

Cloud Resource Provisioning and Bandwidth Management
in Media-Centric Networks

Beheer van cloudbronnen en bandbreedte in media-centrische netwerken

Maryam Barshan

Promotoren: prof. dr. ir. F. De Turck, prof. dr. B. Volckaert
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-049-9
NUR 986, 988
Wettelijk depot: D/2017/10.500/84

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

Promoters: prof. dr. ir. Filip De Turck
prof. dr. Bruno Volckaert

Jury members: prof. dr. ir. Hendrik Van Landeghem
prof. dr. ir. Filip De Turck
prof. dr. Bruno Volckaert
prof. dr. ir. Remi Badonnel
dr. ir. Glenn Van Wallendael
dr. Wouter Tavernier
Wim Sandra
prof. dr. ir. Steven Latré

Ghent University
Faculty of Engineering and Architecture

Department of Information Technology
Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

Tel.: +32-9-331.49.00
Fax.: +32-9-331.48.99

Dissertation to obtain the degree of
Doctor of Computer Science Engineering

Academic year 2017-2018

This dissertation is dedicated to my loving husband,
Reza, for his selfless support and encouragement
and my wonderful daughter, Elina, who was
born and raised during my PhD studies.

Acknowledgment

At this important stage of my life, it is time to step back and appreciate the contri-
butions of all those who stayed with me, supported me, inspired me and influenced
me throughout this challenging yet fascinating journey. I would like to express my
sincere appreciation and thanks to all who contributed during last four years to
pursue a successful PhD degree.

First of all, I am deeply grateful to my supervisors, Prof. Filip De Turck and
Prof. Bruno Volckaert for their immense knowledge, critical reviews and construc-
tive feedback and I sincerely appreciate their continuous guidance, supports and
encouragements. I would also like to acknowledge the assistance of Dr. Hendrik
Moens, whose research ideas, thoughtful and challenging discussions helped me a
long way in completing this thesis.

Besides my supervisors, I would like to thank the rest of my thesis committee
for taking their time to critically review my thesis and for providing feedback to
improve this book: Prof. Remi Badonnel, Dr. Glenn Van Wallendael, Dr. Wouter
Tavernier, Prof. Steven Latré and Mr. Wim Sandra. I am also deeply grateful to
Prof. Hendrik Van Landeghem to be the chair of my defense committee.

This work has been mainly conducted within the context of ICON MECaNO.
I am thankful to the project partners, SDNsquare, Limecraft, VideoHouse, Nokia
and VRT for hours of thoughtful discussions, a driving source towards the com-
pletion of this work.

It was great to work at IDLab–IMEC and the support provided was very helpful
in completing my PhD studies. I was lucky to be surrounded by supportive staff
and colleagues, right from the start of my studies, who helped me a lot in settling
in and starting my research. I am thankful to Martine and Davinia and other staff
for their constant support and I was fortunate to have Ankita, Pieter-Jan, Thomas,
Wannes, Rafael, Lucas, Dries and Jose as my office mates.

I spent around four years of my life in Gent and these days will stay in my
memory for the rest of my life. I would like to thank all friends I met there,
Bahare, Sahel, Fatemeh, Nasrin, Leila, Amin, Mahdi, Mostafa, Hemen and Foad,
who made my stay pleasant and enjoyable.

I consider myself very fortunate for having long-term best friends, among them
I am extremely thankful to Maryam and Zeinab for their thoughtful discussions and
long-distance inspirations.

I also want to express my deep appreciation to the expert team at Newtec,
where I have started working for a few months. I feel especially grateful to Tho-
mas Van Den Driessche, Kristof Geilenkotten, Dr. Bart Duysburgh, Jan Geirnaert,

iv

Marc De Baerdemaeker and Jan Van Puymbroeck for their kind support.
I would like to express my thanks and gratitude to my family members: my

parents, parents-in-law, brother, brother- and sisters-in-law for encouraging and
supporting me spiritually throughout my studies and my life in general.

Last but not the least, there would never be enough words to appreciate the
contributions of my husband, Reza, in my success. He is my first listener and my
most dependable friend. I am extremely lucky to have him in my life and I am truly
obliged for his constant support and love. We are blessed with an adorable little
angel, Elina, whose blissful presence is a true blessing for us and I am thrilled
to have her in my life. Her smile has been a powerful encouragement for me
to complete my doctoral studies. The beauty of her smile and the sound of her
laughter make even the hardest of days easy.

Gent, October 2017
Maryam Barshan

Table of Contents

Acknowledgment iii

Samenvatting xxix

Summary xxxiii

1 Introduction 1
1.1 Communication network revolution 1
1.2 Media-centric networks . 2
1.3 Problem statement . 3
1.4 Terminology . 4
1.5 Research contributions . 5
1.6 Outline of this dissertation . 11
1.7 Publications . 12

1.7.1 Publications in international journals
(listed in the Science Citation Index) 13

1.7.2 Publications in international conferences
(listed in the Science Citation Index) 13

1.7.3 Publications in book chapters 15
1.7.4 Publications in other international conferences 15

References . 16

2 Deadline-aware Advance Reservation Scheduling Algorithms for Me-
dia Production Networks 19
2.1 Introduction . 20
2.2 Related work . 21
2.3 Media production network architecture 23
2.4 Advance reservation scheduling model 25

2.4.1 Decision variables . 26
2.4.2 Objective function . 26
2.4.3 Flow constraints . 28
2.4.4 Interdependent requests 29
2.4.5 On-line model . 30

2.5 Advance reservation algorithms 30
2.5.1 Static & dynamic reservation 30

vi

2.5.2 ILP based advance reservation algorithms (ILP) 31
2.5.2.1 ILP based Static Advance Reservation Algorithm

(SARAILP) 31
2.5.2.2 ILP-based Dynamic Advance Reservation Al-

gorithm (DARAILP) 32
2.5.3 Sequential Priority Based advance reservation algorithms

(SPB) . 32
2.5.3.1 Sequential Priority Based Static Advance Reser-

vation Algorithm
(SARASPB) 33

2.5.3.2 Sequential Priority Based Dynamic Advance Reser-
vation Algorithm (DARASPB) 37

2.6 Experimental Results . 37
2.6.1 Evaluation Setup . 37
2.6.2 Comparing the SPB algorithms to the ILP-based algorithms 40
2.6.3 Evaluation of the SPB algorithms 41

2.6.3.1 Impact of available bandwidth 41
2.6.3.2 Impact of time slot granularity 43
2.6.3.3 Impact of network load 45

2.7 Conclusion . 46
References . 49

3 Design and Evaluation of a Dual Dynamic Adaptive Reservation Ap-
proach in Media Production Networks 53
3.1 Introduction . 54
3.2 Related work . 56

3.2.1 Advance resource reservation 56
3.2.2 Resilient reservation . 56
3.2.3 Media production networks 57

3.3 Runtime adaptation approach in media production networks . . . 58
3.3.1 Envisioned media production network 58
3.3.2 Runtime adaptation (RA) methodology 61
3.3.3 First phase: Periodic update 63
3.3.4 Second phase: Periodic adaptation 64
3.3.5 Modeling of the runtime adaptation methodology 64

3.4 Runtime Adaptation (RA) algorithms 65
3.4.1 Periodic update algorithms 65
3.4.2 Periodic adaptation algorithms 65
3.4.3 Clarifying examples . 68

3.5 Performance evaluation . 74
3.5.1 Evaluation Setup . 75
3.5.2 Impact of different failure rates, fixed backup demand . . 76

3.5.2.1 Impact of available bandwidth 76
3.5.2.2 Impact of network load 78

3.5.3 Impact of different backup demands, fixed failure rate . . 78

vii

3.5.3.1 Impact of available bandwidth 78
3.5.3.2 Impact of network load 80
3.5.3.3 Stressed versus non-stressed network conditions 85

3.5.4 Impact of different backup demands, varying failure rates . 85
3.5.5 Evaluation of execution times 86

3.6 Conclusions . 86
References . 92

4 A Flexible, Reliable and Adaptive Timeslot-based Advance Bandwidth
Reservation Mechanism for Media-centric Networks 97
4.1 Introduction . 98
4.2 Related work . 100
4.3 Advance Reservation for media delivery services 101

4.3.1 Type of reservation requests 101
4.3.1.1 STSD (Specified Time, Specified Duration) and

UTSD (Unspecified Time, Specified Duration)
requests . 102

4.3.1.2 STUD (Specified Time, Unspecified Duration)
and UTUD (Unspecified Time, Unspecified Du-
ration) requests 103

4.3.2 Time domain classification in AR approaches 103
4.3.3 The resilient AR scheduling approach 104
4.3.4 Runtime adaptation (RA) approach 104

4.3.4.1 First phase: Periodic update 105
4.3.4.2 Second phase: Periodic adaptation 105

4.4 Problem description . 106
4.4.1 Flexible approach . 106
4.4.2 Optimized resilient approach 107
4.4.3 Combining dynamic, flexible, resilient and RA approaches 108

4.4.3.1 Impact of RA on advance reservation approaches 109
4.5 Advance bandwidth reservation architecture 110

4.5.1 FixedTimeSlot module 110
4.5.2 FlexibleTimeSlot module 112
4.5.3 Runtime adaptation module 112

4.6 Advance bandwidth reservation algorithms 113
4.6.1 FlexibleTimeSlot algorithm 114
4.6.2 BWallocationFBResilient algorithm 117

4.7 Evaluation setup . 118
4.8 Simulation results and discussion 119

4.8.1 Comparing DARA fixed and DARA flex 121
4.8.2 Resilient DARA fixed vs. resilient DARA flex 121
4.8.3 Resilient DARA fixed+RA vs. resilient DARA flex+RA . 125
4.8.4 Discussion . 130

4.9 Conclusions . 131
References . 132

viii

5 Algorithms for Network-Aware Application Component Placement for
Cloud Resource Allocation 137
5.1 Introduction . 138
5.2 Related Work . 140
5.3 Modeling of a large-scale cloud environment 142
5.4 Formal ILP-based problem formulation 145

5.4.1 Introduction to the model 145
5.4.2 Decision variables . 145
5.4.3 Objective function . 147
5.4.4 Constraints . 148

5.4.4.1 Physical node limitations 148
5.4.4.2 Physical link limitations 149
5.4.4.3 Quality of service requirements 149
5.4.4.4 Well-connected mapping Constraints 149
5.4.4.5 Full deployment constraints 150
5.4.4.6 Anti-collocation constraints 150
5.4.4.7 Additional constraints 150

5.5 Algorithm descriptions . 151
5.5.1 ILP-based algorithm . 151
5.5.2 Heuristic algorithm . 151

5.5.2.1 Centralized Cloud Mapping Algorithm (CCMA) 152
5.5.2.2 Hierarchical Cloud Mapping Algorithm (HCMA) 152

5.6 Evaluation Details . 155
5.6.1 Comparing CCMA to the state-of-the-art solutions 158

5.6.1.1 Evaluation Set up 158
5.6.1.2 Evaluation Results 158

5.6.2 Comparing the CCMA to the ILP-based algorithm 158
5.6.2.1 Evaluation Set up 158
5.6.2.2 Evaluation Results 160

5.6.3 Comparing the hierarchical algorithm to the centralized
approach . 161
5.6.3.1 Evaluation Set up 163
5.6.3.2 Evaluation Results 164

5.6.4 Large scale scenarios . 169
5.6.4.1 Evaluation Set up 169
5.6.4.2 Evaluation Results 169

5.6.5 Evaluation discussion . 169
5.7 Conclusions . 171
References . 172

6 Conclusion 179
6.1 Advance reservation in media-centric networks 179
6.2 Flexible and fixed time slot size AR approaches 180

6.2.1 Fixed timeslot sizes . 180

ix

6.2.1.1 Request characteristics in media production in-
dustries . 180

6.2.1.2 Predefined size of fixed-size time slots 181
6.2.2 Flexible timeslot sizes 182

6.2.2.1 Dependency to the network load 182
6.2.2.2 Irregular network devices’ reconfiguration . . . 183
6.2.2.3 Impractical timeslot duration 183

6.2.3 Discussion . 183
6.3 Resilient advance reservation approaches 184
6.4 Impact of runtime adaptation approach 185
6.5 Cloud-based application placement 186
6.6 Future research . 186

6.6.1 Alternative use cases . 187
6.6.2 Timeslot-based technique 187
6.6.3 The underlying technology 187
6.6.4 Live migration of application components 188

A Single-path versus Multi-path Advance Reservation in Media Produc-
tion Networks 189
A.1 Introduction . 190
A.2 Related work . 191
A.3 AR scheduling model . 192

A.3.0.1 Additional decision variable 193
A.3.0.2 Additional constraints 193

A.4 AR scheduling algorithm . 193
A.5 Experimental results . 195

A.5.1 Evaluation Setup . 196
A.5.2 ILP evaluation of single-path versus multi-path 196
A.5.3 Comparison of ILP-based model with SPB approach . . . 196
A.5.4 Evaluation of single-path and multi-path in SPB approach 197

A.6 Conclusion . 200
References . 201

List of Figures

1.1 Media production network infrastructure in Flanders region in Bel-
gium. 6

1.2 A use case scenario in the media production industry. 6
1.3 Timeslot-based planning, scheduling and reservations. 7
1.4 Priority-based reservation of active requests in the current timeslot. 8
1.5 Comparing the resilient advance bandwidth reservation algorithm

in theory, in practice and further re-optimization. 9
1.6 Schematic overview of the different chapters in this dissertation . 11

2.1 Media production network architecture and components. 24
2.2 Different components of the Sequential Priority Based Advance

Reservation Algorithm (SPB). 32
2.3 Interactions between media production actors in the three consid-

ered use case scenarios. 38
2.4 The smaller Media production network topology used in the eval-

uation. 39
2.5 The Larger Media production network topology used in the evalu-

ation. The ATT North America topology consists of 25 nodes and
56 links. 39

2.6 Impact of bandwidth capacity and percentage of known requests
on admission rate. 40

2.7 Impact of percentage of known requests on admission rate in ILP-
based algorithms. 41

2.8 Impact of percentage of known requests on admission rate in SPB
algorithms. 42

2.9 The execution time of SPB and ILP-based approaches. 42
2.10 Impact of bandwidth capacity and percentage of known requests

on admission rate in SPB algorithms for 12-node topology. 42
2.11 Impact of bandwidth capacity and percentage of known requests

on admission rate in SPB algorithms for 25-node topology. 43
2.12 Impact of timeslot granularity on request admission rate for 12-

node topology. 44
2.13 Impact of timeslot granularity on request admission rate for 25-

node topology. 44

xii

2.14 The average execution times of different time slot sizes and per-
centage of known requests for 12-node topology. 45

2.15 The average execution times of different time slot sizes and per-
centage of known requests for 25-node topology. 45

2.16 Impact of network load on request admission rate for 12-node
topology. 46

2.17 The execution times of different number of scenarios and percent-
age of known requests for 12-node topology. 46

2.18 Impact of network load on request admission rate for 25-node
topology. 47

3.1 Different components of media production network. 58
3.2 The primary and backup schedules provided by DARA. 60
3.3 Dependency of backup demand on the reserved primary paths.

(Blue: Primary reservation, Red and dashed: Backup reservation) . 60
3.4 Comparing the DARA algorithm in theory, in practice and the RA

approach contribution. 61
3.5 The collaboration between different components in every timeslot

in the RA approach. 62
3.6 Algorithms used in periodic update and periodic adaptation phases

of the RA approach. Narrow arrows show invocations. 66
3.7 Comparing a snapshot view of bandwidth reservations for 3 re-

quests as output of the DARA algorithm and as input of the AO
algorithm (Full lines: primary reservations, dashed lines: backup
reservations, Open arrows: file-based transfers). 69

3.8 Differences between bandwidth allocation algorithms in the DARA
and RA approaches. 70

3.9 The impact of video streaming requests activation / deactivation
on file transfer finish time in the periodic adaptation phase of the
RA approach. 71

3.10 Single timeslot reservations made by the DARA algorithm and
multiple re-invocations of the AO algorithm during the periodic
adaptation phase of the RA approach. 73

3.11 The impact of invocations of algorithms in periodic update and
periodic adaptation phases of the RA approach on performance of
reservation system. 74

3.12 Media production network topologies used for evaluation. 75
3.13 Bandwidth contention per link for 20 scenarios in 8-node topology

and 50 scenarios in 25-node topology. 77
3.14 Impact of network capacity and failure rates on the performance

of using the RA approach for the 8-node topology. 78
3.15 Impact of network capacity and failure rates on the performance

of using the RA approach for the 25-node topology. 79
3.16 Impact of network load and failure rates on the performance of

using the RA approach for the 8-node topology. 79

xiii

3.17 Impact of network load and failure rates on the performance of
using the RA approach for the 25-node topology. 80

3.18 Impact of available bandwidth and backup demands on the perfor-
mance of using the RA approach for the 8-node topology. 81

3.19 Impact of available bandwidth and backup demands on the perfor-
mance of using the RA approach for the 25-node topology. 82

3.20 Impact of network load and backup demands on the performance
of using the RA approach for the 8-node topology. 83

3.21 Impact of network load and backup demands on the performance
of using the RA approach for the 25-node topology. 84

3.22 Final state of requests in stressed and non-stressed 8-node topol-
ogy with a failure rate of 2h. 87

3.23 Final state of requests in stressed and non-stressed 25-node topol-
ogy with a failure rate of 2h. 88

3.24 Comparing the success rate of the DARA and the RA approaches
with different backup demands for the 25-node topology. 89

3.25 Evaluation of execution times for the 8-node topology. 90
3.26 Evaluation of execution times for the 25-node topology. 90

4.1 Types of advance reservation requests. 102
4.2 Time domain classification of AR approaches. 103
4.3 Comparing the original and modified versions of resilient fixed

size timeslot-based advance bandwidth reservation. 108
4.4 Comparing the original and modified versions of resilient flexible

timeslot-based advance bandwidth reservation. 109
4.5 A comprehensive overview of the control plane of the adaptive

advance bandwidth reservation system. 111
4.6 Comparing the impact of network capacity in the flexible and fixed

size DARA approaches in the 8-node topology. 120
4.7 Comparing the impact of network capacity in the flexible and fixed

size DARA approaches in the 25-node topology. 120
4.8 Comparing the performance of flexible and fixed timeslot-based

DARA approach with different number of scenarios in the 8-node
topology. Network capacity is 200Mbps. 122

4.9 Comparing the performance of flexible and fixed timeslot-based
DARA approach with different number of scenarios in the 25-node
topology. Network capacity is 100Mbps. 122

4.10 Comparing the execution time of flexible and fixed timeslot-based
DARA approach with different number of scenarios in the 8-node
topology. Network capacity is 200Mbps. 123

4.11 Comparing the execution time of flexible and fixed timeslot-based
DARA approach with different number of scenarios in the 25-node
topology. Network capacity is 100Mbps. 123

4.12 Comparing the impact of backup demand in the flexible and fixed
size resilient DARA approaches in the 25-node topology. 124

xiv

4.13 Comparing the impact of failure rates in the flexible and fixed size
resilient DARA approaches in the 8-node topology. 124

4.14 Comparing the impact of runtime adaptation (RA) in the flexible
and fixed size resilient DARA approaches in the 8-node topology. 125

4.15 Comparing the impact of runtime adaptation (RA) in the flexible
and fixed size resilient DARA approaches in the 25-node topology. 126

4.16 Comparing the percentage of succeeded requests in the flexible
and fixed size DARA approaches in the 8-node topology. 127

4.17 Comparing the success rate of admitted requests in the flexible and
fixed size DARA approaches in the 8-node topology. 127

4.18 Comparing the percentage of succeeded requests in the flexible
and fixed size DARA approaches in the 25-node topology. 128

4.19 Comparing the success rate of admitted requests in the flexible and
fixed size DARA approaches in the 25-node topology. 128

4.20 Final state of requests with a failure rate of 10h in the 8-node topol-
ogy. Backup demand is 50% and network capacity is 300Mbps. . 129

4.21 Final state of requests with a failure rate of 10h in the 25-node
topology. Backup demand is 50% and network capacity is 200Mbps.129

4.22 Final state of requests with a failure rate of 2h in the 8-node topol-
ogy. Backup demand is 50% and network capacity is 300Mbps. . 129

4.23 Comparing the impact of backup demand on the final state of re-
quests with a failure rate of 10h in the 8-node topology. Network
capacity is 300Mbps. 130

5.1 The process of application component placement with the anti-
collection placement requirement. Redundant components are not
allowed to be allocated on the same host as non-redundant compo-
nents. 139

5.2 The architecture of physical infrastructure and the management
plane (LLM: Low Level Manager, MLM: Mid Level Manager,
RLM: Root Level Manager). 144

5.3 The process of application component placement onto a cluster of
cloud servers for two types of components (database server and
computational server). 153

5.4 Different messages for interacting between the managers in GCMA
(GCMA: Global Cloud Mapping Algorithm, CCMA: Centralized
Cloud Mapping Algorithm). 155

5.5 An illustrative 20−component application (Type 3). 157
5.6 Comparing the percentage of servers used in the CCMA and the

ACUNA algorithm as a function of number of application place-
ment requests (20 iterations). 158

5.7 Comparing the percentage of fully mapped applications in the CCMA
and the ACUNA algorithm (20 iterations). 159

xv

5.8 Comparing the percentage of anti-collocation application place-
ment fulfillment in the CCMA and the ACUNA algorithm (20 it-
erations). 159

5.9 Comparing the number of servers used (as bar charts) and the ap-
plication mapping success rate (as line charts) in the CCMA to the
ILP-based algorithm for 5-component applications (20 iterations). 160

5.10 Comparing the number of servers used (as bar charts) and the ap-
plication mapping success rate (as line charts) in the CCMA to the
ILP-based algorithm for 10-component applications (20 iterations). 161

5.11 Comparing the execution times of the CCMA to the ILP-based
algorithm for 5-component applications (20 iterations). 162

5.12 The percentage of servers used (Case study 1 with 1000 servers
and 20 iterations). 163

5.13 The percentage of used servers relative to the CCMA (Case study
1 with 1000 servers and 20 iterations). 164

5.14 The percentage of fully placed applications (Case study 1 with
1000 servers and 20 iterations). 164

5.15 The percentage of fully placed applications (Case study 1 with
1000 servers and 20 iterations). 165

5.16 The percentage of servers used (Case study 2 with 4096 servers
and 20 iterations.) . 166

5.17 The percentage of fully placed applications (Case study 2 with
4096 servers and 20 iterations). 166

5.18 The percentage of fully placed applications relative to the CCMA
(Case study 2 with 4096 servers and 20 iterations). 167

5.19 The percentage of servers used (Case study 2 with 4096 servers
and 20 iterations). 167

5.20 The percentage of fully placed applications (20 iterations). Num-
ber of physical servers = β3. 168

5.21 The execution time per application (20 iterations). Number of
physical servers = β3. 168

5.22 The number of fully placed applications (10 iterations). Number
of physical servers = β3. 170

5.23 The execution time per application (10 iterations). Number of
physical servers = β3. 170

A.1 Components of the Sequential Priority Based Advance Reserva-
tion Algorithm (SPB). 194

A.2 Media production network topologies used in the evaluation. . . . 196
A.3 Comparing single-path versus multi-path in ILP-based approach. . 197
A.4 Comparison of optimal ILP with SPB approach. 197
A.5 Impact of bandwidth capacity, time slot granularity and network

load on admission rate in 8-node topology 198
A.6 Impact of bandwidth capacity, time slot granularity and network

load on admission rate in a 25-node topology. 199

List of Tables

1.1 An overview of the contribution characteristics per chapter in this
dissertation. 12

2.1 Media production video request taxonomy. 25
2.2 Symbols and notations used in the formal models. 27
2.3 Details of the use case requests 39

3.1 Maximum and average number of concurrent failures for different
failure rates in 8-node and 25-node topologies. 76

3.2 Execution time per algorithm invocation (ms) of main algorithms
of the RA approach. Failure rate is 2h. 86

4.1 Maximum and average number of concurrent failures for different
failure rates. 119

5.1 The Management plane parameters. 144
5.2 Symbols and notations used in the formal model. 146
5.3 The physical network parameters. 157
5.4 The Physical Infrastructure Specifications. 161
5.5 Management plane infrastructure. 162
5.6 Application specifications. 162
5.7 The number of physical devices based on different β values. . . . 168
5.8 The management plane parameters based on different β values. . . 168

6.1 The summary of the benefits and disadvantages of flexible and
fixed-size timeslot based advance reservation approaches in media-
centric industries. 184

A.1 Symbols and notations used in the formal model. 192

List of Acronyms

A

AR Advance Reservation

AO Adaptive Optimization

API Application Programming Interface

B

BFS Breadth-First Search

C

CCMA Centralized Cloud Mapping Algorithm

D

DARA Dynamic Advance Reservation Algorithm

DC Default Computational Server

DD Default Database Server

F

FB File Based

xx

G

GCMA Global Cloud Mapping Algorithm

H

HCMA Hierarchical Cloud Mapping Algorithm

I

IEEE Institute of Electrical and Electronics Engineers

ILP Integer Linear Programming

IR Immediate Reservation

IP Internet Protocol

L

LAN Local Area Network

LLM Low Level Manager

M

ML Management Layer

MLM Mid Level Manager

Mbps Megabit per second

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

N

NSS Next Server Selection

xxi

Q

QoS Quality of Service

R

RLM Root Level Manager

RA Runtime Adaptation

S

SARA Static Advance Reservation Algorithm

SS Supported Server

SLA Service Level Agreement

SPB Sequential Priority Based

SBPP Shared Backup Path Protection

SDN Software Defined Network

STSD Specified Time Specified Duration

STUD Specified Time Unspecified Duration

T

TDD Time Division Duplex

TDMA Time Division Multiple Access

U

UTSD Unspecified Time Specified Duration

UTUD Unspecified Time Unspecified Duration

xxii

V

VM Virtual Machine

VS Video Streaming

W

WAN Wide Area Network

WDM Wavelength-Division Multiplexing

List of Symbols

|ML| The number of management levels

|LLM | The number of low level mangers

|MLM | The number of mid level mangers

|SS| The number of supported servers

µ The branch factor of each tier

Su Available storage capacity of physical node u

Mu Available memory capacity of physical node u

Cu Available CPU capacity of physical node u

Deuv Delay of physical link euv
BWeuv

Bandwidth capacity of physical link euv
typeeuv

whether Phy. link euv is a LAN or WAN link

Ccostu Cost of each CPU unit of physical node u

Mcostu Cost of each memory unit of physical node u

Scostu Cost of each storage unit of physical node u

BWcosteuv
Cost of each BW unit of physical link euv

fcostu The fixed cost of using physical node u

fcosteuv The fixed cost of using physical link euv
AppNo Number of applications

CompNoa Number of components of application a

Stype Set of types of application components

γtai has value 1 if ai is of type t

cai Computation demand of application a, comp. i

sai Storage demand of application a, comp. i

mai Memory demand of application a, comp. i

eaij Link between comp. i and j of application a

bweaij Bandwidth demand of link eaij

xxvi

deaij
Max. allowed delay of link eaij

dn Destination node of request rn

tns Start time for the request rn. Decision variable when not specified

tne Deadline for the request rn. Decision variable when not specified

in Duration of request rn

bn Required bandwidth of rn

vn Volume of rnf for file-based requests (in bit)

βn,e,k Decision variable. Dedicated bandwidth over link e, request rn and
time interval k

xa,iu Binary decision variable which shows the accomplished mapping
between component i of application a and physical node u, regard-
less of the type of component

feuv Binary decision variable which indicates success of mapping be-
tween physical link euv and the link between components i and j of
application a (eaij)

T tu Binary decision variable to determine whether node u is used to
host components of type t

Bu Binary decision variable. 1 iff physical node u is used, either as a
routing node or a used server in the entire mapping

Beuv
Binary decision variable to indicate whether physical link euv is
used in the mapping scheme or not

Ma Binary decision variable which indicates whether the application a
is fully mapped or not

Pn,e,k Binary decision variable. 1 iff there is any reservation for request
rn over link e in time interval k

SUn,k Binary decision variable. 1 iff in time slot k any reservation is done
for request n, 0 otherwise

An Binary decision variable. 1 iff request rn is admitted, 0 otherwise

As Binary decision variable. 1 iff scenario s is admitted, 0 otherwise

I Duration of each time interval (in second)

tmins Minimum start time of all reservations

tmaxe Maximum end time of all reservations

Be Bandwidth capacity of link e

Eoutv This collection contains all edges starting from node v (egress)

Einv This collection contains all edges ending in node v (ingress)

Samenvatting
– Summary in Dutch –

In de loop der jaren zijn mediacentrische industrieën complexer en gegevensin-
tensiever geworden omdat ze te maken hebben met enorme hoeveelheden (hoge
bitrate) data zoals volledige ultra-HD video-opnames en daarbovenop een geo-
grafisch verdeeld personeelsbestand. Grote hoeveelheden gegevens kunnen door
verschillende samenwerkende divisies / bedrijven worden geanalyseerd, verwerkt
en opgeslagen in (data-)magazijnen op verschillende locaties. Traditioneel werd
de verspreiding van media over het algemeen uitgevoerd door ofwel mensen die
de inhoud op een fysiek opslagmedium vervoeren, wat zeer inefficiënt is, of ge-
transfereerd over toegewijde point-to-point hoge snelheid optische verbindingen,
die duur zijn. Het verbinden van de verschillende actoren die betrokken zijn bij
het productieproces door middel van een gedeelde netwerklaag zou de investe-
ringen aanzienlijk verminderen en de netwerkbron-benutting kunnen verhogen.
Momenteel worden dergelijke gedeelde (media-centrische) IP-gebaseerde netwer-
ken uitgerold om media-samenwerking en uitwisseling van mediamateriaal tussen
verscheidene geografisch verspreide actoren te faciliteren.

Mediacentrische omgevingen zijn zeer dynamisch door gelijktijdige aankomst
en vertrek van meerdere media-overdrachten (zoals ruwe en gecodeerde audio-
en videobestanden en streaming-sessies) met verschillende groottes en vereisten.
Elke overdracht kan een vaste of ongespecificeerde start- en eindtijd hebben. In
mediacentrische netwerken kunnen meerdere overdrachten ook afhankelijk zijn
van elkaar. In mediaproductieprocessen bijvoorbeeld zal de starttijd van het ver-
sturen van bewerkt materiaal naar de zender afhangen van de eindtijd waarop op-
genomen materiaal naar het productiebureau verstuurd werd. Deze onderlinge af-
hankelijkheid tussen verzoeken impliceert dat een verzoek niet kan worden gestart
tenzij de andere verzoeken waarvan dit verzoek afhangt, al werden uitgevoerd. In
deze studie overwegen we een reeks onderling afhankelijke en deadline-beperkte
netwerkoverdrachten.

Een belangrijk kenmerk van het dataverkeer in media-centrische netwerken is
de voorspelbaarheid ervan. De tijdsvereisten, locatie en bandbreedte van gege-
vensoverdrachten zijn vaak uren en soms zelfs dagen vooraf gekend. Zo zou het
gebruik van bandbreedtereserveringstechnieken (Advance Reservation - AR) kun-
nen leiden tot sterk verhoogd bandbreedtegebruik/efficiëntie en verminderde kos-
ten. In AR-netwerken verzoeken gebruikers toekomstige data-overdrachten, over
het algemeen voorzien van een starttijd (ofwel onmiddellijk of op een gegeven tijd-

xxx SAMENVATTING

stip in de toekomst), een deadline en de totale gegevensoverdracht (of benodigde
bandbreedte bij streamen). Vervolgens wijst een scheduling-algoritme de nodige
netwerkbronnen toe om ervoor te zorgen dat alle toegestane aanvragen worden
afgerond voor hun gespecificeerde deadline, terwijl gelijktijdig zoveel mogelijk
transfer-verzoeken ingepland worden. Het is duidelijk dat AR verschillende voor-
delen heeft voor de volgende generatie media-afleveringsnetwerken. Het stelt net-
werkbeheerders in staat om het gebruik van de netwerkbronnen beter te plannen,
wat leidt tot sterk verhoogd gebruik van de middelen en gegarandeerde kwaliteit
van dienstverlening (QoS). Als eerste bijdrage in dit proefschrift hebben we de le-
vensvatbaarheid bewezen van het gebruik van AR planning in mediaproductienet-
werken, om aanzienlijk de netwerkefficiëntie en transferverzoek-inwilligingsratio
te verbeteren.

In de voorafgaande reserveringsbenaderingen gaan we om met dynamische
tijdsafhankelijke reservaties. Om voorspelbare complexiteit, eenvoudiger imple-
mentatie en periodieke herconfiguratie van netwerkapparaten te kunnen voorzien,
werden de AR-algoritmen ontworpen om gebruik te maken van vaste tijdslots.
Onze resultaten laten zien dat in sommige gevallen echter een vaste tijdslot-aanpak
de kwaliteit van het algoritme en de uitvoeringssnelheid negatief kan beïnvloeden.
Als gevolg werd de mogelijkheid onderzocht om een flexibel tijdslot-gebaseerd
netwerkreservatiemechanisme voor mediacentrische bedrijven te gebruiken. We
analyseerden de voordelen en nadelen van het gebruik van flexibele tijdslots, en
vonden dat een flexibele benadering zeer gunstig is bij het omgaan met bursty da-
taverkeer in netwerken met een relatief klein aantal aanvragen en periodes zonder
netwerktransfers. De flexibele aanpak kan het aantal benodigde tijdsloten poten-
tieel aanzienlijk verminderen, resulterend in een verbetering van de uitvoertijd.
We hebben bandbreedtereservatie-algoritmes gebaseerd op zowel vaste als flexi-
bele tijdssloten ontworpen, geïmplementeerd en geëvalueerd en de kwaliteit en
complexiteit van deze aanpakken grondig vergeleken. We tonen aan dat flexibele
tijdssloten van nature meer compatibel zijn met transferverzoeken in mediacentri-
sche netwerken, aangezien bij flexibele tijdssloten de reservaties beter afgestemd
kunnen worden op de timing van inkomende verzoeken.

Bandbreedtereservaties resulteren in hoger bandbreedtegebruik en verbeterde
netwerkprestaties. In onbetrouwbare netwerken kan dit echter mislukken. Wan-
neer een bestand wordt getransfereerd in overeenstemming met het AR-schema,
kunnen twee scenario’s voorkomen: het bestand is volledig overgebracht binnen
de geplande tijdsperiode, of door onzekere netwerkomstandigheden, zoals bij-
voorbeeld plotse veranderingen in netwerkconfiguratie, netwerkfluctuaties, storin-
gen, etc. is het bestand niet volledig overgedragen. Daarom is de betrouwbaar-
heid van de overdrachten ook een aandachtspunt voor dit proefschrift. Bij AR-
mechanismen kunnen fouttolerantie-mechanismen toegevoegd worden om presta-
ties te verbeteren bij voorkomen van onvoorziene fouten en zo betrouwbare reser-
vaties aan te bieden. In eerste instantie, zorgt het toepassen van beschermingsme-
chanismen ervoor dat het AR schema geldig blijft wanneer het systeem operatio-
neel is. We hebben een resiliënte reservatiemethode voorgesteld geoptimaliseerd
voor mediadistributienetwerken gebruik makend van backup-paden en redundante

SUMMARY IN DUTCH xxxi

reservaties. Dit stelt het reservatiesysteem in staat om in aanwezigheid van fouten
toch betrouwbare en consistente prestaties te leveren.

Het gebruik van redundantie zorgt echter voor een aanzienlijke prestatie-impact
en extra kosten. In onstabiele netwerkomstandigheden is het dan ook belangrijk
om het AR schema up-to-date te brengen naarmate de tijd verloopt, volgens de
huidige toestand van het netwerk en de lopende transfers. Om de eerder genoemde
negatieve impacten te verzachten hebben we een dynamische event-gedreven si-
mulator ontwikkeld en geëvalueerd die runtime monitoring, adaptatie en herop-
timalisatie kan simuleren. Constante monitoring en adaptatie zijn nodig om het
transferschema dynamisch aan te passen aan de wijzigende omstandigheden / con-
text. Het schema afkomstig van het geavanceerde reservatie-algoritme wordt pe-
riodiek aangepast, rekening houdend met de huidige toestand van netwerk en lo-
pende transfers. Additioneel exploiteren we hierbij onderbenutte (backup-) net-
werkcapaciteiten om meer data te transfereren dan wat ingepland was, zolang er
geen storing gedetecteerd wordt. We tonen aan dat zowel in stabiele als fout-
gevoelige netwerken deze aanpak significant de netwerkutilisatie en hoeveelheid
geaccepteerde transfers kan verhogen.

Mediacentrische netwerken gebruiken datacentra vaak om gegevens op te slaan
en hun applicaties uit te voeren. Een datacenter herbergt computerfaciliteiten
en kan cloud-gebaseerde infrastructuur aanbieden als een dienst. Huidige raam-
werken hebben echter geen ondersteuning voor een brede waaier aan applicatie-
plaatsingsvereisten, zoals een combinatie van schaalbare componentplaatsing die
rekening houdt met harde vereisten op vlak van netwerkfaciliteiten en beperkingen
op vlak van bvb dienst-collocatie. Om dit probleem aan te pakken stellen we een
optimaal wiskundig model voor, evenals gecentraliseerde en hiërarchische heuris-
tische oplossingen, waarin elke applicatie wordt weergegeven als een verzame-
ling van interactieve componenten met een onderscheid tussen componenttypes.
Onze aanpak houdt rekening met de kenmerken van het onderliggende netwerk en
schaalt tot grote cloud-gebaseerde datacenters.

Summary

Over the years, media centric industries have become more complex and more
data intensive as they are dealing with enormous amounts of high bitrate data such
as ultra-HD video recordings and a geographically distributed workforce. Large
quantities of data may be analyzed and processed by various collaborating par-
ties and stored at multiple warehouses on different locations. Traditionally, the
distribution of media content is generally performed by either people transport-
ing the content on a physical storage medium, which is highly inefficient, or over
dedicated point-to-point high-speed optical links, which is expensive. Connecting
the different actors involved in the media production process to a shared network
substrate would greatly reduce capital expenditures and increase network resource
utilization. Currently, such shared media centric networks, connecting many ac-
tors across a large geographical area, are being deployed to build collaborations
over IP media contents and support the exchange of different media content.

Media-centric environments are highly dynamic due to the arrival and depar-
ture of several concurrent transfers of different sizes and requirements, such as
raw and encoded audio and video files and streaming transfers. Each transfer can
have a fixed or unspecified start and end time. In media centric networks, multiple
transfers may depend on each other. For instance, in media production processes
the start time of sending edited material to the broadcaster depends on the end
time of sending recorded material to the production office. This interdependence
among requests implies that a request can not be started unless the other requests
on which this request depends, have already been transferred. In this study, we
consider a set of interdependent and deadline-constrained network transfers.

A key characteristic of traffic in media-centric networks, is its predictability.
The timing, locality and bandwidth requirements of data transfers are often known
hours and sometimes even days in advance. As such, the use of advance band-
width reservation (AR) techniques would result in greatly increased bandwidth
utilization and reduced costs. In AR networks, users submit requests for future
data transfers, generally encompassing a start time (either immediately or at some
point in the future), a deadline, and total data transfer size (or rate). Subsequently, a
scheduling algorithm allocates the necessary bandwidth resources to ensure that all
admitted requests finish before their specified deadline, while admitting as many
requests as possible. Clearly, AR has several advantages for next generation of me-
dia delivery networks. It allows network operators to better plan resource usage,
leading to greatly increased resource utilization and guaranteed Quality of Service
(QoS). As the first contribution in this dissertation, we have proven the viability

xxxiv SUMMARY

of using AR scheduling in media production networks to significantly improve
bandwidth efficiency and request admittance ratio.

In the advance reservation approaches, we deal with dynamic time-dependent
reservations. To offer predictable complexity, easier implementation and periodic
reconfiguration of network devices, the AR algorithms were designed making use
of fixed time slots. Our results showed that in some cases however, using a fixed
timeslot approach can negatively affect algorithm quality and execution speed. As
a consequence, the possibility of using a flexible timeslot-based advance band-
width reservation approach in media centric industries has been investigated. We
have analyzed the benefits and drawbacks of using flexible timeslots, finding that
the flexible approach is highly beneficial when dealing with bursty traffic condi-
tions in a low-demand network with long-term downtimes. The flexible approach
has the potential to significantly reduce the number of timeslots needed, resulting
in execution speed improvements. We have therefore designed, implemented and
evaluated advance bandwidth reservation algorithms based on both fixed and flex-
ible timeslot sizes and thoroughly compared the quality and complexity of these
approaches. We show that flexible timeslots are by nature more compatible with
requests in media-centric networks since flexible timeslots could make the timings
fit better with the timing of incoming requests.

Advance bandwidth reservation results in higher bandwidth utilization and im-
proved network performance. However, in unreliable networks, this may fail.
When a file is actually transferred in accordance with the AR schedule, two scenar-
ios may occur: either the file is completely transferred within the scheduled time
period, or due to uncertain network conditions, such as e.g. sudden changes in
network configuration, network fluctuations, failures, it is not fully transferred. As
such, reliability of transfers is another concern of this dissertation. In AR mech-
anisms, to offer reliable reservations, fault-tolerance features can be incorporated
to improve performance and deal with unforeseen failures. As the first provisional
stage, deploying protection mechanisms ensures that the schedule remains valid
when the system is in operation. We have proposed a resilient advance reservation
approach by provisioning backup paths and redundant reservations. This enables
the reservation system to deliver reliable and consistent performance in the pres-
ence of failures.

Using redundancy imposes significant performance overheads and extra costs.
In unstable network conditions, updating the schedule over time according to the
current state of the network and transfers is also important. In order to mitigate
these side-issues, we have further designed and evaluated a dynamic event-driven
simulator in which monitoring, adaptation and re-optimization is applied at run-
time. Constant monitoring and modification is required in order to be capable of
dynamically adapting the transfer schedule to changing conditions. The schedule
provided by the advance reservation algorithm is periodically updated, taking into
account the current state of network and transfers. In addition, this approach ex-
ploits underutilized network capacities to transfer more data than what has been
scheduled as long as no failure is detected. We show that in both stable and failure-
prone networks, deploying this approach noticeably increases network utilization

SUMMARY xxxv

and request admittance ratio.
Media centric networks often use data centers to store data and run their ap-

plications. A data center is a repository that houses computing facilities which
can offer cloud-based infrastructures as a service. However, current frameworks
lack crucial features for supporting a broad range of application placement re-
quirements, such as combination of scalable component-level placement, guar-
anteeing network and constraint-awareness requirements. To address this issue,
we propose an optimal mathematical model as well as centralized and hierarchi-
cal heuristic solutions, in which each application is represented as a collection of
interacting components with a distinction between application component types.
Our approach takes the characteristic of the underlying network into account and
scales to the size of large cloud-based datacenters.

1
Introduction

“Learning and innovation go hand in hand. The arrogance of success is to think
that what you did yesterday will be sufficient for tomorrow.”

–William Pollard (1911 - 1989)

1.1 Communication network revolution

The emergence of communication networks can be traced back to more than 140
years ago [1], when Alexander Graham Bell made his first call, on March 10, 1876,
to his assistant Thomas Watson: “Mr. Watson–come here–I want to see you”. This
was the basis of telephone system’s circuit switching method, which establishes
a direct and temporary circuit to send continuous voice messages between two
locations. Another form of communication came up almost one century later when
the ARPAnet, the first packet-switched computer network, was conceived in the
late 1960s. In packet switching [2], a message is broken into smaller units, called
packets. The ARPAnet did not connect each pair of nodes directly, instead the
intermediate nodes could forward the packets toward their final destinations. This
was the starting point of ever-growing computer network infrastructures in the past
half century.

The Internet, as we know it, grew from a different architectural concept. In
1972, by introducing the open architecture networking [3], networks with diverse
underlying technologies were able to be connected to each other. This paved the
way for the Internet, which embodies this key underlying technical idea.

2 CHAPTER 1

Today, a computer network in any form and scale, ranging from Local Area
Network (LAN) to Wide Area Network (WAN) and the Internet, is a powerful
medium for communication. Use of computer networks has several advantages
as it allows for resource sharing with higher performance and lower cost. It also
provides centralized control for geographically distributed systems, distribution of
processing functions, centralized or decentralized management and network re-
source allocation.

With the significant advances in information and communications technology
over the last years, there is an increasingly perceived vision that computing can be
considered the 5th utility after water, electricity, gas, and telephony. A number of
computing paradigms have been proposed to deliver the long-held dream of com-
puting as a utility, of which the recent one is known as cloud computing [4, 5].
Cloud computing is a new style of offering applications and services over the In-
ternet. Cloud computing offers a promising alternative to traditional IT businesses,
which had to build and maintain their own infrastructures. Recently, many com-
panies use cloud technologies to reduce costs, increase flexibility and to respond
faster to customer needs.

1.2 Media-centric networks

Nowadays, the use of digital techniques is becoming increasingly ubiquitous. The
formerly separated forms of analog data, such as video and audio recording, are
transformed to digital formats. All these time-dependent recordings, being turned
into digital representations, are called media.

While media was originally often being used for entertainment purposes, it
now becomes a widely pervasive part of various critical applications in many in-
dustries such as online surgeries, distance learning, video conferencing, traffic
management control room, etc. These media-centric applications are character-
ized by a high need for fast and reliable data transport between different sectors.

The lack of an efficient technical solution that allows geographically distributed
sectors to work together forces the media-centric networks to co-locate their build-
ings, in which the distribution of media content was generally performed by peo-
ple transporting the content on a physical storage media. An alternative solution
was to invest in time and cost consuming transfers over dedicated point-to-point
high-speed optical links. However, these are respectively highly inefficient and
costly methods. Industries with geographically distributed digital-collaborative
workforce are striving to decrease the cost of these deadline-constrained transport
processes.

The availability of wide area networks (WANs) between the locations of multi-
ple sectors provides an opportunity for technical improvement. In order to reduce
capital expenditures, support decentralized collaboration and increase network

INTRODUCTION 3

resource utilization, media related environments tend to switch to cost-effective
WAN approaches. Deploying a shared WAN solution enables existing media con-
tent owners and their collaborators to work together in a cost effective way, while
new actors can more easily find new collaboration opportunities, thus fostering the
whole industry’s further growth.

1.3 Problem statement

In the field of media transport with strict quality-of-service (QoS) demands, pro-
viding suitable connectivity of geographically spread locations remains challeng-
ing or expensive. As the first step to offer a cost-efficient solution supporting pro-
fessional media collaboration, physical transport can be eliminated by transporting
over a network. Network capacity is a valuable resource and efficient bandwidth
management is of crucial importance [6], particularly for media content transfers
that are dealing with ever increasing sizes to offer high resolution formats. Fur-
ther cost reductions can be achieved if one network link allows transferring con-
currently, thereby optimizing the use of the network capacity. Moreover, more
reliable transport reduces the overhead of re-transmission of lost data. Since dead-
lines within the media sectors are of prime importance, for time-critical media
processes, time savings in transport of contents or faster access to the archived
materials are very valuable. Media related companies are willing to go a long way
to reduce the time spent in transport and increase the productive time.

Over-provisioning of network resources [7] has been a common practice to
deal with the peak traffic demands in long term. In media related networks with
large file transfers, this requirement is much higher compared to traditional IT ap-
plications. In bandwidth-limited networks, bandwidth scheduling of large transfers
will significantly reduce the need for this over-provisioning. Bandwidth schedul-
ing refers to bandwidth allocations with flexible options with regards to timing
and bandwidth requirements in both on-demand and in-advance reservation disci-
plines. Bandwidth reservation systems are generally capable of both advance and
immediate reservations. The former allocate resources ahead of time in future,
while the latter reserve resources upon availability in the next time intervals. In
media centric networks, bandwidth requirements, timing constraint and locality
of network transfers are mostly known hours or even days in advance. Overall,
deploying advance bandwidth reservation techniques decreases the need for over-
provisioning and increases the requests’ admittance ratio and network utilization.

As advance bandwidth reservation is an essential feature of any shared network
in which network capacity needs to be co-allocated at predetermined times, there
have been significant investigations in literature to date [8–11]. The media-centric
networks carry a combination of requirements which are not supported by exist-
ing state-of-the-art solutions. To start with, different types of transfer requests have

4 CHAPTER 1

different requirements. For file transfers, the start time of transfer is generally flex-
ible, the deadline is fixed, and the reserved bandwidth may vary over the lifetime
of the reservation. For streaming requests, a constant duration and a fixed amount
of reserved bandwidth is associated from source to sink of the requests. Deadlines
are of great importance, however, for both file transfers and streams start time, end
times and deadlines of transfers are not necessarily known. This is because media
related industries mainly deal with a set of interdependent transfers, implying that
each transfer can only start when other transfers, on which this transfer depends,
have been finished. This combination of deadline-conscious interdependent trans-
fers with flexible times and elastic bandwidth allocation has not received much
attention in the literature to date [12].

