biocatalysts
8
. In the context of our study, the reports on trans-α-glucosylation are 

of interest. CGTases are attractive enzymes, which catalyze coupling and 

disproportionation reactions, transferring glucose residues from starch or 

cyclodextrins to acceptor molecules, yielding Glc(α1→4) extensions. Although 

often high yields are obtained with steviol glycosides, CGTases have poor steviol 

C-13/C-19 site regiospecificity, producing mixtures of steviol glycoside 

derivatives with mostly (α1→4)-glucosylation at both carbohydrate moieties
51

. 

Several early studies have shown that both mono- and di-(α1→4)-glucosylation 

of the carbohydrate moiety at the steviol C-13 site of stevioside and rubusoside 

gave products with a remarkable improvement in both intensity and quality of 

sweetness. However, (α1→4)-glucosylation of the Glc(β1→ residue at the steviol 

C-19 site resulted in an increased bitter aftertaste and a lower sweetness 

intensity
52-54,196

. α-Glucosylation of stevioside using Biozyme L (β-amylase 

preparation, probably contaminated with an α-glucosidase) and maltose as donor 

substrate resulted in a product with a decreased sweetness, but a remarkable 

improvement in the quality of taste [Glc(α1→6) residue attached at the 

Glc(β1→C-19 residue], a product with a much lower sweetness [Glc(α1→6) 

residue attached to the terminal Glc(β1→2) residue of the β-sophorosyl-C-13 

unit] and a product with a bitter taste [Glc(α1→3) residue attached to the terminal 

Glc(β1→2) residue of the β-sophorosyl-C-13 unit]
60

.  

 

In order to obtain steviol glycoside derivatives with improved organoleptic 

properties, we studied the α-glucosylation potential of mutant glucansucrase 

enzymes of the generally recognized as safe (GRAS) bacterium Lactobacillus 

reuteri 180 on RebA. Glucansucrases (EC 2.1.4.5; glucosyltransferases, Gtfs) 

are extracellular enzymes catalyzing the synthesis of α-D-glucan polymers from 

the donor substrate sucrose, thereby introducing different ratios of glycosidic 

linkages [(α1→2), (α1→3), (α1→4), (α1→6)] in their glucan products, depending 

on the enzyme specificities
75,162

. 
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Recently, we have shown that the wild-type Gtf180-ΔN (N-terminally truncated) 

glucansucrase enzyme of L. reuteri 180 was able to glucosylate the steviol 

glycoside RebA, using sucrose as glucosyl donor substrate
69

. About 55% of 

RebA was glucosylated with up to eight α-D-glucosyl units attached (RebA-G). 

The formed RebA derivatives only had elongations at the steviol C-19 β-D-

glucosyl moiety, mainly with alternating (α1→6)- and (α1→3)-linked 

glucopyranose residues, starting with an (α1→6) linkage (RebA-G1). In the 

present study, we have screened our in-house collection of mutated Gtf180-ΔN 

glucansucrase enzymes for mutants with a better RebA glucosylating activity 

than the wild-type Gtf180-ΔN enzyme. One mutant was selected for more 

detailed studies and its biochemical characteristics and product profile were 

compared to wild-type Gtf180-ΔN. Glucosylated RebA products were isolated by 

flash chromatography and their structures were elucidated using MALDI-TOF 

mass spectrometry, methylation analysis and 1D/2D 
1
H/

13
C NMR spectroscopy. 

Furthermore, docking experiments with RebA and the available high-resolution 

3D structure of Gtf180
83

 were carried out to evaluate the experimental data. 

Response surface methodology was applied to optimize the reaction conditions 

of RebA glucosylation with the selected mutant. Finally, sensory evaluations 

were performed to determine the taste attributes of the novel α-glucosylated 

RebA derivatives. 

 

2. Materials and methods 

  

2.1. Glucansucrase enzymes 

 

Gtf180-ΔN is the 117-kDa N-terminally truncated (741 residues) fragment of the 

wild-type Gtf180 full-length protein, derived from L. reuteri strain 180
80

. In Gtf180-

ΔN-ΔV both the N-terminal variable domain and the N-terminal domain V 

fragment (corresponding to the first 793 N-terminal amino acids), and the C-

terminal domain V fragment (corresponding to the last 136 C-terminal amino 

acids) have been deleted
88

. The glucansucrase Gtf180-ΔN mutant enzymes were 
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constructed using QuikChange site-directed mutagenesis (Stratagene, La Jolla, 

CA)
80,88,97-100,102,197

 (Table SI). 

 

2.2. Standard reaction buffer 

 

All enzymatic reactions were performed at 37 °C in 25 mM sodium acetate (pH 

4.7), containing 1 mM CaCl2. 

 

2.3. Enzyme activity assays 

 

Enzyme activity assays were performed at 37 °C in reaction buffer with 100 mM 

sucrose. Samples of 100 μL were taken every min over a period of 8 min and 

immediately inactivated with 20 µL 1 M NaOH. The glucose and fructose 

concentrations were enzymatically determined by monitoring the reduction of 

NADP with the hexokinase and glucose-6-phosphate 

dehydrogenase/phosphoglucose isomerase assays (Roche Nederland BV, 

Woerden, The Netherlands)
167

. Determination of the release of glucose and 

fructose from sucrose allowed calculation of the total activity of the 

glucansucrase enzymes
166

. One unit (U) of enzyme is defined as the amount of 

enzyme required for producing 1 μmol fructose per min in reaction buffer, 

containing 100 mM sucrose, at 37 °C.  

 

2.4. Screening of (mutant) glucansucrases for α-glucosylation of RebA 

 

In an initial screening, six Gtf180-ΔN-derived mutants were compared to wild-

type Gtf180-ΔN by analyzing reaction products with high-performance liquid 

chromatography (HPLC). Then, an additional 76 Gtf180-ΔN mutants from our 

collection (Table SII) were screened and analyzed using thin-layer 

chromatography (TLC). Incubations of 3 h were performed in reaction buffer, 

containing ~1 mg/mL enzyme, 50 mM RebA (Sigma-Aldrich Chemie, Zwijndrecht, 

The Netherlands) and 1 M sucrose (for HPLC analysis) or 0.2 M sucrose (for 

TLC analysis). For HPLC analysis, 10 µL of the incubation mixture was diluted in 

250 µL 80% methanol and centrifuged for 2 min at 15,000 × g. Then, 40 µL of the 
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upper phase was injected on a Luna 10 μm NH2 column (250  4.6 mm; 

Phenomenex, Utrecht, The Netherlands). Separation was obtained at a flow-rate 

of 1 mL/min under gradient elution conditions (solvent A = acetonitrile; solvent B 

= 0.025% acetic acid in H2O), starting with a 2-min isocratic step of 70% solvent 

A followed by a linear gradient from 70 to 55% solvent A over 9 min and a final 3-

min washing step of 20% solvent A. HPLC analyses were performed using an 

UltiMate 3000 chromatography system, equipped with a VWD-3000 UV-vis 

detector (ThermoFisher Scientific, Amsterdam, The Netherlands; monitoring at 

210 nm). For TLC analysis, 1 µL of the enzymatic reaction mixtures was spotted 

on TLC sheets (Kieselgel 60 F254, 20  20 cm; Merck, Darmstadt, Germany), 

which were developed in n-butanol/acetic acid/water (2:1:1, v/v/v). After drying of 

the sheets, the bands were visualized by orcinol/sulfuric acid staining. 

 

2.5. Quantitative preparation of α-glucosylated RebA products 

 

Incubations of 84 mM RebA (Tereos PureCircle Solutions, Lille, France; 97% 

purity, HPLC grade) were performed in 50 mL reaction buffer with 282 mM 

sucrose donor substrate, using 5 U/mL Gtf180-ΔN-Q1140E enzyme, during 3 h. 

Fractionations of RebA-G were carried out by flash chromatography using a 

Reveleris X2 flash chromatography system (Büchi Labortechnik AG, Flawil, 

Switzerland) with a Reveleris C18 cartridge (12 g, 40 µm) with water (solvent A) 

and acetonitrile (solvent B) as the mobile phase (30 mL/min). The following 

gradient elution was used: 95% solvent A (0-2 min), 95-50% solvent A (2-20 

min), 50-95% solvent B (20-22 min), 95% solvent B (22-25 min). The collected 

fractions were evaporated in vacuo and subsequently freeze dried to remove the 

residual water.  

 

2.6. Design of response surface methodology experiment 

 

Response surface methodology
198

 was applied to optimize the glucosylation of 

RebA. A Box-Behnken design
199

 was generated implementing RebA 

concentration (mM), sucrose/RebA ratio and agitation rate (rpm) as factors. For 
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each of them low (-1) and high (+1) level values were assigned as follows: RebA 

concentration (50 mM) and (200 mM), sucrose/RebA ratio (1:1) and (4:1), 

agitation rate (0 rpm) and (200 rpm). The addition of 5 U/mL Gtf180-ΔN-Q1140E 

enzyme ensured a steady-state was reached within 3 h of incubation. The 

experimental design was generated and analyzed using JMP software (release 

12)
200

 and consisted of 15 experiments carried out at 50 mL scale in shake 

flasks, continuously mixed by shaking (Table SIII). Results were analyzed with 

HPLC (see below). The response surface analysis module of JMP software was 

applied to fit the following second order polynomial equation: 

 

𝑌̂ = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝐼

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑋𝑖
2

𝐼

𝑖=1

+  ∑ ∑ 𝛽𝑖𝑗𝑋𝑖

 

𝑗𝑖

𝑋𝑗  

 

where 𝑌̂ is the predicted response, 𝐼 is the number of factors (3 in this study), 𝛽0 

is the model constant, 𝛽𝑖 is the linear coefficient associated to factor 𝑋𝑖, 𝛽𝑖𝑖 is the 

quadratic coefficient associated to factor 𝑋𝑖
2 and 𝛽𝑖𝑗 is the interaction coefficient 

between factors 𝑋𝑖 and 𝑋𝑗. 𝑋𝑖 represents the factor variable in coded form: 

 

𝑋𝑐,𝑖 =
[𝑋𝑖 − (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2]

(ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤)/2
 

 

with 1 ≤ 𝑖 ≤ 𝐼, where 𝑋𝑐,𝑖 is the coded variable.  

 

For the HPLC analysis of the RebA and glucosylated RebA products, an Agilent 

ZORBAX Eclipse Plus C18 column (100 × 4.6 mm, 3.5 µm) was used with water 

(solvent A) and acetonitrile (solvent B) as the mobile phase. The flow rate and 

temperature were set at 1.0 mL/min and 40 °C, respectively. The following 

gradient elution was used: 5-95% solvent B (0-25 min), 95% solvent B (25-27 

min), 95-5% solvent B (27-30 min) and again 95% of solvent A (30-35 min). 

Detection was achieved with an ELS detector (evaporation temperature, 90 °C; 

nebulization temperature, 70 °C; gas flow rate, 1.6 SLM). Calibration of the 

obtained peaks for RebA and mono-α-glucosylated RebA (RebA-G1) was 
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accomplished using the corresponding standard curves. In this context, the 

concentration of multi-α-glucosylated product (RebA-G) at a specific time was 

calculated as the initial RebA concentration minus the RebA concentration at that 

time. Multi-glycosylated RebA product lacking RebA-G1 (defined as RebA-G2+) 

was equal to RebA-G minus RebA-G1.  

 

2.7. Methylation analysis, mass spectrometry and NMR spectroscopy 

 

For details of methylation analysis, gas-liquid chromatography – electron impact 

mass spectrometry (GLC-EIMS), matrix-assisted laser-desorption ionization time-

of-flight mass spectrometry (MALDI-TOF-MS), and 1D/2D 
1
H/

13
C (TOCSY, 

ROESY, HSQC) NMR spectroscopy, see ref
69

. 

 

2.8. Molecular docking of RebA in the active site of Gtf180-ΔN and Gtf180-

ΔN-Q1140E 

 

The X-ray crystal structure of Gtf180-ΔN complexed with maltose (PDB code: 

3KLL
83

) was used for docking by using LeadIT 2.1.8 from BiosolveIT
201

. The 

acceptor binding site was defined by manual selection and included the following 

amino acid residues: 935–941, 944, 964–968, 975–983, 985, 1023–1032, 1035, 

1061–1069, 1082–1093, 1096, 1111, 1129–1142, 1144, 1145, 1155, 1183, 1202, 

1204, 1407, 1409, 1411, 1412, 1443, 1446, 1456–1458, 1463–1466, 1504–1509, 

1511, 1526, 1527, and the water molecules numbered 7, 15, 45, 83, 106, 144, 

145, 172, 401, 432–436, 466, 469, 470, 527, 572, 605, 648, 666, which have at 

least two interactions. The crystal structure of rebaudioside A.4H2O.1CH3OH was 

taken from the literature (CSD entry: DAWCEL)
202

, and the water and methanol 

were removed. The default settings were used for docking, except for the 

following features: the docking strategy was chosen to be driven by Entropy 

(Single Interaction Scan), a hard enzyme was used (maximum allowed overlap 

volume: 2 Å) and the maximum number of solutions per fragmentation was 

increased to 400. In total, 30 poses were generated with LeadIT, using the 

scoring function HYDE in SeeSAR
203

, ranked according to their estimated affinity; 

finally, poses with torsions flagged in red were removed. Visual inspection of the 



Chapter 4: Glucosylation of rebaudioside A 
 

 

117 

 

residual poses and deletion of unreliable poses resulted in a trustable set of 

poses. The model of mutant Q1140E, which was used for the docking 

experiment, was built in PyMOL
204

 and the rotamer showing the smallest number 

of steric clashes was chosen. 

 

2.9. Sensory analysis 

 

Panellists were selected on basis of their performance on basic taste 

recognitions, ability to ascertain degrees of differences for specific taste stimuli at 

different concentrations and repeatability
205

, as verified by triangle tests and Wald 

sequential analysis
206

. Following the selection, the panel was trained over a 6-

month period. In a first session, the panellists had to taste RebA solution at 10% 

(w/w) sucrose equivalent level. Their own vocabulary was used to describe taste 

and off-tastes as well as after tastes. In the second session, the following 

attributes were selected from the first session and from literature
207-209

: 

sweetness, liquorice, astringency and bitterness. In the following months, training 

sessions were alternated with discussion sessions to agree on scoring of 

sweetness, off-tastes, aftertastes and lingering on a 15 point hedonic scale, and 

evaluation protocol. 

 

The actual Quantitative Descriptive Analysis (QDA) was performed in individual 

tasting booths at the UGent Sensolab (Belgium) by the trained panel (9 persons). 

The fixed evaluation protocol with standardized vocabulary was applied. Firstly, 

taste (sweetness, liquorice, astringency and bitterness) was evaluated by swirling 

the sample in the mouth for 5 sec after which the sample was expectorated. 

Secondly, aftertaste was evaluated 10 sec after swallowing the solution. Next, 

lingering based on the maximum taste intensity was rated 1 min later. Sucrose 

reference solutions (5%, 7.5% and 10% sucrose scoring 5, 7.5 and 10, 

respectively) were provided. Water (Spa Reine) and plain crackers were used as 

palate cleansers between sampling. All samples were evaluated in duplicate.  

 

Statistical analyses were performed with SPSS 23 (SPSS Inc., Chicago, USA). 

All tests were done at a significance level of 0.05. One-Way ANOVA was used to 
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investigate any significant difference between the solutions. Testing for equal 

variances was executed with the Modified Levene Test. When conditions for 

equal variance were fulfilled, the Tukey test
210

 was used to determine differences 

between samples. In case variances were not equal, the Games-Howell test was 

performed
211

. 

 

Three different glucosylated products were examined: multi-α-glucosylated 

product, containing residual RebA (RebA-G), mono-α-glucosylated product 

(RebA-G1) and RebA-G lacking RebA and RebA-G1 (RebA-G2+). Note that 

RebA-G, as defined here, contains a very minor amount of residual RebA, in 

contrast to the RebA-G as quantified by HPLC analysis.  

 

3. Results  

 

3.1. Screening of wild-type Gtf180-ΔN and mutant glucansucrase enzymes 

for α-glucosylation of RebA 

 

The RebA glucosylation activity of 82 mutant enzymes of Gtf180-ΔN (Tables SI 

and SII) was compared to that of the Gtf180-ΔN wild-type enzyme. To this end, 

50 mM RebA was incubated for 3 h with ~1 mg/mL of each enzyme in reaction 

buffer, containing either 0.2 M sucrose (for TLC product analysis) or 1 M sucrose 

(for HPLC product analysis). It has to be noted that the in vivo and most 

important activity of glucansucrases is the synthesis of α-D-glucan polymers and 

oligosaccharides from the donor substrate sucrose
75

. During the 

transglucosylation reaction with acceptor substrates such as steviol glycosides, 

the formation of α-gluco-oligo/polysaccharides is observed as a side-reaction, 

occurring to a varying extent depending on the specific (mutant) glucansucrase. 

The TLC (Figure S1) and HPLC (Figure S2) profiles obtained after the different 

enzyme incubations with RebA and sucrose clearly showed that most of the 

Gtf180-ΔN mutants could α-glucosylate RebA in similar amounts (based on spot 

intensity) as the wild-type Gtf180-ΔN enzyme (TLC lane 77). Mutant A978P (TLC 

lane 64) and mutants Q1140E and S1137Y (Figure S2), however, converted 
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more RebA than the wild-type enzyme, as can been seen by a smaller amount of 

residual RebA after the 3 h incubation. Some mutants, i.e. L981A (TLC lane 31), 

W1065L (TLC lane 71) and W1065Q (TLC lane 72), converted comparable 

amounts of RebA as the wild-type enzyme, but showed almost no polymerization 

activity, as indicated by the absence of the α-gluco-oligo/polysaccharide tails on 

TLC. However, previously it has been shown that the mutations L981A, W1065L 

and W1065Q had a dramatic effect on the overall enzyme activity, resulting in a 

93, 87 and 93% decrease at 100 mM sucrose, respectively
99,102

. Of all mutants 

tested, Q1140E showed the highest RebA conversion (Figure S2), and was 

therefore chosen for further studies, and compared to the wild-type Gtf180-ΔN 

enzyme. Mutant Gtf180-ΔN-Q1140E contains a single amino acid substitution 

(from a glutamine to a glutamate) close to the transition-state-stabilizing residue 

D1136
97

.  

 

3.2. Analytical details of α-glucosylated RebA products prepared with 

Gtf180-ΔN-Q1140E 

 

For structural analysis purposes, a large-scale preparation of α-glucosylated 

RebA products was performed using 84 mM RebA, 282 mM sucrose and 5 U/mL 

Gtf180-ΔN-Q1140E enzyme (pH 4.7, 3 h, 37 °C). The applied incubation 

conditions, shown to be optimal, were taken from the Box-Behnken experimental 

design study, as described in the section “Optimization of the synthesis of α-

glucosylated RebA” (see below). The used commercial RebA substrate is of high 

purity, as indicated by its 
1
H NMR spectrum (Figure S3; for the assignment of the 

resonances, see ref
69

), MALDI-TOF mass spectrum (Figure S4) and methylation 

analysis (Table SIV). Contamination with other steviol glycosides was not 

detected, which is also of importance for the sensory analysis.  

  

MALDI-TOF-MS analysis of the total RebA-incubation mixture (RebA-G) showed 

a series of quasi-molecular ions [M+Na]
+
, revealing remaining RebA (m/z 989.7) 

and extensions of RebA with one (major peak, m/z 1152.9) up to eight glucose 

residues (m/z 2287.9) (Figure S4). The 
1
H NMR spectrum of RebA-G (Figure 2A) 

showed the typical steviol core signal pattern as seen for RebA (Figure S3). 
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Besides the four β-anomeric 
1
H signals related to RebA (for structure, see Figure 

3; Glc1,  5.425; Glc2,  4.700; Glc3,  4.801; Glc4,  4.700), one additional α-

anomeric 
1
H signal of similar intensity at  4.870 (Glc5) stemming from mono-α-

glucosylated RebA was observed, together with very minor α-anomeric signals 

(marked with * in Figure 2A) at  5.42 and  5.27, and a H-5 signal at  4.10, 

reflecting the presence of higher α-glucosylated RebA products (<10%). 

 

Flash chromatography fractionations were carried out to separate mono-α-

glucosylated RebA (major fraction RebA-G1; MALDI-TOF-MS analysis: [M+Na]
+
, 

m/z 1152.9; Figure S4) from higher α-glucosylated RebA products (pooled very 

minor fractions RebA-G2+) and residual RebA. The 
1
H NMR spectrum of RebA-

G1 (Figure 2B) is identical to that reported recently for RebA-G1, prepared with 

the wild-type Gtf180-N enzyme
69

. The very minor pool of higher α-glucosylated 

RebA fractions, RebA-G2+, was not used for further structural analysis. In 

summary, it can be concluded that the mutant Gtf180-ΔN-Q1140E enzyme 

synthesizes as dominant product (77.7% in RebA-G) the same mono-α-

glucosylated RebA derivative RebA-G1 as shown for the wild-type Gtf180-ΔN 

enzyme, i.e. a product with a specific elongation of the steviol C-19 β-D-Glcp 

moiety of RebA with an α-D-Glcp-(1→6) residue (Figure 3). Taking into account 

the structural data of the α-glucosylated RebA products isolated in the wild-type 

Gtf180-ΔN/RebA/sucrose incubation study
69

, combined with the above-

mentioned extra minor signals in the 
1
H NMR spectrum of RebA-G (Figure 2A), it 

can be concluded that also in the case of the Gtf180-ΔN-Q1140E/RebA/sucrose 

incubation, RebA-G1 is further extended at the C-19 site with mainly alternating 

(α1→3)- and (α1→6)-linked D-Glcp residues. The methylation analysis data of 

RebA-G and RebA-G1, presented in Table SIV, support the NMR data. 
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Figure 2. 500-MHz 
1
H NMR spectra of (A) RebA-G and (B) RebA-G1, recorded in D2O at 

310 K. The positions of the anomeric protons of the glucose residues (see Figure 3) are 

indicated, as well as the steviol C-17 protons in the anomeric region. Products were 

synthesized using the mutant Gtf180-ΔN-Q1140E enzyme. Spectrum B is identical to that 

of RebA-G1, prepared with the wild-type Gtf180-ΔN enzyme, and recently published with 

a complete assignment of resonances
69

. * signals stemming from higher α-glucosylated 

RebA products. Chemical shifts () are expressed in ppm by reference to internal acetone 

( 2.225). 
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Figure 3. Major reaction product RebA-G1, obtained from the incubation of RebA with 

wild-type Gtf180-ΔN and mutant Gtf180-ΔN-Q1140E enzymes, in the presence of 

sucrose. 

 

3.3. Optimization of the synthesis of α-glucosylated RebA 

 

Batch reaction. RebA is only sparingly soluble in water (< 10 mM) at room 

temperature, however, it readily forms supersaturated solutions in water on 

simple stirring
212

. It was observed that up to 200 mM RebA could be dissolved at 

37 °C before it started precipitating at 90 min. Hence, an efficient conversion of 

200 mM RebA into glucosylated products has to be achieved within 90 min in 

order to prevent a suboptimal glucosylation yield caused by precipitation of 

RebA. Important factors for an optimal conversion of RebA into α-glucosylated 

RebA (RebA-G) are the RebA concentration, the ratio of donor substrate sucrose 

over acceptor substrate RebA (D/A ratio) and the agitation speed.  

 

A response surface methodology (RSM) using a Box-Behnken experimental 

design was performed considering three factors: X1, RebA concentration (mM); 

X2, D/A ratio; X3, agitation speed (rpm). The addition of 5 U/mL Gtf180-ΔN-

Q1140E enzyme ensured that a steady state in RebA conversion was obtained 

well before precipitation could occur for the highest RebA concentration (90 min). 

The results of the Box-Behnken experimental design are summarized in Table 

SIII. The analysis of variance (ANOVA) showed R
2
 values of 98.8%, 78.0% and 
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99.3% for RebA conversion degrees (%), RebA-G1/RebA-G ratio (%) and 

amount of RebA-G synthesized (mM), respectively. The effects of the factors 

were analyzed applying the response surface contour plots (Figure 4).  

 

 

Figure 4. Response surface methodology contour plots of RebA glucosylation by Gtf180-

ΔN-Q1140E, showing the effects of RebA concentration (mM), D/A ratio (ratio of donor 

substrate sucrose over acceptor substrate RebA) and agitation (rpm) on (A) RebA 

conversion degree (%); (B) RebA-G1/RebA-G ratio (%); (C) RebA-G synthesized (mM).  

 

In summary, RebA conversion degrees decreased with increasing RebA 

concentrations, independent of the sucrose concentration (Figure 4A1). The 

RebA conversion degrees displayed an optimum at a D/A ratio of 2.5-3.5, 

depending on the RebA concentration (Figures 4A1-A3). Increasing the D/A ratio 

initially resulted in improved RebA conversion degrees, reflecting that more 

sucrose was available to drive the reaction. A further increase of the D/A ratio 

resulted in less RebA glucosylation in favor of more α-glucan synthesis. Agitation 
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had only a slight effect on RebA conversion degrees and amount of RebA-G 

synthesized (Figures 4A2-C2). Agitation influenced the RebA-G1/RebA-G ratio 

more strongly: the highest ratios were observed at an agitation speed of 

approximately 185 rpm (Figures 4B2-B3). Furthermore, low D/A ratios favored 

high RebA-G1/RebA-G ratios, since less donor substrate sucrose was available 

to glucosylate RebA-G1 into multi-glucosylated products (Figure 4B1). 

 

The resulting Box-Behnken model (Table SIII) was subsequently used for the 

optimization of the reaction conditions. An efficient conversion of RebA into 

RebA-G yielding a maximal amount of RebA-G (at least 95%) was aimed for. The 

model predicted the synthesis of 80 mM RebA-G in case the following conditions 

were applied: 5 U/mL Gtf180-ΔN-Q1140E, 84 mM RebA, 282 mM sucrose and 

185 rpm. The validation test resulted in the synthesis of 79 mM (or 115 g/L) 

RebA-G with a RebA-G1/RebA-G ratio of 77.7% (Figure 5A), which was in very 

good agreement with the prediction. Applying identical conditions for the 

glucosylation of RebA with wild-type Gtf180-ΔN resulted only in the conversion of 

49.7% RebA, yielding 42 mM RebA-G with a RebA-G1/RebA-G ratio of 54.4% 

(Figure 5B). Hence, the Q1140E-mutant not only converted more RebA into 

RebA-G than wild-type Gtf180-ΔN (94.5% vs. 49.7%), its RebA-G consisted 

mostly of mono-α-glucosylated product RebA-G1 (77.7% vs. 54.4%). Compared 

to wild-type (45.6%), Q1140E produced less RebA-G2+ (22.3%), which is the 

minor fraction of the RebA glucosides with 2 and more glucose units.  

