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Summary

Microbial communities are critical for the proper functioning of each and every
ecosystem on Earth. They play central roles in key ecological, geochemical, med-
ical, manufacturing and industrial processes, as well as being vitally important to
human and animal health.

These critical functions are not performed by microbial species in isolation, but
rather by communities containing numerous and diverse species. The ability to
understand the structure and functioning of these complex communities is cru-
cial to manage natural communities, to protect them from ongoing and significant
anthropogenic environmental changes and thus preserve their vital processes, as
well as to rationally design engineered microbial communities for important ap-
plications ranging from food technology, to medical and pharmaceutical uses, to
various industrial and bioindustrial processes.

For these purposes, increasing effort is being dedicated to the development and
deployment of tools, techniques and models that allow the prediction of behaviour
and functionality in microbial communities, known as Microbial Resource Manage-

ment (MRM). To develop these MRM tools, scientists first require a deeper and more
fundamental understanding of the interactions taking place within these microbial
communities, since these are the underlying mechanisms driving community be-
haviour.

An important tool in this respect is the use of mathematical models. Models are
abstractions of reality which allow for the testing of hypotheses in a controlled
way. Their reduced complexity and inherent manipulability make them the in silico

counterparts of in vitro model (or synthetic) ecosystems constructed in the labora-
tory. Developing mathematical models related to MRM theories will not only help
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to understand the fundamental mechanisms underpinning these theories, but can
also help to develop new hypotheses by highlighting interesting or unexpected
behaviour, which can then be explored and tested in more focused modelling and
experimental studies.

In this thesis, we focus on the use of in silico synthetic microbial communities to
test important microbial ecological theories relating to community stability, diver-
sity, functionality and productivity. For this purpose, we use an individual-based
approach to develop mathematical models representing in silico synthetic com-
munities with different levels of microbial interactions, diversity and complexity.

In Part I, we gather and synthesize the existing in vitro and in silico techniques
and knowledge relevant to our study of microbial ecological theories.

In Chapter 2, we discuss the important roles played by microbial communities
in numerous vital domains of life, then survey the experimental techniques used
to study these communities and to develop ecological theories regarding their
composition and functionality. We outline why synthetic microbial communities
are particularly suited for this type of theory development.

In Chapter 3, we survey the mathematical modelling approaches suitable for mi-
crobial communities. We focus on the modelling approaches which have been
developed to study key aspects of microbial communities in terms of their func-
tionality: their spatial structures and dynamics, the interactions taking place within
the community, and the interactions occurring with the environment.

We discuss in Chapter 4 another key aspect of microbial communities in terms of
their structure and behaviour, namely their diversity. We define precisely what
is meant by diversity and how it can be quantified through the use of dedicated
indices, before providing a comparative survey of selected key indices. We then
provide an analogous discussion of evenness, the more complex of the two com-
ponents of biodiversity.

In Part II, we begin our modelling studies by formulating in silico synthetic micro-
bial communities designed to interrogate the research questions outlined in Part I.
For these simulation studies, we develop an individual-based framework that is
progressively extended.

In Chapter 5 we develop an individual-based model of three in silico microbial
species to examine how evenness and the type of interspecies competition affect
the diversity and stability of the community. We describe in detail our model and
the processes it incorporates, then explain the set-up of the in silico experiments
used to investigate our research questions. The results of these simulation studies
are presented, and conclusions are drawn regarding the role of initial evenness
and competition type.

This model is extended in Chapter 6 to include a fourth species. This increased
level of complexity has two important consequences. First, it admits more possi-
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ble competition schemes, which we enumerate and study. Second, the increased
richness permits us to conduct a second in silico experiment in addition to the ap-
proach used in Chapter 5, namely an invasion experiment. These two set-ups have
different implications for the diversity and functionality of our in silico community,
which we test through extensive simulation studies.

Another important extension to our modelling framework is developed in Chap-
ter 7, which is the inclusion of resource dynamics. This is achieved through the
consideration of an in silico environmental substrate to which the demographic
processes are linked. The impact of resource dependence of various types, as
well as the effects of variable community evenness, are assessed through in silico

experiments.

In Chapter 8, we assess the effects of resource dependence on the spatial popu-
lation dynamics of the in silico community, and the consequent impacts on com-
munity diversity and functionality. Aside from spatial aspects, we also consider
more complex forms of resource dependence, as well as their consequences for
the stability of the community.

In Part III, we incorporate data from in vitro synthetic microbial communities in
our modelling framework in order to bring it closer to reality. We make use of a
dataset related to bioaugmentation of synthetic microbial communities in water
treatment sand filters, which we describe along with the experiments designed to
obtain this data.

In the first part of Chapter 9, we describe a predictive model developed for the
purpose of highlighting interactions between microbial strains which are of interest
for bioaugmentation in this setting, and can help to lessen the in vitro experimental
load.

In the second part of Chapter 9, we apply our individual-based framework. For this
purpose, we assess the interactions, first by identifying strain identity effects in
the data, then by synthesizing these effects into a competition structure for our
model. After formulating our model, we employ it as an in silico counterpart of
the in vitro sand filter community to determine if this is able to reproduce the key
behavioural trends occurring in vitro.

Finally, in Part IV we summarize the modelling studies described in this thesis as
well as their conclusions, and discuss their implications for the field of synthetic
microbial ecology. We also outline the promising research avenues opened by the
work contained in this thesis.

In sum, we employ in silico synthetic microbial communities to test key ecologi-
cal theories. Using an individual-based framework, we assemble various in silico

communities for the purpose of testing microbial ecological theories relating to
community stability, diversity, functionality and productivity.
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Our work has implications for the management of natural communities, and the en-
gineering of synthetic communities for various applications. The modelling frame-
work we have developed is flexible, extendable to other avenues of research, and
furthermore the modelling techniques described in this thesis are not limited in
their applicability to microbial ecology, but can be used in other disciplines and
fields, such as the marine, food and agricultural sciences.



Nederlandstalige
samenvatting

Microbiële gemeenschappen zijn cruciaal voor de werking van het Aardse ecosys-
teem. Ze spelen een uitermate belangrijke rol in ecologische, geochemische,
medische en industriële processen. Daarnaast zijn van vitaal belang voor de
gezondheid van mens en dier.

Het zijn niet de afzonderlijke soorten die deze functies vervullen, maar wel di-
verse microbiële gemeenschappen. Een goed begrip van de structuur en het func-
tioneren van zulke gemeenschappen is van cruciaal voor een goed management
van natuurlijke gemeenschappen, en om deze te beschermen tegen significante
veranderingen van hun leefmilieu om zo hun vitale rol te vrijwaren. Bovendien
is een dergelijk begrip noodzakelijk voor een rationeel ontwerp van microbiële
gemeenschappen met het oog op belangrijke toepassingen binnen onder meer de
voedings- en farmaceutische industrie.

Met dit in het achterhoofd wordt er veel aandacht besteed aan de ontwikkeling en
implementatie van instrumenten, technieken en modellen die het mogelijk maken
om het gedrag en functionaliteit van microbiële gemeenschappen te voorspellen,
het zogenaamde Microbial Resource Management. Om deze MRM technieken te
ontwikkelen, dienen onderzoekers te beschikken over een grondige en funda-
mentele kennis van de interacties die plaatsgrijpen binnen microbiële gemeen-
schappen, vermits deze hun dynamiek sturen.

In dit kader zijn wiskundige modellen steeds belangrijker. Modellen zijn abstracties
van de realiteit die kunnen gebruikt worden om op een gecontroleerde manier
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hypotheses te verifiëren. Het zijn als het ware de in silico tegenhangers van in vitro

synthetische ecosystemen die in het laboratorium zijn gecreëerd. De ontwikkeling
van wiskundige modellen in het kader van MRM kan niet alleen helpen om de
fundamentele mechanismen achter de MRM theorieën beter te begrijpen, maar
tevens om de ontwikkeling van nieuwe hypotheses te stimuleren.

In dit proefschrift richten we ons op in silico synthetische microbiële gemeenschap-
pen om belangrijke microbiële ecologische theorieën met betrekking tot de sta-
biliteit, diversiteit, functionaliteit en productiviteit van microbiële gemeenschap-
pen te verifiëren. Hiervoor maken we gebruik van een individu-gebaseerde be-
nadering die verschillende niveaus van microbiële interacties, diversiteit en com-
plexiteit toelaten.

In Deel I verzamelen en synthetiseren we informatie en kennis aangaande de
bestaande in vitro en in silico technieken die relevant zijn voor ons onderzoek.

In Hoofdstuk 2 bespreken we de belangrijke functies die microbiële gemeenschap-
pen vervullen. Tevens bespreken we de experimentele technieken die gebruikt
worden om deze gemeenschappen te bestuderen en ecologische theorieën over
hun samenstelling en functionaliteit te ontwikkelen. Vervolgens duiden we aan
waarom synthetische microbiële gemeenschappen zich uitermate goed lenen voor
deze theorieontwikkeling.

In Hoofdstuk 3 bespreken we de wiskundige modellen die geschikt zijn om de dy-
namiek van microbiële gemeenschappen te simuleren. We richten ons op de mo-
dellen die werden ontwikkeld om belangrijke aspecten van zulke gemeenschappen
te bestuderen, zoals hun ruimtelijke structuur en dynamiek, de interacties binnen
de gemeenschap en met de omgeving.

In Hoofdstuk 4 bespreken we de diversiteit van microbiële gemeenschappen. Meer
in het bijzonder gaan we na wat daarmee precies bedoeld wordt en hoe deze
kan gekwantificeerd worden met behulp van indices, alvorens een vergelijkend
overzicht van de belangrijkste indices te geven. Daarna geven we volgt een
gelijkaardige bespreking voor de gelijkheid (“evenness”) van microbiële gemeen-
schappen, een van de twee componenten van biodiversiteit.

In Deel II beginnen we onze modelleringsstudie door het formuleren van in sili-

co synthetische microbiële gemeenschappen die ontworpen zijn om de onder-
zoeksvragen opgeworpen in Deel I te beantwoorden. Voor deze simulatiestudies
ontwikkelen wij een individu-gebaseerd model dat stapsgewijs wordt uitgebreid.

In Hoofdstuk 5 ontwikkelen we een individu-gebaseerd model met drie in silico mi-
crobiële soorten, om te onderzoeken hoe de gelijkheid en het soort competitie de
diversiteit en stabiliteit van de gemeenschap kunnen beïnvloeden. We beschrij-
ven in detail ons model en de processen die erin zijn opgenomen en geven de
details over de opzet van in silico experimenten die worden gebruikt om onze on-
derzoeksvragen te onderzoeken. De resultaten van deze simulatiestudies worden



CONTENTS xxi

besproken en er worden conclusies getrokken over de rol van gelijkheid en de soort
competitie.

Dit model wordt uitgebreid in Hoofdstuk 6 zodat er vier soorten kunnen beschouwd
worden. Deze verhoogde complexiteit heeft twee belangrijke gevolgen. Ten eerste
laat deze meer interactie regels toe. Ten tweede maakt ze het mogelijk om in

silico invasie-experimenten uit te voeren. Zulke experimenten hebben een eigen
impact op de diversiteit en functionaliteit van de in silico gemeenschappen, die we
openbaren door uitgebreide simulatiestudies.

Het model wordt verder uitgebreid in Hoofdstuk 7 met het incorporeren van de
substraatdynamiek. Dit wordt mogelijk door een in silico substraat te beschouwen
dat de demografische processen beïnvloedt. Het effect van verschillende soorten
hulpbronnen wordt onderzocht via in silico experimenten.

In Hoofdstuk 8, beoordelen we de gevolgen van de substraatafhankelijkheid op de
ruimtelijke populatiedynamiek van de in silico gemeenschap, en de finale effecten
op de diversiteit en functionaliteit van de gemeenschap. Naast deze ruimtelijke as-
pecten, beschouwen we ook meer complexe vormen van substraatafhankelijkheid,
evenals de gevolgen voor de stabiliteit van de gemeenschap.

In Deel III maken we gebruik van gegevens over een in vitro synthetische mi-
crobiële gemeenschap om het modelleerkader dichter bij de realiteit te brengen.
Meer in het bijzonder gebruiken we gegevens over een synthetische microbiële
gemeenschap die een rol speelt bij de bioaugmentatie van zandfilters. We beschri-
jven deze gegevens evenals de uitgevoerde in vitro experimenten.

In de eerste sectie van Hoofdstuk 9 beschrijven we een datagedreven model voor
het voorspellen van interacties tussen microbiële soorten die van belang zijn voor
bioaugmentatie in zandfilters. Deze benadering maakt het mogelijk om de experi-
mentele last te verlichten.

In de tweede sectie van Hoofdstuk 9, passen we ons individu-gebaseerd model
toe. Hiervoor beoordelen we eerst de interacties tussen de microbiële soorten in
de beschouwde in vitro gemeenschap. Het model gebruiken we uiteindelijk als de
in silico tegenhanger van de in vitro zandfiltergemeenschap en dit om na te gaan
of het toelaat om de in vitro dynamiek kwalitatief te reproduceren.

In Deel IV vatten we tot slot onze modelleerstudie en de belangrijkste conclusies
samen en bespreken we de implicaties voor het onderzoeksdomein van de syn-
thetische microbiële ecologie. We geven tevens een overzicht van veelbelovende
onderzoeksactiviteiten die uit dit proefschrift voortvloeien.

Samenvatten spitsen we in dit proefschrift toe op in silico synthetische microbiële
gemeenschappen om ecologische theorieën op de proef stellen. Door het gebruik
van een individu-gebaseerd kader, assembleren we diverse in silico gemeenschap-
pen om microbiële ecologische theorieën te testen die verband houden met de
stabiliteit, diversiteit, functionaliteit en productiviteit van de gemeenschap.
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Ons werk heeft gevolgen voor het beheer van natuurlijke gemeenschappen en
het samenstellen van synthetische microbiële gemeenschappen. Het ontwikkelde
modelleerkader is flexibel en uitbreidbaar. Bovendien is de inzetbaarheid ervan
niet beperkt tot toepassingen in microbiële ecologie, maar strekt deze zich tot
vele andere wetenschappelijke disciplines.
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1
Introduction

1.1 Overview

Microbial communities are both bewilderingly complex and vitally important. They
play central roles in key ecological, geochemical, medical and industrial processes.
They drive our planet’s biogeochemical cycles, including the carbon and nitrogen
cycles that circulate these key elements between the Earth’s soil, ocean and at-
mospheric ecosystems, thereby permitting life to continue. In their role as the
primary drivers of these element cycles on a planetary level, microbial commun-
ities are essential for the functioning of each and every ecosystem on Earth.

Furthermore, while the work of microbial communities allows human, plant and an-
imal life to persist, their initial establishment was also due to the slow and steady
efforts of microbial communities. Over millions of years, they transformed the
Earth’s atmosphere from its unwelcoming primeval state, heaving with corrosive
chemical compounds, until it was rich enough in oxygen to permit the develop-
ment of multicellular life. Their importance continues to the present day, where
microbial communities underpin the functioning of every ecosystem on the planet.
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Despite their singular importance to our existence on this planet, humanity did not
begin to study microbial communities until relatively recently. Although their exis-
tence was postulated as far back as the 6th century, microbes were not observed
and identified until the 16th century, when Antonie van Leeuwenhoek designed
and built a microscope with which he observed “animalcules”, and Robert Hooke
recorded his observations in moulds of what he named “cells”.

The field of microbiology was solidified as a scientific discipline in the 19th century
when Louis Pasteur disproved the theory of spontaneous generation of matter,
and showed that microbial life could not arise from non-living materials. Then in
the early 20th century, the development of enriched culture techniques permitted
the cultivation of microbial species, which began to reveal the incredible extent of
microbial biodiversity.

The study of microbial community life has advanced ever since, with an ever in-
creasing understanding of their assembly and functioning allowing microbial com-
munities to be put to work. They drive many industrial processes, from food tech-
nology to medicine and drug development, to the production of chemicals and fu-
els. Even before humanity gained a working understanding of their functionality,
we were able to initiate and even steer some of the processes driven by microbial
communities, particularly with regards to food manufacturing processes such as
fermentation. The manufacture of cheese, pickled items, alcohol and fermented
meats is many centuries old, and was developed through trial and error well be-
fore scientific knowledge permitted any close study of the microbial communities
driving this process.

In the current day, there is more and more concern for sustainability and climate
compatibility in our industrial processes, due to the increasing recognition of the
dangers of anthropogenic changes to our environment. For this reason, many
processes dominated or driven by microbial communities are considered superior
to processes driven by chemical or physical reactions, which typically result in
emissions harmful to global ecosystems.

Hence stakeholders of various kinds are increasingly interested in the development
and availability of tools and techniques that can be used to predict the behaviour
and sustainably manage complex microbial communities. Indeed, understand-
ing the ecology of microbial communities — that is, their interactions with each
other and with their environments — has been singled out as “one of the most

compelling intellectual challenges facing contemporary ecology” (Prosser et al.,
2007).

Concurrently, the most recent decades have produced incredible advances in var-
ious scientific disciplines such as molecular and evolutionary ecology, together
with significant progress in technologies such as DNA sequencing, genomics, pro-
teomics, and metabolomics. These advances in theoretical and applied sciences
have facilitated improved observation, understanding and prediction of the func-
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tioning of microbial communities and the processes they drive. However, much
remains to be done.

For example, until very recently it was not practically possible to identify microbes
and observe their functions at the level of single cells, neither in simplified labora-
tory settings nor in more complex natural communities. While this is now changing
with the development and applications of new technologies for single-cell microbi-
ology and microbial ecology, it has only raised more questions for these fields.

Most notably, the observation of individual microbes in situ has led to one of the
most important recent findings of microbiology: that microbes which are genet-
ically identical and situated in a well-mixed environment can nevertheless have
different phenotypes (Kreft et al., 2013). This level of individual variation even in
homogeneous environmental conditions calls into question the assumption under-
pinning all population-level experiments, namely that all individuals are roughly
the same and thus population-level averages are a sufficiently accurate estima-
tion of their characteristics. With this paradigm now significantly undermined, the
implications for the future development of the field are still emerging, but certainly
imply a major shift in conceptual and practical approaches.

The current challenge for microbial ecologists is to sustain and protect the Earth’s
microbial communities and resources, in order to preserve the ecosystems and
processes dependent on them. This endeavour has led to major effort being fo-
cused, for example, on understanding the effects of biodiversity on ecosystem sta-
bility and functioning. The recent and ongoing biodiversity crisis has made clear
the links between these processes, but improving our understanding of biodiver-
sity is complicated by its entangled taxonomic, functional, spatial and temporal
aspects.

Thus it is not surprising that the large majority of studies attempting to develop
theories relating to the links between biodiversity, stability and functioning have
been phenomenological rather than conceptual. Until very recently, the role of
ecological theory in microbial ecology has been neglected and it is the increasingly
strong belief of microbial ecologists that “advances in microbial ecology are limited

by a lack of these conceptual and theoretical approaches” (De Roy et al., 2014).

Theory, rather than context-specific observations, is necessary to “classify, inter-

pret and predict the world around us” (Prosser et al., 2007). We require theory
to interpret our scientific observations and to extrapolate our insights to other
settings. It can enable a better understanding of the crucial factors steering mi-
crobial communities by providing a framework within which to gather, synthesize
and understand experimental observations and to validate their implications.

An example of successful theory development at the macro-scale is the develop-
ment of epidemiological models of the spread of diseases in humans, animals or
plants, which have been tested and improved to such an extent that stakeholders
use their predictions to steer policy decisions. Such a body of theory and models
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would have equally useful applications in improving for example the efficiency and
sustainability of waste water treatment strategies or the manufacture of biofuels,
both of which have important roles in any sustainable industrial policy.

Hence we expect that increasing interest and effort will be dedicated to the devel-
opment and deployment of tools, techniques and models that allow for the predic-
tion of behaviour and functionality in microbial communities. This effort, namely
the development of tools and techniques that have come to be referred to as Mi-
crobial Resource Management (MRM), will permit the management and protection
of natural communities, as well as the rational design of engineered communities
for important industrial applications. To develop these MRM tools, we first require
a deeper and more fundamental understanding of the interactions taking place
within these microbial communities, since these are the fundamental mechanisms
driving community behaviour.

An important tool in this respect is the use of mathematical models. Models
are abstractions of reality that allow for the testing of hypotheses in a controlled
way. Their reduced complexity and inherent manipulability make them the in silico

counterparts of in vitro model ecosystems constructed in the laboratory.