Media centric networks often make use of data centers to store and run dif-
ferent types of applications and complex workloads. A datacenter is composed of
networked servers and storage facilities used to organize, process and store large
amounts of data. This datacenter can also offer cloud-based infrastructure and
house cloud services. With the increasing demand for cloud computing services,
methods for efficient placement of requested applications into available cloud re-
sources has drawn enormous attention and became an essential research problem
since this placement is further complicated by the issues of shared data, data inter-
dependencies and user concerns about efficiency, security and reliability. Each
application placement request has a list of different component types, along with
potential placement constraints. For instance, an application with data safety-
sensitive services requires hardware-based security and an application requiring
high-level fault tolerance has an anti-collocation placement constraint to safeguard
service availability. The component placement process has to ensure the entire
placement of such a component-based application, known as “full deployment”
constraint, meaning that either all or none of the application components have
to be placed. Moreover, due to interconnections among these components, net-
work requirements of collaborative components has to be taken into account. The
combination of the network-awareness requirements, full deployment and anti-
collocation placement constraints has been challenging and remained, to the best
of our knowledge, unexplored.

1.4 Terminology

In this section, definitions are provided for the most important concepts used
throughout this dissertation:

Request: a request refers to a transfer of two types: streaming or file transfers.
The nth request is denoted by rn = (sn, dn, tns , t

n
e , i

n, bn), comprising of the
source of the request sn, the destination node dn, the time when the data for a file-
based request is ready to transfer tns (or fixed start time for a streaming request),

INTRODUCTION 5

the deadline for the transmission of the data of a file-based request tne (or fixed
end time for a streaming request), the duration of each request in and finally the
bandwidth demand of the request bn. Moreover the volume of the files are denoted
by vn.

Scenario: a scenario is defined as a collection of interdependent file and stream-
ing transfers. Due to inter-dependencies, if one of these transfers is not successful,
the whole scenario will be affected.

timeslot: a time interval or time slot is a period of time in which bandwidth
reservations remain invariant. A timeslot can be of flexible or fixed size.

Schedule: refers to a 3-dimensional allocation among transfer requests, net-
work links and timeslots, indicating how much bandwidth is allocated to each
transfer request over each link on each timeslot.

Static approach: the static approach assumes all requests are known at the
start of the resource reservation period. The schedule remains fixed during the
whole lifetime of reservations.

Dynamic approach: in the dynamic or online approach requests enter to the
system at any time. The dynamic system re-schedules the already-scheduled and
newly arrived requests together while the system is in operation. Re-accommodation
of the previously admitted requests is a must.

Anti-collocation placement constraint: in the context of component-based
application placement, this constraint ensures that the components of a given appli-
cation cannot be placed on the same server, mainly for fault tolerance and isolation
purposes.

1.5 Research contributions

Media-centric networks impose requirements not supported by existing advance
scheduling techniques, such as different types of video or audio transfers, flexible
or unspecified start or end times, strict deadlines, interdependent requests, relia-
bility, etc. In addition, the problem of constraint- and network-aware application
placement in large scale cloud-based datacenters has not gained enough attention
to date. Addressing these unexplored aspects is the main contribution of this dis-
sertation.

We pay specific attention to media production networks as a typical compre-
hensive example of media-centric networks. As shown in Figure 1.1, multiple
actors are involved in media production network including central production, re-
mote production, post-production, broadcasting, archiving locations, etc. The map
shows the physical infrastructure of media production industry in the Flanders re-
gion of Belgium.

Media-centric industries generally deal with a set of multiple transfers of var-
ious types, which we referred to as a scenario. For more clarification, Figure 1.2

6 CHAPTER 1

Post

production

studios

Archiving

locations

Broadcasting

facilities

Central

Production

studios

Remote

Production

sites

Figure 1.1: Media production network infrastructure in Flanders region in Belgium.

illustrates the process flow of a realistic scenario use case in a media production
network, a weekly soccer after-game discussion program, consisting of multiple
transfers. Each transfer is referred to as a request. As can be seen, first the soc-
cer matches have to be recorded at the stadiums and along with on-site interviews
sent to the production platform. Then, these raw contents and archived materi-
als have to be transferred between different post-production locations for editing.
With strict timing constraint, the live program will be broadcasted and then the
recorded program will be sent to distinct locations to provide e.g. on demand
access, archiving, etc. This use case scenario reveals the importance of timely
transfer of inter-dependent requests.

Interview
recording

Match
recording

Production
platform

Archived
material

Editing
content
for live

Live studio
and

redaction

Editorial
meeting

Pre-
production

studio

Broadcast

Social
media

Websites

Video
On demand

Archive

Figure 1.2: A use case scenario in the media production industry.

Scenario requests, supported in this dissertation, are of 4 different classes: in-

INTRODUCTION 7

dependent streaming requests, independent file transfers, dependent streams and
dependent file based transfers. The requests of independent type can be started at
the specified start time but dependent requests have to wait until the requests upon
which they are dependent have finished. Dependency among different transfers
implies that either all or none of the interdependent requests must be admitted. We
assume that volume for file-based requests, and duration for streaming requests
must be specified. The allocated bandwidth for the streams must be equal to their
required bandwidth demand, from the start time to the end time, because their
demand is fixed. However, for file-based requests, the volume of file is the deter-
minative factor. The file can be transferred whenever possible from the time the
file is ready to be transferred till its deadline. The residual demand of file-based
transfers is modified whenever a part of the file is transferred.

Dynamic network reservations can be discretized into time steps, referred as
timeslots and bandwidth allocation algorithms can be applied efficiently on every
snapshot of the network and produce a schedule which consists of distinct reserved
capacities in every time interval for each admitted request. This timeslot-based
planning, scheduling and reservation is shown in Figure 1.3. Timeslots can be
based on flexible or fixed size (Ti = Tj for any pairs of timeslots).

3

4

2

1

3

4

T3

T4

T 4 T 5 T 3 T 2 T 1

1

2

Schedule

Time slot Deadlines

Figure 1.3: Timeslot-based planning, scheduling and reservations.

In each timeslot, the active requests are sorted according to their priorities.
As has been shown in Figure 1.4, the prioritization process assigns priorities to
the requests, taking the request deadline as the first determinative factor. This

8 CHAPTER 1

scheduling is employed by the reservation system as long as no new scenarios are
submitted to the system. To improve the performance, strategies able to deal with
unforeseen failures in the network are required. This reliability can be offered by
provisioning backup paths, before any failure happens in the network. Dashed
arrows in this figure indicate these provisioned backup reservations.

FutureCurrent time slot

Active Requests

Inactive Requests

Scheduled

Current time

Prioritization

Request 1

Request 2

Request 3

Request 4

Request 5

BW Allocation

Maximize throughput
for high priority

requests

Time

Figure 1.4: Priority-based reservation of active requests in the current timeslot.

To offer reliable reservations, the incorporation of fault tolerance features in
bandwidth reservation strategies is a necessity. However, this incurs additional
costs and extra performance overheads as network capacity remains unused to of-
fer this protection. To reduce this waste, a constant monitoring, adaptation and
re-optimization can be applied. As long as no failure is detected, underutilized
network capacities can be exploited to transfer more data than what has been
scheduled. This adaptation and optimization offers protection from failures us-
ing resilient advance reservation, while also improving the network utilization and
request admittance ratio. To elaborate more on this, Figure 1.5 is depicted in which
a fixed timeslot size of 1 hour is taken into account. In this figure, 8 file transfers
(R1-R8) and one streaming request (R9) have been scheduled. The gray bars show
the potential unused reservations, such as backup reservations as long as no fail-
ure is detected or time gap between streaming request resumes and play backs.
This underutilized capacity can be exploited to transfer future data. For example,
as shown in Figure 1.5b, in stable network conditions, R6 which has been sched-
uled to be transferred between 3pm and 4pm, can be transmitted earlier. Then, the
schedule is periodically updated to adjust the transfer reservations according to the
most recent network transfers and conditions, shown in Figure 1.5c.

Finally, we have targeted the issues of cloud based resource provisioning, in
terms of scalability and combining network-awareness and placement constraints.

INTRODUCTION 9

4pm 5pm3pm2pm1pm

R1

R2

R3

R4

R5

R6

R7

R8

R9

(a) Capacity remains unused in
the reliable AR schedule.

4pm 5pm 3pm 2pm 1pm

(b) Early transmission of future
requests when possible.

4pm 5pm 3pm 2pm 1pm

(c) Updating the schedule,
freeing future capacity.

Figure 1.5: Comparing the resilient advance bandwidth reservation algorithm in theory, in
practice and further re-optimization.

We assume that each application comprises a set of application components that
should be placed in full on a cluster of servers while the communication require-
ments and the placement constraints of application components has to be respected.

To conclude, we present an overview of the main research contributions within
this dissertation:

• Development of timeslot-based advance bandwidth reservation scheduling
approaches, optimized for media production networks.

– Proof of the viability of using AR scheduling in media production net-
works to significantly improve bandwidth efficiency and request ad-
mittance ratio.

– Definition of a set of realistic use cases that serves as a basis for the
evaluation use cases.

– Design and implementation of static and dynamic, single-path and
multi-path, Integer Linear Programming (ILP) formulations of the band-
width scheduling problem based on fixed-size timelots, which takes
into account the specific characteristics of media production networks.

– Design and implementation of near-optimal static and dynamic, single-
path and multi-path fixed size timeslot-based advance bandwidth reser-
vation heuristic algorithms to address the complexity of optimal solu-
tions.

– Thorough evaluation of optimal and near-optimal scheduling approaches
and quantitative analysis of the impact of time interval granularity, net-
work capacity and network load on the quality and complexity of the
proposed approaches.

10 CHAPTER 1

– Design and implementation of the resilient advance bandwidth reser-
vation and further optimization of this approach in order to improve
network utilization and request admittance ratio.

– A thorough comparison analysis of the flexible and fixed timeslot sizes
for the proposed advance bandwidth reservation approaches.

– Implementation and evaluation of the static and dynamic, resilient and
non-resilient advance bandwidth scheduling algorithms based on flex-
ible time slots.

• Design of a discrete-event-based simulator which improves both reliability
and performance of advance reservation systems when the network is in
operation.

– Design and implementation of a resilient advance bandwidth reserva-
tion system by incorporating fault tolerance related features in advance
reservation strategies.

– Design and implementation of a dynamic adaptive runtime approach to
mitigate the side-effect of extra overhead imposed by redundancy, con-
tinuously monitoring network conditions, dynamically adapting the
transfer schedule and reacting to sudden changes in uncertain network
conditions. This complementary component can be used in combina-
tion with both flexible and fixed size resilient timeslot-based advance
reservation solutions.

– Quantitative evaluation of the dynamic adaptive solution in failure free
and failure prone networks and analysis of the impact of backup de-
mand, failure rate, stressed and non-stressed network conditions.

• A scalable hierarchical application placement approach in cloud-based en-
vironments.

– Network and constraint-aware ILP-based solution for cloud resource
allocation. Application modeling is component-based with different
component types, and interaction between those components affects
the placement process.

– Design and implementation of near-optimal centralized and hierar-
chical application placement approaches to resolve the computational
complexity associated with the optimal solutions.

– Comparison of the proposed algorithm to the optimal solution and a
generic state-of-the-art approach.

– Evaluation on small to very large scale cloud-based infrastructures
through simulation.

INTRODUCTION 11

1.6 Outline of this dissertation

This dissertation is composed of a number of publications that were realized within
the scope of this PhD. The selected publications provide an integral and consistent
overview of the work performed. The different research contributions are detailed
in Section 1.5 and the complete list of publications that resulted from this work is
presented in Section 1.7.

Within this section we give an overview of the remainder of this disserta-
tion and explain how the different chapters are linked together. Fig. 1.6 positions
the different contributions that are presented in each chapter (Ch.) and appendix
(App.). Table 1.1 shows the challenges that were studied in this dissertation and
indicate which challenges were targeted per chapter.

On-site filming Broadcaster

Recording studio

Controller

Media Production Network Management Layer

Temporal routing policies

and bandwidth reservations

Controller

Data center

Management layer

Server and network

 resource reservations

Ch. 2 + App. A

Static and dynamic,

optimal and heuristic

AR algorithms

Ch. 3

Reliable and adaptive

AR scheduling

algorithms

Ch. 4

Flexible, Reliable

 and Adaptive

AR algorithms

Ch. 5

Network- and

Constraint-aware

resource provisioning

Media Production Network

Data center

Figure 1.6: Schematic overview of the different chapters in this dissertation

Chapter 2 introduces multiple static and dynamic, optimal and near-optimal
advance bandwidth reservation approaches, taking into account the specific char-
acteristics of media production processes such as time-variable bandwidth reser-
vation, flexible start times, request dependencies and splittable flows. In-depth
performance analysis is performed to assess the viability of the proposed solu-
tions. Appendix A also investigates and compares the impact of single-path and
multi-path bandwidth allocation and routing processes of the AR solutions.

12 CHAPTER 1

Table 1.1: An overview of the contribution characteristics per chapter in this dissertation.

Type of solution Type of approach Reliability provisioning Time domain Routing scheme Request dependencies
Static Dynamic Optimal Heuristic None Resilient Resilient+ Fixed Flexible Single-path Multi-path Inter-dependent Independent

Ch. 2 • • • • • • • • •
Ch. 3 • • • • • • •
Ch. 4 • • • • • • •
Ch. 5 • • • • • • •

App. A • • • • • • • • •

In Chapter 3, a resilient advance reservation approach optimized for media
production networks is proposed which enables the reservation system to deliver
reliable and consistent performance in the presence of failures. In order to mitigate
the significant performance overheads and extra costs of provisioned redundancy, a
dynamic event-driven approach has also been designed and evaluated aiming to in-
crease network utilization and request admittance ratio. In this dynamic approach,
monitoring, adaptation and re-optimization is applied at runtime. Underutilized
network capacities are exploited to transfer more data than what was scheduled as
long as no failure is detected.

Chapter 4, aims at investigating the possibility of using a flexible timeslot-
based advance bandwidth reservation approach in media production or similar in-
dustries. A novel flexible algorithm is designed, implemented and evaluated to
compare the quality and complexity of the proposed algorithm with our previously
designed fixed size approach.

Chapter 5, presents optimal and near-optimal methodologies to map the appli-
cation components on cloud environments. To have a scalable solution, a hierar-
chical near-optimal algorithm is designed and evaluated in order to be deployed in
large scale cloud management systems. These algorithms take the characteristics
of the underlying network into account and work with component-level applica-
tions, making a distinction between different component types.

In Chapter 6, conclusions and research perspectives are presented.

1.7 Publications

The obtained results related to this PhD research have been published in scientific
journals and presented at a series of international conferences. The following list
provides an overview of the publications during my research.

INTRODUCTION 13

1.7.1 Publications in international journals
(listed in the Science Citation Index 1)

1. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. A
Flexible, Reliable and Adaptive Timeslot-based Advance Bandwidth Reser-
vation Mechanism for Media-centric Networks. Submitted to International
Journal of Network Management, Jun. 2017.

2. Maryam Barshan, Hendrik Moens, Jeroen Famaey, Filip De Turck.
Deadline-aware advance reservation scheduling algorithms for media pro-
duction networks. Published in Elsevier Journal of computer communica-
tions, 77:26–40, 2016. DOI:10.1016/j.comcom.2015.10.016

3. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck.
Design and Evaluation of a Dual Dynamic Adaptive Reservation ap-
proach in Media Production Networks. Published in Elsevier Jour-
nal of Network and Computer Applications, 80:109-122, 2016. DOI:
10.1016/j.jnca.2016.12.003

4. Maryam Barshan, Hendrik Moens, Steven Latré, Bruno Volckaert, Filip
De Turck. Algorithms for Network-Aware Application Component Place-
ment for Cloud Resource Allocation. Submitted to Journal of Communica-
tions and Networks, Nov. 2016.

5. Maryam Barshan, Mahmood Fathy, Saleh Yousefi. Improving the avail-
ability of P2P-based network management systems by provisioning fault tol-
erance property. Published in Springer Journal of Supercomputing, 61:912-
934, 2012. DOI: 10.1007/s11227-011-0659-4.

1.7.2 Publications in international conferences
(listed in the Science Citation Index 2)

1. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. De-
sign and Evaluation of a Flexible Advance Bandwidth Reservation Algo-
rithm for Media Production Networks. Published in proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management
(IM), 2017, pages 142–150, Lisbon, Portugal, 2017.

1The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index Expanded,
the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science,
restricted to contributions listed as article, review, letter, note or proceedings paper.

2The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.

14 CHAPTER 1

2. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. De-
sign of a Dynamic Adaptive Reservation System in Media Production Net-
works. Published in proceedings of the 8th IEEE/IFIP International Work-
shop on Management of the Future Internet (ManFI), 2016, pages 1149–
1152, Istanbul, Turkey, 2016.

3. Maryam Barshan, Hendrik Moens, Bruno Volckaert. Dynamic Adaptive
Advance Bandwidth Reservation approach in Media Production Networks.
Published in proceedings of the 2nd IEEE conference on network softwariza-
tion (Netsoft), 2016, pages 58–62, Seoul, Korea, 2016.

4. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. A
Comparative Analysis of Flexible and Fixed Size Timeslots for Advance
Bandwidth Reservations in Media Production Networks. Published in pro-
ceedings of the 7th International conference on Network of the Future (NOF),
2016, pages 1–6, Buzios, Rio De Janeiro, Brazil, 2016.

5. Sahel Sahhaf, Maryam Barshan, Wouter Tavernier, Hendrik Moens, Di-
dier Colle, Mario Pickavet. A Comparative Analysis of Flexible and Fixed
Size Timeslots for Advance Bandwidth Reservations in Media Production
Networks. Published in proceedings of the 12th International Conference
on the Design of Reliable Communication Networks (DRCN), 2016, pages
130–137, Paris, France, 2016.

6. Maryam Barshan, Hendrik Moens, Jeroen Famaey, Filip De Turck. Al-
gorithms for advance bandwidth reservation in media production networks.
Published in proceedings of the IFIP/IEEE International Symposium on In-
tegrated Network Management (IM), 2015, pages 11–15, Ottawa, Canada,
2015.

7. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. Single-
path versus Multi-path Advance Reservation in Media Production Networks.
Published in proceedings of the 6th International Conference On Network
of the Future (NOF), 2015, pages 1–6, Montreal, Canada, 2015.

8. Maryam Barshan, Hendrik Moens, Steven Latré, Filip De Turck. Al-
gorithms for efficient data management of component-based applications
in cloud environments. Published in proceedings of the IEEE/IFIP Net-
work Operations and Management Symposium (NOMS), 2014, pages 1–8,
Krakow, Poland, 2014.

9. Maryam Barshan, Hendrik Moens, Filip De Turck. Design and evalua-
tion of a scalable hierarchical application component placement algorithm

INTRODUCTION 15

for cloud resource allocation. Published in proceedings of the 10th Inter-
national Conference on Network and Service Management (CNSM), 2014,
pages 175–180, Rio De Janeiro, Brazil, 2014.

10. Maryam Barshan, Mahmood Fathy, Saleh Yousefi. Self Fault-managed
and High Available P2P Architecture for Next Generation Network Man-
agement Systems. Published in proceedings of the Second International
Conference on Communication Theory, Reliability, and Quality of Service
(CTRQ), 2009, pages 63–69, Colmar, France, 2009.

1.7.3 Publications in book chapters

1. Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. De-
velopment and Validation of an Optimized Resilient Version of the Timeslot-
based Advance Reservation for Media Deliver Services. Published in pro-
ceedings of the 11th International Conference on Autonomous Infrastruc-
ture, Management and Security (AIMS), 2017, pages 72–93, Zurich, Switzer-
land, 2017.

2. Maryam Barshan, Maryam Shojaei, Management Challenges and Solu-
tions in Next-Generation Networks (NGN). Published in Mobile communi-
cation and power engineering, Part of the Communications in Computer and
Information Science book series, vol 296, pages 549–555, Springer, Berlin,
Heidelberg, 2013.

3. Maryam Barshan, Mahmood Fathy, Saleh Yousefi. Fault-Tolerant Archi-
tecture for Peer to Peer Network Management Systems. Published in pro-
ceedings of the 9th International conference on Next Generation Wired/Wire-
less Networking (NEW2AN/ruSMART), St Petersburg, Russia, 2009. Part
of the Lecture Notes in Computer Science book series (LNCS), vol 5764,
pages 241–252, Springer, Berlin, Heidelberg.

1.7.4 Publications in other international conferences

1. Maryam Barshan, Mahmood Fathy, Saleh Yousefi. A hierarchical P2P
Architecture for Network Management Systems. Published in proceedings
of the International Conference on Wireless Networks (ICWN), 2009, pages
645–650, Las Vegas, Nevada, USA, 2009.

16 CHAPTER 1

References

[1] M. Pióro and D. Medhi. Routing, flow, and capacity design in communication
and computer networks. Elsevier, 2004.

[2] J. C. McDonald. Fundamentals of digital switching. Springer Science &
Business Media, 2013.

[3] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch,
J. Postel, L. G. Roberts, and S. Wolff. A brief history of the Internet. ACM
SIGCOMM Computer Communication Review, 39(5):22–31, 2009.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud comput-
ing and emerging IT platforms: Vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation computer systems, 25(6):599–
616, 2009.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud
Computing. Commun. ACM, 53(4):50–58, April 2010. Available from: http:
//doi.acm.org/10.1145/1721654.1721672, doi:10.1145/1721654.1721672.

[6] K. Nahrstedt and R. Steinmetz. Resource management in networked multi-
media systems. Computer, 28(5):52–63, 1995.

[7] A. Neto, E. Cerqueira, M. Curado, P. Mendes, and E. Monteiro. Scalable
multimedia group communications through the over-provisioning of network
resources. In IFIP/IEEE International Conference on Management of Multi-
media Networks and Services, pages 52–63. Springer, 2008.

[8] ESnet: Energy sciences network. http://www.es.net/. Accessed: 2017-05-1.

[9] Internet2. http://www.internet2.edu/. Accessed: 2017-05-1.

[10] B. Gibbard, D. Katramatos, and D. Yu. TeraPaths: end-to-end network path
QoS configuration using cross-domain reservation negotiation. In Broadband
Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd
International Conference on, pages 1–9. IEEE, 2006.

[11] D. Katramatos, S. Sharma, and D. Yu. Virtual Network on Demand:
Dedicating Network Resources to Distributed Scientific Workflows. In
Proceedings of the Fifth International Workshop on Data-Intensive Dis-
tributed Computing Date, DIDC ’12, pages 53–62, New York, NY, USA,
2012. ACM. Available from: http://doi.acm.org/10.1145/2286996.2287006,
doi:10.1145/2286996.2287006.

http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
 http://www.es.net/
 http://www.internet2.edu/
http://doi.acm.org/10.1145/2286996.2287006

INTRODUCTION 17

[12] N. Charbonneau and V. M. Vokkarane. A survey of advance reservation rout-
ing and wavelength assignment in wavelength-routed WDM networks. Com-
munications Surveys & Tutorials, IEEE, 14(4):1037–1064, 2012.

2
Deadline-aware Advance Reservation

Scheduling Algorithms for Media
Production Networks

In the media production process a substrate network can be shared by many users
simultaneously when different media actors are geographically distributed.This
allows sophisticated media productions involving numerous producers to be con-
currently created and transferred. Due to the predictable nature of media trans-
fers, the collaboration among different actors could be significantly improved by
deploying an efficient advance reservation system. In this chapter, we introduce
a model for the advance bandwidth reservation problem, which takes the specific
characteristics of media production networks into account. Time variable band-
width reservations, meeting delivery deadlines, supporting splittable flows and
interdependent transfers and all types of advance reservation requests imposed by
the media production transfers are incorporated into this model. In addition to
the optimal scheduling algorithms, which are presented based on this model, near
optimal alternatives are also proposed. In our evaluations, we observe that the
proposed algorithms are scalable in terms of physical topology and granularity of
time intervals and obtain a satisfactory performance, executing significantly faster
than an optimal algorithm and the percentage of admitted requests remains within
8.78% of the optimal results.

? ? ?

20 CHAPTER 2

M. Barshan, H. Moens, Jeroen Famaey and F. De Turck

Published in Elsevier Journal of Computer Communications, Vol. 77, pages
26–40, Mar. 2016.

2.1 Introduction

In the media production industry, a team of artists, editors, reporters and producers
works simultaneously at geographically distributed locations producing and pro-
cessing content, music, commentary, special effects, etc. Various producers and
actors could then access these individual elements over a shared network to inte-
grate them and thereby produce a complete product. In the media creation process,
reliability of the transport is of crucial importance.

Predictability is a key feature of traffic in media production networks. Traffic
characteristics in terms of bandwidth requirements, the time when the contents are
ready, and the deadline for the data to be completely transferred to the destinations,
are mostly known several hours ahead of time. The predictable nature of these
transfers makes it possible to use resource reservation techniques. Therefore, a
management system can efficiently manage the transmission. In general, two types
of resource reservation can be distinguished [1]: Immediate Reservation (IR) and
Advance Reservation (AR). While just-in-time reservation is applied in IR, the
principle behind AR relies on the resource reservation times before the actual time
when the resource is used. Assuming prior knowledge of the network structures
and different requests, advance reservation makes it possible to schedule network
requests optimally.

In computer networks, bandwidth is a valuable resource. Particularly for mul-
timedia transfers, where large amounts of content, such as video files, have to
be transmitted, efficient bandwidth management is an important factor [2]. In
bandwidth-limited networks, an efficient bandwidth reservation mechanism needs
to be defined to meet the QoS requirements and deadlines. The next generations
of media production networks are expected to efficiently support advance reserva-
tion systems for different delivery services, so the desired QoS requirement and
resource utilization could be ensured.

In this paper, we propose a set of novel AR scheduling algorithms, optimized
for media production networks. Such networks impose requirements not supported
by existing AR scheduling techniques. First, the start time of requests is generally
flexible, the deadline is fixed, and the reserved bandwidth may vary over the life-
time of the reservation. This combination of flexible start times and elastic band-
width allocation has not received much attention in research to date [3]. Second,
in media production networks, multiple requests may depend on each other. Un-

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 21

til now to the authors’ knowledge, this aspect has remained unexplored. Third, it
should be possible to split requests over multiple paths, in order to further optimize
bandwidth utilization.

We propose a centralized advance reservation system which based on our eval-
uation scales to the size of realistic media production networks and demand pat-
terns. We present a model to solve this variant of the AR scheduling problem,
and propose various advance reservation algorithms based on our designed model.
This model is an instance of time variable scheduling which is known as mul-
ticommodity over time problem. In this context, commodity corresponds to a
telecommunication traffic demand between two media actors. It has been proven
that the complexity of multicommodity flow over time without caching is strongly
NP-hard [4]. Therefore, we also came up with efficient and near-optimal heuris-
tic solutions which are more practical. In both optimal and heuristic approaches
the main goal is threefold: 1) delivery of the requests before their deadline. 2)
maximizing the number of admitted requests. 3) processing requests as quickly as
possible.

Both approaches can be used in static and dynamic settings. The Static Ad-
vance Reservation Algorithm (SARA) assumes all requests are known at the start
of the reservation period. By contrast, the Dynamic Advance Reservation Algo-
rithm (DARA) supports rescheduling in order to incorporate new requests at run-
time. The dynamic advance reservation system tries to admit new arrival requests
while rescheduling the previously admitted requests is a must. We provide a thor-
ough analysis of the algorithms based on in-depth simulation results. They are
compared and the impact of their parameters on the solution quality is evaluated.

The remainder of this paper is organized as follows. Section 2.2, reviews the
related work. Section 2.3 describes the scenarios as well as architecture and com-
ponents of the proposed media production network. Section 2.4 explains the con-
cepts, assumptions and AR scheduling formulation for media production networks.
The proposed algorithms are explained in Section 2.5. A comparison of optimal
and near-optimal algorithms and a performance evaluation of offline and online
settings are provided in Section 2.6. Finally, Section 2.7 concludes the paper.

2.2 Related work

There has been a large number of theoretical as well as practical experimental
work [5–8] related to the advance reservation problem. Here we study some of the
most relevant work. The authors in [9] and [10] focus on re-routing in advance
reservation networks. Our formal model is inspired by their ILP-based solutions
called GILP and DILP [9]. The GILP assumes that the entire set of requests is
known beforehand and the DILP is designed to work in an online setting. However
our approach is different as their models assume only streaming requests with fixed

22 CHAPTER 2

time intervals and dedicated bandwidth remains fixed and equal to the demand
during the entire reservation. Dependencies among the requests are also ignored.
[10] is the extension of [9] in realistic multi-domain networks which addresses the
implementation challenges related to advance reservation solutions.

Charbonneau et al. [3], survey the literature on advance reservation routing
and scheduling algorithms, specifically focused on WDM networks. It has defined
four types of advance reservation requests based on whether their start time and
their duration are specified or not. All these classifications, which will be dis-
cussed in detail later, are supported in our approach. In addition, our approach
is elastic which means that the allocated bandwidth is variable over time. Ac-
cording to this reference only two AR scheduling algorithms have been proposed
that support elastic reservations [11, 12]. However, they both assume a fixed start
time. Sharma et al. [13] present an algorithm called RRPC which addresses mul-
tiple flexible requests for bandwidth reservation between two end points. RRPC
is deadline-aware in which any reservation that meets the deadline is acceptable.
However all the requests have a same source and destination, flow splitting is not
allowed and a single path is chosen for all the requests. Another work [14] focuses
on dynamically transporting of large volume of data in e-science networks. The
optimization consists of two steps admission control and scheduling. Periodically
the central controller gathers all the new requests, runs admission control, and then
schedules new and unfinished jobs.

Furthermore, the problem addressed in this work is related to the multicom-
modity flow problem (MCFP). The multicommodity flow problem can be de-
scribed as follows: a set of individual flows have to be transferred in a dimensioned
network without violating the capacity limits [15]. The resource allocation algo-
rithm should find an optimal routing path to transfer the flows through the network.
In [16], unsplittable flow and single path MCFPs are studied. Comprehensive sur-
veys on the approaches to solve multicommodity flow problems (MCFP) and their
variants are provided in [17, 18]. Our approach further deals with the problem of
flow variation over time and solves an MCFP as a subproblem. In network flow
problems, having variable flows over time is crucial. Dynamic flows or flow vari-
ation over time are primarily introduced by Ford and Fulkerson [19, 20]. They
introduced variable flows over time as equal as static flow problem, building an-
other temporal dimension over the network. This makes use of time-expanded
networks. A time-expanded network is a copy of network in each discrete time
step. Also, Fleischer et al. [21] have mentioned that in literature hardly any results
on multicommodity over time are noted.

Jiancong et al. in [22] have stated that the single-path approach on which the
Internet routing protocols is based, could not meet the delay requirements when
the video streams are transferred over bandwidth-limited networks. They proposed
a multipath routing of video contents over bandwidth limited network. However

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 23

the main focus of their work is on delay and over the Internet, and therefore no
reservation is considered.

Balman et al. [23] have focused on advance bandwidth reservation for on-
demand data transfer in scientific applications. However, their work differs from
our approach as they purely focus on data transfers, not video streaming sessions,
and the routing mechanism is based on single-path in contrary to our multi-path
approach. In addition, our approach considers dependencies among requests. To
the best of our knowledge, dependencies among requests which is explicitly incor-
porated in our algorithms, have not received adequate attention in the literature by
state of the art approaches.

This work is an extension of our previous work [24], in which only the static
and dynamic ILP-based models are introduced. The main focus of this previous
work was to investigate the viability of AR mechanisms in media production net-
works and to find the optimal solutions, determining the most appropriate objective
function in our optimal models. We defined two objective functions and compared
their performance. We found that the so called ASAP objective function, which
in addition to maximizing the number of admitted requests also tries to schedule
requests in earlier time slots leads to better results. In this chapter several new
heuristic approaches are proposed which are near-optimal and computationally
less-complex compared to ILP-based approaches. In our evaluation, their perfor-
mance is compared with the highest quality optimal algorithms (i.e. algorithms
based on the ASAP objective function).

2.3 Media production network architecture

The envisioned media production network is depicted in Figure 2.1. The different
actors and locations involved in the media production process, such as for example
recording studios, on-site filming crews, broadcasters, and storage datacenters, are
connected to a shared wide-area network, consisting of interconnected switches.
The network supports the exchange of raw and encoded multimedia content be-
tween an arbitrary set of actors, both in the form of file transfers and streaming.
The management layer provides a reservation interface, that allows the users of
the network to reserve bandwidth over certain time periods in the future. The AR
scheduling algorithms are responsible for reserving the required amount of band-
width resources for all requests. With each request, they associate one or multiple
paths from source to sink with a specific amount of reserved bandwidth. In case
the deadline of a transfer cannot be guaranteed, the reservation interface rejects
it. When multiple transfers depend on each other, either all or none of them are
admitted.

The output of the scheduling algorithms takes the form of a set of temporal
routing policies (i.e., the paths associated with all requests over time) and band-

24 CHAPTER 2

switch

Datacenter

On-site filming
Broadcaster

Recording
studio

Controller Controller

Media Network Management Layer

Temporal routing policies
and bandwidth reservations

AR Scheduling Algorithms
Reservation

Interface

Figure 2.1: Media production network architecture and components.

width reservations (i.e., the amount of bandwidth resources to associate with each
flow over time). This information can be transferred to the network controllers,
that use it to configure the switches in the media production network. The con-
trollers keep track of the temporal aspects of the policies, adjusting configurations
when necessary.

In the media production industry multiple actors, which are involved in one
production project, are interacting and transferring media content. If one of those
transfers is not successfully done the whole project can be affected. This forms
dependencies among different transfers. We refer to the set of all transfers of a
project as a scenario. The scenario consists of several interdependent video trans-
fers. We refer to each single transfer as a request. A request can have a fixed start
time, end time and/or duration, or may depend on the other requests.

The video transfer types which are supported in this work are of two types
which can either be video streams (VS) or file based videos (FB). We assume
that for FB requests, volume and for VS requests duration is always known. As
stated by [3, 25, 26] advance reservation requests are classified into four individual
categories.

• STSD: Start time of the request is specified, its duration is also specified.

• STUD: Start time of the request is specified, but its duration is unspecified.

• UTSD: Start time of the request is unspecified, but its duration is specified.

• UTUD: Start time of the request is unspecified, its duration is also unspeci-
fied.

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 25

Table 2.1: Media production video request taxonomy.

Request Specified Specified Dependent Independent
types start time duration VS FB VS FB

STSD yes yes X
STUD yes no X
UTSD no yes X
UTUD no no X

In this chapter all four classes are taken into account. As for VS requests the
duration is always specified, if the start time of a VS request depends on other
requests, this stream belongs to the UTSD class. The class of independent VS
requests is STSD. In case of file transfers, the reserved resources for a request may
vary over time, as long as the delivery deadline is satisfied. Moreover, even if the
start time of FB request is specified, it refers to the time when the file is ready
to be transferred. The time when the file transfer starts could be in future time
slots. Since for file transfers duration and start time might be undefined and fluid,
independent and dependent file based requests are classified as flexible UTUD and
flexible STUD respectively. This is illustrated in Table 2.1.

During the scheduling process, four statuses are defined for each scenario: 1)
Submitted: When a scenario entered to the system, but the admission process has
not been started yet. 2) Pending: When a scenario is being processed and it is
waiting for the admission decision. 3) Admitted: When all the requests of the
scenario could be scheduled and transferred. This status implies the transmission
guarantee. 4) Rejected: When the scheduler is not able to respond to any of the
scenario requests’ demands.

The remainder of this paper focuses on the AR scheduling algorithms.

2.4 Advance reservation scheduling model

We first present a formal model for the advance reservation scheduling of network
bandwidth. The model can be used to schedule collections of requests, that con-
sist of multiple interdependent and deadline-constrained network transfers. The
network is represented as a graph with network nodes N and edges E.

Requests are grouped into scenarios, contained in the set S, that represent a
complex workflow. These workflows must be executed in their entirety, so when a
scenario is admitted, all requests must be executed. The model only admits those
scenarios for which sufficient bandwidth can be guaranteed during the reservation
period. When a scenario is rejected, none of its requests are executed. The various
requests within a scenario may depend on each other, meaning that one request
can only start when other requests have been finished.

The requests of all scenarios are stored in R. The model supports two types

26 CHAPTER 2

of network transfers: video streaming and large file transfers. Consequently R
consists of both types. To make distinction between two types Rf which refers to
file-based flows and Rs which refers to the streaming requests are defined.

In this model the nth request is denoted by rn = (sn, dn, tns , t
n
e , i

n, bn) com-
prising of the source of the request sn, the destination node dn, the time when
the data for file-based request is ready to transfer tns (or fixed start time for video
streaming request), the deadline for the transmission of the data of file-based re-
quest tne (or fixed end time for video streaming request), the duration of each re-
quest in and finally the bandwidth demand of the request bn. In particular, rnf and
rns refers to file-based and video streaming requests respectively. Moreover, the
volume of the files are denoted by vn and the time slot size by I . Table 2.2 lists
the notations which have been used to define the model.

2.4.1 Decision variables

The goal of the model is to determine when and how requests are transferred over
the network. Binary decision variables As and An are used to represent whether
or not scenario s or request n are admitted. When the scenario is admitted, a
collection of decision variables βn,e,k determines the amount of bandwidth for a
request n that is sent over edge e during time slot k.

An ∈ [0, 1] ∀rn ∈ R
As ∈ [0, 1] ∀s ∈ S
βn,e,k ∈ R+ ∀rn ∈ R,∀e ∈ E, k ∈ [tmins , tmaxe]

For some requests their start and end times are not specified and depend on the
start or end time of other requests. In this case, the tns , tne or both of a request n
may become decision variables of which the value is determined during the opti-
mization process. To support these kinds of scenarios additional decision variables
and constraints need to indicate whether a request is active during a given time slot.
Therefore, we define the binary time slot use decision variable SUn,k that takes on
value 0 when a request n is inactive during time slot k. These variables are defined
for all requests where tns , tne or both are decision variables, but not for requests of
which start and end time are known.

SUn,k ∈ [0, 1] ∀rn ∈ R, k ∈ [tmins , tmaxe]

tns ∈ R+ ∀rn ∈ R if start time is variable

tne ∈ R+ ∀rn ∈ R if end time is variable

2.4.2 Objective function

The objective function, shown in Expression 2.1, maximizes the number of admit-
ted requests, but also tries to schedule requests as soon as possible. This is done by

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 27

Table 2.2: Symbols and notations used in the formal models.

Variable Description

N Set of network nodes.
E Set of network links (e ∈ E).
S Set of all scenarios (s ∈ S).
Rf Set of file-based video requests.
rnf The nth request of set Rf .
Rs Set of video streaming requests.
rns The nth request of set Rs.
R Set of all requests (Rf ∪Rs).
Ro Set of all old requests.
rn The nth request of set R, denoted by rn = (sn, dn, tns , t

n
e , i

n, bn).
sn Source node of request rn.
dn Destination node of request rn.
tns Start time for the request rn. Decision variable when not specified.
tne Deadline for the request rn. Decision variable when not specified.
in Duration of request rn.
bn Required bandwidth of rn.
vn Volume of rnf for file-based requests (in bit).
βn,e,k Decision variable. Dedicated bandwidth over link e, request rn and

time interval k.
SUn,k Binary decision variable. 1 iff in time slot k any reservation is done

for request n, 0 otherwise.
An Binary decision variable. 1 iff request rn is admitted, 0 otherwise.
As Binary decision variable. 1 iff scenario s is admitted, 0 otherwise.
I Duration of each time interval (in second).
tmins Minimum start time of all reservations.
tmaxe Maximum end time of all reservations.
Be Bandwidth capacity of link e.
Eoutv This collection contains all edges starting from node v (egress).
Einv This collection contains all edges ending in node v (ingress).

28 CHAPTER 2

adding a second factor to the objective function that achieves higher values when
requests are scheduled in earlier timeslots. This second term is normalized to en-
sure it will not interfere with the primary objective of maximizing the number of
accepted requests.

max
∑
rn∈R

An +

∑
rn∈R

∑
e∈Eout

sn

∑
k∈[tns ,tne]

βn,e,k

k∑
rn∈R

∑
e∈Eout

sn

∑
k∈[tns ,tne]

Be

k

(2.1)

2.4.3 Flow constraints

Requests are scheduled over a network, which means they are subject to capacity
and network flow constraints. The capacity constraint, shown in Expression 2.2,
ensures that the cumulative bandwidth reservation over each link does not exceed
its bandwidth capacity. This constraint is specified for every edge, and for every
time slot.

∑
rn∈R

βn,e,k ≤ Be ∀e ∈ E,∀k ∈ [tmins , tmaxe] (2.2)

All network nodes that are not source or sink of a flow are subject to a flow con-
servation constraint, shown in Expression 2.3, to ensure the incoming flow equals
outgoing flow. The network entering and leaving the source and sink of the flow is
dependent on the type of request. For a file transfer request, an entire volume vn

must be transferred between the start and end times, shown in Expression 2.4. For
these requests, the amount of data transferred can vary between timeslots. Video
streaming requests are handled differently, as they require a constant amount of
resources during all time intervals between the start and end time of the request.
This is shown in Expression 2.5. To minimize the occurrence of loops within the
network, constraints preventing incoming flow in the source node and outgoing
flow in the sink node are added. These constraints are shown in Expressions 2.6
and 2.7.

∑
e∈Eout

v

βn,e,k =
∑
e∈Ein

v

βn,e,k (2.3)

∀rn ∈ R,∀k ∈ [tmins , tmaxe], {∀v ∈ N |v /∈ {sn, dn}}

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 29

∑
k∈[tmin

s ,tmax
e]

∑
e∈Eout

sn

βn,e,k × I = vn ×An ∀rnf ∈ Rf (2.4)

∑
e∈Eout

sn

βn,e,k = bn ×An ∀rns ∈ Rs,∀k ∈ [tmins , tmaxe] (2.5)

∑
e∈Ein

sn

βn,e,k = 0 ∀rn ∈ R,∀k ∈ [tmins , tmaxe] (2.6)

∑
e∈Eout

dn

βn,e,k = 0 ∀rn ∈ R,∀k ∈ [tmins , tmaxe] (2.7)

2.4.4 Interdependent requests

Start and end times of requests may either be input variables or decision variables.
Dependencies between different requests are handled by Expressions 2.8 up to
2.14. First, Expression 2.8 ensures either all or none of the requests of a scenario
get admitted.

An = As ∀rn ∈ R (2.8)

Expression 2.9 is defined to connect βn,e,k and SUn,k values, which is needed
if either the start or end time of a request is a decision variable. This constraint
ensures that SUn,k can only become zero if βn,e,k = 0.

βn,e,k ≤ SUn,k ×Be ∀e ∈ E,∀k ∈ [tmins , tmaxe],∀rn ∈ R (2.9)

If the start time is known and predefined as an input variable, then Expres-
sion 2.10 ensures that no bandwidth is dedicated to request rn before tns .

βn,e,k = 0 ∀e ∈ E,∀rn ∈ R,∀k ∈ [tmins , tns) (2.10)

If the start time is not specified and depends on other requests, then tns is a
decision variable. In that case, the constraint shown in Expression 2.11 is used to
ensure SUn,k becomes 0 for values of k < tns , ensuring nothing is transferred. De-
pendencies between time variables can then be added as shown in Expression 2.12,
which ensures that the request n is started only when all the requests on which re-
quest n depends are finished.

tns ≤ k + (1− SUn,k)× tmaxe ∀rn ∈ R,∀k ∈ [tmins , tmaxe] (2.11)

tns ≥ tn
′

e + 1 {∀rn ∈ R|rn depends on rn
′

} (2.12)

When the end time is an input variable, then Expression 2.13 ensures that no
bandwidth is dedicated to request n after tne .

βn,e,k = 0 ∀e ∈ E,∀rn ∈ R,∀k ∈ (tne , t
max
e] (2.13)

30 CHAPTER 2

If the end time is not specified, tne is a decision variable. In this case, a con-
straint is added to ensure SUn,k becomes 0 for values of k > tne , ensuring nothing
is transferred after the end time. This constraint is shown in Expression 2.14.

tne ≥ k − (1− SUn,k)× tmaxe ∀rn ∈ R,∀k ∈ [tmins , tmaxe] (2.14)

2.4.5 On-line model

The model described in the previous section can be used to statically compute a
schedule for the execution of a collection of scenarios, provided all scenarios are
known beforehand. In practical media production networks, the requests however
arrive on-line over time. Therefore, a dynamic, on-line approach is needed that
adapts the schedule at runtime. We present this on-line model as an extension of
the previously discussed static model, meaning is implemented with the previously
defined decision variables and objective functions.

The on-line model assumes that a previous schedule exists, and that one or
more requests are added that must be scheduled. This results in a new schedule
that contains both the original requests, and the new requests. We assume that a
request may not be canceled once it has been accepted, meaning that while old
requests may be rescheduled, they may not fail. Besides the constraints of the
original model, one additional constraint (shown in Expression 2.15) is therefore
added to ensure that previously admitted requests remain accepted.

As = 1 ∀rn ∈ Ro (2.15)

2.5 Advance reservation algorithms

This section, first describes the static and dynamic reservation schemes. The sec-
ond part implements the models which have been defined in the previous section.
In the third part the heuristic algorithms, which in general we refer to as Sequential
Priority Based (SPB), are proposed to resolve the high computational complexity
and scalability issue of the ILP solutions.

2.5.1 Static & dynamic reservation

The algorithms provided in this section are either static or dynamic, which can be
used “offline” or “online”. The static algorithms, which we refer to as Static Ad-
vance Reservation Algorithm (SARA), can be used to generate a schedule when
all requests are known in advance. However, in practice, some requests may not
be known from the start of the scheduling, making it impractical to use the SARA.
Therefore, a dynamic version of the resource reservation algorithm is needed.

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 31

When not all requests are known from the start, and new ones are added through-
out the day, the Dynamic Advance Reservation Algorithm (DARA) can be used.
When new scenarios enter to the reservation system, the DARA re-optimize the
reservation by re-routing existing reservations in order to accommodate new sce-
narios’ requests. This re-optimization is performed for the entire schedule starting
from the next time slot. In DARA, we assume that new incoming scenarios have
lower priority as the previous requests are already admitted and rejecting them vio-
lates the agreed SLA. Therefore, in DARA requests are divided in three categories
based on their progress:

• Scheduled: When a request is scheduled, it will start to execute during some
time slot in the future. As the request is not yet running during the trigger
point, no special considerations are needed.

• Finished: A request is considered finished when it has finished executing
at the time of the trigger point. The request itself can therefore be removed
from the on-line model input. If the start or end times of other requests
depend on the end time of this request, the final end time can be added as an
input to the model.

• In progress: A request is in progress when it has started, but has not finished
yet at the time of the trigger point. These requests must still be considered in
the on-line model input, but the amount of data that was already transferred
must be removed from the total request demand.

2.5.2 ILP based advance reservation algorithms (ILP)

In this section we define two algorithms based on the model presented in the previ-
ous section. The first algorithm is based on the static model. In an “online” setting
the second approach, which makes use of the on-line version of the model, can be
used.

2.5.2.1 ILP based Static Advance Reservation Algorithm (SARAILP)

This algorithm is based on the static formal model which assumes that all the
scenario arrivals are known beforehand, which results in an optimal schedule.

Using the previously defined constraints, the multi-path model is likely to re-
sult in feasible but undesirable solution, as cycles may potentially occur in inter-
mediate network nodes. As the model is implemented using an ILP, these cycles
will never impact the optimality of the result as specified by the objective function.
There are two possible approaches to address these cycles. 1) Firstly, it would be
possible to modify the model by changing the objective function, adding an addi-
tional factor that minimizes the edge use. This would however increase the com-
plexity of the model and consequently lead to an increase in execution duration.

32 CHAPTER 2

Prioritization
and TimeSlot

Algorithm
API Scheduling

Algorithm

Backtracking
Algorithm

Network
Allocation
Algorithm

new
scenarios

Input
Transformation

Updated Schedule

Figure 2.2: Different components of the Sequential Priority Based Advance Reservation
Algorithm (SPB).

Furthermore, this would make it more difficult to balance the different optimiza-
tion objectives. 2) Alternatively, the results of the algorithm can be post-processed
by removing the cycles after the ILP has been solved. This approach has the ad-
vantage of limiting the complexity of the ILP model, and as stated previously has
no impact on its optimality.

Because of these considerations, we use a post processing algorithm after the
ILP optimization. During this post-processing phase, we look for cycles in each
reserved path and remove them.