 

Fed-batch reaction. The main remaining bottleneck for RebA glucosylation with 

Gtf180-ΔN-Q1140E is the synthesis of α-glucans at high sucrose concentrations, 

preventing complete RebA glucosylation at high RebA concentrations (Figure 

4A1). This issue was addressed by performing a fed-batch reaction, in which 

sucrose was added to the reaction in fixed intervals of 20 min in order to keep the 

sucrose concentration low and hence suppress α-glucan formation as much as 

possible. The addition of 50 U/mL enzyme ensured complete usage of sucrose 

within 20 min and complete conversion of RebA within 3 h. Figure 5C represents 

RebA glucosylation at 200 mM RebA and an average sucrose concentration of 

50 mM (fluctuating between 0-100 mM). In comparison to the batch reaction (200 
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mM RebA, 570 mM sucrose; Figure 5D), the RebA fed-batch conversion (Figure 

5C) increased from 76.4% to 94.1%, attributed to a further suppressed α-glucan 

synthesis. The product yield consequently increased to 188 mM (or 270 g/L) 

RebA-G (Figure 5C). 

 

Figure 5. Time course of RebA glucosylation by (A) Gtf180-ΔN-Q1140E at optimal batch 

conditions (84 mM RebA; 282 mM sucrose; 5 U/mL), (B) Gtf180-ΔN at optimal batch 

conditions (84 mM RebA; 282 mM sucrose; 5 U/mL), (C) Gtf180-ΔN-Q1140E at optimal 

fed-batch conditions (200 mM RebA; 50 mM sucrose; 50 U/mL) and (D) Gtf180-ΔN-

Q1140E at batch conditions (200 mM RebA; 570 mM sucrose; 5 U/mL). ● RebA, ○ RebA-

G1, ▼ RebA-G2+, ▽ RebA-G. For the definition of these products, see Methods “Design of 

response surface methodology experiment”. 
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3.4. Docking of RebA in the active site of wild-type Gtf180-ΔN and mutant 

Q1140E 

 

To gain further insight into the α-glucosylation of RebA by the Gtf180-ΔN wild-

type enzyme and its mutant Gtf180-ΔN-Q1140E, in silico docking studies
201

 were 

performed. To this end, the crystal structure of RebA as reported by ref
202

 was 

used. Docking of RebA into the wild-type Gtf180-ΔN active site (X-ray crystal 

structure of a complex of Gtf180-ΔN with maltose; PDB code: 3KLL
83

) afforded 

the pose as depicted in Figure 6A, showing that only the steviol C-19 β-D-

glucosyl moiety (Glc1 in Figure 3) of RebA is available for glucosylation, 

especially at the HO-6 group, due to its orientation. Hydrogen bonding of Glc1 

HO-6 with the catalytic residue D1136 possibly supports deprotonation in the 

glycosylation step (Figure 6C). A π–π-stacking interaction with W1065 as well as 

hydrogen bonding of Glc1 HO-4 and HO-3 to the backbone of D1136 was 

observed and appears to hold the Glc1 residue in place. 

 

Docking of RebA into the active site of the mutant Gtf180-ΔN-Q1140E afforded 

the pose as depicted in Figure 6B. The binding of the steviol C-19 β-D-glucosyl 

moiety (Glc1 in Figure 3) is identical to the wild-type enzyme, but fewer hydrogen 

bonds of the steviol C-13 trisaccharide moiety (Glc2, Glc3 and Glc4 in Figure 3) 

were observed (Figure 6D). The modified binding pocket, resulting from the 

mutation, does not influence the binding of the steviol C-19 β-D-glucosyl unit, 

given that the mutation is not in direct proximity of the monosaccharide. The 

experimental observation that mutant Q1140E leads to more efficient α-

glucosylation could be explained by the possibility that deprotonation of Glc1 HO-

6 is aided by a water-mediated hydrogen bond between Glc1 HO-6 and E1140 

as depicted in Figure 6B. The finding that the Q1140E mutant shows mostly 

mono-glucosylation instead of oligo-glucosylation is currently difficult to explain 

on the basis of these docking results.  
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Figure 6. Docking poses of RebA into wild-type Gtf180-ΔN (PDB: 3KLL; A and C) and 

mutant Q1140E (B and D). The steviol part is indicated in yellow, the Glc1(β1→ residue at 

the steviol C-19 site in green and the Glc3(β1→2)[Glc4(β1→3)]Glc2(β1→ trisaccharide at 

the steviol C-13 site in orange. For monosaccharide coding system, see Figure 3. 

 

3.5. Sensory analysis of glucosylated RebA products 

 

A sensory analysis of aqueous solutions sweetened with RebA and glucosylated 

RebA products, prepared with the mutant Gtf180-ΔN-Q1140E enzyme, was 

performed by a trained panel, evaluating 9 different taste attributes. Three 

different glucosylated products were examined: multi-α-glucosylated product, 

containing residual RebA (RebA-G), mono-α-glucosylated product (RebA-G1) 

and RebA-G lacking RebA and RebA-G1 (RebA-G2+). The mean scores of the 

attributes of the sweetened water solutions are shown in Figure 7.  
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The glucosylated RebA products were all significantly less bitter than RebA, 

displaying almost no bitterness at all. Equally important, RebA-G and RebA-G1 

retained the very high sweetness inherent to RebA. In contrast, RebA-G2+ was 

significantly less liquorice, astringent and lingering than RebA but also 

significantly less sweet, retaining only half of the RebA sweetness. The sensory 

analysis also revealed that RebA-G and RebA-G1 have very similar taste 

profiles, both combining a very high sweetness with a very low bitterness and 

other off-flavors. So, the small amounts of RebA and RebA-G2+ in RebA-G 

apparently do not influence the taste profile, when compared with RebA-G1. 

Therefore, RebA-G is the preferred product for commercialization, since it can be 

produced more economically, not requiring further purification and separation 

steps. 

 

 

Figure 7. Sensory analysis of RebA, RebA-G, RebA-G1 and RebA-G2+.
 A,B

: different 

letters indicate significant differences (p<0.05) between solutions following one-way 

ANOVA and post-hoc test. 
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4. Discussion 

 

The Stevia rebaudiana plant is a major source of high-potency natural 

sweeteners (steviol glycosides) for the growing natural food market of the 

future
186

, however, due to their slight bitterness and unpleasant and lingering 

aftertaste, large-scale application of steviol glycosides is still hampered. In the 

past, several attempts have been made to improve the quality and sweet taste of 

steviol glycosides by modifying the carbohydrate moieties at the C-13 tert-

hydroxyl and the C-19 carboxylic acid functions of steviol via transglycosylation 

reactions
8
. 

 

In the present study, we have successfully used the glucansucrase mutant 

enzyme Gtf180-ΔN-Q1140E from Lactobacillus reuteri 180 (with sucrose as 

donor substrate) to glucosylate the steviol glycoside RebA, an important Stevia 

component. In a screening of 82 mutant enzymes of Gtf180-N, mutant Q1140E 

was selected for further studies and compared to the wild-type Gtf180-ΔN 

enzyme. At optimal conditions, mutant Q1140E achieved ~95% RebA conversion 

into mainly mono-α-glucosylated RebA product RebA-G1 (Figure 3), compared to 

only 55% conversion by the wild-type enzyme. Under batch conditions, a high 

product yield of 115 g/L RebA-G (79 mM) was obtained within 3 h (from 84 mM 

RebA), applying only 5 U/mL of the Q1140E mutant enzyme. The product yield 

could even be enhanced to 270 g/L RebA-G (188 mM; from 200 mM RebA) by 

adopting a fed-batch reaction with stepwise addition of sucrose. This reduced 

availability of sucrose effectively suppressed the formation of α-gluco-

oligo/polysaccharides. Instead, sucrose was mainly used as donor substrate for 

RebA glycosylation by the Q1140E enzyme, yielding more RebA α-glucosides.   

  

The Gtf180-ΔN-Q1140E mutant glucosylated RebA specifically at the steviol C-

19 position, introducing a Glc(α1→6) residue at the ester-linked Glc(β1→ 

residue. This finding is in line with the present knowledge about the wild-type 

Gtf180-ΔN enzyme, which also specifically elongates the C-19 glucose residue 

with mainly alternating (α1→6)- and (α1→3)-linked glucose units
69

. In contrast to 
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the modified steviol glycosides prepared by incubation with CGTases, thereby 

introducing only (α1→4)-linked glucose residues, the (α1→3) and (α1→6) 

linkages are resistant to hydrolysis by the human amylolytic enzymes in saliva, 

which may prolong the sweet taste in the mouth.  

 

Molecular docking studies were performed to gain insight into the glucosylation 

mechanism of RebA at the molecular level and to elucidate how a single amino 

acid change in Gtf180-ΔN, namely Q1140E, significantly improved RebA 

conversion. Docking of RebA into the active site of the Gtf180-ΔN wild-type 

enzyme indicated that only its steviol C-19-ester-linked Glc(β1→ residue is 

available for glycosylation. The Q1140E mutation is predicted not to affect the 

orientation and position of RebA in the active site, supporting the experimental 

observation that both enzymes specifically α-glucosylate RebA at the 

Glc1(β1→C-19 residue, and not at the Glc3(β1→2)[Glc4(β1→3)]Glc2(β1→C-13 

trisaccharide (Figure 3). Furthermore, the docking results showed that Glc1 HO-6 

and not Glc1 HO-3 of the Glc1(β1→C-19 residue of RebA is prominently 

available for glucosylation. This is in agreement with the experimental results that 

both wild-type and mutant Gtf180-ΔN enzymes attach the first Glc residue (Glc5) 

exclusively via an (α1→6)-linkage. A faster and more efficient glucosylation of 

RebA was obtained by replacement of glutamine with the more negatively 

charged glutamate at position 1140 (mutant Q1140E). Conceivably, 

deprotonation of Glc1 HO-6 is aided by a water-mediated hydrogen bond 

between Glc1 HO-6 and glutamate, which is absent with glutamine at position 

1140 (Figure 6). The finding that Q1140E shows mostly mono-glucosylation is 

currently difficult to explain on basis of the docking results. Elucidation of the 

Q1140E mutant protein 3D structure, followed by a comparison of the Gtf180-ΔN 

wild-type and mutant Q1140E structures, ideally in complex with RebA, may 

shed more light on the observed differences in RebA glucosylation.  

 

An important finding in our study was that the multi-glucosylated RebA product 

(RebA-G) had a significantly reduced bitterness compared to RebA. This 

improved steviol glycoside product mixture thus displays appealing sensory 

properties and is likely to find application as a functional food ingredient. This 
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study also shows that Gtf180-ΔN-Q1140E is a very efficient catalyst for α-

glucosylation of steviol glycosides.  

 

5. Supplementary information 

 

Table SI. Survey of wild-type glucansucrase Gtf180-ΔN of L. reuteri 180, and mutants 

derived, evaluated in this study. The 3-letter code DHT represents mutating amino acid 

residues D1085, R1088, and N1089 to D, H, and T, respectively. The same is valid for the 

other mutants shown with their 3-letter codes. 

Mutation   Feature Ref 

Gtf180-ΔN   wild-type; N-terminally truncated 80 

Gtf180-ΔN-ΔV   domain V deletion mutant 88 

PNS (V1027P:S1137N:A1139S)   triple mutant 197 

Q1140E/A/H, S1137Y   near transition state stabilizing residue 

D1136  

97 

L940G/M/C/A/S/E/F/W   near acceptor subsite +1 98 

L938A/S/F/K/M, A978F/S/G/L/P/Y, 

L981A/N/K, D1028Y/W/L/K/G/N, 

N1029Y/R/G/P/T/M 

  near acceptor subsite +1 99 

DHT, NRL, VKG, YTS, ETL, AAA, MYM, 

FFF, DED, LLL, D1085Y/V/A/E/H/L/Q, 

R1088E/W/T/N/G/H/K, 

N1089Y/G/S/L/R/D/P 

  near acceptor subsite +2 100 

W1065F/K/L/Q/G/T/E/F   near acceptor subsite +1 and +2 102 

ΔV L938N   L938 mutation in Gtf180-ΔN-ΔV unpublished 

ΔV L940E/F   L940 mutations in Gtf180-ΔN-ΔV 88 
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Table SII. Gtf180-ΔN mutants, screened for their RebA α-glucosylation potential with 

sucrose as donor substrate. Numbers shown here correspond to the TLC profiles (Figure 

S1). The 3-letter code DHT represents mutating amino acid residues D1085, R1088, and 

N1089 to D, H, and T, respectively. The same is valid for the other mutants shown with 

their 3-letter codes. 

1. DHT 21. N1089D 41. D1085A 61. A978S 

2. NRL 22. N1089P 42. D1085E 62. A978G 

3. VKG 23. L940G 43. D1085H 63. A978L 

4. YTS 24. L940M 44. D1085L 64. A978P 

5. ETL 25. L940C 45. D1085Q 65. A978Y 

6. AAA 26. L940A 46. R1088H 66. ΔV L938N  

7. MYM 27. L940S 47. R1088K 67. ΔV L940E 

8. FFF 28. L940E 48. D1028Y 68. ΔV L940F 

9. DED 29. L940F 49. D1028W 69. W1065F 

10. LLL 30. L940W 50. D1028L 70. W1065K 

11. R1088E 31. L981A 51. D1028K 71. W1065L 

12. R1088W 32. L981N 52. D1028G 72. W1065Q 

13. R1088T 33. L981K 53. D1028N 73. W1065G 

14. R1088N 34. L938A 54. N1029Y 74. W1065T 

15. R1088G 35. L938S 55. N1029R 75. W1065E 

16. N1089Y 36. L938F 56. N1029G 76. W1065F 

17. N1089G 37. L938K 57. N1029P 77. Gtf180-ΔN 

18. N1089S 38. L938M 58. N1029T - no enzyme 

19. N1089L 39. D1085Y 59. N1029M     

20. N1089R 40. D1085V 60. A978F     
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Table SIII. Box-Behnken experimental design and results for the variables studied. 

Second-degree polynomial equation with coefficients of each factor is given for RebA 

conversion (%), RebA-G1/RebA-G (%) and amount of RebA-G synthesized (mM). X1, 

RebA concentration (mM); X2, D/A ratio; X3, agitation speed (rpm). 

 
Pattern X1 X2 X3 

RebA conversion           

(%) 

RebA-G1/RebA-G 

(%) 
RebA-G (mM) 

1 +0+ 200 2.5 200 73.8 76.3 147.6 

2 0−+ 125 1 200 64.3 83.4 80.6 

3 −0+ 50 2.5 200 94.1 77.2 47.1 

4 0−− 125 1 0 63.4 80 79.3 

5 0 200 4 100 66.6 74.8 133.2 

6 −0− 50 2.5 0 97 67.7 48.6 

7 −+0 50 4 100 96.5 75.8 48.3 

8 0+− 125 4 0 82.7 72.6 103.4 

9 −−0 50 1 100 67.4 85 33.8 

10 0 125 2.5 100 85.5 78.9 106.9 

11 +−0 200 1 100 60.7 75.6 121.4 

12 0 125 2.5 100 85.4 78 106.8 

13 0 125 2.5 100 85.4 78.5 106.8 

14 0++ 125 4 200 88 72.2 110 

15 +0− 200 2.5 0 69.1 77 138.2 

RebA conversion = 85.4333 - 10.6000X1 + 9.7500X2 + 1.000X3 - 5.8000X1X2 + 

1.9000X1X3 + 1.1000X2X3 - 1.8667X1
2
 - 10.7667X2

2
 - 0.0667X3

2
.  

RebA-G1/RebA-G = 78.4333 – 0.2375X1 – 3.5375X2 + 1.5250X3 + 2.1250X1X2 – 

2.5500X1X3 – 0.8500X2X3 – 1.6292X1
2
 + 0.9708X2

2
 - 2.2542X3

2
.  

RebA-G = 106.8333 + 45.3250X1 + 9.9750X2 + 1.9750X3 - 0.6750X1X2 + 2.7250X1X3 + 

1.3250X2X3 – 10.3042X1
2
 – 12.3542X2

2
 – 1.1542X3

2
.  
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Table SIV. Methylation analysis of the carbohydrate moieties in RebA and α-glucosylated 

RebA products RebA-G and RebA-G1.
 
 

Alditol 

acetate 
Rt

a
 

Structural 

feature 

Peak area (%) 

RebA RebA-G RebA-G1 

2,3,4,6-Hex
b
 1.00 Glcp(1→ 74 58 61 

2,4,6-Hex 1.16 →3)Glcp(1→ - 3 - 

3,4,6-Hex 1.18 →4)Glcp(1→ - tr
c
 tr

c
 

2,3,4-Hex 1.22 →6)Glcp(1→ - 17 18 

4,6-Hex 1.32 →2,3)Glcp(1→ 26 20 21 

2,4-Hex 1.39 →3,6)Glcp(1→ - 2 - 

a
 Rt, retention time relative to 1,5-di-O-acetyl-2,3,4,6-tetra-O-methylglucitol (1.00) on GLC. 

b
 2,3,4,6-Hex = 1,5-di-O-acetyl-2,3,4,6-tetra-O-methylglucitol-1-d. etc.  

c
 tr = trace (<2%). 
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Figure S1. TLC substrate/product profiles after a 3 h incubation at 37 °C of a buffer 

solution (pH 4.7) containing 50 mM RebA, 0.2 M sucrose and ~1 mg/mL wild-type Gtf180-

ΔN (lane 77) or Gtf180-ΔN mutant enzymes.  

 



Chapter 4: Glucosylation of rebaudioside A 

 

136 

 

 

Figure S2. HPLC substrate/product profiles after a 3 h incubation at 37 °C of a buffer 

solution (pH 4.7) containing 50 mM RebA, 1 M sucrose and ~1 mg/mL wild-type Gtf180-

ΔN, wild-type Gtf180-ΔN-ΔV or Gtf180-ΔN mutant enzymes. RebA-G: total amount of α-

glucosylated RebA product. RebA-G1: mono-α-glucosylated RebA.  
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Figure S3. 500-MHz 
1
H NMR spectrum of commercial RebA, supplied by Tereos 

PureCircle, recorded in D2O at 310 K. The positions of the anomeric protons of the 

glucose residues (Figure 3) are indicated, as well as the steviol C-17 protons in the 

anomeric region. The spectrum is identical to that of commercial RebA, supplied by 

Aldrich-Sigma Chemie, and recently published with a complete assignment of 

resonances
69

.  

 

 

Figure S4. MALDI-TOF mass spectra of RebA, RebA-G and RebA-G1. 
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Abstract 

 

The adverse health effects of sucrose overconsumption, typical for diets in 

developed countries, necessitate the use of low-calorie sweeteners. Since their 

approval by the European Commission in 2011, steviol glycosides have 

increasingly been used as high-intensity sweetener in food products. The most 

prevalent steviol glycoside in the leaves of Stevia rebaudiana is stevioside. Due 

to its lingering bitterness and off-flavors, it has found limited applications in food 

products, as the better tasting rebaudioside A (RebA) is preferred. Enzymatic 

glucosylation of stevioside is a well-known strategy to reduce this bitterness. Up 

to date, many glucosylation reactions of stevioside or RebA suffer from low 

productivities. In this chapter, the optimized α-glucosylation of stevioside with 

glucansucrase Gtf180-ΔN-Q1140E, previously shown to efficiently glucosylate 

RebA as well, is reported. The structures of the novel steviol glycosides were 

elucidated by NMR spectroscopy, mass spectrometry, and methylation analysis, 

revealing that stevioside was mainly glucosylated at the C-19 glucosyl moiety. In 

contrast to RebA glucosylation, minor products were also glucosylated at the C-

13 site. Sensory analysis of the glucosylated stevioside products by a trained 

panel revealed significant reductions in bitterness and off-flavors compared to 

stevioside, while the typical intensive sweetness of steviol glycosides was 

retained.  
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1. Introduction 

 

Over the past decade, Western society has increasingly been confronted with 

lifestyle diseases such as type 2 diabetes, ischaemic heart attacks and various 

cardiovascular diseases. The cost for society in Europe is estimated to be 2% to 

4% of the total healthcare cost
213

. The risk to suffer from lifestyle diseases 

increases significantly when the BMI is higher than 25 kg/m
2
 
214,215

. A study from 

Calle et al.
216

 even revealed that 14% to 20% of all cancer deaths may also be 

related to overweight or obesity. Important causes of overweight are a decrease 

of physical activity and inappropriate dietary patterns. Moreover, an excessive 

sugar intake appears to be directly associated with an increase in body weight
217

. 

A wider array of sweet food products with less or even no sugar content is 

consequently a necessity in order to reduce the prevalence of lifestyle diseases.  

 

Consumers are more and more aware of the relationship between diet-related 

diseases and healthy foods but are nevertheless not so eager to decrease their 

intake of sweet food products
218

. In addition, the ‘natural’ character of the applied 

sweeteners is increasingly perceived by consumers to be equally important as 

their taste
219

. The implementation into the market of natural, high-intensity 

sweeteners is thus driven by a strong consumer demand. Up to this date, several 

candidates have been proposed to take up this role: sweet-tasting proteins such 

as monatin and thaumatin
220

, and other plant extracts like glycyrrhizin from the 

root of Glycyrrhiza glabra
221

, mogrosides from monk fruit (Siraitia grosvenorii)
222

, 

and steviol glycosides (SG) from the leaves of Stevia rebaudiana
186

. Since the 

European Commission authorized the use of high purity SG (≥95%), such as 

rebaudioside A (RebA) and stevioside (Stev), in foods and beverages, stevia-

based products have rapidly expanded across the European market. Recently, it 

was shown that SG, by means of their steviol group, potentiate Ca
2+

-dependent 

activity of TRPM5, a cation channel protein essential for taste transduction of 

sweet, bitter, and umami in chemosensory cells
223

. As a result, the sweetness of 

SG is intensified, whereas their bitterness lingers on. Interestingly, TRPM5 also 

facilitates insulin release by the pancreas, preventing high blood glucose 
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concentrations and consequently the development of type 2 diabetes
224

. A study 

on mice revealed that TRPM5 potentiation by SG protected them against the 

development of high-fat diet-induced hyperglycaemia, prompting the authors to 

propose SG as cost-effective antidiabetic drugs
225

.     

 

Unfortunately, roughly half of the human population attributes an unpleasant 

lingering bitterness to RebA and Stev, as reflected by the considerable sequence 

variation in the genes encoding for the bitter receptors hTAS2R4 and 

hTAS2R14
46

. One strategy to solve this issue consists in the addition of masking 

agents such as several sugar alcohols
226

. In order to circumvent the use of 

masking agents, enzymatic glucosylation of RebA and Stev has been proposed 

as a means to (partially) remove their bitterness
8
. Several enzymes, typically 

UDP-glucosyltransferases (UGTases)
57-59

 and cyclodextrin glucanotransferases 

(CGTases)
50-56

, have already been applied for this purpose. However, UGTases 

require expensive nucleotide-activated sugars as donor substrate
13

, whereas 

CGTases possess poor C-13/C-19 regiospecificity, producing mixtures of α-

glucosylated SG
51

. 

 

Alternatively, glucansucrases (GS) can be applied for the glucosylation of SG. 

GS (EC 2.1.4.-) are enzymes found only in lactic acid bacteria, of which most 

members, including Lactobacillus reuteri, have the generally-recognized-as-safe 

(GRAS) status. They use the donor substrate sucrose to catalyze the synthesis 

of α-glucan polysaccharides, thereby introducing different ratios of glycosidic 

linkages, depending on the enzyme specificity
75

. It was demonstrated that 

suppressing this α-glucan synthesis by mutational engineering improved the 

glucosylation of non-natural acceptor substrates such as catechol
110

. In chapter 

4, the glucosylation of RebA with the Q1140E mutant of glucansucrase enzyme 

Gtf180-ΔN from Lactobacillus reuteri 180 was reported
68-70

. RebA was only 

glucosylated at the C-19 glucosyl moiety, producing mainly mono-α-glucosylated 

product with an (α1→6)-linkage, but also α-glucosides with two or more glucosyl 

units attached. The glucosylation of Stev, the most abundant steviol glycoside, 

was not addressed. Here, we report a careful optimization of the enzymatic 

glucosylation of Stev by the same enzyme. The structures of the two main α-
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glucosylated Stev products were characterized by NMR spectroscopy, mass 

spectrometry, and methylation analysis. Sensory analysis by a trained panel 

revealed a substantial decrease in bitterness and off-flavors of the glucosylated 

products compared to Stev and RebA. 

 

2. Materials and methods 

  

2.1. Stevioside 

 

Stevioside (>85 % purity, HPLC) was obtained from TCI Europe.  

 

2.2. Production and purification of recombinant Gtf180-ΔN-Q1140E 

 

Recombinant, N-terminally truncated Gtf180-ΔN from Lactobacillus reuteri 180 

and derived Q1140E mutant were produced and purified as described 

previously
70,80,99

. 

 

2.3. Gtf180-ΔN-Q1140E activity assays 

 

One unit (U) of enzyme activity corresponds to the conversion of 1 μmole 

sucrose (used for hydrolysis and transglycosylation) in a solution containing 100 

mM sucrose, 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2, at 37 °C. 

 

Enzyme activity assays were performed at 37 °C with 100 mM sucrose in 25 mM 

sodium acetate (pH 4.7) and 1 mM CaCl2. Samples of 150 μL were taken every 

min over a period of 8 min and immediately inactivated with 30 µL 1 M NaOH. 