Developing mathematical models related to MRM theories can not only help to
understand the fundamental mechanisms underpinning these theories, but can
also help to develop new hypotheses by highlighting interesting or unexpected
behaviour, which can then be explored and tested in more focused modelling and
experimental studies. Mathematical models can also be used for predictive pur-
poses. When constructed based on sound ecological theories, models can not only
help to understand the fundamental processes underlying these theories, but also
to predict under which conditions these theories may no longer hold, or under
which conditions these theories are particularly key to community functioning.

Furthermore, if the appropriate data is available, then models can be calibrated
and validated in order to make quantitative predictions about community stability
and functionality. Technology is now approaching a sufficiently sophisticated stage
to allow for the collection of the type of data needed for this purpose, increasing
even further the promise of modelling approaches for the purpose of microbial
ecology theory development.

1.2 Research questions

In this thesis, we will develop mathematical models to represent in silico “synthetic
ecosystems”, in order to test microbial ecological theories. In these in silico micro-
bial communities, different levels of microbial interactions and complexity will be
assembled. This mathematical approach to ecological theory development will al-
low us to test ecological theories on microbial communities which so far have been
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adopted from macro-ecology without much consideration of the appropriateness
of this extrapolation.

More specifically, in this thesis we will investigate the roles of (i) community di-
versity, (ii) community structure, (iii) community architecture, and (iv) microbe to
microbe interactions, in ecosystem stability and functionality.

For this purpose, we formulate several research questions to guide our investiga-
tions, which will be elaborated and motivated in subsequent chapters:

1. What effect does initial evenness have on maintaining community diversity?

2. Which types of competitive interactions can help to maintain community di-
versity, and which types can threaten it?

3. What effect does initial evenness have when a community is faced with in-
vasion?

4. What effect does initial evenness have on maintaining community function-
ality?

5. If interactions within a community are dependent on resource availability and
use, how does this affect community diversity and functionality?

6. How does the spatial structure of a community affect its stability and func-
tionality?

These research questions will be studied through the use of in silico microbial com-
munities designed to highlight the relevant community processes and mechanisms
underlying our research questions.

1.3 Scope of the thesis

In the remainder of Part I, we will gather and synthesize the existing in vitro and
in silico techniques and knowledge relevant to our study of microbial ecological
theories.

In Chapter 2, we discuss in more detail the important roles played by microbial
communities in numerous vital domains of life, then survey the experimental tech-
niques used to study these communities and to develop ecological theories regard-
ing their composition and functionality. We then outline why synthetic microbial
communities are particularly suited for this type of theory development, before
discussing one such group of theories in particular, namely those related to the
link between biodiversity and functionality.
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In Chapter 3, we survey the mathematical modelling approaches suitable for mi-
crobial communities. We structure this summary in terms of the basic unit of the
models under discussion, namely whether this basic unit is a community, a pop-
ulation, or an individual. We focus on the modelling approaches that have been
developed to study several key aspects of microbial communities in terms of their
functionality: their spatial structures and dynamics, the interactions taking place
within the community, and the interactions occurring with the environment.

We discuss another key aspect of microbial communities in Chapter 4, which has
been highlighted as particularly important for understanding their structure and
behaviour: their diversity. We define precisely what is meant by diversity (not an
easy task, as we shall discover) and how it can be quantified through the use of
dedicated indices, before providing a comparative survey of selected key indices.
We then focus on evenness, which is the more complex of the two components of
diversity, and has attracted less attention. We again provide a comparative survey
of the indices that have been proposed to quantify evenness.

In Part II, we begin our modelling studies by formulating in silico synthetic micro-
bial communities designed to interrogate the research questions outlined in Sec-
tion 1.2. For these simulation studies, we develop an individual-based framework
that is progressively extended.

We begin in Chapter 5 by developing an individual-based model to study how even-
ness and the type of interspecies competition will affect the diversity and stability
of the community. We describe in detail our model and the processes it incorpo-
rates, then explain the set-up of the in silico experiments used to investigate our
research questions. The results of these simulation studies are presented, and
conclusions are drawn.

This model is extended in Chapter 6 to include a fourth species. This increased
level of complexity has two important consequences. First, it admits more possi-
ble competition schemes, which we enumerate and study. Second, the increased
richness permits the use of a second in silico experimental set-up in addition to
the approach used in Chapter 5, namely an invasion experiment. These two set-
ups have different implications for the diversity and functionality of our in silico

community, which we test through extensive simulation studies.

Another important extension to our modelling framework is developed in Chap-
ter 7, which is the inclusion of resource dynamics. This is achieved through the
use of an in silico environmental substrate to which the demographic processes
are linked. The impact of resource dependence of various types, as well as the ef-
fects of variable community evenness, are assessed through in silico experiments.

In Chapter 8, we assess the effects of resource dependence on the spatial popu-
lation dynamics of the in silico community, and the consequent impacts on com-
munity diversity and functionality. Aside from spatial aspects, we also consider
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more complex forms of resource dependence, as well as their consequences for
the stability of the community.

In Part III, we incorporate data from in vitro synthetic microbial communities in
our modelling framework in order to bring it closer to reality. We make use of a
dataset related to bioaugmentation of synthetic microbial communities in water
treatment sand filters, which we describe along with the experiments designed to
obtain these data.

In the first part of Chapter 9, we describe a predictive model developed for the
purpose of highlighting interactions between microbial strains that are of interest
for bioaugmentation in this setting, and can help to lessen the in vitro experimental
load. In the second part of Chapter 9, we apply our individual-based framework.
For this purpose, we assess the interactions, first by identifying strain identity
effects in the data, then by synthesizing these effects into a competition structure
for our model. After formulating our model, we employ it as an in silico counterpart
of the in vitro sand filter community to determine if this is able to reproduce the
key behavioural trends occurring in vitro.

Finally, in Part IV we summarize the modelling studies described in this thesis as
well as their conclusions, and discuss their implications for the field of synthetic
microbial ecology. We also outline the promising research avenues opened by the
work contained in this thesis.
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2
Biological background

2.1 Introduction

Microbial communities are ubiquitous on Earth, and are estimated to encompass
upwards of 1030 individual micro-organisms (Schloss and Handelsman, 2004).
Such an incredible number is simply too gigantic for the human mind to picture,
but an idea of the staggering abundance of microbial life can be taken from the
observation that the current human population of Africa is estimated to be equal
in number to the microbes living in a single teaspoon of soil (Editorial, 2011).

These microbial communities play key roles in human and animal health, indus-
trial, medical and pharmaceutical processes, and global ecosystems (Hanemaaijer
et al., 2015). They drive the Earth’s biogeochemical cycles and have preserved
them even through severe environmental disturbances that resulted in mass ex-
tinctions of animals and plants (Hallam and Wignall, 1997), leading to the sobering
observation that “[m]icrobial life can easily live without us; we, however, can-

not survive without the global catalysis and environmental transformations it pro-

vides” (Falkowski et al., 2008).
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These functions, which are so key to our global ecosystem, are not performed by
any single microbial species, but rather by diverse communities (Larsen et al.,
2012). The ability to understand the structure and functioning of these complex
communities is crucial to manage natural communities, to protect them from on-
going and significant anthropogenic environmental changes (Benner et al., 2013)
and thus preserve their vital processes, as well as to rationally design engineered
microbial communities for important applications ranging from food technology,
to medical and pharmaceutical uses, to various industrial and bioindustrial proces-
ses (Friedman et al., 2017).

In this chapter, we first discuss in Section 2.2 the importance and uses of microbial
communities. Then, in Section 2.3, we summarize the experimental tools and tech-
niques that are typically used to study the key aspects of microbial communities.
These aspects can be summarized by posing the following basic questions (Little
et al., 2008). First, who is present in the community? This refers to the structure of
the community, namely which species are present and in what proportions (Sec-
tion 2.3.1). Second, what are they doing? This corresponds to the functionality

of the community (Section 2.3.2). Third, how are these functions being accom-
plished? This encompasses the interactions taking place between micro-organisms
within the community, as well as with their environment (Section 2.3.3).

To understand the fundamental ecological processes underlying these questions,
one type of microbial community in particular has recently gained much attention.
This is a synthetic microbial community, which we define and discuss in detail in
Section 2.4. We then delve deeper into one key property that synthetic commun-
ities are particularly suited for investigating, and which will be a focus of this thesis:
biodiversity. This property is defined and its important role in proper community
functioning is discussed in Section 2.5. We then focus our discussion in Section 2.6
on the two components of biodiversity, namely richness and evenness. Finally, in
Section 2.7 we summarize our findings and their implications for our studies.

2.2 The importance of microbial communities

Microbial communities can be put to work in myriad beneficial ways. To name just
a few representative examples, they can be employed to: produce foods (Wolfe
and Dutton, 2015); treat waste water (Röling et al., 2010); degrade various com-
pounds including cellulose, plastic and heavy metal toxins (Tan et al., 2015); clean
contaminated soils (Hairston et al., 1997); leach minerals (Bertrand et al., 2015);
drive soil processes such as nitrogen fixation that are key to agriculture (Hane-
maaijer et al., 2015); and produce biofuels (Zomorrodi and Segrè, 2016).

Microbial communities also play important roles in human health and disease (Stein
et al., 2013). There is a significant and growing body of evidence that numer-
ous and varied diseases (pictured in Figures 2.1 and 2.2), such as inflammatory
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bowel disease, obesity and diabetes, are not associated with any single microbial
species but rather with altered, unbalanced or malfunctioning microbial commun-
ities (Friedman et al., 2017). This is particularly acute in the gut microbiome, where
external disturbances or perturbations such as diet changes can shift the compo-
sition of the resident microbial communities (Walker et al., 2011). These changes
in composition or structure can lead to biodiversity loss, which has been shown
to increase the risk of detrimental bacterial infections (Dethlefsen and Relman,
2011).

Figure 2.1: Changes to microbial communities in the human gut have been attributed to various diseases
including colon cancer, diabetes, and even neurological diseases such as Alzheimer’s diseases. Image
courtesy of Pacific Northwest National Laboratory (under Creative Commons license).

Once these links between malfunctioning gut microbial communities and ill health
were recognized and understood, efforts could be made to reverse these effects.
An example is the use of faecal transplants, which involves introducing samples
extracted from the gut microbiome of a healthy donor into the patient’s intestines
in order to prompt the re-establishment or re-orientation of their gut microbiome,
and has been shown to be highly effective in certain cases, for example against
forms of colitis induced by Clostridium difficile (Bakken et al., 2011).
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Figure 2.2: Microbial communities form in human dental plaque (Valm et al., 2011).

Microbial communities also play vital roles in food technology, where they drive
the bioprocesses that are responsible for the manufacturing of bread, wine, beer,
vinegar and cheese, among many other examples (Hanemaaijer et al., 2015). The
activity of these microbial communities (pictured in Figure 2.3) are responsible for
the distinctive flavour, texture, and aroma of fermented foods (Hutkins, 2006).
Humans have developed over many thousands of years a sufficient knowledge of
the composition and behaviour of these communities as to be able to control and
steer them to produce different types of fermented foods. This can be achieved
through the manipulation of environmental conditions such as temperature, salin-
ity, and moisture, which affect the functionality of the microbial communities and
alter their effects on the food (Sabra et al., 2010).

Probiotics are defined as microbes that are beneficial to gastrointestinal health, by
promoting the proper functioning of microbial communities in the gut (Pham et al.,
2009). Probiotic treatments use microbial strains that are identical to those in the
human microbiome, and are thus regarded as safer than other treatments (Rastall
et al., 2005). Through the use of these probiotic strains, researchers and physi-
cians seek to interfere with the bacteria causing ill gastrointestinal health, in order
to retrieve the condition of a healthy gut microbiome that is able to exclude or
repel deleterious pathogens (Jenkinson and Lamont, 2005).
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Recent advances in genomic and metagenomic sequencing

are providing researchers with catalogs of the bacterial, fungal,

and viral diversity in many traditionally produced fermented

foods (Table 1; reviewed in Bokulich and Mills, 2012). These

communities range in composition from those dominated by

bacterial species to those dominated by fungal species, with

some communities containing a mix of both bacteria and fungi.

Certain bacterial groups such as the lactic acid bacteria (LAB)

and acetic acid bacteria (AAB), as well as fungal species such

as Saccharomyces cerevisae, have well-established roles in

fermentation. However, the increasingly detailed analysis of

the microbial diversity of fermented foods is revealing many

additional species whose roles have not been characterized

extensively, if at all. For example, marine-associated Pseudoal-

teromonas are dominant members of some cheese rinds (Wolfe

et al., 2014) (in Table 1, these and all non-LAB/AAB fall under

‘‘other bacterial groups’’).

After characterizing the diversity of a microbial community,

one of the biggest challenges in the study of microbial

ecosystems is the difficulty in culturing community members

in the laboratory. Because MCoFFs have defined starting

materials as growth substrates (e.g., milk, grapes, and wheat

flour) and known incubation conditions, these same condi-

tions can be replicated in the lab and used as starting condi-

tions for isolation of community members. Indeed, some

food-associated microbes are already well-established model

organisms, such as Saccharomyces cerevisiae and Lactococ-

cus lactis.

Experimentation using MCoFFs is also greatly facilitated by

the fact that they are extremely accessible microbial ecosys-

tems. The production of fermented foods happens at regular in-

tervals (from daily to seasonally), and communities develop on

short timescales (from days to months), allowing for predictable

access to many replicated samples over relatively short time

periods. Fermented foods are often produced across multiple

geographic regions, also increasing the accessibility of samples.

These communities form as part of discrete entities (e.g., a wheel

of cheese), which allows well-defined spatial and temporal

sampling.

MCoFFs have some potential limitations as model systems.

Given the short timescales required to form communities, there

may be fewer opportunities for species to coevolve. However,

horizontal gene transfer between species that co-occur in

MCoFFs suggests that at least somemembers of these commu-

nities have coexisted long enough to allow for gene exchange

(Cheeseman et al., 2014; Rossi et al., 2014). In fact, some

MCoFFs are maintained for many years through serial transfer

(Table 1), providing ample opportunities for long-term coevolu-

tion within communities. For example, fermented teas such as

kombucha consist of a pellicle that contains bacteria and yeasts

in a mixed biofilm (Figures 1E and 1F). These pellicles have been

spread all around the world (Marsh et al., 2014), leading to

geographically separated communities that potentially started

from initially identical species and genetic backgrounds.

Because MCoFFs grow on raw food materials, such as grains,

meat, or milk, most nutrients are not limited. This high resource

Figure 1. Multi-species Microbial Commu-

nities Form during the Production of Fer-

mented Foods
(A) Fermented meats, such as salami, are pro-
duced by fermentation of meat by lactic acid
bacteria.
(B) During the aging process, the salami surface is
colonized by a mixture of yeast and bacteria,
visible as white and yellow colonies, and filamen-
tous fungi (diffuse white filaments) such as
Penicillium.
(C) Cheeses, such as the Camembert-style cheese
shown, are made through the fermentation of milk
by lactic acid bacteria. During aging, a biofilm,
commonly called a rind, develops on the surface
and contributes to the flavor, texture, and aroma of
the cheese.
(D) A rind biofilm plated on standard lab medium
shows a subset of the mixed eukaryotic (filamen-
tous fungi on the left) and prokaryotic (Proteo-
bacteria on the right) members of these microbial
communities.
(E and F) (E) Visible microbial communities also
form in liquid fermentations, such as this fer-
mented tea, commonly known as kombucha. The
microbial cells within the pellicle (floating biofilm)
can be seen in the micrograph (F). Kombucha is
typically composed of yeasts (larger cells) and
acetic acid bacteria (smaller cells). The yeasts are
involved in the fermentation of sugar to produce
ethanol and carbon dioxide. The acetic acid bac-
teria then ferment the ethanol and produce acetic
acid. The intact biofilm is on the right, and yeast
and bacterial cells are sloughing off on the left.
All photos by Benjamin Wolfe, except (C) (Jasper
Hill Farm) and (E) (Adam DeTour).
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Figure 2.3: Microbial communities drive the fermentation of food and drink (Wolfe and Dutton, 2015).
Fermented meats such as salami (A) are colonized on their surfaces by communities of bacteria and yeast
(B). Cheeses (C) are also produced by fermentation, during which microbial communities form a biofilm
(D) which is called the rind. Fermented teas such as kombucha (E) involve the formation of a floating
biofilm (F) which consists of a community of bacteria and yeasts.

This has been accomplished with some success for inflammatory bowel disease,
antibiotic-associated diarrhoea and irritable bowel syndrome, among other gut ill-
nesses, as well as for illnesses not specific to the gut, such as respiratory infec-
tions, vaginitis and hypercholesterolaemia (Pham et al., 2009). For example, ex-
perimental studies have shown that probiotics can have therapeutic benefits for
patients suffering from irritable bowl syndrome, although both the magnitude of
the benefit and the most effective species for probiotic treatment could not be
identified with certainty (Moayyedi et al., 2008). The most frequently used probi-
otics consist of communities of microbial strains from the genus Lactobacillus, an
example of which is pictured in Figure 2.4 (Pham et al., 2009).
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Figure 2.4: An electron microscope image of Lactobacillus acidophilus, often used in probiotic products
such as yoghurt (Bernet et al., 1994).

Microbial communities also play vital roles in many industrial processes, and are
used to produce various chemicals, materials and fuels (De Roy et al., 2014). In
this context, the engineering of microbial communities is seen as a keystone tech-
nology for sustainable energy technologies, in order to provide alternatives for the
current and unsustainable dependence on fossil fuels (Sabra et al., 2010). The
biotechnology industry is estimated to represent billions of dollars in the global
economy (Stewart et al., 2001), and involves such products as amino acids, or-
ganic acids, antibiotics, enzymes, vitamins and pharmaceutics (Sabra et al., 2010).
Other industrial bioprocesses driven by microbial communities include the produc-
tion of biogases, bioethanol and biohydrogen (Bader et al., 2010).

2.3 Experimental techniques for studying mi-
crobial communities

After surveying the undoubted importance of microbial communities in our bod-
ies, ecosystems and industries, we now turn to the question of how researchers
study these communities. An understanding of the structure and functioning of
these communities is vital in order to permit the proper management of natural
communities, as well as to enable the design and control of engineered microbial
communities.
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2.3.1 Censusing the community

The most intuitive avenue with which to begin is the question of who is present
in the first place? The structure of a community refers to its composition (wh-
ich strains are present), as well as the abundances of its member species. This
touches on two components of biodiversity, namely richness (the number of spe-
cies present) and evenness (the relative abundances of the different species). The
important roles of these components in community diversity, stability and func-
tionality will be discussed in more detail in Section 2.6, and their quantification will
be the subject of Chapter 4. Before we can address such quantification, we must
first take a step back and address the question of how one can observe, charac-
terize and identify microbes in synthetic communities. Established techniques to
census microbial communities can be grouped into two broad approaches: culture-
based methods and culture-independent methods.

Culture-based methods rely on the isolation and cultivation of microbes (pictured
in Figure 2.5). These studies provide morphological and physiological data that are
used to characterize and identify microbial species (Little et al., 2008). However,
these techniques present two major drawbacks. First, it is estimated that less
than 1% of the strains in the global microbiome can be cultured (Stewart, 2012).
Hence, the relatively few strains that are culturable cannot be said to be broadly
representative of microbial strains in general. In particular, the choice of medium
represents a significant bias in terms of the microbial strains able to be cultured
in vitro. Many studies use rich media, which provides plentiful nutrition in contrast
to the frequently nutrient-poor environments found in natural ecosystems, and
hence favours the cultivation of different microbial species (Stefani et al., 2015).
This issue can be addressed through the use of multiple and selective media, how-
ever, this represents an important and sometimes prohibitive cost in terms of time
and labour. Second, the identification of microbial species by their morphologi-
cal and physiological features requires cultivation for a sufficiently long time that
these features (such as their metabolic profile) can emerge and be observed and
characterized (Bertrand et al., 2015).
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Figure 2.5: Pure cultures of (left to right) Micrococcus luteus, Chromobacter violaceum, and Serratia
marcascens. Source: University of Wisconsin-Madison, Virtual Microbiology lab.

Culture-independent methods can address some of these issues, but bring their
own drawbacks. One of the most frequently used culture-independent techniques
for censusing microbial communities is 16S rRNA amplification (Little et al., 2008).
This technique involves amplifying the genes from environmental samples us-
ing universal or specific primers, screening the resultant clones for differences
in their sequences, and identifying microbial species based on these sequence
differences (Sinclair et al., 2015). Since this technique can be applied for both cul-
turable and non-culturable microbial species, it addresses one of the main issues
with culture-based methods. However, it also suffers from an analogous issue to
media in culture-based methods, namely the choice of primer. Universal primers,
despite their name, may not detect all species in the community (Madigan et al.,
2008). There is the additional problem of interspecies or horizontal gene trans-
fer, which muddies the question of which microbe belongs to which species or
taxa (Hellweger et al., 2016a). To circumvent rather than address this issue, re-
searchers use the term OTU (operational taxonomic unit) to refer to “a group of
phylogenetically related micro-organisms”, without specifying their actual taxon-
omy (Bertrand et al., 2015).