2.5.2.2 ILP-based Dynamic Advance Reservation Algorithm (DARAILP)

The DARAILP invokes the ILP formulation of the model multiple times when-
ever new scenarios arrive. In this algorithm, an initial schedule is generated using
the static model, which is then iteratively updated using the on-line model as new
scenarios arrive. The input of the on-line model must however be modified at ev-
ery trigger point to take into account the work that has already been executed. The
demands of previously admitted, unfinished and in progress requests are updated
based on the data that has already been transferred. Then new requests as well as
modified requests are scheduled together.

2.5.3 Sequential Priority Based advance reservation algorithms
(SPB)

In general, the ILP-based algorithms have a high computational overhead, particu-
larly with fine-grained time slot sizes and large physical networks. The Sequential
Priority Based (SPB) advance reservation algorithm is a heuristic approach which
is proposed to resolve the scalability limitations of the ILP solutions. The admis-
sion control process is also integrated into the algorithm and once a scenario is
admitted, it will never be denied by the scheduler in future. In this approach, the
scenarios are sequentially admitted and scheduled.

Different components of the SPB advance reservation algorithm are illustrated
in Figure 2.2. As can be observed from this figure, the new scenarios enter to the

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 33

reservation system through an API (Application Programming Interface). Then
any transformation can be applied. For example in dynamic approach before the
scheduling algorithm invocation, the previously admitted scenarios’ demand needs
to be updated. In the next step the scenario requests are prioritized and in each
time slot the algorithm sequentially calls the network allocation algorithm for each
scenario request. If this process is successfully terminated the new scenario is
admitted, and the schedule is updated. Otherwise, the previous scheduling and
network state remain untouched and the scenario is rejected. Again we discern
two algorithm variants: SARASPB and DARASPB .

2.5.3.1 Sequential Priority Based Static Advance Reservation Algorithm
(SARASPB)

In this algorithm, first the scenarios are sorted and then sequentially processed.
This sorting is based on the earliest average start time of the scenario’s requests. If
two scenarios have the same value, the one requiring more resources is chosen. As
can be seen in Algorithm 1, the network resource usage, the requests information
and the current scheduling are saved for each scenario.

algorithm 1: The SARA Sequential Priority Based (SPB) algorithm.

input: scenarios’ requests, network infrastructure
sortedQueue← AverageStartSort(all scenarios);
for (scenario ∈ sortedQueue) do

Set scenario status as Pending;
currentstate← Save the current system state;
Prioritization(scenario’s requests);
sysReqList.Add(scenario’s requests);
feasible← TimeSlot(sysReqList);
if (feasible) then

Update the scheduling;
Set scenario status as Admitted;

else
Set current system state to CurrentState;
Set scenario status as Rejected;

end
end

Then each scenario in the sorted list is processed as follows. The prioriti-
zation algorithm is another component which assigns priorities to the scenario’s
requests. In the prioritization step two factors play a role: the estimated hard dead-
line and the volume. Since the deadline may not be specified for all the requests,
the hard deadline (i.e. the latest possible deadline) for those with no specific dead-
line should be estimated. This time is calculated by assuming that all requests on

34 CHAPTER 2

which the request depends use the entire network at once. This gives the latest
possible deadline for the request. In the prioritization algorithm, the main factor is
the estimated hard deadline: the sooner the deadline, the higher the priority. The
second factor, volume, comes into consideration only when the hard deadlines are
equal, the higher the demand, the higher the priority.

Then the scenario’s requests are added to the list of system requests and this
list is given to the TimeSlot algorithm. Based on the result of TimeSlot algorithm,
SPB decides to admit or reject the scenario. If the TimeSlot algorithm achieves a
feasible schedule, the previous reschedule is updated, otherwise the algorithm has
to backtrack to the previous feasible situation.

The TimeSlot algorithm, which is shown in Algorithm 2, iterates over the time
slots and consists of 5 sub-algorithms for each time interval.

1. TimeSlotRequests: First, the algorithm has to determine which unserved
requests can be served in the current time slot. For independent requests the
algorithm looks at the start time. If the current interval is greater or equal
the request start time, these requests are eligible to be added to the list of
current requests. For requests with start time dependencies, the algorithm
checks whether the requests on which this request depends are finished or
not. If all the requests on which the request depends are fulfilled, this request
can be started. Then it will be added to the list of current requests.

2. Limit: In order to avoid the extra reservation for the requests, a limitation
needs to be defined for each request. The limit for the video streams is their
required demand, because their demand is fixed and non-variable. The limit
of file-based requests is their residual demand which is modified whenever
a part of video file is transferred.

3. Sorting: In this step the requests of different scenarios selected in the previ-
ous step are sorted based on their priorities.

4. BWallocation: The most important sub-algorithm in TimeSlot is the band-
width allocation algorithm. We have defined two different bandwidth allo-
cation algorithms for video streams and video files. These algorithms are
presented later in detail.

5. UpdateAndCheckFeasibility: based on the provided result of the previous
step, BWallocation, and by calculating the residual demands, the requests
requirements are updated and the feasibility of the results is checked. If
the hard deadline of a request is reached, but part of the request has not been
transferred yet and the residual demand is not zero, the hard deadline has not
been met. In this step rescheduling is infeasible and the TimeSlot algorithm
returns false.

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 35

algorithm 2: The TimeSlot algorithm.

input: sysReqList, timeSlotGraphs
for (t ∈ Time Intervals) do

currentRequests←TimeSlotRequests(t,sysReqList);
if (currentRequests 6=∅) then

Limit(currentRequests);
sortedList← Sort(currentRequests);
reservation← BWallocation(sortedList);
if (!UpdateAndCheckFeasibility(reservation)) then

return false;
end

end
end
return true;

algorithm 3: The BWallocation algorithm.

input: sortedReqList
costAllocation(Links);
for (req ∈ sortedReqList) do

if (req is FB) then
reservation← BWallocationFB(req);

else
reservation← BWallocationVS(req);

end
end
return reservation;

The Bwallocation algorithm, which is shown in Algorithm 3, determines the
maximum possible bitrate and associated paths for the requests. This algorithm
first assigns cost to the network links using the CostAllocation algorithm. There
are several approaches to find a path between source and destination of a flow.
Since in advance reservation the other flows and all their specifications are often
known, the most logical way is to take their preferred deployment into account.
As a result in this step the algorithm tries to find the most desired paths and give
them the highest cost. The cost of each link is the sum of desirability of this link
for all requests. To find how important a link is for a request, the maximum flow
(maxflow) from source to sink of each request is determined. Having the maxflow
and the utilization per link, the desirability of the link is measured by dividing the
link utilization by the maxflow. The maxflow is measured using the Edmonds-
Karp maximum flow approach [27].

Then according to the type of the request either BWallocationFB or BWalloca-
tionVS algorithm, shown in Algorithm 4 and Algorithm 5 respectively, is invoked.

36 CHAPTER 2

The BWallocationFB algorithm is in charge of the FB requests and is based on
maxflow and least-cost path algorithms. In order to transfer the files as soon as
possible, first the maxflow is applied based on the Edmonds-Karp algorithm. If
the maxflow is lower than the request limit, all the maxflow paths are reserved for
this request. Otherwise, the algorithm forms a graph out of the maxflow paths and
the k-shortest path is the second alternative. In this step finding the least-cost path
is repeated till the total bandwidth offered by the paths is sufficient for the request.
The shortest path applied here is a modified version of the Dijkstra shortest path
algorithm [28] in which the cost of the links are taken into account instead of path
length.

algorithm 4: The BWallocationFB algorithm for file based requests.

input: an FB request
maxFlow← EdmondsKarp.getMaxFlow(graph);
if (maxFlow = 0) then

Return;
else if (maxFlow ≤ Limit(req)) then

reservation(req, maxFlowPath);
else

graph(maxFlowPath);
path← LeastCostPath(graph);
while (path 6= ∅) do

minBW← minBandwidth(path);
flow← flow+minBW;
if (flow ≥ Limit(req)) then

minBW← minBW−(flow−Limit(req));
reservation(req, path, minBW);
update the residual graph(minBW, path);
feasibility← true;
return reservation;

else
reservation(req, path, minBW);
update the residual graph(minBW, path);

end
path← LeastCostPath(graph);

end
end

The BWallocationVS algorithm deals with video stream requests. This algo-
rithm is partially similar to the second part of the BWallocationFB algorithm where
the maxFlow is higher than the request limit. The algorithm iteratively looks for
the least cost path on the whole graph and sums up the minimum available band-
width of the paths. In each step the network capacities are modified and the path
is reserved. These steps are repeated over the residual graph while the total band-

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 37

width provided by the paths fulfills the request demand. If no more paths are left,
the request could not be served and feasibility of rescheduling is false.

algorithm 5: The BWallocationVS algorithm for video streaming requests.

input: a VS request
path← LeastCostPath(graph); while (path 6= ∅) do

minBW← minBandwidth(path);
flow← flow+minBW;
if (flow ≥ Limit(req)) then

minBW← minBW−(flow−Limit(req));
reservation(req, path, minBW);
update the residual graph(minBW, path);
feasibility← true;
return reservation;

else
reservation(req, path, minBW);
update the residual graph(minBW, path);

end
path← LeastCostPath(graph);

end
feasibility← false;

2.5.3.2 Sequential Priority Based Dynamic Advance Reservation Algorithm
(DARASPB)

TheDARASPB is invoked several times whenever new scenarios are submitted to
the reservation system. The dynamic approach is partly similar to the SARASPB .
However in addition to the static approach and same as dynamic ILP-based algo-
rithm, it has to update the previously admitted requests’ demands based on whether
the request is scheduled, is finished or is in progress.

2.6 Experimental Results
In this section, we first evaluate the SPB static and dynamic algorithms by com-
paring their performance with the optimal results provided by the ILP models as a
benchmark. Then, we make an extensive evaluation on the SPB algorithms, deter-
mining the influence of the available bandwidth, the percentage of requests known
in advance, the number of scenarios, and the time granularity.

2.6.1 Evaluation Setup

Based on interviews with several Belgian media production actors, including a
broadcaster, service provider, and recording facility provider, a set of use case sce-

38 CHAPTER 2

Recording
(P1)

Production
Studio

Service
Provider

Broadcaster

1

5

3 4

2

(a) Use case 1: Soccer discussion
program

1,4,7

12,13,14

17

18

Broadcaster

Service
Provider

Production
Studio

Recording1
(P1)

Recording2
(P2)

Recording3
(P3)

(b) Use case 2: Infotainment
show

1 2

5

3

6 4

7

8

Broadcaster Service
Provider

Pre production
(P1)

Recording
(P2)

Production
Studio
(archive)

Production
Studio (Delayed

 view)

Live
Recording.3

(P5)

Live
Recording.2

(P4)

Live
Recording.1

(P3)

(c) Use case 3: News broadcast

Figure 2.3: Interactions between media production actors in the three considered use case
scenarios.

narios was defined that serve as a basis for the evaluation. Figure 2.3 depicts the
interactions between actors in the three defined use cases. Use case 1 represents
a soccer after-game discussion program and comprises 5 different file transfer re-
quests. Use case 2 is a 30 minute infotainment show and consists of 18 file transfer
requests. Finally, use case 3 is a news broadcast, consisting of 4 file transfer and 4
video streaming requests. Several instances of each use case are generated, based
on randomized input parameters. A detailed overview of the randomized variables
of each use case and its requests is shown in Table 2.3. The variable names used in
the table header are defined in Table 2.2. #tns dep. refers to the number of requests
on which the start time of the request (i.e., tns) depends. If a request does not de-
pend on others, tns /dep.On is defined as the start time of the request, otherwise
it points to those interdependent requests. The variables #tesdep. and tes/dep.On
are similarly defined for the end time of the request. The variable s used in the
table represents the earliest time on which the file-based request could be started.
In addition, st, d, and et deal with the streaming requests and refer to the start time
of the broadcast on television, the deadline of the request to get started, and the
end time of the request respectively

Because of the limited scalability of ILP-based algorithms, two different topolo-
gies are used for the evaluation of media production network reservation system.
The smaller size, depicted in Figure 2.4, consists of media production actor sites,
switches and bidirectional WAN links. This topology contains 12 nodes, 8 of
which are devoted to different media production actors e.g. the production stu-
dio, broadcaster, service provider and recording locations. The 4 remaining nodes
are the intermediate switches, connected in a full mesh topology. The larger test
topology, shown in Figure 2.5, is only used to evaluate the performance of the
more scalable SPB algorithms. This network is the well-known ATT North Amer-
ica topology which consists of 25 nodes and 56 links [29].

Each simulation run covers a 24 hour period. When using the SARA algorithm,

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 39

Table 2.3: Details of the use case requests

Use case 1 Type sn dn #tns dep. tns /dep.On #tne dep. tne /dep.On in bn

Req1 rf P1 Production studio 0 rand(s+ 1hrs, s+ 5hrs) 1 Req3 90min 200Mbps
Req2 rf P1 Production studio 0 rand(s, s+ 6hrs) 1 Req3 90min 200Mbps
Req3 rf Broadcaster Production studio 2 Req1, 2 1 Req4 90min 200Mbps
Req4 rf Production studio Broadcaster 3 Req1, 2, 3 0 st 180min 15Mbps
Req5 rf Broadcaster Service provider 0 st+ 3hrs 0 24hrs 180min 15Mbps

P1 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 9) hrs; st = rand(17, 19) hrs

Use case 2 Type sn dn #tns dep. tns /dep.On #tne dep. tne /dep.On in bn

Req1,9 rf P1 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req2,10 rf P2 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req3,11 rf P3 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req4,12 rf P1 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req5,13 rf P2 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req6,14 rf P3 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req7,15 rf P1 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req8,16 rf P2 Production Studio,Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req17 rf Production studio Broadcaster 16 Req1..16 1 Req18 60min 200Mbps
Req18 rf Broadcaster Service provider 1 Req17 0 st 60min 15Mbps

P1, P2, P3 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 15) hrs; st = rand(18, 22) hrs

Use case 3 Type sn dn #tns dep. tns /dep.On #tne dep. tne /dep.On in bn

Req1 rf P1 P2 0 rand(s, 9hrs) 1 Req2 (30− 50)min 200Mbps
Req2 rf P2 Broadcaster 1 Req1 0 rand(10, 12)hrs (30− 50)min 200Mbps
Req3 rf Production studio Broadcaster 0 rand(s, 9hrs) 0 rand(10, 12)hrs (30− 50)min 200Mbps
Req4 rs P3 Broadcaster 0 rand(st, d) 0 et (8− 10)min 15Mbps
Req5 rs P4 Broadcaster 0 rand(st, d) 0 et (8− 10)min 15Mbps
Req6 rs P5 Broadcaster 0 rand(st, d) 0 et (8− 10)min 15Mbps
Req7 rs Broadcaster Service provider 0 st 0 st+0.5hrs 30min 15Mbps
Req8 rf Broadcaster Production studio 0 st+0.5hrs 0 24hrs 30min 15Mbps

P1, P2, P3, P4, P5 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 7) hrs; st = rand(12, 16) hrs; d = (st+ 0.5− in) hrs; if (in < I) then (et = Tns +1) else (et = Tns + in)

loc1

Production Studio

Broadcaster loc4

loc3

loc2

Service Provider

loc5

Figure 2.4: The smaller Media production network topology used in the evaluation.

Figure 2.5: The Larger Media production network topology used in the evaluation. The
ATT North America topology consists of 25 nodes and 56 links.

40 CHAPTER 2

60

65

70

75

80

85

90

95

100

900 1000 1100 1200 1300 1400 1500 1600

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwidth (Mbps)

SARA[ILP,3600]

DARA0[ILP,3600]

SARA[SPB,3600]

DARA0[SPB,3600]

SARA[SPB,600]

DARA0[SPB,600]

Figure 2.6: Impact of bandwidth capacity and percentage of known requests on admission
rate.

it is assumed that all scenarios are known in advance. When using DARA some
use case instances are assumed to be known only throughout the day, at least one
hour before tns of its earliest request. Throughout this section, DARAXX%[YY, ZZ]
denotes that XX% of the use case instances are known at the start of the simulated
day and the algorithm YY is used (i.e., ILP or SPB). ZZ is optional and refers to
the time slot size in seconds, if the ZZ is not specified, the default time slot size of
3600 seconds has been used. Furthermore, the number of use case instances equals
20 (in total 209 requests) and 50 (in total 519 requests) for all the experiments with
the smaller and larger topologies respectively. All results are averaged over 50 runs
with different randomized inputs. Error bars denote the standard error.

All algorithms in this section are implemented in Java 7. ILP models are solved
using the IBM ILOG CPLEX 12.6 optimization software package.

2.6.2 Comparing the SPB algorithms to the ILP-based algo-
rithms

Figure 2.6 compares the ILP solutions with the SPB algorithms, where for the latter
either 1 hour or 10 minute time slot sizes are shown. In this evaluation, all or none
of the requests are known in advance. First for the same time slot size of 1 hour,
this figure shows that the result of the SPB algorithms is close to the optimal values.
The performance of SARASPB and DARASPB are within 8.29% of SARAILP
and 8.78% of DARAILP respectively. For a time slot size of 1 hour, the SPB
algorithms reach to 100% admittance only when 2300 Mbps physical bandwidth
is available. For the 6-times shorter time interval size (i.e. 10 minutes) and 1200
Mbps capacity, both the static and dynamic SPB algorithms admit all 20 scenarios,
whereas the static ILP-based algorithm only achieve 96.05% on average.

Figure 2.7 and Figure 2.8 are provided to compare the performance of ILP-

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 41

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

900 1000 1100 1200 1300 1400 1500

 a
d

m
it

ta
n

ce
 r

at
io

 r
e

la
ti

ve
 t

o
 S

A
R

A

Physical bandwidth (Mbps)

SARA[ILP]

DARA90[ILP]

DARA70[ILP]

DARA50[ILP]

DARA0[ILP]

Figure 2.7: Impact of percentage of known requests on admission rate in ILP-based
algorithms.

based and SPB algorithms respectively, showing the influence of the percentage of
known requests in advance on the solutions. Knowing more requests gives more
freedom to schedule them and makes it easier to determine the subset of requests
to reject. Thus, static algorithms outperform the dynamic ones. Therefore, to have
a clear distinction, in both figures the result are shown relative to the SARA. As
expected, more known requests significantly increase the performance. The re-
sults show that when requests are not known at the start of the day, SARAILP
outperforms DARAILP by up to 5.22% while when 90% are known this is re-
duced to 1.97% at most. For the SPB algorithms the same trend can be observed.
The percentage of admitted requests in DARASPB is within 5.7% and 1.37% of
SARASPB for the 0% and 90% of known requests respectively.

Furthermore, to have a comparison of the execution times Figure 2.9 is de-
picted. This figure compares the execution duration of the static ILP and SPB
algorithms. As can be observed from this figure, the ILP is the most complex
and the slowest, and the static SPB algorithm with the same time interval size is
between 128 up to 520 times faster than the ILP solution.

2.6.3 Evaluation of the SPB algorithms
2.6.3.1 Impact of available bandwidth

We now assess the impact of physical network capacity on the SPB algorithm
performance. Figure 2.10 compares the percentage of admitted requests of SARA
to DARA, where for the latter various ranges of use case instances are known
in advance. The network capacities vary from 600 up to 2300 Mbps and a time
slot size of 1 hour is used. This figure shows that when no request is known
in advance, SARA shows up to 5.7% higher acceptance rate compared with the
dynamic approach.

42 CHAPTER 2

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

900 1000 1100 1200 1300 1400 1500

ad
m

it
ta

n
ce

 r
at

io
 r

e
la

ti
ve

 t
o

 S
A

R
A

Physical bandwidth (Mbps)

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.8: Impact of percentage of known requests on admission rate in SPB algorithms.

1

10

100

1000

10000

100000

900 1000 1100 1200 1300 1400 1500

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

m
s)

Physical bandwidth (Mbp)

SARA[ILP,3600]
SARA[SPB,3600]
SARA[SPB,600]
SARA[SPB,60]

Figure 2.9: The execution time of SPB and ILP-based approaches.

50

55

60

65

70

75

80

85

90

95

100

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwidth (Mbps)

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.10: Impact of bandwidth capacity and percentage of known requests on
admission rate in SPB algorithms for 12-node topology.

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 43

55

60

65

70

75

80

85

90

95

100

200 300 400 500 600 700 800

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwidth (Mbps)

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.11: Impact of bandwidth capacity and percentage of known requests on
admission rate in SPB algorithms for 25-node topology.

In Figure 2.11 the same results are shown for the larger infrastructure. The
available bandwidth varies from 200 up to 800 Mbps. As can be observed from
this figure, when none of requests are known beforehand, the admittance ratio in
DARA is within 4.1% of SARA and when 90% of requests are known the result
is within 1.1%.

2.6.3.2 Impact of time slot granularity

Figures 2.12 and 2.13 study the impact of time slot granularity on SARA and
DARA for the 12-node and 25-node topology respectively. For the smaller net-
work the link capacity of 700 Mbps and for the larger topology the link capacity
of 200 Mbps is used. As shown in both figures, the fine-grained experiment with
shortest time slot size results in the best performance. However, although more
granularity increases the performance of the algorithm, the complexity of the al-
gorithm significantly increases as well. In the case of DARA, the algorithm is
invoked several times throughout the day.

In Figure 2.12, we observe that an interval size of 60 seconds yields 11.5%
better results than a size of 3600 seconds for SARA. However, the execution time
of the algorithm also increases. For DARA, a similar trend is seen. Moreover, it
should be noted that in case fewer requests are known in advance, the complexity
of a single DARA algorithm invocation decreases significantly. This can be seen
in Figures 2.14 and 2.15 for the smaller and the larger topologies respectively. For
example in Figure 2.14, when none of requests are known and the size of time
slot is 1 minute, the execution time is on average 18.33 times shorter than when
all requests are known in advance. In the former case, the algorithm needs to
be executed 19.6 times on average, while in the latter only once. Based on the
results, a time slot size of 600 seconds optimises the trade-off between optimality
and complexity. This interval size is not the most optimal value for all possible

44 CHAPTER 2

58

60

62

64

66

68

70

72

74

76

78

60 120 300 600 1200 1800 2400 3000 3600

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

TimeSlot size (s)

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.12: Impact of timeslot granularity on request admission rate for 12-node
topology.

56

58

60

62

64

66

68

70

300 600 1200 1800 2400 3000 3600

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Time slot size (s)

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.13: Impact of timeslot granularity on request admission rate for 25-node
topology.

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 45

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

60 120 300 600 1200 1800 2400 3000 3600

Ex
e

cu
ti

o
n

 t
im

e
/

al
go

ri
th

m
 in

vo
ca

ti
o

n
 (

m
s)

TimeSlot size (s)

SARA[SPB]
DARA90[SPB]
DARA70[SPB]
DARA50[SPB]
DARA0[SPB]

Figure 2.14: The average execution times of different time slot sizes and percentage of
known requests for 12-node topology.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

300 600 1200 1800 2400 3000 3600 E
x

e
c
u

ti
o

n
 t

im
e

 /
 a

lg
o

ri
th

m
 i

n
v

o
c
a

ti
o

n
 (

m
s)

Time slot size (s)

SARA

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.15: The average execution times of different time slot sizes and percentage of
known requests for 25-node topology.

configurations, but is within 1.6% of the optimum in all evaluated cases.

2.6.3.3 Impact of network load

Figures 2.16, 2.17 and 2.18 compare the influence of number of use case instances
and percentage of known requests. In Figures 2.16 and 2.17 the smaller topology
with network capacity of 600 Mbps and 1 hour time slot size are used. The number
of scenarios varies from 1 to 20. As can be seen in Figure 2.16 by increasing
the demands, the percentage of admitted requests decreases. SARA outperforms
DARA up to 5% when 0% of requests are known in advance, and up to 3.8%
when 50% are known. As depicted in Figure 2.18 the same trend can be observed
for the larger topology with 200 Mbps capacity. SARA yields up to 5.8% better
results than DARA.

46 CHAPTER 2

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenrios

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.16: Impact of network load on request admission rate for 12-node topology.

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
e

cu
ti

o
n

 t
im

e
/

al
go

ri
th

m
 in

vo
ca

ti
o

n
 (

m
s)

Number of scenarios

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.17: The execution times of different number of scenarios and percentage of
known requests for 12-node topology.

In Figure 2.17 the execution times for each algorithm invocation for a range of
percentage of known requests is assessed. Based on this result the DARA is up to
7.4 times faster, when the number of scenarios is 20. However, the algorithm is
invoked 9.48 times on average.

2.7 Conclusion

In this chapter, an optimal model and a set of novel scheduling algorithms were
presented for advance bandwidth reservation in media production networks. Specif-
ically the SPB approach is proposed to resolve the computational complexity as-
sociated with the optimal solutions. The bandwidth scheduling algorithms take
the specific characteristics of media production processes into account, for exam-
ple time-variable bandwidth reservation, flexible start times, request dependencies

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 47

50

55

60

65

70

75

80

85

90

95

100

5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

SARA[SPB]

DARA90[SPB]

DARA70[SPB]

DARA50[SPB]

DARA0[SPB]

Figure 2.18: Impact of network load on request admission rate for 25-node topology.

and splittable flows. In our approaches all four types of advance reservation re-
quests are supported. Furthermore, the proposed algorithms operate in both offline
and online manners. A detailed performance analysis is conducted to assess the
viability of ILP-based and SPB solutions. The influence of the available band-
width, the percentage of requests known in advance, the network load, the time
granularity and the execution time have been evaluated.

Our evaluation showed that the SPB results at least within 8.78% of the op-
timal admittance rate. Also, when a significant portion of requests is known in
advance, AR significantly increases bandwidth efficiency and request admittance.
Concretely, in case all requests are known beforehand, request admittance of the
optimal and heuristic solutions can be increased up to 5.22% and 5.7% respec-
tively. Additionally, the results showed that time granularity increases algorithm
accuracy and optimality in terms of request admittance. SPB can achieve higher
scalability in terms of the size of physical network as well as time slot sizes. The
size of time intervals can be fine-grained up to 1 minute. Comparing to the ILP-
based approaches, the SPB algorithms offer lower operational overhead in terms
of problem complexity and execution time.

Future work includes determining the impact on quality and performance of
variable time intervals, and adding resilience to improve the robustness of the
schedules generated by the advance reservation system.

Acknowledgment
The computational resources (Stevin Supercomputer Infrastructure) and services
used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by Ghent University, the Hercules Foundation and the Flemish Government
– department EWI. The research leading to these results was performed within the
context of ICON MECaNO. It is a project co-funded by iMinds, a digital research

48 CHAPTER 2

institute founded by the Flemish Government. Project partners are SDNsquare,
Limecraft, VideoHouse, Alcatel-Lucent, and VRT, with project support from IWT
under grant agreement no. 130646.

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 49

References

[1] E. M. Varvarigos, V. Sourlas, and K. Christodoulopoulos. Routing and
scheduling connections in networks that support advance reservations. Com-
puter Networks, 52(15):2988–3006, 2008.

[2] K. Nahrstedt and R. Steinmetz. Resource management in networked multi-
media systems. Computer, 28(5):52–63, 1995.

[3] N. Charbonneau and V. M. Vokkarane. A survey of advance reservation rout-
ing and wavelength assignment in wavelength-routed WDM networks. Com-
munications Surveys & Tutorials, IEEE, 14(4):1037–1064, 2012.

[4] A. Hall, S. Hippler, and M. Skutella. Multicommodity Flows over Time:
Efficient Algorithms and Complexity. In J. Baeten, J. Lenstra, J. Par-
row, and G. Woeginger, editors, Automata, Languages and Programming,
volume 2719 of Lecture Notes in Computer Science, pages 397–409.
Springer Berlin Heidelberg, 2003. Available from: http://dx.doi.org/10.1007/
3-540-45061-0_33, doi:10.1007/3-540-45061-0_33.

[5] C. Guok, E. N. Engineer, and D. Robertson. ESnet On-Demand Secure Cir-
cuits and Advance Reservation System (OSCARS). Internet2 Joint, 2006.

[6] B. Gibbard, D. Katramatos, and D. Yu. TeraPaths: end-to-end network path
QoS configuration using cross-domain reservation negotiation. In Broadband
Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd
International Conference on, pages 1–9. IEEE, 2006.

[7] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim, D. Yu,
S. Bradley, and S. McKee. StorNet: Integrated Dynamic Storage and Net-
work Resource Provisioning and Management for Automated Data Trans-
fers. In Journal of Physics: Conference Series, volume 331, page 012002.
IOP Publishing, 2011.

[8] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim, D. Yu,
S. Bradley, and S. McKee. StorNet: Co-scheduling of end-to-end bandwidth
reservation on storage and network systems for high-performance data trans-
fers. In Computer Communications Workshops (INFOCOM WKSHPS),
IEEE Conference on, pages 121–126. IEEE, 2011.

[9] C. Xie, H. Alazemi, and N. Ghani. Rerouting in advance reservation net-
works. Computer Communications, 35(12):1411–1421, 2012.

[10] H. Alazemi, F. Xu, C. Xie, and N. Ghani. Advance reservation in distributed
multi-domain networks. IEEE Systems Journal, 2013.

http://dx.doi.org/10.1007/3-540-45061-0_33
http://dx.doi.org/10.1007/3-540-45061-0_33

50 CHAPTER 2

[11] S. Naikstam and S. Figueira. Elastic reservations for efficient bandwidth
utilization in LambdaGrids. Future Generation Computer Systems, 23(1):1–
22, 2007.

[12] L.-O. Burchard, H.-U. Heiss, and C. De Rose. Performance issues of band-
width reservations for Grid computing. In Symposium on Computer Archi-
tecture and High Performance Computing, pages 82–90, 2003.

[13] S. Sharma, D. Katramatos, D. Yu, and L. Shi. Design and Implementation of
an Intelligent End-to-end Network QoS System. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 68:1–68:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press. Available from: http://dl.acm.org/citation.
cfm?id=2388996.2389089.

[14] K. Rajah, S. Ranka, and Y. Xia. Advance Reservations and Scheduling for
Bulk Transfers in Research Networks. IEEE Trans. Parallel Distrib. Syst.,
20(11):1682–1697, November 2009. Available from: http://dx.doi.org/10.
1109/TPDS.2008.250, doi:10.1109/TPDS.2008.250.

[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Technical
report, DTIC Document, 1988.

[16] H. Masri, S. Krichen, and A. Guitouni. A multi-start variable neighborhood
search for solving the single path multicommodity flow problem. Applied
Mathematics and Computation, 251:132–142, 2015.

[17] A. Ouorou, P. Mahey, and J.-P. Vial. A survey of algorithms for convex mul-
ticommodity flow problems. Management science, 46(1):126–147, 2000.

[18] J. L. Kennington. A survey of linear cost multicommodity network flows.
Operations Research, 26(2):209–236, 1978.

[19] L. R. Ford Jr and D. R. Fulkerson. Constructing maximal dynamic flows from
static flows. Operations research, 6(3):419–433, 1958.

[20] L. Ford and D. R. Fulkerson. Flows in networks, volume 1962. Princeton
Princeton University Press, 1962.

[21] L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on
Computing, 36(6):1600–1630, 2007.

[22] J. Chen, S.-H. Chan, and V. O. Li. Multipath routing for video delivery
over bandwidth-limited networks. Selected Areas in Communications, IEEE
Journal on, 22(10):1920–1932, 2004.

http://dl.acm.org/citation.cfm?id=2388996.2389089
http://dl.acm.org/citation.cfm?id=2388996.2389089
http://dx.doi.org/10.1109/TPDS.2008.250
http://dx.doi.org/10.1109/TPDS.2008.250

DEADLINE-AWARE ADVANCE RESERVATION SCHEDULING ALGORITHMS 51

[23] M. Balman, E. Chaniotakis, A. Shoshani, and A. Sim. A flexible reservation
algorithm for advance network provisioning. In High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2010 International Conference
for, pages 1–11. IEEE, 2010.

[24] M. Barshan, H. Moens, J. Famaey, and F. De Turck. Algorithms for Advance
Bandwidth Reservation in Media Production Networks. In the integrated net-
work management. IM2015. IFIP/IEEE International symposium on. IEEE,
2015. to appear.

[25] J. Zheng and H. T. Mouftah. Routing and wavelength assignment for advance
reservation in wavelength-routed WDM optical networks. In Communica-
tions, 2002. ICC 2002. IEEE International Conference on, volume 5, pages
2722–2726. IEEE, 2002.

[26] E. He, X. Wang, V. Vishwanath, and J. Leigh. CAM03-6: AR-PIN/PDC:
Flexible Advance Reservation of Intradomain and Interdomain Lightpaths.
In Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE,
pages 1–6. IEEE, 2006.

[27] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the ACM (JACM), 19(2):248–
264, 1972.

[28] T. Cormen. Introduction to Algorithms. MIT Press, 2009. Available from:
http://books.google.be/books?id=Jwr8jwEACAAJ.

[29] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. Selected Areas in Communications, IEEE Journal on,
29(9):1765–1775, 2011.

http://books.google.be/books?id=Jwr8jwEACAAJ

3
Design and Evaluation of a Dual

Dynamic Adaptive Reservation
Approach in Media Production

Networks

In the previous chapter, we exploited the predictability of media transfer and use
advance bandwidth reservation services to achieve greater bandwidth utilization
and service guarantees. To offer reliable reservations, the incorporation of fault-
tolerance related features in bandwidth reservation strategies is a necessity, al-
though this imposes a waste of capacity and extra performance overhead. In this
chapter, we first introduce a resilient bandwidth reservation mechanism, to ensure
that the reservations remain valid when the system is in operation. To maximally
utilize the network, and to ensure there is a quick response in a dynamic network
environment, constant monitoring and optimization is needed. Therefore, we then
propose an efficient complementary optimization approach, referred to as Runtime
Adaptation (RA) approach, which can be used in combination with the resilient so-
lution. When a schedule is produced by a resilient advance reservation algorithm,
the generated schedule is continually updated over time using the RA approach in
order to be capable of dynamically adapting the network to changing conditions
and mitigating the side effects of provisioned reliability. This step uses the inter-
connecting network links’ leftover capacity, resulting in an increased performance
both in steady and unsteady network conditions. Our evaluations show that in

54 CHAPTER 3

failure-prone environments, the combination of resilient advance bandwidth reser-
vation and proposed approach leads to significant increase in the success rate of
admitted requests, up to 6.77 times, compared to the resilient advance reservation
algorithms.

? ? ?

M. Barshan, H. Moens, B. Volckaert and F. De Turck

Published in Journal of Network and Computer Applications, Vol. 80, pages
109–122, Feb. 2017.

3.1 Introduction

Media production processes have become more complex and more data / network-
intensive as they are increasingly dealing with high bitrate videos, deadline con-
strained network transfers and geographically distributed media production teams.
Large quantities of data must be processed by multiple collaborating parties at dif-
ferent geographical locations. Media production environments are highly dynamic
due to the arrival and departure of several requests of different sizes and require-
ments. In order to provide high-performance collaboration between different sites,
next generation network reservation systems have to provide predictable perfor-
mance and efficient bandwidth utilization. To ensure that bandwidth needs, deliv-
ery deadlines and requirements of different transfers are met, advance bandwidth
reservation is needed. In general, advance reservation benefits the network oper-
ators as knowledge of future transmissions can be used to improve the admission
control and provisioning to increase network utilization. It is also beneficial for the
user as the network can provide better QoS to (future) requests with declared ar-
rival and holding times [1], guaranteeing that the needed network capacity will be
available. Advance reservation approaches can be either static or dynamic. While
in a static approach all requests are known before scheduling, requests arrive one
by one over time in a dynamic model.

In the media production industry, advance reservation scheduling of network
transfers [2] is very important in order to make correct decisions on rejection or
acceptance of future requests. In uncertain network conditions, such as sudden
changes in network configuration, network fluctuations, failures, etc., additional
precautions must be taken to guarantee successful transfers. The reliability of
transfers in the media production networks is of prime importance and it can be
enhanced using protection mechanisms. However, there are arguments against this
redundancy as a large portion of network capacity will be wasted if the capacity

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 55

assigned for this redundancy cannot be reused. As such, making use of idle net-
work capacity and updating the resilient schedule over time, based on the current
state of the network and running and planned transfers is of great advantage.

This work has been performed within the context of ICON MECaNO project [3],
which provides solutions for the transmission of large media contents over an IP-
based infrastructure, tailored to the quality and timing requirements of current and
future media production process requests. In our previous work [4] and [5], we
proposed both static and dynamic advance reservation scheduling approaches for
a couple of interdependent requests of two types, video streams (VS) and file-
based video transfers (FB). We have further presented the resilient version of these
approaches based on a protection mechanism to improve the reliability of the ad-
vance reservation system [6]. The proposed scheme is capable of covering single
link failures using pre-reserved disjoint backup paths. In this chapter, we make
a tradeoff between reliability and resource usage in 3 ways: 1) the percentage of
redundancy is defined for each individual request based on an input parameter pro-
vided by the customer, to influence the importance of reliability for each individual
connection, 2) shared backup path protection (SBPP) [7, 8] is used, significantly
reducing the bandwidth requirements for backup purposes, and 3) redundant reser-
vations and network leftover capacity are reused as long as those are not being used
for their primary purpose.

The main contribution of this paper is to make use of backups and idle band-
width capacities to push more data into the network as long as advance reservations
are partially unused as well as rapid reaction to sudden changes in uncertain net-
work conditions using an event-based approach. Based on the resilient advance
reservation approach, backups are ready for use, but are only activated when fail-
ures occur, leaving capacity unused. In addition, we have found that reservations
made for video streams, are not completely utilized throughout the requested time.
Video streams can be resumed and played-back multiple times during the reserved
period, which causes idle reservations between resumes and playbacks. In our
proposed approach, these unused capacities can be exploited to transfer additional
data. This means that we use these reserved capacities as double-purpose, priori-
tizing their original purpose. In doing so, as long as these reserved capacities are
idle, additional data can be transferred and as soon as for example a video stream
becomes active, an event will be raised to prioritize the advance reservation made
for this streaming request over the extra data transfers.

The proposed approach consists of two sequential processes. First, the network
and transfers status are being continually monitored and the advance reservations
are periodically updated. Second, the backup and unused network capacities, e.g.
unused video stream reservations, are re-utilized to transfer more data than the
schedule made by the resilient advance reservation algorithms. In unreliable net-
works, as soon as any failure is detected, an event will trigger our proposed algo-

56 CHAPTER 3

rithm to adapt the ongoing network transfers according to the current state of the
network. This leads to a better utilization of substrate network resources, higher
success rate and rapid reaction to sudden changes when the network is in operation.

The rest of this chapter is organized as follows. Section 3.2, describes back-
ground and related work. The envisioned media production network and the run-
time adaptation approach are explained in Section 3.3. The proposed algorithms
are described in Section 3.4. Section 3.5 provides simulation results and Sec-
tion 3.6 concludes the chapter.

3.2 Related work

3.2.1 Advance resource reservation

Advance network resource reservation has applications for both wide-area and grid
networks and has been studied frequently in recent years [9–15]. Current research
mostly focuses on optical networks in combination with wavelength division mul-
tiplexing [1]. Advance reservation requests can be classified in 4 individual cate-
gories [1]. This classification is also valid for different types of requests in media
production networks and all classes are supported in our work. In optical networks,
the static advance reservation problem is first introduced by Kuri et al. [16, 17],
who focus on requests with specified start time and duration and proposed heuris-
tics and meta-heuristics to solve the static problem. The authors in [18, 19] were
the first to propose dynamic advance reservation in fixed time-slotted networks.
By introducing the percentage of known requests in [4], both static and dynamic
traffic models are considered in our approach. Xie et al. in [20] proposed ILP-
based models and heuristic approaches on re-routing in advance reservation net-
works in order to maximize admittance of new requests. The authors in [21, 22]
focused on advance bandwidth reservation for on-demand data transfer in scien-
tific applications. These approaches, however, purely focus on data transfers, not
video streaming requests, dependencies among different transfers are ignored and
no fault tolerance techniques are considered for possible failures.

3.2.2 Resilient reservation

Adding resilience into a reservation system can be achieved through restoration or
protection failure recovery mechanisms [23]. In [24] a resilient advance reserva-
tion mechanism is proposed in optical grids. Due to the lower cost of restoration
mechanisms, they use the latter. Burchard et al. in [25] consider a recovery mech-
anism for advance reservations in grid environments. The idea is to re-schedule
failed but unstarted requests whenever failure occurs, but the main focus is on
estimating the downtime. The authors in [26] have also focused on a proactive
approach by taking resource statistical failure information into account. Their

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 57

method relies on failure prediction and avoiding vulnerable resources. The authors
in [27] present a fault-tolerant job scheduling approach for grid environments using
adaptive task replication, which is a recovery approach. Providing resiliency in op-
tical WDM networks through shared path protection has been proposed in [28–31].
Since meeting strict deadlines and QoS requirements is of great importance in our
approach, using protection mechanisms tends to be more reliable.

3.2.3 Media production networks

The work presented in this chapter consists of two complementary approaches for
media production networks. The combination of a customized resilient AR ap-
proach with a highly dynamic event-driven runtime adaptation approach consists
of several functions which are of essential importance in the considered media pro-
duction networks and have not been previously studied in the context of advance
reservations.

This work proposes a dual approach which partially makes use of our pre-
vious works [5] and [6]. In [5], we devised an ILP-based model and proposed
heuristic approaches for an exact solution. We showed that the heuristics yielded
favorable results in much less time complexity than the linear programs. In [6],
we enhanced the media production reservation system and made it more reliable
in case of failures by following a protection mechanism and provisioning backup
reservations for each request. As redundancy imposes cost and resource waste,
the main motivation of our approach is to mitigate the side-effect of using redun-
dant reservations by employing underutilized network capacities for transferring
extra data as long as those are not needed for redundancy purposes. This work
in the extension of [32] in which design of the proposed approach is explained in
depth and [33] where the initial evaluation of our proposed approach without con-
sidering the impact of failure rates (stable network conditions) and video stream
pauses/restarts was presented. This work differs from our previous work as it pro-
vides a highly dynamic, complementary and discrete-event driven approach which
improves both reliability and performance of media production reservation sys-
tems over the time when the network is in operation. In this chapter, the impact
of different failure rates on the performance of the runtime adaptation approach is
extensively evaluated.

58 CHAPTER 3

Runtime Adaptation (RA)

Datacenter

On-site filming Broadcaster

Recording
studio

Controller Controller

Temporal routing policies
and bandwidth reservations

Resilient Advance Reservation (DARA)

Adaptive
Optimization

Global state
manager

Monitoring
system

Job
manager

Connection
manager

Reservation
manager

Media Network Management Layer
Prioritization Prioritization

Sorting Sorting

Timeslot Timeslot
requests

Resilient

Resilient
Bandwidth
allocation

Update
& Check
Update
& Check

Limit Limit

Ti
m

eS
lo

t
 a

lg
o

ri
th

m

Resilient
Bandwidth
Allocation

FB

Resilient
Bandwidth
Allocation

VS

API

New
Scenarios

Updated
 schedule

Figure 3.1: Different components of media production network.

3.3 Runtime adaptation approach in media produc-
tion networks

3.3.1 Envisioned media production network

The envisioned media production network for MECaNO is depicted in Figure 3.1.
The different actors and locations involved in the media production process, such
as recording studios, on-site filming crews, broadcasters, and storage datacenters,
are connected to a shared wide-area network. The management layer provides a
reservation interface that allows the users of the network to submit their requests.
The management layer contains two complementary processes of the proposed
approach: the dynamic version of resilient advance reservation algorithm and the
runtime adaptation approach, which we refer to as DARA and RA respectively.
The DARA scheduling component is responsible for reserving the required amount
of bandwidth including backup capacities for all requests and the RA component
dynamically re-optimizes the request transmissions. Different components of the
advance reservation scheduler are extensively explained in [5] and [6].

In the DARA approach, we deal with dynamic time-dependent reservations
based on time constraints given by the user, stating the earliest start time and latest

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 59

completion time. We discretize dynamic network into several snapshots and apply
bandwidth allocation algorithms efficiently on every snapshot of the graphs and
produce a schedule consisting of distinct reserved capacities in every time inter-
val for each admitted request. A time interval or timeslot is a period of time in
which reservations remain invariant. Multiple requests in media production net-
works may depend on each other, meaning that one request can only start when
other requests that are dealt with, have been finished. This interdependency is ex-
plicitly incorporated in our approaches. A multi-path routing scheme is followed
and the bandwidth scheduling algorithms is based on extending the classical short-
est path and maximum flow problems, i.e. modified version of the Dijkstra [34]
and Edmonds-Karp [35] algorithms.

An example of advance reservation schedules provided by the DARA algo-
rithm is shown in Figure 3.2. As can be seen, in every timeslot each request has
been served with different allocations, considering the request demands and net-
work capacities. Two individual schedules are generated separately for primary
and backup reservations. This scheduling is employed by the reservation system
as long as no new scenario is submitted to the system. In this context, scenario
refers to a set of several interdependent video transfer requests.

Our advance reservation algorithms support rescheduling in order to incorpo-
rate new requests at runtime. As shown in [36–38], advance reservations decrease
network utilization if dynamic reservations are also supported. To improve net-
work utilization, in DARA approach, we assume that whenever a new scenario
enters into the reservation system, all new and advance-scheduled requests are be-
ing re-scheduled. Since a fixed timeslot-based approach has been followed, if the
new scenario is admitted, the entire schedule will be updated from the next time
interval.

In the DARA algorithm, the backup paths are disjoint from the primary ones.
The provisioned protection method guarantees a single link failure recovery. The
backups are determined to fulfill the maximum bandwidth allocated on the links
of the primary paths. This means that to provide 100% backup, there is no need to
allocate the exact amount of bandwidth as in the primary paths [6]. The amount
of backup reservation also depends on how the primary demands are allocated. To
make it clearer Figure 3.3 is depicted for a request with 30Mbps primary alloca-
tion and 100% backup demand. This figure indicates that how different ways of
allocating primary paths can affect the amount of backup demand. In Figure 3.3a
three paths of 10Mbps are allocated to the request. Therefore, it is sufficient for the
shared backup to provide 10Mbps. In figure 3.3b one path is dedicated as primary.
In this case the backup has to offer full primary capacity which is 30Mbps. In the
third case, backup path offers 17Mbps, which equals to the maximum bandwidth
reservation among all primary allocations.

Based on the outcome of the DARA approach, the requests are either rejected

60 CHAPTER 3

Ti

m
e

sl
o

t
 k

Ti

m
e

 s
lo

t
 3

Ti

m
e

sl
o

t
 2

Ti

m
e

 s
lo

t
 1

Link 1 0Mbps

Link 2 0Mbps

Link 3 45Mbps

Link n 0Mbps

…

Req m (backup)

Link 1 30Mbps

Link 2 10Mbps

Link 3 0Mbps

Link n 0Mbps

…

Req 3 (backup)

Link 1 60Mbps

Link 2 0Mbps

Link 3 0Mbps

Link n 10Mbps

…

Req 2 (backup)

Link 1 0Mbps

Link 2 0Mbps

Link 3 0Mbps

Link n 0Mbps

…

Req 1 (backup)

Ti
m

e
 s

lo
t

 k

Ti
m

e
sl

o
t

 3

Ti
m

e
sl

o
t

 2

Ti
m

e
 s

lo
t

 1

Link 1 30Mbps

Link 2 0Mbps

Link 3 0Mbps

Link n 15Mbps

…

Req m

Link 1 0Mbps

Link 2 0Mbps

Link 3 40Mbps

Link n 5Mbps

…

Req 3

Link 1 0Mbps

Link 2 15Mbps

Link 3 70Mbps

Link n 0Mbps

…

Req 2

Link 1 80Mbps

Link 2 10Mbps

Link 3 20Mbps

Link n 95Mbps

…

Req 1

P
ri

m
ar

y
al

lo
ca

ti
o

n
s

B
ac

ku
p

 a
llo

ca
ti

o
n

s

Figure 3.2: The primary and backup schedules provided by DARA.

10Mbps

A
B

(a)

25Mbps

A
B

(b)

3Mbps

A
B

(c)

Figure 3.3: Dependency of backup demand on the reserved primary paths. (Blue: Primary
reservation, Red and dashed: Backup reservation)

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 61

1 2 3 4 5 6 7 8 9 10

R
eq

u
es

ts

Time

(a) Reservations based on the
DARA

1 2 3 4 5 6 7 8 9 10

R
eq

u
es

ts

Time

(b) Transfers based on the
DARA in practice

1 2 3 4 5 6 7 8 9 10

File transfer primary capacity
File transfer backup capacity
Reserved video stream capacity
Used video stream capacity

R
eq

u
es

ts

Time

(c) Transfers based on the RA in
practice

Figure 3.4: Comparing the DARA algorithm in theory, in practice and the RA approach
contribution.

or admitted. However, in presence of failures, not all the admitted requests can
be completely transferred. Hence, the admitted requests can be categorized as
succeeded, degraded or failed. Succeeded requests are those that have been fully
transmitted. Deciding on the degraded or failed states depends on the users’ prefer-
ence. In this work, we assume that the users asked for the same value as percentage
of backup demand, i.e. if a request has a demand for 60% backup, this request is
considered as degraded if at least 60% (but less than 100%) of its volume has been
transferred by its deadline, otherwise the request is failed. It should be noted that
for 0% and 100% of backup demand, no degradation has been considered. Those
requests are either fully-transferred or failed.