The sucrose concentrations of the samples were subsequently quantified by 

means of HPLC analysis (see HPLC analysis), allowing the calculation of the 

enzyme activity as defined above.   
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2.4. HPLC analysis 

 

Two HPLC analyses were performed. For the analysis of glucose, fructose and 

sucrose, an Agilent MetaCarb 67H column (300 x 6.5 mm) was used under 

isocratic conditions with 2.5 mM H2SO4 as the mobile phase. The flow rate and 

temperature were set at 0.8 mL/min and 35 °C, respectively. Detection was 

achieved with an RI detector. Calibration of the obtained peaks was 

accomplished using the corresponding standard curves.  

 

For the analysis of the steviol glycosides, an Agilent ZORBAX Eclipse Plus C18 

column (100 x 4.6 mm, 3.5 µm) was used with water (solvent A) and acetonitrile 

(solvent B) as the mobile phase. The flow rate and temperature were set at 1.0 

mL/min and 40 °C, respectively. Following gradient elution was used: 5-95% 

solvent B (0-25 min), 95% solvent B (25-27 min), 95-5% solvent B (27-30 min) 

and again 95% of solvent A (30-35 min). Detection was achieved with an ELS 

detector (evaporation temperature: 90 °C, nebulization temperature: 70 °C, gas 

flow rate: 1.6 SLM). Calibration of the obtained peaks was accomplished using 

the corresponding standard curves.  

 

2.5. Design of response surface methodology experiment 

 

Response surface methodology
198

 was applied to optimize the Gtf180-ΔN-

Q1140E catalyzed glucosylation of stevioside (acceptor substrate) with sucrose 

as donor substrate, while minimizing the synthesis of α-glucan oligosaccharides. 

All experiments were performed in 25 mM sodium acetate (pH 4.7), 

supplemented with 1 mM CaCl2, at 37 °C. The addition of 10 U/mL enzyme 

ensured a steady-state was reached within 3 h of incubation. A Box-Behnken 

design
199

 was generated implementing stevioside concentration (mM), 

sucrose/stevioside ratio (D/A ratio) and agitation rate (rpm) as factors. For each 

of them low (-1) and high (+1) level values were assigned as follows: stevioside 

concentration (25 mM) and (100 mM), D/A ratio (1) and (20), agitation rate (0 

rpm) and (200 rpm). The experimental design was generated and analyzed using 

JMP software (release 12)
200

 and consisted of 15 experiments carried out at 5 
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mL scale (Table SI). The response surface analysis module of JMP software was 

applied to fit the following second order polynomial equation: 

 

𝑌̂ = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝐼

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑋𝑖
2

𝐼

𝑖=1

+  ∑ ∑ 𝛽𝑖𝑗𝑋𝑖

 

𝑗𝑖

𝑋𝑗  

 

where 𝑌̂ is the predicted response, 𝐼 is the number of factors (3 in this study), 𝛽0 

is the model constant, 𝛽𝑖 is the linear coefficient associated to factor 𝑋𝑖, 𝛽𝑖𝑖 is the 

quadratic coefficient associated to factor 𝑋𝑖
2 and 𝛽𝑖𝑗 is the interaction coefficient 

between factors 𝑋𝑖 and 𝑋𝑗. 𝑋𝑖 represents the factor variable in coded form: 

 

𝑋𝑐,𝑖 =
[𝑋𝑖 − (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2]

(ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤)/2
 

 

with 1 ≤ 𝑖 ≤ 𝐼, where 𝑋𝑐,𝑖 is the coded variable.  

 

2.6. Production and purification of α-glucosylated stevioside 

 

The production of α-glucosylated stevioside was performed at 50 mL scale in a 

shake flask, by incubating 31 mM stevioside and 524 mM sucrose with 10 U/mL 

Gtf180-ΔN-Q1140E at 37 °C in 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2 

for 3 h. The α-glucosylated stevioside products were purified from the incubation 

mixture by flash chromatography using a Reveleris X2 flash chromatography 

system with a Reveleris C18 cartridge (12 g, 40 µm) with water (solvent A) and 

acetonitrile (solvent B) as the mobile phase (30 mL/min). Following gradient 

elution was used: 95% solvent A (0-2 min), 95-50% solvent A (2-20 min), 50-95% 

solvent B (20-22 min), 95% solvent B (22-25 min). Detection was achieved with 

UV (210 nm). The collected fractions were evaporated in vacuo and 

subsequently freeze dried to remove the residual water. 
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2.7. Alkaline hydrolysis of α-glucosylated stevioside and TLC analysis 

 

To release the carbohydrate moiety linked to the C-19 carboxyl group, a 1 h 

stevioside incubation with Gtf180-ΔN-Q1140E (50 mM stevioside, 100 mM 

sucrose in 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2, 37 °C) was 

subjected to alkaline hydrolysis. Briefly, the stevioside incubation mixture was 

transferred into 1.0 M NaOH and heated at 80 °C for 2.5 h, then cooled down, 

and neutralized with 6 M HCl. Samples were spotted in lines of 1 cm on a TLC 

sheet (Merck Kieselgel 60 F254, 20x20 cm), which was developed in n-

butanol:acetic acid:water = 2:1:1. Bands were visualized by orcinol/sulfuric acid 

staining and compared with a simultaneous run of standard compounds. 

 

2.8. Methylation analysis   

 

Steviol glycoside samples were permethylated using CH3I and solid NaOH in 

(CH3)2SO, as described previously
227

, then hydrolyzed with 2 M trifluoroacetic 

acid (2 h, 120 °C) to give a mixture of partially methylated monosaccharides. 

After evaporation to dryness, the mixture was dissolved in H2O and reduced with 

NaBD4 (2 h, room temperature). Subsequently, the solution was neutralized with 

4 M acetic acid and boric acid was removed by repeated co-evaporation with 

methanol. The obtained partially methylated alditol samples were acetylated with 

1:1 acetic anhydride-pyridine (30 min, 120 °C). After evaporation to dryness, the 

mixtures of partially methylated alditol acetates (PMAAs) were dissolved in 

dichloromethane and analyzed by GLC-EI-MS on an EC-1 column (30 m x 0.25 

mm; Alltech), using a GCMS-QP2010 Plus instrument (Shimadzu Kratos Inc., 

Manchester, UK) and a temperature gradient (140-250 °C at 8 °C/min)
228

. 

 

2.9. Mass spectrometry  

 

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) was performed on an AximaTM mass spectrometer (Shimadzu 

Kratos Inc.), equipped with a nitrogen laser (337 nm, 3 ns pulse width). Positive-

ion mode spectra were recorded using the reflector mode at a resolution of 5000 
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FWHM and delayed extraction (450 ns). Accelerating voltage was 19 kV with a 

grid voltage of 75.2%. The mirror voltage ratio was 1.12 and the acquisition mass 

range was 200-6000 Da. Samples were prepared by mixing on the target 1 μL 

sample solutions with 1 μL aqueous 10% 2,5-dihydroxybenzoic acid in 70% 

acetonitrile as matrix solution. 

 

2.10. NMR spectroscopic analysis 

 

Resolution-enhanced 1D/2D 500-MHz 
1
H/

13
C NMR spectra were recorded in D2O 

on a Bruker DRX-500 spectrometer (Bijvoet Center, Department of NMR 

Spectroscopy, Utrecht University). To avoid overlap of anomeric signals with the 

HOD signal, the 1D and 2D spectra were run at 310 K. Data acquisition was 

done with Bruker Topspin 2.1. Before analysis, samples were exchanged twice in 

D2O (99.9 atom% D, Cambridge Isotope Laboratories, Inc., Andover, MA) with 

intermediate lyophilisation, and then dissolved in 0.6 mL D2O. Fresh solutions of 

~4 mg/mL were used for all NMR measurements. Suppression of the HOD signal 

was achieved by applying a WEFT (water eliminated Fourier transform) pulse 

sequence for 1D NMR experiments and by a pre-saturation of 1 s during the 

relaxation delay in 2D experiments. The 2D TOCSY spectra were recorded using 

an MLEV-17 (composite pulse devised by Levitt et al.
229

) mixing sequence with 

spin-lock times of 20, 50, 100 and 200 ms. The 2D 
1
H-

1
H ROESY spectra were 

recorded using standard Bruker XWINNMR software with a mixing time of 200 

ms. The carrier frequency was set at the downfield edge of the spectrum in order 

to minimize TOCSY transfer during spin-locking. Natural abundance 2D 
13

C-
1
H 

HSQC experiments (
1
H frequency 500.0821 MHz, 

13
C frequency 125.7552 MHz) 

were recorded without decoupling during acquisition of the 
1
H FID. The NMR 

data were processed using the MestReNova 9 program (Mestrelab Research SL, 

Santiago de Compostella, Spain). Chemical shifts (δ) are expressed in ppm by 

reference to internal acetone (δH 2.225 for 
1
H and δC 31.07 for 

13
C). 
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2.10 Sensory analysis 

 

Sensory analysis was performed in individual tasting booths at the UGent 

Sensolab (Belgium) by a trained panel (7 persons), as described previously in 

chapter 4
70

. In short, taste (sweetness, liquorice, astringency and bitterness) was 

evaluated by swirling the sample in the mouth for 5 sec after which the sample 

was expectorated. Aftertaste was evaluated 10 sec after swallowing the solution. 

Lingering based on the maximum taste intensity was rated 1 min later. Sucrose 

reference solutions (5%, 7.5% and 10% sucrose, scoring 5, 7.5 and 10, 

respectively) were provided. Water (Spa Reine) and plain crackers were used as 

palate cleansers between sampling. All samples were evaluated in duplicate.  

 

Statistical analyses were performed with SPSS 23 (SPSS Inc., Chicago, USA). 

All tests were done at a significance level of 0.05. One-Way ANOVA was used to 

investigate any significant difference between the solutions. Testing for equal 

variances was executed with the Modified Levene Test. When conditions for 

equal variance were fulfilled, the Tukey test
210

 was used to determine differences 

between samples. In case variances were not equal, Games-Howell was 

performed
211

. 

 

Three different solutions sweetened with Stev products were examined: 588 

mg/L mono-α-glucosylated product (Stev-G1), 588 mg/L multi-α-glucosylated 

product, containing residual Stev, Stev-G1 and higher α-glucosides (Stev-G) and 

1176 mg/L multi-α-glucosylated product (Stev-G’). 

 

3. Results  

 

3.1. Synthesis of α-glucosylated stevioside with Gtf180-ΔN-Q1140E 

 

Gtf180-ΔN and the derived Gtf180-ΔN-Q1140E mutant also readily glucosylated 

stevioside. Optimization of the reaction conditions for rebaudioside A (RebA) 

glucosylation with Gtf180-ΔN-Q1140E revealed the importance of selecting 
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adequate concentrations of donor substrate sucrose and acceptor substrate 

RebA. The addition of too much sucrose resulted in suboptimal yields due to 

increased α-glucan synthesis
70

. The glucosylation of stevioside (Stev) was 

therefore also optimized by response surface methodology (RSM), using a Box-

Behnken experimental design. Following factors were considered: X1 Stev 

concentration (mM); X2 the ratio of donor substrate sucrose over acceptor 

substrate Stev (D/A ratio); X3 agitation speed (rpm). The addition of 10 U/mL 

enzyme ensured that a steady state in Stev conversion was obtained within 3 h. 

The results of the Box-Behnken experimental design are summarized in Table 

SI. The analysis of variance (ANOVA) showed R
2
 values of 98.75% and 98.72% 

for Stev conversion degree (%) and amount of α-glucosylated Stev (Stev-G) 

synthesized (mM), respectively. The effects of the factors were analyzed 

applying the response surface contour plots (Figure 1).  

 

Higher Stev conversion degrees were obtained at decreasing Stev 

concentrations, independent on the concentration of donor substrate sucrose. 

The effect of the D/A ratio on Stev conversion degrees displayed a distinct 

optimum, similarly to RebA glucosylation with Gtf180-ΔN-Q1140E
70

. An increase 

of D/A ratio initially resulted in improved Stev conversion degrees, indicating that 

sucrose drives the reaction. However, as sucrose also acts as primer for α-

glucan synthesis, a further increase of D/A ratio resulted in less Stev 

glucosylation in favor of more α-glucan synthesis. This confirmed that the 

concentrations of sucrose and Stev need to be carefully optimized. In contrast, 

the effect of agitation on Stev conversion degrees and amount of Stev-G 

synthesized was negligible.      
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Figure 1. Response surface methodology contour plots of stevioside glucosylation by 

Gtf180-ΔN-Q1140E, showing the effects of: Stev concentration (mM); D/A ratio (ratio of 

donor substrate sucrose over acceptor substrate Stev); agitation (rpm) on: (A) Stev 

conversion degree (%); (B) Stev-G synthesized (mM). 

 

The resulting model was consequently used for the optimization of the reaction 

conditions. An efficient conversion of Stev into Stev-G (at least 95%), yielding a 

maximal amount of Stev-G, was targeted. The model predicted the synthesis of 

29 mM Stev-G in case following conditions were applied: 31 mM Stev, 524 mM 

sucrose (D/A ratio of 16.9) and 0 rpm. The validation test resulted in the 

synthesis of 28 mM Stev-G (Figure 2A), which was in good agreement with the 

prediction. Compared to RebA glucosylation with Gtf180-ΔN-Q1140E
70

, much 

more donor substrate sucrose was needed to completely convert Stev (D/A ratio 

of 16.9 compared to 3.4), whereas less glycosylated product could be obtained 

(28 mM compared to 80 mM), indicating that the enzyme has a lower affinity for 

Stev than for RebA. Equally remarkable was that while RebA was mainly 

converted into mono-α-glucosylated product (RebA-G1, 77.7%), Stev was only 

for 32.5% converted into mono-α-glucosylated product (Stev-G1). Applying the 

optimal conditions for the glucosylation of Stev with wild type Gtf180-ΔN resulted 

only in the conversion of 60.9% Stev with a Stev-G1/Stev-G ratio of 23.7% 

(Figure 2B).  
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Figure 2. Time course of stevioside glucosylation by Gtf180-ΔN-Q1140E (A) and Gtf180-

ΔN (B) at optimal batch conditions (31 mM Stev; 524 mM sucrose; 10 U/mL enzyme). ● 

Stev ○ Stev-G1 ▼ Stev-G2+.  

 

3.2. Structural characterization of α-glucosylated stevioside products 

 

Incubation of 31 mM Stev and 524 mM sucrose with Gtf180-ΔN-Q1140E resulted 

in the synthesis of several α-glucosylated stevioside products (Figure 3). The 2 

main products (Stev-G1 and Stev-G2) were analyzed by a combination of 1D and 

2D NMR spectroscopy, methylation analysis and mass spectrometry. Detailed 

structural analysis of novel steviol glycosides is of great value, since the sensory 

properties are known to depend on the number, location and configuration of the 

introduced glycosyl moieties
8
. Figure 4 depicts the 1D 

1
H NMR spectra while 

Figure 5 shows the corresponding chemical structures. The 
1
H and 

13
C chemical 

shifts are presented in Tables SII and SIII.  
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Figure 3. HPLC separation profiles of a 3 h incubation of 31 mM Stev and 524 mM 

sucrose with 10 U/mL Gtf180-ΔN-Q1140E. A 0 min, B 30 min, C 180 min of incubation at 

37 °C. Suc sucrose, fru fructose, glu glucose.  

 

3.2.1. Stev-G1 

 

Methylation analysis (Table SIV) of Stev-G1 (Stev+1Glc, according to MALDI-

TOF-MS: m/z 989.7 [M+Na]
+
 (Figure 6B)) showed terminal Glcp, 2-substituted 

Glcp and 6-substituted Glcp (molar ratio 2:1:1), indicating that transglucosylation 

had resulted in elongation but not in branching. The 
1
H NMR spectrum of Stev-

G1 (Figure 4B) showed resonances of one main α-glucosylated Stev product, 

however, with five small (anomeric) signals (indicated with *: δH 5.35, 4.45, 4.14, 

3.98, 3.16 in Figure 4B) of extra compounds (<10%). The spectrum between 0.8 

and 2.2 ppm represented the typical steviol core signal pattern as seen for Stev 

(Figure 4A). Besides the three β-anomeric 
1
H signals related to Stev (Glc1, δH 

5.415; Glc2, δH 4.725; Glc3, δH 4.675), one extra anomeric 
1
H resonance (δH 

4.862; J1,2 3.7 Hz), partially overlapping with one steviol C-17 proton, was 
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observed, stemming from a new α-linked Glc residue (Glc4). The latter 
1
H signal 

correlated with a 
13

C resonance at δC 99.3 in the HSQC spectrum (Figure S1). 

 

 

Figure 4. 500-MHz 
1
H NMR spectrum of Stev (A), Stev-G1 (B), and Stev-G2 (C), 

recorded in D2O at 310 K. * Resonances stemming from additional product(s). 

18 

A 
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Applying 2D NMR spectroscopy (TOCSY with different mixing times, ROESY and 

HSQC), the 
1
H/

13
C chemical shifts of the steviol core (Table SII) and the four Glc 

residues (Table SIII) of Stev-G1 were assigned (Figure S1). The 
1
H and 

13
C 

chemical shift sets of Glc2 and Glc3 correspond to those of Stev, suggesting that 

no modifications had occurred in the carbohydrate moiety at the steviol C-13 site. 

The TOCSY Glc4 H-1 track (δH 4.862) showed the complete scalar coupling 

network H-1,2,3,4,5,6a,6b, and combined with the Glc4 C-1–C-6 set of chemical 

shifts (HSQC), a terminal Glc(α1→6) unit is indicated. Based on the inter-residual 

ROESY cross-peaks between Glc4 H-1 (δH 4.862) and Glc1 H-6a/b (δH 

3.89/3.70), combined with the 
13

C downfield shift of 4.5 ppm for Glc1 C-6 (δC 

66.7; Stev Glc1 C-6: δC 62.2) (HSQC spectrum, Figure S1), a Glc4(α1→6)Glc1 

disaccharide element could be established
69

.  

  

The conclusive structure of the main compound in Stev-G1 was consequently 

determined as Stev elongated with a Glcp(α1→6) residue at the Glc1(β1→ on 

the C-19 site of the steviol core (Figure 5B).  

 

3.2.2. Stev-G2 

 

Methylation analysis (Table SIV) of Stev-G2 (Stev+2Glc, according to MALDI-

TOF-MS: m/z 1152.0 [M+Na]
+
 (Figure 6C)) showed terminal Glcp and 2-

substituted Glcp,  4-substituted Glcp,  and 6-substituted Glcp (molar ratio 

2:1:1:1), together with a trace amount (<2%) of 2,6-substituted Glcp. The 
1
H 

NMR spectrum of Stev-G2 (Figure 4C) exhibited the typical steviol core signal 

pattern as seen for Stev (Figure 4A). Besides the three β-anomeric 
1
H 

carbohydrate signals related to Stev (Glc1, δH 5.415; Glc2, δH 4.727; Glc3, δH 

4.674), two α-anomeric 
1
H resonances of equal intensity (δH 4.863; J1,2 3.9 Hz 

and δH 5.292; J1,2 3.7 Hz) were observed, stemming from two new α-linked Glc 

residues (Glc4 and Glc5). The 
1
H NMR spectrum indicated the presence of one 

main di-α-glucosylated Stev product, together with very minor products (<10%) 

represented by four small anomeric signals (indicated with *: δH 5.43, 4.91, 4.75, 

4.71 in Figure 4C). 
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Using 2D NMR spectroscopy (TOCSY with different mixing times, ROESY and 

HSQC), the 
1
H/

13
C chemical shifts of the steviol core (Table SII) and the five Glc 

residues (Table SIII) of Stev-G2 (main compound) were assigned (Figure S2)
69

. 

The 
1
H and 

13
C chemical shift sets of Glc2 and Glc3 correspond closely with 

those of Stev and Stev-G1, suggesting that no modifications had occurred in the 

carbohydrate moiety at the steviol C-13 site. 

 

However, the TOCSY Glc4 H-1 track (δH 4.863) showed a scalar coupling 

network H-1,2,3,4,5,6a,6b, different from that of Glc4 in Stev-G1, in particular H-3 

(δH 3.90) and H-4 (δH 3.58), and together with the 
13

C chemical shift of Glc4 C-4 

(δC 77.9, 44, ΔδC 6.6 ppm), a 4-substituted Glc4 residue is indicated (in 

accordance with the methylation analysis). The HSQC spectrum (Figure S2) 

showed a Glc1 C-6 (16a-16b) downfield shift (ΔδC 5.2 ppm) as earlier observed 

for Glc1 in Stev-G1 (ΔδC 4.5 ppm), indicating the presence of the 

Glc4(α1→6)Glc1 disaccharide element, leading to the establishment of a 

Glc5(α1→4)Glc4(α1→6)Glc1 trisaccharide linked to the C-19 of the steviol core. 

The inter-residual ROESY cross-peaks (spectrum not shown) between Glc4 H-1 

(δH 4.863) and Glc1 H-6a/b (δH 3.85/3.74) and between Glc5 H-1 (δH 5.292) and 

Glc4 H-4 (δH 3.58) confirmed the glycosidic linkages between the three Glc 

residues. Furthermore, the 4-substitution of Glc4 was supported by the typical 

1
H/

13
C chemical shifts of its H-3/C-3 (43, δH 3.90 / δC 74.8) in the HSQC spectrum 

(Figure S2). 

 

The conclusive structure of the main compound in Stev-G2 is consequently Stev 

elongated with a Glcp(α1→4)Glcp(α1→6) element at the Glc1(β1→ residue on 

the C-19 site of the steviol core (Figure 5C). 
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Figure 5. Chemical structures of Stev (A), Stev-G1 (B), and Stev-G2 (C). 

 

3.2.3 Stev-G 

 

Besides Stev-G1 and Stev-G2, Stev-G was composed of a wide array of α-

glucosylated Stev products (Stev-G2+), as demonstrated by MALDI-TOF mass 

spectrometry, showing the m/z [M+Na]
+
 peaks of Stev+1Glc up to Stev+9Glc 

(Figure 6D). It has to be noted that each peak may contain more than one 

compound, as different glycosidic linkage types may be present. Indeed, 
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methylation analysis (data not shown) showed six partially methylated alditol 

acetates, indicating the complexity of the Stev-G2+ mixture.  

 

Figure 6. MALDI-TOF mass spectra of (A) Stev, (B) Stev+1Glc, (C) Stev+2Glc, (D) Stev-

G. The α-glycosylated Stev products were obtained after incubation with Gtf180-ΔN-

Q1140E and removal of residual carbohydrates. Mass peaks could be assigned to m/z 

[M+Na]
+
 values of Stev+1Glc (989.7), Stev+2Glc (1152.0), up to Stev+9Glc (2287.8). 

 

Alkaline hydrolysis of the Stev-G mixture suggested that Stev was not specifically 

glucosylated at the C-19 site but also at the C-13 site (Figure 7). Indeed, 

treatment of Stev with NaOH resulted in hydrolysis of the C-19-ester group, 

yielding steviolbioside. Therefore, the appearance of a product spot representing 

the same size as Stev after alkaline hydrolysis of Gtf180-ΔN-Q1140E-

glycosylated Stev might suggest the formation of steviolbioside with one extra 
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glucose at the C-13 site. In other words, Stev-G2+ contains products 

glucosylated at the C-13 site, in contrast to RebA-G2+ which is completely 

composed of RebA products glucosylated at the C-19 site. Further structural 

analysis by means of NMR spectroscopy is nevertheless needed to confirm 

these results.  

 

 

Figure 7. Alkaline hydrolysis of α-glucosylated stevioside (Stev-G) produced by Gtf180-

ΔN-Q1140E. S sucrose, 1 Stev incubation (1 h), 2 Stev incubation (1 h) + NaOH, 3 Stev 

incubation (0 h) + NaOH, 4 Stev incubation (0 h), SB steviolbioside, G glucose, F fructose. 

* might suggest the formation of a product with the same size as stevioside, i.e. 

steviolbioside with one extra glucose at the C-13 site. 

 

3.3. Sensory analysis of glucosylated stevioside products 

 

The (α1→6)-glucosylation of Stev at the C-19 site is reported to improve its taste 

quality, mostly by alleviating its bitterness and off-flavors
66

. A sensory analysis of 

aqueous solutions sweetened with Stev and several glucosylated Stev products 

was performed by a trained panel, evaluating 9 different taste attributes. Three 

different product solutions were examined: 588 mg/L mono-α-glucosylated 

product (Stev-G1), 588 mg/L multi-α-glucosylated product, containing residual 
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Stev, Stev-G1 and higher α-glucosides (Stev-G) and 1176 mg/L multi-α-

glucosylated product (Stev-G’). The mean scores of the taste attributes of the 

sweetened solutions are shown in Figure 8.  

 

 

Figure 8. Sensory analysis of stevioside (Stev), Stev-G, Stev-G1 and Stev-G’. 
A,B

: 

different letters indicate significant differences (p<0.05) between solutions following one-

way ANOVA and post-hoc test. 

 

All α-glucosylated stevioside products were significantly less bitter than 

stevioside. Stev-G1 retained the very high sweetness typical for steviol 

glycosides such as stevioside. In contrast, Stev-G was significantly less sweet 

than stevioside, which can be explained by the relatively large proportion of multi-

α-glucosylated products. Multi-α-glucosylation resulted not only in a further 

decrease of bitterness, but simultaneously decreased sweetness as well. In 

addition, Stev-G was also significantly less liquorice and lingering than stevioside 

(Figure 8). Doubling the concentration of Stev-G from 588 mg/L to 1176 mg/L 



Chapter 5: Glucosylation of stevioside 

 

160 

 

roughly resulted in a duplication of the sweetness, equaling the sweetness level 

of stevioside, whereas bitterness and off-flavors were still equally suppressed. 

Glucosylation of stevioside with Gtf180-ΔN-Q1140E is thus a very adequate 

method to improve its sensory properties, i.e. by reducing the typical bitterness to 

a very low level. 