The difference in the results that culture-based and culture-independent methods
can produce was highlighted by a study that analysed the microbial communities in
contaminated soils using both techniques (isolation and cultivation using seven dif-
ferent growth media and DNA pyrosequencing, respectively) (Stefani et al., 2015),
representing one of the most comprehensive comparisons of microbial commun-
ities from polluted soils using these two approaches. The two resulting datasets
only agreed for 2.4% of the bacterial OTUs and 8.2% of the fungal OTUs. This
lack of agreement between the two main approaches available to researchers for
censusing microbial communities is a powerful illustration of the obstacles facing
microbial diversity quantification.

We also note the existence of sensitivity thresholds for the various techniques
used to quantify diversity in microbial communities. These thresholds have led
researchers to estimate that in practice microbial strains that are present in abun-
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dances constituting less than 1% of the community will not be detected by se-
quencing techniques and therefore will be missing from the community census
(Bertrand et al., 2015). Although efforts to remedy this obstacle are ongoing,
it can imply that these censusing techniques are susceptible to overlooking rare
species.

2.3.2 Understanding community functionality

After identifying the microbes present in a community, the next question typically
asked is what these microbes are doing. Associating microbes with the processes
they carry out refers to the functionality of the community, a multi-faceted aspect
encompassing all forms of a community’s behaviour, including its metabolic pro-
cesses, interactions with its environment and responses to disturbances or pertur-
bations (Ogunseitan, 2005). A community’s ability to maintain its functionality in
the face of such disturbance is referred to as its robustness (Stenuit and Agathos,
2015). Experimental studies interrogating issues of functionality typically address
one of the components of robustness, which include a community’s temporal sta-
bility (ability to maintain its structure over time), its resistance (ability to resist
change following perturbations) or its resilience (ability to return to its original or
previous structure after disturbances) (Little et al., 2008).

Until recent genetic advances, addressing these questions using culture-based
methods has involved isolating microbes from natural communities, determin-
ing which strains are culturable and then, after cultivation, inferring from their
substrate use the activity of each strain in the natural community (Ogunseitan,
2005). Culture-independent methods are necessary to determine the functional
roles of non-culturable microbes, the most common of which is the use of metage-
nomics, comprising two broad types: sequence-based and functional metage-
nomics (Röling et al., 2010).

Sequence-based metagenomic methods involve the analysis of genomes from a
community of microbes, via the extraction of DNA which is then cloned to a cul-
turable host bacterium and subsequently analyzed, for example to determine the
levels of richness or diversity present in the samples (Hanemaaijer et al., 2015).
Functional metagenomic methods seek to associate genes with the different func-
tions and processes being carried out in the community. To avoid the complica-
tions inherent in identifying gene function based only on sequencing, functional
metagenomic techniques involve transfecting the host bacterium with genes that
supply a certain function and screening for enzymatic activities, which only re-
quires that the gene be expressed, and not necessarily recognizable by its se-
quence (Little et al., 2008). Thus a functional metagenomic approach can per-
mit the identification of novel enzymes whose functions would not be recognized
based on sequence alone (Lam et al., 2015). An example of such an approach is



2

2 BIOLOGICAL BACKGROUND 20

the identification of various genes of significant interest for biocatalysis in indus-
trial and pharmaceutical applications (Streit et al., 2004). Hence sequence-based
metagenomic methods are suitable for studying the ecology and assembling the
genome of a community without revealing the functions associated with these
genes, whereas functional metagenomic methods can detect genes which pro-
duce functional enzymes, without shedding much light on which microbial species
the genetic material actually originated from (Lam et al., 2015).

Additional insights into community functionality can be gained through single-cell
analyses, which are targeted at the level of individual microbes rather than at the
overall community level (De Roy, 2014). This approach takes into account the
importance of individual variation between micro-organisms, since it has recently
been affirmed that even in well-mixed environments, individual microbes that are
genetically identical can still differ in their phenotypic characteristics (Kreft et al.,
2013). This level of individual variation was not previously suspected, and pro-
voked calls for a reconsideration of approaches to studying microbial commun-
ities (Hellweger et al., 2016a). Other important examples of individual variation
include differences in growth rate and cell division capability between microbes of
the same species (Chlamydomonas reinhardtii) (Damodaran et al., 2015). Tech-
niques for single-cell analyses such as milli- and micro-fluidics, laser scanning and
flow cytometry (Röling et al., 2010) are also useful for analyzing rare species, which
can represent significant proportions of community richness (McGill et al., 2007)
and perform key community functions (Piper et al., 2015) and, as mentioned in
Section 2.3.1, are sometimes missed by censusing techniques due to their sensi-
tivity limits.

2.3.3 Identifying interactions within the community

2.3.3.1 Techniques

Interactions between organisms have, along with metabolism and reproduction,
been identified as “one of the most fundamental features of life” (Bertrand et al.,
2015). Hence the interactions of microbes with each other and their environment
are key to understanding community functionality, since these interactions drive
fundamental processes such as metabolite transfer and growth inhibition, and also
regulate the size, activity, diversity and productivity of the community (Tan et al.,
2015).

Studying these various interactions between microbial populations in natural com-
munities is complex due to their incredible diversity, which results in large num-
bers of species engaging in multiple different interactions with different partners,
which may even be occurring simultaneously (Tan et al., 2015). Thus the funda-
mental basis of studies of these different types of interactions between cell popu-
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lations are co-culture experiments. These are experimental set-ups where “two or
more different populations of cells are grown with some degree of contact between
them” (Goers et al., 2014). Among the possible motivations for this approach are:
the study of interactions between cell populations in nature, the improvement of
culturing success for cell populations, and establishing synthetic interactions be-
tween populations (Goers et al., 2014). Co-cultures are synthetic systems that
have gained particular interest from microbiologists in recent years due to their
reduced complexity and increased controllability, which favours them over more
complex natural systems for examining ecological theories relating to microbial
interactions, their mechanisms and effects (De Roy et al., 2014).

However, there are multiple issues with using co-cultures in the lab. It is not
straightforward to determine under which conditions multiple cell types grow; dif-
ferent cell types have different optimal growth conditions, and there are few estab-
lished protocols for determining how such cell types should be co-cultured (Sabra
et al., 2010). If the conditions are not optimized for all constituent cell types,
one cell type will typically dominate or outcompete the other cell types. One can
then resort to the control of population levels, for which various techniques exist,
including auxotrophic cross-feeding and toxin-antitoxin systems (Tanouchi et al.,
2012). However, these methods do not allow precise and careful control of the dif-
ferent population ratios. Furthermore, they are not applicable to sufficiently many
different cell types (Rollié et al., 2012).

Genetic tools can help to address the deficiencies of co-culture approaches. The
essence of this technique for associating genes with functions is to construct ran-
dom mutations in genetic code, and then search for the resulting mutants (De Roy,
2014). Assessing the phenotypic characteristics of these random mutants is con-
sidered to be the “minimally biased” approach to determine which genes are nec-
essary for a certain function to occur (Little et al., 2008). Instead of using random
mutations and hoping that these provoke a noticeable change in community func-
tionality, targeted approaches are also possible, however, these so-called gene
arrays necessitate some a priori knowledge about the genes in question (Madigan
et al., 2008). An example of this approach is the identification of genes involved
in quorum sensing in the gut of caterpillars (Borlee et al., 2008).

2.3.3.2 Interaction types

Interactions between organisms can be classified into three broad types. Mutual-

ism refers to interactions where both individuals benefit, commensalism refers to
interactions benefiting one individual and having no effect on the other, and an-

tagonism refers to competitive interactions (Tanouchi et al., 2012). An extended
description of all possible pairwise interactions can be found in the review of Faust
and Raes (2012).
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Mutualist, or cooperative, interactions facilitate the growth and survival of partici-
pating organisms, often through the production and use of shared “public goods”,
for example in co-cultures of Pseudomonas aeruginosa and Burkholderia cepacia

which must produce molecules called siderophores in order to acquire iron from the
environment (Hibbing et al., 2010). Cooperation at species or population level can
involve for example the exchange of metabolites essential for growth processes,
as was observed in synthetic communities of Escherichia coli strains (Wintermute
and Silver, 2010).

Commensal interactions are less prevalent, and it has indeed been postulated
that “purely commensal relationships may not exist” (Little et al., 2008), although
it may instead be the case that it is actually the benefit to the second partner that
has not yet been discovered (Brenner et al., 2008; Tan et al., 2015). For example,
microflora in the human gut that were previously thought to be neutral partners in
commensal interactions were later recognized to in fact be playing critical roles in
the proper functioning of the gut microbiome, by initiating host immune defence
mechanisms against infections, specifically by activating certain receptors critical
for the protection of the gut microbiome against damages due to infection (Rakoff-
Nahoum et al., 2004).

Competitive interactions may be the most common and commonly studied inter-
actions occurring in microbial communities (Hibbing et al., 2010). Various forms
of competitive interactions between micro-organisms have been observed and de-
scribed. Perhaps the most common is exploitative competition, where microbes
compete for a shared and limited resource, for example nutrients, light, water or
space (Bertrand et al., 2015). This is an indirect form of competition, since the
focus of the interaction is the shared resource. In contrast, interference compe-

tition constitutes direct warfare between microbes through the use of toxic com-
pounds such as antibiotics (Hibbing et al., 2010). An additional form of interfer-
ence competition is the disruption of signalling mechanisms, which can interfere
with competitive or defensive actions and thus confer a competitive advantage to
the disrupter, as has been suggested to be the case in competition between Pseu-

domonas aeruginosa and Agrobacterium tumefaciens in synthetic co-cultures (An
et al., 2006). However, the importance and prevalence of this interaction mecha-
nism is less established in comparison to the production of toxic compounds (Little
et al., 2008).

Two further types of competitive interaction are predation and parasitism, which
are similar in that they both involve one species benefiting from the interaction
while the other species suffers. They are typically differentiated based on the
time scale over which their effects are felt; predation occurs over a brief period,
while parasitism continues over a significant period of time (Bertrand et al., 2015).
Predation in particular has been singled out as a key stabilizing mechanism in
macro-ecological communities, whereby the predator located at the top or apex
of the food chain mediates the abundances of the species below it, a mechanism
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that can have effects that are outsize compared to the predator population den-
sity (Parker and Kamenev, 2010; Saleem et al., 2012; Chu and Adler, 2015). In
microbial settings, predation has been shown to be the main mortality mechanism
in aquatic communities, and has also been proposed as a regulator of community
richness and evenness (Zhang et al., 2007). Predation pressure of this type can
also be exploited in synthetic communities as a form of population control (Kunin
et al., 2008).

An example of predation in synthetic microbial communities can be found in a com-
munity of two Escherichia coli strains, where the predators induce the expression
of a “suicide protein” in their prey, causing their death, while the predators re-
quire a signal from the prey microbes in order to produce a key protein (Balagaddé
et al., 2008). Through experimental manipulation of this co-culture, the authors
were able to retrieve the dynamics characteristic of predator-prey systems, such
as extinction and coexistence. For an even finer classification of predatory compet-
itive interactions, Martin (2002) classified various predation strategies according
to their level of specialization, such as pack predation or direct invasion of the
cytoplasm.

2.3.4 Making predictions at the community scale

Once a body of fundamental theories and knowledge in microbial ecology is present,
this can be used as a solid foundation for predictive modelling techniques. This en-
ables researchers to make predictions about communities that cannot be cultured
or studied using current techniques, which as discussed in Section 2.3.1 consti-
tutes the majority of natural communities. The fundamental knowledge required
for such predictions lies in the areas outlined in the preceding sections: the compo-
sition, functionality and interaction network of the community (Little et al., 2008).
This will be discussed in more detail in Section 3.2.4.

To gather the data, insights and knowledge necessary for an understanding of the
fundamental ecological processes underlying functionality, synthetic communities
have been singled out as particularly promising (Brenner et al., 2008; De Roy et al.,
2014; Goers et al., 2014; Stenuit and Agathos, 2015).
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2.4 The rise of synthetic microbial commun-
ities

2.4.1 Limitations of engineered pure cultures

When using natural microbial communities, the factors and associated mecha-
nisms underlying a community’s functionality often cannot be elucidated, and in-
stead remain “black boxes” (Brenner et al., 2008). We may be able to enumerate
and measure what goes into the community, and measure the corresponding com-
munity output or performance, but what occurs in between remains a mystery.

At the other extreme, there is an extensive and established knowledge base re-
garding the functionality of pure cultures (cultures containing only one microbial
strain), which has been achieved through the use of genomic, transcriptomic, pro-
teomic and metabolomic tools (Jessup et al., 2004). Once researchers were con-
fident in their understanding of the functioning of these pure cultures, the desire
grew to apply this knowledge by manipulating and controlling them as engineered
pure cultures (De Roy et al., 2014).

Examples of the manipulation of pure cultures include the improvement of their re-
sistance to stress and disturbance, the increase of productivity, the improvement
of functionality via redundancy of key traits, the strengthening of toxin degrada-
tion capability, and the production of new or different compounds (Benner and
Sismour, 2005). These engineered strains have obvious industrial, medical and
pharmaceutical applications in the settings described in Section 2.2.

Thus while the study of pure cultures allows researchers to gather information on
the genetic, physiological and morphological characteristics of specific and indi-
vidual microbes (Leonard et al., 2008), they do not permit the study of any factors
which influence the functionality of microbial communities. Additionally, only a
very small fraction of microbial species are actually culturable (see Section 2.3.1),
significantly limiting the representativeness and applicability of the knowledge
gained through engineered pure culture studies. Furthermore, significant differ-
ences in the behaviour of microbial species have been observed when the species
are cultivated in pure cultures compared to when they are embedded in a commu-
nity (Jessup et al., 2004), pointing to the importance of interspecies interactions
which cannot be accounted for in pure cultures and are ubiquitous in community
settings (Stenuit and Agathos, 2015).

These factors, combined with the previously discussed importance of microbial
communities for ecological, medical, industrial and research applications (Sec-
tion 2.2) have motivated researchers to consider the engineering of communities
rather than pure cultures. Thus techniques also shift to observing and characteriz-
ing behaviour in a top-down way, at the level of the community rather than at the
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level of a species or strain (Stenuit and Agathos, 2015). Hence the increasing use
of metagenomics (the genomic profile of the community), metatranscriptomics
(the community transcript profile), and metaproteomics (community protein pro-
file) (Röling et al., 2010) to describe the diversity, structure and composition of the
community, and as well as the presence and level of expression of genes (Stenuit
and Agathos, 2015).

Here we note the terminology used to describe this field, more specifically the
term ’synthetic microbial ecology’. It is sometimes conflated or confused with
synthetic biology, which is concerned with the engineering of cells (rather than
communities), or with systems biology, which refers to the top-down approach
of understanding a system through the characterization of its constituent compo-
nents (Röling et al., 2010). In contrast, synthetic microbial ecology concerns the
“rational design and theory-driven manipulation” of engineered artificial microbial
ecosystems (Stenuit and Agathos, 2015).

2.4.2 Synthetic microbial ecology approaches

Synthetic microbial ecology involves the construction of synthetic microbial com-
munities for the purpose of improving the understanding of fundamental micro-
bial ecological principles and theories (Jessup et al., 2004), for example regarding
interactions between microbes as well as with their environment, the relation-
ship between diversity and functionality, the mechanisms of metabolic processes
and many more (De Roy et al., 2014). This encompasses the design and con-
struction of microbial communities with desired characteristics and functionality,
whether for practical or research applications. These communities are designed
and constructed “bottom-up” by assembling at least two microbial populations in
properly characterized environmental conditions which are controlled by the re-
searcher (Tan et al., 2015).

For the purpose of studying microbial ecological theories, synthetic communities
can be seen as a midpoint between mathematical models and natural commun-
ities (Song et al., 2014). Synthetic communities are closed systems which can
avoid the complex and confounding background processes present in natural com-
munities, but they are also closer to biological reality than mathematical mod-
els (Tanouchi et al., 2012). They are necessarily much less complex than natural
communities, but it is exactly this comparative simplicity that allows researchers
to control and replicate synthetic communities to a sufficient degree as to permit
the scientifically sound study of theories and questions that cannot be addressed
through observation of natural communities or pure culture experiments (De Roy
et al., 2014). Criticisms of their simplicity compared to natural communities mis-
understand the purpose of synthetic communities in this endeavour: “to simplify

nature so that it can be more easily understood” (Jessup et al., 2004).
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Synthetic communities also allow researchers to plan ahead and develop tech-
niques to differentiate the different microbial species prior to their culturing, or to
ensure that these species can coexist (Tan et al., 2015), hence accounting for sig-
nificant issues related to culture-based methods (see Section 2.3.1). An example
of an important tool in the former case is the use of fluorescent tagging, achieved
through the use of green fluorescent protein (GFP). From the expression of GFP,
researchers are alerted that the gene linked to GFP has also been expressed, per-
mitting differentiation and identification of different strains (Madigan et al., 2008).
In the latter case, microfluidic approaches allow researchers to precisely control
the spatial organization of community members, as well as determine their envi-
ronmental conditions (Stewart, 2012).

Synthetic communities can and have been used to test various theories regarding
the factors which affect the behaviour and functionality of natural microbial com-
munities. Only by understanding these fundamental factors can we gain sufficient
insight into microbial communities to be able to engineer and steer them, and
synthetic microbial ecology is well suited for obtaining these insights. We provide
several examples here.

First, synthetic communities can be employed to study the interactions between
microbes as discussed in Section 2.3.3, for example by genetically engineering
strains in order to ensure the presence of desired interactions and facilitate the
tuning of the parameter(s) mediating the interaction (Wintermute and Silver, 2010),
which would be far more complex (perhaps prohibitively so) in natural commun-
ities due to the presence of other confounding interactions. Synthetic ecology
approaches also permit the manipulation of environmental conditions in order to
induce or control interactions (Klitgord and Segre, 2011). For example, it has
been shown that cooperation can always be induced in all possible pairs of seven
microbial species (Escherichia coli, Helicobacter pylori, Salmonella typhimurium,
Bacillus subtilis, Shewanella oneidensis, Methylobacterium extorquens, and Meth-

anosarcina barkeri), through the appropriate environmental manipulation, more
specifically by altering the composition of the media (Klitgord and Segre, 2010).

Second, synthetic communities have been designed to study resilience, which is
the presence of functionally redundant microbes that help the community to re-
sist stress and disturbances by ensuring that key functions can continue even in
the case of stress-induced extinctions (Vannecke, 2015). For example, it has been
shown that in the face of changing community composition due to environmen-
tal stress, communities can still maintain stable functionality in terms of their
productive output, due to the presence of functionally redundant genes (Kraft
et al., 2014). Synthetic community experiments have been used to study this
type of biodiversity-productivity relationship in the face of different environmental
stresses such as temperature, pH or salinity (De Roy et al., 2014). For exam-
ple, Wittebolle et al. (2009) constructed over 1.000 synthetic communities using
the same 18 strains with varying evenness, and investigated the productivity and
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functionality of the community when confronted with salinity stress. Their results
showed that highly uneven communities were less able to resist stress than more
even communities, which could maintain their functionality under the stress con-
ditions. A similar positive relationship with functionality was also demonstrated for
richness, using synthetic communities with richness varying up to 72 species (Bell
et al., 2005). We will return to the topic of the relationship between functionality,
diversity, richness and evenness later in Section 2.5.

A conceptually related study focused on the link between functionality and com-
munity structure (rather than richness). Yu et al. 2016 studied microbial com-
munities involved in methane oxidation by constructing synthetic communities of
50 species, in order to understand the main drivers of functionality in such com-
munities. This experiment also served as a test of the extent of the differences
between natural communities and the synthetic communities constructed to rep-
resent them, a topic that is the subject of ongoing discussion in synthetic microbial
ecology (Ponomarova and Patil, 2015). Yu et al. observed commonalities between
the natural and synthetic community dynamics, but also noted significant differ-
ences in the identities of the key species (in terms of functionality) in the synthetic
communities compared to the natural communities, despite similar environmental
conditions. Hence the authors advocate for “intelligent community design” when
constructing synthetic communities, rather than using a a random sampling of
species, in order to more realistically represent the natural community (Yu et al.,
2016).