3.3.2 Runtime adaptation (RA) methodology

Figure 3.4a illustrates an example schedule for four file transfers and one video
stream based on the DARA algorithm in a time span of 10 time intervals. For the
file transfers, the parts in blue show the primary bandwidth allocations and the
parts in gray refer to the backups which are provisioned to be used when a fail-
ure occurs in order to be able to transfer the video according to the agreed SLA
(Service Level Agreement). Figure 3.4b shows how the network operates in prac-
tice: the backup paths are seldom in use and the reserved bandwidth for the video
streams are not continuously utilized, resulting in wasted network capacity. As can
be seen in Figure 3.4c, to have a higher performance and network utilization, we
propose a hybrid approach that combines the DARA scheduling approach with an
online adaptation system which uses wasted network capacity to increase network
utilization.

The RA approach follows two sequential phases in every timeslot: 1) the peri-
odic update and 2) the periodic adaptation. Dynamic network conditions (such as
fluctuations, failures, etc.) affect the allocated capacities and network status. As
such, the periodic update is repeated before the end of every timeslot to take into
account the real transmitted data instead of scheduled ones and update the sched-
ule based on recent information. The periodic update is followed by the periodic

62 CHAPTER 3

Figure 3.5: The collaboration between different components in every timeslot in the RA
approach.

adaptation, which is a complementary step to continually adapt network transfers,
taking into account the current state of network and transfers and making use of
idle network capacity. The periodic adaptation phase is in operation throughout
the next time interval.

As illustrated in Figure 3.5, the RA approach consists of seven components as
follows:

• Advance reservation: in charge of producing a schedule using the DARA
scheduling algorithm. The DARA algorithm is invoked under two circum-
stances. First, when new scenarios enter the reservation system, leading to
an update of the entire schedule for all admitted and unfinished requests.
Second, when the schedule needs to be updated during the periodic update.
Since periodic adaptation algorithms make use of idle network capacities
and real transfers potentially run ahead of schedule, the latter is necessary to
take into account the extra transfers and do the re-scheduling for the resid-
ual demands. In both cases the schedule is modified at the start of the next
timeslot.

• Global state manager: contains all information about scheduling, network
and request reservations, connections, demands, deadlines, etc. The time

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 63

when the current timeslot is started or when it finishes can be retrieved from
the global state.

• Monitoring system: keeps track of monitored times, residual demand and
current allocated bandwidth for all requests. The monitoring system also
regularly checks network conditions and raises an event as soon as a failure
is detected.

• Job manager: contains the list of current advance-scheduled requests and
current waiting list requests. Advance-scheduled requests refer to the re-
quests that have already been scheduled by the DARA algorithm to be trans-
ferred in the current timeslot. The waiting-list requests are those requests
that can potentially be started in this timeslot, but are postponed due to lim-
ited network capacity.

• Connection manager: decides what to do when a transfer is started or
stopped. As long as there are requests with active connections, this com-
ponent is operational. Whenever a connection for a file transfer is termi-
nated, the links those were in use by this connection become free. In order
to improve network utilization, this capacity can be used by other active re-
quests if shared links were in use. To achieve this, after completion of a file
transfer, an event will be raised.

• Reservation manager: collects all the information about the reservations
of each request. Primary allocations, backup reservations, extra allocations
made during the periodic adaptation phase and allocated network resources
can be retrieved from this component.

• Adaptive optimization: in charge of optimization to try and push more
data than what has been guaranteed through advance reservation. The Adap-
tive Optimization (AO) algorithm is the main algorithm in this component
which is triggered by several events: start of a timeslot, start and end of file
based requests, link failures and repairs. Based on this algorithm, the current
schedule is analyzed and adapted to use idle bandwidth capacities.

The rest of this section describes the way the RA phases make use of these
components to contribute in performance improvement of media production net-
works.

3.3.3 First phase: Periodic update

During the periodic update, first the current status of the network and transfers
are monitored and then the DARA algorithm is invoked. This process updates

64 CHAPTER 3

the entire schedule based on the information retrieved from the monitoring sys-
tem. This new information will be set in the global state manager. Then the next
timeslot reservations are derived from the advance reservation schedule and are set
as advance-scheduled requests in the Job manager. The list of advance-scheduled
requests contains all requests which have been scheduled to be transferred from
now on. Take into account that potentially there are other requests which could be
started, but have been postponed due to bandwidth constraints. These requests are
kept in a waiting list and used in the periodic update phase.

3.3.4 Second phase: Periodic adaptation

The Adaptive Optimization (AO) algorithm is the main algorithm in the periodic
adaptation phase. The AO algorithm is triggered several times, i.e. whenever a file-
based video starts/finishes transferring , and in the case of any link failure or link
repair. The first invocation of this algorithm is before the start of the next timeslot.
Based on this algorithm, in this step the scheduling over the next timeslot is ana-
lyzed and modified to make use of idle bandwidth capacities. To achieve this, the
advance-scheduled requests are retrieved from the job manager and then the reser-
vations for backups and video streams are ignored (Because video streams may not
always be active and can be resumed/played-back multiple times throughout the
reserved period). This gives us a network in which only the primary reservations
occupy the network capacities.

3.3.5 Modeling of the runtime adaptation methodology

In order to model the dynamic aspect of the proposed approach, we have designed
a discrete-event based simulator in which the following events are noteworthy:

• Scheduling update: When the DARA algorithm is finished, this event is
raised.

• File-based video transfer start time: When a file transfer starts, the AO algo-
rithm is invoked for all active and new requests.

• File-based video transfer stop time: The fully completed request is removed,
the other active requests’ demands are updated and the AO algorithm is in-
voked. The previously calculated end times of other active requests are can-
celed.

• Video stream start time or play-back: The video stream transmission is
started and allocated bandwidth for the affected file transfers are updated
based on the information provided by the VS activation/deactivation han-
dler.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 65

• Video stream stop time or resume: The allocated bandwidth for the affected
file transfers reset to the previous value provided by the AO algorithm.

• Global state update: This event is raised to update reservations and connec-
tions, etc.

• Failure: As soon as any failure is detected, the link failure/repair handler is
invoked, based on which the failed link is removed from the network graph
and the AO algorithm is invoked to adapt ongoing transfers.

• Repair: When the failure is resolved, the link failure/repair handler is in-
voked.

3.4 Runtime Adaptation (RA) algorithms
In this section the algorithms which are used in the periodic update and periodic
adaptation phases of the RA approach, shown in Figure 3.6, are described.

3.4.1 Periodic update algorithms

The periodic update phase consists of two main steps: The UpdateRequestsInfo al-
gorithm, shown in algorithm 6, and the DARA algorithm. We do not elaborate on
the DARA algorithm in-detail as it has already been explained in-depth in [6]. In
the UpdateRequestsInfo algorithm, the demand of submitted requests is updated.
To achieve this, first finished and unadmitted requests are removed from the reser-
vation system and then demand of all other submitted requests is updated based on
the type of request. For file-based requests however, we deal with volume, so the
allocated bandwidth is not fixed and may vary from one timeslot to another. For
video steaming requests we deal with fixed bandwidth requirements. Therefore,
for file transfers the last monitoring time, last allocated bandwidth and residual
transfer volume are updated based on monitored information. If the residual de-
mand of a file-based request is zero, the request has been finished and has to be
removed. For video streams, the requests whose deadlines (tne (rq)) are expired are
removed. As our approach supports interdependencies among requests, for all re-
quests, list of dependencies are adjusted in case there is any start time dependency
to removed requests.

3.4.2 Periodic adaptation algorithms

The Adaptive Optimization (AO) algorithm, which is frequently triggered in the
periodic adaptation phase of the RA approach, is shown in Algorithm 7. This
algorithm also triggers the UpdateRequestsInfo algorithm. Therefore, demands of
all requests are already updated whenever the AO algorithm is called.

66 CHAPTER 3

Periodic update phase Periodic adaptation phase
Resilient Advance

Reservation (DARA)

Periodic adaptation algorithms invocations:

1) Before the start of each timeslot

2) File transfer start event

3) File transfer stop event

4) Failure event

5) Repair event

Periodic update algorithms invocations:

1) Before the start of each timeslot

Global State manager

Link Failure/repair handler

Adaptive Optimization (AO)

VS activation/deactivation handler

Link Failure/repair handler invocations:

 1) as soon as any failure is detected

 2) as soon as the failed link is restored

updaterequestInfo updaterequestInfo

Figure 3.6: Algorithms used in periodic update and periodic adaptation phases of the RA
approach. Narrow arrows show invocations.

algorithm 6: The UpdateRequestsInfo algorithm.

for (rq ∈ Set of submitted requests) do
if (request not admitted) then

removedReq.add(rq);
else if (Type (rq) = FB) then

LastMonitoringTime(rq)← current time;
LastAllocatedBW(rq)← monitoring.getBW(rq);
residualVol(rq)← monitoring.getVol(rq);
if (residualVol(rq) = 0) then removedReq.add(rq);

else if (Type(rq) = VS & tne (rq) < current time) then
removedReq.add(rq)

end
end
for (rq ∈ Set of submitted requests) do

SetDependencylist(rq).remove(removedReq);
end

Based on the AO algorithm, the advance-scheduled requests (ASReq) and the
list of waiting requests (WLReq) are retrieved from the job manager. In both lists
the requests are sorted. The main factor for this sorting is the estimated deadline:
the sooner the deadline, the higher the priority. The second factor, volume, comes
into consideration only when the deadlines are equal, the higher the demand, the
higher the priority. Then, reservations made for backups and video streams (VSs)
are ignored. This gives us a network in which only the primary reservations occupy
network capacity. Then, for the advance-scheduled requests, new extra allocations
(ExtraAlloc) for requests over this residual graph are computed. Extra reservations
are aggregated with the primary reservations of requests and their assigned band-

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 67

algorithm 7: The Adaptive Optimization (AO) algorithm which is the main algorithm in the
periodic adaptation phase of the RA approach.

UpdateRequestInfo();
ASReq← JobManager.getASReq(current time);
WLReq← JobManager.getWLReq(current time);
PriorityBasedSorting (ASReq);
PriorityBasedSorting (WLReq);
graph← GlobalState.getGraph(current time);
graph.removeReservations(VSs, Backups);
ExtraAlloc← BWallocation(ASReq, graph);
for (rq ∈ ASReq) do

TotalAlloc(rq)← PrimaryAlloc(rq) + ExtraAlloc(rq);
FinishTime(rq)← residualVol(rq)/TotalAlloc(rq);
rq.SetReservations(TotalAlloc(rq));
rq.StartConnection(current time);
rq.FinishConnection(FinishTime(rq));

end
WLAlloc← BWallocation(WLReq, graph);
for (rq ∈ WLReq) do

if (WLAlloc(rq) 6= 0) then
FinishTime(rq)← residualVol(rq)/WLAlloc(rq);
rq.SetReservations(WLAlloc(rq));
rq.StartConnection(current time);
rq.FinishConnection(FinishTime(rq));

end
end

width will be potentially increased. For each request, new allocations are updated
in the reservation manager. Based on these new allocations, the start time and fin-
ish time of requests are configured in the connection manager. All the reservation
and connection information is saved in the global manager. The same steps are re-
peated for the waiting-list requests. The only difference is that there is no primary
reservations for those requests.

A request that finishes will raise an event which first cancels the stop time
events of all other active requests. Then, the AO algorithm is triggered to calculate
extra allocations and finish times. Since a request just finished, these new finish
times will be earlier than the previously canceled ones. Moreover, whenever a
new request is ready to be started within a time interval, this may also raise an-
other event to trigger the AO algorithm. This cycle is repeated as long as requests
trigger events.

Detecting a failure or repair throws an event whose handler is shown in Al-
gorithm 8. Based on this algorithm, first the failed/restored network elements
are removed from/restored to the network. By calculating the effect of failures
on each request, the primary and backup reservations of all affected requests are

68 CHAPTER 3

algorithm 8: Link failure/repair event handler.

input: failed/repaired link, network graph
FailedLinks.add/remove(link);
if (FailedLinks 6= empty) then

graph.removeFailedLinks(FailedLinks);
GlobalState.setGraph(current time);

end
for (rq ∈ requests affected by failure) do

if (PrimaryAlloc(rq).contains(FailedLinks)) then
rq.UpdatePrimaryAllocations(FailedLinks);

else if (BackupAlloc(rq).contains(FailedLinks)) then
rq.UpdateBackupAllocations(FailedLinks);

end
end
AdaptiveOptimization();

updated. The AO algorithm is invoked to re-optimize ongoing transfers, taking
into account network failure status. In general, Algorithm 8 allows the reserva-
tion system to adjust in-advance reservations for affected requests and makes new
additional reservations over residual network capacity.

Algorithm 9 shows how file based transfers’ bandwidth allocations are var-
ied when transmission of video streaming requests (with BV S bandwidth demand
over the VSlinks) are started. This algorithm is executed whenever the AO algo-
rithm is invoked to determine which requests have to be restrained to serve the
video streaming request whenever it becomes active. In order to do this, first the
algorithm checks the residual network capacity to update the video stream demand
if part of the advance reservations for this request is still untouched. Then, ongo-
ing file transfers are sorted from lowest priority to highest, common links (Clinks)
between video stream and extra allocation of file transfers are checked and the
common allocations are removed from the extra allocations of file-based request.
This is repeated until the video stream demand is fulfilled. Note that this is a pro-
visioning algorithm to re-act immediately as soon as a video stream request starts
using its reservations.

3.4.3 Clarifying examples

Figure 3.7 shows an example of the difference between the reservations made by
the DARA algorithm and the reservation as input of the AO algorithm in periodic
adaptation phase of the RA approach. As can be seen in Figure 3.7a, two file-based
transfers and one video stream are active with primary and backup paths in one
timeslot. FB1 is a file-based request from node A to node B with 200Mbps mul-
tipath allocation, FB2 is similar to FB1 but from node C to node D and 700Mbps
reservation, video stream VS1 has a requirement of 50Mbps, from node E to node

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 69

algorithm 9: VS activation/deactivation handler.

input: request VS
VSlinks← AdvanceReservedLinks(VS);
for (l ∈ VSlinks) do

VSdemand(l)← BV S− residualCapacity(l);
if (VSdemand(l) ≤ 0) then VSlinks.remove(l);

end
for (FB ∈ File-Based requests) do

CLinks← CommonLinks(ExtraAlloc(FB),VSLinks);
for (l ∈ CLinks) do

x← ExtraAlloc(FB, l);
if (x ≥ VSdemand(l)) then x← VSdemand(l);
ExtraAlloc(FB)← ExtraAlloc(FB) − x;
VSdemand(l)← VSdemand(l) − x;
if (VSdemand(l) = 0) then VSlinks.remove(l);

end
end

A

C

D

B

F

E

100

100 200

200

200

2
0

0

2
0

0

400 400

300 300

400

400

4
0

0

4
0

0

50

5
0

(a) Reservations made by the DARA
algorithm

A

C

D

B

F

E

100

100 200

400 400

300 300

(b) Reservations considered by the AO
algorithm

FB1: Primary reservation
FB1: Backup reservation
FB2: Primary reservation
FB2: Backup reservation
VS1: Primary reservation
VS1: Backup reservation

Figure 3.7: Comparing a snapshot view of bandwidth reservations for 3 requests as output
of the DARA algorithm and as input of the AO algorithm (Full lines: primary reservations,

dashed lines: backup reservations, Open arrows: file-based transfers).

F. As shown in this figure, for each individual request, primary and backup paths
do not have any link in common. All three requests had a requirement of 100%
backup and the amount of capacity reserved as backups equals the maximum al-
located bandwidth along the primary paths, which is equal to 200Mbps, 400Mbps
and 50Mbps for FB1, FB2 and VS1 respectively.

Figure 3.7b shows the reservations taken into account in the AO algorithm
before the start of the next timeslot. The video stream and all the backups are
eliminated and only file transfer primary paths are kept. Taking this network into
account, extra allocations for each request are calculated. These extra reservations
will be aggregated with the primary reservations of the requests and their assigned
bandwidth will be increased. For each request the new allocations are updated in
the reservation manager. Whenever a request is finished, the bandwidth reserved
for that finished request is returned to the network resource pool and the AO algo-
rithm is re-invoked to determine new allocations. Based on the new allocations, the

70 CHAPTER 3

Backup allocation

Primary
allocation

 = 80 Mbps

Extra
allocation

= 160 Mbps
Primary allocation = 80 Mbps . . .

. . .
. . .

. . .

File transfer finish time
using RA approach

File transfer finish time
based on DARA schedule

Time slot size= 1000 sec Time slot size= 1000 sec

. . .

Total allocation =
240Mbps

Time Time

Figure 3.8: Differences between bandwidth allocation algorithms in the DARA and RA
approaches.

start time and finish time of the requests are set and kept in the connection manager.
This cycle is repeated until all requests are finished or the timeslot ends. In case a
video stream is activated, the advance reservation for this request is prioritized and
other extra allocations that have made use of this capacity, are interrupted. Ap-
plying the AO approach, the reservations will not remain fixed during each time
interval. As for the actual transfers, we make use of the extra allocations in ad-
dition to the primary allocations, in stable network conditions the actual transfers
are higher than what had been previously envisioned by the DARA approach.

Figure 3.8 clarifies the differences between bandwidth allocation algorithms
in the DARA approach and in the AO algorithm of the RA approach. The key
difference is that the advance reservation algorithm takes the size of the timeslots
into account. For example for a 10 GB file, the primary allocated bandwidth is
80 Mbps which is enough for the file to be transferred in a 1000-second timeslot.
Note that based on the DARA approach, the allocated bandwidth may vary from
timeslot to timeslot but it is fixed within each timeslot. Using the RA approach,
the allocations may vary when the network is in operation, even within timeslots.
The extra allocation for the request is calculated, depending on the spare network
capacity. Considering the extra allocation of e.g. 160Mbps, the sum of all alloca-
tions is three times higher than the primary allocation. Therefore, the file transfer
is finished in a third of the time of the finish time which was computed in advance
when no failures occur.

During the runtime, any early finish will trigger an event which indicates that
the present connection can be torn down. The links which were in use by this
request are now free, allowing other active requests from the advance-scheduled
list, to use more bandwidth if the shared links were in use. Furthermore, there can
be other future requests in the advance reservation schedule which can make use
of some of these links. Since these links have already been reserved for a finished
request, the future requests stored in the waiting list, could be analyzed and poten-

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 71

En
d

-t
o

-E
n

d

A
llo

ca
te

d
 b

an
d

w
id

th

Primary allocation

e1
(VS1,start)

e2
(VS2,start)

e3
(VS1,stop)

e4
(VS2,stop)

Time

t0 t1 t3 t2 t4

Extra allocation

e0

Figure 3.9: The impact of video streaming requests activation / deactivation on file
transfer finish time in the periodic adaptation phase of the RA approach.

tially scheduled. To achieve this, the finished request is removed from the request
list and the AO algorithm is triggered. In doing so, the corresponding file trans-
fers begin earlier than they were scheduled by the advance reservation scheduler,
improving link utilization.

As the reserved capacities for video streams and backups have a double pur-
pose, pre-determining how to manage the conflicts before they happen is crucial.
To achieve this, two important functions called failure/repair handler and VS acti-
vation/deactivation handler are proposed. The VS activation/deactivation handler
determines when any video stream is active, the extra allocation of which file-
based requests are affected and how the extra allocation of the affected request
is adjusted to reflect this activation. The failure/repair handler determines how
to handle the conflicts when the backup reservations are active for their original
purpose. During the runtime, any failure/repair or any video streaming start/stop
or resume/play-back will prompt an event and the information provided by these
functions allows the management system to quickly handle the event. To elaborate
more on this, Figure 3.9 shows how video streaming requests’ activation/deacti-
vation affect the extra allocation of a file transfer, allocated by the RA approach.
As can be observed from this figure, the finish time of a file transfer is adjusted
as soon as a video stream request starts/stops. Five events e0-e4 cause 5 different
finish time t0-t4 for the file transfer request. e0 is the first event in the periodic
adaptation phase, at the beginning of the timeslot when no VS is active, and the
estimated finish time is t0. VS1 activation raises an event (e1), based on which t1 is
calculated as the new finish time and then t0 is substituted by t1. Other VSs activa-
tions/deactivations have the same impact on the file transfer finish time. Eventually
as e4 is the final event in this timeslot, the file transfer is finished at t4.

Several invocations of the AO algorithm during the periodic adaptation phase
are shown in depth in Figure 3.10. The reservations made by the DARA algo-
rithm for the first timeslot, starting at 0 and ending at 300s, are illustrated in Fig-
ure 3.10(a). We assume that no failures are occurred during this time interval.
Three file-based transfers FB1, FB2 and FB3 are reserved with 100%, 50% and
30% backup (shown in dashed rectangles) respectively. Figures 3.10(b)-(f) show

72 CHAPTER 3

how the AO algorithm in the periodic adaptation phase is being used to optimize
the transmissions. In Figure 3.10(b), the primary reservations are adapted by the
first invocation of the AO algorithm before the timeslot starts. Based on these
new allocations, FB1 finishes at 140s, FB2 at 200s and FB3 at 100s. As FB3 has
the earliest finish time, the AO is invoked again at 100s. This is shown in Fig-
ure 3.10(c). As the capacity used by FB3 has now been released, FB4 has the
opportunity to start earlier. Based on the advance reservations, FB4 should have
started in the next time interval at 300s, but thanks to the AO algorithm, it can be
started earlier at 100s. The stop time of FB1 and FB2 is also updated from 200s
to 150s and from 140s to 130s respectively. As can be seen in Figure 3.10(d), the
next time for re-invocation of the AO algorithm is at 130s when FB2 is terminated.

It should be noted that for some requests there could be enough capacity to be
transferred but due to inter-dependencies on other requests, they have to be post-
poned. The RA approach tries to accommodate these requests as soon as their
dependencies are eliminated. To elaborate more on this, we assume that FB5 has
a dependency to FB2 and can only be started when FB2 finishes. Based on the ad-
vance reservation schedule FB5 cannot start in this timeslot as FB2 is in operation.
Now, using the RA approach, it can be started earlier at 130s instead of the next
timeslot. As Figure 3.10(e) shows, only FB4 and FB5 are active from time 140s.
This means that all primary reservations have been transferred by then which indi-
cates that the transfer of advance-scheduled requests is 160s ahead of the resilient
schedule. The last invocation takes place at 190s when FB4 finishes and from then
only FB5 is being transferred. This is shown in Figure 3.10(f). This example also
shows that the RA approach tries to mitigate the side-effects of fixed time intervals.
In periodic adaptation step, not only the spare capacities are re-used, but also the
allocated bandwidths vary within timeslots, resulting in a more flexible transfers
comparing to the DARA schedule.

Figure 3.11 illustrates the impact of periodic update and periodic adaptation al-
gorithms on the performance of bandwidth reservation system within 3 timeslots.
FB1, FB2 and FB3 asked for 100%, 30% and 50% backup respectively. According
to the advance reservations, FB1 has bandwidth allocations of 200Mbps in the first
and 100Mbps in the second timeslots, FB2 150Mbps in the first and FB3 300Mbps
in the third time interval. Applying the RA approach and by several invocations of
the AO algorithm, which ignores the backup reservations, FB1 and FB2 have com-
pletely transferred in the first timeslot and transfer of FB3 has already been started.
Before the start of the second timeslot, the schedule is updated during the periodic
update phase. Therefore, the reminder of FB3 is shifted to the second timeslot and
the bandwidth reservations for FB3 in the third timeslot are completely released.
As can be seen when a new scenario is submitted to the reservation system at the
end of the second timeslot, if the RA approach is not used, the management system
would not have been able to serve the new scenario, but it is admitted thanks to the

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 73

140 Mbps

100 Mbps

Primary FB1

Backup FB1 (100%)

Primary FB2

Backup FB1 (50%)

200 Mbps Primary FB3

Backup FB3 (30%)

300

(b) Result of
Runtime adaptation
before the start of

time slot

(a) One time slot
 scheduling based on

resilient DARA algorithm

0

300 Mbps

 150 Mbps

FB1

FB2

600 Mbps FB3

100 140 200 300 0

Timeslot size = 300 seconds

Time

Time

FB1

FB2

FB4

600
Mb
ps

FB2

FB4

140 215 300 130

190 300 140

FB4

FB5

190 300

FB5

0

0

0

(c) Re-invocation of
AO algorithm

at time 100

(d) Re-invocation of
AO algorithm

at time 130

(e) Re-invocation of
AO algorithm

at time 140

(f) Re-invocation of
AO algorithm

at time 190

300 Mbps

130 150 300

 200 Mbps

100 0

400
Mb
ps

600
Mbps

600
Mbps

 150 Mbps

 400 Mbps

230

Time

Time

Time

Time

Figure 3.10: Single timeslot reservations made by the DARA algorithm and multiple
re-invocations of the AO algorithm during the periodic adaptation phase of the RA

approach.

74 CHAPTER 3

TimeSlot:1 TimeSlot:2 TimeSlot:3

Primary FB1 =
200 Mbps

Backup FB1
(100%)

Primary FB2 =
150 Mbps

Backup FB2 (30%)

Primary FB1 =
 100 Mbps

Backup FB1 (100%)
Primary FB3 =

300 Mbps

Backup FB3 (50%)

F
B
3

FB1
=

600
Mbps

FB2
=

300
Mbps

Primary FB3 =
180 Mbps (updated)

. . .
 Backup FB3 (50%)

Periodic
 update

Transfer stop
events

AO algorithm
 invocations

 running
periodic adaptation
in TimeSlot:1 and
periodic update
 before starting

TimeSlot:2

New scenario -> Admitted

New scenario -> Rejected

 DARA scheduling

DARA scheduling +
Runtime adaptation

Result of DARA
re-scheduling

in periodic
update before

timeslot:2 starts

Result of AO
invocations

during periodic
adaptation

in timeslot: 1

Time

Time

A
llo

ca
te

d
 b

an
d

w
id

th

A
llo

ca
te

d
 b

an
d

w
id

th

FB2 = 30
Mbps FB3 =

200
Mbps

Figure 3.11: The impact of invocations of algorithms in periodic update and periodic
adaptation phases of the RA approach on performance of reservation system.

RA approach.

3.5 Performance evaluation

In order to model the dynamic aspect of our model, we have designed a discrete-
event-based simulator using the MASON multi-agent simulation toolkit [39]. In
this section the impact of using a runtime adaptation approach is thoroughly eval-
uated and compared to the DARA algorithm. The DARA approach can be con-
figured for different percentages of requests known in advance. This refers to the
percentage of scenarios that are known at the start of the simulated period. In
these evaluations, we assume that none of the scenarios are known in advance,
which is the most realistic case. It should be noted that the DARA approach has
been previously validated compared to an exact optimal ILP-based solution.

Throughout this section, DARA[XX%,YY]+RA denotes that dynamic version
of resilient advance reservation approach with XX% of backup and failure rate of
YY is used. The second part (RA), is optional and specifies if the runtime adapta-
tion approach was used or not.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 75

 8-node topology 25-node topology

Service Provider

Production Studio

Broadcaster

Figure 3.12: Media production network topologies used for evaluation.

3.5.1 Evaluation Setup

In this evaluation we have used 8-nodes and 25-nodes media production network
topologies, depicted in Figure 3.12. The 25-node topology is the well-known ATT
North America topology [40] consisting of 25 nodes and 56 bidirectional links
(112 links in total) which matches to the size of realistic media production net-
works. The default network capacity is 300Mbps per link. We have previously
defined three scenario templates based on the information gathered from several
Belgian media production actors, including a broadcaster, service provider and
recording facility provider [5]. Each scenario contains a collection of interdepen-
dent file and video streaming transfers with randomized parameters. Template1 is
composed of 5 different file transfer requests. Template2 comprises 18 interdepen-
dent file transfers. The third template includes 4 file transfer requests and 4 video
streams.

For the 8-node topology, the number of scenarios equals 20, of which 7, 7 and
6 are of template1, template2 and template3 respectively (209 requests in total).
For the larger 25-node topology, the number of scenarios is 50, of which 17, 17
and 16 are of the first, second and third templates respectively (519 requests in
total). A fixed time interval granularity of 1 hour is used. It should be noted that,
every 1-hour timeslot in the AR approach is divided into several flexible times-
lots by the RA approach. As in the considered scenario templates the requests are
only known a few hours in advance, each simulation run covers a 24 hour period.
All results are averaged over 50 runs with different generated scenarios, error bars
denote the standard error.

In order to generate MTBF (mean time between failures), MTTR (mean time
to repair) and video stream activation/deactivation events, we used a normal dis-
tribution function with equal values for both mean and standard deviation. This
value equals 5 minutes for video stream activation/deactivation. It is not trivial to
assign a value for MTTR, as it depends on multiple factors, e.g. type of links, type

76 CHAPTER 3

Table 3.1: Maximum and average number of concurrent failures for different failure rates
in 8-node and 25-node topologies.

8-node topology (32 links) 25-node topology (112 links)

Failure rate AVG MAX AVG MAX

1h 14.45 22 47.82 63
2h 8.76 17 31.97 46
4h 5.3 10 16.64 26
10h 2.17 6 8.47 20
20h 1.2 4 3.9 8

of failures, underlying technology [41]. The main focus of this section is to eval-
uate the performance of our approach under catastrophic failures in failure-prone
networks. As such, 48 minutes is chosen as mean/standard deviation value for the
MTTR to experience higher unavailability. However, in unstressed network condi-
tions this value is reduced to 5 minutes. To give an insight in number of concurrent
failed links for each topology, Table 4.1 shows the maximum and average number
of failed links for different MTBF values under stressed network conditions.

The bandwidth contention per link for the 8-node and 25-node topologies is
shown in Figure 3.13. When calculating bandwidth contention, we assume that
all requests are admitted and use a single shortest path from source to sink. Con-
trary to the video streaming requests which have a fixed bandwidth demand, the
bandwidth requirement of file-based transfers has to be estimated. Due to interde-
pendencies among requests of each scenario, some requests may not have specified
start or stop times. In order to have an estimation, the volume of all file transfer
requests belonging to a scenario are divided by the time from when the earliest re-
quest of the scenario is ready to be transferred until its final deadline (the deadline
of the latest request). Actors between scenarios move, except for some common
locations. As shown in Figure 3.12, prim locations i.e. service provider, pro-
duction studio and broadcaster, are located at highly connected nodes. Locations
of other actors are randomly chosen. Therefore, Figures 3.13a and 3.13b show the
connection to prime locations as a set of hotspots with high intensity. In the 8-node
and 25-node topologies the highest contention per link is at maximum 655Mbps
and 2,095Mbps respectively.

3.5.2 Impact of different failure rates, fixed backup demand

3.5.2.1 Impact of available bandwidth

First, we evaluate the impact of changing the network link capacity. Figure 3.14
and Figure 3.15 show the impact of available bandwidth and different failure rates
on the performance of the RA approach for the 8-node and 25-node topology re-
spectively. In both topologies, bandwidth capacity per link is parametrized from

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 77

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 R
el

at
iv

e
b

an
d

w
id

th
 d

em
an

d
 (

M
b

p
s)

Link number

default link capacity

(a) Bandwidth contention for the 8-node topology.

0

500

1000

1500

2000

2500

1

4

7

1
0

1

3

1
6

1

9

2
2

2

5

2
8

3

1

3
4

3

7

4
0

4

3

4
6

4

9

5
2

5

5

5
8

6

1

6
4

6

7

7
0

7

3

7
6

7

9

8
2

8

5

8
8

9

1

9
4

9

7

1
0

0

1
0

3

1
0

6

1
0

9

R
e

la
ti

ve
 b

an
d

w
id

th
 d

e
m

an
d

 (
M

b
p

s)

Link number

default link capacity

(b) Bandwidth contention for the 25-node topology.

Figure 3.13: Bandwidth contention per link for 20 scenarios in 8-node topology and 50
scenarios in 25-node topology.

78 CHAPTER 3

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

P
er

ce
n

ta
ge

 o
s

su
cc

e
ed

e
d

 r
eq

u
es

ts

Physical network capacity (Mbps)

DARA[100%, 0] + RA

DARA[100%, 10h] + RA

DARA[100%, 4h] + RA

DARA[100%, 0]

DARA[100%, 10h]

DARA[100%, 4h]

Figure 3.14: Impact of network capacity and failure rates on the performance of using the
RA approach for the 8-node topology.

200Mbps to 1Gbps and all scenarios’ requests demand 100% of backup. These
figures show that the RA outperforms the DARA up to 27.6% and 36.12% with
4-hour failure rates for 8-node and 25-node networks respectively. The standard
error at maximum reaches to 1.16% in smaller and 1.5% in larger topologies (not
shown for greater legibility). Our results show that regardless of the failure rate,
the RA approach almost always outperforms the DARA approach.

3.5.2.2 Impact of network load

Figure 3.16 and Figure 3.17 show the impact of network load and different fail-
ure rates on the performance of the RA approach using the 8-node and 25-node
topology respectively with a backup demand of 100%. Since the network capacity
remains fixed, adding more requests leads to an increase in rejection rate. The re-
sults show this for both smaller and larger topologies, the RA approach improves
the percentage of admitted requests up to 23% and 30% on average respectively.

3.5.3 Impact of different backup demands, fixed failure rate

3.5.3.1 Impact of available bandwidth

Figures 3.18a, 3.18b, 3.19a and 3.19b analyze the impact of network capacity and
percentage of backup demand on the performance of our approaches. In these
evaluations, backup demand of 0% and 100% and failure rate of 10 hours are
taken into account. Figure 3.18a and Figure 3.19a show the average percentage of
succeeded requests (out of all submitted requests) in 8-node and 25-node networks

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 79

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

P
er

ce
n

ta
ge

 o
f

su
cc

ee
d

e
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[100%,0]+RA

DARA[100%,10h]+RA

DARA[100%, 4h]+RA

DARA[100%,0]

DARA[100%, 10h]

DARA[100%, 4h]

Figure 3.15: Impact of network capacity and failure rates on the performance of using the
RA approach for the 25-node topology.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

P
er

ce
n

ta
ge

 o
f

su
cc

ee
d

e
d

 r
eq

u
es

ts

Number of scenarios

DARA[100%, 0]+ RA

DARA[100%, 10h] +RA

DARA[100%, 4h] + RA

DARA[100%, 0]

DARA[100%, 10h]

DARA[100%, 4h]

Figure 3.16: Impact of network load and failure rates on the performance of using the RA
approach for the 8-node topology.

80 CHAPTER 3

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

P
er

ce
n

ta
ge

 o
f

su
cc

e
ed

e
d

 r
e

q
u

es
ts

Number of scenarios

DARA[100%, 0] +RA
DARA[100%, 10h] + RA
DARA[100%, 4h] + RA
DARA[100%, 0]
DARA[100%, 10h]
DARA[100%, 4h]

Figure 3.17: Impact of network load and failure rates on the performance of using the RA
approach for the 25-node topology.

respectively. Figure 3.18b and Figure 3.19b compare the same experiments for
the success rate of admitted requests. As can be seen in these figures, the RA
approach has noticeably improved the request success rate. In Figure 3.18a, the
highest performance in terms of number of succeeded requests is achieved when
dropping backup requirements and using the RA approach. Nevertheless, as can
be observed from Figure 3.18b with a backup setting of 100% the highest QoS
(success of admitted requests) can be achieved. These evaluations also reveal that
when there is sufficient capacity in the network (1Gbps), the RA approach is able
to achieve the same quality when dropping backup requirements, for 100% of
backup demand in terms of succeeded requests. The same trend can be observed
in 3.19a and 3.19b for the 25-node topology. For both 0% and 100% of backup
demand, the RA approach outperforms the DARA approach.

3.5.3.2 Impact of network load

Figures 3.20a and 3.21a show the percentage of succeeded requests (out of sub-
mitted ones) and compare the impact of scenario load and different percentages
of backup demands on the performance of proposed approaches. Figures 3.20b
and 3.21b show the success rate of admitted requests for the same experiments,
using a backup setting of 0% and 100% and 10-hour failure rate. For the smaller
topology the number of scenarios increases 2 by 2, up to 20 and for the larger
topology, this number increases 5 by 5, up to 50. These figures show that the RA
approach achieves the best performance in terms of number of succeeded requests
and success rate of admitted requests. Figures 3.20a and 3.21a show that when

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 81

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

P
e

rc
e

n
ta

ge
 o

f
su

cc
e

e
d

e
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(a) Percentage of succeeded requests.

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

Su
cc

e
ss

 r
at

e
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(b) Success rate of admitted requests.

Figure 3.18: Impact of available bandwidth and backup demands on the performance of
using the RA approach for the 8-node topology.

82 CHAPTER 3

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

P
e

rc
e

n
ta

ge
 o

f
su

cc
e

e
d

e
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(a) Percentage of succeeded requests.

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

Su
cc

e
ss

 r
at

e
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(b) Success rate of admitted requests.

Figure 3.19: Impact of available bandwidth and backup demands on the performance of
using the RA approach for the 25-node topology.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 83

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

ge
 o

f
su

cc
e

e
d

e
d

 r
e

q
u

e
st

s

Number of scenarios

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(a) Percentage of succeeded requests.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

Su
cc

e
ss

 r
at

e
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(b) Success rate of admitted requests.

Figure 3.20: Impact of network load and backup demands on the performance of using the
RA approach for the 8-node topology.

84 CHAPTER 3

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

ge
 o

f
su

cc
e

e
d

e
d

 r
e

q
u

e
st

s

Number of scenarios

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(a) Percentage of succeeded requests.

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

Su
cc

e
ss

 r
at

e
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

DARA[100%, 10h]+RA

DARA[0%, 10h]+RA

DARA[100%, 10h]

DARA[0%, 10h]

(b) Success rate of admitted requests.

Figure 3.21: Impact of network load and backup demands on the performance of using the
RA approach for the 25-node topology.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 85

there is sufficient network capacity, no backup requirements outperform the 100%
backup demand in the DARA approach. However, Figures 3.20b and 3.21b reveal
that using DARA with no protection leads to the worst performance in terms of
success of admitted requests. Interestingly, it can also be observed that using the
RA approach without protection provides almost always higher success rate than
the DARA approach even with 100% of protection.

3.5.3.3 Stressed versus non-stressed network conditions

Figure 3.22 and Figure 3.23 elaborate on the final state of requests in stressed and
non-stressed network conditions. The stressed network condition is defined as hav-
ing 300Mbps bandwidth per link, 2-hour failure rate and default 48-minute repair
rate. In non-stressed conditions, the available bandwidth is increased to 800Mbps
and the MTTR is reduced to 5 minutes. Figure 3.22a and Figure 3.23a show that
in general having more protection in the DARA approach leads to more succeeded
requests. In both figures, the percentage of succeeded requests with 100% backup
demand is almost 2 times higher than when no backup is provisioned. Figure 3.22b
and Figure 3.23b show the impact of deploying the RA approach with the same ex-
periments (note that in these figures the y-axis starts from 90%). These figures re-
veal crucial advantages of the RA approach. First, comparing to Figures 3.22a and
3.23a, we can see that the RA approach leads to a lower percentage of rejection,
up to 1.65% and 4.87% in Figure 3.22b and Figure 3.23b respectively. Second,
the percentage of failed requests significantly improves both from lower to higher
protection and also compared to the DARA approach. To be precise, with 100% of
backup demand in the 8-node topology, the percentage of failed requests is reduced
from 1.47% to 0.08% when compared to 0% backup demand in the RA approach,
and more importantly, when compared to the DARA approach, this percentage
is reduced from 15% to only 0.08%. Third, dropping backup requirements and
under non-stressed network conditions, runtime adaptation significantly improves
the success rate of reservation system. It can be seen that the number of succeeded
requests is highest when dropping backup requirements. However, compared to
100% backup a noticeable number of admitted requests fail.

3.5.4 Impact of different backup demands, varying failure rates

Figure 3.24a and Figure 3.24b compare the success rate of admitted requests in
the RA approach to the DARA approach for the 25-node topology. In these exper-
iments, failure rates vary from 1h to 20h and backup demands of 0% up to 100%
are assessed. In both figures, regardless of the failure rate, the highest success rate
comes with 100% backup. It can also be observed that by employing the RA ap-
proach, the number of succeeded requests increases significantly up to 6.77 times
with 1-hour failure rate and 100% of backup demand. The same trend has been

86 CHAPTER 3

Table 3.2: Execution time per algorithm invocation (ms) of main algorithms of the RA
approach. Failure rate is 2h.

8-node topology 25-node topology

execution time (ms) AVG std error #invocation/24h AVG std error #invocation/24h

UpdateRequestsInfo 0.005 0.001 498.38 0.025 0.006 1578.4
AO 0.28 0.01 475.38 2.61 0.07 1555.4
DARA 51.96 2.05 23 551.4 15.9 23

observed for the smaller topology in which the RA approach can provide up to 5.3
times higher success rates.

3.5.5 Evaluation of execution times

Figure 3.25 and Figure 3.26 compare the computational time of the DARA algo-
rithm and the proposed RA approach, using 100% backup capacity. The execution
time of the RA approach is the sum of all invocations of the periodic update and
the periodic adaptation algorithms and the execution time of the DARA approach
is the sum of all re-scheduling invocations whenever a new scenario enters to the
reservation system. Our results indicate that deploying the RA approach increases
the execution time by 2.75 and 2.12 times on average in the 8-node and 25-node
topologies respectively.

The number of invocations and the average execution time of a single invoca-
tion of main algorithms in the RA approach is shown in Table 3.2. The number
of scenario is 20 in 8-node and 50 in 25-node topology and 2h failure rate is used.
This evaluation shows that the AO algorithm, with 0.28 ms in the smaller and 2.61
ms in the larger topology, is fast enough to immediately reconfigure the network
and react to sudden changes.

3.6 Conclusions

In order to deliver reliable data transfers, we have previously proposed a resilient
advance reservation approach. Offering guaranteed video delivery in media pro-
duction networks is of prime importance, however, using redundancy imposes
significant performance overheads and extra costs. In this chapter, we proposed
a dual optimization approach for exploiting underutilized network capacities to
transfer more data than what has been scheduled as long as no failures are de-
tected. This chapter deals with the design, development and evaluation of the pro-
posed approach in which a constant monitoring, adaptation and re-optimization
is being applied during runtime, taking into account potential failures. The main
objective is to mitigate the side-effect of redundant allocations and dynamically
reconfigure transmissions in response to sudden changes in network conditions.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 87

0

20

40

60

80

100

100 60 40 20 0

P
e

rc
e

n
ta

ge
 o

f
re

q
u

e
st

s

Percentage of backup

Rejected

Failed

Degraded

Succeeded

(a) The DARA approach in non-stressed network conditions.

90

92

94

96

98

100

100 60 40 20 0

P
e

rc
e

n
ta

ge
 o

f
re

q
u

e
st

s

Percentage of backup

Rejected

Failed

Degraded

Succeeded

(b) Using the RA approach in non-stressed network conditions.

0

20

40

60

80

100

100 60 40 20 0

P
e

rc
e

n
ta

ge
 o

f
re

q
u

e
st

s

Percentage of backup

Rejected

Failed

Degraded

Succeeded

(c) Using the RA approach in stressed network conditions.

Figure 3.22: Final state of requests in stressed and non-stressed 8-node topology with a
failure rate of 2h.

88 CHAPTER 3

0

20

40

60

80

100

100 60 40 20 0

P
e

rc
e

n
ta

ge
 o

f
re

q
u

e
st

s

Percentage of backup

Rejected

Failed

Degraded

Succeeded

(a) The DARA approach in non-stressed network conditions.

90

92

94

96

98

100

100 60 40 20 0

P
e

rc
e

n
ta

ge
 o

f
re

q
u

e
st

s

Percentage of backup

Rejected

Failed

Degraded

Succeeded

(b) Using the RA approach in non-stressed network conditions.

0

20

40

60

80

100

100 60 40 20 0

P
e

rc
e

n
ta

ge
 o

f
re

q
u

e
st

s

Percentage of backup

Rejected

Failed

Degraded

Succeeded

(c) Using the RA approach in stressed network conditions.

Figure 3.23: Final state of requests in stressed and non-stressed 25-node topology with a
failure rate of 2h.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 89

0

10

20

30

40

50

60

70

80

90

100

1h 2h 4h 10h 20h

Su
cc

e
ss

 r
at

e
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Failure rate

DARA[100%, Failure rate]+RA
DARA[60%, Failure rate]+RA
DARA[40%, Failure rate]+RA
DARA[20%, Failure rate]+RA
DARA[0%, Failure rate]+RA

(a) Success rate of using the RA approach.

0

10

20

30

40

50

60

70

80

90

100

1h 2h 4h 10h 20h

Su
cc

e
ss

 r
at

e
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Failure rate

DARA[100%, Failure rate]
DARA[60%, Failure rate]
DARA[40%, Failure rate]
DARA[20%, Failure rate]
DARA[0%, Failure rate]

(b) Success rate of the DARA approach.

Figure 3.24: Comparing the success rate of the DARA and the RA approaches with
different backup demands for the 25-node topology.

90 CHAPTER 3

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18 20

C
u

m
u

la
ti

ve
 e

xe
cu

ti
o

n
 t

im
e

(s
)

Number of scenarios

DARA[100%,0] + RA

DARA[100%,2h]+ RA

DARA[100%,1h]+ RA

DARA[100%,0]

DARA[100%, 2h]

DARA[100%, 1h]

Figure 3.25: Evaluation of execution times for the 8-node topology.

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45 50

C
u

m
u

la
ti

ve
 e

xe
cu

ti
o

n
 t

im
e

(s
)

Number of scenarios

DARA[100%,0] + RA

DARA[100%,2h]+ RA

DARA[100%,1h]+ RA

DARA[100%,0]

DARA[100%, 2h]

DARA[100%, 1h]

Figure 3.26: Evaluation of execution times for the 25-node topology.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 91

The experimental results showed that our approach works efficiently both in sta-
ble and failure-prone networks. Deploying this approach will noticeably increase
the performance of the advance reservation systems by increasing the number of
succeeded requests and with computational time of less than 3ms for all evalu-
ated cases, our solution is fast enough to react immediately and re-configure the
network in response to sudden changes.

Acknowledgment
The computational resources (Stevin Supercomputer Infrastructure) and services
used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by Ghent University, the Hercules Foundation and the Flemish Govern-
ment - department EWI. The research leading to these results has been performed
within the context of ICON MECaNO, co-funded by iMinds, a digital research
institute founded by the Flemish Government under grant agreement no. 130646.

92 CHAPTER 3

References

[1] N. Charbonneau and V. M. Vokkarane. A survey of advance reservation rout-
ing and wavelength assignment in wavelength-routed WDM networks. IEEE
Communications Surveys & Tutorials, 14(4):1037–1064, 2012.

[2] K. Rajah, S. Ranka, and Y. Xia. Advance Reservations and Scheduling for
Bulk Transfers in Research Networks. IEEE Trans. Parallel Distrib. Syst.,
20(11):1682–1697, November 2009. doi:10.1109/TPDS.2008.250.

[3] ICON MECaNO project. http://www.iminds.be/en/projects/mecano/, 2014 -
2016. Accessed: 2017-02-10.

[4] M. Barshan, H. Moens, J. Famaey, and F. De Turck. Algorithms for advance
bandwidth reservation in media production networks. In IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pages 183–190,
May 2015. doi:10.1109/INM.2015.7140291.

[5] M. Barshan, H. Moens, J. Famaey, and F. De Turck. Deadline-aware advance
reservation scheduling algorithms for media production networks. Computer
Communications, 77:26–40, 2016. doi:10.1016/j.comcom.2015.10.016.

[6] S. Sahhaf, M. Barshan, W. Tavernier, H. Moens, D. Colle, and M. Pickavet.
Resilient algorithms for advance bandwidth reservation in media production
networks. In International Conference on the Design of Reliable Communi-
cation Networks (DRCN), pages 130–137. IEEE, 2016.

[7] B. G. Józsa and D. Orincsay. Shared backup path optimization in telecom-
munication networks. In International Conference on the Design of Reliable
Communication Networks (DRCN), pages 251–257, 2001.

[8] J. T. Haahr, T. Stidsen, and M. Zachariasen. Heuristic methods for
shared backup path protection planning. In 4th International Congress on
Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT), pages 712–718. IEEE, 2012.