 

4. Discussion 

 

Even though Stev is the most abundant of all steviol glycosides extracted from 

the leaves of the Stevia plant, its lingering bitterness prevents applications in low-

calorie foods and beverages. All current Stevia food products are based on 

RebA, perceived as less bitter than Stev, implying that the latter is discarded as a 

“side product”. This chapter demonstrated that the α-glucosylation of Stev with 

Gtf180-ΔN-Q1140E offers a viable method to significantly reduce its bitterness. A 

very high Stev conversion of 95%, yielding 50 g/L Stev-G within 3 h, while using 

only 10 U/mL enzyme, was obtained after optimization of the reaction conditions 

by RSM. Structural analysis revealed that Stev was mostly glucosylated at the C-

19 site, initially through an (α1→6)-linkage, after which the synthesized Stev-G1 

was glucosylated through an (α1→4)-linkage, yielding Stev-G2 (Figure 5). 

MALDI-TOF and MS analysis indicated that a complex mixture of many other 

multi-glucosylated products (> 50% of Stev-G) was formed by the enzyme, as 

opposed to RebA α-glucosylation by Gtf180-ΔN-Q1140E, resulting in the 

synthesis of mostly mono-α-glycosylated product (77%)
70

. As a consequence, 

Stev-G was perceived half as sweet as Stev, an undesired effect which could be 

compensated by doubling the dose of Stev-G. Remarkably, this did not affect the 

significantly reduced perception of bitterness nor of other off-flavors.  

 

A previous study already reported the application of a dextransucrase from 

Leuconostoc citreum KM20
66

 for the glucosylation of Stev: a high conversion 

degree (94%) was obtained, however, much more enzyme (4500 U/mL vs. 10 

U/mL) and a longer incubation time (5 days vs. 3 h) was needed. The volumetric 

productivity per U enzyme of the mutant Gtf180-ΔN-Q1140E enzyme reaction is 
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consequently more than 2,000 times higher. Transglucosylation of stevioside, 

using sucrose as donor substrate, was also achieved with an alternansucrase 

(EC 2.4.1.140) from L. citreum SK24.002, an enzyme that also makes (α1→6) 

and (α1→3) linkages
67,230,231

. Under optimized reaction conditions, a maximum 

conversion degree of only 44% was achieved. Stevioside was elongated at the 

terminal Glc(β1→2) residue of the β-sophorosyl unit at the steviol C-13 site with 

an (α1→6) linkage. Also a tri-glucosyl-stevioside was structurally characterized 

and was shown to be a (α1→3)-(α1→6)-(α1→3) extension at the terminal 

Glc(β1→2) residue at C-13. A taste comparison of the products was not reported. 

In addition, a mono-glucosylated stevioside product, containing a Glc(α1→6) 

residue at the steviol C-19-ester-linked Glc(β1→ residue (comparable with Stev-

G1), has been synthesized with β-amylase Biozyme L and maltose as glucose 

donor. This also led to an improvement in quality of taste
60

, just like shown here 

for the Gtf180-ΔN-Q1140E products. However, also products elongated at the C-

13 site were synthesized, resulting in a decreased quality of taste.  

 

These examples illustrate the three main requirements for any enzymatic Stev 

glucosylation process: an adequate product specificity, a complete Stev 

conversion and a high space-time yield. The here described process is clearly 

superior to the other glucansucrase-catalyzed Stev glucosylation reactions, 

adequately meeting all three requirements. 
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5. Supplementary information 

 

Table SI. Box-Behnken experimental design and results for the variables studied. Second-

degree polynomial equation with coefficients of each factor is given for amount of Stev-G 

synthesized (mM) and stevioside conversion degree (%). X1 stevioside (mM), X2 D/A ratio, 

X3 agitation (rpm). 

 Pattern X1 X2 X3 Stev-G (mM) 
1
 Stev conversion (%) 

2
 

1 +0+ 100 11.25 200 55.5 55.5 

2 0−+ 62.5 2.5 200 28.3 45.3 

3 −0+ 25 11.25 200 22.5 90.0 

4 0−− 62.5 2.5 0 30.3 48.5 

5 ++0 100 20 100 38.1 38.1 

6 −0− 25 11.25 0 23.2 92.9 

7 −+0 50 20 20 23.7 94.8 

8 0+− 62.5 20 0 42.9 68.6 

9 −−0 25 2.5 100 14.8 59.3 

10 000 62.5 11.25 100 44.9 71.8 

11 +−0 100 2.5 100 51.6 51.6 

12 000 62.5 11.25 100 45.2 72.4 

13 000 62.5 11.25 100 45.6 72.9 

14 0++ 62.5 20 200 39.8 63.6 

15 +0− 100 11.25 0 53.2 53.2 

1
 Stev-G = 45.0500 + 14.2725X1 – 0.1875X2 – 0.1900X3 – 5.6000X1X2 + 0.7550X1X3 – 5.5250X2X3 – 

5.1100X1
2
 – 7.8900X2

2
 – 1.3350X3

2 

2
 Stev conversion = 72.1000 - 17.3225X1 + 7.5500X2 - 1.0975X3 – 12.2500X1X2 + 1.2950X1X3 – 

0.4500X2X3 – 2.6225X1
2
 - 13.7725X2

2
 – 1.8275X3

2
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Table SII. 
1
H and 

13
C chemical shifts ()

a
 for the steviol part of Stev, Stev-G1, and Stev-

G2, recorded in D2O at 310 K. For chemical structures, see Figure 5. 

 

Carbon
b
 number 

Stev 

 

Stev-G1 

 

Stev-G2 

 

 
1
H  

13
C  

1
H  

13
C  

1
H  

13
C 

1 0.82 41.4 0.82 41.3 0.83 41.3 

 1.82  1.82  1.82  

2 1.31 20.3 1.30 20.3 1.30 20.3 

 1.60  1.60  1.51  

3 1.07 38.5 1.07 38.5 1.09 38.6 

 2.05  2.04  2.04  

5 1.16 57.7 1.16 57.7 1.17 57.7 

6 1.66 22.1 1.68 22.8 1.82 22.9 

 1.81  1.80  2.04  

7 1.40 42.0 1.43 42.1 1.42 42.1 

 1.49  1.47  1.49  

9 0.98 54.4 0.98 54.2 0.98 54.4 

11 1.68 22.7 1.70 22.9 1.66 22.9 

 1.83  1.83  1.80  

12 1.48 37.5 1.48 37.6 1.48 37.5 

 1.90  1.90  1.90  

14 1.39 45.6 1.40 45.5 1.41 45.5 

 2.13  2.12  2.13  

15 2.06 48.2 2.06 48.1 2.05 48.1 

 2.10  2.09  2.08  

17 4.87 105.4 4.87 105.4 4.87 105.4 

 5.04  5.04  5.04  

18 1.18 29.2 1.18 29.3 1.18 29.2 

20 0.83 16.4 0.83 16.5 0.83 16.4 

a
 In ppm relative to internal acetone ( 2.225 for 

1
H and  31.07 for 

13
C). 

b
 As 

13
C data have been deduced from HSQC measurements, 

13
C chemical shifts in D2O are missing 

for C-4, C-8, C-10, C-13, C-16 and C-19. 
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Table SIII. 
1
H and 

13
C chemical shifts ()

a
 for the Glcp residues of Stev, Stev-G1, and 

Stev-G2, recorded in D2O at 310 K. For chemical structures, see Figure 5. 

 

Residue 

Stev 

 

Stev-G1 

 

Stev-G2 

 

 
1
H  

13
C  

1
H  

13
C  

1
H  

13
C 

Glc1(β1→C-19)       

H-1 5.40 95.4 5.41 95.5 5.41 95.4 

H-2 3.46 73.6 3.46 73.0 3.45 73.4 

H-3 3.50 78.0 3.50 77.8 3.50 77.9 

H-4 3.40 70.7 3.45 70.6 3.45 70.6 

H-5 3.50 77.7 3.70 77.0 3.70 76.9 

H-6a 3.82 62.2 3.89 66.7 3.85 67.4 

H-6b 3.67  3.70  3.74  

Glc2(β1→C-13)       

H-1 4.73 97.2 4.72 97.3 4.73 97.2 

H-2 3.49 82.2 3.49 82.2 3.49 82.1 

H-3 3.62 77.6 3.62 77.7 3.62 77.6 

H-4 3.34 71.2 3.34 71.1 3.35 71.0 

H-5 3.33 77.2 3.34 77.4 3.34 77.2 

H-6a 3.80 62.2 3.80 62.2 3.80 62.2 

H-6b 3.63  3.63  3.65  

Glc3(β1→2)       

H-1 4.67 104.3 4.67 104.5 4.67 104.4 

H-2 3.26 75.7 3.27 75.8 3.27 75.8 

H-3 3.45 77.0 3.45 77.3 3.45 77.0 

H-4 3.32 71.2 3.34 71.1 3.33 71.2 

H-5 3.35 77.4 3.34 77.4 3.35 77.2 

H-6a 3.82 62.2 3.82 62.2 3.82 62.2 

H-6b 3.64  3.64  3.64  

Glc4   (α1→6)Glc1 (α1→6)Glc1 

H-1   4.86 99.3 4.86 99.2 

H-2   3.48 73.0 3.53 72.9 

H-3   3.65 74.4 3.90 74.8 

H-4   3.36 71.3 3.58 77.9 

H-5   3.62 73.5 3.70 71.7 

H-6a   3.75 62.0 3.75 61.8 

H-6b   3.68  3.70  

Glc5     (α1→4)Glc4 

H-1     5.29 101.6 

H-2     3.52 73.1 
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H-3     3.63 74.3 

H-4     3.37 71.0 

H-5     3.64 74.3 

H-6a     3.78 61.8 

H-6b     3.70  

a
 In ppm relative to the signal of internal acetone ( 2.225 for 

1
H and  31.07 for 

13
C). 

b
 Substituted carbon positions are indicated in italics. 

 

Table SIV. Methylation analysis of the carbohydrate moieties in Stev, Stev-G1, and Stev-

G2. 

PMAA Rt
a
 

Structural 

feature 

Peak area (%)
b
 

Stev Stev-G1 Stev-G2 

2,3,4,6-Hex
c
 1.00 Glcp(1→ 66 52 42 

3,4,6-Hex 1.15 →2)Glcp(1→ 34 25 21 

2,3,6-Hex 1.18 →4)Glcp(1→ - - 19 

2,3,4-Hex 1.22 →6)Glcp(1→ - 23 18 

3,4-Hex 1.39 →2,6)Glcp(1→ - - tr
d
 

a
 Rt, retention time relative to 1,5-di-O-acetyl-2,3,4,6-tetra-O-methylglucitol (1.00) on GLC. 

b
 Average values from triplo determination (not corrected by response factors). 

c
 2,3,4,6-Hex = 1,5-di-O-acetyl-2,3,4,6-tetra-O-methylhexitol-1-d, etc. 

d
 tr = trace (<2%). 
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Figure S1. HSQC, TOCSY and ROESY spectrum of the carbohydrate part of Stev-G1, 

recorded in D2O at 310 K. In HSQC, 22 means cross-peak H-2/C-2 of residue Glc2, etc. 

16a-16b means cross-peaks H-6’s/C-6 of residue Glc1, shifted downfield (ΔC 4.5 ppm) 

due to substitution Glc4(α1→6)Glc1. Significant cross-peaks, concerning glycosidic 

linkages, are indicated in red. 
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Figure S2. HSQC, TOCSY and ROESY spectra of the carbohydrate part of Stev-G2, 

recorded in D2O at 310 K. In the HSQC spectrum, 22 means cross-peak H-2/C-2 of 

residue Glc2, etc. Assignments in red reflect the substituted positions of the residues. In 

the ROESY spectrum, the inter-residual cross-peaks confirming the Glc3(β12)Glc2 and 

Glc5(α14)Glc4(α16)Glc1 linkages are indicated with red boxes.  
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Abstract 

 

Previously we reported the efficient laboratory scale glucosylation of the Stevia 

components rebaudioside A (RebA) and stevioside with the Q1140E mutant of 

glucansucrase Gtf180-ΔN from Lactobacillus reuteri 180. Sensory analysis by a 

trained panel revealed that the glucosylated products possess a superior taste 

profile, displaying a significant reduction in bitterness compared to RebA and 

stevioside. As the developed technology holds excellent commercial potential, 

this chapter focused on the scale-up of the Gtf180-ΔN-ΔV-Q1140E catalyzed 

glucosylation of RebA and stevioside. An eco-friendly and efficient downstream 

processing of the glucosylated products was developed and demonstrated at 7.5 

L scale, allowing the production of 250 g glucosylated RebA product. Estimates 

of the production costs indicated the economic feasibility of the overall process. 

The major factor in the total production cost was the acceptor substrate, i.e. 

RebA or stevioside; in contrast, the biocatalyst cost represented only a minor 

part. In an attempt to lower the overall production cost even further, the 

glucosylation of low-grade stevia extract (roughly a 50:50 mixture of stevioside 

and RebA) was demonstrated. The sensory properties of the resulting product 

mixture were perceived as excellent by a trained panel, mainly due to a 

significant reduction in bitterness.    
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1. Introduction 

 

The steviol glycosides extracted from the plant Stevia rebaudiana (Figure 1), 

native in Paraguay and Brazil, were approved for use as high-intensity sweetener 

(HIS) in food products by the USA in 2009 and by the European Commission in 

2011
43

. The share of HIS in the global sweetener market, estimated at $68 billion 

in 2014, is currently not significant
44

, however, the world-wide increasing 

incidence of obesity and other diet-related diseases is expected to increase the 

consumer demand for low-calorie food products and beverages
46

. The HIS 

market is consequently predicted to grow at a fast compound annual growth rate 

(CAGR) of more than 5%. The natural character of stevia HIS gives it a 

competitive edge over synthetic HIS such as aspartame and saccharin, suffering 

from a bad reputation among consumers. As a result, stevia is currently the 

fastest growing HIS on the market, displaying a CAGR of roughly 8.5%
44

. The 

World Health Organization even projects that stevia will eventually replace 20% 

of the sugar segment, equaling a $10 billion industry
45

, which is significantly 

greater than current stevia sales, estimated at $347.0 million in 2014
44

.  

 

The main impediment to accomplish these projections is the lingering bitterness 

displayed by most steviol glycosides, including stevioside (5-10% of leaf dry 

weight) and rebaudioside A (2-4% of leaf dry weight, RebA), the only steviol 

glycosides which can be economically extracted from the Stevia plant
190-192

. Not 

surprisingly, several companies have launched next-generation stevia products 

with improved taste. For example, USA-based MycoTechnology produces 

mushroom-derived enzymes (MycoZyme) which can be added to stevia products 

to remove their bitterness (http://www.mycotechcorp.com). In addition, a joint 

venture of Cargill and Evolva aims to develop a process for the fermentative 

production of rebaudioside D and M, two steviol glycosides perceived as less 

bitter than RebA, but difficult to extract from the Stevia leaves, in 2018 

(http://www.evolva.com)
39,58,71

. However, the relatively high production costs, 

caused by inadequate strain characteristics and associated fermentation and 

downstream processing costs, have forced this joint venture to set back the 



Chapter 6: Biocatalytic production of novel steviol glycosides 

 

172 

 

launching date several times since 2013. Dutch multinational DSM is developing 

a similar technology, applying a recombinant yeast (Yarrowia lipolytica) to 

produce steviol glycosides (http://www.dsm.com)
232

. However, no new 

announcements have followed the initial 2014 press release.   

 

Steviol glycoside R1 (C-19) R2 (C-13) 

Stevioside Glc(β1→ Glc(β1→2)Glc(β1→ 

Steviolbioside H Glc(β1→2)Glc(β1→ 

Rebaudioside A Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside B H Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside C Glc(β1→ Rha(α1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside D Glc(β1→2)Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside E Glc(β1→2)Glc(β1→ Glc(β1→2)Glc(β1→ 

Rebaudioside F Glc(β1→ Xyl(β1→2)[Glc(β1→3)]Glc(β1→ 

Rebaudioside M Glc(β1→2)[Glc(β1→3)]Glc(β1→ Glc(β1→2)[Glc(β1→3)]Glc(β1→ 

Rubusoside Glc(β1→ Glc(β1→ 

Dulcoside A Glc(β1→ Rha(α1→2)Glc(β1→ 

Figure 1. Chemical structures of the most prevalent steviol glycosides found in the leaves 

of Stevia rebaudiana. Glucose (Glc), xylose (Xyl) and rhamnose (Rha) occur in the 

pyranose ring form. Glc and Xyl have the D configuration and Rha the L configuration. 
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Alternatively, enzymatic glucosylation has been proposed as a bitterness-

eliminating process
8
. The main challenges faced here are to obtain an adequate 

product specificity, a complete RebA and stevioside conversion and a high 

space-time yield. The majority of described processes fail in fulfilling at least one 

of these three requirements. Glucosylations catalyzed by cyclodextrin 

glucanotransferases, α-amylases and β-amylases, are characterized by relatively 

high product yields, however, their lack of C-13/C-19-regiospecificity (Figure 1) 

renders them less useful as industrial biocatalyst: products with enhanced and 

reduced bitterness are obtained
50-56,60-62

. For example, (α1→4)-glucosylation of 

stevioside at the C-13 steviol position yielded products with improved intensity 

and quality of sweetness, whereas (α1→4)-glucosylation at the C-19 position 

resulted in an increased bitterness
52-54,196

. In contrast, the in vitro use of UDP-

glycosyltransferases, catalyzing the conversion of RebA into rebaudioside D and 

M, yielded glycosides with improved sensory properties but suffered from very 

low productivities
57-59

. The application of β-glucosidases, introducing the naturally 

occurring β-linkages, resulted not only in the glucosylation of the steviol 

glycosides substrates but also in their hydrolysis, yielding products with an 

inferior taste profile
63-65

. 

 

As illustrated in chapters 4 and 5, the α-glucosylation of RebA and stevioside 

with the glucansucrase Gtf180-ΔN-Q1140E from Lactobacillus reuteri 180, using 

sucrose as donor substrate, offers a viable method for the production of next-

generation stevia products
68-70

. The Q1140E mutation improved the conversion  

from roughly 50% to 95%, yielding 115 g/L and 50 g/L α-glucosylated product, for 

RebA and stevioside glucosylation, respectively. Structural analysis and sensory 

analysis by a trained panel revealed that introducing a single (α1→6) linked 

glucosyl moiety at their Glc(β1→C-19 residues yielded monoglucosylated 

products with a superior taste profile compared to their respective substrates. 

The multiglucosylated products displayed even better taste profiles (reduced 

bitterness and off-flavors), however, this was accompanied with an undesirable 

decrease in sweetness. Altogether, the mixtures of mono –and multiglucosylated 

RebA and Stev products showed most potential: an intensive sweetness 

combined with a very limited bitterness (see 3.4. Sensory analysis).  
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The RebA and stevioside glucosylation reactions were demonstrated only at 

laboratory scale, whereas chromatography was applied as purification method, a 

technology which is better avoided as it is too costly for industrial use. This 

chapter therefore aimed to develop this laboratory scale process with commercial 

potential into a cheap and straightforward pilot-plant process, allowing the 

synthesis of product samples for food safety analysis and for testing and tasting 

in several food products, such as chocolate, candy, etc. Furthermore, an 

accelerated shelf life study was performed to determine the stability of the 

introduced (α1→6) linkage in buffer solutions mimicking the acidic conditions in 

soft drinks. Finally, cost analysis of the glucosylation processes provided 

guidelines for future research and development activities in order to decrease the 

production costs.  

 

2. Materials and methods 

  

2.1. Stevioside, rebaudioside A and low-grade stevia extract 

 

Stevioside was obtained from TCI Europe (> 85% pure, HPLC), rebaudioside A 

(RebA) from Tereos PureCircle Solutions (97% pure, HPLC). Low-grade stevia 

extract (Steviasol, 95% steviol glycosides) was mainly composed of RebA and 

stevioside (~ 50:50 mixture, as determined with HPLC). 

 

2.2. Production and purification of recombinant Gtf180-ΔN-ΔV-Q1140E 

 

Initial experiments with Escherichia coli BL21 (DE3) strains (Invitrogen, Carlsbad, 

USA), expressing either the N-terminally truncated Gtf180-ΔN-Q1140E
70,80,97

 or 

the N- and V-terminally truncated
88

 Gtf180-ΔN-ΔV-Q1140E
70,97

 from 

Lactobacillus reuteri 180, were performed in shake flasks at 1 L scale, after 

which the biocatalyst production was performed at 7.5 L scale in a Labfors 5 

bioreactor. The inoculum was routinely grown at 37 °C in shake flasks (200 rpm) 

containing LB medium (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, pH 7.0) 

supplemented with 100 mg/L ampicillin. After overnight growth, 200 mL inoculum 
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was added to 5 L of LB medium supplemented with 30 g/L glucose and 100 mg/ 

L ampicillin. The temperature, agitation rate and aeration rate were set at 37 °C, 

350 rpm and 1 vvm, respectively. The dissolved oxygen concentration was 

maintained above 30% by gradually and automatically increasing the agitation 

rate to 1200 rpm. The pH was maintained at 7.0 by automatic addition of 25 % 

NH4OH and 1 M H2SO4. Anti-foam was added occasionally to prevent foaming. 

Optical density measurements were performed in a spectrophotometer at 600 nm 

(OD600). At an OD600 of 5 the culture was induced with IPTG (final concentration 

of 0.1 mM). After 9 h of fermentation the glucose was depleted and the cells 

harvested by centrifugation (3000 g, 10 min). The cells were resuspended in lysis 

buffer and subsequently homogenized (800 bar, 3 cycles). Cell debris was 

removed by centrifugation (3000 g, 10 min) followed by microfiltration (0.5 µm). 

The crude enzyme was stable at 4 °C for several months and used accordingly 

for the production of glucosylated RebA (RebA-G).  

 

2.3. Glucansucrase activity assay 

 

One unit (U) of enzyme activity corresponds to the conversion of 1 μmole 

sucrose (used for hydrolysis and transglycosylation) in a solution of 100 mM 

sucrose, 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2 at 37 °C. 

 

Enzyme activity assays, using approximately 50 mg/mL enzyme, were performed 

at 37°C with 100 mM sucrose in 25 mM sodium acetate (pH 4.7) and 1 mM 

CaCl2. Samples of 150 μl were taken every min over a period of 8 min and 

immediately inactivated with 30 µl 1 M NaOH. The sucrose concentrations of the 

samples were subsequently quantified by means of HPLC analysis (see 2.4. 

HPLC analysis), allowing the calculation of the enzyme activity as defined above.   

 

2.4. HPLC analysis 

 

Two different types of HPLC analyses were performed. For the analysis of 

glucose, fructose and sucrose, an Agilent MetaCarb 67H column (300 mm × 6.5 

mm) was used under isocratic conditions with 2.5 mM H2SO4 as the mobile 
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phase. The flow rate and temperature were set at 0.8 mL/min and 35°C, 

respectively. Detection was achieved with an RID detector. Calibration of the 

obtained peaks was accomplished using the corresponding standard curves.  

 

For the analysis of the steviol glycosides an Agilent ZORBAX Eclipse Plus C18 

column (100 mm × 4.6 mm, 3.5 µm) was used with water (solvent A) and 

acetonitrile (solvent B) as the mobile phase. The flow rate and temperature were 

set at 1.0 mL/min and 40 °C, respectively. The following gradient elution was 

used: 5-95% solvent B (0-25 min), 95% solvent B (25-27 min), 95-5% solvent B 

(27-30 min) and again 95% of solvent A (30-35 min). Detection was achieved 

with an evaporative light scattering detector (ELSD) (evaporation temperature: 90 

°C, nebulization temperature: 70 °C, gas flow rate: 1.6 standard liter per min, 

SLM). Calibration of the obtained peaks was accomplished using the 

corresponding standard curves, obtained from previously purified glucosylated 

RebA (RebA-G) and stevioside (Chapters 4 and 5).  

 

2.5. Yeast fermentation 

 

RebA glucosylation reaction mixture (50 mM RebA, 125 mM sucrose) was 

incubated with 5, 10, 20 and 30 g/L (wet cell weight) fresh baker’s yeast 

(Saccharomyces cerevisiae, AB Mauri) to remove sucrose, glucose, and 

fructose. Samples were taken at 0, 2, 4, 6 and 8 h, and subjected to HPLC 

analysis to determine the removal rate of both saccharides and RebA glucosides. 

The experiments were performed in duplicate. 

 

2.6. Determination of adsorption and desorption characteristics 

 

Adsorption experiments were carried out by adding a fixed amount of adsorbent 

(Lewatit® VP OC 1064 MD PH from LANXESS, 1 g) to six 50 ml Falcon tubes 

containing 10 mL dilutions of the RebA glucosylation mixture (with RebA-G 

concentrations ranging from 10 g/L to 60 g/L). The Falcon tubes were 

subsequently placed in a shaker at a temperature of 30 °C, 35 °C and 40 °C and 
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an agitation rate of 200 rpm for 60 min. The adsorption capacity qe (g RebA-G/kg 

resin) and adsorption efficiency A (%) were calculated as follows: 

 

qe =  
(C0 − Ce)V

W
 

A =
C0 − Ce

C0

 

 

where C0 is the initial RebA-G concentration (g/L), Ce is the RebA-G 

concentration at equilibrium (g/L), V is the volume of the solution (10 mL) and W 

is the mass of the adsorbent (1 g).  

 

The obtained adsorption isotherms were analyzed using the Langmuir adsorption 

isotherm, which is represented by the following equation: 

 

qe =  
qmaxKCe

1 + KCe

  

 

where qmax is the maximum adsorption capacity (g RebA-G/kg resin) and K is the 

Langmuir adsorption constant (L/g). 

 

For the desorption experiments 10 mL of solvent was added to 4 g of adsorbent 

(equivalent to 1.5 bed volumes) loaded with a known amount of RebA-G. The 50 

mL Falcon tubes were subsequently placed in a shaker at a room temperature 

and an agitation rate of 200 rpm for 60 min. The desorption capacity qd (g RebA-

G/kg resin) was calculated as follows: 

qd =  
CdV

W
 

 

where Cd is the RebA-G concentration at equilibrium (g/L), V is the volume of the 

solution (10 mL) and W is the mass of the adsorbent (4 g). The experiments were 

performed in duplicate.   