Third, synthetic communities are well suited for studying the effects of spatial
structure, due to their high controllability and bottom-up construction. Techniques
for inducing defined spatial structures in synthetic communities by restricting mo-
bility include the use of solid media, inducing the establishment of biofilms, or
the use of microfluidics (Tan et al., 2015). A key study in this context was carried
out by Kerr et al. (2002), who used a synthetic community of three Escherichia

coli strains. Plating of this community on sold media constrained the mobility of
the microbes such that stable spatial structures formed, which permitted coexis-
tence of all three species by localizing their interactions. In contrast, when the
same community was cultured in a well-mixed environment, no spatial structure
could be induced, which negated the possibility of coexistence and invariably led
to extinctions. The same effect was observed through the use of microfluidics,
when a different synthetic community of three species (Azotobacter vinelandii,
Bacillus licheniformis, and Paenibacillus curdlanolyticus) was cultured in a well-
mixed setting and a spatially structured environment (Kim et al., 2008). Once
again, only the spatially structured environment could support the coexistence of
all three species by localizing their interactions. Furthermore, the microfluidic de-
vice (pictured in Figure 2.6) allowed the authors to vary the magnitude of spatial
separation between the different species, permitting the study of a spectrum of
localization rather than just the two extremes of solid media and well-mixed en-
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vironments. It was observed that decreasing the distance between the species
resulted in lower abundances, since this mimicked the effect of a well-mixed envi-
ronment (Kim et al., 2008).

taneously develop spatial structures (27–31). To test whether the
synthetic community can be stabilized by imposing a specific
spatial structure, we used a microfluidic (14–17, 24, 32) device
that localized each bacterial species into an individual culture
well separated from a microfluidic communication channel by a
nano-porous membrane (Fig. 1C). This device spatially localized
each species so that bacteria were unable to migrate from one
well to another (Fig. S2 A and B), while allowing chemical
communication among the species (Fig. S2 D and E). Control
experiments indicated that the bacteria remained confined in a
culture well and that chemicals were exchanged via diffusion
through the communication channel (Figs. S2 and S3). The
device supported growth of all three species when Av, Bl, and Pc
were separated into individual culture wells of the same device
and were cultured in a nutrient-rich medium (Fig. S4).

To test whether spatial structure stabilizes syntrophic inter-
actions within this synthetic community in CP media, cells of Av,
Bl, and Pc were cultured as either a connected community of all
three species (Fig. 2A) or as isolated species (Fig. 2B) in the
microfluidic device for 36 h. When all three species were
cultured in connected individual wells of the microfluidic device,
the community was stable, and each species increased in pop-
ulation size over time (Fig. 2 A and C). In contrast, when each
species was cultured alone in the microfluidic device, the isolated
species were unstable, and the population size of each species
decreased or remained at initial levels (Fig. 2 C and D). Similar
results were obtained when only two members of the community
were cultured in the microfluidic device (Fig. S5): live-cell
numbers in cultures of two-member communities were signifi-
cantly less than those in cultures of all three community mem-
bers. Therefore, spatial structure stabilized the community and
facilitated syntrophic interactions between community mem-
bers. It would be interesting to investigate the influence of spatial
structure on stability of communities over long time scales. This
investigation would require building an open system (24), sup-

plying nutrients and removing waste, and also monitoring ge-
notypic changes in the bacterial population.

To test the influence of changes in spatial structure on this
stability, we varied the distance between the individual, con-
stant-size culture wells of the microfluidic device and propor-
tionally changed the diameter of the communication channel
between the wells (Fig. 3). When all wells were inoculated with
a mixture of all three species, effectively reducing the separation
distance between species to a few micrometers, the community
experienced a significant, overall population decline in 36 h (Fig.
3A). We could not always reliably differentiate Pc from Av, but
we did not find any cells that resembled Pc in the mixture after
36 h. A similar decline was observed when each species was
inoculated individually into a culture well separated from the
other wells by 1800 �m (Fig. 3B). Interestingly, the community
coexisted stably only at intermediate separation distances on the
order of a few hundreds of micrometers (Fig. 3B). These results
suggest that a specific spatial structure is required for the
stability of the community.

Next, to interpret better the effect of spatial structure, we
developed a simple mathematical model describing the role of
spatial separation in modulating production, consumption, and
diffusion of molecules that regulate the functions of neighboring
colonies within a community. To illustrate the model, we use the
exchange of essential nutrients between the colonies as an
example (e.g., when a colony of species � produces nutrient A,
and a colony of species � produces nutrient B). Colonies are
separated by distance L (m). The full model, which takes into
account both nutrient fluxes and colony growth (Fig. S6 and S7),
provides the same overall conclusions as the simpler model
below that focuses on nutrient fluxes.

Nonlinearity must be present for spatial effects to be observed
(34), and we used a nonlinear production (24, 35–37) function
approximated as the product of two Hill functions (Fig. 4, blue
plane):

Fig. 1. A synthetic community of three bacterial species requires spatial structure to maintain stable coexistence. (A) A schematic drawing of the wild-type soil
bacteria and their functions used to create a synthetic community with syntrophic interactions. (B) Graphs show the survival ratio of each species (N/No) as a
function of time when cultured in well-mixed conditions in a test tube in nutrient-rich TSB/1771 (Left) and nutrient-poor CP (Right) media, indicating instability
of the community under spatially unstructured conditions. (C) A schematic drawing of the microfluidic device used to co-culture the three species stably by
imposing spatial structure with three culture wells and a communication channel.
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Figure 2.6: Microfluidic device used by Kim et al. (2008) to control the spatial structure of a synthetic
community of three species.

Of these different key factors which drive the functionality of microbial commun-
ities, we will focus on several in particular: biodiversity, interspecies interactions
(in particular competition), and spatial structure. The latter two will be discussed in
more detail in Chapter 3, while we now delve deeper into the (microbial) ecological
importance of biodiversity.

2.5 Biodiversity: a key factor in community
functioning

One of the most important aims in ecology is to identify and comprehend the
mechanisms that sustain biodiversity, which is often critically important for the
viability of ecosystems (Tilman et al., 2014). Loss of biodiversity can hinder the
proper functioning of ecosystems, in drastic cases even leading to mass extinc-
tions and system collapse (Ebenman and Jonsson, 2005). Recently, the nearly
unanimous scientific belief has formed that a significant portion of the Earth’s spe-
cies are currently being driven to extinction due to human actions, threatening
biodiversity across a wide number of ecosystems (Wilcove et al., 1998). Thus the
issue of biodiversity loss has taken on a particular urgency in recent years (Mendes
et al., 2008).

Many theoretical models have shown that species in competition can coexist —
and hence maintain the ecosystem’s biodiversity — if ecological processes such
as competition and movement take place over small spatial scales (Laird and
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Schamp, 2008; Nadell and Bassler, 2011; Frey and Reichenbach, 2011; Adam-
son and Morozov, 2012; Borenstein et al., 2013). This is also true in the case
of communities with non-transitive competition between species — that is, com-
munities where a strict competitive hierarchy does not exist (Laird and Schamp,
2006). The classic example of non-transitive competition in a community of three
species is the rock-paper-scissors configuration, also known as cyclic competition.
There exist many examples of communities in nature that demonstrate this type of
competition, such as invertebrates living in coral reefs (Jackson and Buss, 1975),
Arctic lemmings (Dicrostonyx torquatus) in Greenland (Gilg et al., 2003), side-
blotched lizards (Uta stansburiana) in California (Sinervo and Lively, 1996), the
Pacific salmon (Oncorhynchus nerka) (Guill et al., 2011), certain bacterial species
engaging in antibiotic production (Reichenbach et al., 2007), microbial populations
of colicinogenic Escherichia coli (Kerr et al., 2002), and communities of cryptic spe-
cies of the nematode Litoditis marina (De Meester et al., 2016)

From among the various ecosystems in which cyclic competition has been ob-
served, microbial communities have become model systems for studying the com-
plex interplay between the nonlinear dynamics of evolutionary games, stochastic
fluctuations arising from the probabilistic nature of interactions, and spatial organi-
zation (Frey and Reichenbach, 2011). Much effort has been dedicated to advancing
the qualitative and quantitative understanding of mechanisms that sustain biodi-
versity and ensure the viability of microbial communities, by allowing for species
diversity and social behaviour such as cooperation.

Biological variability between micro-organisms is caused by selection pressure due
to environmental heterogeneities (physical, chemical or biological) in conjunction
with genomic mutations. Many of these processes can occur over time scales un-
suitable for in vitro study (Bertrand et al., 2015), complicating efforts to elucidate
their functioning. A further complication lies in the incredible diversity of microbial
communities (Tan et al., 2015). A single gram of soil has been estimated to con-
tain upwards of hundreds of thousands of bacterial OTUs (van Elsas et al., 2012),
which is orders of magnitudes richer than for example the 300.000 plant species
estimated to be present on the entire planet (Villenave et al., 2011).

The general approach in such cases is to simply compare different experimen-
tal settings and search for correlation between biodiversity and functionality, for
example after some disturbance or perturbation to the community (Matthiessen
et al., 2010). Such experiments often reveal little or no relationship between bio-
diversity and functionality, but there have been significant exceptions (Bertrand
et al., 2015). A clue to the reasons behind this can be found in recent studies
showing that functional changes in microbial communities can be less strongly
linked to community diversity than they are to components of diversity such as
the relative abundances of dominant species (Patra et al., 2006; Attard et al.,
2011). For example, it was shown that the methane oxidation functionality of a
mixed community of heterotrophs and methanotrophs was stimulated not only by
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methanotroph richness, but also by heterotroph richness (Ho et al., 2014). Here
the authors were able to untangle the confounding factors to demonstrate that
increased heterotroph richness by itself led to increased functionality, however
the mechanism underlying this stimulation remains unclear. An additional con-
founding factor in such diversity-functionality studies in natural communities is
the co-variation of environmental factors which may be difficult to disentangle
from variation in diversity levels (Bertrand et al., 2015).

Synthetic communities allow for a different approach, since they permit researchers
to assemble communities “bottom-up” in order to obtain a specific diversity, rather
than working with whatever level of diversity happens to be found in a natural
community. This additional manipulation and hence controllability allows the anal-
ysis of (possible) causal relationships between functionality and diversity to be
investigated in communities with for example equal population abundances of key
dominant species (Hellweger et al., 2016a). Such studies generally reveal a pos-
itive relationship between community diversity and functionality (Bertrand et al.,
2015), but an important caveat is their significantly reduced richness compared to
natural communities.

2.6 The components of biodiversity

Richness and evenness, the components of diversity, play different roles in com-
munity functioning and have therefore often been treated separately (Hillebrand
et al., 2008). Species richness refers to the absolute number of species present
in the population of interest, while species evenness refers to the relative abun-
dances of the different species, so that a population is described as completely
even if all species are equally abundant (Heip, 1974). Species richness is re-
sponsible for the number of functional traits in a community, while evenness may
influence the richness effect by controlling the variation of traits present in the
community (Lemieux and Cusson, 2014).

Species evenness has been shown to be a key factor in preserving the functional
stability of ecosystems (Hillebrand et al., 2008; Wittebolle et al., 2009; De Roy
et al., 2013). Evenness is also known to have a positive impact on productivity
by increasing the representation of each species’ functional traits (Lemieux and
Cusson, 2014). Despite this recognition, studies and conservation efforts often
focus on restoring or maintaining richness, since the impact of richness on many
ecological processes has been well described, see e.g. Crowder et al. (2010),
Hooper et al. (2005), and Isbell et al. (2009b). In contrast, much less attention has
been paid to the ecological effects of disrupted evenness (Hillebrand et al., 2008),
an unfortunate oversight since environmental degradation and damage due to
human actions can skew the relative abundance of species, and because uneven
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communities are often more susceptible to invasion and less resilient to stresses
and disturbances (Wittebolle et al., 2009).

Declining evenness has also been shown in field studies to be an important early
warning sign of diversity decline, specifically in response to species invasion (Wilsey
et al., 2009). The authors noted that if they had taken species richness as the
only index of diversity, they would have falsely concluded that diversity had not
changed over the first year of study. Initial drops in evenness preceded the drops
in richness that occurred in the second year, an effect the authors singled out as
interesting for future study (Wilsey et al., 2009).

In general, the development of theory has outpaced experimental studies concern-
ing evenness as a mechanism promoting maintenance of biodiversity (Isbell et al.,
2009b). Empirical evidence was provided by one study showing that maintenance
of biodiversity can be promoted by a rare species advantage (Wills et al., 2006)
or a common species disadvantage (Harpole and Suding, 2007), both of which are
mechanisms leading to a more even community.

As a further example, one experimental study set in a field in Canada varied
species evenness and the identity of the dominant plant species in order to test
whether plant productivity would increase with increasing evenness, and whether
such a relationship would be dependent on species identity (Wilsey and Potvin,
2000). Results showed that biomass production increased linearly with increasing
evenness, and was invariant of the identity of the dominant species. These results
support the view that a decrease in plant diversity due to human actions would
lead to an indirect decrease in productivity (Hillebrand et al., 2008).

Further evidence for the importance of evenness can be found in a global meta-
analysis of 54 studies regarding the diversity-productivity relationship in forest
ecosystems (Zhang et al., 2012). The authors concluded that the strong posi-
tive effects on productivity due to increased evenness provide strong empirical
evidence to support the theoretical assertion that evenness affects the relative
strength of interspecific and intraspecific interactions within communities, there-
fore causing an appreciable shift in the diversity-productivity relationship (Zhang
et al., 2012). Furthermore, the authors suggest that the lack of attention paid
to evenness effects in previous empirical studies can be attributed to the limited
levels of evenness found in those experiments, where typically only high and “real-
istically low” levels of evenness were included; testing so few evenness conditions
is unlikely to unveil sufficiently significant behaviour (Polley et al., 2003; Isbell
et al., 2009a).

Although ecological studies have only recently begun to examine the mecha-
nisms underlying such evenness effects, studies so far suggest that many of the
same processes underlying the impacts of species richness may be at work (Hille-
brand et al., 2008). For instance, evenness in bacterial communities promotes re-
silience to disturbance by ensuring sufficient densities of species in key functional
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roles (Wittebolle et al., 2009). This is akin to the “insurance effect” described in
the species richness literature (Lemieux and Cusson, 2014). One possibility is that
decreasing evenness leads to increasingly underused niches that become fully
vacant once species are lost, to the detriment of the ecosystem’s proper function-
ing (Crowder et al., 2010).

We finally note that diversity has been shown to be partitionable in an additional
manner than its decomposition into richness and evenness. It can also be parti-
tioned into alpha diversity and beta diversity (Chao et al., 2012). Alpha diversity
refers to the diversity within a community (sometimes called small-scale diver-
sity), while beta diversity refers to the diversity between different communities
(sometimes called large-scale diversity) (Jost, 2007). However, this differentiation
between small and large-scale diversity is rarely used in microbial settings, since
the extreme levels of heterogeneity in micro-environments such as soil make it
difficult to define the “local” environment (Bertrand et al., 2015). This is in addi-
tion to the difficulty in delineating microbial species due among other factors to
frequent horizontal gene transfers (discussed in more detail in Section 4.2.6).

2.7 Conclusions

Microbial communities play vital roles in key ecological, geochemical, medical
and industrial processes. Their incredible versatility and functionality have mo-
tivated researchers to mimic them by constructing synthetic microbial commun-
ities. These engineered communities are not only useful for practical applications
in medicine and industry, but can also be used to study fundamental microbial
ecological theories and principles that can be difficult to address using natural
communities. The knowledge gained through such synthetic microbial ecology
studies not only helps researchers to maintain and manage natural communities,
and to preserve their vital functions in the face of climate change, but can also
be used to carefully design and construct engineered communities with desired
characteristics and functions.

While synthetic microbial ecology has already proved its undoubted potential in
these areas, it is still a young field and there is much more to be accomplished.
A current major drawback is the significantly reduced richness of synthetic com-
munities compared to natural communities. Most synthetic communities contain
four species or fewer (De Roy et al., 2014). This limits the applicability of the in-
sights, knowledge and theories developed through their use in synthetic microbial
ecology studies, as well as their potential practical applications. This limitation of
synthetic communities as model systems is not unique to microbial ecology, but
rather is common to all ecological fields where model systems are studied in order
to gain insights which are then extrapolated to full-scale ecosystems (Jessup et al.,
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2004). This extrapolation has its limits, which requires careful consideration of the
effects of scaling up from model systems.

This has motivated calls for a ramping up of the complexity of synthetic commun-
ities in order to further bridge the gap to natural communities (Tan et al., 2015).
To aid this effort, researchers have highlighted the need to complement synthetic
microbial ecology studies with modelling studies, namely by developing mathe-
matical models that can represent the in silico counterparts of in vitro synthetic
communities (Stenuit and Agathos, 2015). This endeavour, and its potential for
furthering the already substantial progress in synthetic microbial ecology, forms
the discussion in the subsequent chapter.
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3

Modelling background

3.1 Introduction

Mathematical models are abstractions of reality which seek to mimic certain be-
haviours or dynamics of a natural system through their mathematical descrip-
tion (Song et al., 2014). Models can help to further our understanding of the fun-
damental mechanisms driving microbial community dynamics, as well as aiding in
the development of new hypotheses by highlighting interesting or unexpected be-
haviour. When constructed based on ecological theories, models can not only help
to understand the fundamental processes underlying these theories, but also to
predict under which conditions these theories may no longer hold, or under which
conditions these theories are particularly key to community functioning (Klimenkoa
et al., 2016).

Furthermore, if the appropriate data is available then models can be calibrated
and validated in order to make testable quantitative predictions about community
stability and functionality, which can then be verified using in vitro experiments.
With recent high-throughput technological advances, particularly related to the
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development of -omics tools and techniques, the technology and tools available
to researchers is now sufficiently sophisticated to permit the collection of the type
of data needed for this purpose (De Roy et al., 2014), increasing even further the
potential of mathematical modelling for the purpose of microbial ecology theory
development.

Such ecological modelling approaches are well established in the macro-ecology
literature (Lewis et al., 2016) but is more complex in microbial ecology. In par-
ticular, certain microbial traits and characteristics cannot be found, and are not
possible, in macro-scale communities (Bewick et al., 2017). An example is the
capacity of microbes to interact over long distances, including competitive inter-
actions using toxic compounds that may diffuse over long distances (Hibbing et al.,
2010), and cooperative interactions between community members using mecha-
nisms such as quorum sensing (Pérez-Velázquez et al., 2016). Thus while many
fundamental behaviours are similar to those found in macro-ecological commun-
ities, and allow for the application of macro-scale ecological modelling knowledge
and tools, the distinctive characteristics of microbial organisms also require new
and different modelling approaches to more fully capture the dynamics of micro-
bial communities (Bewick et al., 2017).

Therefore in this chapter we gather and synthesize existing modelling knowledge
and techniques that are relevant to our study of microbial ecological theories. This
chapter is structured as follows. In Section 3.2 we outline the general approaches
that have been used to model microbial communities, structured in terms of the
different possible basic modelling unit: communities (Section 3.2.1), populations
(Section 3.2.2), or individuals (Section 3.2.3). We then focus our survey on the
modelling approaches that have been developed specifically to study function-
ality effects due to community spatial structure and dynamics (Section 3.3) and
the interactions taking place within the community (Section 3.4), in particular the
interactions occurring with the environment (Section 3.4.1) and between individ-
uals (Section 3.4.2). Finally in Section 3.5 we summarize the gaps remaining in
our knowledge of the fundamental mechanisms and processes underlying these
features, as well as the suitability of IBMs for addressing these open questions.

3.2 Modelling scales for microbial commun-
ities

The modelling approaches typically used to study microbial communities can be
grouped according to the basic unit with which they are constructed, in a similar
way to macro-ecological models (Lewis et al., 2016). Models seek to capture the
characteristics of these different units, as well as the interactions between them
and their environment. In broad terms, microbial communities can be modelled
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using a basic unit of: (i) a community, (ii) a population, or (iii) an individual.

3.2.1 Communities

At the coarsest scale, several approaches exist to model at the level of entire com-
munities. From this perspective, a microbial community is no longer a consortium
of species, but rather a single “super-organism” comprising various genes and re-
actions (Song et al., 2014). Hence the interactions being captured in such models
are not between microbial species or strains, but rather between genes and/or
reactions.

The focus of super-organism models is the community’s metabolic network, wh-
ich encapsulates its metabolites, their transport, and relevant intracellular reac-
tions (Orth et al., 2010). The network is typically represented by a list of mass
balance equations for the metabolites, which essentially makes an accounting of
all inputs and outputs from the network to determine the net gain or loss of a
particular metabolite (Hanemaaijer et al., 2015). When combined with appropri-
ate flux boundary conditions, this system of equations is called a stoichiometric
model. When using stoichiometric modelling with the super-organism approach,
the metabolic network is constructed for the community as a whole (Greenblum
et al., 2012).