[9] W. Depoorter, K. Vanmechelen, and J. Broeckhove. Advance reservation,
co-allocation and pricing of network and computational resources in grids.
Future Generation Computer Systems, 41:1–15, 2014.

[10] K. Bochenina, N. Butakov, and A. Boukhanovsky. Static scheduling of mul-
tiple workflows with soft deadlines in non-dedicated heterogeneous environ-
ments. Future Generation Computer Systems, 55:51–61, 2016.

http://www.iminds.be/en/projects/mecano/

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 93

[11] H. Bai, K. Shaban, M. Khodeir, F. Gu, J. Crichigno, S. Khan, and N. Ghani.
Overlay network scheduling design. Computer Communications, 82:28–38,
2016.

[12] C. Guok, E. N. Engineer, and D. Robertson. ESnet On-Demand Secure Cir-
cuits and Advance Reservation System (OSCARS). In Internet2 Joint Techs
Workshop, Salt Lake City, Utah, 2005.

[13] B. Gibbard, D. Katramatos, and D. Yu. TeraPaths: end-to-end network path
QoS configuration using cross-domain reservation negotiation. In 3rd Inter-
national Conference on Broadband Communications, Networks and Systems
(BROADNETS), pages 1–9. IEEE, 2006.

[14] L. Chunlin, Z. J. Xiu, and L. Layuan. Resource scheduling with conflicting
objectives in grid environments: Model and evaluation. Journal of Network
and Computer Applications., 32(3):760–769, 2009.

[15] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim, D. Yu,
S. Bradley, and S. McKee. StorNet: Co-scheduling of end-to-end bandwidth
reservation on storage and network systems for high-performance data trans-
fers. In IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), pages 121–126. IEEE, 2011.

[16] J. Kuri, N. Puech, M. Gagnaire, and E. Dotaro. Routing foreseeable lightpath
demands using a tabu search meta-heuristic. In IEEE Global Telecommuni-
cations Conference (GLOBECOM’02), volume 3, pages 2803–2807. IEEE,
2002.

[17] J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, and R. Douville. Routing and
wavelength assignment of scheduled lightpath demands. IEEE Journal on
Selected Areas in Communications, 21(8):1231–1240, 2003.

[18] J. Zheng and H. T. Mouftah. Supporting advance reservations in wavelength-
routed WDM networks. In Tenth International Conference on Computer
Communications and Networks, pages 594–597. IEEE, 2001.

[19] J. Zheng and H. T. Mouftah. Routing and wavelength assignment for advance
reservation in wavelength-routed WDM optical networks. In IEEE Interna-
tional Conference on Communications (ICC), volume 5, pages 2722–2726.
IEEE, 2002.

[20] C. Xie, H. Alazemi, and N. Ghani. Rerouting in advance reservation net-
works. Computer Communications, 35(12):1411–1421, 2012.

94 CHAPTER 3

[21] M. Balman, E. Chaniotakis, A. Shoshani, and A. Sim. A flexible reservation
algorithm for advance network provisioning. In 2010 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC), pages 1–11. IEEE, 2010.

[22] M. Balman. Advance resource provisioning in bulk data scheduling. In
IEEE 27th International Conference on Advanced Information Networking
and Applications (AINA), pages 984–992. IEEE, 2013.

[23] T. Watanabe, T. Omizo, T. Akiyama, and K. Iida. ResilientFlow: Deploy-
ments of distributed control channel maintenance modules to recover SDN
from unexpected failures. In 11th International Conference on the Design of
Reliable Communication Networks (DRCN), pages 211–218. IEEE, 2015.

[24] S. Tanwir, L. Battestilli, H. Perros, and G. Karmous-Edwards. Dynamic
scheduling of network resources with advance reservations in optical grids.
International Journal of Network Management, 18(2):79–106, 2008.

[25] L.-O. Burchard, H.-U. Heiss, B. Linnert, J. Schneider, and C. A. De Rose.
VRM: a failure-aware grid resource management system. International jour-
nal of high performance computing and networking, 5(4):215–226, 2008.

[26] P. Latchoumy, P. Khader, and S. Abdul. Job Scheduling with Failure Pre-
vention Strategies in Grid Computing Environment. International Journal Of
Research In Advance Technology In Engineering, 1, 2013.

[27] B. Nazir, K. Qureshi, and P. Manuel. Replication based fault tolerant job
scheduling strategy for economy driven grid. The Journal of Supercomput-
ing, 62(2):855–873, 2012.

[28] P. Chołda and P. Jaglarz. Optimization/simulation-based risk mitigation in
resilient green communication networks. Journal of Network and Computer
Applications, 59:134–157, 2016.

[29] C. Cavdar, M. Tornatore, F. Buzluca, and B. Mukherjee. Dy-
namic Scheduling of Survivable Connections with Delay Tolerance in
WDM Networks. In IEEE INFOCOM Workshops, pages 1–6, 2009.
doi:10.1109/INFCOMW.2009.5072134.

[30] B. Wang and T. Li. Survivable scheduled service provisioning in WDM op-
tical networks with iterative routing. Optical Switching and Networking,
7(1):28–38, 2010.

[31] A. Jaekel, Y. Chen, and A. Bari. Stable logical topologies for survivable
traffic grooming of scheduled demands. Journal of Optical Communications
and Networking, 2(10):793–802, 2010.

DUAL DYNAMIC ADAPTIVE ADVANCE RESERVATION APPROACH 95

[32] M. Barshan, H. Moens, B. Volckaert, and F. De Turck. Design of a dynamic
adaptive reservation system in media production networks. In IEEE/IFIP
Network Operations and Management Symposium (NOMS), pages 1149–
1152. IEEE, 2016.

[33] M. Barshan, H. Moens, and B. Volckaert. Dynamic adaptive advance band-
width reservation in media production networks. In IEEE NetSoft Confer-
ence and Workshops (NetSoft), pages 58–62. IEEE, 2016.

[34] T. Cormen. Introduction to Algorithms. MIT Press, 2009.

[35] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the ACM (JACM), 19(2):248–
264, 1972.

[36] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In
14th International Parallel and Distributed Processing Symposium (IPDPS),
pages 127–132. IEEE, 2000.

[37] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic scheduling in grid
computing. In Job Scheduling Strategies for Parallel Processing, pages 128–
152. Springer, 2002.

[38] J. Cao and F. Zimmermann. Queue scheduling and advance reservations with
COSY. In 18th International Parallel and Distributed Processing Symposium,
page 63. IEEE, 2004.

[39] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason: A
multiagent simulation environment. Simulation, 81(7):517–527, 2005.

[40] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. IEEE Journal on Selected Areas in Communications,
29(9):1765–1775, 2011.

[41] M. M. Alam Khan. Multi-Path Link Embedding for Survivability in Virtual
Networks. Master’s thesis, University of Waterloo, 2015.

4
A Flexible, Reliable and Adaptive

Timeslot-based Advance Bandwidth
Reservation Mechanism for

Media-centric Networks

Advance reservation systems can be implemented either based on flexible or fixed
timeslot sizes. In Chapter 2, we proposed optimal and near-optimal timeslot-based
advance bandwidth reservation solutions based on fixed size timeslots, taking into
account the specific characteristics of media transfers. The resilient version of
this solution and the complementary Runtime Adaptation (RA) approach were pre-
sented in Chapter 3. In this chapter, we have first designed, implemented and
evaluated the flexible timeslot-based advance bandwidth reservation system. We
have then optimized the resilient advance bandwidth reservation approach, pro-
posed in Chapter 3. This optimization results in greater network utilization and
higher request admittance ratio, up to 9.2%. In addition, the optimized resilient
solution has been combined with the RA approach. Quality and complexity of the
proposed approach has been extensively compared with that of a fixed timeslot al-
gorithm. Our simulation studies reveal that the request admittance ratio is up to
3.6% higher using flexible timeslots in combination with the RA approach and in a
failure-free network, the execution time of this approach is up to 17.5 times lower,
compared to the approaches with fixed timeslot sizes.

98 CHAPTER 4

? ? ?

M. Barshan, H. Moens, B. Volckaert and F. De Turck

Submitted to International Journal of Network Management, Jun. 2017.

4.1 Introduction

Nowadays, various media-centric industries are faced with a rising need for de-
centralized collaborations over shared substrate networks. As multimedia services
have high bandwidth requirements, it becomes necessary for such networks to
provide a quality-of-service (QoS) guarantees. In order to manage the available
bandwidth and to provide a guaranteed QoS, bandwidth reservation and schedul-
ing techniques must be applied. Bandwidth scheduling refers to bandwidth allo-
cations with flexible user options on timing and bandwidth requirements in both
Immediate Reservation (IR) and Advance Reservation (AR) disciplines. While the
start time of the data transmission is assumed to be immediate in IR, the principle
behind AR relies on reserving the resource before they are required for a specific
transfer. An AR demand typically specifies information about the start of the data
transmission and / or a deadline, as well as the bandwidth requirement of the trans-
mission.

In AR, the knowledge of future network traffic and demand allows the network
to make better decisions compared to immediate reservation requests, especially
for large demands which are difficult to allocate. Since AR requests have been pre-
viously reserved, they have higher priority over immediate transfers. This results in
an efficient resource management within the network and better quality of service
for users. AR has various important applications for wide-area networks [1] and
there exists a number of applications where AR is more appropriate than IR. For
example, offsite backups can be scheduled overnight using advance reservation.
Various real-time streaming applications that require large amounts of bandwidth,
such as IPTV, video conferencing, and video on demand, are also well-suited for
advance reservations. These applications can benefit from advance reservation as
real-time online conferences are typically being scheduled for specific times in
advance and require guaranteed bandwidth.

The problem of advance reservation for multimedia applications with differ-
ent characteristics and requirements, has not gained enough attention in literature.
As such, this chapter focuses on timeslot-based advance bandwidth reservation for
media delivery services with 3 main features: flexibility, reliability and adaptabil-
ity.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 99

Flexibility: To manage the time domain of advance reservations, fixed or flex-
ible timeslot-based solutions are introduced. The computational complexity of
fixed size approaches highly depends on timeslot granularity, whereas with flex-
ible time intervals this rather depends on the number of requests. The impact of
this flexibility is investigated in this work and quality and complexity of flexible
timeslots is compared to equivalent fixed size solutions.

Reliability: In media delivery services, reliability of the data transport is of
great importance, e.g. network failures should be tackled to enable reliable trans-
mission without any loss in QoS. To enable a quick response to sudden changes
such as failures in the network, we rely on a protection mechanism, which reserves
backup paths in advance, before any failure happens in the network. The proposed
scheme aims at minimizing the resource usage of backups, while guaranteeing
100% recovery against any single link failure.

Adaptability: Here the main idea is to make use of wasted network capac-
ity, mainly caused by the redundant failure protection reservations. Adaptability
results in an increase in network utilization and admittance ratio, while the reli-
ability of reservations remains guaranteed. To tackle unforeseen failures in the
network, the proposed approach has to immediately react to any failure / repair
detection while re-utilizing unused reservations. In order to provide an adaptive
resilient advance bandwidth reservation system, the generated resilient schedule is
continually updated over time in order to be capable of dynamically adapting the
reservations to changing conditions.

To offer predictable complexity, easier hardware implementation and system-
atic reconfiguration of network devices, we have previously designed and imple-
mented several timeslot-based algorithms using fixed time slots and taking into
account the characteristics of requests in media-centric networks [2–4]. The re-
silient version of this solution has been proposed in [5] and adaptability has been
added to the above-mentioned fixed size timeslot-based approaches in [6], by in-
troducing the runtime adaptation (RA) approach.

This work is an extension of our previous work [7] and [8]. In [7], we have the-
oretically analyzed the benefits and drawbacks of using flexible timeslots, finding
that a flexible approach is highly beneficial when dealing with bursty traffic condi-
tions in a low-demand network with long-term downtimes, as it has the potential to
significantly reduce the number of timeslots needed, resulting in execution speed
improvements. In [8], our previously designed static advance reservation algo-
rithm has been extended to add support for flexible timeslot sizes.

In this work, we however focus on dynamic version on the advance reserva-
tion algorithm, referred to as DARA, and optimize the resilient dynamic advance
reservation algorithm in combination with flexible timeslots and the RA approach
to offer a flexible, reliable and adaptable advance bandwidth reservation system.
We discuss the impact of the RA approach in resilient and flexible timeslot-based

100 CHAPTER 4

advance bandwidth reservation systems.
The remainder of this chapter is structured as follows. In Section 4.2, we dis-

cuss related work. Section 4.3, provides brief information about advance reserva-
tion for media delivery services. In Section 4.4, the proposed solution is explained
in detail. A general overview of our proposed advance bandwidth reservation ar-
chitecture is discussed in Section 4.5. The heuristic-based advance reservation
scheduling algorithms are described in Section 4.6. Sections 4.7 and 4.8 provide
the simulation outline and simulation results respectively and finally, Section 4.9
concludes the chapter.

4.2 Related work

The advance reservation scheduling problem has been well studied in literature.
While some have focused on rescheduling [9–11] and multi domain reservation
[12], others specifically take into account real-world deployments [13–16], and
WDM optical networks [1]. Nevertheless, only two advance reservation algo-
rithms [17, 18] support elastic reservations, and both considered fixed start time
for the requests [1], while we consider flexible or unspecified start times. Advance
bandwidth reservation for on-demand and flexible data transfer in scientific appli-
cations is investigated in [19]. However, they purely focus on data transfers, not
streaming requests, the routing mechanism is based on single-path in contrary to
our multi-path approach and dependency among different transfers is ignored.

There exist a few works in the literature focusing on the flexible advance reser-
vation approaches [1]. In [20], a flexible single-path resource reservation is pro-
posed for a set of files between multiple end-sites. However, streaming requests
and interdependencies among requests are ignored. The authors in [21], concluded
that for a guaranteed network resource availability and to increase network utiliza-
tion and user satisfaction, bandwidth has to be reserved in advance and using flex-
ible time windows. Nonetheless, interdependence and resilience against failures
are not taken into account. Flexible advance reservation for cloud-based resources
has been investigated by [22–24]. A more recent work, [25], focuses on flexible
bandwidth reservation between VMs of cloud applications, for which it is hard to
estimate the exact needed capacity. They propose a solution to elastically deter-
mine the bandwidth between VMs in order to reduce job execution times.

Resilient reservations can be achieved either through restoration or protection
techniques [26, 27]. In protection approaches, backup resources are reserved in
advance before any failure happens in the network, while in case of restoration
backup resources are selected upon failure detection. The former results in larger
resource consumption but the recovery time is generally quicker. In [28], the au-
thors propose a restoration technique to deal with link failures. In their work, the
active requests and the scheduled future requests which are affected by a failure

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 101

are restored. In [29, 30], optimal ILP-based solutions were proposed to provide
shared and dedicated path protection. Authors in [31, 32] also provide resiliency
through Shared Backup Path Protection (SBPP).

This chapter is in line with our previous works on media-centric network band-
width reservation approaches, conducted within the context of MECaNO project
[33]. We have first proposed optimal [2] and near-optimal advance bandwidth
reservation algorithms [3], focusing on a media production use case. These pro-
posed approaches were based on a fixed size timeslot-based approach which is
reported to be inefficient when the number of requests is limited [1]. This was the
motivation of our recent work [7, 8] in which a theoretical and analytical compar-
ison between fixed size and flexible reservations is drawn respectively, to investi-
gate which approach would be more appropriate for media related environments.

The work presented in this chapter differs from our recent work. In this chapter,
first, the impact of flexible timeslots is investigated by designing a dynamic flexible
timeslot-based advance reservation algorithm. Second, the resilient approach is
optimized to enhance network utilization. Third, the resilient flexible solution is
combined with the RA approach and quality and complexity of this combination
is compared to an equivalent fixed size solutions. In addition, in order to make a
comprehensive comparison a baseline algorithm is presented. This chapter is the
final work on the MECaNO project, which outlines a comprehensive architecture
for the advance bandwidth reservation of collaborative media-centric networks and
presents an integrated evaluation to thoroughly compare different aspects of our
proposed approaches.

4.3 Advance Reservation for media delivery services

The advance bandwidth reservation framework is responsible for admission con-
trol, scheduling of submitted requests and reserving the required amount of band-
width resources for all admitted requests, according to the agreed SLA. The out-
put of the scheduling algorithms takes the form of a set of bandwidth reservations
associated with each flow over time. This information can be transferred to the
network controllers, used to configure the switches in the network. The controllers
keep track of the temporal aspects of the policies, adjusting configurations when-
ever needed.

4.3.1 Type of reservation requests

In collaborative media delivery scenarios, reservation requests can either be streams
or file transfers and multiple reservation requests may depend on each other, mean-
ing that one request can only start when other requests that are dealt with, have
been finished. This interdependency is an important characteristic of collaboration

102 CHAPTER 4

Reservation request classification

UTUD

Dependent
File transfers

STUD

Independent
File transfers

UTSD

Dependent
Streams

STSD

Independent
Streams

Type Characteristics

Streaming request

Start time End time Duration

STSD Specified Specified Fixed

UTSD Unspecified
(Co-dependent)

Unspecified
(Co-dependent) Fixed

File transfer request

Ready for transfer Deadline Duration

STUD Specified Specified Flexible

UTUD

Unspecified
(Co-dependent)

Unspecified
(Co-dependent) Flexible

Specified Unspecified
(Co-dependent) Flexible

Unspecified
(Co-dependent) Specified Flexible

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.Figure 4.1: Types of advance reservation requests.

scenarios, which has not gained enough attention in other advance reservation ap-
proaches. As stated by [1, 34, 35] advance reservation requests are classified into
four individual categories, all are taken into account in this chapter and shown in
Figure 4.1. We assume that for file transfers, volume and for streaming requests
duration is always known.

4.3.1.1 STSD (Specified Time, Specified Duration) and UTSD (Unspecified
Time, Specified Duration) requests

STSD advance reservation requests specify both the start time of the request and
its duration. For UTSD requests, start time is unspecified, but duration is known.
STSD and UTSD requests are related to streams, as we assume that duration of
streaming requests are always known. Dependent streaming requests that the start
times have codependency on the other requests are in the UTSD category and
independent streams belongs to STSD.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 103

AR time domain
classification

Timeslot-basedReservation-based

Flexible Fixed size

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.2: Time domain classification of AR approaches.

4.3.1.2 STUD (Specified Time, Unspecified Duration) and UTUD (Unspeci-
fied Time, Unspecified Duration) requests

These classes are related to file transfers. The reservation timing of a file-based
request can be fluid, as long as this timing fits between the time when data is ready
to be transferred and the delivery deadline. Independent and dependent file based
requests are classified as flexible UTUD and flexible STUD respectively. The file-
based STUD advance reservation requests specify the times when data is ready
and the deadlines, but durations are unspecified. However, for UTUD requests,
the time when data is ready and/or the deadline depends on other requests (co-
dependency) and duration of these requests are unspecified.

4.3.2 Time domain classification in AR approaches

As has been shown in Figure 4.2, two mechanisms have been introduced for time
management of the AR systems, the reservation-based and timeslot-based ap-
proaches [36]. The reservation-based approaches show high computational com-
plexity when processing a large number of reservation requests. Alternatively,
timeslot-based solutions are introduced as an efficient mechanism to cope with
this complexity [1, 36]. Timeslot-based approaches discretize the time span into
a set of timeslots. Each timeslot maintains aggregated information about resource
usage and network residual capacity. Timeslot-based solutions can be static (i.e.
fixed) or dynamic (i.e. flexible). In a static timeslot-based classification, the times-
pan is broken into a fixed number of predetermined-length timeslots which makes
it easy to implement. The complexity of the approach highly depends on the gran-
ularity of timeslot sizes and the amount of network state information is to some
extent independent of the number of requests. Although the majority of timeslot-
based approaches in literature have followed a static approach, it is inefficient for
advance reservation systems with a small number of reservation requests [1].

However, in the dynamic timeslot approach, use of flexible timeslots increases
the complexity of timeslot-based advance reservation approaches in two ways.
first, the flexible timeslots are typically started with any request start time and

104 CHAPTER 4

end with either the start of a new request or the earliest end time of current re-
quests. As such, the complexity of the scheduling highly depends on the number
of requests and in the worst case the number of time slots is twice the number of
requests. The number of timeslots is a factor which directly increases the compu-
tational overhead of timeslot-based advance reservation systems. Second, in the
dynamic timeslot solution, upon entrance of a new request, duration and number of
timeslots are repeatedly being changed during the re-scheduling process, making
it unpredictable and harder to manage with highly frequent request arrival rate.

4.3.3 The resilient AR scheduling approach

In addition to efficient bandwidth scheduling management, reliability of the data
transport is important. Reliable AR systems can be deployed either through restora-
tion or protection failure recovery mechanisms.

In order to have a quick response to sudden changes such as failures in the
network, we have proposed the resilient advance bandwidth reservation algorithm
in [5]. The proposed solution uses a protection mechanism which finds backup
paths for connections in advance, before the occurrence of any failure and exploits
Shared Backup Path Protection (SBPP), capable of covering single link failures.
The objective is to minimize resource usage by the protection paths while full
recovery is guaranteed against any single link failure in the network.

In the resilient approach, we have made a tradeoff between reliability and re-
source usage in 2 ways: first, deploying SBPP significantly reduces the bandwidth
requirements for backup purposes, since the backups have to fulfill the maximum
bandwidth allocated on the links of the primary paths. This means that to provide
full protection (100% backup), there is no need to allocate the exact amount of
bandwidth as the primary paths. Second, the percentage of redundancy is defined
for each individual request based on an input parameter provided by the customer,
to influence the importance of reliability for each individual connection. This way,
the higher priority requests can be protected while the ones with lower priority can
remain unprotected.

4.3.4 Runtime adaptation (RA) approach

As a first provisional stage to offering a robust reservation system, deploying pro-
tection mechanisms ensures that the reservations remain valid when the system is
in operation. To maximally utilize the network, and to ensure a quick response in
a dynamic network environment, constant monitoring and optimization is needed.
We have previously proposed an efficient dual optimization approach, referred to
as the Runtime Adaptation (RA) approach, consisting of two consecutive pro-
cesses [6]. In the RA approach, first, a schedule is produced by a resilient ad-
vance reservation algorithm. Then, the generated schedule is continually updated

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 105

over time in order to be capable of dynamically adapting the schedule to chang-
ing conditions. Moreover, to mitigate the side effects of provisioned reliability,
this approach uses the inter-connecting network links’ leftover capacity, resulting
in increased performance. In unreliable networks, as soon as any failure is de-
tected, the ongoing network transfers are adapted according to the current state of
the network. This leads to better utilization of substrate network resources, higher
success rate and rapid reaction to sudden changes when the network is in opera-
tion. Concretely, regardless of the fixed or flexible advance reservation scheduling,
the RA approach follows two sequential phases in every timeslot: 1) the periodic
update and 2) the periodic adaptation.

4.3.4.1 First phase: Periodic update

During the periodic update, first the current status of the network and transfers are
monitored. The monitoring system keeps track of demand, time and last allocated
bandwidth for all requests including the last monitored demand, the last monitored
time and the last allocated bandwidth. Then the DARA algorithm is invoked. Since
periodic adaptation algorithms make use of idle network capacities and real trans-
fers potentially run ahead of schedule, this invocation is necessary to take into
account the extra transfers and perform re-scheduling for the residual demands.
DARA updates the entire schedule and this new information is set in the global
state manager. The global state manager contains all the information about the
schedule, the network and request reservations, connections, demands, deadlines,
etc. Then the next timeslot reservations are derived from the advance reservation
schedule and are set as advance-scheduled requests. The list of advance-scheduled
requests contains all requests which have been scheduled to be transferred from
now on. Take into account that potentially there are other requests which could be
started, but have been postponed due to bandwidth constraints. These requests are
kept in a waiting list and used in the periodic adaptation phase.

4.3.4.2 Second phase: Periodic adaptation

The Adaptive Optimization (AO) algorithm is the main algorithm in the periodic
adaptation phase. The AO algorithm is triggered several times, i.e. whenever a
file-based request starts / finishes transferring and in case of any link failure or link
repair. The first invocation of this algorithm is before the start of the next times-
lot. Based on this algorithm, the scheduling of the next timeslot is analyzed and
modified to make use of idle bandwidth capacities. To achieve this, the advance-
scheduled requests are retrieved and the reservations for backups and streams are
ignored (because streams may not always be active and can be resumed / played-
back multiple times throughout the reserved period). This gives us a network in
which only the primary reservations occupy the network capacities and the re-

106 CHAPTER 4

mainder of network capacity is continuously re-utilized. In case of failures, the
AO is triggered to restore the backup reservations. In case of streaming request
activations, the streaming reservations are prioritized and transferred.

4.4 Problem description

4.4.1 Flexible approach

In literature, the static solution with fixed size timeslots is followed by the major-
ity of timeslot-based approaches. In this section, we distinguish 5 factors which
restrict the capabilities of fixed size timeslot-based advance bandwidth reservation
approaches. We discuss how the flexible timeslots contribute to eliminating these
factors. The restrictions are as follows:

Reservation request characteristics: The reservation request types can either
be streams or file transfers. The file can be transferred whenever possible from
the time when the file is ready to be transferred until its deadline. The start of
a reservation for a file has to be restricted to the beginning of the next timeslot
and the start of the timeslot in which the request deadline fits. For file-based re-
quests, the file transfer volume is the determining factor. The allocated bandwidth
can vary from one timeslot to another. There is no restriction for the amount of
bandwidth allocation as long as its deadline is met and enough reservations have
been made to fully transfer the file. In the fixed timeslot-based approach, these
restrictions for file-based requests imply that the file has a tighter time opportunity
for transmission and therefore the probability of timely transfer is decreased.

In contrast to file transfers, the allocated bandwidth for streams must equal
to their required bandwidth demand, from the start time to the end time, as their
demand is constant for the entire reservation period. As such, for streams the
reservation has to be made from the start of the timeslot in which the start time of
request fits, until the end of the timeslot to which the request’s end time belongs.
It should be noted that reservations based on a fixed size approach for streaming
requests lead to a waste of resources due to making unused reservations.

Another point is that the fixed size of timeslots is more restrictive when there
are dependencies among different transfers, meaning that one request can only
start when other requests on which this request depends, have been finished. This
implies that even a small portion of two interdependent requests can not be ac-
commodated in one timeslot. In high-bandwidth networks with plenty of unused
capacity, a chain of interdependent request may remain longer in the schedule
compared to the flexible approach, which can be problematic for future requests.
This impacts the request admittance ratio.

Contrary to the fixed size approach, the use of flexible time windows can miti-
gate these issues for both streaming and file-based requests. Regardless of the type

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 107

of request, the start and the end of time windows can be tuned up to the start and
end time of each request. The interdependent requests can also be scheduled as
soon as the dependencies have been eliminated without having to wait for the start
of the next timeslot.

Delay prior to request processing: Predefined timeslot sizes imply that each
new request arrival has to wait until the start of the next timeslot to be processed.
This waiting time equals the time gap between the request start time and the start
of the next timeslot. Although more fine-grained timeslot sizes can shorten the
delay, it can be completely eliminated by deploying flexible time intervals.

Optimized timeslot size: In the fixed size advance reservation approaches,
timeslot size is of great importance, because it has a high impact on the complex-
ity and quality of the advance bandwidth reservation system. In the fixed size
approaches, it is not trivial to find a good value for this. Nevertheless, this is a
non-issue with flexible timeslots.

Unnecessary periodic computations for long transfers: The periodic nature
of the fixed timeslot-based solutions leads to unnecessary periodic computations
for long-term streaming requests and large files. In the fixed size advance band-
width reservation approaches, the residual demand of ongoing requests is peri-
odically updated at each timeslot, and new and updated requests are periodically
reallocated together. This issue causes unneeded computational overhead, which
becomes worse with very fine-grained timeslots. Again, this is not an issue in the
flexible approach.

High computational complexity for long-term schedules: Another problem
with the fixed timeslot-based approaches, specially with fine-grained timeslots,
is that the computational complexity of these approaches mostly depends on the
number of timeslots, making it impractical or at least unrecommended for long-
term schedules.

4.4.2 Optimized resilient approach

In the resilient approach, first the primary paths for a given request are determined
and then disjoint backup paths are found corresponding to these primary paths [5].
For file-based requests, if this backup limit can not be found, it backtracks to the
initial state and retries the bandwidth allocation with 50% of the primary band-
width demand. This is repeated until both primary and backup demands are ful-
filled. If both primary and backup demands are not accommodated by the file’s
deadline, the entire scenario to which the file belongs, is rejected.

We have found that halving the request demand does not always lead to an
optimal solution because we may miss the opportunity to transfer a higher volume
of the file and the network capacity may not be fully utilized if other concurrent
requests can not make use of it. As such, to make better use of leftover capacities

108 CHAPTER 4

75

Time (s)

…
Pr

im
ar

y
re

se
rv

at
io

ns

75

85

85

150

56

56 85

85

150

R1

R2

R3

…

25
20

0

28
80

0

32
40

0

36
00

0

39
60

0

43
20

0

46
80

0

50
40

0

54
00

0

57
60

0

61
20

0

…

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

(a) Original fixed-size timeslot-based approach.

100

Time (s)

…

Pr
im

ar
y

re
se

rv
at

io
ns

100

115

115

200

85

85

100

R1

R2

R3

…

25
20

0

28
80

0

32
40

0

36
00

0

39
60

0

43
20

0

46
80

0

50
40

0

54
00

0

57
60

0

61
20

0

……

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

(b) Optimized fixed-size timeslot-based approach.

Figure 4.3: Comparing the original and modified versions of resilient fixed size
timeslot-based advance bandwidth reservation.

the binary search mechanism [37] is used to find the maximum value within a
margin, which we refer to as ε. This given margin can be altered to make a tradeoff
between achieving a precise value and the complexity of the solution.

Figures 4.3 and 4.4 compare the impact of the optimized resilient algorithm for
3 file-based requests, R1, R2 and R3, for fixed size and flexible approaches respec-
tively. In these figures only primary reservations are shown. These figures reveal
how the optimized resilient approach can improve network utilization and increase
the probability of admittance for future requests. As can be seen, by allocating a
higher volume of a given file, this file can potentially be transferred earlier com-
pared to the original approach. This way, higher capacity is available for requests
in the future and the request admittance ratio will potentially be increased.

4.4.3 Combining dynamic, flexible, resilient and RA approaches

A combination of dynamic, flexible, resilient and runtime adaptation approaches
results in a highly dynamic environment, including online entrance of reservation
requests, flexible timeslot with variable number and duration of timeslots, continu-
ally updating the schedule and re-utilizing network resources during runtime, con-
sideration of unforeseen network conditions (failures), distinguishing streaming
requests’ reservations and usages, reacting to the sudden changes such as failures
/ repairs and streaming requests’ resumes / playbacks.

More specifically, the combination of the RA and flexible approaches is more

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 109

66

Time (s)

…
Pr

im
ar

y
re

se
rv

at
io

ns

75

131.2

50.7

R1

R2

R3

…

23
70

0

27
48

0

43
86

4

60
24

8

68
44

0

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

(a) Original flexible timeslot-based approach.

Time (s)

…

Pr
im

ar
y

re
se

rv
at

io
ns

99.3

149

99.3

R1

R2

R3

…

23
70

0

27
48

0

38
35

0

45
44

3

52
68

9

99.3

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

(b) Optimized flexible timeslot-based approach.

Figure 4.4: Comparing the original and modified versions of resilient flexible
timeslot-based advance bandwidth reservation.

noticeable and challenging, compared to the combination with fixed size timeslots.
In fact, the advance reservation schedules based on fixed size and flexible timeslots
have been dissimilarly impacted by deploying the RA approach.

4.4.3.1 Impact of RA on advance reservation approaches

Since the schedule is being repeatedly updated by each individual re-scheduling,
and due to frequent re-scheduling during the periodic adaptation phase, the use
of RA has different impacts on the fixed-size and flexible timeslot-based advance
reservation systems. This rescheduling is being done in 2 cases: 1) upon a new
reservation submission or 2) in the periodic update phase of the RA approach.

In the fixed size approach, although it’s not trivial to find an optimal size, as
soon as the size is determined, it won’t be changed afterwards. The timeslot sizes
are predefined, meaning that the number and duration of timeslots are not affected
either during the re-scheduling process invoked upon new scenario arrival or by
updating the schedule (i.e. during the periodic update phase of the RA approach).
This means that in the fixed size approach, this update only affect the reservations.

By contrast, in the flexible approach, the schedule is entirely impacted during
each individual rescheduling process, meaning that in addition to the reservations,
the number and duration of timeslots are also affected. Moreover, the frequency of
the periodic update and periodic adaptation phases in the RA approach, depends
on the number of timeslots. As such, in combination of flexible timeslots, the

110 CHAPTER 4

number of repetition of these phases is also affected by each individual invocation
of re-scheduling process, making it much harder to manage compared to the fixed
size approach.

4.5 Advance bandwidth reservation architecture

Figure 4.5 shows the various components of our proposed advance bandwidth
reservation system. The management layer, provides a reservation interface that
allows users to submit their requests, and contains two complementary processes:
the dynamic version of resilient advance reservation algorithm (DARA) and the
runtime adaptation (RA) approach. The DARA scheduling component is respon-
sible for reserving the required amount of bandwidth including backup capacities
for all requests and the RA component dynamically re-optimizes the request trans-
missions. DARA can be implemented using flexible or fixed size timeslots.

4.5.1 FixedTimeSlot module

The FixedTimeSlot module consists of the following components for each time
interval.

TimeSlotRequests: determines which unserved requests can be served in the
current timeslot. Independent requests are added to the list of current requests if
the current interval is greater or equal to the request start time. Requests with start
time dependencies can be added provided that all requests on which the request
depends are fulfilled.

Limit: This is where the size of the timeslot impacts the bandwidth allocation
for file-based requests. The limit component determines the maximum amount of
bandwidth reservations for each request in each timeslot. The limit for file-based
requests is calculated as follows: the residual volume of this file, which is modified
whenever a part of a file is transferred, is divided by the size of timeslot, in order
to avoid the extra reservation for the requests. The limit for the streams is their
required demand, because their demand is fixed and non-variable.

PrioritySorting: sorts the requests based on their priorities, calculated by the
prioritization component.

BWallocation: Bandwidth reservations can be based on single-path or multi-
path routing mechanisms. Regardless of the type of routing and protection mecha-
nisms, two different bandwidth allocation algorithms are designed for streams and
files because their requirements are dissimilar. Details of these algorithms can be
found in [3, 4].

UpdateAndCheckFeasibility: based on the result of the BWallocation com-
ponent and by calculating the residual demands, the requests requirements are

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 111

Adaptive advance bandwidth reservation management layer

Advance bandwidth reservation (DARA)

Input
transformation

Backtracking
algorithm

Number of slots

Prioritization
Sorting

Timeslot
requests

BW
allocation

BW
allocation

Update
& Check

Limit

Fi
xe

dT
im

eS
lo

t
al

go
rit

hm

New
Scenarios

Updated
schedule

APIAPI

Timeslot-based
scheduling algorithm

Flexible
timeslot

Fixed size
timeslot

Prioritization

BW
allocation

BW
allocation

Active
Requests

Active
Requests

Timeslot
start and end

setting

Update
& Check
Update
& Check

Prioritization
Sorting

Fl
ex

ib
le

Ti
m

eS
lo

t
al

go
rit

hm

Update
Sorted List

Update
Sorted List

Prioritization
StartTime Sorting

Runtime Adaptation (RA)

Adaptive
Optimization

Global state
manager

Monitoring
system

Job
manager

Connection
manager

Reservation
manager

BW allocation

Single-path allocation

ResilientNon-Resilient

Multi-path allocation

File Stream File Stream

ResilientNon-Resilient

File Stream File Stream

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.Figure 4.5: A comprehensive overview of the control plane of the adaptive advance

bandwidth reservation system.

112 CHAPTER 4

updated and the feasibility of the results is checked. If the hard deadline of a re-
quest is reached, but part of the request has not been transferred yet, rescheduling
is infeasible.

4.5.2 FlexibleTimeSlot module

The FlexibleTimeSlot module consists of the following components.
StartTimeSorting: All requests submitted to the reservation system are chrono-

logically sorted based on their start time and stored in sortedSysReqList. This list
does not contain the request with unfulfilled dependencies, because their start time
is not specified. Then, the FlexibleTimeSlot algorithm jumps to the start time of
the earliest request in the sortedSysReqList, sets the end of the current timeslot and
the start of the next timeslot to the start time of the earliest request.

ActiveRequests: This component sequentially looks for any other requests in
the sortedSysReqList which can be started simultaneously in the current timeslot
and keeps these requests in the currentReq list. For the requests with start time
dependencies, the algorithm checks if the requests’ dependencies have been elim-
inated. This implies that all other requests on which this request depends, have
already been scheduled.

BWallocation: This component is similar to the component in FixedTimeS-
lot approach but does not take any limitations into account during the bandwidth
allocation for file-based requests.

MinDuration: The duration of the current timeslot is calculated by this com-
ponent. The size of timeslot is determined as the earliest time either an active
request is finished or a new request is started. As soon as the timeslot duration is
determined, the end of the current timeslot can be set.

UpdateAndCheckFeasibility: As duration of timeslots is not predefined, this
component has been modified (compared to the same component in the Fixed-
TimeSlot module) to take into account the calculated size of the timeslot when
updating the requests’ demands and checking the feasibility of the schedule.

Update the sortedSysReqList: All admitted and scheduled requests have to
be removed from the sortedSysReqList.

4.5.3 Runtime adaptation module

As illustrated in Figure 4.5, the RA module consists of the following components:
Global state manager: contains all information about scheduling, network

and request reservations, connections, demands, deadlines, etc. The time when the
current timeslot is started or when it finishes can be retrieved from the global state.
The global state manager is currently centralized and in future we intend to deploy
this in a decentralized way.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 113

Monitoring system: keeps track of monitored times, residual demand and
current allocated bandwidth for all requests. The monitoring system also regularly
checks network conditions and raises an event as soon as a failure is detected.

Job manager: contains the list of current advance-scheduled requests and cur-
rent waiting list requests. Advance-scheduled requests refer to the requests that
have already been scheduled by the DARA algorithm to be transferred in the cur-
rent timeslot. The waiting-list requests are those requests that can potentially be
started in this timeslot, but are postponed due to limited network capacity.

Connection manager: decides what to do when a transfer is started or stopped.
As long as there are requests with active connections, this component is opera-
tional. Whenever a connection for a file transfer is terminated, the links that were
in use by this connection become free. In order to improve network utilization,
this capacity can be used by other active requests if shared links were in use. To
achieve this, after completion of a file transfer, an event will be raised.

Reservation manager: collects all information about the reservations of each
request. Primary allocations, backup reservations, extra allocations made during
the periodic adaptation phase and allocated network resources can be retrieved
from this component.

Adaptive optimization: in charge of optimization to try and push more data
than what has been guaranteed through advance reservation. The Adaptive Opti-
mization (AO) algorithm is the main component in this module which is triggered
by several events: start of a timeslot, start and end of file based requests, link fail-
ures and repairs. Based on this algorithm, the current schedule is analyzed and
adapted to use idle bandwidth capacities.

4.6 Advance bandwidth reservation algorithms

We briefly explain the DARA approach and how this approach is extended to sup-
port variable timeslot sizes. DARA is invoked several times whenever new scenar-
ios are submitted to the reservation system. The dynamic approach first updates the
previously admitted requests’ demands based on whether the request is scheduled,
is finished or is in progress. Then, new scenarios are sorted. This sorting is based
on the earliest average start time of the scenario’s requests. If two scenarios have
the same value, the one requiring more resources is chosen. Then each scenario in
the sorted list is sequentially processed as follows. The prioritization algorithm as-
signs priorities to the scenario’s requests, taking two parameters into account: the
estimated hard deadline and the volume. Since the deadline may not be specified
for all requests, the hard deadline (i.e., the latest possible deadline) for those with
no specific deadline is estimated. This time is calculated by assuming that all re-
quests on which the request depends, use the entire network at once. This gives the
latest possible deadline for the requests. In the prioritization algorithm, the sooner

114 CHAPTER 4

algorithm 10: DARA (Dynamic Advance Reservation Algorithm), updated to support the
capability of offering flexible timeslot sizes.

input: scenarios’ requests, network infrastructure, approach
Update previously admitted requests;
sortedQueue← AverageStartSort(new scenarios);
for (scenario ∈ sortedQueue) do

Set scenario status as Pending;
currentstate← Save the current system state;
Prioritization(scenario’s requests);
sysReqList.Add(scenario’s requests);
if (approach = Fixed) then

feasible← FixedTimeSlot(sysReqList, timeslotSize);
else

feasible← FlexibleTimeSlot(sysReqList);
end
if (feasible) then

Update the schedule;
Set scenario status as Admitted;

else
Set current system state to CurrentState;
Set scenario status as Rejected;

end
end

deadline has the higher priority and volume comes into consideration only when
the hard deadlines are equal, where a higher priority is assigned to larger demands.
The scenario’s requests are added to the list of system requests (sysReqList). Then,
according to the desired solution, the flexible or fixed timeslot-based approach is
chosen and based on the result of either the FixedTimeSlot or the FlexibleTimeSlot
algorithm, DARA decides to admit or reject the scenario. If a feasible schedule
has been achieved, the previous schedule is updated, otherwise the algorithm has
to backtrack to the previous feasible state. As the FixedTimeSlot algorithm has
been previously explained in [3], we only discuss the flexible timeslot-based and
the optimized version of the resilient algorithms.

4.6.1 FlexibleTimeSlot algorithm

The FlexibleTimeSlot algorithm is shown in Algorithm 11. Based on this algo-
rithm, the chronologically sorted requests, stored in the sortedSysReqList, are se-
quentially processed. To do this, the currentReq list is determined which contains
all requests that could be simultaneously started. Then the BWallocation algorithm
is invoked to determine the amount of bandwidth reservation for each request. Ac-
cording to the output of the BWallocation algorithm, the duration of the current

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 115

algorithm 11: The FlexibleTimeSlot algorithm.

Data: sysReqList
sortedSysReqList← StartTimeSorting(sysReqList);
New Timeslot.setStart(FirstReqStartTime);
while (sortedSysReqList 6= ∅) do

currentReq← ActiveRequests(sortedSysReqList);
sortedList← PrioritySorting(currentReq);
reservations← BWallocation(sortedList);
duration←MinDuration(reservations);
timeSlotEnd← duration + Timeslot.getStart();
Timeslot.setEnd(timeSlotEnd);
if (!UpdateAndCheckFeasibility(reservations, timeSlotEnd)) then

return false;
else

New Timeslot.setStart(timeSlotEnd);
Update the sortedSysReqList;

end
end
return true

timeslot is determined and the feasibility of the schedule is checked. The sort-
edSysReqList is updated by removing all the admitted and scheduled requests.

The BWallocation algorithm is capable of allocating network bandwidth using
single-path or multi-path routing mechanisms and resilience can be taken into ac-
count by providing redundant reservations during the resource reservation process.
To increase network utilization and to offer reliable reservations, we assume that
the resilient multi-path approach is followed by using the BWallocationResilient
algorithm, shown in Algorithm 12. This algorithm first assigns a cost to each net-
work link using a cost allocation method. We have designed two algorithms for
resilient bandwidth allocation depending on the type of request, shown in Algo-
rithms 13 and 14.

algorithm 12: BWallocationResilient

Data: sortedReqList
costAllocation(Links);
for req ∈ sortedReqList do

if req is FB then
reservation← BWallocationFBResilient(req);

else
reservation← BWallocationVSResilient(req);

end
end
return reservation;

116 CHAPTER 4

BWallocationVSResilient is meant to serve the streams and BWallocationF-
BResilient is defined to serve the files. The main components in these algorithms
are BWallocationFB and BWallocationVS, previously proposed in [3]. These al-
gorithms are based on least-cost paths which are calculated based on a modified
version of the Dijkstra algorithm [38], in which the calculated costs are used in-
stead of path length. The amount of reservations for each type has been previously
set by the Limit function. The common part for both algorithms is repeatedly find-
ing the least-cost paths between source and destination of a given request until the
limit of that request is fulfilled. However, provided that the limit of the request
is not available, a different trend is followed by each approach. For file-based
requests in the BWallocationFB algorithm, the maximum available capacity is re-
served as the remainder of the file can be processed during the next timeslots. In
the BWallocationVS algorithm, if there is not enough capacity to allocate the re-
quest, it can not be served and thus the feasibility is set to false. The next step in
the resilient algorithms is to find the backup paths.

algorithm 13: BWallocationVSResilient for streams

Data: a VS request
reservation← BWallocationVS(req, graph);
maxBW← max Bandwidth(reservation);
graphReduced← remove the links in reservation from the network graph;
backupLimit←Min(maxBW,requestedBackup(req));
backupReservation← BWallocationVS(req, backupLimit, graphReduced);
if backupResevation then

return reservation , backupReservation;
else

feasibility← false;
end

Depending on the backup demands and primary allocations, the amount of
backup demand is first calculated. Both algorithms check if the backup can be
fulfilled. In order to cover single failures, the backups have to be disjointed from
the primary paths. As such, the links used in the primary paths are removed from
the network and the bandwidth allocation algorithms are reused on the residual
network to find the backup paths for that request. If the backups can be found, the
primary and backup paths can be successfully allocated for the request. Otherwise,
the primary paths have to be removed and sent back to the resource pool. Any
QoS violation for the stream is not tolerable, implying that the scheduling is not
successful if the backups for the streaming request are not fulfilled.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 117

algorithm 14: BWallocationFBResilient for file transfers

Data: an FB request
currentState← Save the current network state;
upperBound← Limit(req);
optimalLimit← Limit(req);
lowerBound← 0;
while (optimalLimit > 0.1Mbps) do

reservation← BWallocationFB(req, currentLimit, graph);
maxBW← max Bandwidth(reservation);
graphReduced← remove the links in reservation from the network graph;
backupLimit←Min(maxBW, requestedBackup(req));
backupReservation← BWallocationFB(req, backupLimit, graphReduced);
if (!backupReservation) then

set current network state to currentState;
upperBound← optimalLimit;
optimalLimit← lowerBound+upperBound/2;

else
if (upperBound− lowerBound > ε) then

set current network state to currentState;
lowerBound← optimalLimit;
optimalLimit← lowerBound+upperBound/2;

else
return reservation, backupReservation;

end
end

end

4.6.2 BWallocationFBResilient algorithm

In the original BWallocationFBResilient algorithm [5], if the backup for a given
request can not be provided, the limit of primary allocations is repeatedly halved
and the possibility of reservation is checked with this lower limit. We argue that
this can be improved by deploying a binary search algorithm. That is, given a
file-based request, we seek for maximum available bandwidth which satisfies both
primary and backup demands. Therefore, if the algorithm finds that value X can
satisfy both primary and backup demands, instead of returning this value, which
was the case in the original algorithm, a higher value based on the binary search
approach is investigated and this is repeated until a near-optimal value (within an
ε margin) is calculated and returned. This process is shown in Algorithm 14.

118 CHAPTER 4

4.7 Evaluation setup

For the evaluation of our proposed approach, we have considered a media produc-
tion network as case study. In such a network, many geographically distributed ac-
tors, e.g. production houses, broadcasters, advertisers, collaborate using a shared
substrate network to exchange huge amounts of raw video and audio data and
streaming transfers. Based on interviews with several Belgian media production
actors, including a broadcaster, service provider, and recording facility provider, a
set of use case scenarios have been previously defined that serve as a basis for the
evaluation. Each scenario contains a collection of interdependent file and stream-
ing transfers with randomized parameters. Each transfer is represented with a
source node, a destination node, the start time for streams or the time when the
data is ready to be transferred for file-based request, the deadline for file-based
request or fixed end-time for streams, the volume for file-based request or the
duration and bandwidth requirement for streams. Scenario type 1 represents a soc-
cer after-game discussion program and comprises 5 different file transfer requests.
Scenario type 2 is a 30 minute infotainment show and comprises of 18 file transfer
requests. Finally, the third type is a news broadcast, consisting 4 file transfer and
4 video streaming requests. The interactions between actors in the three defined
scenarios is explained in detail in [3]. In all evaluations, the number of scenarios
is 20 (consisting of 209 requests), out of which 7, 7 and 6 scenarios are of type 1,
type 2 and type 3 respectively.

In this evaluation we have used 8-node and 25-node network topologies. The
25-node topology is the well-known ATT North America topology [39] consisting
of 25 nodes and 56 bidirectional links (112 links in total) which matches to the size
of realistic media production networks. A detailed overview of network topologies
can be observed from [40].