 

C0, Ce and Cd were determined applying HPLC analysis as described before.  
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2.7. Continuous adsorption of glucosylated rebaudioside A 

 

After optimization of the static adsorption of RebA-G onto Lewatit® VP OC 1064 

MD PH resin, its continuous adsorption was evaluated at laboratory scale (120 g 

of resin, bed volume (BV) of 200 mL), and finally at pilot-plant scale (2 kg of 

resin, BV of 3.34 L). After supplying the RebA glucosylation reaction mixture, 3 

BV of water were immediately supplied to remove any residual sugars and α-

glucans. Subsequently, six BV of 70% isopropanol were added to elute the 

adsorbed RebA-G. Several flow rates (3, 4.5 and 6 BV/h) and adsorbate loadings 

(50-100 g RebA-G/kg resin) were tested at laboratory scale, after which the 

optimal continuous adsorption was performed at pilot-plant scale (see also 2.8.). 

 

2.8. Production and purification of glucosylated rebaudioside A 

 

The production of glucosylated RebA (RebA-G) was performed at 7.5 L scale in a 

Labfors 5 bioreactor. The temperature and agitation rate were set at 37 °C and 

185 rpm, respectively. The pH was maintained at 4.7 by automatic addition of 1 

M NH4OH and 1 M H2SO4. No buffer agent was added. The medium contained 

the optimal substrate- and enzyme concentrations as determined in chapter 4 (84 

mM RebA, 282 mM sucrose, 5 U/mL Gtf180-ΔN-ΔV-Q1140E) supplemented with 

1 mM CaCl2. RebA (97% purity, HPLC grade) was obtained from Tereos 

PureCircle Solutions.  

 

After completion of the reaction, the protein was removed by briefly (10 min) 

incubating the reaction mixture at 95 °C, after which the precipitated protein was 

removed by filtration. RebA-G was isolated from the reaction mixture by 

adsorption onto Lewatit® VP OC 1064 MD PH macroporous resin. Washing 

thoroughly with water removed any residual sugars and α-glucans. RebA-G was 

desorbed with 70% isopropanol. The resulting mixture was concentrated by 

evaporation in vacuo and ultimately freeze-dried, yielding pure RebA-G. 

 

 

 



Chapter 6: Biocatalytic production of novel steviol glycosides 
 

 

179 
 

2.9. Cost analysis 

 

The base case used for the cost analysis was RebA-G production in batch mode. 

The production costs were estimated by using the process mass balances as 

obtained in chapter 4 (RebA glucosylation)
70

 and the current chapter (enzyme 

production (see also 2.1.) and downstream processing (DSP) of RebA-G (see 

also 2.6. and 2.7.). Guidelines as presented by Tufvesson et al.
233

 were followed 

for the cost estimation. Several assumptions were made in order to simplify the 

economic model (see supplementary information for detailed information). In 

short: The production scale of the enzyme fermentation and the enzymatic 

glucosylation were both fixed at 10 m
3
 (75% working volume). To run the 

fermentation, including set-up, harvesting and cleaning, 96 man-hours were 

allocated. The cost to obtain crude enzyme (homogenization, centrifugation to 

remove cell debris, and finally microfiltration) was assigned a value of €200/kg 

enzyme
233

. For the execution of the enzymatic glucosylation, including product 

recovery, 120 man-hours was considered. The cost of direct labor was assigned 

a value of €30/h, based on data from Eurostat (http://ec.europa.eu/eurostat). 

Supervision costs and indirect operating costs such as quality control 

corresponded to 100% of the direct labor costs.  

 

Tables SI and SII summarize the various raw materials needed to run one 

production cycle (for definition, see supplementary information). The prices of the 

raw materials were obtained from the respective suppliers. Tables SIII-VII 

summarize the equipment related costs, utilities costs, and finally labor costs. 

 

2.10. Sensory analysis 

 

The sensory analysis was performed in individual tasting booths at the UGent 

Sensolab (Belgium) by a trained panel (9 persons), as described in chapter 4
70

. 

In short, all solutions contained 588 mg/L of sweetener. Their taste (sweetness, 

liquorice, astringency and bitterness) was evaluated by swirling the sample in the 

mouth for 5 sec after which the sample was expectorated. Aftertaste was 

evaluated 10 sec after swallowing the solution. Lingering based on the maximum 



Chapter 6: Biocatalytic production of novel steviol glycosides 

 

180 

 

taste intensity was rated 1 min later. Sucrose reference solutions (5%, 7.5% and 

10% sucrose scoring 5, 7.5 and 10, respectively) were provided. Water (Spa 

Reine) and plain crackers were used as palate cleansers between sampling. All 

samples were evaluated in duplicate.  

 

Statistical analyses were performed with SPSS 23 (SPSS Inc., Chicago, USA). 

All tests were done at a significance level of 0.05. One-Way ANOVA was used to 

investigate any significant difference between the solutions. Testing for equal 

variances was executed with the Modified Levene Test. When conditions for 

equal variance were fulfilled, the Tukey test was used to determine differences 

between samples
210

. In case variances were not equal, a Games-Howell post-

hoc test was performed
211

. 

 

2.11. Stability analysis 

 

The stability of RebA and RebA-G was determined by conducting an accelerated 

shelf life study at 80 °C in acidic buffer solutions (50 mM citric acid (pH 2.8 and 

3.8) and 50 mM phosphate (pH 2.8 and 3.8)). Five mg of product was added to 

10 ml buffer. All sample solutions were transferred to 1.5 mL Eppendorf tubes 

and incubated for 72 h in a thermoblock at 80 °C. Samples were taken at 0, 24, 

48 and 72 h, and subjected to HPLC analysis. 

 

3. Results and discussion 

 

3.1. Biocatalyst production 

 

The biocatalyst production generally forms an important factor of the total cost of 

a biocatalytic process at industrial scale
233

. A productive enzyme fermentation, 

yielding a highly active biocatalyst, are thus two essential features of any cost-

effective enzymatic process.  
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The N-terminally truncated Gtf180-ΔN-Q1140E (117 kDa) and the N- and V-

terminally truncated Gtf180-ΔN-ΔV-Q1140E (95 kDa) were both produced by 

fermenting the respective recombinant Escherichia coli strains in 1 L shake 

flasks, resulting in the production of 1306 U/mL and 1646 U/mL of enzyme, 

respectively. Incubation of 5 U/mL of the single enzymes in the optimal RebA 

glucosylation reaction mixture, as determined in chapter 4 (84 mM RebA, 282 

mM sucrose)
70

, resulted in identical RebA-G synthesis. Indeed, domain V is 

known to be crucial only for glucansucrase processivity; its deletion impairs 

polysaccharide synthesis, however, the acceptor reaction is not affected
88

. 

Nevertheless, deletion of domains N plus V resulted in a higher enzyme yield, 

which may reflect its lower molecular mass compared to the N-terminally 

truncated variant. In addition, the induction temperature is known to influence 

Gtf180 enzyme expression. Lower temperatures typically result in higher enzyme 

yields, due to improved enzyme folding and decreased aggregation of the protein 

into inclusion bodies. This was previously shown for the expression of GtfB
234

 

and Gtf180-ΔN
99

 and was confirmed by studying the effect of the induction 

temperature on Gtf180-ΔN-ΔV-Q1140E expression (data not shown). However, 

as it was technically very complicated to lower the temperature below 37 °C at 

7.5 L scale and, hence, at industrial scale, the fermentation was performed at 37 

°C. 

 

The production of Gtf180-ΔN-ΔV-Q1140E at 7.5 L scale yielded 38,320 U of 

enzyme or 815 mg of protein per L fermentation medium, which was obtained 

from roughly 45 g/L wet biomass (Figure S1). From the results obtained in 

chapter 4, it was calculated that 43,480 U of enzyme are needed to produce 1 kg 

RebA-G in batch mode. Consequently, the achieved enzyme production 

represented a theoretical production of 880 g RebA-G per L fermentation 

medium or about 1080 kg RebA-G per kg Gtf180-ΔN-ΔV-Q1140E. According to 

Tufvesson et al., a productivity of 670-1700 kg product/kg enzyme is required for 

the biocatalytic production of fine chemicals with a typical cost between €15-

100/kg product
233,235,236

. The obtained productivity clearly meets this requirement. 

The effect of the Gtf180-ΔN-ΔV-Q1140E production cost on the RebA-G 
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production cost is discussed in more detail later in this chapter (3.3. Cost 

analysis). 

 

3.2. Downstream processing of glucosylated RebA 

 

Glucosylated RebA (RebA-G) was selected as model product for the 

development of the downstream processing (DSP). Glucosylated stevioside 

(Stev-G) was purified following the same principle as applied for RebA-G 

purification. The two products are consequently interchangeable in the context of 

DSP. 

 

3.2.1. Yeast fermentation  

 

In addition to the synthesis of RebA-G, two types of by-products are produced by 

the enzyme: fermentable sugars such as fructose and glucose (and some 

remaining sucrose substrate), and α-glucan oligo- and polysaccharides. A 

common strategy to remove fermentable sugars is Saccharomyces cerevisiae 

fermentation
237

, a very cheap and sustainable DSP option, provided that the 

desired product (RebA-G) is not metabolized. As illustrated in Figure 2, S. 

cerevisiae was indeed able to ferment sucrose, fructose and glucose, while no 

loss of RebA-G was observed. Besides CO2, ethanol and glycerol were produced 

by the yeast as side-products. A yellow color was observed after fermentation, 

suggesting the formation of other side-products.  

 

3.2.2. Selective precipitation 

 

As the α-glucans were not metabolized by the yeast, their removal required an 

additional step. In theory, the differences in solubility between α-glucans and 

RebA-G in organic solvents may result in their selective precipitation. The 

precipitate can then be easily separated from the supernatant. A patent of Cargill, 

describing the use of antisolvent crystallization (precipitation) to separate steviol 

glycosides, offered a useful protocol
238

. In short, the yeast-treated reaction 

mixture was evaporated until a sugar content of 30 °Bx (degrees Brix, the sugar 
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content of an aqueous solution, equaling 30% weight sugar), after which 3 

volumes of ethanol, methanol or isopropanol were gradually added to provoke 

crystallization. Unfortunately, the majority of α-glucans precipitated 

simultaneously with RebA-G, preventing their complete separation. Hence, it was 

decided to change strategy and attempt separation by selective adsorption. 

 

Figure 2. HPLC analysis of the utilization of fermentable sugars, present in RebA 

glucosylation reaction mixture (50 mM RebA, 125 mM sucrose), by Saccharomyces 

cerevisiae (● 5, ○ 10, ▼ 20, ▽ 30 g/L fresh yeast). RebA-G (dashed line) was not 

metabolized under all circumstances tested. 

 

3.2.3. Selective adsorption 

 

Selective adsorption of RebA-G onto several hydrophobic macroporous resins 

was evaluated. From the evaluated resins, Lewatit® VP OC 1064 MD PH 

displayed most potential and was consequently selected for further 

experimenting. The adsorption isotherms of RebA-G on this resin were 

determined at 30 °C, 35 °C and 40 °C and were described by the Langmuir 

model with good fit (R
2
 of 0.92, 0.89 and 0.98 respectively, Figure 3). The highest 

adsorption capacity qe was observed at 40 °C, suggesting an endothermic 

adsorption process, as previously described for the adsorption of RebA and 

stevioside onto mixed-mode macroporous resin
239

. Even at the lowest 
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temperature tested (30 °C), a sufficiently high adsorption efficiency (A) was 

obtained: as much as 92.0 g RebA-G could be adsorbed per kg resin with an A of 

94%.  

 

Figure 3. Adsorption isotherms of RebA-G on Lewatit VP OC 1064 MD PH resin at 30 °C 

(●), 35 °C (○) and 40 °C (▼). The obtained results were described by the Langmuir model 

with good fit (R
2
 of 0.92, 0.89 and 0.98 respectively). qmax of 183, 217 and 240 g RebA-

G/kg resin, respectively. K of 0.80, 1.73 and 3.1 L/g, respectively. 

 

A compatible desorbing solvent was selected by evaluating the respective 

desorption capacities (qd) at room temperature (Figure 4). Isopropanol (70 vol%) 

displayed most potential with a qd of 91.3 g RebA-G/kg resin and was 

consequently selected as eluent for the production process.  

 

Based on the previous results, an efficient continuous adsorption process was 

developed at room temperature, targeting complete adsorption with the highest 

dynamic adsorption capacity (DAC) possible. An important factor in the 

optimization of a continuous adsorption process is the flow rate. In general, low 

flow rates favor high adsorption efficiencies since the adsorbate has more time to 

interact with the adsorbent, preventing its breakthrough. The effect of the flow 

rate on the continuous adsorption of RebA-G onto Lewatit VP OC 1064 MD PH 

resin was therefore studied (Figure 5).  
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Figure 4. Desorption of RebA-G from Lewatit VP OC 1064 MD PH resin at room 

temperature, applying different percentages by volume of ethanol, isopropanol and 

acetone. Desorption capacities (qd, defined in 2.5.) are given. 

 

Figure 5. Continuous adsorption of the RebA glucosylation reaction mixture (at zero time: 

84 mM RebA, 282 mM sucrose, 5 U/mL enzyme) onto Lewatit VP OC 1064 MD PH resin 

at a flow rate of 3 (●), 4.5 (○), and 6 (▼) BV/h. The amount of RebA-G (g/L) eluting from 

the resin is given.     

 

Applying flow rates of 4.5 and 6 bed volumes per h (BV/h) caused considerable 

breakthrough of RebA-G, which resulted in suboptimal adsorption efficiencies of 
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79% and 68%, respectively. The application of a flow rate of 3 BV/h resulted in a 

near complete adsorption (96%) and a DAC of 95.7 g RebA-G/kg resin, similar to 

the optimal static adsorption capacity (92.0 g RebA-G/kg resin). Only 3 bed 

volumes of 70% isopropanol were subsequently needed for a near complete 

recovery of the product. The successful separation of RebA-G from the 

fermentable sugars and α-glucans is clearly shown by TLC analysis (Figure S2). 

The developed continuous adsorption was consequently used to treat 4 L RebA 

glucosylation reaction mixture (containing 60 g/L RebA-G), yielding 250 g of 

amorphous RebA-G, composed of (by mass) 4% RebA, 60% monoglucosylated 

RebA (RebA-G1) and 36% multiglucosylated RebA (RebA-G2+) (Figure S3). As 

the applied desorbing solvent (70% isopropanol) can be reused after 

evaporation, the developed DSP is not only efficient (almost no loss of RebA-G) 

but also eco-friendly.  

 

3.3. Cost analysis of stevia glucosylation 

 

3.3.1. Base case: RebA glucosylation 

 

Any new production process must meet a number of criteria to be successfully 

implemented at industrial scale. Besides analyzing safety matters and 

environmental and legal issues, the process economics need to be evaluated
240

. 

Assessing the economic feasibility of a process is achieved by performing a 

production cost estimation, a powerful tool to guide research and development 

activities in order to turn lab-scale processes into commercially viable ones. 

Production costs can be divided into two categories: capital investment (CapEx) 

and operation costs (OpEx), both considered for the cost estimation of the base 

case (for detailed information, see supplementary information). A production 

scale of 10 m
3
 for both the enzyme fermentation and the enzymatic glucosylation 

was assumed. It should be noted that production volume has a major impact on 

the production costs: increasing the volume from 1 m
3
 to multiple cubic meters is 

accompanied by a cost reduction of several orders of magnitude
233

. The 

assignment of an adequate production scale is typically based on the expected 

sales, however, that was outside the scope of this chapter.   
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Tables I and II summarize the results obtained for the base case analysis. For 

the detailed results, see supplementary information (Tables SI-VII). Figure 6 

illustrates the cost contribution of the different resources on the enzyme 

production (A) and RebA-G production, including DSP (B).  

 

Table I. Cost analysis of Gtf180-ΔN-ΔV-Q1140E production in batch mode. 

Resources 
Cost  

(€/kg enzyme) 

Relative cost  

(%) 

Fermentation 2106 91 

Raw materials 114 5 

Utilities 34 1 

Labor 950 41 

Equipment 1008 44 

Enzyme recovery 200 9 

Total 2306 100 

 

Table II. Cost analysis of RebA-G production and glucosylated steviol glycosides (GSG) 

production in batch mode, using RebA and low-grade stevia extract (steviol glycosides, 

SG) as acceptor substrate, respectively. 

Resources 
Cost  

(€/kg RebA-G) 

Relative cost  

(%) 

Cost  

(€/kg GSG) 

Relative cost  

(%) 

Biocatalysis 70.7 79 41.3 66 

Enzyme 2.1 2 3.5 6 

Sucrose 0.6 1 1.8 3 

RebA/SG 56.5 63 17.1 27 

Utilities < 1 < 1 < 1 < 1 

Labor 4.2 5 6.9 11 

Equipment 7.1 8 11.6 19 

DSP 18.5 21 21.3 34 

Resin 12.7 14 12.7 20 

IPA 1.1 1 1.1 2 

Utilities < 1 1 < 1 1 

Labor 4.2 5 6.9 11 

Total 89.2 100 62.6 100 
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A common drawback to implement an enzymatic process at industrial scale is the 

relatively high cost of the biocatalyst
233

. Although the enzyme production cost for 

the base case in itself is relatively high (€2306/kg enzyme), cost analysis 

revealed that the biocatalyst cost (€2.1/kg RebA-G) represents only 2% of the 

total RebA-G production cost. As rule of thumb, €1.5/kg product is an allowable 

cost contribution of the biocatalyst to the total production cost of fine chemicals, 

i.e. products with a typical cost between €15-100/kg product
233,235,236

. The 

estimated biocatalyst cost for the base case is roughly of the same order and 

consequently fulfills this requirement. The enzyme production consists mostly of 

labor- and equipment costs, which is typical for fermentation processes at 10 m
3
 

scale or lower (Figure 6).  

 

Figure 6. Cost contribution of various resources to the enzyme production cost (A) and 

the RebA-G production cost (B): ● Labor, ● Equipment, ● Raw materials, ● Utilities, ● 

Enzyme recovery, ● RebA, ● Enzyme (Gtf180-ΔN-ΔV-Q1140E). 

 

The low cost contribution of Gtf180-ΔN-ΔV-Q1140E to the RebA-G production 

cost is explained by the high biocatalyst activity (kcat for sucrose as donor 

substrate is 300/s)
98

, allowing the addition of a relatively low amount of enzyme 

(5 U/mL) to the glucosylation reaction medium. As discussed previously, this 

results in a theoretical production of 880 g RebA-G per L fermentation medium. 

Nevertheless, there is still margin to reduce the fermentation cost. By performing 

the fermentation in fed-batch mode much higher cell densities (up to OD600 of 

100) and consequently higher enzyme titers (up to 10 g/L) may be obtained
233

. 

As a result, labor- and equipment costs would decrease substantially.   
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The total RebA-G production cost equals €89.2/kg RebA-G, representing an 

extra cost of 12% compared to high-purity RebA, sold at €80/kg (Tereos 

PureCircle Solutions). Since the price of sucrose is roughly €0.70/kg and RebA-G 

is around 150 times sweeter than sucrose, a selling price of €105/kg RebA-G can 

still be considered as competitive. If RebA-G is sold at this price, a profit of 

€15/kg RebA-G is obtained.  

 

As demonstrated in chapter 4, glucosylating RebA in fed-batch mode resulted in 

higher production yield compared to the batch production (270 vs 115 g/L RebA-

G). However, the much lower productivity per kg enzyme (1080 vs 253 kg RebA-

G/kg enzyme), due to the addition of 10 times more enzyme, was translated into 

an undesirable production cost increase of €11.1/kg RebA-G. From an economic 

perspective, the batch reaction is thus preferred. It has to be noted that further 

optimization of the fed-batch reaction, thereby decreasing the applied enzyme 

activity (U/mL), may allow further reduction of the production cost.  

 

3.3.2. Alternative case: glucosylation of low-grade stevia extract 

 

Remarkably, the base case analysis shows that RebA-G production cost is 

dominated by the cost of the acceptor substrate RebA (63%). A major cost 

reduction consequently may be achieved by changing the acceptor substrate: 

instead of high-purity RebA, low-grade stevia extract could be used as substrate, 

which is commonly marketed for roughly €40/kg (Tereos PureCircle Solutions, or 

half of the price for high-purity RebA (€80/kg, Tereos PureCircle Solutions). 

Moreover, glucosylating mixtures of steviol glycosides also offers the possibility 

to valorize stevioside, whose glucosylation by Gtf180-ΔN-Q1140E was already 

demonstrated in chapter 5. The glucosylation of different self-made 

stevioside/RebA mixtures and of low-grade stevia extract (Steviasol), basing the 

experimental design on the optimal reaction conditions for stevioside 

glucosylation, as determined in chapter 5 (31 mM steviol glycosides, 524 mM 

sucrose), was also successful (data not shown), yielding roughly 50 g/L 

glucosylated steviol glycosides (GSG). The economic model of the base case 

was changed accordingly, resulting in a production cost of €62.7/kg GSG, a 
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substantial reduction of almost 30% compared to RebA-G production (Table II). 

The glucosylation of a mixture of steviol glycosides consequently provides a 

substantial economic advantage over the glucosylation of high-purity RebA. 

 

3.4. Sensory analysis of glucosylated stevioside/RebA mixture 

 

The previous paragraph demonstrated the economic advantage of glucosylating 

a mixture of steviol glycosides. However, the sensory properties of the obtained 

product must at least be similar to those of RebA-G to justify this change of 

acceptor substrate. As proof of concept, a sensory analysis of a glucosylated 

mixture (obtained from glucosylating low-grade stevia extract), containing 50% 

Stev-G and 50% RebA-G (RebA-G/Stev-G), was performed by a trained panel, 

evaluating 9 different taste attributes. The mean scores of the attributes of the 

sweetened water solutions are shown in Figure 7 and were compared with the 

sensory properties of RebA-G and Stev-G. 

 

The sensory properties of the RebA-G/Stev-G mixture, compared to RebA and 

stevioside, were clearly improved, mainly due to a significant reduction in 

bitterness. Interestingly, the relatively low sweetness of Stev-G was 

compensated by the high sweetness of RebA-G, yielding a product with excellent 

edulcorant properties. RebA-G was identified as the most promising high-

intensity sweetener, combining a high sweetness with a very low off-flavor 

intensity. If taste has the highest priority, the glucosylation of high-purity RebA is 

thus preferred, as the presence of stevioside deteriorated the sensory properties 

of the RebA-G/Stev-G. 
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Figure 7. Sensory analysis of solutions containing 588 mg/L RebA, stevioside (Stev), 

RebA-G, Stev-G and a 50:50 RebA-G/Stev-G mixture. Sweetness, bitterness and off-

flavors were rated on a scale of 10. Mean values are given in the table. 
A,B

: different letters 

indicate significant differences (p<0.05) between solutions following one-way ANOVA and 

post-hoc test. 

 

3.5. Stability analysis of glucosylated stevia products 

 

In order to be used in beverages as high-intensity sweetener, the glucosylated 

stevia products need to be stable during storage over prolonged periods of time. 

Commercial soft drinks such as cola and lemonade typically have a low pH in the 

range of 2.8-3.8
241

. Several studies have indicated that the rate and extent of 

degradation of RebA and stevioside are dependent on pH, buffer type, buffer 

concentration and temperature
241-243

. Degradation typically involves the 

hydrolysis of the glycosidic linkages of the steviol glycosides, deteriorating their 

flavor. In case of RebA-G, it is particularly important that the enzymatically 

introduced (α1→6) linkage is stable so that the improved taste is maintained. The 
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stability of RebA and RebA-G was determined by conducting an accelerated 

shelf life study at 80 °C and pH 2.8 and 3.8 (50 mM citric acid and 50 mM 

phosphate), as shown in Figure 8. 

 

Figure 8. Stability of 500 mg/L RebA (black) and RebA-G (grey) in different acidic 

solutions. A 50 mM phosphate, pH 2.8; B 50 mM citric acid, pH 2.8; C 50 mM phosphate, 

pH 3.8; D 50 mM citric acid, pH 3.8.  

 

RebA-G appears to be sufficiently stable to be applied in low pH soft drinks, it 

actually displayed a higher stability than RebA in all buffers tested. Buffer type 

and pH strongly influenced the degradation rate. In general, HPLC analysis 

revealed that incubations in citric acid buffer resulted in more degradation than in 

phosphate buffer. At pH 2.8 the half-life (t1/2) of RebA-G in phosphate and citric 

acid buffer, was 63.9 and 52.0 h, respectively. In contrast, RebA-G was only 

slightly degraded at pH 3.8, even after 72 h (t1/2 of 779.8 and 520.6 h, in 

phosphate and citric acid buffer, respectively). HPLC analysis suggested that 

RebA-G was degraded into RebA and subsequently into stevioside. Other 

degradation products could not be detected. 
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4. Conclusions 

 

This chapter demonstrates the technical and economic feasibility of glucosylating 

steviol glycosides with the Gtf180-ΔN-ΔV-Q1140E enzyme. The strength of the 

technology lies in the high activity of this biocatalyst, suppressing the associated 

costs, as revealed by the cost analysis. Furthermore, selective adsorption of the 

glucosylated products onto macroporous resin offers a straightforward and 

efficient method for their purification. Based on the cost analysis, it was 

suggested to glucosylate mixtures of steviol glycosides rather than high-purity 

RebA or stevioside, as this results in a 30% cost reduction. From a taste quality 

perspective, the glucosylation of high-purity RebA is nevertheless preferred. 

Finally, the glucosylation reaction was successfully scaled up to 7.5 L scale, 

allowing the production of samples for food safety analysis and testing in several 

food products, such as chocolate, candy, etc. In future work demonstration of the 

complete process at pilot-plant scale will be an essential requirement to survive 

the so-called valley of death, which is faced by many novel technologies. 
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5. Supplementary information 

 

5.1. Cost analysis: Assumptions and economic model 

 

The base case used for the cost analysis is the glucosylation of high-purity RebA 

in batch mode at optimal reaction conditions (84 mM RebA, 282 mM sucrose, 5 

U/mL Gtf180-ΔN-ΔV-Q1140E)
70

. 

 

General assumptions 

 

 Plant is located in Western Europe. 

 The facilities are part of a multi-purpose plant with shared utilities, services, 

offices, quality control, etc.  

 Capital investment included equipment, instrumentation and piping needed 

for RebA-G production, excluding DSP.  

 Scale: One bioreactor and one blending tank of 10 m
3
 with 75% working 

volume, shared for fermentation and biocatalysis.  