The main advantage of the super-organism approach is that established methods
developed for single-species models are easily applicable (Borenstein, 2012). Such
tools include the vast array of genome-based single-species metabolic models wh-
ich are used to infer the metabolic functionality of the species (Reed and Palsson,
2003), and the “reverse-ecology” framework which aims to develop computational
tools for analyzing genome-scale models, in order to permit the characterization of
the natural habitat of microbial species, as well as the prediction of the interactions
between these species and their environments (Levy and Borenstein, 2012).

An example of the use of community-level modelling to study the functionality of a
microbial community is an in silico study of the human gut microbiome by Green-
blum et al. (2012). Using a database of genes and genomes, the authors used
metagenomic methods to identify enzymes that were then used to construct the
metabolic networks of the community under different environmental conditions,
providing insights into the metabolic functionality and stability of the community
as a whole.

The main drawback of the community-level approach is that it is unable to pro-
vide insights into the population dynamics of the community, since it is by design
blind to these different populations, but considers them as one aggregated whole.
Hence the structure and composition of the community, as well as the interactions
occurring within it, are all neglected. All of these aspects have been highlighted
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as important mechanisms in steering community stability and functionality (see
Section 2.3.2).

An illustration of the implications of this coarse-grained modelling approach can
be found in the concept of keystone species. These are species which are con-
sidered crucial for maintaining the functionality and stability of a community, and
whose loss typically provokes chains of extinction that in severe cases may lead to
total ecosystem collapse (Ebenman and Jonsson, 2005). Community-level models
constructed using the super-organism approach may be able to highlight a gene
or reaction that is important for the functionality or stability of the community,
but by design are unable to identify which particular member of the community
is responsible for this critical gene or reaction (Widder et al., 2016). Hence the
mechanisms underlying their central role in the community dynamics cannot be
elucidated with a community-level modelling approach.

3.2.2 Populations

3.2.2.1 Modelling approach

The next scale available to modellers is at the level of populations, where each
population represents a microbial species or taxa, and the model mimics the dy-
namics of these populations as well as the interactions between them. Hence
these population-level models (PLMs) directly model changes in populations, and
therefore assume that stochasticity at the individual level can be averaged into a
deterministic population-level effect (Zomorrodi and Segrè, 2016). PLM studies in
microbial ecology are generally concerned with how the interactions between spe-
cies, whether they are direct (e.g. competition or cooperation) or indirect (e.g. oc-
curring through the environment), affect the structure, stability and/or functional-
ity of microbial communities (Wade et al., 2016).

PLMs can take the form of difference equations if time is considered discretely,
or ordinary differential equations (ODEs) if time is considered continuously (Song
et al., 2014). These two approaches track the evolution of the species fractions
through time. If the spatial nature of the environment is also taken into account,
partial differential equations (PDEs) are typically used. These track the evolution of
population densities (biomass per unit area) through time (Zomorrodi and Segrè,
2016).

Generally, PLMs have been described as “strategic models made to be as simple as

possible to reveal general explanations”, and are thus excellent choices for studies
aiming to determine general theories applicable to a wide range of organisms or
ecosystems (Hellweger et al., 2016a). Hence they are well suited for the type of
theory development studies central to synthetic microbial ecology (Prosser et al.,
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2007), and for which purpose they have been used with great success in other
fields, such as macro-ecology and epidemiology (Adamson and Morozov, 2012).

PLMs are less suitable for prediction purposes, due to their general nature. Syn-
thetic microbial ecology in particular is concerned with the steering of engineered
and natural microbial communities, which requires predictions regarding the be-
haviour of specific communities under specific environmental conditions (De Roy
et al., 2014).

On the other hand, the use of population-level models for theory development is
already well established in microbial ecology, and is increasing still further due
to advances in metagenomic tools that allow researchers to determine the com-
position of a microbial community, as well as to measure the abundances of the
constituent species (Song et al., 2014). These data allow researchers to gain more
insights into the population dynamics, so that they can construct models that are
both more complex and more realistic. We now outline a few of the most com-
monly used PLM approaches in this setting.

3.2.2.2 Examples of PLMs in microbial ecology

Spatially implicit PLMs

The most commonly used ODE-based approach is the Lotka-Volterra predator-prey
model (Lotka, 1925; Volterra, 1926). This model is a system of coupled ODEs,
and is often used in microbial ecology to investigate the population dynamics
resulting from competitive and mutualistic interactions between microbial popu-
lations (Zomorrodi and Segrè, 2016). The model was originally proposed for a
community of two species (one predator and one prey), but can be generalized to
an arbitrary number of species, as well as being able to mimic interactions other
than predation.

The generalized Lotka-Volterra model represents the population dynamics of spe-
cies  using the following formulation:

d

dt
= 

 

μ +
S
∑

j=1

jj

!

, (3.1)

for  = 1, ..., S, where μ is the growth rate of species , and j is the interaction
coefficient for species  and species j (Lotka, 1925; Volterra, 1926). Depending on
the type of interaction occurring between the two species, this coefficient can be
positive, negative or zero (Faust and Raes, 2012).

Thus the generalized Lotka-Volterra equation directly models the interactions be-
tween populations in terms of the effect of one population on the growth of an-
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other. However, it does not account for indirect interactions such as exchanges of
metabolites or quorum sensing (Hibbing et al., 2010).

Examples of the use of the generalized Lotka-Volterra model in microbial ecology
studies include the modelling of: microbial interactions in the human gut (Stein
et al., 2013); the competitive interactions between harmful pathogens and the
resident communities found in pork products (Cornu et al., 2011); and a study
which used simple theories about community assembly to predict the structure
of synthetic microbial communities of eight species (Friedman et al., 2017). In
the latter study, the generalized Lotka-Volterra model was used to simulate pair-
wise competitive interactions, to understand why some resulted in coexistence
of both species, and others resulted in the competitive exclusion of one species
(Figure 3.1).

nature ECOLOGY & EVOLUTION 1, 0109 (2017) | DOI: 10.1038/s41559-017-0109 | www.nature.com/natecolevol	 3

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ArticlesNature Ecology & Evolution

solely in a pairwise manner, according to the gLV equations with a 
random interaction matrix (Methods). We found that the observed 
accuracy is consistent with the accuracy obtained in simulations 
of competitions that parallel our experimental setup (P =​ 0.29, 
Fig.  4b). Survival of species in pairwise competition is therefore 
surprisingly effective in predicting survival when species undergo 
trio competition.

Nonetheless, there are exceptional cases where qualitative pair-
wise outcomes are not sufficient to predict competitive outcomes of 
trio competitions. Accounting for such unexpected trio outcomes 
may improve prediction accuracy for competitions involving a 
larger set of species. We encode unexpected trio outcomes by creat-
ing effective modified pairwise outcomes, which replace the origi-
nal outcomes in the presence of an additional species. For example, 
competitive exclusion will be modified to an effective coexistence 
when two species coexist in the presence of a third species despite 
one of them being excluded from the pair competition. The effec-
tive, modified outcomes can be used to make predictions using the 
assembly rule as before (Methods and Supplementary Fig. 1). By 
accounting for unexpected trio outcomes, the assembly rule extends 
our intuition, and predicts community structure in the presence of 
potentially complex interactions.

The ability of the assembly rule to predict the outcomes of more 
diverse competitions was assessed by measuring survival in com-
petitions between all seven-species combinations, as well as the 
full set of eight species (Fig. 5a). Using only the pairwise outcomes, 
survival in these competitions could only be predicted with an 
accuracy of 62.5%, which is barely higher than the 61% accuracy 

obtained when using only the average probability that a species will 
survive these competitions (Fig. 5b). A considerably improved pre-
diction accuracy of 86% was achieved by incorporating information 
regarding the trio outcomes (Fig. 5b). As in the trio competitions, 
the observed accuracies are consistent with those obtained in gLV 
simulations that parallel the experimental setup, both when pre-
dicting using pairwise outcomes alone (P =​ 0.53) or in combination 
with trio outcomes (P =​ 0.21, Fig. 5c).

Discussion
Our assembly rule makes predictions that match our intuition, but 
there are several conditions under which these predictions may be 
inaccurate. First, community structure can be influenced by initial 
species abundances27, as has recently been demonstrated in pair-
wise competitions between bacteria of the genus Streptomyces28. 
Our assembly rule may be able to correctly predict the existence of 
multiple stable states, as it identifies all putative sets of coexisting, 
non-invasible species in a given species combination. However, we 
did not have sufficient data to evaluate the rule’s accuracy in such 
cases, as multistability was observed in only one of all our competi-
tion experiments.

Complex ecological dynamics, such as oscillations and chaos, can 
also have a significant impact on species survival29,30, making it dif-
ficult to predict the community structure. These dynamics can occur 
even in simple communities containing only a few interacting species. 
For example, oscillatory dynamics occur in gLV models of competi-
tion between as few as three species24, and have been experimentally 
observed in a cross-protection mutualism between a pair of bacterial 

Figure 2 | Pairwise competitions resulted in stable coexistence or competitive exclusion. a, Phylogenetic tree of the set of eight species used in this study. 
The tree is based on the full 16S gene and the branch lengths indicate the number of substitutions per base pair. b, Coexistence was observed for 19 of 
the 28 pairs, whereas competitive exclusion was observed for 9 of the 28 pairs. c, Changes in relative abundance over time in one pair where competitive 
exclusion occurred and one coexisting pair. The y axis indicates the fraction of one of the competing species. In the exclusion example (right panel), the 
species fraction increased for all initial conditions, resulting in the exclusion of the competitor. In contrast, in the coexistence case (left panel), fractions 
converged to an intermediate value and both species were found at the end of the competition. Blue and red arrows to the right indicate the qualitative 
competitive outcome, with the star marking the final fraction in the case of coexistence. Error bars represent the standard deviation of the posterior beta 
distribution of the fractions, based on colony counts averaged across replicates. d, Network diagram of the outcomes of all pairwise competitions.
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Figure 3.1: Friedman et al. (2017) used a generalized Lotka-Volterra model to study community assem-
bly rules in synthetic microbial communities. This figure shows the outcomes of pairwise competitions,
by plotting the evolving population fraction of one of the competing pair, which either stabilized at an in-
termediate value indicating coexistence (left) or increased until the second species was excluded (right),
resulting in monoculture.

In the study of Stein et al. (2013) of the human gut microbiome, which focused on
the structural population dynamics of the community, the authors extended the
generalized Lotka-Volterra model by including additional terms that describe the
effect of environmental perturbations. Their ODEs then took the form:

d

dt
= 

 

μ +
S
∑

j=1

jj +
S
∑

k=1

b,kck

!

, (3.2)

where the second sum on the right hand side represents the effects of environmen-
tal perturbations on species . Stability analysis of the extended model allowed
the authors to explain how the stability of the gut community could be threatened
by external perturbations, even for a significant period after the removal of the
perturbations (Stein et al., 2013). This extension illustrates how ODEs, and the
Lotka-Volterra model in particular, can be modified to simulate other factors that
may influence the population dynamics, such as environmental variations or per-
turbations.
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Spatially explicit PLMs

Spatially explicit PLMs, which as their name suggests explicitly account for space in
their representations of natural ecosystems, are used in settings where the spatial
dynamics are known or suspected to play a key role in mediating the population
dynamics. In Section 3.3 we will discuss in more detail why this distinction is
important, and the underlying mechanisms driving it.

An example of a setting in microbial ecology where spatial considerations are im-
portant is the study of biofilms, since the population growth dynamics of these
structured communities (both natural and synthetic) can depend very strongly
on the spatial distributions of the microbial species and the environmental sub-
strate(s) (Wang and Zhang, 2010). PDEs are typically used to model the pop-
ulation dynamics of the species in a biofilm community. These equations track
the biomass density (or volume density in the case of a three-dimensional model)
of the different species through time, and can account for processes such as re-
production, dispersal, attachment to and detachment from the biofilm (shown in
Figure 3.2).

Q. Wang, T. Zhang / Solid State Communications 150 (2010) 1009–1022 1019

(a) t = 0. (b) t = 100.

(c) t = 200. (d) t = 400.

Fig. 9. Detachment induced by shear flow over two mushroom shaped biofilm.

(a) Model structure. (b) Geometry.

Fig. 10. IbM model structure and schematic system geometry.

the computation domain of the model. Numerical simulations
in 2D showed that the IbM model produced a more confluent
and rounded biofilm structure than the CA based models, due
to its deterministic and directionally unconstrained spreading
of the biomass. [69] extended the IbM model and proposed a
Particle-Based Multidimensional Multispecies Biofilm Model. This
model allows variable size biomass particles in order to model the
systems with a large-scale heterogeneity. Numerical simulations

predicted that if only the average flux of nutrients needs to be
known, the 2D and 1D models are very similar. However, the
behavior of intermediates, which are produced and consumed in
different locations within the biofilm, is better described in the
2D and 3D models because of the multidirectional concentration
gradients. The predictions of the 2D or 3Dmodels are also different
from those of 1D models for slowly growing or minority species in
the biofilm (see Fig. 10).

Figure 3.2: Two-dimensional growth and detachment of two mushroom-shaped biofilms, modelled using
a PDE approach and shown at four different time points (Wang and Zhang, 2010). The colour bars indicate
biomass density.
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An example of a simple PDE model of a biofilm is given by:

∂ƒ

∂t
= μƒ −

1

ρ

∂g

∂t
(3.3)

where ƒ is the volume fraction of species , μ is its growth rate, ρ is its constant
density, and g is the mass flux of species , which means the biomass of species 
displaced per unit time and area (Wanner and Gujer, 1986). This one-dimensional
model can be used to study the biofilm’s steady-state growth dynamics, such as
its structure (thickness, etc.) and the spatial distributions of the microbial species
as well as the substrate concentrations.

An extensive body of work exists relating to the modelling of biofilms, and the spa-
tially explicit PLM approaches which have been developed are able to reproduce
and explain some of the complex phenomena related to the formation, structure
and functionality of biofilms (D’Acunto et al., 2015). Important questions still re-
main unanswered, such as the effects of incorporating the numerous physical,
chemical, biological and ecological processes occurring in a biofilm in a unified
analytical or computational model (Wang and Zhang, 2010).

Spatially explicit PLMs, particularly PDE-based models, are also often used in mi-
crobial invasion studies (Bewick et al., 2017), since spatial factors can play impor-
tant roles in the success or failure of invasions. We will discuss the modelling of
microbial invasions in more detail in Section 3.4.2.3.

Another example of the use of PDE models in microbial ecology is a study of the
functional resilience of communities (König et al., 2017). We recall from Sec-
tion 2.3.2 that the resilience of a community refers to its ability to return to its
original or previous structure after disturbances, and thereby maintain or preserve
its functionality. This can be particularly important in synthetic microbial com-
munities, for example if the community has been engineered for biodegradation
purposes. In this case, it is important that the community can maintain its biode-
grading functions even in the face of disturbances or perturbations, since this
could otherwise lead to the failure of the wider bioremediation process (Poggiale
et al., 2015).
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area for the present study. The fragmentation parameter H was
varied for generating disturbance patterns with different fragmen-
tation levels: 0 for high fragmentation, 0.5 for moderate fragmen-
tation, and 2 for no fragmentation (Fig. 1). Here, highly and
moderately fragmented disturbance patterns represent disturbance
events occurring in soil pore size distributions with heterogeneous
spatial organization, whereas non-fragmented disturbance patterns
indicate a homogeneously distributed disturbance event. We per-
formed 100 independent simulation runs for each fragmentation
level, each randomly varying in the explicit spatial configuration of
the disturbance pattern.

2.3. Analysis

We assess the biodegradation performance in disturbed systems
relative to their performance at undisturbed reference state when
no disturbance is applied. For any given scenario and any specific
simulation time, the current substrate consumption rate (gsh�1) in
relation to the consumption rate in undisturbed reference state
defines the biodegradation performance. Accordingly, the recovery
time is defined as the time required after a disturbance event to
reach 95% biodegradation performance (i.e. to recover 95% of un-
disturbed reference state performance).

Additionally, the spatiotemporal dynamics of recovery were
observed. For that purpose, the biodegradation performance was
measured at different scales: for the whole system in an aggregated
way as well as for each single habitat. The dynamics of recovery
were analysed with respect to the habitats’ position relative to the
disturbance area.

Furthermore, a mechanistic analysis was performed based on
the difference in biodegradation performance for the same sce-
narios when selectively switching individual processes on or off.
Selected scenarios with the highest disturbance intensity (ε¼ 10�9)
and a moderately fragmented disturbance pattern were simulated

with main processes completely switched off according to each of
the following three scenarios: no bacterial growth, no bacterial
dispersal, and no spatial processes (neither bacterial dispersal nor
substrate diffusion). In these cases, either the bacterial growth rate
m, or the bacterial diffusion coefficient Dx, or both Dx as well as the
substrate diffusion coefficient Ds were set to 0.

For analysing the influence of the spatial configuration of the
disturbance on the recovery of the biodegradation performance,
the mean distance between habitats in the disturbed area and
the nearest habitat in the undisturbed area D was calculated
according to:

D ¼ 1
jDAj

X
ði;jÞ2DA

minðk;lÞ2UA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� iÞ2 þ ðl� jÞ2

q
; (4)

where jDAj is the number of disturbed habitats, DA is the set of
disturbed habitats, UA the set of undisturbed habitats, and i, j, k and
l are Cartesian coordinates of habitats.

3. Results and discussion

3.1. Spatiotemporal dynamics of recovery

A disturbance event affecting half of the system's area (e.g. see
Fig. 1) results in a decrease of the overall biodegradation perfor-
mance of 50% as the overall bacterial concentration is reduced by
up to 50%. The recovery of the biodegradation performance after a
moderately fragmented disturbance event varies then with the
disturbance intensity (Fig. 2).

Obviously, an increasing percentage of biomass surviving the
disturbance event enhances recovery and reduces the recovery
time. Recovery times range from 32 h for the lowest applied
disturbance intensity (ε ¼ 10�2) to 249 h for the highest applied
disturbance intensity (ε ¼ 10�9). Strikingly, in addition to varying

Table 1
Model parameters and initial conditions.

Parameter/State variable Symbol Value Unita Source

Maximum specific growth rate mmax 0.347 h�1 (Banitz et al., 2016)
Specific maintenance rate a 0.0003 h�1 (Banitz et al., 2011a)
Growth yield coefficent YG 0.6 gxg�1s (Banitz et al., 2011a)

Maximum substrate uptake rate qmax 0.578 gsg�1x h�1 qmax ¼ mmaxþa
YG

Half saturation constant Ks 4.439E-07 gsmm�2 (Banitz et al., 2011a)
Maximum bacterial diffusion coefficent Dx;max 0.212 mm2h�1 (Banitz et al., 2012)
Substrate diffusion coefficent Ds 2.326 mm2h�1 (Zhang and Fang, 2005)
Substrate input rate l 0.24 h�1 (Keymer et al., 2006)
Initial bacterial concentration C�x 2.366E-4 gxmm�2 undisturbed reference state
Initial substrate concentration C�s 3.847E-11 gsmm�2 undisturbed reference state

a gx-grams of dry biomass, gs-grams of substrate.

Fig. 1. Examples of disturbance patterns with (a) high (H ¼ 0), (b) moderate (H ¼ 0.5), and (c) no (H ¼ 2) fragmentation (black: disturbed area, white: undisturbed area).

S. K€onig et al. / Environmental Modelling & Software 89 (2017) 31e39 33

Figure 3.3: Examples of disturbance patterns in an in silico microbial community simulated using
PDEs, with (a) high, (b) moderate, and (c) no fragmentation (black: disturbed area, white: undisturbed
area) (König et al., 2017). The authors used such simulation scenarios to assess biodegradation perfor-
mance in the face of disturbance, in order to study the system’s functional resilience.

In their study of functional resilience, König et al. (2017) used a PDE approach,
namely reaction-diffusion equations, to simulate the community’s population gro-
wth dynamics and degradation of substrate. The model incorporates the proces-
ses of: substrate uptake by bacteria, uptake allocation, bacterial dispersal, growth,
and substrate diffusion. By implementing various scenarios representing different
disturbances, the authors could study the spatiotemporal dynamics of the com-
munity’s recovery in terms of its functionality (Figure 3.3), and found that different
local environments were responsible for different phases of the community’s func-
tional recovery. These results suggest that spatial dynamics are crucial for the
maintenance of biodegradation functionality when the community is confronted
with disturbances, and are a good example of the insights into fundamental com-
munity processes that can be gained using PLM approaches.