In order to generate MTBF (mean time between failures), MTTR (mean time
to repair) and video stream activation / deactivation events, we used a normal dis-
tribution function with equal values for both mean and standard deviation. This
value equals 5 minutes for video stream activation/deactivation. It is not trivial to
assign a value for MTTR, as it depends on multiple factors, e.g. type of links, type
of failures, underlying technology [41]. The main focus of this section is to eval-
uate the performance of our approach under catastrophic failures in failure-prone
networks. As such, 48 minutes is chosen as mean/standard deviation value for the
MTTR to experience higher unavailability. To give an insight in number of con-
current failed links for each topology, Table 4.1 shows the maximum and average
number of failed links for different MTBF values.

Based on the outcome of the DARA scheduling algorithm, in steady network
conditions the requests are either rejected or admitted. However, in presence of
failures, not all admitted requests can be completely transferred. Hence, the ad-

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 119

Table 4.1: Maximum and average number of concurrent failures for different failure rates.

8-node topology (32 links) 25-node topology (112 links)

Failure rate AVG MAX AVG MAX

2h 8.76 17 31.97 46
10h 2.17 6 8.47 20

mitted requests can be categorized as succeeded, degraded or failed. In failure-free
networks, succeeded requests equals to the admitted requests. In case of failures,
succeeded requests are those that have been fully transmitted. Deciding on the
degraded or failed states depends on the users’ preference. In this evaluation we
assume that the users asked for the same value as percentage of backup demand,
i.e. if a request has a demand for 60% backup, this request is considered as de-
graded if at least 60% (but less than 100%) of its volume has been transferred by
its deadline, otherwise the request is failed. It should be noted that for 0% and
100% of backup demand, no degradation has been considered. Those requests are
either fully-transferred or failed.

In order to model the dynamic aspect of our model (i.e. the RA approach),
we have designed a discrete-event-based simulator using the MASON multi-agent
simulation toolkit [42]. For this evaluation, we have compared our proposed solu-
tion with a baseline approach. In the baseline approach, whenever a new scenario
enters the reservation system, the previous reservations remain untouched and only
new requests are being re-scheduled. Flexibility of the timeslots and fault toler-
ance properties are ignored and the timeslot size of 1 hour is used. The resilient
reservations are provided using 2Mbps for the parameter ε.

In our evaluations, DARA[XX, YY, ZZ] denotes that timeslot size of XX, YY
percentage of backup demand, and failure rate of ZZ hours are used in the dy-
namic timeslot-based advance reservation algorithm. Each simulation run covers
a 24-hour period. All results are averaged over 50 runs with different randomized
inputs, error bars denote the standard error.

4.8 Simulation results and discussion

This section evaluates the proposed dynamic flexible timeslot-based scheduling
algorithms and compares the quality and execution time of this approach to the
fixed-size algorithm. In the fixed size timeslot-based solution, timeslot granulari-
ties of 5 minutes to 60 minutes are used. The influence of the available bandwidth,
network load, failure rates, backup demands and computational times are assessed.

120 CHAPTER 4

70

80

90

100

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

30

40

50

60

100 150 200 250 300

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Physical network capacity (Mbps)

DARA[flex]
DARA[5min]
DARA[30min]
DARA[60min]
Baseline

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.6: Comparing the impact of network capacity in the flexible and fixed size DARA
approaches in the 8-node topology.

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

50

55

60

65

70

75

100 150 200 250 300

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Physical network capacity (Mbps)

DARA[flex]
DARA[5min]
DARA[30min]
DARA[60min]
Baseline

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.7: Comparing the impact of network capacity in the flexible and fixed size DARA
approaches in the 25-node topology.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 121

4.8.1 Comparing DARA fixed and DARA flex

In Figures 4.6 and 4.7, the network infrastructure has been configured for different
available bandwidths, to investigate the impact of network capacity on the perfor-
mance of our algorithms. The number of admitted requests in the DARA approach
for flexible timeslots and fixed-size timeslots with different granularities, varying
from 5-minute to 1-hour sizes, are evaluated. As can be seen in these figures,
the highest percentage of admitted requests is achieved by the flexible advance
scheduling algorithm. In the fixed-size approaches the longest timeslot size of 1
hour shows the worst performance in terms of number of admitted requests and this
quality is improved when the time interval size is more fine-grained. Compared to
the best results obtained by near-optimal fixed size timeslot-based approach (i.e.
5 minutes), the flexible DARA approach shows slightly higher percentage of ad-
mitted requests, up to 0.53% and 0.66% respectively and compared to the baseline
approach, the flexible timeslots on average improve the admittance ratio 16.43%
and 11.87% for the smaller and larger topologies respectively.

Figures 4.8 and 4.9 compare the request admittance ratio for the fixed size and
flexible approaches when the network load increases, from 2 to 20 scenarios. In all
experiments, flexible timeslots on average show the most desirable performance,
resulting in an increase of up to 0.6% and 1.2% percentage of admitted requests,
compared to the fixed 5-minute timeslot size and compared to the baseline ap-
proach, the flexible timeslots improves the admittance ratio on average 12.56%
and 16.93% for 8-node and 25-node topologies respectively.

Figures 4.10 and 4.11 compare the execution times of fixed size, flexible and
baseline approaches when the network load increases. These figures show that
in the fixed size approach, in addition to the number of scenarios, the size of the
timeslot has a large impact on the execution time. However, in the flexible ap-
proach an increase in the number of scenarios leads to an increase in the number
of timeslots, resulting in a steeper increase when the number of scenarios grows.

4.8.2 Resilient DARA fixed vs. resilient DARA flex

In this evaluation, the impact of different backup demands, including 0%, 50%
and 100% are analyzed. Due to similar trends in both topologies, this evaluation
is only shown for 25-node topology. Figure 4.12 analyzes the impact of network
capacity and percentage of backup demand on the performance of our approaches.
As can be seen, regardless of the backup demand, the flexible approach shows
almost similar performance as the 5-minute fixed size timeslots.

122 CHAPTER 4

80

85

90

95

100
Pe

rc
en

ta
ge

 o
f a

dm
itt

ed
 re

qu
es

ts

60

65

70

75

80

2 4 6 8 10 12 14 16 18 20

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Number of scenarios

DARA[flex]
DARA[5min]
DARA[15min]
DARA[30min]
DARA[60min]
Baseline

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.8: Comparing the performance of flexible and fixed timeslot-based DARA
approach with different number of scenarios in the 8-node topology. Network capacity is

200Mbps.

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

50

55

60

65

70

75

2 4 6 8 10 12 14 16 18 20

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Number of scenarios

DARA[flex]
DARA[5min]
DARA[15min]
DARA[30min]
DARA[60min]
Baseline

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.9: Comparing the performance of flexible and fixed timeslot-based DARA
approach with different number of scenarios in the 25-node topology. Network capacity is

100Mbps.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 123

1

10

100
Ex

ec
ut

io
n

tim
e

(s
)

DARA[flex]
DARA[5min]
DARA[15min]
DARA[30min]
DARA[60min]
Baseline

0.01

0.1

1

2 4 6 8 10 12 14 16 18 20

Ex
ec

ut
io

n
tim

e
(s

)

Number of scenarios

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.10: Comparing the execution time of flexible and fixed timeslot-based DARA
approach with different number of scenarios in the 8-node topology. Network capacity is

200Mbps.

1

10

100

Ex
ec

ut
io

n
tim

e
(s

)

0.01

0.1

1

2 4 6 8 10 12 14 16 18 20

Ex
ec

ut
io

n
tim

e
(s

)

Number of scenarios

DARA[flex]
DARA[5min]
DARA[15min]
DARA[30min]
DARA[60min]
Baseline

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.11: Comparing the execution time of flexible and fixed timeslot-based DARA
approach with different number of scenarios in the 25-node topology. Network capacity is

100Mbps.

124 CHAPTER 4

40

50

60

70

80

90

100

100 150 200 250 300

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Physical network capacity (Mbps)

DARA[flex,100%]
DARA[flex,50%]
DARA[flex,0%]
DARA[5min,100%]
DARA[5min,50%]
DARA[5min,0%]

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.12: Comparing the impact of backup demand in the flexible and fixed size
resilient DARA approaches in the 25-node topology.

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

DARA[flex,100%,10h]+RA (Admitted)
DARA[flex,100%,10h]+RA (Succeeded)
DARA[flex,100%,2h]+RA (Admitted)
DARA[flex,100%,2h]+RA (Succeeded)

0

20

40

100 150 200 250 300

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Physical network capacity (Mbps)

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.13: Comparing the impact of failure rates in the flexible and fixed size resilient
DARA approaches in the 8-node topology.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 125

60

70

80

90

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

20

30

40

50

100 150 200 250 300

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Physical network capacity (Mbps)

DARA[flex,100%]+RA
DARA[flex,100%]
DARA[5min,100%]+RA
DARA[5min,100%]

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.14: Comparing the impact of runtime adaptation (RA) in the flexible and fixed
size resilient DARA approaches in the 8-node topology.

4.8.3 Resilient DARA fixed+RA vs. resilient DARA flex+RA

Figure 4.13 compares the impact of different failure rates on the percentage of
admitted and succeeded requests in the 8-node topology. This evaluation reveals
that on average, the catastrophic failure rate of 2h results in a success rate of only
65.8% of already admitted requests, while this is up to 98.8% for 10h failure rate.

In Figures 4.14 and 4.15, the impact of the runtime adaptation approach on
fixed size and flexible approaches are evaluated for 100% backup demand. These
figures first reveal that, in case of no failures, the percentage of admitted requests
in the flexible approach in combination with the runtime adaptation approach is
impacted to a greater extent, compared to the fixed-size approach. While the run-
time adaptation is able to achieve up to 8.1% and 8.4% in combination with the
flexible approach for 8-node and 25-node topologies, this impact is up to 6.36%
and 3.7% with fixed-size timeslots. Second, the combination of RA with the flex-
ible approach shows the highest performance, on average 3.15% and 3.6%, com-
pared to the combination of RA and 5-minute timeslots, in the 8-node and 25-node
topologies respectively.

Figures 4.16 and 4.18 show the average percentage of succeeded requests
(out of all admitted requests) in 8-node and 25-node networks respectively. Fig-
ures 4.17 and 4.19 compare the same experiments for the success rate of admitted
requests. In these figures, the failure rate of 10h is considered. As can be seen
in these figures, the highest percentage of succeeded requests is almost always
achieved by the flexible timeslot size with full protection. More importantly, ac-
cording to these evaluations, we can conclude that in case of failures, the flexible

126 CHAPTER 4

70

80

90

100

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

40

50

60

70

100 150 200 250 300

Pe
rc

en
ta

ge
 o

f a
dm

itt
ed

 re
qu

es
ts

Physical network capacity (Mbps)

DARA[flex,100%]+RA
DARA[flex,100%]
DARA[5min,100%]+RA
DARA[5min,100%]

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.15: Comparing the impact of runtime adaptation (RA) in the flexible and fixed
size resilient DARA approaches in the 25-node topology.

approach with 100% backup provisioning always achieves a higher percentage of
succeeded requests by up to 3%, compared to 50% backup demand with 5-minute
timeslots.

However, when it comes to the success rate of admitted requests, shown in
Figure 4.17 and 4.19, 5-minute timeslots shows the best performance. The suc-
cess rate of 5-minute timeslots is up to 0.7% and 1% higher for 100% and 50%
backup provisioning respectively in the smaller topology. In the 25-node topol-
ogy, as can be seen in Figure 4.19, the 5-minute timeslots can achieve on average
0.88% and 2.5% higher success rate for 100% and 50% backup demand. We argue
that in these evaluations the success rate of the flexible algorithm is slightly lower
because the flexible solution accepts more requests. When failures occur, the flex-
ible approach has more requests that need to be kept successful. The 5-minute
timeslot-based algorithm rejects more requests from the beginning, leaving it with
more breathing room in terms of network capacity, making it easier to keep those
requests successful.

Figures 4.20 and 4.21 evaluate the impact of 10h failure rate on the final state of
reserved requests. As can be seen in Figure 4.20, with 10h failure rate, the highest
admittance and success rate is achieved by the flexible timeslots, on average 1.77%
and 1.34% respectively compared to the 5-minute timeslot size. In the 25-node
topology, while a higher percentage of requests are admitted by flexible approach,
the percentage of succeeded requests for flexible and 5-minute timeslots are almost
equal. However, with a catastrophic failure rate of 2h in Figure 4.22, while the
flexible timeslots results in the highest request admittance ratio, the success rate is
slightly lower, on average 0.38%, compared to the 5-minute fixed size approach.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 127

25

35

45

55

65

75

85

100 150 200 250 300

P
e

rc
e

n
ta

ge
 o

f
su

cc
e

d
e

d
 r

e
q

u
e

st
s

Physical network capacity (Mbps)

DARA[flex,100%,10h]+RA

DARA[flex,50%,10h]+RA

DARA[5min,100%,10h]+RA

DARA[5min,50%,10h]+RA

Figure 4.16: Comparing the percentage of succeeded requests in the flexible and fixed size
DARA approaches in the 8-node topology.

95

100

Su
cc

es
s r

at
e

of
 a

dm
itt

ed
 re

qu
es

ts

80

85

90

100 150 200 250 300

Su
cc

es
s r

at
e

of
 a

dm
itt

ed
 re

qu
es

ts

Physical network capacity (Mbps)

DARA[flex,100%,10h]+RA
DARA[flex,50%,10h]+RA
DARA[5min,100%,10h]+RA
DARA[5min,50%,10h]+RA

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.17: Comparing the success rate of admitted requests in the flexible and fixed size
DARA approaches in the 8-node topology.

128 CHAPTER 4

70

80

90

100
Pe

re
nt

ag
e

of
 su

cc
ed

ed
 re

qu
es

ts

40

50

60

70

100 150 200 250 300

Pe
re

nt
ag

e
of

 su
cc

ed
ed

 re
qu

es
ts

Physical network capacity (Mbps)

DARA[flex,100%,10h]+RA
DARA[flex,50%,10h]+RA
DARA[5min,100%,10h]+RA
DARA[5min,50%,10h]+RA

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.18: Comparing the percentage of succeeded requests in the flexible and fixed size
DARA approaches in the 25-node topology.

95

100

Su
cc

es
s r

at
e

of
 a

dm
itt

ed
 re

qu
es

ts

80

85

90

100 150 200 250 300

Su
cc

es
s r

at
e

of
 a

dm
itt

ed
 re

qu
es

ts

Physical network capacity (Mbps)

DARA[flex,100%,10h]+RA
DARA[flex,50%,10h]+RA
DARA[5min,100%,10h]+RA
DARA[5min,50%,10h]+RA

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.19: Comparing the success rate of admitted requests in the flexible and fixed size
DARA approaches in the 25-node topology.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 129

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s
rejected

0

20

40

flex 5min 15min 30min 60min

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

timeslot size

failed

degraded

succeeded

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.20: Final state of requests with a failure rate of 10h in the 8-node topology.
Backup demand is 50% and network capacity is 300Mbps.

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

rejected

0

20

40

flex 5min 15min 30min 60min

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

timeslot size

failed

degraded

succeeded

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.21: Final state of requests with a failure rate of 10h in the 25-node topology.
Backup demand is 50% and network capacity is 200Mbps.

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

rejected

0

20

40

flex 5min 15min 30min 60min

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

timeslot size

failed

degraded

succeeded

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.22: Final state of requests with a failure rate of 2h in the 8-node topology.
Backup demand is 50% and network capacity is 300Mbps.

130 CHAPTER 4

80

90

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s rejected

failed

degraded

succeeded

70

80

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

An evaluation version of novaPDF was used to create this PDF file.
Purchase a license to generate PDF files without this notice.

Figure 4.23: Comparing the impact of backup demand on the final state of requests with a
failure rate of 10h in the 8-node topology. Network capacity is 300Mbps.

The impact of different backup demands of 20%, 50% and 100% on the final
state of admitted requests is evaluated in Figures 4.23 for smaller and larger topolo-
gies respectively. A network capacity of 300Mbps and failure rate of 10h is used.
Our simulation results for the 8-node topology reveal that the flexible approach
is able to fully transfer of admitted requests up to 3.2%, 1.34% and 1.2% with
100%, 50% and 20% backup demands respectively, compared to the equivalent
evaluations for 5-minute timeslots.

4.8.4 Discussion

Based on these evaluations, we can conclude that the flexible approach is a better
fit for advance bandwidth reservation of media-centric network as in most evalua-
tion cases the flexible approach has on average and quality-wise outperformed the
fixed size approach and shows a lower execution time. In individual evaluations,
however, even 15-minute timeslot can outperform 5-minute or flexible timeslots.
There exist 3 reasons for this. 1) In our evaluations, we admit all or none of sce-
nario requests. 2) We compare number of admitted requests, instead of the number
of admitted scenarios. 3) Admitted scenarios are not allowed to be rejected during
the next rescheduling. We elaborate on this with an example to point out in which
situations the flexible timeslot shows worse performance. Considering 3 priority-

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 131

based sorted scenarios, S1 (18 requests), S2 (5 requests, high demand) and S3 (8
requests, low demand). While the flexible approach is able to admit S1 and S2,
resulting in 23 admitted requests, the fixed size approach may admit S1 and S3,
resulting in 26 admitted requests.

4.9 Conclusions
This chapter dealt with the design, development and evaluation of a flexible, re-
liable and adaptable advance bandwidth reservation system for media-centric net-
works. This architecture provides a highly dynamic framework capable of im-
proving network utilization and request admittance ratio as well as reacting to
sudden network changes. We distinguished the restrictions of fixed size timeslots
and showed that while the flexible approach, in most cases, slightly outperforms
the fixed size solution, the execution duration is considerably reduced. Adding
resilience features increases the reliability of our approach and guarantees single
link failure recovery. However, using redundancy imposes significant performance
overheads and additional costs. To mitigate the side-effect of redundant allocations
and dynamically reconfigure transmissions in response to sudden changes in net-
work conditions, the runtime adaptation approach is introduced which applies a
constant monitoring, adaptation and re-optimization is being applied at runtime.
This improves the performance of transfers and request admittance ratio and per-
centage of fully transferred requests in case of failures. Our results showed that the
flexible approach with 100% backup demand is able to achieve up to 3% higher
percentage of succeeded requests compared to the 5 minute fixed timeslots with
50% backup provisioning.

Acknowledgment
The research leading to these results has been performed within the context of
ICON MECaNO, a project co-funded by iMinds, a digital research institute founded
by the Flemish Government. Project partners are SDNsquare, Limecraft, Video-
House, Alcatel-Lucent, and VRT, with project support from IWT under grant
agreement no. 130646.

132 CHAPTER 4

References

[1] N. Charbonneau and V. M. Vokkarane. A survey of advance reservation rout-
ing and wavelength assignment in wavelength-routed WDM networks. IEEE
Communications Surveys & Tutorials, 14(4):1037–1064, 2012.

[2] M. Barshan, H. Moens, J. Famaey, and F. De Turck. Algorithms for advance
bandwidth reservation in media production networks. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages
183–190. IEEE, 2015.

[3] M. Barshan, H. Moens, J. Famaey, and F. De Turck. Deadline-aware advance
reservation scheduling algorithms for media production networks. Computer
Communications, 2015.

[4] M. Barshan, H. Moens, B. Volckaert, and F. De Turck. Single-path versus
multi-path advance reservation in media production networks. In Network
of the Future (NOF), 2015 6th International Conference on the, pages 1–6.
IEEE, 2015.

[5] S. Sahhaf, M. Barshan, W. Tavernier, H. Moens, D. Colle, and M. Pickavet.
Resilient algorithms for advance bandwidth reservation in media production
networks. In 2016 12th International Conference on the Design of Reliable
Communication Networks (DRCN), pages 130–137. IEEE, 2016.

[6] M. Barshan, H. Moens, B. Volckaert, and F. De Turck. Design and eval-
uation of a dual dynamic adaptive reservation approach in media produc-
tion networks. Journal of Network and Computer Applications, 80:109–122,
2017.

[7] M. Barshan, H. Moens, B. Volckaert, and F. De Turck. A Comparative Analy-
sis of Flexible and Fixed Size Timeslots for Advance Bandwidth Reservations
in Media Production Networks. In NOF 2016-7th International Conference
on Network of the Future. IEEE, 2016. submitted.

[8] M. Barshan, H. Moens, B. Volckaert, and F. De Turck. Design and Eval-
uation of a Flexible Advance Bandwidth Reservation Algorithm for Media
Production Networks. In IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2017. To appear.

[9] K. Rajah, S. Ranka, and Y. Xia. Advance Reservations and Scheduling for
Bulk Transfers in Research Networks. IEEE Trans. Parallel Distrib. Syst.,
20(11):1682–1697, November 2009. Available from: http://dx.doi.org/10.
1109/TPDS.2008.250, doi:10.1109/TPDS.2008.250.

http://dx.doi.org/10.1109/TPDS.2008.250
http://dx.doi.org/10.1109/TPDS.2008.250

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 133

[10] C. Xie, H. Alazemi, and N. Ghani. Rerouting in advance reservation net-
works. Computer Communications, 35(12):1411–1421, 2012.

[11] L. Zuo, M. M. Zhu, and C. Q. Wu. Fast and Efficient Bandwidth Reserva-
tion Algorithms for Dynamic Network Provisioning. Journal of Network and
Systems Management, 2013.

[12] H. Alazemi, F. Xu, C. Xie, and N. Ghani. Advance reservation in distributed
multi-domain networks. IEEE Systems Journal, 2013.

[13] C. Guok, E. N. Engineer, and D. Robertson. ESnet On-Demand Secure Cir-
cuits and Advance Reservation System (OSCARS). Internet2 Joint, 2006.

[14] B. Gibbard, D. Katramatos, and D. Yu. TeraPaths: end-to-end network path
QoS configuration using cross-domain reservation negotiation. In Broadband
Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd
International Conference on, pages 1–9. IEEE, 2006.

[15] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim, D. Yu,
S. Bradley, and S. McKee. StorNet: Integrated Dynamic Storage and Net-
work Resource Provisioning and Management for Automated Data Trans-
fers. In Journal of Physics: Conference Series, volume 331, page 012002.
IOP Publishing, 2011.

[16] S. Sharma, D. Katramatos, D. Yu, and L. Shi. Design and Implementation of
an Intelligent End-to-end Network QoS System. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 68:1–68:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press. Available from: http://dl.acm.org/citation.
cfm?id=2388996.2389089.

[17] S. Naiksatam and S. Figueira. Elastic reservations for efficient bandwidth
utilization in LambdaGrids. Future Generation Computer Systems, 23(1):1–
22, 2007.

[18] L.-O. Burchard, H.-U. Heiss, and C. A. De Rose. Performance issues
of bandwidth reservations for grid computing. In Computer Architecture
and High Performance Computing, 2003. Proceedings. 15th Symposium on,
pages 82–90. IEEE, 2003.

[19] M. Balman, E. Chaniotakisy, A. Shoshani, and A. Sim. A flexible reservation
algorithm for advance network provisioning. In 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–11. IEEE, 2010.

http://dl.acm.org/citation.cfm?id=2388996.2389089
http://dl.acm.org/citation.cfm?id=2388996.2389089

134 CHAPTER 4

[20] L. Shi, S. Sharma, D. Katramatos, and D. Yu. Scheduling end-to-end flexible
resource reservation requests for multiple end sites. In Computing, Network-
ing and Communications (ICNC), 2015 International Conference on, pages
810–816. IEEE, 2015.

[21] N. R. Kaushik, S. M. Figueira, and S. A. Chiappari. Flexible time-windows
for advance reservation scheduling. In 14th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 218–225. IEEE, 2006.

[22] S. J. Nirmala, N. Tajunnisha, and S. M. S. Bhanu. Service provisioning of
flexible advance reservation leases in IaaS clouds. International Journal of
Big Data Intelligence, 3(3):154–162, 2016.

[23] H. Bai, F. Gu, K. Shaban, J. Crichigno, S. Khan, and N. Ghani. Flexible ad-
vance reservation models for virtual network scheduling. In Local Computer
Networks Conference Workshops (LCN Workshops), 2015 IEEE 40th, pages
651–656. IEEE, 2015.

[24] M. A. Netto, K. Bubendorfer, and R. Buyya. SLA-based advance reserva-
tions with flexible and adaptive time QoS parameters. In International Con-
ference on Service-Oriented Computing, pages 119–131. Springer, 2007.

[25] H. Shen, L. Yu, L. Chen, and Z. Li. Goodbye to Fixed Bandwidth. Reserva-
tion: Job Scheduling with Elastic. Bandwidth Reservation in Clouds. In In-
ternational Conference on Cloud Computing Technology and Science. IEEE,
2016.

[26] T. Watanabe, T. Omizo, T. Akiyama, and K. Iida. ResilientFlow: Deploy-
ments of distributed control channel maintenance modules to recover SDN
from unexpected failures. In 11th International Conference on the Design of
Reliable Communication Networks (DRCN), pages 211–218. IEEE, 2015.

[27] D. S. Yadav, A. Chakraborty, and B. Manoj. A Multi-Backup Path Protection
scheme for survivability in Elastic Optical Networks. Optical Fiber Technol-
ogy, 30:167–175, 2016.

[28] S. Tanwir, L. Battestilli, H. Perros, and G. Karmous-Edwards. Dynamic
scheduling of network resources with advance reservations in optical grids.
International Journal of Network Management, 18(2):79–106, 2008.

[29] T. Li, B. Wang, C. Xin, and X. Zhang. On survivable service provision-
ing in WDM optical networks under a scheduled traffic model. In Global
Telecommunications Conference, 2005. GLOBECOM’05. IEEE, volume 4,
pages 5–pp. IEEE, 2005.

FLEXIBLE, RELIABLE AND ADAPTIVE ADVANCE BANDWIDTH RESERVATION 135

[30] T. Li and B. Wang. On optimal survivability design in WDM optical net-
works under a scheduled traffic model. In Design of Reliable Communication
Networks, 2005.(DRCN 2005). Proceedings. 5th International Workshop on,
pages 8–pp. IEEE, 2005.

[31] C. Cavdar, M. Tornatore, F. Buzluca, and B. Mukherjee. Dynamic schedul-
ing of survivable connections with delay tolerance in WDM networks. In
INFOCOM Workshops 2009, IEEE, pages 1–6. IEEE, 2009.

[32] C. Cavdar, M. Tornatore, F. Buzluca, and B. Mukherjee. Shared-path protec-
tion with delay tolerance (SDT) in optical WDM mesh networks. Journal of
Lightwave Technology, 28(14):2068–2076, 2010.

[33] ICON MECaNO project. http://www.iminds.be/en/projects/mecano/, 2014 -
2016. Accessed: 2017-02-10.

[34] J. Zheng and H. T. Mouftah. Routing and wavelength assignment for advance
reservation in wavelength-routed WDM optical networks. In IEEE Interna-
tional Conference on Communications (ICC), volume 5, pages 2722–2726.
IEEE, 2002.

[35] E. He, X. Wang, V. Vishwanath, and J. Leigh. CAM03-6: AR-PIN/PDC:
Flexible Advance Reservation of Intradomain and Interdomain Lightpaths.
In IEEE Global Telecommunications Conference (GLOBECOM’06), pages
1–6. IEEE, 2006.

[36] C. Barz, U. Bornhauser, P. Martini, and M. Pilz. Timeslot-based resource
management in grid environments. In IASTED Conference on Parallel and
Distributed Computing and Networks, PDCN, 2008.

[37] D. H. Lehmer. Teaching combinatorial tricks to a computer. In Proc. Sym-
pos. Appl. Math. Combinatorial Analysis, volume 10, pages 179–193, 1960.

[38] T. Cormen. Introduction to Algorithms. MIT Press, 2009. Available from:
http://books.google.be/books?id=Jwr8jwEACAAJ.

[39] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. Selected Areas in Communications, IEEE Journal on,
29(9):1765–1775, 2011.

[40] M. Barshan, H. Moens, and B. Volckaert. Dynamic adaptive advance band-
width reservation in media production networks. In 2016 IEEE NetSoft Con-
ference and Workshops (NetSoft), pages 58–62. IEEE, 2016.

[41] M. M. Alam Khan. Multi-Path Link Embedding for Survivability in Virtual
Networks. Master’s thesis, University of Waterloo, 2015.

http://www.iminds.be/en/projects/mecano/
http://books.google.be/books?id=Jwr8jwEACAAJ

136 CHAPTER 4

[42] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason: A
multiagent simulation environment. Simulation, 81(7):517–527, 2005.

5
Algorithms for Network-Aware

Application Component Placement for
Cloud Resource Allocation

In previous chapters we proposed several advance bandwidth reservation and
bandwidth management approaches for media-centric networks. In such networks,
data centers are mainly used to store large amount of data and run the applica-
tions. Data centers can offer cloud-based infrastructures as a service. Due to
the soaring popularity of cloud-based services over the last years, the size and the
complexity of cloud environments has been growing quickly. In the context of cloud
systems, mapping a number of application components to a set of physical servers
and assigning cloud resources to those components is challenging. In this Chapter,
we present optimal and heuristic solutions for network-aware placement of multi-
component applications with differing component characteristics. The optimal
ILP-based solution minimizes the application rejection rate and the cost of map-
ping while respecting application component requirements and physical network
limitations. As the execution time of the optimal model scales exponentially, we
also offer scalable heuristic solutions for centralized and hierarchical application
placement, which are thoroughly explained and evaluated and compared to the op-
timal solution. Our evaluations show that while the proposed centralized heuristic
is near-optimal, the hierarchical approach is much faster and offers higher scal-
ability compared to a centralized approach, e.g. mapping 2.7 million application
components onto 512k servers. Moreover, the percentage of servers used and fully

138 CHAPTER 5

placed applications remain close to that of the centralized and optimal solutions.

? ? ?

M. Barshan, H. Moens, Steven Latré, B. Volckaert and F. De
Turck

Accepted to be published on the Journal of Communications and Networks.

5.1 Introduction

Cloud computing has emerged as a powerful paradigm which has revolutionized
the way in which computing infrastructures are used. Elasticity and on demand
services are the main characteristics which make these computing infrastructures
appealing. Nowadays many companies make use of cloud technologies to reduce
costs, increase flexibility and to respond faster to customer needs. Although the
benefits of cloud systems are considerable, numerous challenges remain, among
them, effective supervision of resource usage, scalability and in particular resource
allocation to the applications. The application placement refers to the act of decid-
ing where on the clusters of servers, applications are placed [1].

The initial placement policy used to map applications onto physical servers has
important effects in terms of application performance and resource efficiency, and
making a suitable initial decision is essential to reduce the future need for migra-
tions. In literature, most efforts have been directed towards optimizing the usage of
CPU, memory and disk resources, and reducing the energy consumption of phys-
ical servers. According to [2], however, there has been a drastic increase in the
amount of data generated and consumed by each application. Thus, resource allo-
cation methods have to expand and take into account this growing focus on data.
Inappropriate placement of application components with heavy communication re-
quirements could lead to the saturation of certain network links, with subsequent
negative impact on applications, e.g. slow response or execution times.

Cloud-based applications often consist of multiple interacting components with
differing requirements. While some components may consist of high CPU inten-
sive tasks, requiring powerful computational servers, others may deal with large
volumes of data, making servers tailored to data-throughput more appropriate for
such components. In order to offer an efficient placement service, different re-
quirements of application components should be taken into account in deciding on
where to deploy application components.

In order to address this problem of network-aware application placement in
cloud environments, in this chapter, we first introduce a centralized ILP-based op-

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 139

A1 A1(R)

A2 A2(R)

B1 B1 (R)

B2 B2 (R)

A1

A2

B3 B3 (R)

A1 (R)

A2 (R)

B1(R) B1

B2 (R) B2

B3 B3 (R)

…

…

…

…

App. A App. B

Xi Component i of application X

Xi (R) Redundant version of Xi

Figure 5.1: The process of application component placement with the anti-collection
placement requirement. Redundant components are not allowed to be allocated on the

same host as non-redundant components.

timal model. The main objective is maximizing the percentage of mapped appli-
cations while taking the cost of application mapping into account. In our proposed
approach, we deal with multi-component applications with multiple component
types. The interdependence among application components implies that either
the entire application or none of the application components are mapped. This
is known as the full deployment placement constraint [3]. Therefore, a mapped
application is an application for which all components are successfully allocated.
Moreover, due to the characteristics of our applications, in order to have determin-
istic performance and for security reasons we have made a distinction between dif-
ferent types of application components. Each pair of application components may
either be allowed to share a hardware resource or not. This isolation of component
types can be modeled as an anti-collocation placement constraint [3]. In our ap-
proach, the anti-collocation constraint implies that different component types are
not allowed to be placed onto the same servers. We achieve this by ensuring that
each server is only allowed to place one type of application component. It should
be noted that these constraints can be applied to a wider range of generic problems,
such as multi-tenant applications with a strong focus on data security (banking, in-
surance, etc.) or anti-collocation of redundant components for increased reliability
and fault tolerance purposes. Figure 5.1 shows an example of a reliable applica-
tion component placement onto a small cluster of cloud servers. As illustrated in
this figure, each application component and its redundant version must be mapped
onto two different physical servers.

Due to the NP-hardness of the problem [4–6] and limited scalability of the

140 CHAPTER 5

optimal model, we also propose an approximate centralized heuristic as well as a
hierarchical approach for large-scale cloud environments with the following design
goals: scalability and performance. While centralized approaches are omniscient
in nature and can make better placement decisions, our hierarchical solution has
been designed in such a way that component placement optimality is nearing that
of the centralized heuristic approach. Also, the proposed hierarchical algorithm ex-
ecutes faster as each management cluster maintains a partial view of the network.
In this chapter, we will prove that the resource allocation process is scalable both
in number of cloud servers (e.g. 512k servers) and the number of application com-
ponents (2.7 million application components) needing to be placed onto the cloud
servers. Furthermore, as part of our presented approach an application placement
policy, prioritizing local deployment is taken into account for each administrative
domain. This partial solution also tries to minimize the number of servers used
within each administrative domain. This feature, known as server consolidation, is
mostly effective in reducing the power consumption of large-scale datacenters [7].

In the context of modern cloud platforms, the application placement process
consists of placing the application’s components in a set of VMs (Virtual Ma-
chines) and deploying these to the physical infrastructure [8–11]. In this chap-
ter, we assume that the components are already encapsulated in VMs or (micro-
service) containers, and the application component placement decides on where
to place these VMs on the available physical servers, taking network demands
between the VMs into account.

The rest of the chapter is organized as follows. In Section 5.2, the related
work is discussed. Section 5.3 describes the architecture for our distributed ap-
proach to network-aware application placement for large-scale cloud datacenters.
In Section 5.4, the formulation of the ILP-based model is presented in detail. In
Section 5.5 the proposed algorithms are extensively discussed, followed by an
evaluation of the proposed algorithms in Section 5.6. Finally in Section 5.7, we
sum up our contribution and conclude the chapter.

5.2 Related Work

Recently many different approaches for application placement and cloud resource
allocation have been proposed [12], each focusing on different aspects of the prob-
lem. While many approaches such as [10, 13–15] and [16] rely on centralized
approaches which suffer in term of scalability, [17] offers a distributed protocol
in order to design a resource management middleware. However, their solution is
different as interaction between application components is ignored and there is no
global overview of system states for the network administrators. Authors in [18]
also focus on resource allocation in IaaS clouds. Nevertheless, the main contribu-
tion of this paper is maximizing resource utilization and request acceptance rate.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 141

Another work, [19], clarifies the definition of distributed cloud and the challenges
of resource allocation on distributed clouds.

The authors in [20] have made a discussion and categorized the VM place-
ment schemes into resource-aware, power-aware, cost-aware and network-aware.
Network-aware approaches, such as [21–25], try to reduce traffic related issues or
avoid congestion and in general, VMs make use of network either to communicate
with each other or to access the required data from storage components. However,
none of these approaches take into consideration the anti-collocation requirement
of VMs. On the other hand, deployment of VMs under placement constraints have
been investigated in [3, 26] and [27]. Shi et. al. [3, 26] focus on different VM
placement constraints, e.g. full deployment, anti-collocation, security, etc. and
Breitgand et. al. [27] study SLA compliant placement of multi-VM elastic ser-
vices under the anti-collocation placement constraints. However, these approaches
do not take network demands between the VMs into account.

The model defined in this chapter has similarity with [4] that describes a linear
application placement model and [28] which offers a cost-aware algorithm. Never-
theless, these approaches work at the application level, contrary to our component-
level application modeling policy where we make a distinction between different
component types. In addition, based on the definition of “the best-fit placement”
in [4], our centralized heuristic solution follows the same rule, which is finding a
feasible server whose residual capacity is minimal. Nevertheless, it differs from
our approach as it is centralized and not network-aware. Many other application
placement approaches [13, 29–31] also focus on placing a set of independent appli-
cations, and do not take the underlying network into account. These approaches do
not provide a guaranteed quality of communication between individual interacting
components due to potential contention of network resources [12]. In order to mit-
igate the effect of this risk, network-aware solutions have recently been proposed.
Authors in [32] pay special attention to time varying nature of traffic demand and
dynamic routing capabilities for medium size data centers. Jiang et al. [33] focus
on a multi-path routing scheme and live migration. Incorporation of various net-
work functions has been studied in [34]. While these network-aware approaches
only focus on network congestion or minimizing network traffic, we explicitly
take both network capacity and delay requirements of applications into account in
our formulation as QoS constraints. Among the other network-aware approaches
which also take both requirements into account, we refer to [10, 35–38] that are
centralized and [39] which specifically focus on geo-distributed clouds.

According to [12], while most of the existing application mapping solutions fo-
cus on centralized systems, only 11.5% of approaches, including [40–43] and [44],
use hierarchical control schemes and one of those approaches [45] takes network
constraints into account. However, their hierarchical approach is not related to
their management system but instead it is related to their placement process.

142 CHAPTER 5

This chapter is related to our previous work on hierarchical cloud resource
management [46, 47]. In [46] the underlying network was however not taken into
account, while this work specifically focuses on network-aware management of
multi-tier interactive applications. [47] does take the underlying network into ac-
count, but does not make a distinction between different component types. In this
chapter we however make a distinction between multiple component types, taking
their requirements and characteristics into account during the placement decision.
In addition, this chapter presents much larger scale evaluations.

This work is the extension of our previous work [48] and [49]. In [48], we pre-
sented an optimal ILP-based solution which offers limited scalability, making it
only suitable for small datacenters. This optimal solution is also useful for bench-
marking real-time heuristic algorithms. In [49], a decentralized algorithm was
designed and evaluated which can be applied to large-scale cloud environments.
In this chapter, we have updated the ILP-based model in 3 ways. First, the model
has been generalized to support arbitrary numbers of component types as it was
previously limited to two different component types. Secondly, in the previous
version, a feasible solution was reached only when all the applications have been
mapped. The model has now been extended to incorporate an application mapping
failure rate, which penalizes failures of mapping applications, but allows finding
solutions when otherwise no feasible solution would be possible. Finally, the main
objective has been altered to minimize the application mapping failure rate in ad-
dition to the cost of application mapping. Our evaluations have also been extended
to be more comprehensive.

Generally, what distinguishes our method from other approaches is the com-
bination of the following: 1) our solution is network-aware, decentralized and
scalable; 2) application modeling is component-based with different types, and in-
teraction between those components affects the placement process; 3) SLA agree-
ments and the properties of underlying network, bandwidth and delay, are re-
spected; 4) anti-collocation placement constraints are defined, based on which
multiple but same-type components can be placed onto a single physical node; and
5) our method minimizes the number of servers used while respecting application
requirements.

5.3 Modeling of a large-scale cloud environment

The model for the proposed large-scale algorithm can be divided into three parts:
the physical cloud system, the management plane model and the application model.

Physical cloud system model: In literature, several new topologies have been
proposed for future cloud-based environments, such as Jellyfish [50], Dcell [51],
etc. Nevertheless, tree-based topologies are still dominant in the existing opera-
tional cloud datacenters [52, 53]. Although our proposed approach is not limited

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 143

to the type of network topologies, in this work the physical cloud system is con-
sidered a hierarchical tree topology, which is common in modern data centers. As
application components of different types can not be mapped onto the same server
in our proposed approach, each server has different responsibility and provides
specific functionality.

Management plane model: The management plane relies on multi-layered
hierarchical architecture in which three types of managers are defined: LLM (Low
Level Manager), MLM (Mid Level Manager) and RLM (Root Level Manager).
The LLMs are located in the lowest level of the management hierarchy, the RLM in
the top level and MLMs in middle ones. LLMs directly deal with physical servers
and are responsible for mapping application components onto physical servers.
MLMs manage several LLMs and have the authority to choose the current active
LLM, which has to take the responsibility of mapping new application compo-
nents. RLMs have the general overview of the cloud management systems. In
multi-domain cloud environments, RLMs can communicate with other domains if
the need arises. The management plane specifications are shown in Table 5.1. The
number of management levels (|ML|) and the number of supported servers (|SS|)
for each LLM are taken and the branch factor of each tier (µ) is calculated for each
management domain. In addition, the number of supported servers and the number
of levels determine the number of LLMs. By calculating the level branch factor
the number of MLMs can be achieved as follows.

µ = |ML|−1
√
|LLM | (5.1)

|LLM | = d|S|/|SS|e (5.2)

|MLM | =
|ML|−2∑
level=1

µ((|ML|−1)−level) (5.3)

An example of a physical cloud system and how this maps to its management
plane is illustrated in Figure 5.2. In each administrative domain different servers
are chosen as default servers for different component types.

Application model: In this chapter, the architecture of the applications is ser-
vice oriented, meaning applications can be represented as a service graph and the
application topology is a graph. Although an arbitrary number of application com-
ponent types can be supported by our approach, we focus on two component types
in our evaluations: database (e.g. data sources, data stores) and computational (e.g.
application business logic or user interfaces) components. Database components
store and manage data and are more storage intensive, whereas computational
components are more CPU intensive. The application database and computational
components are the nodes and connections between these components form the
directed links of the application graph. Each application component requires a

144 CHAPTER 5

…

…

MLM

MLM

RLM

…

…

…

A Cloud domain infrastructure The Management Plane

LLM

LLM

LLM

LLM Managed by

Managed by

…

Managed by

…

Managed by

Figure 5.2: The architecture of physical infrastructure and the management plane (LLM:
Low Level Manager, MLM: Mid Level Manager, RLM: Root Level Manager).

Table 5.1: The Management plane parameters.

Parameter Description

|LLM | ∈ N+ Number of LLMs.
|MLM | ∈ N0 Number of MLMs.
|RLM | ∈ N0 Number of RLMs.
|SS| ∈ N+ Number of supported servers for each LLM.
|ML| ∈ N+ Number of management levels.
µ ∈ N+ Management level branch factor.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 145

specific number of data sources, CPU power, memory and storage, etc. and the
storage demand of database components is much higher than their CPU/memory
demand, whereas for logic components, power of CPU is of the highest demand.
In our model,maximum allowed delay and bandwidth requirements are defined for
application links, which need to be satisfied as well.

5.4 Formal ILP-based problem formulation

5.4.1 Introduction to the model

We first present a formal model for application component placement for cloud
resource allocation. In this model the substrate network is considered as an undi-
rected graph and the application network as a directed graph due to interdepen-
dencies between different components. The parameters of the physical network
graph and application network and their descriptions are listed in Table 5.2. Both
infrastructures consist of nodes (N) and links (L). In this context, application links
refer to the connections between application components with certain demands
that need to be met. Nodes in substrate graph (u ∈ Nph) have specific properties
such as data storage capacity (Su), CPU power capacity (Cu) and memory capac-
ity (Mu). Physical links (euv ∈ Lph) can be either LAN or WAN link and this is
determined by a binary variable, typeeuv in which 0 refers to the LAN and 1 refers
to the WAN links. We made this distinction because WAN links cost more than
LAN links. Each link has delay (Deuv) and bandwidth capacity (BWeuv) proper-
ties. It has to be noted that the physical network resource capacities are residual
capacities, considering the previous mappings. As we aim to minimize the cost of
mapping applications onto cloud resources, the general cost of physical nodes and
links as well as cost of using each unit of CPU, memory, storage and link capacity
has been taken into account.

Similarly, each application has been considered as a workflow, consisting of
multiple components and links between those components form a directed weighted
graph. In the application network, ai refers to the component i of application a
with specific computational (cai), storage (sai) and memory (mai) requirements
and eaij refers to the link between component i and j of application a with spec-
ified bandwidth (bweaij

) and maximum allowed delay (deaij
) demands. Different

component types are collected in Stype and γtai is a binary input variable which
indicates whether or not ai is of type t.

5.4.2 Decision variables

Seven decision variables have been defined in this ILP model and all variables
are binary. First, xaiu shows the accomplished mapping between component i of
application a and physical node u, regardless of the type of component. It has to

146 CHAPTER 5

Table 5.2: Symbols and notations used in the formal model.

Physical cloud-based infrastructure parameters

Variable Description

Gph Physical Graph, Gph = (Nph, Lph)
Nph Physical nodes set in Gph
Lph Physical links set in Gph
Su ∈ N+ Available storage capacity of physical node u.
Mu ∈ N+ Available memory capacity of physical node u.
Cu ∈ N+ Available CPU capacity of physical node u
Deuv

∈ N+ Delay of physical link euv.
BWeuv

∈ N+ Bandwidth capacity of physical link euv.
typeeuv

∈ {0, 1} whether Phy. link euv is a LAN or WAN link
Ccostu ∈ N+ Cost of each CPU unit of physical node u.
Mcostu ∈ N+ Cost of each memory unit of physical node u.
Scostu ∈ N+ Cost of each storage unit of physical node u.
BWcosteuv

∈ N+ Cost of each BW unit of physical link euv.
fcostu ∈ N+ The fixed cost of using physical node u.
fcosteuv

∈ N+ The fixed cost of using physical link euv.

Component-based application parameters

Variable Description

Gapp Application graph, Gapp = {a|a = (Na, La)}
AppNo Number of applications.
CompNoa Number of components of application a.
Stype Set of types of application components.
ai ∈ Na Component i of application a.
γtai ∈ [0, 1] has value 1 if ai is of type t.
cai ∈ N+ Computation demand of application a, comp. i.
sai ∈ N+ Storage demand of application a, comp. i.
mai ∈ N+ Memory demand of application a, comp. i.
eaij ∈ La Link between comp. i and j of application a.
bweaij ∈ N+ Bandwidth demand of link eaij .
deaij ∈ N+ Max. allowed delay of link eaij .

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 147

be noted that this variable is equal to 0 in two states, either when due to limitations
there is no possibility to have a mapping between nodes or when physical node x is
not chosen for the mapping although it was possible. Next, feaij

euv indicates success
of mapping between physical link euv and the link between components i and j of
application a (eaij).

As we assume that each physical node is exclusively used for components of
the same type, variable T tu is defined for the purpose of determining whether node
u is used to host components of type t. Multiple components of the same type can
be mapped onto the same physical server.

Furthermore, two other variables are defined: Bu is a binary variable to show
whether physical node u is used, either as a routing node or a used server in the
entire mapping. Beuv

is another binary variable to indicate whether physical link
euv is used in the mapping scheme or not. Finally,Ma has been defined to indicate
whether the application a is fully mapped or not.

xa,iu ∈ [0, 1] ∀u ∈ Nph,∀a ∈ Gapp,∀i ∈ Na
feaij
euv
∈ [0, 1] ∀euv ∈ Lph,∀a ∈ Gapp,∀eaij ∈ La

T tu ∈ [0, 1] ∀u ∈ Nph,∀t ∈ Stype
Bu ∈ [0, 1] ∀u ∈ Nph
Beuv

∈ [0, 1] ∀euv ∈ Lph
Ma ∈ [0, 1] ∀a ∈ Gapp

5.4.3 Objective function

Guaranteeing the quality of service and taking physical constraints into account,
application placement services have to be performed with minimum rejection of
application placement requests. To achieve this, the sum ofMa variables should be
maximized. Minimizing cost of mapping should always be considered the second
optimization objective. The cost of physical servers can be determined by com-
bining the individual costs of using each unit of CPU, memory and storage and the
fixed cost of using each server. Moreover, since in multi-domain cloud networks
the cost of LAN links are almost zero, for estimating the link cost, only the WAN
links are taken into account.

The optimization objective function minimizes both the application rejection
rate and the cost of mapping with lower and higher priorities respectively. Given α
and β as higher (e.g. 106) and lower (e.g. 1) priority parameters respectively, Fail-
ureRate as application mapping failure rate and NodeMapCost as cost of physical
node usage and LinkMapCost as cost of physical links usage, the objective func-
tion is defined as follows:

148 CHAPTER 5

Minimize:

α× FailureRate+ β × (NodeMapCost+ LinkMapCost)

where:

FailureRate =

AppNo− ∑
∀a∈Gapp

Ma

 /AppNo

NodeMapCost =
∑
∀u∈Nph

fcostu ×Bu + ∑
∀a∈Gapp

∑
∀i∈Na

(cai × Ccostu +mai ×Mcostu + sai × Scostu)× xaiu

)

LinkMapCost =
∑

∀euv∈Lph

(
fcosteuv

×Beuv
× typeeuv

+

∑
∀a∈Gapp

∑
∀eaij∈La

(
bweaij ×BWcosteuv × typeeuv

)
× feaij

euv

)

As a result of minimizing the cost of mapping, the objective of the presented
model also minimizes the number of nodes on which the applications can be hosted
while satisfying the following constraints and requirements.