 Costs are given in €. 

 

Production is as follows: 

 One optimal fermentation at 10 m
3
 yields enzyme to perform 8 enzymatic 

glucosylations at 10 m
3
. As a result, 1 week of fermentation is followed by 8 

weeks of biocatalysis, defined as 1 production cycle. 

 Equipment is used to perform 5 production cycles per year, yielding 34.5 

metric tons of RebA-G.  

 The volume consumption of stevia is expected to reach 8,507 metric tons per 

year by the end of 2020
44

. The assumed production would consequently 

represent 0.4% of the total stevia market.   

 

 

 

 



Chapter 6: Biocatalytic production of novel steviol glycosides 
 

 

195 
 

Raw materials 

 

Table SI. Raw materials needed to run one fermentation batch at 10 m
3
. 

Raw materials Quantity (kg) Price (€/kg) 

Glucose 225 0.5 

Tryptone 75 3.0 

Yeast extract 37.5 4.0 

NaCl 37.5 2.1 

Ampicillin 0.75 38.0 

IPTG 0.18 154.0 

H2O 7125 0.01 

Total cost 694 €/batch 

 

It was assumed that the adsorption resin was reused during one year of 

production (40 times) and that the eluent (70% isopropanol) was recovered after 

evaporation and consequently reused during one year of production.  

 

Table SII. Raw materials needed to run one enzymatic glucosylation reaction, including 

DSP, at 10 m
3
. 

Raw materials Quantity (kg) Price (€/kg) 

Enzyme 0.8 2,306 

Sucrose 723 0.7 

RebA 609 80 

CaCl2.2H2O 1 122 

H2O 6200 0.01 

Resin 9,400 46.7 

Isopropanol 25,875 1.5 

H2O 14,110 0.01 

 

Calculation of the capital investment 

 

To calculate the total installed cost (TIC), the total purchase cost was multiplied 

by the Lang factor 𝐾 = 5
244

. 
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To calculate the capital investment cost per production cycle, the total investment 

cost, equal to TIC, was converted into an equivalent annual cost by multiplying 

TIC with the annuity factor k: 

𝑘 =  
𝑖

1 − (1 + 𝑖)−𝑡
 

 

with the interest rate 𝑖 = 0.07 and the equipment lifetime 𝑡 = 15 yrs. 

 

As one production cycle consists of 1 fermentation batch and 8 enzymatic 

glucosylations, the equipment cost per production cycle was allocated as follows: 

11% to the fermentation, 89% to the glucosylation. 

 

Table SIII. Equipment related costs. 

Equipment Specifications Price (€) 

Blending tank 10 m
3
 51,500 

Pump, gear 5 m
3
/h 33,000 

Heat exchanger 10 MW 50,000 

Air compressor 10 m
3
/min 54,000 

Fermenter 10 m
3
 175,000 

Total purchase cost €363,500 

Total installed cost (TIC) €1,817,500 

Annuity (k = 0.14) €199,500/year 

Maintenance €26,000/year 

Other €49,000/year 

Annual cost €275,000/year 

Cost per production cycle €55,000 

Cost per fermentation batch €6110 

Cost per enzymatic glucosylation €6110 

 

Utilities  

 

The price of electricity was fixed at €0.1/kWh. 
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Table SIV. Utilities needed to run one fermentation batch at 10 m
3
. 

Utilities Specifications kWh 

Sterilization (20-140 °C) 4,187 J/kg.K 1047 

Aeration (1 vvm) 5 kW/m
3
 400 

Agitation (500 rpm) 5 kW/m
3
 400 

Waste treatment €2/m
3
 

Total utilities cost €207/batch 

 

Table SV. Utilities needed to run one enzymatic glucosylation at 10 m
3
. 

Utilities Specifications kWh 

Agitation (185 rpm) 1.9 kW/m
3
 57 

Heating (37 °C) 4,187 J/kg.K 148 

Waste treatment €2/m
3
 

Total utilities cost €26/batch 

 

At kg scale, the last step of RebA-G production consisted of freeze-drying to 

remove the residual water. As freeze-drying is technically and economically not 

feasible at ton scale, spray drying was considered as last purification step for the 

cost analysis. Firstly, the mixture obtained after elution (2% solids) was 

evaporated until a solid content of 50% by means of a mechanical vapor 

recompression (MVR). Energy consumption of MVR and spray drying were 

based on Fox et al.
245

.  

 

Table SVI. Utilities needed to perform DSP of RebA-G. 

Utilities kWh 

Evaporation  476 

Spray drying 1917 

Total utilities cost €249/batch 
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Labor 

 

Table SVII. Labor cost. 

Utilities Man-hours 

Fermentation 96 

Biocatalysis + DSP 120 

 

5.2. Figures 

 

Figure S1. Biocatalyst production: growth of the recombinant Escherichia coli BL21 (DE3) 

strain, expressing Gtf180-ΔN-ΔV-Q1140E, in LB medium supplemented with 30 g/L 

glucose. Induction with IPTG after 4 h of incubation. ● OD600, ○ glucose. 
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Figure S2. Continuous adsorption of RebA glucosylation reaction mixture (84 mM RebA, 

282 mM sucrose, 5 U/mL enzyme) onto Lewatit VP OC 1064 MD PH resin at a flow rate of 

4.5 BV/h. S1 RebA-G; S2 glucose, fructose and sucrose; 1-3 wash fractions; 4-6 elution 

fractions. 

 

      

Figure S3. Glucosylated RebA (RebA-G), obtained after selective adsorption on 

macroporous resin, evaporation in vacuo and ultimately freeze-drying. 

 

 

 

 

 

 

 

 

 



 



 
 

201 

 

 

 

 

 

 

 

 

Chapter 7 
 

 

 

Enzymatic transglucosylation of neohesperidin 

dihydrochalcone: glucansucrase Gtf180-ΔN-Q1140E as 

biocatalyst for the glycodiversification of sweet glycosides 
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Abstract 

 

Increasing rates of obesity and diabetes type 2 lead to a rapidly growing number 

of health-conscious consumers, fueling the demand for low-calorie food products. 

Natural high-intensity sweeteners (HIS), of which steviol glycosides [e.g. 

rebaudioside A (RebA)] extracted from the leaves of Stevia rebaudiana are best 

known, have a competitive edge over synthetic HIS such as aspartame and 

acesulfame K, suffering from a bad reputation among consumers. Over the 

years, several other natural compounds have been proposed as possible 

products for the HIS market of the future. An interesting target is the flavor 

enhancer neohesperidin dihydrochalcone (NHDC). The main disadvantages of 

NHDC are its low water solubility at room temperature, resulting in a relatively 

low bioavailability, and an unpleasant lingering aftertaste. This chapter reports 

the α-glucosylation of NHDC with glucansucrase Gtf180-ΔN-Q1140E from 

Lactobacillus reuteri 180, using sucrose as donor substrate, in an attempt to 

improve its sensory and physicochemical properties. Structure elucidation of the 

novel glucosylated products revealed that NHDC was glucosylated at the β-D-

glucosyl unit and the α-L-rhamnosyl unit, through an (α1→6) and (α1→4) linkage, 

respectively. The obtained conversion degree of 65% offers a good starting point 

for future improvements by reaction engineering. The α-glucosylated NHDC 

products displayed much higher water solubilities than NHDC and retained 

strong anti-oxidant capacities, enabling their use as nutraceuticals. Sensory 

analysis by a trained panel revealed limited bitterness suppressing effects of 

NHDC and its α-glucosylated products on RebA, in contradiction to previous 

reports. 
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1. Introduction 

 

Previously we demonstrated the potential of the glucansucrase enzyme Gtf180-

ΔN and in particular its Q1140E mutant
97

 to trans-α-glucosylate rebaudioside A 

(RebA) and stevioside as a means to improve their sensory properties
68-70

. In 

addition to these steviol glycosides from Stevia rebaudiana, also neohesperidin 

dihydrochalcone (NHDC, Figure 1) has attracted considerable attention from the 

food industry, due to its intensive sweetness. Later on, NHDC’s remarkable 

properties as flavor enhancer, as such contributing to the mouth feel of several 

food products and/or suppressing the bitterness displayed by other compounds, 

expanded the interest in this versatile molecule
246-248

. 

 

First discovered in 1963 by Horowitz and Gentili
246

, NHDC is industrially 

produced by hydrogenation of neohesperidin (hesperetin 7-O-neohesperidoside), 

a flavanone glycoside isolated from citrus fruits such as mandarin, orange and 

grapefruit
249

. Recently, NHDC was found to naturally occur as a minor constituent 

in the plant Oxytropis myriophylla
250

 and in the bark of the tree Eysenhardtia 

polystachya
251

. Classified as a semisynthetic sweetener, NHDC is roughly 340 

times sweeter than sucrose and was approved as sweetener by the European 

Union in 1994. Similarly to other highly sweet glycosides such as glycyrrhizin 

(Glycyrrhiza glabra, liquorice) and most steviol glycosides, NHDC displays a 

lingering liquorice aftertaste limiting its application as the sole sweetener in foods 

and beverages
252

. NHDC is best applied in sweetener blends: it displays strong 

synergistic effects when combined with other sweeteners such as saccharin, 

aspartame, and RebA
253

. The total sweetness intensity of such mixtures is 

greater than the theoretical sum of the intensities of the individual components
254

. 

The use of NHDC thus provides a substantial economic benefit, as much less of 

the other sweetener needs to be supplied.  

 

In addition, NHDC finds many applications as a flavor enhancer in a wide range 

of food –and pharmaceutical products, as such identified by the E number 

E959
255-257

. A typical example concerns the enhancement of the creaminess of 



Chapter 7: Glycosylation of NHDC 

 

204 

 

dairy products such as yogurt and ice cream. Moreover, NHDC is particularly 

effective in masking the bitterness displayed by several other compounds, such 

as limonin and naringin from citrus fruits. A patent application from 2012 even 

claims that the bitterness and astringency exhibited by RebA and monk fruit 

extract are very effectively suppressed by the addition of 10 ppm NHDC
258

. Also 

the pharmaceutical industry makes good use of this remarkable NHDC 

characteristic to reduce the bitterness of several drugs in tablet form, such as the 

antipyretic paracetamol
259

. More recently, several studies have attributed strong 

antioxidant
260-262

, hepatoprotective (preventing damage to the liver)
263

 and 

prebiotic
264

 properties to NHDC. In the context of all these possible applications, 

the main disadvantage of NHDC is its low water solubility at room temperature 

(0.4 g/L), resulting in a relatively low bioavailability and limiting its application as 

sweetener in water based dispersions, such as syrups and jams
265

.  

 

 

Figure 1. Chemical structure of neohesperidin dihydrochalcone (NHDC) with carbon atom 

numbering as applied in the structure elucidation. The numbering used is arbitrary (similar 

to Caccia et al. 1998
266

) as there is no consensus in literature. 

 

NHDC contains 9 hydroxy groups (Figure 1): 3 of rhamnose, 3 of glucose and 3 

of the aglycon (2 on the A-ring and 1 on the B-ring). In theory, all these hydroxy 

groups can be enzymatically glycosylated, depending on the biocatalyst and its 

substrate specificity and regioselectivity. To our knowledge, NHDC glycosylation 

has been reported only once: by applying maltogenic amylase from Bacillus 

stearothermophilus, NHDC was maltosylated at the β-D-glucosyl unit through an 
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(α1→6) linkage, resulting in a 700-fold increase of solubility and a 7-fold 

decrease of sweetness
267

. Previously, we reported the trans-α-glucosylation of a 

wide variety of compounds, ranging from catechol to more complex molecules 

such as steviol glycosides, with Gtf180-ΔN from Lactobacillus reuteri 180 and 

derived mutants, highlighting the broad acceptor substrate specificity of this 

enzyme
68-70,110

. This chapter reports the transglucosylation of NHDC with Gtf180-

ΔN-Q1140E, yielding three new-to-nature α-glucosylated NHDC derivatives. A 

detailed structural analysis is provided, a necessity for the evaluation of the 

quality and safety of novel food products. In addition, the sensory properties, 

anti-oxidant capacities and solubilities of the α-glucosylated NHDC products were 

compared to NHDC. 

 

2. Materials and methods 

 

2.1. Production and purification of glucosylated NHDC 

 

The production of glucosylated NHDC (Ingrizo) was performed at 50 mL scale in 

a shake flask, in duplicate. Samples were analyzed by HPLC. The temperature 

and agitation rate were set at 37 °C and 150 rpm, respectively. Gtf180-ΔN-

Q1140E
97

 (5 U/mL), produced as described previously
70

, was incubated in a 20% 

ethanol solution containing 20 g/L NHDC and 125 mM sucrose supplemented 

with 25 mM sodium acetate (pH 4.7) and 1 mM CaCl2. One unit (U) of enzyme 

activity corresponds to the conversion of 1 μmole sucrose (used for hydrolysis 

and transglucosylation) in a solution of 100 mM sucrose, 25 mM sodium acetate 

(pH 4.7) and 1 mM CaCl2 at 37 °C.  

  

After completion of the reaction (i.e. when a steady state was reached), 

glucosylated NHDC was isolated from the reaction mixture by adsorption onto 

Lewatit VP OC 1064 MD PH macroporous resin. A washing step with water 

removed the residual sugars and α-glucan oligosaccharides. Desorption of 

glucosylated NHDC was achieved with 70% isopropanol. The resulting mixture 

was evaporated in vacuo and subsequently applied onto a Reveleris X2 flash 
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chromatography system, applying a Reveleris amino cartridge (40 µm) with water 

(solvent A) and acetonitrile (solvent B) as the mobile phase. Following gradient 

elution was used: 99% solvent B (0-2 min), 99-35% solvent B (2-20 min), 35% 

solvent B (20-25 min). The collected fractions were evaporated in vacuo and 

subsequently freeze dried to remove the residual water. 

 

2.2. MALDI-TOF-mass spectrometry  

 

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) was performed on an AximaTM mass spectrometer (Shimadzu 

Kratos Inc., Manchester, UK), equipped with a Nitrogen laser (337 nm, 3 ns pulse 

width). Positive-ion mode spectra were recorded using the reflector mode at a 

resolution of 5000 FWHM and delayed extraction (450 ns). Accelerating voltage 

was 19 kV with a grid voltage of 75.2%. The mirror voltage ratio was 1.12 and the 

acquisition mass range was 200-2000 Da. Samples were prepared by mixing on 

the target 1 μL sample solutions with 1 μL aqueous 10% 2,5-dihydroxybenzoic 

acid in 40% acetonitrile as matrix solution, containing 0.1% TFA. 

 

2.3. Methylation analysis 

 

Samples were permethylated using CH3I and solid NaOH in DMSO, as described 

by Ciucanu and Kerek (1984)
227

, then hydrolyzed with 2 M TFA (2 h, 120 °C) to 

give the mixture of partially methylated monosaccharides. After evaporation to 

dryness and redissolving in H2O, reduction was performed with NaBD4 (2 h, room 

temperature). After neutralization with 4 M acetic acid and removal of boric acid 

by co-evaporation with methanol, the samples were acetylated with acetic 

anhydride/pyridine (1:1, 30 min, 120 °C). After evaporation to dryness and re-

dissolving in dichloromethane, the mixtures of partially methylated alditol 

acetates (PMAAs) were analyzed by gas-liquid chromatography – electron 

ionization – mass spectrometry (GLC-EI-MS) on an EC-1 column (30 m x 0.25 

mm, Alltech), using a gas chromatograph mass spectrometer (GCMS-QP2010 

Plus from Shimadzu Kratos Inc.) and a temperature gradient (140-250 °C at 8 

°C/min)
228

. 
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2.4. NMR spectroscopy  

 

Resolution-enhanced 1D/2D 500-MHz 
1
H/

13
C NMR spectra were recorded in D2O 

on a Bruker DRX-500 spectrometer (Bijvoet Center, Department of NMR 

Spectroscopy, Utrecht University) at a probe temperature of 310 K. Data 

acquisition was done with Bruker Topspin 2.1. Before analysis, samples were 

exchanged twice in D2O (99.9 atom% D, Cambridge Isotope Laboratories, Inc., 

Andover, MA) with intermediate lyophilization, and then dissolved in 0.6 mL D2O. 

Suppression of the deuterated water signal (HOD) was achieved by applying a 

WEFT (water eliminated Fourier transform) pulse sequence for 1D NMR 

experiments and by a selective pre-saturation pulse of 1 s during the relaxation 

delay in 2D experiments. The 2D TOCSY spectra were recorded using an MLEV-

17 (composite pulse devised by Levitt et al., 1982) mixing sequence with spin-

lock times of 20, 50, 100 and 200 ms. The 2D 
1
H-

1
H ROESY spectra were 

recorded using standard Bruker XWINNMR software with a mixing time of 200 

ms. The carrier frequency was set at the downfield edge of the spectrum in order 

to minimize TOCSY transfer during spin-locking. Natural abundance 2D 
13

C-
1
H 

HSQC experiments (
1
H frequency 500.0821 MHz, 

13
C frequency 125.7552 MHz) 

were recorded without decoupling during acquisition of the 
1
H FID. The NMR 

data were processed using the MestReNova 9 program (Mestrelab Research SL, 

Santiago de Compostella, Spain). Chemical shifts (δ) are expressed in ppm by 

reference to internal acetone (δH 2.225 for 
1
H and δC 31.07 for 

13
C). 

 

2.5. Solubility measurements 

 

The solubilities of NHDC and α-glucosylated NHDC products were determined in 

250 μL of ultrapure water, incubated in a thermoblock at 25 °C. Products were 

added until clear precipitation was noticeable, after which the samples were 

vortexed multiple times and allowed to equilibrate for 24 h. The supernatants 

were diluted in ethanol and subsequently subjected to HPLC analysis. Calibration 

was accomplished using the appropriate standard curves, obtained after 

purification of the glycosylated products as described in 2.1. All analyses were 

performed in duplicate. 
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2.6. Determination of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-

scavenging activity         

 

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay is widely used to determine the 

anti-oxidant potential of various compounds. DPPH possesses an unpaired 

valence electron susceptible to scavenging by molecules displaying anti-oxidant 

activity, a chemical reaction which can be followed spectrophotometrically
268

. 

 

The DPPH radical-scavenging activity was evaluated by adding 100 μL of 

methanol, containing various concentrations of NHDC and α-glucosylated NHDC 

products (10-1000 μM), to 200 μL of methanol supplemented with 200 μM DPPH. 

The samples were incubated at room temperature during 15 min in complete 

darkness, after which their absorbance was measured at 517 nm. The 

(glucosylated) NHDC concentration required to reduce the absorbance by 50% 

(EC50) was calculated by linear regression (of the linear part) of the absorption 

curves. Analyses were performed in duplicate. Butylated hydroxytoluene (BHT) 

was included in the experiments to serve as comparison. 

 

2.7. Sensory analysis 

 

The sensory analysis was performed in individual tasting booths at the UGent 

Sensolab (Belgium) by a trained panel (9 persons). In short, taste (sweetness, 

liquorice, astringency and bitterness) was evaluated by swirling the sample in the 

mouth for 5 sec after which the sample was expectorated. Aftertaste was 

evaluated 10 sec after swallowing the solution. Lingering based on the maximum 

taste intensity was rated 1 min later. Sucrose reference solutions (5%, 7.5% and 

10% sucrose, scoring 5, 7.5 and 10, respectively) were provided. Water (Spa 

Reine) and plain crackers were used as palate cleansers between sampling. 

Following sweetened solutions were tasted: 588 mg/L rebaudioside A (RebA, 

Tereos PureCircle Solutions), 588 mg/L RebA + 10 ppm NHDC, 588 mg/L RebA 

+ 10 ppm monoglucosylated NHDC (NHDC-G1), and 588 mg/L RebA + 10 ppm 

diglucosylated NHDC (NHDC-G2). All samples were evaluated in duplicate.  
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Statistical analyses were performed with SPSS 23 (SPSS Inc., Chicago, USA). 

All tests were done at a significance level of 0.05. One-Way ANOVA was used to 

investigate any significant difference between the solutions. Testing for equal 

variances was executed with the Modified Levene Test. When conditions for 

equal variance were fulfilled, the Tukey test was used to determine differences 

between samples
210

. In case variances were not equal, a Games-Howell post-

hoc test was performed
211

. 

 

3. Results and discussion 

 

3.1. Production of glucosylated NHDC 

 

Figure 2. HPLC analysis of the synthesis of α-D-glucosides of NHDC by Gtf180-ΔN-

Q1140E in time (33 mM NHDC; 125 mM sucrose; 20% v/v EtOH; 5 U/mL enzyme). ● 

NHDC, ○ NHDC-G1, ▼ NHDC-G2. Sucrose was depleted after 180 min. 

 

As NHDC is only sparingly soluble in water (0.4 g/L), a cosolvent had to be 

supplied to the glycosylation reaction mixture in order to avoid suboptimal yields 

and conversion degrees. Indeed, as demonstrated in chapter 3, higher 

concentrations of acceptor substrate generally result in higher conversion 

degrees. Gtf180-ΔN-Q1140E retained its activity in solutions with up to 20% v/v 



Chapter 7: Glycosylation of NHDC 

 

210 

 

EtOH (Figure S1). The reaction mixture was consequently composed of 20% v/v 

EtOH, containing 33 mM NHDC (maximal amount that could be dissolved), and 

125 mM sucrose, enough donor substrate to drive the reaction to completion. 

The incubation of 5 U/mL Gtf180-ΔN-Q1140E in this reaction mixture resulted in 

a NHDC conversion degree of 64.4% (Figure 2). HPLC analysis also revealed 

that at least two major products were synthesized, 62% NHDC-G1 and 38% 

NHDC-G2.  

 

3.2. Structural characterization of glucosylated NHDC products 

 

NHDC was enzymatically transglycosylated by Gtf180-ΔN-Q1140E, at first sight 

resulting in the formation of 2 major products (Figure 2). However, purifying the 

reaction mixture with flash chromatography resulted in the isolation of three 

major glucosylated products (P1, P2, P3), of which P1 and P2 were formed in 

equal amounts. MALDI-TOF mass spectrometric analysis revealed the same 

quasi-molecular mass peaks m/z 796.5 [M+Na]
+
 and m/z 812.5 [M+K]

+
 for P1 

and P2, indicating NHDC+1Glc (MW = 774 Da), as compared to NHDC (MW = 

612 Da) showing m/z 634.5 [M+Na]
+
 and m/z 650.6 [M+K]

+
. P3 showed m/z 

958.6 [M+Na]
+
 and m/z 974.6 [M+K]

+
, indicating NHDC+2Glc (MW = 936 Da). In 

other words, NHDC-G1 consists of products P1 and P2, whereas NHDC-G2 was 

equal to P3.  

 

In order to obtain information about the linkage pattern of the carbohydrate 

moieties of the products, methylation analysis was performed (Table SI). For 

NHDC, the expected terminal Rhamnose and 2-substituted Glucose in molar 

ratio 1:1 was found. Additionally, in P1 and P2, the presence of 4-substituted 

Rhamnose and 2,6-disubstituted Glucose was observed, respectively. P3 

showed both of the latter residues. The minor amounts of →6)Glcp(1→ and 

→2)Glcp(1→ found by methylation analysis indicate that the products were not 

100% pure. 

 

Different NMR spectroscopic techniques (
1
H- and 

13
C-NMR, TOCSY, ROESY 

and HSQC) were used to investigate the structures of the transglucosylated 
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NHDC derivatives. Firstly, NMR spectroscopy was performed with the acceptor 

substrate NHDC in D2O to obtain reference data (Figure 3). In spite of the 

reported low solubility of NHDC in water, D2O samples were easily obtained. It 

has to be noted that the 
1
H chemical shifts are strongly affected by temperature 

and sample concentrations (probably due to self-association of NHDC in D2O).  

 

 

Figure 3. 1D 500-MHz 
1
H NMR spectra of NHDC, P1, P2 and P3, recorded in D2O at 310 

K. * resonance signals stemming from contamination(s). 
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The 500-MHz 
1
H NMR spectrum (Figure 3) of NHDC showed the signals of the 

aromatic protons at δ 6.87 [d, J=8.2 Hz, B5], at δ 6.72 [s, J=2.0 Hz, B2], and at δ 

6.70 [d, J=8.2 Hz, B6], together with two methylene groups [δ 3.29 (C8) and δ 

2.81 (C9)] and a methoxy group [δ 3.75 (B-OCH3)], typical for the 

dihydrochalcone skeleton
266

. The aromatic proton signals of A2 and A6 (see 

NHDC structure, Figure 1), initially found at δ 5.99, had disappeared due to 

exchange with deuterium from the solvent (D2O) after prolonged time at 310 K
269

. 

Also, the C8 proton, in α position to the carbonyl group (C7), is susceptible to 

deuterium exchange via the keto-enol route, consequently, 
13

C correlations in 

HSQC experiments will not be observed. Concerning the carbohydrate moiety, 

the 
1
H NMR spectrum exhibited signals due to one β-D-glucopyranosyl unit [δ 

5.185 (d, J=7.6 Hz, Glc H-1)] and one α-L-rhamnopyranosyl unit [δ 5.059 (br s, J 

<2 Hz, Rha H-1) and δ 1.168 (d, J=6.1 Hz, Rha CH3)]. The assignment of the 

signals (Table SII) was made through 2D NMR TOCSY experiments, using 

different mixing times, and in combination with ROESY and HSQC (Figures S2 

and S3). Indeed, the obtained NMR data of NHDC (Table SII) were in agreement 

with She et al. (2011)
250

 and Caccia et al. (1998)
266

. 