Disadvantages

It is clear that PLMs are well established and undeniably useful, and hence an ex-
tensive knowledge base exists for their construction and analysis. However, they
have several drawbacks that are especially significant for microbial communities.

First, PLMs consider averages at the population-level of characteristics such as gro-
wth rate, and hence ignore the variability and heterogeneity recently discovered
to exist between individuals of the same genotype in the same environment (even
when well-mixed), which has lately prompted much discussion about reorienting
microbial modelling approaches (Kreft et al., 2013). These variations are lost when
considering population averages, which can have serious implications for the va-
lidity of the modelling approach if these variations are sufficiently extensive or
significant, as we shall see in Section 3.2.3.

Second, PLMs cannot capture interactions at the scale of individuals, which are
important in spatially structured environments where individual microbes can only
interact locally (Daly et al., 2016). The extent to which these interactions are
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localised can be crucially important for the stability of the community dynamics,
as will be discussed in more detail in Section 3.3, and cannot be captured by PLM
approaches.

Third, PLMs cannot account for adaptation, a key and ubiquitous microbial pro-
cess (Bertrand et al., 2015). It has been noted that “practically everything [mi-

crobes] do is in response to their environment” (Hellweger et al., 2016a), but PLMs
cannot capture these important responses to changes both internal and external to
the community at the level of the individual microbes who are driving this process.

Overlooking these three features — intraspecies variability, localized interactions,
and adaptive processes — not only affects how realistic a model can be in relation
to the natural community it seeks to represent, but also reduces the ability of the
model to help researchers understand the roles of these features in community
stability and functionality. This is particularly relevant to synthetic microbial ecol-
ogy, where a key aim is to achieve a deeper understanding of the fundamental
processes driving and maintaining community stability and functionality. In this
context, processes occurring at the individual level, of which the principals are the
three we have highlighted, are increasingly recognized as vitally important.

These deficiencies in the PLM approach can all be addressed by moving to a finer
modelling scale, namely the scale of individuals.

3.2.3 Individuals

3.2.3.1 Modelling approach

Individual-based models (IBMs) track through time the characteristics, activities
and interactions of each and every individual within a community (Hellweger et al.,
2016a). Thus IBMs, in contrast to PLMs, do not describe changes at the population
level, but instead describe the activities and properties of individuals and how they
respond to their environment. Changes at the population level then emerge au-
tomatically from these collective interactions between individuals, a phenomenon
named emergence. For this reason, IBMs are classified as ‘bottom-up models’,
since they describe the lower organizational level in order to predict the higher
organizational level (Mabrouk, 2010).

The terms ‘individual-based model’ and ‘agent-based model’ are sometimes used
interchangeably. However, the term ‘agent’ is more general since an agent is not
necessarily an individual (Railsback and Grimm, 2012). Agents can cover many
scales, from individual cells and organisms, to social groups such as families, or
larger social or economic organizations like businesses or public health care sys-
tems (Grimm et al., 2005).
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Similar to IBMs are cellular automata (CA), which also model time and space dis-
cretely (Permogorskiy, 2015). CA models differ from IBMs in that they consider the
spatial cells instead of the individuals occupying them (Ferrer et al., 2008). Hence
CA approaches are concerned with the global geometric patterns that emerge from
the local interactions (Manukyan et al., 2017), while IBMs focus on individual vari-
ability and how this affects collective population-level behaviour (Hellweger et al.,
2016a).

The bottom-up construction of IBMs takes individuals rather than populations as
the basic modelling unit, which admits variation between individuals, allows the
spatial heterogeneity of this system to emerge naturally as a result of the localised
interactions, and can easily mimic adaptive processes (Kreft et al., 2013). These
features address the key limitations of PLMs that we outlined in Section 3.2.2. For
these and other reasons which we shall now discuss, the use of IBMs in micro-
biological and microbial ecology studies has gained increasing favour in recent
years (Railsback and Grimm, 2012; Larsen et al., 2012; Song et al., 2014; Widder
et al., 2016).

Advantages and disadvantages

The main advantages of IBMs are their “maximally flexible” representations of in-
dividuals, their characteristics and behaviour (Klimenkoa et al., 2016) and their
explicit description of interactions between individuals. This flexibility permits a
gradual introduction of complex behaviours into an individual’s interactions, so
that their population-level effects can be assessed separately (Ferrer et al., 2008).
This makes IBMs particularly suitable for studies focused on theory development,
since the impacts of different elements of a model and the consequent emergent
collective behaviour can be studied in a modular way. This flexibility also permits
the construction of models with a desired degree of complexity, to study whether
certain population-level effects will still emerge under more specific or more gen-
eral conditions or settings (Song et al., 2014).

Additionally, by mapping individual interactions to population dynamics in this
way, IBMs can use data from both levels: observations of individual behaviour
are used as model input and observations of population dynamics are compared
with model output (Hellweger et al., 2016a). This ability of IBMs to to incorporate
both lower and higher levels of organization is a significant advantage.

At the lower level, IBMs can incorporate sub-models of, for example, intracellular
dynamics (Widder et al., 2016). Such models can steer the behavioural dynam-
ics of an individual microbe mechanistically rather than phenomenologically (Kreft
et al., 2013). At the higher level, IBMs can model the dynamics of complex com-
munities or ecosystems in a minimally complex way, since they rely on the de-
scription of individual actions (Klimenkoa et al., 2016). As will be discussed in
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Section 3.3, IBMs can account for space in a straightforward manner since indi-
viduals and their interactions are localized. Even indirect interactions between
individuals can be captured by IBMs, since these are emergent properties of the
direct interactions of individuals with each other and with their environment, and
hence do not need to be explicitly accounted for (Kreft et al., 2013).

The main disadvantages of IBMs are that they can require significant amounts
of experimental data at the individual scale, and may come with a high computa-
tional cost (Kreft et al., 2013). Reducing the computational costs of IBM simulations
typically takes two forms: either confining the in silico domain to a small represen-
tative space, or aggregating individuals via the use of the “super-individual” con-
cept (Song et al., 2014). The latter technique has been highlighted as particularly
relevant for microbial communities (Hellweger, 2008).

The disadvantage relating to experimental data is increasingly being addressed
through experimental advances such as microfluidics, flow cytometry and mi-
croscopy (discussed in Section 2.3.2) that allow for the collection of data at the
individual level (Wessel et al., 2013). These data permit the calibration and val-
idation of IBMs which are necessary to make well-supported predictions (Widder
et al., 2016). This modelling endeavour has been further catalyzed by the increas-
ing availability of the necessary computing power, which has made it feasible to
simulate large numbers of individuals in silico (Mabrouk, 2010). An example of this
synthesis is the deployment of IBMs to model the complex structures of biofilms in
conjunction with confocal microscopy observations (Picioreanu et al., 2004).

Another current limitation of the IBM approach is the young age of the method-
ological framework for developing, implementing and validating IBMs, analogous
to those which have been developed over many decades for PLMs (Wade et al.,
2016). Simply by virtue of their youth, IBM approaches do not yet dispose of a
similarly well established methodological framework, the development of which is
also complicated by the same characteristics of IBMs that make them so attractive
as alternatives to PLMs, namely their ability to incorporate complex behaviour and
large amounts of intra-species variability (Ferrer et al., 2008). However, impor-
tant and ongoing efforts have been undertaken to establish such a methodology,
including the definition of standard set of terms and enumerating the key steps
involved in the procedure (Augusiak et al., 2014) and an outline of good practice
documentation for model development and testing (Grimm et al., 2014), so that
modellers already dispose of important resources when deciding how best to vali-
date and evaluate their IBMs.

In comparison to other modelling approaches, IBMs are more difficult to analyse,
which has also made them more difficult to describe and disseminate (Ferrer et al.,
2008). Many IBMs are too extensive and their processes and sub-processes too
detailed to be described in one research paper, and a standardized framework for
their description is still being elaborated and established (Mabrouk, 2010).
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Efforts to address the lack of rigour in describing IBMs include the use of the
ODD (Overview, Design concepts, and Details) protocol proposed by Grimm et al.

in 2006 and updated in 2010. This standard protocol consists of seven elements,
grouped into Overview (purpose, state variables and scales, process overview and
scheduling), Design concepts, and Details (initialization, input, submodels), and
has found increasing favour as a standardized framework for describing IBMs (Hell-
weger et al., 2016a), an example that we will follow in our own modelling studies
later in this thesis.

3.2.3.2 Examples of IBMs in microbial ecology

IBMs have been used to model microbial communities in: wastewater treatment
plants (Van Loosdrecht et al., 2002; Picioreanu et al., 2004; Xavier et al., 2005;
Laspidou et al., 2010); medical settings (Murphy et al., 2008; Seal et al., 2011);
food manufacturing processes (Ginovart et al., 2007); and various other environ-
ments such as soil or marine ecosystems (Ginovart et al., 2005; Gras Moreu et al.,
2011; Koenigstein et al., 2016).

To help understand the establishment of IBMs in the microbial sciences, Hellweger
and Bucci (2009) reviewed 46 published papers related to IBMs of microbial and
phytoplankton ecosystems, with a particular focus on why the various authors
selected an IBM approach. They broke down the motivations as related to: the
importance of the intra-population variability or heterogeneity (46%); the emer-
gence of population level patterns (24%); the discreteness of the individuals (5%);
or other reasons (26%).

IBMs can also be of significant use in synthetic microbial ecology in particular,
since they permit the simulation and optimization of how individuals interact with
each other and the environment before actually constructing them. Therefore they
can be an important tool in the rational design of engineered communities, which
is a central goal of synthetic microbial ecology (Stenuit and Agathos, 2015).

In this context, IBMs have been extensively used to study microbial interactions,
since these can be implemented in a straightforward manner in an individual-
based framework (Coyte et al., 2015; Billiard and Smadi, 2015; Centler and Thull-
ner, 2015; Lloyd and Allen, 2015; Germerodt et al., 2016).

For example, Nadell et al. (Nadell et al., 2010) used an IBM approach to study
how cooperative and cheater microbes can self-organize during biofilm growth,
resulting in a clear spatial segregation of the two types. Simulations showed that
this spatial segregation permitted the cooperative individuals to interact with other
cooperators, avoiding contact with and exploitation by cheaters, which favoured
the establishment of cooperation as the dominant interaction in the community.
This study is an example of the usefulness of IBMs in theory development, in this
case regarding the evolution of cooperation in microbial communities.
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Another example is the engineering of Saccharomyces cerevisiae strains in a syn-
thetic community so that their growth was dependent on each other through the
production of a metabolite required by the other strains (Momeni et al., 2013).
The IBM counterpart of this in vitro synthetic community revealed that when ran-
domly placed individuals began to merge into colonies, colonies that were engaged
in mutual cross-feeding, and that were also by chance located near each other,
would grow towards each other to form spatial aggregations of cross-feeders while
also excluding cheater strains. This process was identified as one of the main
mechanisms maintaining cooperation in the community, and hence its stability
and functionality.

3.2.4 Integrative modelling approaches

Due to the particular complexity of microbial communities and their constituent
entities and processes, it can be advantageous to combine modelling approaches,
so that each modelling component is geared towards the particular facet of micro-
bial communities that it is most suited for.

There exist multiple strategies for such model integration; Song et al. (2014) clas-
sify them by ascending order of strength as (i) information feedback, (ii) indirect
coupling, or (iii) direct coupling. With information feedback, the outputs of one
model are used to adjust the assumptions underlying the construction of another,
independent model; whereas indirect coupling involves using the outputs of the
first model as the inputs of the independent second model (Song et al., 2014).
Finally, the strongest form of model integration is direct coupling, when different
models are combined into a single simulation system.

For this type of ‘multilevel’ modelling, IBMs have more promise than other ap-
proaches, due to their flexibility and ability to integrate submodels of various
kinds (Widder et al., 2016). For example, intracellular dynamics have been in-
corporated in IBMs by modelling the signalling mechanisms involved in quorum
sensing (Pérez-Velázquez et al., 2016) and chemotaxis (Shklarsh et al., 2011).

Integrative modelling approaches have also been highlighted as very promising
for predictive purposes (Klimenkoa et al., 2016). Developing such models would,
for example, enable researchers to make predictions about microbial communities
that cannot be cultured or studied using current techniques, which as discussed in
Section 2.3.1 constitute the majority of natural communities.
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3.3 Modelling spatial dynamics in microbial
communities

The importance of accounting for spatial dynamics in both theory development
and predictive studies — the former in particular — is fairly well established in
macro-ecology (see e.g. the review by DeAngelis and Yurek (2017)), but is less
established in microbial ecology. Possible reasons for this include the difficulties of
resolving the very small spatial scales over which microbes disperse and interact,
as well as the experimental barriers to obtaining data at these scales (Zomorrodi
and Segrè, 2016).

3.3.1 Spatially implicit and spatially explicit models

Two types of mathematical models can be distinguished based on their treatment
of space. Spatially implicit models (SIMs) do not account for space in their repre-
sentation of natural systems, in contrast to spatially explicit models (SEMs) (DeAn-
gelis and Yurek, 2017). This distinction runs across the different modelling scales
described in Section 3.2, so that we may speak of spatially implicit or spatially ex-
plicit community-level models or PLMs. The majority of IBMs are spatially explicit,
although there are some exceptions (Railsback and Grimm, 2012).

SIMs are typically constructed on the basis of the mass action law, which has its
roots in the study of chemical reactions (Murray, 2002). This law states that if dif-
ferent particles must collide to initiate a reaction, and the experimental system is
well mixed, then the collision and hence reaction rate is proportional to the product
of the concentrations of the reactants (Song et al., 2014). This law is used in SIMs
to describe the interactions between species as a function of their densities (anal-
ogous to the concentrations of chemical reactants). This construction depends on
the assumption mentioned above: that the environment is sufficiently well mixed
to allow any individual to come in contact with any other. This assumption, known
as the mean field assumption, justifies the use of species or population-level aver-
ages (Zomorrodi and Segrè, 2016).

However, in many ecological settings in the real world, the mean field assumption
of a well-mixed environment does not hold. This is also true for microbial ecosys-
tems in particular, where heterogeneities in for example metabolite, nutrient, and
light distributions have been shown to play key roles in community structure (Wim-
penny, 1999).
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occurs in the mats’ photic zones (Pierson et al., 1987; Risatti et al.,
1994).

Despite the historical significance of microbial mats, such as
their role in the ecology of early Earth (Des Marais, 2003), there
have been few molecular surveys of such communities, and even
fewer focusing on temperate salt marsh habitats (Ley et al., 2006;
Buckley et al., 2008; Kunin et al., 2008; Bolhuis and Stal, 2011;
Burow et al., 2012). Our aim was twofold: (1) to present the
results of a shotgun metagenomic and targeted-gene amplicon
survey of a particularly well-studied salt marsh microbial mat
and (2) determine if patterns in the taxonomic, phylogenetic,
and functional diversities of the microbial mat show evidence
for non-random community assembly. The extreme biotic strat-
ification and abiotic gradients evident in microbial mats led us
to predict systematic differences in microscale biodiversity. For
instance, because light, oxygen, and sulfur gradients in the mat
favor particular metabolic strategies, and since many of these
metabolic (particularly photosynthetic) strategies are phyloge-
netically conserved, taxa present within each layer should be
more related to one another than expected by chance, or phy-
logenetically clustered, when measured over the entire bacterial
domain. Under the assumption of phylogenetic niche conser-
vatism, if trait-based habitat filtering is a dominant mechanism
of community assembly, functional traits should also be clus-
tered. Alternatively, if HGT is not a product of phylogenetic
distance, a widespread prevalence of non-homologous recom-
bination should decouple phylogenetic and trait diversity pat-
terns, and manifest as clustered traits with random phylogenetic
dispersion.

MATERIALS AND METHODS
STUDY SITE
The Great Sippewissett salt marsh is located west of Falmouth, MA,
on Buzzard’s Bay (N41˚35′13.34′′, W70˚38′29.10′′). The habitat is
typical of New England salt marshes, with braided tidal creeks
running around dense stands of Spartina. Microbial mats form
in sandy intertidal sediments which lack colonization by plants,
and are identifiable by the leathery, green/gold-colored top layer
(Nicholson et al., 1987; Pierson et al., 1987; Figure 1).

We collected samples from the Great Sippewissett salt marsh on
two occasions: June 23, 2010 and July 6, 2011. In 2010, two cores
measuring 2 cm (diameter)× 5 cm were collected from two mat
habitats. One of these cores was chosen as an example of an early
successional mat. The early successional mat consisted of a wide
light-green band of cyanobacteria descending from the surface to
approximately 1 cm depth in unconsolidated sandy sediment. The
early successional mat lacked a leathery surface layer, conspicuous
bands attributable to anoxygenic phototrophs, and the cohesive-
ness which are all characteristic of climax mat communities in this
system (Nicholson et al., 1987). The early successional mat was
likely initiated at the end of winter and was developing in close
proximity (1–3 m) to an area containing mature mats. Our sec-
ond core from 2010 was taken from this climax mat system which
consisted of a thick leathery surface layer and sharply defined dark
green, pink, and brown cohesive layers (as described in Nichol-
son et al., 1987). Our assumption that these mat sections were of
different ages is based on (1) their qualitative differences (slight

FIGURE 1 | Greater Sippewissett salt marsh microbial mat showing
typical lamination (photo credit: NDY).

green banding vs. multicolored layering, loose vs. stabilized sed-
iment) and (2) their close proximity (similar biotic and abiotic
characteristics). These definitions are consistent with descriptions
of coastal mat development elsewhere (Stal et al., 1985; Mir et al.,
1991; Stal and Caumette, 1994). Henceforth, we refer to the two
cores from 2010 as “young mat” (YM-10) and “old mat,” (OM-
10). We collected an additional core from Great Sippewissett salt
marsh in 2011. This core was representative of a climax micro-
bial mat community and is referred to as OM-11. Intact mat
sections (20 cm2) were returned to the lab for processing. Cores
were taken from the center of mat sections, the cores sectioned,
and DNA extracted within 2–3 h of collection. The developed
mats were sectioned with a sterile razor blade at the bound-
aries of their colored layers, and the young mat at corresponding
depth.

Oxygen concentration and pH measurements were performed
in 2011 using OX-50 and a pH-probes attached to a Microsensor
Monometer (Unisense, Denmark). In situ depth profiling was con-
ducted with a Unisense micromanipulator MM33. We also used
abiotic data from previously published studies of the Sippewissett
microbial mat including chlorophyll a, bacteriochlorophyll a, and
sulfide (Pierson et al., 1987; Buckley et al., 2008). While these data
are not perfectly matched to our samples, the descriptions and
locations of the mats used in each study closely resemble our own.

www.frontiersin.org August 2012 | Volume 3 | Article 293 | 3

Figure 3.4: A microbial mat from a New England salt marsh, with distinctive spatial structure (Armitage
et al., 2012).

Indeed, one of the most important factors for the establishment and stability of a
microbial community is the spatial organization of its members (Tan et al., 2015),
alongside those discussed in Section 2.3.2. Natural communities often form and
maintain a defined spatial structure (an illustration is given in Figure 3.4). Syn-
thetic microbial communities are therefore often engineered to reproduce these
spatial structures, so as to stabilize their dynamics and functionality in a similar
way (Bertrand et al., 2015).

Therefore, models should take into account heterogeneous space and local inter-
actions in order to obtain a more realistic representation of reality (Hellweger et al.,
2016a). This insight is increasingly well recognized in various ecological fields, and
has resulted in the ever increasing use of SEMs, which have repeatedly been shown
to produce representations and predictions significantly different, and more real-
istic, than those obtained using mean field models such as SIMs (DeAngelis and
Yurek, 2017). In the next section, we ask why this should be the case.

3.3.2 Effects of spatial heterogeneity

Why are the predictions of spatially explicit models so different from the pre-
dictions of their corresponding mean field approximations? A key reason is the
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existence of spatial variation in local environments, which is ignored by SIM ap-
proaches. When individuals interact with their neighbours, it is the density of these
neighbours (necessarily confined to a small region local to the focal individual) that
drive the local dynamics, not the density averaged over a larger spatial area. Devi-
ations in local neighbourhood characteristics compared to the population-level av-
erage characteristics have been grouped into two types (Dieckmann et al., 2000).

The first type are systematic deviations from the population average, which are
typically due to previous interactions between neighbouring individuals (DeAngelis
and Yurek, 2017). For example, if species A is preyed upon by species B, then in
the local neighbourhoods of individuals of species B, we will find fewer individuals
of species A than the population-level average would suggest. SIMs are unable to
capture these local interaction effects, and are therefore unable to capture their
collective impact on the population-level dynamics (Neuhauser, 2001).