5.4.4 Constraints

The defined constraints for application component mapping in cloud system have
been organized into 7 sub-Sections as follows:

5.4.4.1 Physical node limitations

Constraints (1), (2) and (3) are considered for physical network nodes and are
related to computational, memory and storage limitations respectively. For all
physical nodes, the common idea is that sum of all mapped requests’ demand must
not exceed their maximum available capacities.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 149

∑
∀a∈Gapp

∑
∀i∈Na

cai × xaiu ≤ Cu ∀u ∈ Nph (5.1)

∑
∀a∈Gapp

∑
∀i∈Na

mai × xaiu ≤Mu ∀u ∈ Nph (5.2)

∑
∀a∈Gapp

∑
∀i∈Na

sai × xaiu ≤ Su ∀u ∈ Nph (5.3)

5.4.4.2 Physical link limitations

A bandwidth constraint has to be considered for each physical link, regardless of
being either WAN or LAN link. Constraint (4) represents that for each physical
link, the sum of bandwidth demands of all applications must not exceed maximum
available bandwidth.

∑
∀a∈Gapp

∑
∀eaij∈La

bweaij × feaij
euv
≤ BWeuv ∀euv ∈ Lph (5.4)

5.4.4.3 Quality of service requirements

For delay and bandwidth, Constraints (5) and (6) are defined for each application
link eaij . It has to be noted that the bandwidth constraint can be ignored as it will
be satisfied with the physical link Constraint (4).

∑
∀euv∈Lph

Deuv × feaij
euv
≤ deaij ∀a ∈ Gapp,∀eaij ∈ La (5.5)

BWeuv
× feaij

euv
≥ bweaij

∀euv ∈ Lph,∀a ∈ Gapp,∀eaij ∈ La (5.6)

5.4.4.4 Well-connected mapping Constraints

Constraint (7) makes sure that when 2 adjacent application components cannot be
physically mapped next to each other, a chain of continuous physical links is used
to map each application link. This assures that a closed path is considered to map
an application link. As can be observed from this equation, for each physical node
u, the subtraction of the sum of all incoming and outgoing f values should be equal
to the subtracts of X values between target and source of each application link eaij .

∑
∀u∈Nph

feaij
euv
−

∑
∀u∈Nph

feaij
euv

= xaju − xaiu (5.7)

∀a ∈ Gapp,∀eaij ∈ La,∀euv ∈ Lph,∀u ∈ Nph

150 CHAPTER 5

5.4.4.5 Full deployment constraints

The statements below, Constraints (8) and (9), ensure that if an application is
mapped each individual component of application a has to reside in exactly one
server in order to have a successful mapping. Constraint (10) indicates that either
all or none of application components have to be mapped.

∑
∀u∈Nph

xaiu =Ma ∀a ∈ Gapp,∀i ∈ Na (5.8)

∑
∀u∈Nph

xaiu ≤ 1 ∀a ∈ Gapp,∀i ∈ Na (5.9)

∑
∀i∈Na

∑
∀u∈Nph

xaiu = CompNoa ×Ma ∀a ∈ Gapp (5.10)

5.4.4.6 Anti-collocation constraints

We also need other constraints between X and T values to ensure that each physical
node is only used for components of the same type.Constraint (11) and (12) are
defined to ensure that the type of the application component and the physical node
on which this component is mapped are identical. Since mapping of components
of different types is not feasible in the proposed approach, Constraint (13) ensures
that for each physical node sum of all T tu values for all component types should be
less than or equal to 1.

γtai × xaiu ≤ T tu ∀u ∈ Nph,∀a ∈ Gapp,∀i ∈ Na,∀t ∈ Stype (5.11)

xaiu ≤
∑

∀t∈Stype

T tu ∀u ∈ Nph,∀a ∈ Gapp,∀i ∈ Na (5.12)

∑
∀t∈Stype

T tu ≤ 1 ∀u ∈ Nph (5.13)

5.4.4.7 Additional constraints

Constraints (14) and (15) are needed to make logical correlations between phys-
ical resources and their usage. K in both constraints is a large number. In Con-
straint (14) its value has to be larger than the sum of all possible X values and in a
same way larger than all possible f values in Constraint (15). In Constraint (16),
Bu for each physical node shows that whether node u is used to host any type of
component or not.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 151

∑
∀a∈Gapp

∑
∀i∈Na

xaiu ≤ K ×Bu ∀u ∈ Nph (5.14)

∑
∀a∈Gapp

∑
∀eaij∈la

feaij
euv
≤ K ×Beuv

∀euv ∈ Lph (5.15)

Bu =
∑

∀t∈Stype

T tu ∀u ∈ Nph (5.16)

5.5 Algorithm descriptions

5.5.1 ILP-based algorithm

This algorithm implements the optimal ILP-based model which was extensively
explained in Section III. This ILP-based algorithm is solved using IBM ILOG
CPLEX Optimization Studio [54] which is a tool to build efficient optimization
models. The objective function minimizes both the application mapping failure
rate and the cost of mapping, taking the constraints into account.

5.5.2 Heuristic algorithm

As has been shown in [4, 5] and [6], the problem of application placement onto
a network with bandwidth constrained links is NP-hard. Based on computational
complexity theory, in large scale environments, an optimal solution for an NP-hard
problem is too expensive to be used in practice; instead a near-optimal solution is
desired.

In this section a centralized and a hierarchical approach is discussed which
we refer to as the Centralized Cloud Mapping Algorithm (CCMA) and the Hier-
archical Cloud Mapping Algorithm (HCMA) respectively. These algorithms are
executed within the management plane.

The centralized CCMA algorithm is proposed as a near-optimal alternative to
the centralized ILP based approach. This centralized approach can be deployed
independently and efficiently up to the scale of medium-size networks. We will
show that the centralized approach always outperforms the hierarchical solution in
terms of number of fully mapped applications. Comparing the quality and com-
plexity, the use of the hierarchical approach is only recommended for large scale
environments, where the CCMA can not be practically used due to high complex-
ity. The HCMA has made use of the CCMA algorithm, in combination to the
GCMA (Global Cloud Mapping Algorithm). The GCMA is introduced to have in-
teractions between different managers within the hierarchical management plane.

152 CHAPTER 5

5.5.2.1 Centralized Cloud Mapping Algorithm (CCMA)

This algorithm first arbitrarily chooses different nodes as the default servers for
different component types. For each application the algorithm, shown in Algo-
rithm 15, goes through all the components and tries to allocate resources to each
component. An illustrative example of this placement for two types of compo-
nents is shown in Figure 5.3. In order to have minimal bandwidth overhead, the
algorithm uses the Dijkstra shortest path algorithm [55] for mapping the applica-
tion links. However, there are two situations in which the application component
cannot be placed onto the default server, either because of physical node limita-
tions or due to physical link limitations. Node limitation occurs when there is not
enough residual CPU, memory or storage capacity in one of default servers. In
the latter case, again, there are two situations in which the link limitation leads to
unsuccessful placement. First, the application components cannot be connected
because there are no physical links to connect application components located on
different servers. Second, placement can be unsuccessful if bandwidth or delay
requirements cannot be resolved.

No matter what is causing unsuccessful application component placements and
what the type of component is, the Next Server Selection (NSS) process should
be followed to choose another server as a default server. In the NSS process, a
Breadth First Search (BFS) algorithm [55] is run with the current default server as
the start vertex to initialize the next server selection. We use the BFS because this
algorithm finds the nearest server with minimal path length which ensures there
is a minimal communication overhead between the new and the previous servers.
However, when link limitation occurs, first another server is chosen temporarily by
the NSS process and then the algorithm checks the path availability and SLA ful-
fillment, and sets it as a default server provided that choosing this server satisfies
both conditions. Otherwise, the placement is not successful. In this case the algo-
rithm must remove all placed components of the application and backtrack to the
state before the placement. This state is saved before placement of each applica-
tion in order to backtrack when the need arises. After backtracking, the placement
starts again with new default servers. This process will be continued until the NSS
process is unable to find a new server. If this occurs, placement of the application
is not possible.

5.5.2.2 Hierarchical Cloud Mapping Algorithm (HCMA)

The HCMA algorithm is shown in Algorithm 16. Based on this algorithm, all
placement requests are sent to the current active LLM, using the GCMA algo-
rithm. The GCMA is designed in order to have interactions between different
managers within the management plane. The GCMA is run on every manager.
In the management hierarchy, each LLM is in charge of its own administrative

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 153

D

D

C D C
D

D

C D C
D

D

C D C
… …

DD DC DS CS

App (i) App (i+1) App (i+2)

E E E E E

Physical Servers

DD Initial Default Database Server

DC Initial Default Computational Server

DS Database Server

CS Computational Server

E Unused Servers (Empty)

Application Components

D Database Component

C Computational Component

Figure 5.3: The process of application component placement onto a cluster of cloud
servers for two types of components (database server and computational server).

domain and the current active LLM is the one which is active in mapping the ap-
plication components. The current active LLM is determined arbitrarily when the
algorithm starts. Each manager has two states: “full” and “not full”. A manager
is “full” when all its managed servers get fully occupied. The active LLM will be
replaced when its state changes to “full”. The next active LLM is chosen by the
parent of the current active LLM, i.e. an MLM or the RLM. For each newly arriv-
ing application, the HCMA invokes the GCMA with the current active LLM and a
“new request” message. In the GCMA three types of messages are defined: “new
request”, “from the parent node” and “full”. This is illustrated in Figure 5.4. Next,
the GCMA sends the application request to the current active LLM by calling the
CCMA, which was presented earlier. In hierarchical approach the CCMA is run
on every LLM. If this default administrative domain is not able to place the entire
application components, the status of the current active LLM changes to “full”.
Afterward, this LLM calls the GCMA with a “full” message to its parent, indicat-
ing that the application cannot be placed onto this cluster. In this step, interaction
between different management entities starts.

Global Cloud Mapping Algorithm (GCMA): The GCMA is a hierarchical al-
gorithm, listed in Algorithm 17. Based on this algorithm when a request is re-
ceived, three cases can be distinguished:

1. A request is received by the highest level manager (RLM): The request will
be forwarded to the next unvisited domain with a “from the parent node”
message. If all domains are full and the request is rejected the cloud system
is not able to place this application.

154 CHAPTER 5

algorithm 15: The Centralized Cloud Mapping Algorithm (CCMA), run on the
management plane in the centralized approach and on each LLM in the hierarchical

approach.

input: applications
for (c ∈ application components) do

while (Map (c, defaultServer) = false) do
if (Due to node limitations) then

New defaultServer← NSS(default Server);
if (New defaultServer = Null) then

Mappedapp ← false;
return false;

end
else if (Due to link limitations) then

Temp Server← NSS (defaultServer);
if (CheckLinks (Temp Server)) then

New defaultServer←Temp Server;
else

Mappedapp ← false;
end

end
if (one of default servers = null) then

Mappedapp ← false;
return false;

end
end

end

2. A request is received by the mid-level manager (MLM): The request will be
forwarded by applying the same policy to one dedicated lower-level man-
ager with a “from the parent node” message until the target LLM located at
the lowest level is reached. Provided that all domains are full, the status of
this manager turns to “full” and the request with a “full” message will be
forwarded to the parent which can be either another MLM or the RLM.

3. A request is received by the lowest level manager (LLM): At this level all
request messages will be either “new request” or “from the parent node”.
No matter who is the request sender, the manager executes the CCMA al-
gorithm. In a saturation case when placement of new applications is not
possible, the LLM has to send the newly arriving requests to its parent and
introduce itself as a “full” manager.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 155

MLM

LLM
LLM

1. GCMA(“new request” , app)

D
D

D
C

F F
D
D

D
C

E E

2. CCMA (app)

3. GCMA(“full” , app) 4. GCMA(“from parent” , app)

5. CCMA (app)

D

D
C D C

6. App is mapped

Physical Servers

DD Default Database Server

DC Default Computational Server

F Full Server

E Unused Server (Empty)

Application Components

D Database Component

C Computational Component

Figure 5.4: Different messages for interacting between the managers in GCMA
(GCMA: Global Cloud Mapping Algorithm, CCMA: Centralized Cloud Mapping

Algorithm).

algorithm 16: The Hierarchical Cloud Mapping Algorithm (HCMA), run on the
hierarchical management planes.

input: Applications, Physical Infrastructure (Servers, Links), Management Plane
(|S|, |SS|, |ML|);

for (app ∈ applications) do
manager← Current active LLM;
GCMA(app, manager, null, "new request");

end

5.6 Evaluation Details

The implemented physical cloud system is a tree-based multi-tier infrastructure,
similar to current datacenter topologies [11, 12, 56], consisting of server nodes
and links which we assume to be homogeneous. This means that all the servers
have similar configuration of CPU, memory, storage and transmission medium (in
terms of bandwidth and delay). In our evaluations, we make use of two component
types. Each server can be either a database or a computational server. No backup
servers are assumed. Servers are located in the lowest tier (level = 0) and the other
levels consist of intermediate devices such as switches. In order to design the
physical infrastructure, the number of server nodes (|S|) and the number of levels
(|L|) are taken as inputs. In order to have the desired scale, these variables can be
tuned. This physical cloud environment is a complete N-ary tree in which the N is
the calculated branch factor (β). In addition, the number of switch ports and the
number of tiers determine the number of network switches. The branch factor of
each tier and the number of intermediate switches (|IS|) are calculated as follows.

156 CHAPTER 5

algorithm 17: The Global Cloud Mapping Algorithm (GCMA), run on every manager in
the hierarchical approach.

input: application a, manager m, requestSender r, message s
Impossibilitya ← false;
Currentstate← Save the current system state;
while (Mappeda = false & Impossibilitya = false) do

Set current system state to CurrentState;
if (mtype = LLM & s=("new request" OR "from the parent node")) then

if (one of the default servers=null) then
fullm ← true;
GCMA(a, parentm, m, "full");

else
CCMA(m,a);

end
end
if (mtype 6= LLM & s = ("full" OR "from the parent node")) then

for (ch ∈ childrenm) do
if (fullch =false & ch 6=r) then

GCMA(a, ch, m, "from the parent node");
return;

end
end
fullm ← true;
if (mtype = MLM) then

GCMA (a,parentm, m, "full");
else

Impossibilitya ←true;
end

end
if (Impossibilitya =true) then

Set current system state to CurrentState;
end

end

The variables defined to describe physical cloud system are listed in Table 5.3.

β = |L|−1
√
|S| (5.1)

|IS| =
|L|−1∑
level=1

β((|L|−1)−level) (5.2)

In our evaluations, three types of applications, shown in Table 5.6, are im-
plemented. Type 1 refers to the 5-component applications with 3 database and 2
computational components, Type 2 refers to the 10-component applications with 7
database and 3 computational components and Type 3 refers to 20-component ap-

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 157

Table 5.3: The physical network parameters.

Variable Description

|S| ∈ N+ Number of physical servers.
|IS| ∈ N+ Number of intermediate switches.
|L| ∈ N+ Number of physical switching levels.
β ∈ N+ physical level branch factor.

Database Component

Logic Component

Figure 5.5: An illustrative 20−component application (Type 3).

plications that consisting of 14 database and 6 computational components. These
types of applications have been provided by our industrial partners based on realis-
tic applications with deterministic characteristics, which implies that the structure
of the applications is always known beforehand. To illustrate the used applica-
tions, a 20-component application is shown as a sample in Figure 5.5. Throughout
this section, the number of X-component applications refer to the number of ap-
plications, submitted for a possible placement to the cloud network management
system. We assume that the application are either rejected or placed in full with all
X components.

This section is divided into four parts. Our proposed CCMA approach com-
bines a set of requirements including network awareness, anti-collocation and full
deployment placement constraints, which are not supported by the state-of-the-art
solutions presented in literature. This makes it difficult to accurately compare our
results to existing methods as the alternative network-aware solutions focus on dif-
ferent aspects, such as migration [25], investigation of traffic pattern [38], energy
efficiency [57], SLA-awareness [58], etc. Therefore, we compare the performance
of CCMA to a generic network-aware method, in which anti-collocation charac-
teristics of applications is ignored. In the evaluation cases, we refer to this solution
as ACUNA (Anti-Collocation Unaware, Network-Aware). Then, to provide an ac-
curate validation, an evaluation of the CCMA is provided by comparing to the
ILP-based optimal solution which takes all these requirements into account. Next,

158 CHAPTER 5

40

50

60

70

80

90

100

50 60 70 80 90 100 110 120 130 140 150

P
e

rc
e

n
ta

ge
 o

f
se

rv
e

rs
 u

se
d

Number of 5-component applications

ACUNA

CCMA

Figure 5.6: Comparing the percentage of servers used in the CCMA and the ACUNA
algorithm as a function of number of application placement requests (20 iterations).

we evaluate the HCMA by comparing its performance with the CCMA. Finally,
we will end the section with a large-scale evaluation of the HCMA.

The simulations are performed using the Stevin Supercomputer Infrastructure
at Ghent University, containing quad core Intel Xeon L5420 servers with 16 GB
RAM.

5.6.1 Comparing CCMA to the state-of-the-art solutions
5.6.1.1 Evaluation Set up

For this evaluation, we consider small 5-component applications and a 3-tier net-
work architecture consisting of 100 servers and 10 intermediate nodes. The num-
ber of applications varies from 50 up to 150. The experiments are iterated 20
times and the percentages of serves used, mapped application and anti-collocation
constraint fulfillment are captured.

5.6.1.2 Evaluation Results

Our evaluation in Figures 5.6, 5.7 and 5.8 shows that although generic network-
aware approach is able to map up to 5.75% more applications and up to 4.35%
lower number of servers, at least in 66.8% of evaluation cases the anti-collocation
requirement of mapped applications are violated.

5.6.2 Comparing the CCMA to the ILP-based algorithm
5.6.2.1 Evaluation Set up

The optimal model and the CCMA are evaluated with a configuration of 6 servers
arranged in a star topology. The specification of servers and links can be seen in

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 159

40

50

60

70

80

90

100

50 60 70 80 90 100 110 120 130 140 150

P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 5-component applications

ACUNA

CCMA

Figure 5.7: Comparing the percentage of fully mapped applications in the CCMA and the
ACUNA algorithm (20 iterations).

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130 140 150

P
e

rc
e

n
ta

ge
 o

f
an

ti
-c

o
llo

ca
ti

o
n

co

n
st

ra
in

t
fu

lf
ill

m
e

n
t

Number of 5-component applications

ACUNA

CCMA

Figure 5.8: Comparing the percentage of anti-collocation application placement
fulfillment in the CCMA and the ACUNA algorithm (20 iterations).

160 CHAPTER 5

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 p
e

rc
e

n
ta

ge
 o

f
u

se
d

 s
e

rv
e

rs

Number of 5-component applications

ILP

CCMA

ILP success in mapping

CCMA success in mapping

Figure 5.9: Comparing the number of servers used (as bar charts) and the application
mapping success rate (as line charts) in the CCMA to the ILP-based algorithm for

5-component applications (20 iterations).

Table 5.4.
Type 1 and Type 2 applications are used to compare the performance of the

proposed algorithms under light and heavy network load conditions. The number
of scenarios varies from 1 up to 11. The experiments are iterated 20 times and
the average percentage of used servers and percentage of algorithm success in
mapping all the applications are captured.

5.6.2.2 Evaluation Results

In Figure 5.9 and 5.10 the CCMA is compared to the ILP-based optimal approach.
The percentage of servers used are depicted in bars and the percentage of algorithm
success in mapping all the application components are shown in lines.

As can be seen in both figures, when it comes to the physical resources usage,
the CCMA provides a near-optimal solution compared to the ILP-based algorithm
in this scenario. This can be clearly observed from Figure 5.9 as the network is
not saturated. This figure show that in 5 out of 11 experiments the number of used
servers are equal in the CCMA and the ILP-based approach and the CCMA uses
at most 8.33 more number of servers when the number of applications is 9. In
Figure 5.10, the percentage of algorithm success in mapping all the applications is
more interesting. This figure reveals that when the network is saturated the capa-
bility of the CCMA in mapping application components stays within 10.7% of the
optimal approach. This figure also shows that when both algorithms succeed in
mapping all the application components (from 1 up to 4 number of applications),
the CCMA uses almost the same number of servers as the optimal ILP-based ap-
proach. These results show the performance of the CCMA is close to that of the

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 161

200000

300000

400000

500000

600000

700000

800000

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 p
e

rc
e

n
ta

ge
 o

f
u

se
d

 s
e

rv
e

rs

Number of 10-component applications

ILP

CCMA

ILP success in mapping

CCMA success in mapping

Figure 5.10: Comparing the number of servers used (as bar charts) and the application
mapping success rate (as line charts) in the CCMA to the ILP-based algorithm for

10-component applications (20 iterations).

Table 5.4: The Physical Infrastructure Specifications.

Physical Infrastructure Specifications

Case study |S| |IS| |L| |SP|
1 1000 111 4 10
2 4096 273 4 16

Physical Server Specifications Physical Link Specifications

CPU Storage Memory bandwidth Delay
3GHZ 200GB 16GB 400Mbps 3ms

optimal algorithm.
The execution times of the CCMA and the ILP-based approaches are compared

in Figure 5.11 for Type 1 applications. As can be seen, the execution time of the
ILP-based model is exponentially increasing by adding more applications, which
makes it inappropriate for larger evaluations. As such, the remainder of this section
is devoted to the comparison of the CCMA and the HCMA algorithms. Through-
out the next subsections, the HCMA(XX,YY) refers to a three-tier management
plane of XX LLMs and YY MLMs and the HCMA(XX) refers to a two-tier man-
agement plane of XX LLMs. In a two-tier management plane no MLM is involved
and one RLM is taken into account in all experiments.

5.6.3 Comparing the hierarchical algorithm to the centralized
approach

We study three case studies. In the first case, 5-component applications are placed
on a cloud system with 1000 servers and the second case considers a larger sce-

162 CHAPTER 5

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11

Ex
e

cu
ti

o
n

 t
im

e
s

(s
)

Number of 5-component applications

ILP

CCMA

Figure 5.11: Comparing the execution times of the CCMA to the ILP-based algorithm for
5-component applications (20 iterations).

Table 5.5: Management plane infrastructure.

Case study type |ML| |SS| |LLM| |MLM| |RLM| µ

1 CCMA 1 1000 1 0 0 -
HCMA 3 10 100 10 1 10
HCMA 3 40 25 5 1 5
HCMA 2 100 10 0 1 10

2 CCMA 1 4096 1 0 0 -
HCMA 3 16 256 10 1 16
HCMA 3 64 64 5 1 8
HCMA 2 256 16 0 1 16

Table 5.6: Application specifications.

Type # component # link # database # computational

1 5 4 3 2
2 10 9 7 3
3 20 19 14 6

Type Component demands(Random) Link demands(Random)

CPU Storage Memory Delay BW
1 (1-1000)MHZ (1-20000)MB (1-2000)MB 1s (1-50)Mbps
2 (100-500)MHZ (100-20000)MB (100-1000)MB 1s (1-50)Mbps
3 (1-200)MHZ (1-10000)MB (1-300)MB 1s (1-20)Mbps

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 163

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

ge
 o

f
Se

rv
e

rs
 U

se
d

Number of 5-component applications

CCMA
HCMA (100, 10)
HCMA (25, 5)
HCMA (10)

Figure 5.12: The percentage of servers used (Case study 1 with 1000 servers and 20
iterations).

nario with 4096 servers and 20-component applications. In the experiments, we
measure the percentage of servers used, the percentage of mapped applications and
the execution times per application. Afterward, the impact of different physical in-
frastructures on the average number of fully mapped applications and the execution
time for 1000 up to 4096 servers are analyzed. Due to negligible standard errors
for the reminder of evaluations, standard error bars are left out.

5.6.3.1 Evaluation Set up

The configuration of the simulated network, the management plane and the appli-
cation structure are as follows. For the evaluation, the configuration of physical
infrastructure is considered to be a 4-tier hierarchical tree topology. For the first
scenario, the physical cloud system consists of 1000 servers (respectively 4096 for
case study 2) in the lowest tier. The number of ports in each intermediate device
is 10 (resp. 16) which results in 1+10+100 (resp. 1+16+256) switches in the first
three tiers. Consequently, the number of physical nodes is 1111 (resp. 4369) in the
entire cloud system. The specifications of the physical cloud resources are shown
in Table 5.4.

To make a better comparison apart from the central management system, three
different hierarchical management planes are generated. The hierarchical manage-
ment planes are defined as follows and are listed in Table 5.5.

• a 3-tier management plane with 100 (resp. 256) LLMs, 10 (resp. 16) MLMs
and 1 RLM. Each LLM supports 10 (resp. 16) servers in this case.

• a 3-tier management plane with 25 (resp. 64) LLMs, 5 (resp. 8) MLMs and
1 RLM. In this scenario 40 (resp. 64) servers are supported by each LLM.

164 CHAPTER 5

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

n
u

m
b

e
r

o
f

se
rv

e
rs

 u
se

d

(r
e

la
ti

ve
 t

o
 c

e
n

tr
al

iz
e

d
 a

lg
o

ri
th

m
)

Number of 5-component applications

CCMA

HCMA (100, 10)

HCMA (25, 5)

HCMA (10)

Figure 5.13: The percentage of used servers relative to the CCMA (Case study 1 with 1000
servers and 20 iterations).

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 5-component applications

CCMA
HCMA (100, 10)
HCMA (25, 5)
HCMA (10)

Figure 5.14: The percentage of fully placed applications (Case study 1 with 1000 servers
and 20 iterations).

• a 2-tier management plane with 10 (resp. 16) LLMs, no MLM and 1 RLM.
Each administrative domain consists of 100 (resp. 256) servers here.

The implemented applications are of Type 1 (resp. Type 3), the number of
which varies from 100 up to 1500 (resp. 400 up to 4000). Each application com-
ponent has different CPU, memory, storage and QoS demands which are randomly
taken within a predefined interval, provided in Table 5.6.

5.6.3.2 Evaluation Results

Figure 5.12 and Figure 5.13 show the percentage of used servers for different man-
agement planes. As can be observed from Figure 5.12, the number of used servers
grows linearly with the number of applications until all the resources are com-
pletely occupied. Among all, the CCMA uses the fewest and the HCMA with

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 165

0.01

0.1

1

10

Ex
e

cu
ti

o
n

 t
im

e
 /

 a
p

p
lic

at
io

n
 (

m
s)

Number of 5-component applications

CCMA

HCMA (100, 10)

HCMA (25, 5)

HCMA (10)

Figure 5.15: The percentage of fully placed applications (Case study 1 with 1000 servers
and 20 iterations).

higher numbers of LLMs, uses the highest percentage of servers. In the worst case
the hierarchical scenario with 100 LLMs uses 6.7% more servers. Moreover, the
average standard errors is 0.025% for the CCMA and 0.031% on average for the
HCMAs.

In Figure 5.14, the percentages of placed applications is depicted. As the re-
sults show, the CCMA offers the best performance and the HCMA with 100 LLMs
the worst. Additionally, application placement failures are expected due to the
fixed number of servers and resource saturation after 1000 applications. Nonethe-
less, in both figures even in the worst case, the result is within 8% of the best
result.

The execution time of the hierarchical approaches is promising. As can be
clearly seen in Figure 5.15, the time in which an application is placed in the
CCMA is much higher than the hierarchical approaches, especially in the hier-
archical management plane with more LLMs.

In Figure 5.16, Figure 5.17, Figure 5.18 and Figure 5.19 the percentage of
servers used, the percentage of mapped applications, the percentage of mapped
applications relative to the centralized approach and the average execution time
per application are depicted respectively for the second case study. As can be ob-
served from Figure 5.16, the percentage of used servers increases by adding more
applications up to when the servers are fully occupied. Afterwards, the percentage
of mapped applications declines as the newly arriving applications are immedi-
ately rejected due to saturated resources. Although the CCMA shows better per-
formance, the hierarchical management planes use at most 5.6% more resources.
Figure 5.17 and Figure 5.18 compare the percentage of mapped applications in the
hierarchical approaches to the centralized solution. As can be seen, in the worst
case the result of the hierarchical management planes is within 7% of the best

166 CHAPTER 5

0

10

20

30

40

50

60

70

80

90

100

400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
e

rc
e

n
ta

ge
 o

f
Se

rv
e

rs
 U

se
d

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Figure 5.16: The percentage of servers used (Case study 2 with 4096 servers and 20
iterations.)

0

10

20

30

40

50

60

70

80

90

100

400 800 1200 1600 2000 2400 2800 3200 3600 4000 P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Figure 5.17: The percentage of fully placed applications (Case study 2 with 4096 servers
and 20 iterations).

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 167

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

400 800 1200 1600 2000 2400 2800 3200 3600 4000P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

(r
e

la
ti

ve
 t

o
 t

h
e

 c
e

n
tr

al
iz

e
d

 a
lg

o
ri

th
m

)

Number of 20-component applications

CCMA

HCMA (256 LLMs, 16 MLMs,1 RLM)

HCMA (64 LLMs, 64 MLMs, 1 RLM)

HCMA (16 LLMs, 0 MLM, 1 RLM)

Figure 5.18: The percentage of fully placed applications relative to the CCMA (Case study
2 with 4096 servers and 20 iterations).

0.01

0.1

1

10

100

1000

400 800 1200 1600 2000 2400 2800 3200 3600 4000

Ex
e

cu
ti

o
n

 t
im

e
 /

ap
p

lic
at

io
n

 (
m

s)

Number of 20-component applications

CCMA
HCMA (256, 16)
HCMA (64, 64)
HCMA (16)

Figure 5.19: The percentage of servers used (Case study 2 with 4096 servers and 20
iterations).

result. Also, Figure 5.19 indicates that the execution time of the CCMA is high
compared to the hierarchical scenarios.

We also evaluated the execution time and the number of fully mapped applica-
tions in different physical cloud systems with different numbers of servers and dif-
ferent numbers of switch ports. The applications are of Type 1 based on Table 5.6.
The number of servers and the number of intermediate switches are provided in
Table 5.7 and the implemented management planes are presented in Table 5.8.

In Figure 5.20 the number of fully mapped applications is depicted. As the
branch factor (β) and consequently the number of servers increases, the number of
mapped applications grows. This evaluation shows that the HCMA with β LLMs
is able to achieve the same performance of the CCMA, in terms of the number of

168 CHAPTER 5

Table 5.7: The number of physical devices based on different β values.

β 10 11 12 13 14 ... 25

|S| 1000 1331 1728 2197 2744 ... 15625
|IS| 101 122 145 170 197 ... 626

β 20 30 40 50 60 70 80

|S| 8K 27K 64K 125k 216K 343K 512K
|IS| 401 901 1601 2501 3601 4901 6401

Table 5.8: The management plane parameters based on different β values.

Type |ML| |SS| |LLM| |MLM| |RLM|

CCMA 1 β3 1 0 0
HCMA (β) 3 β2 β 0 1
HCMA (β ∗ β, β) 3 β β2 β 1

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
u

m
b

e
r

o
f

fu
lly

 M
ap

p
e

d
 a

p
p

lic
at

io
n

s

Physical Level Branch Factor (β)

CCMA
HCMA (β*β, β)
HCMA (β)

Figure 5.20: The percentage of fully placed applications (20 iterations). Number of
physical servers = β3.

0.01

0.1

1

10

100

1000

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ex
ec

u
ti

o
n

 t
im

e/
ap

p
lic

at
io

n
 (

m
s)

Physical Level Branch Factor (β)

CCMA
HCMA (β*β, β)
HCMA (β)

Figure 5.21: The execution time per application (20 iterations). Number of physical
servers = β3.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 169

fully mapped applications (with only 9 fewer applications on average). However,
comparing to the HCMA with β2 LLMs, the CCMA is able to map on average
6.2% more applications. In Figure 5.21, the execution time of the different ap-
proaches are shown. As can be seen the execution time of the CCMA dramatically
grows when the number of servers increases which makes the centralized algo-
rithms inefficient in large scale cloud systems. Due to the increasing execution
duration, we stop executing the CCMA once β = 20, indicating that the CCMA
approach is not appropriate for a network larger than 8000 servers. Instead in this
evaluation, the HCMA with β number of low level managers has made a desired
trade-off between the quality of application mapping and the execution time.

5.6.4 Large scale scenarios

In this phase, we focus on the scalability of the presented algorithms. We ex-
tend the scale of the experiments up to 512000 servers and more than 540000
5-component applications. In these experiments, the number of fully mapped ap-
plications is evaluated and the execution time per application is captured. The
results are the average value of 10 experiments.

5.6.4.1 Evaluation Set up

The experiments are conducted for an increasing number of servers from 1000 up
to 512000 servers. The assumptions of the applications, of the physical networks
and of the management planes are provided in Table 5.6, Table 5.7 and Table 5.8
respectively.

5.6.4.2 Evaluation Results

Figure 5.22 compares the number of fully mapped applications for two differ-
ent hierarchical management plane architectures. The numbers of successfully
mapped applications are close, but the management plane with a larger number of
supported servers in each administrative domain allocates on average 3.4% more
applications. Nonetheless, while the execution time of this approach grows ex-
ponentially, the HCMA with more LLMs shows better performance, as can be
clearly seen in Figure 5.23. As a result, for experiments larger than 125000 servers,
only the second hierarchical architecture is evaluated. This evaluation shows that
the management architecture with β2 LLMs is the most appropriate management
plane for very large datacenters.

5.6.5 Evaluation discussion

We have extensively assessed the CCMA and HCMA approaches. Our evalua-
tion studies show that the best performance is constantly achieved by the cen-

170 CHAPTER 5

10 20 30 40 50 60 70 80

HCMA (β*β, β) 983.4 8204.59 28057 66913.8 131080 227201 361429 540286

HCMA (β) 1057.6 8509.6 28750.5 68164.8 133048

0

100000

200000

300000

400000

500000

600000
N

u
m

b
e

r
o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Physical Level Branch Factor (β)

Figure 5.22: The number of fully placed applications (10 iterations). Number of physical
servers = β3.

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80

Ex
e

cu
ti

o
n

 t
im

e
 /

 a
p

p
lic

at
io

n
 (

m
s)

Physical Level Branch Factor (β)

HCMA (β)

HCMA (β*β, β)

Figure 5.23: The execution time per application (10 iterations). Number of physical
servers = β3.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 171

tralized CCMA approach, compared to the hierarchical management planes, in
terms of percentage of application placement and network resource usage. How-
ever, the execution time of CCMA dramatically grows when the number of servers
increases. This makes the centralized algorithms inefficient in large scale cloud
systems. While the CCMA approach is not appropriate for a network larger than
8k servers (enough capacity to fully map 8512 small applications), HCMA with
β number of LLMs has made a desired trade-off between the quality of applica-
tion mapping and the execution time. Moreover, a larger scale evaluation reveals
that although the HCMA with β LLMs is able to achieve the same performance of
the CCMA, in terms of the number of fully mapped applications, this hierarchical
architecture shows limited scalability up to 125k servers with 133k fully mapped
applications. Our large-scale evaluation case studies indicate that the manage-
ment architecture with β2 LLMs is the most appropriate management plane for
very large datacenters (512k servers and more than 2.7 million application com-
ponents).

5.7 Conclusions
This chapter focused on the problem of component-level application placement in
large-scale cloud environments. Our approach takes the characteristic of the under-
lying network into account and works with multi-component applications, taking
into account the application workflow with a distinction between application com-
ponent types. To offer an optimal solution, we first presented an ILP-based model
and to have a scalable solution, a near-optimal centralized approach was proposed
and compared to the optimal solution. Due to limited scalability of the centralized
approaches, a hierarchical heuristic was also designed to be deployed in large-scale
cloud management systems. The experimental results showed that in large-scale
clouds our proposed approach works efficiently compared to a centralized and op-
timal management systems in terms of resource usage and quality of application
placement. The percentage of nodes used and the percentage of mapped applica-
tions remain close to that of the centralized algorithm, in the worst case within
6.7% and 8% respectively.

Acknowledgment
The computational resources (Stevin Supercomputer Infrastructure) and services
used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by Ghent University, the Hercules Foundation and the Flemish Government
- department EWI. The work is also partly supported by the iMinds DMS2 project
and the FP7 NoE FLAMINGO project.

172 CHAPTER 5

References

[1] Y. Li, F.-H. Chen, X. Sun, M.-H. Zhou, W.-P. Jiao, D.-G. Cao, and H. Mei.
Self-adaptive resource management for large-scale shared clusters. Journal
of Computer Science and Technology, 25(5):945–957, 2010.

[2] C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, tech-
niques and technologies: A survey on Big Data. Information Sciences,
275:314–347, 2014.

[3] L. Shi, B. Butler, R. Wang, D. Botvich, and B. Jennings. Optimal placement
of virtual machines with different placement constraints in IAAS clouds. In
ICT and Energy Efficiency and Workshop on Information Theory and Secu-
rity (CIICT 2012), Symposium on, pages 35–40. IET, 2012.

[4] B. Urgaonkar, A. L. Rosenberg, and P. Shenoy. Application placement on a
cluster of servers. International Journal of Foundations of Computer Science,
18(05):1023–1041, 2007.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable
datacenter networks. In ACM SIGCOMM Computer Communication Re-
view, volume 41, pages 242–253. ACM, 2011.

[6] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is change:
incorporating time-varying network reservations in data centers. ACM SIG-
COMM Computer Communication Review, 42(4):199–210, 2012.

[7] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari. Server work-
load analysis for power minimization using consolidation. In Proceedings of
the 2009 conference on USENIX Annual technical conference, pages 28–28.
USENIX Association, 2009.

[8] Z. Usmani and S. Singh. A Survey of Virtual Machine Placement Techniques
in a Cloud Data Center. Procedia Computer Science, 78:491–498, 2016.

[9] C. Pham, N. H. Tran, M. N. Nguyen, J. H. Son, and C. S. Hong. Hosting
Virtual Machines on Distributed Datacenters. In Proceedings of the 10th
International Conference on Ubiquitous Information Management and Com-
munication, page 85. ACM, 2016.

[10] R. P. Esteves, L. Z. Granville, H. Bannazadeh, and R. Boutabai. Paradigm-
based adaptive provisioning in virtualized data centers. In 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013),
pages 169–176. IEEE, 2013.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 173

[11] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani. Data center network virtualization: A
survey. IEEE Communications Surveys & Tutorials, 15(2):909–928, 2013.

[12] B. Jennings and R. Stadler. Resource management in clouds: Survey
and research challenges. Journal of Network and Systems Management,
23(3):567–619, 2015.

[13] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A scalable application
placement controller for enterprise data centers. In Proceedings of the 16th
international conference on World Wide Web, pages 331–340. ACM, 2007.

[14] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic applica-
tion placement under service and memory constraints. In Experimental and
Efficient Algorithms, pages 391–402. Springer, 2005.

[15] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé. Utility-based
placement of dynamic web applications with fairness goals. In IEEE Net-
work Operations and Management Symposium (NOMS), pages 9–16. IEEE,
2008.

[16] Z. Zhou, Z. Hu, and K. Li. Virtual Machine Placement Algorithm for Both
Energy-Awareness and SLA Violation Reduction in Cloud Data Centers. Sci-
entific Programming, 2016, 2016.

[17] F. Wuhib, R. Stadler, and M. Spreitzer. Gossip-based resource management
for cloud environments (long version). KTH Royal Institute of Technology,
Tech. Rep, 2010.

[18] A. Nathani, S. Chaudhary, and G. Somani. Policy based resource allocation
in IaaS cloud. Future Generation Computer Systems, 28(1):94–103, 2012.

[19] P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E. Goncalves,
D. Sadok, J. Kelner, B. Melander, and J.-E. Mangs. Resource allocation
for distributed cloud: concepts and research challenges. Network, IEEE,
25(4):42–46, 2011.

[20] M. Masdari, S. S. Nabavi, and V. Ahmadi. An overview of virtual machine
placement schemes in cloud computing. Journal of Network and Computer
Applications, 66:106–127, 2016.

[21] Q. Zhang, M. Li, and X. Hu. Network traffic-aware virtual machine place-
ment with availability guarantees based on shadows. In Cluster, Cloud and
Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, pages 542–543. IEEE, 2014.

174 CHAPTER 5

[22] Z. Zhuang and C. Guo. OCPA: An Algorithm for Fast and Effective Virtual
Machine Placement and Assignment in Large Scale Cloud Environments. In
Cloud Computing and Big Data (CloudCom-Asia), 2013 International Con-
ference on, pages 254–259. IEEE, 2013.

[23] K.-y. Chen, Y. Xu, K. Xi, and H. J. Chao. Intelligent virtual machine place-
ment for cost efficiency in geo-distributed cloud systems. In Communications
(ICC), 2013 IEEE International Conference on, pages 3498–3503. IEEE,
2013.

[24] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen. Reduc-
ing electricity cost through virtual machine placement in high performance
computing clouds. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, page 22. ACM,
2011.

[25] J. T. Piao and J. Yan. A network-aware virtual machine placement and mi-
gration approach in cloud computing. In Grid and Cooperative Computing
(GCC), 2010 9th International Conference on, pages 87–92. IEEE, 2010.

[26] L. Shi, B. Butler, D. Botvich, and B. Jennings. Provisioning of requests
for virtual machine sets with placement constraints in IaaS clouds. In 2013
IFIP/IEEE International Symposium on Integrated Network Management
(IM 2013), pages 499–505. IEEE, 2013.

[27] D. Breitgand and A. Epstein. SLA-aware placement of multi-virtual machine
elastic services in compute clouds. In 12th IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2011) and Workshops, pages
161–168. IEEE, 2011.

[28] J. Xu and J. A. Fortes. Multi-objective virtual machine placement in virtu-
alized data center environments. In Green Computing and Communications
(GreenCom), IEEE/ACM Int’l Conference on & Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), pages 179–188. IEEE, 2010.

[29] C. Adam and R. Stadler. Service middleware for self-managing large-scale
systems. IEEE Transactions on Network and Service Management, 4(3):50–
64, 2007.

[30] M. Korupolu, A. Singh, and B. Bamba. Coupled placement in modern data
centers. In IEEE International Symposium on Parallel & Distributed Pro-
cessing (IPDPS), pages 1–12. IEEE, 2009.

[31] G. Foster, G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer. The Right Tool
for the Job: Switching data centre management strategies at runtime. In

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 175

2013 IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013), pages 151–159. IEEE, 2013.

[32] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and E. Silvera.
A stable network-aware vm placement for cloud systems. In Proceedings of
the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid), pages 498–506. IEEE Computer Society, 2012.

[33] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. Joint VM placement and
routing for data center traffic engineering. In INFOCOM, 2012 Proceedings
IEEE, pages 2876–2880. IEEE, 2012.

[34] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: a cloud network-
ing platform for enterprise applications. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 8. ACM, 2011.

[35] L. Hu, K. D. Ryu, D. Da Silva, and K. Schwan. v-bundle: Flexible group
resource offerings in clouds. In Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on, pages 406–415. IEEE, 2012.

[36] G. Koslovski, S. Soudan, P. Gonçalves, and P. Vicat-Blanc. Locating virtual
infrastructures: users and InP perspectives. In 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops,
pages 153–160. IEEE, 2011.

[37] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba. Vdc planner: Dy-
namic migration-aware virtual data center embedding for clouds. In 2013
IFIP/IEEE International Symposium on Integrated Network Management
(IM 2013), pages 18–25. IEEE, 2013.

[38] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center
networks with traffic-aware virtual machine placement. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, 2010.

[39] M. Alicherry and T. Lakshman. Network aware resource allocation in dis-
tributed clouds. In Infocom, 2012 proceedings IEEE, pages 963–971. IEEE,
2012.

[40] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. Mckee,
C. Hyser, D. Gmach, R. Gardner, et al. 1000 islands: an integrated approach
to resource management for virtualized data centers. Cluster Computing,
12(1):45–57, 2009.

[41] L. Parolini, N. Tolia, B. Sinopoli, and B. H. Krogh. A cyber-physical sys-
tems approach to energy management in data centers. In Proceedings of the

176 CHAPTER 5

1st ACM/IEEE International Conference on Cyber-Physical Systems, pages
168–177. ACM, 2010.

[42] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu. Mistral:
Dynamically managing power, performance, and adaptation cost in cloud
infrastructures. In Distributed Computing Systems (ICDCS), 2010 IEEE
30th International Conference on, pages 62–73. IEEE, 2010.

[43] A. Beloglazov and R. Buyya. Energy efficient resource management in vir-
tualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM
international conference on cluster, cloud and grid computing, pages 826–
831. IEEE Computer Society, 2010.

[44] B. Viswanathan, A. Verma, and S. Dutta. CloudMap: workload-aware place-
ment in private heterogeneous clouds. In 2012 IEEE Network Operations and
Management Symposium, pages 9–16. IEEE, 2012.

[45] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible. Im-
proving performance and availability of services hosted on iaas clouds with
structural constraint-aware virtual machine placement. In Services Com-
puting (SCC), 2011 IEEE International Conference on, pages 72–79. IEEE,
2011.

[46] H. Moens, J. Famaey, S. Latre, B. Dhoedt, and F. De Turck. Design and
evaluation of a hierarchical application placement algorithm in large scale
clouds. In Integrated Network Management (IM), 2011 IFIP/IEEE Interna-
tional Symposium on, pages 137–144. IEEE, 2011.

[47] H. Moens, B. Hanssens, B. Dhoedt, and F. De Turck. Hierarchical Network-
Aware Placement of Service Oriented Applications in Clouds. Proc. IEEE/I-
FIP Network Operations and Management Symposium (NOMS), 2014.

[48] M. Barshan, H. Moens, S. Latre, and F. De Turck. Algorithms for efficient
data management of component-based applications in cloud environments.
In IEEE Network Operations and Management Symposium (NOMS), pages
1–8. IEEE, 2014.

[49] M. Barshan, H. Moens, and F. De Turck. Design and evaluation of a scalable
hierarchical application component placement algorithm for cloud resource
allocation. In 10th International Conference on Network and Service Man-
agement (CNSM), pages 175–180. IEEE, 2014.

[50] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. In Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 225–238,
2012.

NETWORK-AWARE APPLICATION PLACEMENT FOR CLOUD ENVIRONMENTS 177

[51] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable and
fault-tolerant network structure for data centers. ACM SIGCOMM Com-
puter Communication Review, 38(4):75–86, 2008.

[52] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma.
Application-driven bandwidth guarantees in datacenters. In ACM SIG-
COMM Computer Communication Review, volume 44, pages 467–478.
ACM, 2014.

[53] L. Yu and H. Shen. Bandwidth guarantee under demand uncertainty in multi-
tenant clouds. In IEEE 34th International Conference on Distributed Com-
puting Systems (ICDCS), pages 258–267. IEEE, 2014.

[54] I. AMPL. CPLEX software. ILOG website: www. ilog. com/products/cplex.

[55] T. Cormen. Introduction to Algorithms. MIT Press, 2009. Available from:
http://books.google.be/books?id=Jwr8jwEACAAJ.

[56] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya. Network-Aware
Virtual Machine Placement and Migration in Cloud Data Centers. Emerging
Research in Cloud Distributed Computing Systems, 42, 2015.

[57] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource alloca-
tion heuristics for efficient management of data centers for cloud computing.
Future generation computer systems, 28(5):755–768, 2012.

[58] J. Zhang, Z. He, H. Huang, X. Wang, C. Gu, and L. Zhang. SLA aware cost
efficient virtual machines placement in cloud computing. In Performance
Computing and Communications Conference (IPCCC), 2014 IEEE Interna-
tional, pages 1–8. IEEE, 2014.

http://books.google.be/books?id=Jwr8jwEACAAJ

6
Conclusions and future work

In this dissertation, several contributions to the field of cloud resource allocation
and advance bandwidth reservation schemes in media-centric industries were pre-
sented. This chapter summarizes how this dissertation has dealt with unaddressed
problems and challenges and also provides an outlook of future work. The main
conclusion of the work comprised in this dissertation can be stated as follows:

6.1 Advance reservation in media-centric networks

In this dissertation, we first proposed optimal ILP-based advance reservation al-
gorithms based on fixed timeslot sizes which operate in both offline (i.e., SARA)
and online (i.e., DARA) manners. Based on simulation results, the viability of
AR scheduling in media production networks was assessed. Results showed that
when a significant portion of requests is known at the start of the day, AR signifi-
cantly increases bandwidth efficiency and request admittance. In case all requests
are known at the start of the day, request admittance can be increased up to 6.02%
compared to when requests are only known one hour before their desired start time.
Time granularity increases algorithm accuracy and optimality in terms of request
admittance. However, it also affects the ILP problem size, resulting in an expo-
nential execution time increase. Concretely, a time slot size of 20-min resulted
in up to 4.4% more request admittance than one of 60-min. To resolve the high
computational complexity and scalability issue of the optimal solution, we then
proposed static and dynamic heuristic solutions and compared their performance

180 CHAPTER 6

to the ILP-based algorithms. Our evaluation studies showed that the proposed
heuristic techniques 1) approach at least within 8.78% of the optimal admittance
rate, 2) can achieve higher scalability in terms of the size of the physical network as
well as the time slot sizes, 3) offer lower operational overhead in terms of problem
complexity and execution time. The size of time intervals can be fine-grained up
to 1-min. Moreover, in case all requests are known beforehand (SARA), request
admittance of the heuristic solution can be increased by up to 5.7%.