 

The 500-MHz 
1
H NMR spectrum (Figure 3) of fractions P1 and P2 showed an 

extra α-anomeric proton at δ 4.936 (J=3.7 Hz) and at δ 4.845 (J=3.7 Hz), 

respectively, stemming from two differently attached glucose units, denoted as 

Glc1 and Glc2. Compared to NHDC, the NMR spectrum of fraction P3 showed 

signals stemming from both Glc1 and Glc2 (δ 4.955: J=3.7 Hz and δ 4.855: J=3.7 

Hz). The resonance signals indicated with * in Figure 3 (e.g. p, q and r, having 

mutual TOCSY connections) are stemming from contamination(s). The total 

assignment of NMR signals (Table SII) was made through 2D NMR TOCSY, 

HSQC and ROESY experiments in a similar way as for NHDC (Figures S4-9), 

revealing that Glc1 and Glc2 were attached to NHDC at the α-L-rhamnopyranosyl 

unit through an (α1→4) linkage and at the β-D-glucopyranosyl unit through an 

(α1→6) linkage, respectively (Figure 4). In other words, P3 contained both the 

newly formed (α1→4) linkage present in P1 and the (α1→6) linkage introduced in 

P2. The results are in agreement with the methylation analyses (Table …). To 
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our knowledge, these α-glucosylated NHDC derivatives have not been described 

before and can thus be considered new-to-nature. 

 

 

Figure 4. Chemical structures of α-glucosylated NHDC products: A NHDC-P1, B NHDC-

P2 and C NHDC-P3. 

 

3.3. Sensory analysis of glucosylated NHDC products 

 

NHDC is not only a high-intensity sweetener (340 times sweeter than sucrose), it 

is reported to suppress the bitterness displayed by other sweeteners such as 

RebA. A sensory analysis of aqueous solutions sweetened with RebA and 10 
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ppm NHDC, NHDC-G1, and NHDC-G2 was performed by a trained panel, 

evaluating 9 different taste attributes (Figure 5).  

 

 

Figure 5. Sensory analysis of RebA, RebA + 10 ppm NHDC, RebA + 10 ppm NHDC-G1 

and RebA + 10 ppm NHDC-G2. Sweetness, bitterness and off-flavors were rated on a 

scale of 15. Mean values are given in the table. 
A,B

: different letters indicate significant 

differences (p<0.05) between solutions following one-way ANOVA and post-hoc test. 

 

In general, the trained panel perceived only slight differences between the 

various solutions. The claimed bitterness suppressing effect of NHDC was 

detected by the trained panel, however, the difference with the NHDC-less RebA 

solution was not significant. Only the addition of 10 ppm NHDC-G2 resulted in a 

significant reduction of RebA’s bitter aftertaste. A possible explanation is the 

addition of too little NHDC, although Sun et al.
258

 recommended a similar dose of 

10 ppm. Nevertheless, the solution containing RebA + 10 ppm NHDC was 

perceived as sweeter than the NHDC-less RebA solution, confirming NHDC’s 

synergistic effect. Slight increases in astringency, liquorice taste, and lingering 
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were also observed, typical consequences of adding NHDC. Interestingly, the 

addition of NHDC-G1 and NHDC-G2 instead of NHDC reduced these undesired 

side-effects. However, as the trained panel was not able to perceive significant 

differences between the various solutions, investigation of the appropriate dose 

is required to obtain conclusive results. The limited availability of the trained 

panel prevented further experimenting. In any case, it appears that α-

glucosylation of RebA by Gtf180-ΔN-Q1140E
68-70

 is a much more effective 

strategy to decrease its bitterness than the addition of (glucosylated) NHDC. In 

this context, analysis of the sensory properties of a solution containing 

(glucosylated) NHDC and glucosylated RebA (RebA-G) is also an interesting 

option. 

 

3.4. Solubility of glucosylated NHDC products 

 

The low solubility of NHDC prevents possible applications as nutraceutical, to 

exploit its strong anti-oxidant properties. Determination of the solubilities in water 

of NHDC and its α-glucosylated products revealed an impressive 800-fold 

increase of solubility for NHDC-G1, whereas NHDC-G2 was even more soluble 

(Table I). Previously, maltosylation of NHDC at the β-D-glucosyl unit, introduced 

through an (α1→6) linkage, resulted in a 700-fold increase of solubility
267

. An 

alternative approach consisted of the cosolubilization of NHDC with sodium 

saccharin, resulting in a 200-fold increase of solubility, significantly lower than the 

improvement obtained after glycosylation
265

. 

 

3.5. Anti-oxidant properties of glucosylated NHDC products 

 

In general, glycosylation of anti-oxidants increases their solubility in water, 

however, the antioxidant capacity typically decreases
139

. The ability of NHDC and 

α-glucosylated NHDC products to scavenge DPPH was consequently evaluated 

(Table I). Although glucosylating NHDC clearly reduced the scavenging activity 

(EC50), NHDC-G1 and NHDC-G2 still showed excellent anti-oxidant capacities, 

displaying EC50’s similar to the established anti-oxidant butylated hydroxytoluene 

(BHT) which possessed an EC50 of 35.2 µM (determined experimentally). 
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Considering the substantially improved water solubility of α-glucosylated NHDC 

(NHDC-G, composed of NHDC-G1 and NHDC-G2) compared to NHDC, NHDC-

G can be considered a more promising and useful anti-oxidant. 

 

Table I. Solubility in water and DPPH radical-scavenging activity (EC50) of NHDC and α-

glucosylated NHDC products. EC50 is the (glucosylated) NHDC concentration required to 

reduce the absorbance of a solution with 200 μM DPPH at 517 nm by 50%. 

Compound Solubility (mM) EC50 (µM) 

NHDC 0.6 ± 0.1 27.3 ± 4.0 

 

.. 

NHDC-G1 490.9 ± 45.2 34.3 ± 1.7  

NHDC-G2 > 600.0 48.7 ± 1.5 

 

4. Conclusions 

 

NHDC finds many applications as flavor enhancer (E959) in the food- and 

pharmaceutical industry due to its ability to suppress bitterness and astringency, 

for example in the antipyretic paracetamol
255-259

. The strong anti-oxidant capacity 

displayed by NHDC has further increased the interest in this versatile 

molecule
260-262

. NHDC’s main drawback is its low solubility in water, which 

reduces its bioavailability but also its applicability as a high-intensity 

sweetener
265

. Gtf180-ΔN-Q1140E catalyzed glycosylation of NHDC, using 

sucrose as donor substrate, yielded three new-to-nature α-glucosylated NHDC 

products displaying improved solubilities and retained anti-oxidant capacities. 

Sensory analysis of the flavor enhancing effects of (α-glucosylated) NHDC on 

RebA by a trained panel revealed a slight decrease of bitterness and an 

increased sweetness. In future work different concentrations of (α-glucosylated) 

NHDC and RebA will be evaluated. This may provide valuable information about 

the appropriate doses that should be applied to obtain the optimal bitterness 

suppressing effect. Although the obtained conversion degree of roughly 65% was 

not of the same order as for RebA and stevioside glycosylation (95%)
68-70

, it 

forms a good starting point for a profound optimization of the reaction conditions. 

Additionally, the screening of the available Gtf180-ΔN mutant library
99

 may reveal 

variants with improved NHDC glycosylation potential. 
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5. Supplementary information 

 

Table SI. Linkage analysis of the glycosyl moieties in NHDC and in α-glucosylated NHDC 

products.       

PMAA Rt
a
 

Structural 

feature 

Peak area (%)
b
 

NHDC P1 P2 P3 

1,5-di-O-acetyl-

2,3,4-tri-O-methyl-

5-CH3 pentitol 

0.76 Rhap(1→ 49 tr 28 tr 

1,4,5-tri-O-acetyl-

2,3-di-O-methyl-5-

CH3 pentitol 

0.93 →4)Rhap(1→ - 25 tr 21 

1,5-di-O-acetyl-

2,3,4,6-tetra-O-

methylhexitol 

1.00 Glcp(1→ - 36 33 52 

1,2,5-tri-O-acetyl-

3,4,6-tri-O-

methylhexitol 

1.16 →2)Glcp(1→ 51 32 4 3 

1,5,6-tri-O-acetyl-

2,3,4-tri-O-

methylhexitol 

1.22 →6)Glcp(1→ - 4 3 2 

1,2,5,6-tetra-O-

acetyl-3,4-di-O-

methylhexitol 

1.39 →2,6)Glcp(1→ - 3 32 22 

a
 Rt, retention time relative to 1,5-di-O-acetyl-2,3,4,6-tetra-O-methylglucitol (1.00) on GLC.  

b
 average values (no molar response/correction factors used). 
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Table SII. 
1
H and 

13
C chemical shift values (δ, ppm)

a
 of NHDC and glycosylated 

derivatives P1, P2 and P3 in D2O at 310 K. Substituted carbon positions are indicated in 

grey. 

 NHDC 

 

P1 

 

P2 

 

P3

 

  
1
H  

13
C  

1
H  

13
C  

1
H  

13
C  

1
H  

13
C 

B2 6.72 115.3 6.73 115.5 6.74 115.6 6.75 115.5 

B5 6.87 112.7 6.87 112.7 6.88 112.9 6.88 112.8 

B6 6.70 119.6 6.70 120.2 6.71 120.5 6.72 120.1 

B-OCH3 3.75 55.9 3.76 55.9 3.75 56.2 3.76 56.0 

8 3.29 42.2 3.30 41.8 3.30 41.9 3.28 42.0 

9 2.81 29.8 2.78 30.0 2.79 30.1 2.79 30.0 

Glc βH-1 5.185 97.0 5.184 97.0 5.215 97.0 5.215 97.0 

H-2 3.58 78.7 3.58 78.6 3.58 79.0 3.58 78.4 

H-3 3.64 75.7 3.65 76.0 3.65 76.0 3.67 76.2 

H-4 3.43 68.7 3.43 68.9 3.47 71.9 3.47 71.6 

H-5 3.57 75.6 3.56 75.8 3.76 74.7 3.76 74.2 

H-6a 3.85 60.3 3.85 60.4 3.80 66.3 3.81 66.3 

H-6b 3.67  3.66  3.78  3.77  

Rha αH-1 5.059 101.0 5.085 100.4 5.065 101.3 5.103 100.5 

H-2 3.98 69.9 3.97 70.3 3.98 70.4 3.98 70.2 

H-3 3.64 69.7 3.74 68.5 3.65 70.6 3.77 68.2 

H-4 3.36 71.6 3.42 81.0 3.36 71.8 3.43 81.0 

H-5 3.74 68.7 3.91 67.5 3.76 68.5 3.95 67.6 

CH3 1.17 16.6 1.26 16.9 1.19 16.9 1.29 16.6 

   Glc(α14)Rhaα   Glc(α14)Rhaα 

Glc1 αH-1 - - 4.940 99.0 - - 4.955 98.9 

H-2 - - 3.43 71.4 - - 3.44 71.5 

H-3 - - 3.55 76.0 - - 3.59 75.0 

H-4 - - 3.31 69.2 - - 3.32 69.3 

H-5 - - 3.78 71.7 - - 3.78 72.0 

H-6a - - 3.77 60.1 - - 3.78 60.2 

H-6b -  3.68  -  3.66  

     Glc(α16)Glcβ Glc(α16)Glcβ 

Glc2 αH-1 - - - - 4.845 98.1 4.855 97.8 

H-2 - - - - 3.46 70.5 3.46 71.0 

H-3 - - - - 3.68 72.9 3.71 73.0 

H-4 - - - - 3.29 69.5 3.28 69.3 

H-5 - - - - 3.56 71.9 3.57 72.0 

H-6a - - - - 3.69 60.3 3.68 60.2 

H-6b -  -  3.62  3.62  

a
 In ppm relative to internal acetone (δ 2.225 for 

1
H and δ 31.07 for 

13
C). 
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Figure S1. Transglycosylation activity of Gtf180-ΔN-Q1140E after a 1 h incubation in 

RebA glycosylation mixtures (84 mM RebA, 282 mM sucrose) containing A 0%, B 10%, C 

20%, D 30%, E 40%, and F 50% EtOH. 1 RebA, 2 Monoglucosylated RebA (RebA-G1), 3 

Sucrose.  
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Figure S2. TOCSY (200 ms) and ROESY spectrum of the carbohydrate part of NHDC, 

recorded in D2O at 310 K. 

 

 

Figure S3. HSQC spectrum of NHDC, recorded in D2O at 310 K. 
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Figure S4. TOCSY and ROESY spectrum of the carbohydrate part of P1, recorded in D2O 

at 310 K. 

 

Figure S5. HSQC spectrum of the carbohydrate part of P1, recorded in D2O at 310 K. 

?, signals stemming from contamination(s). 
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Figure S6. TOCSY and ROESY spectrum of the carbohydrate part of P2, recorded in D2O 

at 310 K. 

 

Figure S7. HSQC spectrum of the carbohydrate part of P2, recorded in D2O at 310 K. 

?, signals stemming from contamination(s). 
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Figure S8. TOCSY and ROESY spectrum of the carbohydrate part of P3, recorded in D2O 

at 310 K. 

 

 

Figure S9. HSQC spectrum of the carbohydrate part of P3, recorded in D2O at 310 K. 

?, signals stemming from contamination(s). 
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Part 1: Dealing with the limitations of glucansucrases  

 

The introduction of a glycosyl moiety can influence the physicochemical and 

biological properties of organic molecules such as anti-oxidants, antibiotics, and 

flavors6. The chemical synthesis of glycosides is characterized by multistep 

routes generating lots of waste. One-step enzymatic glycosylation, thereby taking 

advantage of the high specificity of enzymes, is preferred as 5-fold less waste is 

produced compared to chemical glycosylation17. Among all carbohydrate-active 

enzymes that can be applied as glycosylation biocatalyst, glucansucrases have 

received a considerable part of the attention due to their broad acceptor 

substrate specificity and use of inexpensive sucrose as donor substrate.  

 

Glucansucrases are glycoside hydrolase enzymes (GH70) originating from 

Gram-positive lactic acid bacteria. They catalyze the conversion of sucrose into 

α-glucan polysaccharides, linking the α-D-glucopyranosyl units by (α1→2), 

(α1→3), (α1→4), or (α1→6) bonds, depending on the enzyme specificity73,74. In 

addition, they are able to transfer glucosyl groups to a wide array of carbohydrate 

and non-carbohydrate acceptor molecules, catalyzing the so-called acceptor 

reaction75. To this date, most research on the acceptor reaction of 

glucansucrases has focused on the discovery of new acceptor substrate 

specificities111-113,120-131. Less progress has been made on the detailed structural 

characterization of products obtained, or the improvement of glucansucrases as 

industrial glycosylation biocatalyst, neither by reaction –nor enzyme engineering 

strategies.  

 

Glucansucrases display a number of drawbacks, in particular if the acceptor 

reaction is targeted. First of all, the main glucansucrase catalyzed reaction is the 

synthesis of α-glucan polysaccharides from sucrose. It strongly impedes the 

efficient glycosylation of alternative acceptor substrates and complicates 

downstream processing of the glycosylated products. Chapter 2 explored the 

potential of the N-terminally truncated glucansucrase Gtf180 from Lactobacillus 

reuteri 180 (Gtf180-ΔN)80 and derived mutants99,100 as glycosylation 
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biocatalysts110. Three Gtf180-ΔN mutants (L938F, L981A and N1029M) were 

selected from a mutant library on the basis of their impaired α-glucan synthesis. 

Analysis of the glycosylation of the model acceptor substrate catechol by these 

mutants revealed that this apparent imperfection resulted in a substantial 

increase in monoglycosylation yield. Also several other phenolic and alcoholic 

compounds were more efficiently converted into glycosylated products by the 

selected mutants. For example, the resorcinol conversion degree of the L981A 

variant tripled compared to the WT enzyme, reaching a substantial 53%. Further 

analysis showed that these mutants possess a higher affinity for the model 

acceptor substrate catechol but a lower affinity for its mono-α-D-glucoside 

product, explaining the improved monoglycosylation yields. An explanation of 

how mutagenesis of residues L938, L981 and N1029 impaired α-glucan 

synthesis was provided by analyzing the available high resolution 3D crystal 

structure of the Gtf180-ΔN protein. On the downside, the kcat of the best 

performing mutant (L981A) displayed a 4-fold decrease compared to the WT 

enzyme. In addition, the glycosylation of larger non-carbohydrate acceptor 

substrates such as resveratrol or quercetin remained problematic, partly due to 

the low water solubility of these compounds. The L981A mutant could 

nevertheless serve as template for further mutational engineering of the Gtf180-

ΔN enzyme, targeting the improved glycosylation of specific acceptor substrates. 

 

A second drawback related to the use of glucansucrases is their relatively low 

operational stability at high temperatures and in systems containing high 

acceptor substrate concentrations and cosolvents110,120,125. Immobilization of 

Gtf180-ΔN on mesoporous silica particles enhanced its activity at temperatures 

above 50 °C and high concentrations of DMSO, conditions detrimental for the 

free enzyme (Chapter 3). Covalent cross-linking of Gtf180-ΔN with 

glutaraldehyde resulted in an undesired side-effect: less catechol was converted 

by the immobilized enzyme compared to the free enzyme, in favor of sucrose 

hydrolysis. Stabilizing Gtf180-ΔN by the developed immobilization protocol 

nevertheless allowed its incubation in 20% DMSO systems containing several 

poorly soluble acceptor substrates such as gallic acid and (+)-catechin, resulting 

in their improved glycosylation. 
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Part 2: Glycosylation of steviol glycosides 

 

The steviol glycosides extracted from the leaves of the plant Stevia rebaudiana 

were approved for use as high-intensity sweetener (HIS) in food products by the 

European Commission in 201143. Stevia extract consists mainly of the steviol 

glycosides stevioside and rebaudioside A (RebA), however, they display a bitter 

(after)taste which prevents the creation of zero-calorie stevia soft drinks and a 

complete sugar substitution in other food products46. Solving this taste issue 

could therefore greatly expand stevia sales and enforce its position on the HIS 

market. The correlation between the structure of steviol glycosides and their taste 

quality is still not fully understood, however, it is clear that the latter depends on 

the number, location and configuration of the glycosyl moieties8. Hence, the 

enzymatic glycosylation of steviol glycosides has been proposed as effective tool 

to improve their sensory properties50-70.  

 

Screening of our in-house collection of glucansucrases revealed that only 

Gtf180-ΔN from L. reuteri 180 is able to glycosylate RebA, displaying a RebA 

conversion of roughly 50% (Chapter 4). As this is insufficient for industrial 

applications, the ability of several Gtf180-ΔN mutants to glycosylate RebA was 

explored, revealing that the Q1140E mutant is the most promising variant. 

Structural analysis of the products showed that both enzymes exclusively 

glycosylate RebA at the Glc(β1→C-19 residue, with the formation of an (α1→6) 

linkage. Docking of RebA in the enzyme’s active site provided an explanation for 

these results: only the steviol C-19 β-D-glucosyl moiety is available for 

glycosylation. Several previous studies already demonstrated the importance of 

an adequate C-13/C-19-regiospecificity for the taste quality of the glycosylated 

products. For example, (α1→4)-glycosylation of stevioside and rubusoside at the 

C-13 steviol position yielded products with improved intensity and quality of 

sweetness, whereas (α1→4)-glycosylation at the C-19 position resulted in an 

increased bitterness52-54. Alternatively, (α1→6)-glycosylation at the C-19 site of 

stevioside improved its taste profile60.  
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Optimizing the reaction conditions of the Gtf180-ΔN-Q1140E-catalyzed 

glycosylation of RebA by response surface methodology (RSM) yet again 

identified the (low) remaining α-glucan synthesis as an important impediment to 

obtain high conversion degrees and high product concentrations. Nevertheless, a 

highly productive process with a RebA conversion of 95% and a production of 

115 g/L glycosylated product (RebA-G) within 3 h was achieved at optimal 

reaction conditions. Development of a fed-batch reaction with continuous addition 

of relatively low sucrose levels further improved the product yield to 270 g/L by 

adequately further suppressing α-glucan synthesis. Sucrose acts as primer for α-

glucan synthesis103,104,135; a constant excess of RebA relative to sucrose 

therefore favored the glycosylation of RebA. The continuous addition of sucrose 

ensured that enough donor substrate was available to drive the reaction. On the 

downside, 10 times more enzyme had to be supplied to the reaction mixture in 

order to obtain a 95% conversion within 3 h, which substantially adds to the 

production costs. Additionally, performing the fed-batch reaction required the 

addition of 34% more sucrose compared to performing the glycosylation in batch 

mode. Altogether, the batch reaction is thus preferred over the fed-batch reaction 

as performed in this work.  

  

Sensory analysis of RebA and the glycosylated RebA products by a trained panel 

showed that RebA-G has a superior taste profile, displaying a significant 

reduction in bitterness compared to RebA. Glycosylation of RebA at the 

Glc(β1→C-19 residue with the introduction of an (α1→6) linkage is thus a very 

appropriate method to improve its sensory properties. Whether the off-flavors are 

sufficiently reduced to allow the production of zero-calorie soft drinks, jams, 

yoghurts, etc. is currently unknown. Answering this question requires the analysis 

of the sensory properties of the end product, including for example the bulking 

agent. In addition, the physicochemical properties of the ingredients, such as 

viscosity, density, etc. play an important role for the taste quality of the end 

product.    

 

Stevioside is the most prevalent steviol glycoside (5-10% of leaf dry weight) and 

is perceived by consumers as more bitter than RebA (2-4% of leaf dry weight). 
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This explains why all commercial stevia products are high-purity variants of 

RebA, while stevioside is considered as an undesired side-product. Improvement 

of the sensory properties of stevioside by means of its glycosylation 

consequently offers an opportunity to valorize this “waste” stream. Incubation of 

stevioside with Gtf180-ΔN-Q1140E indeed resulted in its glycosylation, although 

at a lower efficiency than RebA glycosylation (as determined by RSM): 50 g/L 

glycosylated stevioside product (Stev-G) was produced with a 95% conversion, 

using 5 times more sucrose than needed for RebA glycosylation (Chapter 5). 

Elucidation of the glycosylated stevioside product structures revealed that, in 

contrast to RebA glycosylation, stevioside was not exclusively glycosylated at the 

C-19 site; minor products were also glycosylated at the C-13 site. Similarly to 

RebA glycosylation, the main product was glycosylated at the C-19 site, with the 

introduction of an (α1→6) linkage (Stev-G1). Remarkably, the most prevalent 

diglycosylated product contained an (α1→4) linkage and not the expected 

(α1→3) –or (α1→6) linkages, reflecting the regular linkage specificity of Gtf18082. 

 

Sensory analysis of the glycosylated stevioside products showed a significant 

reduction in bitterness compared to stevioside. The trained panel perceived Stev-

G1 as sweet as stevioside but also as significantly less bitter. The large 

proportion of multiglycosylated products in Stev-G (67.5%) was translated into a 

significantly reduced sweetness, in contrast to RebA-G (22.3% multiglycosylated 

products) which maintained the sweetness of RebA. Interestingly, a double dose 

of Stev-G displayed a sweetness level similar to that of stevioside whereas 

bitterness remained equally suppressed. Comparison of the sensory properties 

of RebA-G and Stev-G identified the former as the superior product.  

 

As the glycosylation of RebA and stevioside with Gtf180-ΔN-Q1140E showed 

great potential at laboratory scale, an efficient overall process at kg scale, 

including downstream processing, was developed (Chapter 6). Ultimately, 

adsorption of the glycosylated product with removal of sucrose, fructose, glucose 

and α-glucan oligo –and polysaccharides was applied as main purification step. 

An estimation of the production costs demonstrated the main strength of the 

process: the biocatalyst represents a minor part of the total cost, which is mostly 
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determined by the cost of the acceptor substrate, i.e. RebA or stevioside. A major 

cost reduction of 30% can consequently be achieved by using low-grade stevia 

extract as acceptor substrate instead of the more costly high-purity steviol 

glycosides. An additional advantage is that the side-product stevioside is 

valorized, representing an extra economic profit. If taste quality is priority, RebA 

is preferred as acceptor substrate as it displays a superior taste profile. 

 

Gtf180-ΔN-Q1140E also displayed activity towards neohesperidin 

dihydrochalcone (NHDC), even though a lower conversion degree (64%) was 

obtained (Chapter 7). Use of 5-10 ppm NHDC with RebA is known to result in a 

decreased bitterness perception. Unfortunately, this is accompanied by an 

unpleasant lingering sensation, caused by NHDC247. Its glycosylation by Gtf180-

ΔN-Q1140E resulted in a decreased perception of the off-flavors by the trained 

panel. In general, the bitterness suppressing effect of (glycosylated) NHDC on 

RebA was limited; RebA glycosylation reduced its bitterness much more 

effectively. Very recently, NHDC was attributed with potent anti-oxidant, 

hepatoprotective and prebiotic properties260-264. NHDC’s low water solubility265, 

restricting its application as nutraceutical, was overcome by its glycosylation, 

while its anti-oxidant potential remained very high.  

 

Conclusions 

 

This thesis explored the potential of Gtf180-ΔN from L. reuteri 180 and derived 

mutants to glycosylate a wide range of alternative acceptor substrates. It was 

shown that the Q1140E mutant is particularly suited to glycosylate steviol 

glycosides. High conversion degrees and product yields were obtained, and the 

glycosylated products displayed a superior taste profile compared to RebA and 

stevioside. The developed processes consequently hold excellent potential to be 

implemented at industrial scale. 

 

The Q1140E mutant was also able to glycosylate other glycosides, such as 

NHDC, although at a lower efficiency than the glycosylation of steviol glycosides. 
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This is another illustration of the broad carbohydrate acceptor substrate 

specificity of Gtf180-ΔN and derived mutants. The high water solubility of 

carbohydrates forms an additional advantage for their Gtf180-ΔN catalyzed 

glycosylation, thus avoiding the use of inhibitory cosolvents in the reaction 

mixture.  

 

The glycosylation of non-carbohydrate acceptor substrates was achieved with 

more difficulty, partly due to their low water solubility and their inhibition of 

Gtf180-ΔN. α-Glucan synthesis was identified as important impediment for the 

glycosylation of these compounds, however, its suppression by mutational 

engineering only partially solved the problem. In other words, specific mutants 

will need to be constructed to further improve the Gtf180-ΔN glycosylation 

potential, similarly to the approach followed for the glycosylation of steviol 

glycosides by the Q1140E mutant of Gtf180-ΔN. 