The second type are random deviations from the population average. These are
typically due to the effects of finite population sizes, which are not found in the
mean field case. Random local deviations can be significant when individuals re-
spond differently to a heterogeneous environment, because the average response
of individuals across different environments is not the same as the response of in-
dividuals to the average environment (Dieckmann et al., 2000). This phenomenon
is known as Jensen’s Inequality (Jensen, 1906), and leads to variations in response
at the individual level being magnified so that significant population-level changes
emerge, leading to disagreements with the mean field prediction.

An example is shown in Figure 3.5, where for illustrative purposes we model the
population growth of an in silico community using the exponential growth model.
The key parameter in this model in terms of individual variability is the growth rate
r. If we do not consider variability of this parameter due to the mechanisms de-
scribed above, then every individual in the community has the same growth rate
and there is zero variation in this parameter, i.e. Δr = 0 (Figure 3.5(a)). If we make
the contrary assumption, and allow for a certain level of variability in individidu-
als’ growth rates, then the population-level average growth rate quickly diverges
from the mean field prediction which averages across all local environments (Fig-
ure 3.5(b)). The use of SEM approaches avoids this pitfall.
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Figure 3.5: Illustration of Jensen’s inequality for exponential growth with (a) zero variability in individuals’
growth rates and (b) variability in individuals’ growth rates. Variations in response at the individual level
are magnified so that significant population-level changes emerge, leading to disagreements with the
mean field prediction.

3.3.3 SEMs in microbial ecology

The in silico techniques available to model the effects of mobility and dispersal in
microbial communities have been studied in various reviews (see e.g. (Gregorius
and Kosman, 2017); (Adamson and Morozov, 2012)). We mention one in particular
that has attracted particular attention in the field, and to which we will return in
our own modelling study since it has particular importance for the maintenance of
in silico community diversity.

Reichenbach et al. (2007) used a stochastic lattice-based IBM to demonstrate that
coexistence of three in silico species was mediated by their dispersal. Individu-
als could move around the lattice by switching places with one of their nearest
neighbours, namely, one of the individuals located at an adjacent lattice site. This
mobility process occurred at a certain rate ε, and led to the formation of spa-
tial structures that were stable in time and permitted the coexistence of all three
species (Figure 3.6(a)). But if the mobility rate was increased until it exceeded a
critical rate εc (a function of the lattice size), this provoked extinctions and the loss
of the in silico community’s biodiversity, independent of spatial environment and
details of the competitive interactions between individuals (Figure 3.6(b)). This
was due to the loss of localization in individuals’ interactions, which meant that
the interactions approached a well mixed setting and hence the stabilizing spatial
structures were unable to form.

t· • 
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determines whether species can coexist on the lattice or not, as dis-
cussed below.

We performed extensive computer simulations of the stochastic
system (see Methods) and typical snapshots of the steady states are
reported in Fig. 2. When the mobility of the individuals is low, we
find that all species coexist and self-arrange by forming patterns of
moving spirals. With increasing mobility M, these structures grow in
size, and disappear for large enough M. In the absence of spirals, the
system adopts a uniform state where only one species is present, while
the others have died out. Which species remains is subject to a ran-
dom process, all species having equal chances to survive in our
model.

We obtain concise predictions on the stability of three-species
coexistence by adapting the concept of extensivity from statistical
physics (see Supplementary Notes). We consider the typical waiting
time T until extinction occurs, and its dependence on the system size
N. If T(N) / N, the stability of coexistence is marginal12. Conversely,
longer (shorter) waiting times scaling with higher (lower) powers of
N indicate stable (unstable) coexistence. These three scenarios can be
distinguished by computing the probability Pext that two species have
gone extinct after a waiting time t / N. In Fig. 2, we report the
dependence of Pext on the mobility M. For illustration, we have
considered equal reaction rates for selection and reproduction,
and, without loss of generality, set the time-unit by fixing s 5

m 5 1. With increasing system size N, a sharpened transition emerges
at a critical value Mc 5 (4.5 6 0.5) 3 1024 for the fraction of the
entire lattice area explored by an individual in one time-unit.
Below Mc, the extinction probability Pext tends to zero as the system
size increases, and coexistence is stable (implying super-persistent

a Selection (rate σ)

Selection (rate σ)

Reproduction (rate µ)

A B

C

b Reproduction (rate µ)

Exchange (rate ε)

Figure 1 | The rules of the stochastic model. Individuals of three competing
species A (red), B (blue), and C (yellow) occupy the sites of a lattice. a, They
interact with their nearest neighbours through selection or reproduction,
both of which reactions occur as Poisson processes at rates s and m,
respectively. Selection reflects cyclic dominance: A can kill B, yielding an
empty site (black). In the same way, B invades C, and C in turn outcompetes
A. Reproduction of individuals is only allowed on empty neighbouring sites,
to mimic a finite carrying capacity of the system. We also endow individuals
with mobility: at exchange rate e, they are able to swap position with a
neighbouring individual or hop onto an empty neighbouring site (exchange).
b, An example of the three processes, taking place on a 3 3 3 square lattice.
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Figure 2 | The critical mobility Mc. Mobility below the value Mc induces
biodiversity; while it is lost above that threshold. a, We show snapshots
obtained from lattice simulations of typical states of the system after long
temporal development (that is, at time t / N) and for different values of M
(each colour represents one of the three species and black dots indicate
empty spots). With increasing M (from left to right), the spiral structures
grow, and outgrow the system size at the critical mobility Mc. Then
coexistence of all three species is lost and uniform populations remain

(right). b, Quantitatively, we have considered the extinction probability Pext

that, starting with randomly distributed individuals on a square lattice, the
system has reached an absorbing state after a waiting time t 5 N. We
compute Pext as a function of the mobility M (and s 5 m 5 1), and show
results for different system sizes: N 5 20 3 20 (green), N 5 30 3 30 (red),
N 5 40 3 40 (purple), N 5 100 3 100 (blue), and N 5 200 3 200 (black). As
the system size increases, the transition from stable coexistence (Pext 5 0) to
extinction (Pext 5 1) sharpens at a critical mobility Mc 5 (4.5 6 0.5) 3 1024.
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Figure 3.6: Reichenbach et al. (2007) used an IBM approach to demonstrate that the diversity of a
community of three species was maintained by the localization of interactions between individuals, as de-
termined by their mobility M. Once M exceeds a critical value Mc (dependent on system size), biodiversity
is lost and all simulations result in monocultures.

Empirical evidence for this assertion can be found in a study that employed a
synthetic community consisting three populations of E. coli (Kerr et al., 2002).
The study found that diversity was rapidly lost in the synthetic community when
dispersal and interactions occurred over relatively large spatial scales, whereas
all populations could coexist when the same ecological processes were localized
(Figure 3.7).

ecological processes in our C–S–R community (see Box 1). When
dispersal and interaction were local, we observed that ‘clumps’ of
types formed (Fig. 1a). These patches chased one another over the
lattice—C patches encroached on S patches, S patches displaced R
patches and R patches invaded C patches (Fig. 1a, b). Within this
fluid mosaic of patches, the local gains made by any one type were
soon enjoyed by another type. The result of this balanced chase was
the maintenance of diversity (Fig. 1c). However, this balance was
lost when dispersal and interaction were no longer exclusively local
(that is, in the ‘well-mixed’ system—see Box 1). In the mixed
system, continual redistribution of C rapidly drove S extinct, and
then R outcompeted C (Fig. 1d). Durrett and Levin6 describe a
qualitatively similar effect of spatial scale in their model of
colicinogenic, sensitive, and ‘cheater’ strains (where a cheater was
defined as a strain producing less colicin at a lower competitive
cost).

When ecological processes were local in the simulation, coex-
istence occurred over a substantial range of model parameter values
(Fig. 1e), suggesting that the result was not very sensitive to the
specific choice of parameter values. In the case of the mixed system,
coexistence never occurred for the region of parameter space shown
in Fig. 1e. In agreement with Durrett and Levin6, our simulation
results suggested that three strains with the abovementioned non-
hierarchical relationship could coexist when dispersal and inter-
action are local, whereas one strain excludes the others when the
community is well mixed.

To test this conclusion, we used three strains of the bacterium E.
coli: a colicin-producing strain (C), a sensitive strain (S), and a

resistant strain (R), which satisfied a rock–paper–scissors competi-
tive relationship (see Methods). We placed the C–S–R community
in the following three environments: (1) ‘Flask’ (a well-mixed
environment in which dispersal and interaction are not exclusively
local); (2) ‘Static Plate’ (an environment in which dispersal and
interaction are primarily local); and (3) ‘Mixed Plate’ (an environ-
ment intermediate between these two extremes).

For the Flask environment, the bacteria were grown in shaken
flasks containing liquid media. We transferred an aliquot of the
community to fresh media every 24 h. In the Static Plate environ-
ment, the bacteria were grown on the surface of solid media in
Petri plates. Every 24 h, we pressed each plate onto a platform
covered with a sterile velveteen cloth and then placed a fresh plate
on the velvet. This method transferred a small sample of the
community and allowed the transferred sample to retain the spatial
pattern that developed on the previous plate. The Mixed Plate
environment was identical to the Static Plate environment, except
that at each transfer the fully-grown community plate was pressed
on the velvet several times, each time rotated at a different angle
(see Methods).

Figure 2a shows that C, S and R strains were maintained at high
densities in the Static Plate environment throughout the exper-
iment. Photographs of the plates show the spatial pattern that
developed over the experiment (Fig. 3a). The pink and yellow inter-
strain boundaries in Fig. 3b show clearly that R chased C, and C

Figure 2 Community dynamics in the experimental treatments: a, Static Plate; b, Flask;

and c, Mixed Plate. Dashed lines indicate that the abundance of the relevant strain has

decreased below its detection limit. Data points are the mean of three replicates, and bars

depict standard errors of the mean. Consecutive data points are separated by 24 h,

approximately 10 bacterial generations.

Figure 3 Time series photographs of a representative run of the Static Plate environment.

We initiated the plate environments by depositing small droplets from pure cultures in a

hexagonal lattice pattern, where the strain at each point was assigned at random. a, The

changing spatial configuration of the experimental community is shown in this first panel

of photographs. Patches inhabited by C cells were less dense and consequently easily

distinguished from S and R patches. The dense growing ‘spots’ that appear inside the C

clumps were determined to be resistant cells generated de novo from S cells. An empty

layer existed between C clumps and S clumps, where diffused colicin had prevented the

growth of S cells, but where C cells had not yet colonized. The border between C and R

lacked this empty layer. b, ‘Chasing’ between clumps is highlighted in this second panel.

The letters giving the initial spatial distribution of the strains are preserved for reference.

The borders between C and S are coloured in yellow and the borders between C and R in

pink.
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ecological processes in our C–S–R community (see Box 1). When
dispersal and interaction were local, we observed that ‘clumps’ of
types formed (Fig. 1a). These patches chased one another over the
lattice—C patches encroached on S patches, S patches displaced R
patches and R patches invaded C patches (Fig. 1a, b). Within this
fluid mosaic of patches, the local gains made by any one type were
soon enjoyed by another type. The result of this balanced chase was
the maintenance of diversity (Fig. 1c). However, this balance was
lost when dispersal and interaction were no longer exclusively local
(that is, in the ‘well-mixed’ system—see Box 1). In the mixed
system, continual redistribution of C rapidly drove S extinct, and
then R outcompeted C (Fig. 1d). Durrett and Levin6 describe a
qualitatively similar effect of spatial scale in their model of
colicinogenic, sensitive, and ‘cheater’ strains (where a cheater was
defined as a strain producing less colicin at a lower competitive
cost).

When ecological processes were local in the simulation, coex-
istence occurred over a substantial range of model parameter values
(Fig. 1e), suggesting that the result was not very sensitive to the
specific choice of parameter values. In the case of the mixed system,
coexistence never occurred for the region of parameter space shown
in Fig. 1e. In agreement with Durrett and Levin6, our simulation
results suggested that three strains with the abovementioned non-
hierarchical relationship could coexist when dispersal and inter-
action are local, whereas one strain excludes the others when the
community is well mixed.

To test this conclusion, we used three strains of the bacterium E.
coli: a colicin-producing strain (C), a sensitive strain (S), and a

resistant strain (R), which satisfied a rock–paper–scissors competi-
tive relationship (see Methods). We placed the C–S–R community
in the following three environments: (1) ‘Flask’ (a well-mixed
environment in which dispersal and interaction are not exclusively
local); (2) ‘Static Plate’ (an environment in which dispersal and
interaction are primarily local); and (3) ‘Mixed Plate’ (an environ-
ment intermediate between these two extremes).

For the Flask environment, the bacteria were grown in shaken
flasks containing liquid media. We transferred an aliquot of the
community to fresh media every 24 h. In the Static Plate environ-
ment, the bacteria were grown on the surface of solid media in
Petri plates. Every 24 h, we pressed each plate onto a platform
covered with a sterile velveteen cloth and then placed a fresh plate
on the velvet. This method transferred a small sample of the
community and allowed the transferred sample to retain the spatial
pattern that developed on the previous plate. The Mixed Plate
environment was identical to the Static Plate environment, except
that at each transfer the fully-grown community plate was pressed
on the velvet several times, each time rotated at a different angle
(see Methods).

Figure 2a shows that C, S and R strains were maintained at high
densities in the Static Plate environment throughout the exper-
iment. Photographs of the plates show the spatial pattern that
developed over the experiment (Fig. 3a). The pink and yellow inter-
strain boundaries in Fig. 3b show clearly that R chased C, and C
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and c, Mixed Plate. Dashed lines indicate that the abundance of the relevant strain has

decreased below its detection limit. Data points are the mean of three replicates, and bars

depict standard errors of the mean. Consecutive data points are separated by 24 h,

approximately 10 bacterial generations.

Figure 3 Time series photographs of a representative run of the Static Plate environment.

We initiated the plate environments by depositing small droplets from pure cultures in a

hexagonal lattice pattern, where the strain at each point was assigned at random. a, The

changing spatial configuration of the experimental community is shown in this first panel

of photographs. Patches inhabited by C cells were less dense and consequently easily

distinguished from S and R patches. The dense growing ‘spots’ that appear inside the C

clumps were determined to be resistant cells generated de novo from S cells. An empty

layer existed between C clumps and S clumps, where diffused colicin had prevented the

growth of S cells, but where C cells had not yet colonized. The border between C and R

lacked this empty layer. b, ‘Chasing’ between clumps is highlighted in this second panel.

The letters giving the initial spatial distribution of the strains are preserved for reference.

The borders between C and S are coloured in yellow and the borders between C and R in

pink.
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Figure 3.7: Kerr et al. (2002) demonstrated that coexistence of a community of three E. coli was de-
pendent on the localization of interactions due to spatial heterogeneity. When the species interacted in a
spatially structured environment (left), all species could coexist. In contrast, when the species interacted
in a well mixed environment (right), coexistence was not possible and only monocultures were obtained.
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The lattice-based IBM approach of Reichenbach et al. (2007) has inspired numer-
ous studies which employ extensions or modifications of this modelling approach,
since it is able to model the emergence of complex dynamics and behaviour from
straightforward interactions at the individual level, as is characteristic of IBMs.
Some examples of modifications to this model include: reaction rates that vary
between species (He et al., 2010), the incorporation of mutations (Mobilia, 2010),
and the study of cooperation rather than competition (Helbing and Wenjian, 2008).

3.4 Modelling interactions in microbial com-
munities

The interactions taking place within a community, whether these occur between
individuals or between individuals and their environment, have been shown to be
key drivers of community stability and functionality (see Section 2.3.3). These in-
teractions can take various forms, from competition or cooperation to predation or
commensalism; an in-depth description of the different possibilities can be found
in the review of Faust and Raes (2012). Here we focus on the modelling approaches
typically used for the several specific types of microbial interactions highlighted in
our research questions (Section 1.2).

3.4.1 Interactions with the environment

The interaction between microbe and environment that we have focused on in
our research questions is resource limitation. This refers to the presence of a
substrate in the in silico environment which individuals depend on for growth and
other demographic processes, but whose concentration is limited, thus forcing
individuals to modulate their behaviour in response to the changing availability of
the environmental resource.

In microscopic scale models, the typical approach to modelling resource limita-
tion has been to represent it simply by imposing a constant limit on population
size (Nowak, 2006; Riolo et al., 2001). This avoids the necessity of modelling the
resource dynamics explicitly, which simplifies model construction and analysis, but
reduces the insights this approach can provide into the interactions between in-
dividuals and the environment. For this reason, this approach has been adapted
to explicitly consider resource fluxes and dynamic population sizes (Requejo and
Camacho, 2013; Melbinger et al., 2010; Requejo and Camacho, 2011; Centler and
Thullner, 2015).

A similar shift took place in the modelling of biofilm formation, now typically done
using PDE approaches where both the growth of cells and the diffusion of nutri-
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ents through the bulk liquid are taken into account (Lardon et al., 2011; Ardré
et al., 2015; Kragh et al., 2016). This approach has in recent years been extended
to IBMs (Centler and Thullner, 2015), where a typical example admits a limiting
resource that constrains individuals’ reproduction (Requejo and Camacho, 2012).

However, some models of resource-limited reproduction assume that the popu-
lation in question is well mixed, a typical yet significant simplifying assumption
which by design does not permit any effects of spatial structure to emerge. This is
despite the fact that spatially structured environments have been acknowledged
to result in a significantly different population dynamics than well-mixed environ-
ments, as we discussed in Section 3.3.

3.4.2 Competition

3.4.2.1 Pairwise interactions

Much of the modelling literature regarding competitive dynamics has focused on
pairwise interactions, most often using ODE-based approaches such as the Lotka-
Volterra equations (Levine et al., 2017). As a result, the coexistence of two species
in competition has been well explained using the framework of mutual invasion,
where each species has a positive growth rate when its density is low and its
counterpart is at its carrying capacity (Chesson, 2000). In this way, a species can
always rebound from perturbations, and hence maintain the two-species coexis-
tence. The stabilizing mechanism underlying this coexistence criterion of mutual
invasion has been shown to be related to niche differences between the two spe-
cies, which cause intraspecific effects to be more negative than interspecific ef-
fects (Adler et al., 2007). Hence when the density of one of the species increases,
its growth rate is reduced relative to other species, which wards off its competitive
exclusion and helps to maintain coexistence.

Coexistence is then dependent on these niche differences between the two spe-
cies being more significant than their difference in fitness, otherwise a species
with a comparatively weaker fitness would not be able to invade its competitor and
thereby maintain coexistences (Adler et al., 2007). Examples of these stabilizing
niche difference mechanisms include the limitation of the two species by differ-
ent resources (in well-mixed settings explored by SIMs) or when the two species
prosper in different locations in the landscape (in spatially heterogeneous settings
modelled by SEMs) (Chesson, 2000).

3.4.2.2 Higher-order interactions

However, this mutual invasion framework is not transferable to systems of three
or more species (Levine et al., 2017). The underlying mechanism is intuitive: when



3

3 MODELLING BACKGROUND 56

one species is suppressed in a system of two species, its counterpart will always
be able to persist if the mutual invasion criterion is satisfied. But in richer com-
munities, the suppression of one species can allow another species to prosper (and
maintain the competitive balance between these two species) while a third species
suffers. For example, in the rock–paper-scissors game, the suppression of rock will
allow scissors to prosper, but both of these changes will negatively affect paper,
which depends on there being a sufficient density of rock to keep scissors at bay.
This phenomenon is also known as trophic interaction modification, when referring
more generally to the modification of a consumer-resource interaction by a third
species (Terry et al., 2017).

Thus the mutual invasion criterion does not hold for systems of three or more spe-
cies linked in this way. Therefore, a different framework is required to understand
the mechanisms underpinning coexistence in richer communities. Improving our
understanding of these mechanisms which are present only in diverse commun-
ities will also improve our understanding of the stability of these communities’
diversity.

Two particular types of competitive dynamics have been shown by theoretical and
modelling studies (Levine et al., 2017) to emerge only in systems of three or more
species: interaction chains and higher-order interactions.

Interaction chains involve pairwise competitive interactions contained within a net-
work of other pairwise interactions. This allows for indirect interaction effects, for
example when the direct interactions of a focal pair are affected by changes in
density of a third species that interacts with both species in the focal pair (Hibbing
et al., 2010). Most notably, these indirect effects can have positive influences on
the system even when the direct interactions have negative effects (Stone and
Roberts, 1991). The classical example of an interaction chain is the rock–paper–
scissors game. This chain consists of interlinked pairwise competitive interactions,
which together stabilize the dynamics of the system (Reichenbach et al., 2007).
Terry et al. used their framework of trophic interaction modifications to further
distinguish between indirect interaction effects, characterizing these as either sec-
ondary (when the initial direction interaction leads to a change in densities of the
secondary species, which then has a further knock-on effect) or density-mediated
(due to the trophic links with the third species) (Terry et al., 2017).