6.2 Flexible and fixed time slot size AR approaches
In advance bandwidth reservation approaches, management of the time domain is
of great importance. As an efficient solution, a timeslot-based approach is intro-
duced, based on which the entire time span is discretized into a set of timeslots.
Timeslot-based solutions can be implemented based on fixed or flexible timeslot
sizes. Although the majority of timeslot-based proposed approaches in literature
have followed the static solution, it is inefficient for advance reservation systems
with a small number of reservation requests.

Analysis of the impact of flexible and fixed size timeslot-based advance band-
width reservation in media-centric networks has been one of the main concerns of
Chap. 4. We have thoroughly discussed the benefits and disadvantages of flexible
and fixed size timeslot-based approaches for a media-centric advance reservation
system, detailed as follows:

6.2.1 Fixed timeslot sizes

Using fixed time slot size approaches leads to regular and periodic reconfigurations
of network routers and switches. The number, start time and duration of timeslots
is not altered, even in highly dynamic network traffic conditions. The size of the
timeslots can be set to a suitable value in networks with predictable traffic patterns.
This makes fixed-size timeslot approaches appealing for network managers due to
the easy implementation and predictable performance.

However, we have distinguished the factors which restrict the capabilities of
fixed timeslot-based approach and make the variable time slot sizes more suitable
for advance bandwidth reservation in media-centric networks. These factors are
related to the characteristics of requests in media production industries and nature
of fixed timeslot-based advance reservation approaches in general.

6.2.1.1 Request characteristics in media production industries

Type of requests: In fixed timeslot-based approach, the duration of reservations
has to be tuned to the size of the timeslots. Since in our fixed timeslot-based
approach the amount of allocated bandwidth is unchangeable within each time

CONCLUSION 181

interval, for the streams the reservations have to be made from the start of the
timeslot in which the start time of a request fits, till the end of the timeslot to which
the request’s end time belongs. However, for file-based transfers, the reservation
has to be started after the time when the file is ready to be transferred and it must be
finished by the request’s deadline, so the start of reservation for a file is restricted to
the beginning of the next timeslot and the start of the timeslot in which the request
deadline fits. This restriction implies that the file has a tighter time opportunity for
transmission and therefore the probability of timely transfer is decreased. Contrary
to this, the use of flexible time windows can eliminate these restrictions for both
request types. Regardless of the type of request, the start and the end of time
windows can be tuned up to the start and end time of each request.

Dependencies among requests: The second point is that the fixed size of
timeslots is more restrictive when there are dependencies among different trans-
fers. We showed that the flexible timeslot-based approach can improve the result
of advance reservation scheduling approaches when dependencies among requests
exist.

6.2.1.2 Predefined size of fixed-size time slots

The size of time slots has a relatively high impact on the quality and complex-
ity of the advance bandwidth reservation schedule. We showed that, although
more timeslot size granularity increases the resource utilization in our proposed
approach, the complexity of the algorithms significantly increases as well.

Quality of the schedule: We have analyzed how the size of the different time
intervals, ranging from 1-min to 60-min, impacts the quality of the reservation
system in media-centric networks. We showed that the longest timeslot size of 60-
min shows the worst performance in terms of number of admitted requests and this
quality is improved as the time interval size is more fine-grained. For example, for
the 12-times shorter time interval size (i.e. 5-min), the SARA approach achieves
up to 15.47% higher percentage of admitted requests.

Execution time for producing the schedule: The fixed-size algorithms have
a high computational overhead, particularly with fine-grained timeslot sizes and
large scale networks. The fine-grained experiment with shortest timeslot size re-
sults in the highest request admittance ratio. However, the execution time of the
algorithm also increases. The SARA approach with 60-min timeslot granularity is
between 12.3 up to 16.7 times faster than the solution with 5-min timeslot sizes.

Optimized timeslot size: In the fixed size timeslot-based approach, we need
to make an informed decision on the optimal size of the timeslots, which is not an
issue with variable time window. We showed that a time slot size of 5-min opti-
mizes the trade-off between optimality and complexity of the solution. Although
based on the results for this timeslot size, we stay within 1.6% of the optimum in
all evaluated cases, this was not the most optimal value for all possible configura-

182 CHAPTER 6

tions. This is a challenging issue as other values for the size of timeslots might suit
other evaluation scenarios better. The available network capacity is an important
factor in low-demand networks. As such, longer timeslot sizes are preferred as
long as all the requests can be scheduled.

Delay prior to request processing: Newly submitted requests to the fixed
timeslot-based advance bandwidth reservation system have to wait till the begin-
ning of the next timeslot for processing. The maximum wait time depends on the
size of the timeslots. The bigger the timeslot size, the higher the potential process-
ing delay.

Unnecessary periodic computations for long transfers: Another issue with
fixed timeslot sizes relies on the periodic nature of these solutions. In fixed size
advance bandwidth reservation approaches, the residual demand of ongoing re-
quests are periodically updated at each timeslot, and new and updated requests are
reallocated together. For long-term streaming requests and large files, this may
lead to unnecessary periodic computations. The flexible timeslot-based approach
shows higher network utilization because only the start time of a new request or
the end of an ongoing transfer tears down the connection and creates new timeslot
allocations.

6.2.2 Flexible timeslot sizes

We argued that due to the imposed restrictions of fixed size timeslot-based ap-
proach, the quality of schedules in flexible timeslot-based approaches should be
higher when compared to fixed size approaches. We have however identified draw-
backs of using flexible timeslot based approaches in 3 cases detailed below.

6.2.2.1 Dependency to the network load

In fixed size approaches, the number of timeslots stays unaffected when increasing
the network load. To calculate the number of timeslots we need to know which
factors play a role. Typically, timeslots are started with any request start time
and end with either the arrival of a new request or the earliest end time of current
requests. As such, worse case the number of time slots is twice of the number
of requests. The dependency of the flexible approach on the number of requests
could be detrimental in networks with growing number of resource reservations as
it may lead to unpredictable complexity.

Unpredictable Complexity: The number of timeslots is a factor which di-
rectly increases the complexity and computational overhead of timeslot-based ad-
vance reservation systems. In flexible timeslot-based advance reservation approa-
ches, the number of timeslots and the complexity of the schedule highly depends
on the number of requests. In highly dynamic environments, the number of future

CONCLUSION 183

timeslots is not predictable and therefore the complexity of the flexible timeslot-
based algorithms is unmanageable. The benefit of using variable timeslot size
approaches may be defeated due to excessive complexity and here is where the
fixed-size timeslots plays its trump card: the complexity of the scheduling can be
easily managed by consciously adjusting the timeslot size.

6.2.2.2 Irregular network devices’ reconfiguration

Contrary to the fixed-size timeslots in which the number and duration of times-
lot remains unchanged, flexible time window approach results in unpredictability
of future timeslots. The number and duration of timeslots is frequently being ad-
justed during the scheduling process, as soon as new requests are admitted to be
scheduled.

6.2.2.3 Impractical timeslot duration

The next negative feature of the flexible time slot approach comes to light when a
large quantity of short-lived or low-demand requests with overlaps or with a very
short time-based gap in between, needs to be scheduled. This leads to a consid-
erable number of time slots with quite brief duration, which is impractical. For
example, duration of transmission of a video file of 1GB, in a network with 10
Gbps leftover capacity, is 800 ms which is not a practical timeslot size in oper-
ational bandwidth reservation systems. It should be noted that this issue can be
resolved by defining a threshold for minimum timeslot size.

6.2.3 Discussion

To sum up, we can conclude that the use of flexible time slots can improve the
success rate of advance bandwidth reservation systems. However, the complexity
of this approach should not be neglected. The flexible size timeslot-based ap-
proach is highly beneficial when the media-centric network deals with long-term
downtimes and bursty traffic conditions. Burst traffic in this context is defined as
large and high-bandwidth transfers over a short time period. Having said that, with
large numbers of small-size file transfers and short-lived video streaming requests,
not only the complexity of the scheduling process is unpredictable, but also the
highly frequent reconfiguration of physical network devices is impractical or at
least expensive. Therefore, fixed size timeslots can be considered as a convenient
solution in such situations. The advantages and disadvantages of each approach
are summarized in Table 6.1.

184 CHAPTER 6

Table 6.1: The summary of the benefits and disadvantages of flexible and fixed-size
timeslot based advance reservation approaches in media-centric industries.

Benefits Disadvantages

Fi
xe

d-
si

ze
tim

es
lo

ts

• Predictable periodic recon-
figurations of network de-
vices

• Independence number of
timeslots

• Easy to implement

• Quality and execution time depen-
dency on timeslot size

• Hard to find optimized timeslot
size

• Delay prior to request processing

• Unnecessary periodic computa-
tions for long transfers

• High computational complexity
for long-term schedules

Fl
ex

ib
le

tim
es

lo
ts • Compatibility with media

network transfers

• Suitable for low demand
networks with bursty traffic

• Higher expected quality

• Unpredictable complexity due to
dependency on network load

• Irregular network devices’ recon-
figuration

• Impractical timeslot duration

6.3 Resilient advance reservation approaches

To enable a quick response to sudden changes such as failures in the network, we
proposed a resilient AR scheduling approach in Chapter 3. We rely on a protec-
tion mechanism, which means that backup paths are found in advance, before any
failure happens in the network. Using Shared Backup Path Protection (SBPP), the
proposed scheme aims at minimizing the resource usage of backups, while it guar-
antees 100% recovery against any single link failure. This approach is further op-
timized in Chapter 4, resulting in a significant improvement in network utilization
as follows: In the first version, for a given file transfer, if both primary and backup
demands can not be fulfilled, the algorithm is repeatedly executed with 50% of
primary demand until both demands are fulfilled or the request is rejected. We
then proposed to make use of binary search instead of halving the primary demand
and showed that this optimization improves the performance of the timeslot-based

CONCLUSION 185

advance reservation system in terms of request admittance ratio. Based on our
evaluations on the fixed size timeslot-based AR approach, we concluded that the
optimized solution specifically performs well under limited network capacity and
with fine-grained timeslot sizes. The optimized resilient approach outperforms the
original one both in terms of the execution time, with 5-min timeslot size, and the
percentage of admitted requests, up to 9.2%.

6.4 Impact of runtime adaptation approach

The resilient advance reservation approach enables the reservation system to de-
liver reliable and consistent performance in the presence of failures, however, us-
ing redundancy imposes significant performance overheads and extra costs. In
order to mitigate these side-issues, we designed and evaluated a dynamic event-
driven approach aiming to increase network utilization and request admittance ra-
tio. In this dynamic approach, which we referred to as Runtime Adaptation (RA),
a constant monitoring, adaptation and re-optimization is applied at runtime. We
exploit underutilized network capacities to transfer more data than what had been
scheduled as long as no failure is detected. This dynamic solution is a comple-
mentary component which can be used in conjunction with both fixed-size and
flexible timeslot-based advance reservation approaches, shown in Chap. 3 and
Chap. 4 respectively. We have extensively evaluated the impact of using the
Runtime Adaptation approach and the experimental results showed that our ap-
proach works efficiently both in stable and failure-prone networks and deploying
this approach will noticeably increase the performance of the advance reservation
systems by increasing the number of succeeded requests. In stable network con-
ditions, deploying this approach will noticeably increase the performance of the
fixed size timeslot-based advance reservation system and percentage of admitted
requests up to 13.9%. In failure-prone environments, the proposed approach leads
to a significant increase in the success rate of admitted requests, up to 6.77 times,
compared to the resilient advance reservation algorithms. With a processing time
of less than 3ms for all evaluated cases, the Runtime Adaptation solution is fast
enough to react immediately and re-configure the network in response to sudden
changes.

We have concluded that the combination of the RA and flexible approaches is
more challenging, compared to the combination with fixed size timeslots. In the
fixed size approach, the use of RA only updates the reservations and the number
and duration of timeslots are not affected during the RA process. However, in the
flexible approach, the RA approach entirely affects the schedule, meaning that not
only the reservations, but also the number and duration of timeslots are impacted.
In addition, since the number of timeslots determines the frequency of the peri-
odic update and periodic adaptation phases in the RA approach, in combination

186 CHAPTER 6

with flexible timeslots, the number of execution of these phases is also affected by
each individual invocation of the re-scheduling process, making it more difficult
to manage compared to a fixed number of timeslots.

We would like to note that the combination of dynamic, flexible, resilient and
runtime adaptation approaches results in a highly dynamic environment, including
1) online entrance of reservation requests, 2) flexible timeslots of variable numbers
and durations, 3) irregular updates of the schedule, 4) re-utilization of network re-
sources at runtime, 5) making distinction between streaming requests’ reservations
and usages, 6) reacting to sudden changes such as network failures / repairs and
streaming requests’ resumes / playbacks.

6.5 Cloud-based application placement

In Chap. 5, we studied the problem of initial placement of application components,
taking into account the placement constraints and network demands of interacting
components, proposing optimal and near-optimal centralized solutions. Central-
ized resource allocation systems suffer from scalability issues, making them inap-
propriate for large-scale cloud environments. Considering the need for new scal-
able management paradigms, we also proposed a hierarchical solution that scales
well to large size cloud systems. We showed that while a centralized solution al-
ways outperforms the hierarchical approaches in terms of number of mapped appli-
cations and servers used, its execution time dramatically grows when the number
of servers increases. This makes the centralized algorithms inefficient for large
scale cloud systems. The architecture of the hierarchical management plane de-
pends on the number of supported servers by each administrative domain. The
more servers needs to be supported, the higher the complexity of the approach
and the more application placements are required. As such, this can be seen as a
trade-off between quality and complexity of the cloud resource management sys-
tems. Our evaluation studies showed that in large-scale cloud systems the hierar-
chical approaches work efficiently compared to a centralized management system
in terms of resource usage and quality of application placement. The percentage
of nodes used and the percentage of mapped applications remain at least within
6.7% and 8% respectively, compared to that of the centralized management plane.

6.6 Future research

In the future, we expect work to continue on extensions to some of the key aspects
discussed in this dissertation as follows.

CONCLUSION 187

6.6.1 Alternative use cases

This dissertation provides multiple advance bandwidth reservation solutions mainly
for media transfers, resulting in a high flexibility when dealing with media. For
example, media production companies will be able to work concurrently on the
same video sequence. Additionally, in producing deadline sensitive video such
as a news broadcast, producers will be able to work longer on the production of
the video before sending it to the broadcaster. While this dissertation mainly fo-
cuses on customized solutions for the media production area, the results can also
be applied to other use cases (buffering capability or other slight changes might
be required), allowing new and improved applications. For example, in the med-
ical field, our proposed solutions will enable applications such as the remote and
pervasive participation of medical experts in surgeries.

6.6.2 Timeslot-based technique

In Chapter 4, we showed that flexible timeslots are by nature more compatible
with requests in media related networks. Our simulations have proven that flexible
time windows not only result in slightly higher request admittance ratio, but also
execute faster, compared to the execution time of the best result achieved by the
fixed size approach, i.e. with 5-min time intervals. However, we argue that a
combination of flexible and fixed size approaches is a well-suited solution in the
situations where a large number of requests may result in an excessive number
of timeslots. The flexible approach is defeated due to uncontrolled complexity.
This hybrid approach can be designed by introducing a minimum timeslot size,
providing a trade-off between the number of timeslots and quality of the results.
This way we gain the benefits of both approaches and the complexity of the flexible
approach is manageable, especially in combination with the runtime adaptation
approach.

6.6.3 The underlying technology

In order to implement AR scheduling, the underlying network has to support band-
width reservations. Current research on the topic mostly focuses on optical net-
works in combination with wavelength division multiplexing. However, Software
Defined Networking (SDN) has recently revolutionized dynamic network manage-
ment aspects by decoupling the control and data planes and assigning the control to
a programmable software unit. SDN-based techniques such as OpenFlow, provide
high-level bandwidth reservation abstractions, hiding the details of the underlying
physical mechanisms. This dissertation presents an AR-based media production
platform that is generic in terms of the underlying reservation techniques (e.g.,
wavelength- or time-based multiplexing), which can be used in conjunction with

188 CHAPTER 6

SDN. In contrast to most existing work, we believe that SDN can be employed
as an efficient enabler for a generalized AR scheduling approach, rather than one
specifically aimed at optical WDM technologies. However, this has remained as
an open research problem regarding the way that SDN-based solutions can be used
to automate the provisioning of advance reservations. The methods that allow the
SDN controller to translate the produced schedule into flow rules and install these
rules in the data plane has not been addressed in this dissertation. The functions
which are already available by means of e.g. OpenFlow command and the con-
trolling methods to start a transfer, hold a transfer, check residual bandwidth, etc.
have to be investigated and defined.

6.6.4 Live migration of application components

In Chapter 5, the initial placement of deterministic application has been taken into
account in which the structure of the application is always known beforehand. Af-
ter the initial application placement, there is a necessity for monitoring application
behavior and adjusting the placement decisions at runtime to avoid performance
degradations. This capability is known as live migration i.e. the capability to relo-
cate virtualized application components at runtime. The provisioning of live mi-
gration brings benefits such as improved performance, manageability and fault tol-
erance, while allowing workload movement with a short service downtime. How-
ever, service levels of applications are likely to be negatively affected during a live
migration. Our presented work on the initial network- and constraint-aware ap-
plication component placement can be extended to consider dynamic migration of
virtualized components. A comprehensive investigation needs to be conducted to
identify the requirements and potential issues. In addition, it is interesting to con-
sider non-deterministic applications for future dynamic placement work as their
workflow is determined at run time.

A
Single-path versus Multi-path Advance

Reservation in Media Production
Networks

In Chapter 2, we proposed advance bandwidth reservation approaches based
on multi-path routing scheme. Restrictions on the underlying network can force
the use of single-path routing mechanisms over multi-path approaches. In this
appendix, we investigate the influence of using single-path routing compared to
multi-path routing in deadline-aware advance reservation (AR) systems for media
production networks. We have modified our previously designed optimal multi-
path advance reservation model to incorporate the single-path mechanism and
heuristic alternatives are presented and thoroughly evaluated. The experimen-
tal results reveal that the single-path optimal model can only provide satisfactory
performance when the network is not in contention. With the heuristic approach,
when adequate bandwidth is provided, the multi-path approach outperforms the
single-path by up to 7.3%.

? ? ?

M. Barshan, H. Moens, B. Volckaert and F. De Turck

Published in the proceeding of the 6th international conference on Network
Of the Future (NOF), pages 1–6, Sep. 2015.

190 APPENDIX A

A.1 Introduction

Exchanging a large number of media files is daily business in media production
companies of all types, ranging from production houses to broadcasters. Tradi-
tional ways of transporting data, i.e. using dedicated and expensive point to point
high speed links or even using physical transportation systems (vehicles and ac-
companying human resources) is costly and highly inefficient. As a standard media
transport medium, wide area IP-based shared networks are being used more and
more within these media-centric process flows.

The work in this appendix has been performed within the context of ICON
MECaNO project, which aims to provide solutions for the transmission of large
file-based media files and streaming sessions over IP-based network infrastructure,
tailored to the quality and timing requirements of current and future media process
flows.

In our previous work [1] we have shown the viability of using advance band-
width reservation techniques in media production industry. We proposed an ILP
model to solve the AR scheduling problem. Based on this model, two static and
dynamic scheduling algorithms were presented: SARA which assumes all re-
quests and their requirements are known in advance and DARA which supports
rescheduling to incorporate new requests. In both algorithms we assumed that the
flows can be split over multiple paths, making it possible to fully use the network.
Using multi-path is however not always feasible when there is no full control over
the underlying network and network devices. According to network flow theory,
flows can be split into a number chunks, to be transferred over different paths
through the network, this effect is undesired or even forbidden in some applica-
tions [2]. In the Internet, wireless networks, or overlay networks built on top of
the Internet, traffic is mostly sent over a single path and generally splitting the
flows is avoided due to the problem of packet reassembly at the receiver [3]. In
addition, it is often not possible to use multi-path solutions due to limitations in the
configuration of intermediate devices (e.g. the forwarding behavior on the routers
cannot be modified to support multi-path routing).

While multi-path approaches are not always feasible, single path reservation
cannot always meet the end-to-end QoS requirements in bandwidth-limited net-
works [4]. In this appendix, we analyse the impact and importance of supporting
multi-path network flows in media production networks. To achieve this we have
provided a modified version of the previously designed ILP-based models and
algorithms to support unsplittable flows. This allows us to compare the perfor-
mance of our advance network reservation system, using single-path versus multi-
path bandwidth reservation approaches, to determine the importance of supporting
multi-path flows.

The remainder of this appendix is structured as follows. In Section A.2, we

SINGLE-PATH ADVANCE RESERVATION IN MEDIA PRODUCTION NETWORKS 191

discuss related work. Section A.3, provides extensions to our models to allow
for single path reservations. The heuristic-based AR scheduling algorithms are
described in Section A.4. Section A.5 provides simulation results, comparing the
proposed algorithms. Finally, Section A.6 concludes the appendix.

A.2 Related work

The AR scheduling problem has been well studied in literature. While some have
focused on rescheduling [5–7] and multi domain reservation [8], others have paid
particular attention to real-world deployments [9–12], and WDM optical networks
[13]. However, according to Charbonneau et al. [13], only two advance reserva-
tion algorithms support elastic reservation, and both consider fixed start time for
the flows, while we consider flexible flow start times.

Moreover, the problem addressed in this work is related to the multi-commodity
flow problem (MCFP). Comprehensive surveys on the approaches to solve multi-
commodity flow problems (MCFP) and their variants are provided in [14, 15]. In
[16], unsplittable flow and single path MCFPs are studied. Our approach extends
this by dealing with the problem of flow variation over time and solves an MCFP
as a sub-problem. Dynamic flows or flow variation over time are primarily intro-
duced by Ford and Fulkerson [17, 18]. Our work differs by introducing support
for variable reservations over time, elastic reservations, flexible start times and
dependencies among different flows.

Another work [19] has compared single-path and multi-path routing approaches
and concluded that multi-path routing provided limited gain compared to single-
path routing. However, there are multiple differences which make their compar-
ison inapplicable to the problem addressed in this appendix. First, their inves-
tigation is not about advance reservation, but about routing under certain traffic
conditions. The authors focus on a comparison when all node-pairs generate traf-
fic, while we focus on large file transfers within large networks where only limited
numbers of nodes act as source and sink nodes, and finally no transfer deadlines
are present in their approach.

This work is an extension of our previous work [1], in which the multi-path
version of ILP-based models with two objective functions are proposed and thor-
oughly evaluated. The MaxA objective function maximizes the request admittance
ratio while the ASAP objective in addition to maximizing the number of admitted
requests, also tries to schedule the requests as soon as possible. As results showed
that ASAP outperforms MaxA by up to 3.27%, in this appendix evaluation is only
performed for the ASAP objective function. In addition, the heuristic approaches
are proposed and their performance is compared to the optimal algorithms.

192 APPENDIX A

A.3 AR scheduling model

In [1] we proposed a formal model for the advance reservation scheduling of net-
work bandwidth. In this section we show how this model can be extended to
perform single-path reservations.

The model can be used to schedule collections of requests, that consist of
multiple interdependent and deadline-constrained network transfers. Requests are
grouped into scenarios, that represent a complex workflow. The workflows must
be executed in their entirety, so when a scenario is admitted, all requests must be
scheduled. The model only admits those scenarios for which sufficient bandwidth
can be guaranteed during the reservation period. When a scenario is rejected, none
of its requests are executed. The various requests within a scenario may depend
on each other, meaning that one request can only start when other requests have
finished. The model supports two types of network transfers: video streaming and
large file transfers. The requests of all scenarios are stored in R. Consequently R
consists of both types. To make distinction between the two types Rf which refers
to file-based flows and Rs which refers to the streaming requests are defined. The
network is represented as a graph with nodes N and edges E.

In this model the nth request is denoted by rn = (sn, dn, tns , t
n
e , i

n, bn) com-
prising of the source of the request sn, the destination node dn, the time when
the data for file-based request is ready to transfer tns (or fixed start time for video
streaming request), the deadline for the transmission of the data of file-based re-
quest tne (or fixed end time for video streaming request), the duration of each re-
quest in and finally the bandwidth demand of the request bn. In particular, rnf and
rns refer to file-based and video streaming requests respectively. Moreover the vol-
ume of the files are denoted by vn and the time slot size by I . Table A.1 lists other
notations which have been used to define this extension.

Table A.1: Symbols and notations used in the formal model.

Variable Description

βn,e,k Dedicated Bandwidth between link e, request rn and time slot k.
An Binary variable, 1 iff request rn is admitted, 0 otherwise.
tmins Minimum start time of all reservations.
tmaxe Maximum end time of all reservations.
Be Bandwidth capacity of link e.
Eoutv This collection contains all edges starting from node v (egress).
Einv This collection contains all edges ending in node v (ingress).

This model is partially similar to the multi-path reservation model. All the
decision variables, objective functions and constraints of former model are valid
and applicable to this model. Therefore, only additions are discussed.

SINGLE-PATH ADVANCE RESERVATION IN MEDIA PRODUCTION NETWORKS 193

A.3.0.1 Additional decision variable

We need to make sure that only a single path is reserved for each request. To
achieve this, in addition to the 6 decision variables, one more binary decision vari-
able, Pn,e,k, is defined which indicates whether there is any reservation for request
n in time slot k over link e.

Pn,e,k ∈ [0, 1] ∀rn ∈ R,∀e ∈ E, k ∈ [tmins , tmaxe]

A.3.0.2 Additional constraints

In addition to the constraints which ensure that capacity limitation, network flow
concepts and dependencies among requests are respected, 5 extra constraints con-
cerning single-path flow conservation of P values and linking P values to β values
are defined. Constraints 1, 2 and 3 ensure that only a single-path is chosen to be
reserved for a request during each time interval.

∑
e∈Eout

v

Pn,e,k =
∑
e∈Ein

v

Pn,e,k (A.1)

∀rn ∈ R,∀k ∈ [tns , t
n
e], {∀v ∈ N |v /∈ {sn, dn}}

∑
e∈Eout

sn

Pn,e,k = An ∀rn ∈ R,∀k ∈ [tns , t
n
e] (A.2)

∑
e∈Ein

dn

Pn,e,k = An ∀rn ∈ R,∀k ∈ [tns , t
n
e] (A.3)

Constraint 4 ensures if the type of the request is video streaming, the dedicated
and requested bandwidth must be equal. Also Constraint 5 is defined for linking
P values to β flows.

βn,e,k = bn × Pn,e,k ∀e ∈ E,∀rns ∈ Rs,∀k ∈ [tns , t
n
e] (A.4)

βn,e,k ≤ Be × Pn,e,k ∀e ∈ E,∀rn ∈ R,∀k ∈ [tmins , tmaxe] (A.5)

A.4 AR scheduling algorithm
The Sequential Priority Based (SPB) advance reservation algorithm is a heuristic
solution which is proposed due to the high computational overhead and scalability
issue of the ILP approach. Individual components of the SPB algorithm are shown
in Figure A.1. As can be seen, new scenarios enter the reservation system through
an API. In the next step any transformation can be applied. For example in the

194 APPENDIX A

Input

Input
Transformation

Backtracking Backtracking
algorithm

Prioritization Prioritization

sorting sorting

Timeslot
requests

BW

BW
allocation

Update Update
& Check

Limit Limit

Ti
m

eS
lo

t
 a

lg
o

ri
th

m

Si
n

gl
e

P
at

h

BW

FB

BW
allocation

FB

BW

VS

BW
allocation

VS

M
u

lt
i P

at
h

BW

FB

BW
allocation

FB

BW

VS

BW
allocation

VS

New
Scenarios

Updated
schedule

API API

Scheduling Scheduling
Algorithm

Figure A.1: Components of the Sequential Priority Based Advance Reservation Algorithm
(SPB).

dynamic approach before the scheduling algorithm invocation, the previously ad-
mitted scenarios’ demand needs to be updated. Then the scheduling algorithm is
sequentially invoked for each scenario. If this process is successfully terminated
the new scenario is admitted, and the schedule is updated. Otherwise, the pre-
vious schedule and network state remain untouched and the scenario is rejected.
The scheduling algorithm consists of two components: The prioritization and the
TimeSlot algorithms. The prioritization algorithm assigns priorities to the sce-
nario’s requests based on the estimated hard deadline and the volume. Since the
deadline may not be specified for all requests, the latest possible deadline for those
with no specific deadline should be estimated. Then all the scenario’s requests are
given to the TimeSlot algorithm. This algorithm consists of 5 sub-algorithms for
each time interval.

TimeSlotRequests: First, the algorithm determines which requests can be
served in the current time slot. For independent requests the algorithm looks at
the start time. If the current interval is greater than or equal to the request start
time, these requests are eligible to be added to the list of current requests. For
requests with start time dependencies, the algorithm checks whether the requests
on which this request depends are finished or not.

Limit: The limit for video streams is their required demand, which is fixed and
non-variable and for file-based requests is their residual demand.

Sorting: In this step requests are sorted based on their previously assigned
priorities.

BWallocation: We have defined four variations of bandwidth allocation algo-
rithm for video streams and video files using single-path and multi-path routing.
This algorithm first assigns cost to the network links using the Cost allocation
component which tries to find the most desired paths and give them the highest

SINGLE-PATH ADVANCE RESERVATION IN MEDIA PRODUCTION NETWORKS 195

cost. Then according to the approach and type of the request multi-path BWallo-
cationFB, multi-path BWallocationVS, single-path BWallocationFB or single-path
BWallocationVS algorithms is invoked.

Single-path BWallocation algorithms: The single-path BWallocationFB al-
gorithm is in charge of the FB requests. As we aim at transferring the video files
in earlier timeslots, the single-path BWallocationFB algorithm first tries to find the
most available bandwidth between the source and destination of the request. If
multiple candidates with maximum bandwidth are available, this algorithm looks
for the least-cost single-path that could carry this maximum flow using the mod-
ified version of Dijkstra to consider the cost of the paths, which are previously
assigned to the network links, and ignoring the paths with lower capacity than the
maximum flow.

The single-path BWallocationVS algorithm deals with video stream requests.
For video streams, this algorithm first removes all the network links with capacities
lower than the request demands, and then the least-cost path is determined. If no
path is found, rescheduling is unsuccessful and the new scenario is rejected.

Multi-path BWallocation algorithms: The multi-path BWallocationFB algo-
rithm is based on maxflow and least-cost path algorithms. If the maxflow, which is
calculated based on the Edmonds-Karp algorithm, is lower than the request limit,
all the maxflow paths are reserved for this request. Otherwise, the algorithm forms
a graph out of the maxflow paths and the k-shortest path is the second alterna-
tive. Finding the least-cost path is repeated until the total bandwidth offered by the
paths is sufficient for the request.

The multi-path BWallocationVS algorithm iteratively looks for the least cost
path on the whole graph and sums up the minimum available bandwidth of the
paths. These steps are repeated over the residual graph while the total bandwidth
provided by the paths fulfils the request demand.

Update and check feasibility: based on the provided result of the BWallo-
cation component, and by calculating the residual demands, the requests require-
ments are updated and the feasibility of the results is checked. If the hard deadline
of a request is reached, but part of the request has not been transferred yet and the
residual demand is not zero, the hard deadline has not been met and rescheduling
is infeasible.

A.5 Experimental results

This section evaluates the single-path and multi-path approaches for ILP-based
and SPB scheduling algorithms. The influence of bandwidth availability, network
load, and the time granularity are assessed.

196 APPENDIX A

(a) 6-node topology

(b) 8-node topology (c) 25-node topology

Figure A.2: Media production network topologies used in the evaluation.

A.5.1 Evaluation Setup

We found that the 12-node topology which is used in our previous evaluation yields
identical results for the single-path and multi-path approaches both for ILP-based
and SPB algorithms. In this evaluation we have used 3 other topologies for media
production networks which are depicted in Figure A.2.

Throughout this section, XX[YY,ZZ%] denotes that approach XX (i.e. ILP or
SPB), routing mechanism YY which can either be Single-Path (SP) or Multi-Path
(MP) is used and ZZ% of the use case instances are known at the start of the
simulation. Each simulation run covers a 24 hour period. All results are averaged
over 50 runs with different randomized inputs, error bars denote the standard error.

A.5.2 ILP evaluation of single-path versus multi-path

In this evaluation the number of use case instances equals 6, resulting in of 62
requests. The 8-node topology and a fixed time interval granularity of 1 hour is
used.

Figure A.3 compares the percentage of admitted requests of ILP-based single-
path and ILP-based multi-path approaches. From the figure, we can conclude that
the multi-path approach significantly outperforms the single-path approach when
network contention happens (bandwidth capacity lower than 200 Mbps). In this
situation there is insufficient capacity for the scheduler to reserve a single-path
for some flows by their deadline. However, this has no impact on the multi-path
approach as the flows can be split and sent over multiple paths. The result shows
that there is up to 24.3% differences in request admittance ratio.

A.5.3 Comparison of ILP-based model with SPB approach

For this evaluation the impact of network capacity is assessed. The 6-node network
topology is used and the number of scenarios is 8 (85 requests in total). Figure A.4

SINGLE-PATH ADVANCE RESERVATION IN MEDIA PRODUCTION NETWORKS 197

40

50

60

70

80

90

100

100 125 150 175 200 225 250

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical Bandwidth (Mbps)

ILP[MP,100%]

ILP[SP,100%]

Figure A.3: Comparing single-path versus multi-path in ILP-based approach.

0

10

20

30

40

50

60

70

80

90

100

50 75 100 125 150 175 200 225 250 275 300 325 350

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwidth (Mbps)

ILP[MP,100%]

ILP[SP,100%]

SPB[MP,100%]

SPB[SP,100%]

Figure A.4: Comparison of optimal ILP with SPB approach.

compares the ILP-based algorithms to the SPB ones for both multi-path and single-
path approaches. This figure shows that the result of the SPB algorithm is within
13.6% of the ILP approach when multi-path routing mechanisms are used. For the
single-path method, a similar trend can be observed.

A.5.4 Evaluation of single-path and multi-path in SPB approach

In this section we evaluate the impact of network capacity, time slot granularity
and network load on the performance of the SPB algorithms. Two topologies of
the 8-node and 25-node serve as media production infrastructures in Figure A.5
and Figure A.6 respectively.

In part (a) of both figures, the media network infrastructures have been config-
ured for different available bandwidths to investigate the impact of network capac-
ities on the performance of our algorithms. In both plots a time slot size of 1 hour
is used and the number of scenarios is 20 (209 requests) and 50 (519 requests) for
the 8-node and 25-node topologies respectively. The result shows that the perfor-

198 APPENDIX A

45

50

55

60

65

70

75

80

85

90

95

100

200 250 300 350 400 450 500 550 600 650 700 750 800

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwidth (Mbps)

SPB[MP,100%]

SPB[SP,100%]

SPB[MP,0%]

SPB[SP,0%]

(a) Time slot size=1 hour, Number of scenarios=20

60

65

70

75

80

85

90

60 300 600 1200 1800 2400 3000 3600

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Time slot size (s)

SBP[MP,100%]
SPB[SP,100%]
SPB[MP,0%]
SPB[SP,0%]

(b) Bandwidth=200 Mbps, Number of scenarios=20

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

SPB[MP,100%]

SPB[SP,100%]

SPB[MP,0%]

SPB[SP,0%]

(c) Time slot size=1 hour, Bandwidth=300 Mbps

Figure A.5: Impact of bandwidth capacity, time slot granularity and network load on
admission rate in 8-node topology

SINGLE-PATH ADVANCE RESERVATION IN MEDIA PRODUCTION NETWORKS 199

50

55

60

65

70

75

80

85

90

95

100

200 300 400 500 600 700 800

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwidth (Mbps)

SPB[MP,100%]

SPB[SP,100%]

SPB[MP,0%]

SPB[SP,0%]

(a) Time slot size=1 hour, Number of scenarios=50

65

70

75

80

85

90

95

300 600 1200 1800 2400 3000 3600

P
e

rc
e

n
ta

ge
 o

f
 a

d
m

it
te

d
 r

e
q

u
e

st
s

Time slot size (s)

SPB[MP,100%]
SPB[SP,100%]
SPB[MP,0%]
SPB[SP,0%]

(b) Bandwidth=200 Mbps, Number of scenarios= 50

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

SPB[MP,100%]

SPB[SP,100%]

SPB[MP,0%]

SPB[SP,0%]

(c) Time slot size=1 hour, Bandwidth=300 Mbps

Figure A.6: Impact of bandwidth capacity, time slot granularity and network load on
admission rate in a 25-node topology.

200 APPENDIX A

mance of single-path approach is within 7.3% and 6.7% of multi-path approach
for 8-node and 25-node topologies respectively.

In part (b) the impact of time slot granularity is studied. While the number
of use case instances is considered 20 and 50 for smaller and larger topologies
respectively, a link capacity of 200 Mbps is used in both evaluations. The results
show that the experiment with shortest time slot leads to the best performance
and the multi-path approach outperforms the single-path approach up to 4.9% and
6.8% in Figure A.5 and Figure A.6 respectively.

Finally, part (c) evaluates the impact of network load when the number of
scenarios increases up to 20 and 50 scenarios in Figure A.5 and Figure A.6 re-
spectively. In both figures the timeslot size of 1 hour and network capacity of
300 Mbps is used. The results show that for both smaller and larger topologies
the multi-path approach outperforms the single-path approach by up to 6.9% and
7.3% respectively.

A.6 Conclusion
In this appendix, the impact of using single-path routing mechanisms in advance
reservation system for media production networks, is compared to a multi-path ap-
proach. We extended the optimal advance bandwidth reservation model to incor-
porate single-path routing and provided equivalent heuristic solutions. The impact
of physical capacity, time interval granularity and network load were evaluated.
Based on our simulation results, a multi-path approach is beneficial, improving
the request admittance rate by up to 24.3% compared to when by using single-path
solutions. However, if multi-path routing is not a viable solution, our evaluation
showed that increasing the network capacity will significantly improve the perfor-
mance of a single-path advance reservation system. The evaluation of our heuris-
tics indicated that the single-path approach can achieve performance levels which
remain within 7.3% of multipath routing mechanism.

Acknowledgment
The research leading to these results was performed within the context of ICON
MECaNO. It is a project co-funded by iMinds, a digital research institute founded
by the Flemish Government. Project partners are SDNsquare, Limecraft, Video-
House, Alcatel-Lucent, and VRT, with project support from IWT under grant
agreement no. 130646.

SINGLE-PATH ADVANCE RESERVATION IN MEDIA PRODUCTION NETWORKS 201

References

[1] M. Barshan, H. Moens, J. Famaey, and F. De Turck. Algorithms for Advance
Bandwidth Reservation in Media Production Networks.

[2] M. Martens and M. Skutella. Flows on few paths: Algorithms and lower
bounds. Networks, 48(2):68–76, 2006.

[3] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 57–66. ACM, 2005.

[4] J. Chen, S.-H. Chan, and V. O. Li. Multipath routing for video delivery
over bandwidth-limited networks. Selected Areas in Communications, IEEE
Journal on, 22(10):1920–1932, 2004.

[5] K. Rajah, S. Ranka, and Y. Xia. Advance Reservations and Scheduling for
Bulk Transfers in Research Networks. IEEE Trans. Parallel Distrib. Syst.,
20(11):1682–1697, November 2009. Available from: http://dx.doi.org/10.
1109/TPDS.2008.250, doi:10.1109/TPDS.2008.250.

[6] C. Xie, H. Alazemi, and N. Ghani. Rerouting in advance reservation net-
works. Computer Communications, 35(12):1411–1421, 2012.

[7] L. Zuo, M. M. Zhu, and C. Q. Wu. Fast and Efficient Bandwidth Reserva-
tion Algorithms for Dynamic Network Provisioning. Journal of Network and
Systems Management, 2013.

[8] H. Alazemi, F. Xu, C. Xie, and N. Ghani. Advance reservation in distributed
multi-domain networks. IEEE Systems Journal, 2013.

[9] C. Guok, E. N. Engineer, and D. Robertson. ESnet On-Demand Secure Cir-
cuits and Advance Reservation System (OSCARS). Internet2 Joint, 2006.

[10] B. Gibbard, D. Katramatos, and D. Yu. TeraPaths: end-to-end network path
QoS configuration using cross-domain reservation negotiation. In Broadband
Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd
International Conference on, pages 1–9. IEEE, 2006.

[11] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim, D. Yu,
S. Bradley, and S. McKee. StorNet: Integrated Dynamic Storage and Net-
work Resource Provisioning and Management for Automated Data Trans-
fers. In Journal of Physics: Conference Series, volume 331, page 012002.
IOP Publishing, 2011.

http://dx.doi.org/10.1109/TPDS.2008.250
http://dx.doi.org/10.1109/TPDS.2008.250

202 APPENDIX A

[12] S. Sharma, D. Katramatos, D. Yu, and L. Shi. Design and Implementation of
an Intelligent End-to-end Network QoS System. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 68:1–68:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press. Available from: http://dl.acm.org/citation.
cfm?id=2388996.2389089.

[13] N. Charbonneau and V. M. Vokkarane. A survey of advance reservation rout-
ing and wavelength assignment in wavelength-routed WDM networks. Com-
munications Surveys & Tutorials, IEEE, 14(4):1037–1064, 2012.

[14] A. Ouorou, P. Mahey, and J.-P. Vial. A survey of algorithms for convex mul-
ticommodity flow problems. Management science, 46(1):126–147, 2000.

[15] J. L. Kennington. A survey of linear cost multicommodity network flows.
Operations Research, 26(2):209–236, 1978.

[16] H. Masri, S. Krichen, and A. Guitouni. A multi-start variable neighborhood
search for solving the single path multicommodity flow problem. Applied
Mathematics and Computation, 251:132–142, 2015.

[17] L. R. Ford Jr and D. R. Fulkerson. Constructing maximal dynamic flows from
static flows. Operations research, 6(3):419–433, 1958.

[18] L. Ford and D. R. Fulkerson. Flows in networks, volume 1962. Princeton
Princeton University Press, 1962.

[19] X. Liu, S. Mohanraj, M. Pióro, and D. Medhi. Multipath Routing From a
Traffic Engineering Perspective: How Beneficial is It? In Network Protocols
(ICNP), 2014 IEEE 22nd International Conference on, pages 143–154. IEEE,
2014.

http://dl.acm.org/citation.cfm?id=2388996.2389089
http://dl.acm.org/citation.cfm?id=2388996.2389089

	franse_pg_recto_Barshan_nieuw.pdf
	franse_pg_verso_Barshan.nieuw.pdf
	Title page
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Samenvatting
	Summary
	Introduction
	Communication network revolution
	Media-centric networks
	Problem statement
	Terminology
	Research contributions
	Outline of this dissertation
	Publications
	Publications in international journals (SCI)
	Publications in international conferences (SCI)
	Publications in book chapters
	Publications in other international conferences

	References

	Deadline-aware Advance Reservation Scheduling Algorithms for Media Production Networks
	Introduction
	Related work
	Media production network architecture
	Advance reservation scheduling model
	Decision variables
	Objective function
	Flow constraints
	Interdependent requests
	On-line model

	Advance reservation algorithms
	Static & dynamic reservation
	ILP based advance reservation algorithms (ILP)
	ILP based Static Advance Reservation Algorithm (SARAILP)
	ILP-based Dynamic Advance Reservation Algorithm (DARAILP)

	Sequential Priority Based advance reservation algorithms (SPB)
	Sequential Priority Based Static Advance Reservation Algorithm (SARASPB)
	Sequential Priority Based Dynamic Advance Reservation Algorithm (DARASPB)

	Experimental Results
	Evaluation Setup
	Comparing the SPB algorithms to the ILP-based algorithms
	Evaluation of the SPB algorithms
	Impact of available bandwidth
	Impact of time slot granularity
	Impact of network load

	Conclusion
	References

	Design and Evaluation of a Dual Dynamic Adaptive Reservation Approach in Media Production Networks
	Introduction
	Related work
	Advance resource reservation
	Resilient reservation
	Media production networks

	Runtime adaptation approach in media production networks
	Envisioned media production network
	Runtime adaptation (RA) methodology
	First phase: Periodic update
	Second phase: Periodic adaptation
	Modeling of the runtime adaptation methodology

	Runtime Adaptation (RA) algorithms
	Periodic update algorithms
	Periodic adaptation algorithms
	Clarifying examples

	Performance evaluation
	Evaluation Setup
	Impact of different failure rates, fixed backup demand
	Impact of available bandwidth
	Impact of network load

	Impact of different backup demands, fixed failure rate
	Impact of available bandwidth
	Impact of network load
	Stressed versus non-stressed network conditions

	Impact of different backup demands, varying failure rates
	Evaluation of execution times

	Conclusions
	References

	A Flexible, Reliable and Adaptive Timeslot-based Advance Bandwidth Reservation Mechanism for Media-centric Networks
	Introduction
	Related work
	Advance Reservation for media delivery services
	Type of reservation requests
	STSD (Specified Time, Specified Duration) and UTSD (Unspecified Time, Specified Duration) requests
	STUD (Specified Time, Unspecified Duration) and UTUD (Unspecified Time, Unspecified Duration) requests

	Time domain classification in AR approaches
	The resilient AR scheduling approach
	Runtime adaptation (RA) approach
	First phase: Periodic update
	Second phase: Periodic adaptation

	Problem description
	Flexible approach
	Optimized resilient approach
	Combining dynamic, flexible, resilient and RA approaches
	Impact of RA on advance reservation approaches

	Advance bandwidth reservation architecture
	FixedTimeSlot module
	FlexibleTimeSlot module
	Runtime adaptation module

	Advance bandwidth reservation algorithms
	FlexibleTimeSlot algorithm
	BWallocationFBResilient algorithm

	Evaluation setup
	Simulation results and discussion
	Comparing DARA fixed and DARA flex
	Resilient DARA fixed vs. resilient DARA flex
	Resilient DARA fixed+RA vs. resilient DARA flex+RA
	Discussion

	Conclusions
	References

	Algorithms for Network-Aware Application Component Placement for Cloud Resource Allocation
	Introduction
	Related Work
	Modeling of a large-scale cloud environment
	Formal ILP-based problem formulation
	Introduction to the model
	Decision variables
	Objective function
	Constraints
	Physical node limitations
	Physical link limitations
	Quality of service requirements
	Well-connected mapping Constraints
	Full deployment constraints
	Anti-collocation constraints
	Additional constraints

	Algorithm descriptions
	ILP-based algorithm
	Heuristic algorithm
	Centralized Cloud Mapping Algorithm (CCMA)
	Hierarchical Cloud Mapping Algorithm (HCMA)

	Evaluation Details
	Comparing CCMA to the state-of-the-art solutions
	Evaluation Set up
	Evaluation Results

	Comparing the CCMA to the ILP-based algorithm
	Evaluation Set up
	Evaluation Results

	Comparing the hierarchical algorithm to the centralized approach
	Evaluation Set up
	Evaluation Results

	Large scale scenarios
	Evaluation Set up
	Evaluation Results

	Evaluation discussion

	Conclusions
	References

	Conclusion
	Advance reservation in media-centric networks
	Flexible and fixed time slot size AR approaches
	Fixed timeslot sizes
	Request characteristics in media production industries
	Predefined size of fixed-size time slots

	Flexible timeslot sizes
	Dependency to the network load
	Irregular network devices' reconfiguration
	Impractical timeslot duration

	Discussion

	Resilient advance reservation approaches
	Impact of runtime adaptation approach
	Cloud-based application placement
	Future research
	Alternative use cases
	Timeslot-based technique
	The underlying technology
	Live migration of application components

	Single-path versus Multi-path Advance Reservation in Media Production Networks
	Introduction
	Related work
	AR scheduling model
	Additional decision variable
	Additional constraints

	AR scheduling algorithm
	Experimental results
	Evaluation Setup
	ILP evaluation of single-path versus multi-path
	Comparison of ILP-based model with SPB approach
	Evaluation of single-path and multi-path in SPB approach

	Conclusion
	References