 

In conclusion, the glucansucrase enzyme Gtf180-ΔN holds considerable potential 

as glycosylation biocatalyst, in particular for the glycosylation of carbohydrate 

acceptor substrates. The development of industrial processes will first and 

foremost depend on the construction of adequate mutants displaying high 

conversion degrees, and secondly, on the optimization of the reaction conditions, 

thereby suppressing α-glucan synthesis from sucrose as much as possible. 
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Deel 1: Omgaan met de limitaties van glucansucrases  

 

De introductie van een glycosylgroep kan zowel de fysicochemische als 

biologische eigenschappen van organische moleculen, zoals antioxidanten, 

antibiotica en smaakstoffen, beïnvloeden6. De chemische synthese van 

glycosiden is een meerstapsproces dat gekenmerkt wordt door de productie van 

een grote hoeveelheid afvalproducten. Enzymatische glycosylatie geniet de 

voorkeur; de hoge specificiteit van enzymen leidt immers tot de productie van 5 

keer minder afval17. Van alle koolhydraat-actieve enzymen die gebruikt kunnen 

worden als biokatalysator voor de glycosylatie van moleculen zijn 

glucansucrases meerdere keren naar voren geschoven als uitstekend alternatief. 

Deze enzymen bezitten een brede acceptorsubstraatspecificiteit en gebruiken 

sucrose als donorsubstraat, een goedkope en gemakkelijk te verkrijgen 

grondstof.        

 

Glucansucrases behoren tot de glycoside hydrolase GH70-familie. Ze 

katalyseren de conversie van sucrose in α-glucan polysachariden, en daarbij 

verbinden ze de α-D-glucopyranosyl eenheden met (α1→2), (α1→3), (α1→4), of 

(α1→6) bindingen, afhankelijk van de enzymspecificiteit73,74. Daarnaast zijn 

glucansucrases ook in staat om glucosylgroepen te transfereren van sucrose 

naar een brede waaier van koolhydraat en niet-koolhydraat acceptormoleculen, 

de zogenaamde acceptorreactie75. Tot op vandaag heeft het meeste onderzoek 

naar de acceptorreactie van glucansucrases zich toegespitst op de ontdekking 

van nieuwe acceptorsubstraatspecificiteiten111-113,120-131. Er is echter minder 

vooruitgang geboekt op het vlak van de gedetailleerde structuurbepaling van de 

geglycosyleerde producten, of wat betreft het verbeteren van deze enzymen als 

industriële biokatalysator, noch door reactie noch door enzym-engineering 

strategieën.  

 

Het toepassen van de acceptorreactie van glucansucrases voor de glycosylatie 

van organische moleculen wordt getypeerd door een aantal nadelen. 

Glucansucrases katalyseren in principe de synthese van α-glucan 
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polysachariden vanuit sucrose, in dit geval zowel het donor als 

acceptorsubstraat. Dit verhindert uiteraard de efficiënte glycosylatie van 

alternatieve acceptorsubstraten en compliceert de opzuivering van de 

geglycosyleerde producten. Hoofdstuk 2 verkende het potentieel van het N-

terminaal getrunceerde glucansucrase Gtf180 van Lactobacillus reuteri 180 

(Gtf180-ΔN)80 en afgeleide mutanten99,100 als glycosylatiebiokatalysator110. Drie 

Gtf180-ΔN mutanten (L938F, L981A and N1029M) werden geselecteerd uit een 

mutantenbibliotheek op basis van hun verzwakte α-glucansynthese. Analyse van 

de glycosylatie van het acceptorsubstraat catechol door deze mutanten onthulde 

dat deze ogenschijnlijke imperfectie resulteerde in een substantiële verbetering 

van de monoglycosylatie-opbrengst. Ook verscheidene andere fenolische en 

alcoholische verbindingen werden efficiënter geglycosyleerd door de 

geselecteerde mutanten. In vergelijking met het WT-enzym was de omzetting 

van bijvoorbeeld resorcinol in geglycosyleerde producten door de L981A-variant 

verdrievoudigd van 17% tot 53%. Deze resultaten werden andermaal bevestigd 

door de kinetische analyse van de mutanten; ze hadden een hogere affiniteit 

voor het acceptorsubstraat catechol maar een lagere affiniteit voor het 

monogeglycosyleerde catecholproduct. Analyse van de beschikbare 3D-structuur 

van het Gtf180-ΔN-proteïne verklaarde hoe mutagenese van residuen L938, 

L981 en N1029 de α-glucansynthese verzwakte in het voordeel van de 

acceptorreactie. Toch bleef de glycosylatie van grotere (niet-koolhydraat) 

acceptorsubstraten, zoals resveratrol en quercetine, problematisch, deels door 

de lage oplosbaarheid in water van deze moleculen. De L981A-mutant vormt 

desalniettemin een goed vertrekpunt voor verdere mutationele engineering om 

de glycosylatie van vooraf gedefinieerde acceptorsubstraten te verbeteren.      

 

Een tweede nadeel inherent aan het gebruik van glucansucrases is hun relatief 

lage operationele stabiliteit bij hoge temperaturen en in systemen met hoge 

acceptorsubstraatconcentraties en cosolventen110,120,125. Immobilisatie van 

Gtf180-ΔN op mesoporeuze silicapartikels verbeterde de enzymactiviteit bij 

temperaturen hoger dan 50 °C en in systemen met hoge DMSO-concentraties, 

condities die normalerwijs zeer schadelijk zijn voor het enzym (Hoofdstuk 3). 

Het cross-linken van Gtf180-ΔN met glutaaraldehyde resulteerde echter in een 
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ongewenst neveneffect: minder catechol werd geconverteerd door het 

geïmmobiliseerde enzym in vergelijking met het vrije enzym, ten gunste van 

meer sucrosehydrolyse. Incubatie van geïmmobiliseerd Gtf180-ΔN in systemen 

met 20% DMSO leidde desalniettemin tot de verbeterde glycosylatie van een 

aantal slecht oplosbare verbindingen, zoals catechine en galluszuur.          

 

Deel 2: Glycosylatie van steviolglycosiden 

 

Het gebruik van steviolglycosiden, verbindingen die geëxtraheerd worden uit de 

bladeren van de plant Stevia rebaudiana, als intensieve zoetstof is in 2011 

goedgekeurd door de Europese Commissie43. Steviaextract bestaat voornamelijk 

uit de steviolglycosiden stevioside en rebaudioside A (RebA), wiens bittere 

(na)smaak de creatie van calorieloze frisdrank en een volledige suikervervanging 

in andere voedingsproducten in de weg staat46. Het oplossen van deze 

smaakkwestie zou de populariteit en bijgevolg het verkoopsucces van stevia 

substantieel kunnen verhogen en daarmee een sterke positie voor stevia op de 

zoetstofmarkt vrijwaren. Hoe de chemische structuur van steviolglycosiden hun 

smaakkwaliteit beïnvloedt is nog steeds niet helemaal duidelijk. Het staat echter 

vast dat deze laatste afhangt van het aantal, de locatie en configuratie van de 

glycosylgroepen8. Het spreekt dus voor zich dat de enzymatische glycosylatie 

van steviolglycosiden een veelbelovend middel is om diens 

smaakeigenschappen te verbeteren50-70.             

 

Screening van onze in-house glucansucrasecollectie onthulde dat alleen Gtf180-

ΔN van L. reuteri 180 in staat is om RebA te glycosyleren en daarbij een 50% 

conversie bereikt (Hoofdstuk 4). Omdat deze omzetting vanuit industrieel 

perspectief te laag is, werd een mutantenbibliotheek gescreend op basis van een 

verbeterde RebA-conversie, wat leidde tot de ontdekking van de Q1140E-

mutant. Structurele analyse van de geglycosyleerde producten toonde aan dat 

beide enzymen RebA exclusief glycosyleren op het Glc(β1→C-19 residu, met de 

introductie van een (α1→6)-binding. Docking van RebA in het actieve centrum 

van het enzym gaf een visuele interpretatie voor deze resultaten: enkel de steviol 



Samenvatting en conclusies 
 

 

237 

 

C-19 β-D-glucosylgroep is beschikbaar voor glycosylatie. Voorgaande studies 

hadden het belang van de C-13/C-19-regiospecificiteit op de smaakkwaliteit van 

de geglycosyleerde producten al aangetoond. Bijvoorbeeld, (α1→4)-glycosylatie 

van stevioside en rubusoside op de C-13-steviolpositie resulteerde in producten 

met een betere en intensievere zoete smaak. De introductie van dezelfde 

(α1→4)-binding op de C-19-positie leidde dan weer tot meer bitterheid52-54. 

Hiermee in tegenstelling: (α1→6)-glycosylatie op de C-19-positie van stevioside 

verbeterde diens smaakprofiel60.     

 

Optimalisatie van de reactiecondities d.m.v. response surface methodology 

(RSM) duidde eens te meer de lage maar nog steeds aanwezige α-

glucansynthese aan als belangrijkste belemmering in het behalen van hoge 

omzettingen en productconcentraties. Toch kon er een zeer productief proces 

ontwikkeld worden: het toepassen van de optimale condities stond de productie 

toe van 115 g/L geglycosyleerd product (RebA-G) binnen 3 uur, met een hoge 

RebA-conversie van 95%. Het aannemen van een fed-batchsysteem, waarbij de 

concentratie van donorsubstraat sucrose constant op een laag niveau wordt 

gehouden door middel van diens continue toevoeging, leidde tot een verdere 

verbetering van de productconcentratie tot 270 g/L. Omdat sucrose de primer is 

voor α-glucansynthese103,104,135, creëert de constante overmaat van RebA t.o.v. 

sucrose immers condities ten gunste van RebA-glycosylatie. Tegelijkertijd zorgt 

de continue toevoeging van sucrose ervoor dat er voldoende donorsubstraat 

aanwezig is om de reactie voort te drijven.    

 

Smaakanalyse van RebA en de geglycosyleerde RebA-producten door een 

getraind panel liet zien dat RebA-G beschikt over een superieur smaakprofiel, 

met een significant gereduceerde bitterheid, in vergelijking tot RebA. Glycosylatie 

van RebA op het Glc(β1→C-19-residu, met de introductie van een (α1→6)- 

binding, is dus een zeer geschikte methode om diens smaakeigenschappen te 

verbeteren. Of het smaakprofiel al dan niet voldoende verbeterd is voor de 

productie van calorieloze frisdrank, confituur, yoghurt, e.d. vereist uiteraard de 

smaakanalyse van het respectievelijke eindproduct.   
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Stevioside is het meest voorkomende steviolglycoside (5-10% van het droge 

bladgewicht) maar wordt door consumenten als bitterder bevonden dan RebA (2-

4% van het droge bladgewicht). Dit verklaart waarom alle commerciële 

steviaproducten zeer zuivere varianten zijn van RebA, terwijl stevioside wordt 

beschouwd als een ongewenst nevenproduct. Het verbeteren van stevioside’s 

smaakeigenschappen d.m.v. glycosylatie biedt dus een opportuniteit om ook dit 

nevenproduct te valoriseren. Hoewel incubatie van stevioside met Gtf180-ΔN-

Q1140E inderdaad resulteerde in diens glycosylatie, verliep de reactie minder 

efficiënt dan RebA-glycosylatie (bepaald door RSM): om 50 g/L geglycosyleerd 

product (Stev-G) te produceren binnen 3 uur, met een conversie van 95%, was 

er 5 keer meer sucrose en 2 keer meer enzym nodig (Hoofdstuk 5). Structurele 

analyse van de geglycosyleerde producten onthulde dat, in tegenstelling tot 

RebA-glycosylatie, stevioside niet exclusief geglycosyleerd werd op de C-19-

positie; een kleine hoeveelheid producten bleek geglycosyleerd op de C-13-

positie. Net als bij RebA-glycosylatie was het belangrijkste product 

geglycosyleerd op de C-19-positie, met de introductie van een (α1→6)-binding 

(Stev-G1). Het meest voorkomende digeglycosyleerde product bevatte een 

(α1→4)-binding en niet een verwachte (α1→3) –of (α1→6)-binding (specifiek 

voor de Gtf180-ΔN-producten met sucrose alleen82). 

 

Smaakanalyse van de geglycosyleerde producten toonde een significante 

bitterheidsreductie aan ten opzichte van stevioside. Het getrainde panel 

oordeelde dat Stev-G1 net zo zoet was als stevioside maar ook significant 

minder bitter. Het grote aandeel aan multigeglycosyleerde producten in Stev-G 

(67.5%) vertaalde zich in een significant gereduceerde zoetheid, in tegenstelling 

tot RebA-G (22.3% multigeglycosyleerde producten) dat RebA’s zoetheid 

behield. Dit probleem kon echter opgelost worden door het verdubbelen van de 

Stev-G dosis want daardoor werd een gelijkwaardige zoetheid als bij stevioside 

bereikt maar was er nog steeds sprake van een significante bitterheidsreductie. 

In vergelijking met Stev-G was RebA-G duidelijk het superieure product. 

 

Omdat de glycosylatie van RebA en stevioside met Gtf180-ΔN-Q1140E veel 

potentieel toonde op laboratoriumschaal, werd een efficiënt proces, inclusief 
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productopzuivering, ontwikkeld op kg-schaal (Hoofdstuk 6). Uiteindelijk werd 

gekozen voor specifieke adsorptie van het geglycosyleerde product om sucrose, 

fructose en de α-glucanoligo –en polysachariden te verwijderen. Analyse van de 

productiekosten onthulde de grote kracht van het proces: het enzym 

vertegenwoordigt slechts een klein deel van de totale kosten, die vooral worden 

bepaald door de kosten van het acceptorsubstraat, RebA of stevioside. Een 

substantiële kostenreductie van 30% kan dus bewerkstelligd worden door stevia-

extract van lagere kwaliteit te gebruiken als acceptorsubstraat i.p.v. de duurdere 

steviolglycosiden van hoge zuiverheid. Een bijkomend voordeel is dat het 

nevenproduct stevioside gevaloriseerd wordt, een extra economische winst. Als 

smaakkwaliteit de prioriteit is, dan vormt RebA-glycosylatie de beste keuze 

aangezien RebA-G een superieure smaak heeft.    

 

Daarnaast kon Gtf180-ΔN-Q1140E ook neohesperidine dihydrochalcon (NHDC) 

glycosyleren, ook al werd een relatief lage omzetting (64%) bereikt (Hoofdstuk 

7). Het is bekend dat het gebruik van 5-10 ppm NHDC in een RebA-oplossing 

een vermindering van de bitterheid tot gevolg heeft. Jammer genoeg gaat dit 

gepaard met een onprettige en slepende nasmaak, veroorzaakt door NHDC247. 

Diens glycosylatie door Gtf180-ΔN-Q1140E resulteerde in een geringe 

verbetering van de ongewenste nasmaak. In het algemeen was het 

bitterheidsonderdrukkende effect van (geglycosyleerd) NHDC op RebA vrij 

miniem; RebA-glycosylatie bleef overeind als meest effectieve manier om diens 

smaak te verbeteren. Recent onderzoek kende ook krachtige antioxidant –en 

prebiotische eigenschappen toe aan NHDC260-264. De lage wateroplosbaarheid 

van NHDC265, wat diens toepassing als nutraceutical in de weg staat, werd 

verbeterd d.m.v. glycosylatie met Gtf180-ΔN-Q1140E, terwijl de sterke 

antioxidanteigenschappen door glycosylatie behouden bleven.       
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Conclusies 

 

Deze thesis verkende het potentieel van L. reuteri 180 Gtf180-ΔN en afgeleide 

mutanten om een brede waaier aan alternatieve acceptorsubstraten te 

glycosyleren. Hierbij werd aangetoond dat de Q1140E-mutant bijzonder geschikt 

is om steviolglycosiden te glycosyleren. Niet alleen werden hoge conversies en 

productconcentraties bekomen, de geglycosyleerde producten beschikten over 

een superieur smaakprofiel in vergelijking met RebA en stevioside. De 

ontwikkelde processen hebben dus een uitstekend potentieel om 

geïmplementeerd te worden op een industriële schaal. 

 

De Q1140E-mutant was daarnaast ook in staat om andere glycosiden, in het 

bijzonder NHDC, te glycosyleren, hoewel deze reactie minder efficiënt was dan 

de glycosylatie van steviolglycosiden. Toch is dit nogmaals een illustratie van de 

brede acceptorsubstraatspecificiteit van Gtf180-ΔN en afgeleide mutanten wat 

betreft de glycosylatie van koolhydraten. De uitstekende wateroplosbaarheid van 

koolhydraten is hiervoor uiteraard een extra voordeel aangezien de additie van 

inhiberende cosolventen niet nodig is.     

 

De glycosylatie van niet-koolhydraten verliep met meer moeite, mede door hun 

lage wateroplosbaarheid en hun inhibitie van Gtf180-ΔN. α-Glucansynthese werd 

aangeduid als belangrijkste struikelblok voor de efficiënte glycosylatie van deze 

verbindingen. Onderdrukking van de α-glucansynthese door mutationele 

engineering zorgde voor een beperkt verbeterde omzetting. Er zullen dus 

specifieke mutanten geconstrueerd moeten worden om Gtf180-ΔN’s 

glycosylatiepotentieel verder uit te bouwen en te verbeteren. Een gelijkwaardige 

benadering zoals gevolgd voor de glycosylatie van steviolglycosiden zou het 

meest succesvol moeten zijn. 

 

Als finale conclusie kan dus gesteld worden dat glucansucrase Gtf180-ΔN zeker 

een toekomst heeft als glycosylatiebiokatalysator, in het bijzonder voor de 

glycosylatie van koolhydraten. Het succes van industriële processen zal eerst en 
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vooral afhangen van de constructie van gepaste mutanten, leidend tot hoge 

omzettingen, en ten tweede, de nauwkeurige optimalisatie van de 

reactiecondities, daarbij α-glucansynthese zoveel mogelijk onderdrukkend.   
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Een doctoraat is nooit het werk van de promovendus alleen, al zeker niet wanneer 

het gaat over een gezamenlijk doctoraat. Ik heb het geluk gehad om onderzoek te 

mogen doen in twee landen, twee universiteiten én een pilot plant. Er is 

waarschijnlijk niemand die de afgelopen 4 jaar meer gereisd heeft van Gent naar 

het Verre Noorden en omgekeerd. Én er is waarschijnlijk niemand die beter weet 

waar de beste koffie en lekkerste hamburgers te vinden zijn op de schier eindeloze 

A6 doorheen Flevoland. Gelukkig heb ik me altijd thuis gevoeld in zowel Gent als 

Groningen, de gezelligste steden van respectievelijk België en Nederland. Daarom 

is het heel passend om een aantal mensen te bedanken die meegeholpen hebben 

aan mijn doctoraat maar ook aan het gevoel van thuiskomen dat ik altijd ervaar 

nadat ik weer eens ettelijke uren in de auto heb versleten. 

 

Eerst en vooral zou ik graag mijn promoteren, prof. Lubbert Dijkhuizen en prof. 

Wim Soetaert, bedanken. Enerzijds om mij voldoende vertrouwen te schenken om 

te doen wat ik dacht dat het beste was, met als gevolg enkele successen maar 

ook veel mislukkingen en, daaraan gekoppeld, veel leermomenten. Daarnaast ook 

om twee uitstekende doch verschillende voorbeelden te zijn van de ondernemende 

wetenschapper, iets waar ik veel van opgestoken heb. Mijn dank gaat ook uit naar 

de leden van de leescommissie, prof. Remko Boom, prof. Gert-Jan Euverink, prof. 

Dick Janssen, en prof. John Van Camp, voor het kritisch nalezen van mijn thesis. 

 

Aangezien ik de eerste twee jaren van mijn doctoraat doorgebracht heb in 

Groningen en er bovendien niets boven Groningen gaat, moet ik dit dankwoord 

wel verderzetten met de mensen die ik in de Parel van het Noorden heb ontmoet. 

Eerst en vooral moet ik Evelien te Poele bedanken voor de dagelijkse begeleiding 

gedurende deze eerste twee jaren, inclusief gezamenlijk HPLC-gevloek, en de 

vruchtbare samenwerking nadien. Wat mij altijd het meest gecharmeerd heeft aan 

de Microbiële Fysiologie-groep is de ongedwongen en multiculturele sfeer die er 

heerste, en natuurlijk de vrijdagse borrels. Het was een plezier om een 

kantoorruimte te delen met Yuxiang, Ana, en Markus. Het ventileren van onze 

gelijkaardige frustraties liet me toe om alles te relativeren en niet op te geven. Een 

speciaal woord van dank gaat uit naar Xiangfeng, wiens onderzoek het dichtst 

aansloot bij het mijne. Jouw kennis over glucansucrases was onovertroffen, net 
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als je vermogen om onvermoeibaar nieuwe enzymmutanten te produceren. 

Structuurbepaling vormde een essentieel deel van mijn doctoraat en was niet 

mogelijk geweest zonder de hulp van experten prof. Hans Kamerling, dr. Gerrit 

Gerwig en dr. Sander van Leeuwen. Ook bedankt voor het kritisch nalezen van 

mijn manuscripten. Het lab werd al die tijd draaiende gehouden door Pieter die 

nooit te verlegen was om iedereen, mezelf inclusief, te wijzen op hun 

tekortkomingen, waarvoor mijn excuses en dank. Laura, bedankt voor jouw 

luisterend oor, zowel binnen als buiten het lab. Jouw vriendschap en opgewektheid 

vormden belangrijke steunpilaren gedurende al deze jaren. Joana, als baken van 

rust en kalmte vormde je tevens een vat vol levenswijsheden en enzymknowhow. 

Bedankt ook voor het herhaaldelijk uitlenen van buffers wanneer ik vanuit Gent 

naar Groningen kwam om vlug een aantal experimenten te doen. Lara en Ana, 

twee handen op één buik waarmee ik veel plezier heb beleefd maar ook 

moeilijkere momenten heb gedeeld, bedankt hiervoor. En dan zou ik bijna HaJö 

vergeten: ik spreek voor velen als ik zeg dat jouw humor een typisch grijze 

Groningse dag in één klap veel zonniger kon maken. Ik mag zeker ook Bea, Manon 

en later Anmara niet vergeten te bedanken voor de altijd vriendelijke 

behulpzaamheid bij allerhande administratieve rompslomp. Ook Hien, Huifang, 

Justyna, Elena, Mirjan, Alicia, Maarten, Jelle, Cecile, Geralt en Vincent: bedankt 

voor de goeie sfeer op het lab! Daarnaast wil ik ook enkele mensen van buiten het 

lab bedanken: Guti, wij vormden een onnavolgbaar duo op de flanken van VVK 

Groningen Zaterdag 2 en hebben samen menig verdediging geterroriseerd, 

tenminste als we niet geblesseerd waren. Natuurlijk wil ik ook de andere 

medespelers bedanken voor de altijd welgekomen ontspanning op donderdag en 

zaterdag. Vele vrijdagavonden, soms ook zaterdagavonden, heb ik doorgebracht 

in etablissementen zoals Papa Joe, Ribhouse Bronco, Chupitos, Het Feest en mijn 

favoriete Grieks eetcafé Fortuna. Bedankt aan iedereen die hier bij was: Javi, Joost 

en alle anderen die al vermeld zijn.  

  

Dit brengt me bij mijn periode in Gent die ik deels gespendeerd heb in het lab van 

Bio Base Europe Pilot Plant (BBEPP), deels in het lab van InBio. Het was niet 

evident om na twee jaar in Groningen het onderzoek eigenlijk opnieuw op te 

starten. De mensen van BBEPP die het nauwst betrokken waren bij mijn 
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onderzoek waren Rakesh, bedankt om mij te helpen met de fermentaties, Emile, 

bedankt voor de discussies met betrekking tot DSP, en An, bedankt om mij bij te 

staan bij de HPLC-analyses. Ook een dankjewel aan alle anderen die altijd klaar 

stonden om mijn vragen te beantwoorden op de meest ongeschikte momenten. 

Natuurlijk moet ik vooral Koen bedanken: dankzij jouw inzet en werklust is mijn 

thesis sterker en completer geworden! Het doet me plezier dat we nu opnieuw 

collega’s zijn. Daarnaast ben ik ook dankbaar voor de productieve samenwerking 

met Davy, Allison en Griet van SensoLab in het kader van het Finesweet-project. 

De resulterende data maken van mijn thesis een veel mooier geheel. Naar het 

einde van mijn doctoraat toe begon ik ook meer tijd door te brengen in het lab van 

InBio. Het was vreemd om na vier jaar terug te zijn op de plek waar het voor mij 

allemaal ooit begon en (opnieuw) vele nieuwe gezichten te zien. Maar ook hier 

was de sfeer in het lab en vooral in de Happy Side fantastisch! Robin, Veerle, Mol, 

Yatti, Nico, Marilyn, Lisa, Sofie, Sofie, Sophie, Anke, Gilles, Isabelle, Anneleen en 

Barbara: jullie waren allen heel behulpzaam wanneer ik weer eens in de war was 

over de lokale labgewoontes en hebben ervoor gezorgd dat ik me ook bij InBio 

onmiddellijk thuis voelde. Bedankt hiervoor en veel succes met jullie doctoraten! 

In het bijzonder wil ik Dominique bedanken voor het verlichten van mijn kopzorgen 

bij al het gedoe rond het administratieve aspect van het gezamenlijk doctoraat.  

 

Het wordt veel gezegd maar is daarom niet minder waar: Mijn ouders zijn altijd 

heel ondersteunend geweest in al de beslissingen die ik de laatste jaren genomen 

heb, niet alleen financieel maar zeker ook door middel van veel goede raad. Ook 

de grote volumes meeneemstoofvlees werden erg geapprecieerd! In die zin 

hebben ze misschien wel het meest bijgedragen aan het afwerken van dit 

doctoraat. Bedankt hiervoor!  

 

Tenslotte wil ik ook Marta bedanken voor alle steun en liefde de afgelopen drie 

jaar. We hebben ons doctoraat ongeveer in dezelfde periode afgewerkt en de 

resulterende wetenschappelijke discussies hebben veel bijgedragen aan dit werk. 

Maar vooral bedankt om er te zijn tijdens de moeilijke momenten, mijn culturele 

horizon te verbreden en me een beter mens te maken. Merci! 
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Over de jaren heen heb ik veel gemijmerd over hoe een mogelijk dankwoord er 

zou kunnen uitzien. Nu het eindelijk is neergeschreven betekent dit dat het einde 

van een mooie periode nabij is. Nogmaals merci aan iedereen voor al de mooie 

herinneringen! 

 

Tim 

 

26 september 2017  
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