In contrast, higher-order interactions refer to interactions that are not pairwise
(Levine et al., 2017). In this case, the effect on any one species does not depend on
only one other species, but rather on several. For example, if a predator depresses
the population of another species, this can cause effects even further down the
food chain (Shurin and Allen, 2001).

The difference between these two types of interaction lies in the cause of the (pos-
itive or negative) indirect effect (Levine et al., 2017). If the indirect effect is due
to changes in the density of the competitor species, it relates to an interaction
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chain. In contrast, a higher-order interaction involves changes in the competitive
effects of the competitor species. This difference also results in their effects oc-
curring on different time scales: higher order interactions alter the competitive
effects of a species on the dynamics of two (or more) other species, changes wh-
ich occur promptly (Bruno and Cardinale, 2008). In contrast, interaction chains are
altered over a longer time scale. To return to our rock–paper–scissors example, an
increase in the density of scissors will not immediately affect the dynamics of the
system, since the consequent changes in rock and paper densities will not occur
immediately, but rather after a certain time lapse (Reichenbach et al., 2007).

The loss of either of these mechanisms can result in so-called extinction cas-
cades (Ebenman and Jonsson, 2005), where the loss of one species triggers fur-
ther extinctions, and in the worst case total system collapse. Interaction chains
consisting of intransitive cycles or loops are particularly susceptible to this effect,
where the loss of one species breaks an intransitive cycle, inducing the further loss
of the other species in the cycle (Han et al., 2016).

Both interaction chains and higher-order interactions are important mechanisms in
stabilizing dynamics in microbial communities, and must particularly be accounted
for in synthetic microbial communities. Since many synthetic communities involve
more than two species (De Roy et al., 2014), both interaction chains and higher-
order interactions may emerge. Their loss or destabilization can therefore have
significant consequences for the stability or functionality of the community.

3.4.2.3 Invasion

A specific type of competition is invasion, where an “alien” species infiltrates a
community and establishes itself (Kinnunen et al., 2016). Invasion is a particular
focus of synthetic microbial ecology studies, either for the purpose of engineering
beneficial invasions in natural and synthetic microbial communities, or for protect-
ing these communities against unwanted invasions (De Roy et al., 2014).

Invasion has been described as a four step process (Mallon et al., 2015) involving:
(i) introduction, (ii) establishment, (iii) growth and spread, and (iv) impact. Each of
these stages involves different dynamics, for which different modelling approaches
can be suitable. Considering invasion using this framework also illustrates the
benefits of employing an integrative modelling approach (see Section 3.2.4), in
order to match the most appropriate model with each step.

In the introduction phase, the invading microbes are transported to the resident
community. This dispersal can be active or passive (Mallon et al., 2015), and can
be captured by various spatially explicit modelling techniques, from PDEs to IBMs.
Mechanisms of interest include quorum sensing, whereby microbes undertake cer-
tain actions once a sufficient density of neighbouring individuals is sensed. For
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example, flagellar mobility may be triggered by quorum sensing, propelling an
invasive type towards the resident community (Pérez-Velázquez et al., 2016).

Once the invader has successfully infiltrated a community, it must then establish
itself. This entails resistance to biotic pressures, including counter-measures from
resident community members. These interactions between invader and commu-
nity members can take various forms, and their effects can be positive, negative
or neutral for their participants (see Section 2.3.3), and are typically modelled us-
ing the generalized Lotka-Volterra model. Since this model suffers from the typical
drawbacks of a PLM (see Section 3.2.2), IBMs are more suited for modelling this
invasion stage, since by design they account for interactions between individuals;
see for example reviews by (Tan et al., 2015) and (Hellweger and Bucci, 2009).

The growth and spread phase depends on the invader’s ability to access and ex-
ploit new resources in the resident community. Based on their mechanism for
achieving this, invaders can be classified as pathogens or non-pathogens (Mallon
et al., 2015). Pathogens directly manipulate their environment to create niches
that they can exploit, while in contrast non-pathogens rely on environmental dis-
turbances or changes that are beneficial for their invasion. In order to capture the
interactions between pathogens and their environment, IBMs have gained favour
due to their high degree of specificity, allowing them to capture the complexities
of a specific pathogen’s life cycle and interaction with its environment. Two il-
lustrative examples of specific pathogenic invaders that have been studied using
this approach include Pseudomonas aeruginosa (Seal et al., 2011) and Aspergillus

fumigatus (Pollmächer and Figge, 2014).

The final stage of an invasion is its impact on the resident community, which can
be significantly altered in the long term. A successful invasion can drastically alter
the resident community’s composition and functionality, most notably by inducing
changes in its diversity (Acosta et al., 2015). To compare a community before and
after invasion, whole-community (or super-organism) models may be useful to gain
a “bird’s eye” view of changes in community functionality in terms of its metabolic
network. However, due to their low resolution such models cannot provide expla-
nations of the mechanisms underlying such shifts, and since they are typically not
dynamical (Orth et al., 2010), they can only be used to compare “snapshots” of
the community’s composition and functionality before and after an invasion event,
although such an approach can still yield important observations to motivate fur-
ther, more pointed studies. Further impacts of invasion include the integration of
new mutant organisms into the community, either from the invader’s side or from
the resident community’s (Zomorrodi and Segrè, 2016). These adaptive changes,
and their impact on community composition and functionality, can be modelled in
several ways. PLMs can employ evolutionary game theory to answer the question
of whether a certain mutant type can establish itself in a community of an existing
phenotype (see review by (Hummert et al., 2014)), while IBMs are more suited for
mechanistic studies of mutation, since they can account for such adaptive proces-
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ses at the individual scale (MacPherson and Gras, 2016).

3.5 Conclusions

The complexity of microbial community dynamics continues to drive the develop-
ment of a vast ensemble of modelling techniques for their simulation and study.
The parallel increase in the volume and complexity of experimentally obtained
data has further encouraged microbial ecologists to turn to modelling to help them
understand their observations, as well as to provide frameworks within which they
may develop theories to explain these observations, and eventually to make pre-
dictions for unobserved conditions.

Closer collaboration between modellers and experimentalists has already yielded
impressive results in the study of microbial community dynamics, and will only
increase in the coming years. Both in silico and in vitro methods will continue to
be developed and refined, approaching the ultimate goal of engineering synthetic
microbial communities to allow for their management and control.

For this purpose, one modelling paradigm has emerged as particularly promising,
namely individual-based modelling. The flexibility of IBMs lends itself well to theory
development, since their bottom-up construction allows for a step-wise increase
in the complexity of the behaviour or dynamics under consideration. IBMs are
also particularly suitable for simulating microbial communities, where multitudes
of interactions at the level of individual microbes combine to drive population and
community-level effects. The most important mechanisms underlying community
stability and functionality — namely the interactions between microbes and with
the environment, as well as their spatial dynamics — are straightforward to in-
corporate in an individual-based framework. Equally straightforward to include in
this modelling framework are spatial dynamics, since in IBMs the individuals and
their interactions are localized. These models are thus located in the overlap be-
tween two classes of model (IBMs and SEMs) and bring the advantages of both
approaches.

However, the field of microbial individual-based ecology (μIBE) is young, and much
work remains to be accomplished. Before IBMs can be applied for predictive pur-
poses, as is the central aim of synthetic microbial ecology, there remains much
more to be achieved in terms of developing the tools and framework for an individual-
based approach to theory development.

In Section 1.2, we have formulated several research questions relating to the sta-
bility, diversity and functionality of microbial communities. Our goal in Part II of
this thesis is to build on the existing μIBE techniques discussed in this chapter,
in order to develop an IBM framework which we can employ to address these re-
search questions. Before we begin this endeavour, we bring Part I of this thesis
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to a close in the following chapter, where we focus more narrowly on the tech-
niques which can be used to simulate and represent one key aspect of microbial
communities, namely their diversity.



4

4
Assessing diversity of

microbial communities

4.1 Introduction

The use of microbial systems to test ecological theories has increased dramati-
cally in recent years, driven in part by the increasing use of high-throughput se-
quencing technologies (Fulthorpe et al., 2008). In particular, theories about the
relationship between ecosystem stability and biodiversity have been tested in var-
ious ways using natural and synthetic microbial ecosystems (see Section 2.5 for
a more in-depth discussion). As discussed in Section 2.3, when studying com-
petitive interactions using such microbial systems, microbial ecologists often use
classical macro-ecological methods to analyze their data, one such tool being di-
versity indices (Veresoglou et al., 2014). But this approach sometimes proves to be
complicated due to key differences in the type of data produced by microbiological
or microbial ecological studies (Hill et al., 2003).

Microbial communities often contain organisms of wildly different types, meaning
that any diversity quantification approach must be applicable across different do-
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mains of life (Mills and Wassel, 1980). An additional difficulty lies in the extension
of the notion of “species” to microbial organisms. Classical measures of diversity
typically require a clear differentiation between species, which can often be diffi-
cult to achieve in microbial communities due to features such as nonhomologous
recombination and a lack of sexual reproduction (Doll et al., 2013). The difficulties
in directly observing microbes and their distinguishing characteristics are a further
impediment to classifying microbes for the purpose of diversity quantification (Hill
et al., 2003).

These particular issues are specific to microbial ecology, but the field must also
confront the same issues as classical ecology when studying diversity, starting
with the most basic question of all: what is diversity?

This fundamental question, and the difficulties in answering it, is addressed in Sec-
tion 4.2. Several families of diversity indices particularly useful for microbiological
applications are described in Sections 4.2.4 and 4.2.5. A further improvement,
which can address the difficulties of differentiating species in microbial commun-
ities, is discussed in Section 4.2.6. Next, in Section 4.2.7 examples of the use of
diversity indices in studies of microbial communities are discussed.

In Section 4.3, we focus more narrowly on evenness, the more complex compo-
nent of diversity. The most commonly used evenness indices are described in
Section 4.3.1, then we discuss the desired biological and mathematical properties
of an evenness index in Sections 4.3.2.1 and 4.3.2.2, respectively. Finally, in Sec-
tion 4.4 we summarize the conclusions that may be drawn from this survey of the
diversity literature.

4.2 Diversity

4.2.1 Defining diversity

It is generally understood that species diversity can be split into two components:
species richness and species evenness. Species richness refers to the absolute
number of species present in the population of interest, while species evenness
refers to the relative abundances of the different species — if a population is com-
pletely even, all species are equally abundant. However, this is where agreement
ends. Dozens upon dozens of different diversity indices can be found in the lit-
erature. Such an abundance of diversity indices and their sometimes discrepant
behaviour has led to so much confusion that some authors have concluded that the
concept of diversity is meaningless. Even as far back as 1971, Hurlbert was moved
to declare that “the term “species diversity” has been defined in such various and

disparate ways that it now conveys no information other than “something to do
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with community structure”; species diversity has become a nonconcept” (Hurl-
bert, 1971). Since then, the picture has only become busier, with a plethora of
diversity indices to be found in the literature and more being proposed each year.

It is important to emphasize that none of these numerous and varied diversity
indices are wrong. On the contrary, each index has its own unique properties that
are useful for specific applications. The key point of Hurlbert’s criticism of diversity
as a unified concept is that since raw diversity indices exhibit such a wide variety
of mathematical behaviours, they cannot all give reasonable results when directly
inserted into a general diversity equation or formula (Hurlbert, 1971).

A key problem is the fact that the concept of diversity is often confounded with the
indices that measure it. Jost (2006) gives the analogous example of the radius of a
sphere being an index of the volume, but obviously itself not the volume. In a sim-
ilar way, the most commonly-used diversity measure, the Shannon index (Ricotta
and Szeidl, 2006), is actually an entropy.

Entropies, which are often confounded with diversity indices, are characterized in
several ways (Mora Villarrubia and Ruiz-Castillo, 2010). First, they are continuous
measures, so that any small changes in the information probabilities (the equiva-
lent of the species proportions) have proportionately small effects on the entropy
value. Second, these measures are symmetric since the ordering of the probabil-
ities does not affect the entropy value. Third, an entropy’s maximum is attained
when all probabilities are equal (intuitively, this corresponds to the highest un-
certainty occurring when all events have equal probability of occurring). Finally,
an entropy should have an additive property which implies that the entropy value
does not depend on how the sample is divided into different groups or parts (Volij,
2014).

Entropy measures disorder or uncertainty in information, and hence shares impor-
tant conceptual similarities with diversity. Thus they are reasonable and frequently
used indices of diversity, but this does not mean that entropy is diversity. Similar
arguments can be made regarding many other diversity indices.

Throughout this chapter, we will consider a fully-censused community of S species,
with relative abundances denoted by p1, ..., pS; thus, p ≥ 0 and

∑S
=1 p = 1. For

convenience, we write p = (p1, ..., pS). First, we will briefly describe the most
commonly-used diversity measures.

4.2.2 Selected diversity indices

The previously mentioned Shannon diversity index, also known as the Shannon–
Wiener index, the Shannon–Weaver index and the Shannon entropy (Eliazar and
Sokolov, 2010), measures the uncertainty in the outcome of a sampling process.
When calculated using base two logarithms, it represents the minimum number
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of yes/no questions that are on average required to determine the identity of a
sampled species. It is given by:

H (p) = −
S
∑

=1

p ln (p) . (4.1)

The Simpson diversity index represents the probability that two individuals taken
at random from the community of interest (with replacement) represent the same
species (Keylock, 2005). It is given by:

HS (p) =
S
∑

=1

p2

. (4.2)

On the other hand, the Gini–Simpson diversity index, also called the probability
of interspecific encounter (PIE), represents the probability that the two individuals
represent different species (Jost and Chao, 2008):

HGS (p) = 1 − HS = 1 −
S
∑

=1

p2

. (4.3)

Rao’s quadratic diversity index (often called quadratic entropy although it is in fact
not an entropy) is defined as the expected dissimilarity between two individuals of
a given species assemblage selected at random (with replacement) (Ricotta and
Szeidl, 2009), and is given by:

HR (p) =
S
∑

,j=1

djppj, (4.4)

where dj is the dissimilarity between species  and j (not necessarily a metric
distance) (Ricotta and Szeidl, 2009). Note that HR reduces to the Gini–Simpson
diversity index in the case where dj = 1 for all  6= j, and d = 0 for all .

The Rényi entropy generalizes several other entropies including the Shannon en-
tropy and the standard Boltzmann–Gibbs entropy, the latter being given by S =
−kB

∑

 pln (p) where kB is a physical constant known as Boltzmann’s constant (Eli-
azar, 2011). The Rényi entropy of order α for α ≥ 0, α 6= 1 is given by:

Hα (p) =
1

1 − α
log

S
∑

=1

pα


(4.5)

The Shannon entropy is the limiting case of this entropy as α→ 1.
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The Tsallis entropy also generalizes the Shannon and Boltzmann–Gibbs entropies
(Hoffmann, 2008). The Shannon entropy is recovered as q→ 1. It is given by:

HT (p) =
1

q − 1

 

1 −
S
∑

=1

p
q


!

. (4.6)

While the Rényi and Tsallis entropies both generalize the standard Boltzmann-
Gibbs entropy, only the Rényi entropy has an additivity property which implies
that the Rényi entropy of a system composed of m independent sub-systems wh-
ich are governed, respectively, by the probability vectors p1, ...,pm, is equal to the
sum of the Rényi entropies of its sub-systems:

Hα
�

p1 ⊗ ... ⊗ pm

�

= Hα
�

p1
�

+ ... + Hα
�

pm

�

. (4.7)

4.2.3 Comparisons: a common problem

The indices we have mentioned comprise the most commonly used diversity mea-
sures across the various scientific fields concerned with diversity and entropy mea-
surement; unsurprisingly, they represent quite different formulations of the same
concept. However, most of them share a common problem: they are ill-suited for
both relative and absolute comparisons. Given that one of their main uses in mi-
crobiology is for assessing changes in community diversity following perturbations
(see Section 2.3), this is a significant issue.

To illustrate this problem, let us consider the simplest possible case of diversity:
a community consisting of S equally-common species. In virtually any biological
context, it seems reasonable to say that a community C1 with ten equally-common
species is twice as diverse as a community C2 with five equally-common species.
But calculating for example the Shannon entropy using the natural logarithm (as
is typical), we arrive at a diversity of 2.30 for the first community and 1.61 for the
second.

The first question involves a relative comparison: how should we understand the
difference in diversity between these two communities? The diversity of the first
community is not twice that of the second, although our intuition tell us otherwise.
Second, it is also unclear what these values mean in absolute terms: should we
consider a diversity of 2.3 to be high, low or something in between?

As a further example, consider a perfectly even community of one million species.
The Gini–Simpson index of this community is 0.999999. We can now imagine that
some catastrophe befalls this community - a meteor for example - which wipes out
all but 100 species. The Gini–Simpson index of the new community is 0.99. So
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despite the fact that more than 99% of the species of the pre-catastrophe com-
munity have been wiped out, the Gini–Simpson diversity index only drops by 1%.
This extreme non-linearity is illustrated in Figure 4.1. Anyone directly equating the
Gini–Simpson index with diversity would conclude that the community’s diversity
was not greatly affected by the catastrophe, while it is clear that the opposite
is true. The Shannon entropy demonstrates the same problem, but to a lesser
degree.
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Figure 4.1: Comparison of Gini-Simpson diversity for communities with different richness.

In practice, most ecologists do not seem to be too concerned that diversity in-
dices give results that are difficult to interpret or counter-intuitive (Pallmann et al.,
2012). In their view, the actual values of the indices are unimportant, so as long
as they can be used to calculate the statistical significance of the drop in diversity
following an event (Jost, 2009). Subscribing to this view (which is fairly common
in the literature concerning diversity in applied ecological or biological contexts),
the conclusions of a study are based on the statistical significance of the result. In
many cases, this is not reasonable. The statistical significance of a change in the
diversity index often has little to do with the actual magnitude or biological signif-
icance of the change. Using the classical example of tossing a coin many times to
see if it is biased, a highly significant p-value will prove that the coin is biased but
will not shed any light on the size or practical importance of the bias.

Other researchers were not content with this state of affairs, and proposed a solu-
tion: the use of effective numbers.
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4.2.4 Effective numbers

“In physics, economics, information theory, and other sciences, the distinction

between the entropy of a system and the effective number of elements of a system

is fundamental. It is this latter number, not the entropy, that is at the core of

the concept of diversity in biology ... Conversion of these [diversity indices] to

effective number of species is the key to a unified and intuitive interpretation

of diversity. Effective numbers of species derived from standard diversity indices

share a common set of intuitive mathematical properties and behave as one would

expect of a diversity, while raw indices do not” (Jost, 2006).

Each diversity index creates equivalence classes among the communities it is ap-
plied to. If we apply, for example, the Shannon entropy to a set of different com-
munities, then those communities that share a particular value of Shannon entropy
are (according to this index) equivalent with respect to their diversity. In each of
these equivalence classes there will be one particular community (call it C) whose
species are all equally common (i.e. a perfectly even community). If we return to
the intuitive definition of diversity described above - that a community of S equally-
common species should have a diversity of S - then all other communities in the
same equivalence class as C must also have this same diversity. Thus the prob-
lem of determining the diversity of a community reduces to finding an equivalent
community (one that has the same value of the diversity index as the community
in question) that is perfectly even. For example, if a community is assigned a di-
versity of 18.2, that means that it is slightly more diverse than a community of 18
totally dissimilar equally abundant species - there are “effectively” 18.2 species.

This problem is straightforward algebra: we need only to calculate the diversity in-
dex for D equally-common species (each species therefore having a relative abun-
dance of 1/D), set this equal to the actual value of the diversity index, and solve
that equation for D. This value of D is the diversity of the community according to
the chosen diversity index. The number D has been called the “effective number

of species” by MacArthur (MacArthur, 1965). Other fields have recognized the im-
portance of the effective number of a diversity index since many years ago, though
the concept goes by different names depending on the discipline. In physics it is
known as the number of states associated with a given entropy, and in economics
is called the “numbers equivalent” of a diversity measure (Patil, 2013).

As an example of this conversion algorithm, consider a community whose species
abundance distribution is given by p = (0.41,0.21,0.08,0.25,0.04,0.01). The
Simpson diversity of this community is HS = 0.2828. To convert this diversity to its
effective number equivalent, we need to find a community of D equally abundant
species that also has a Simpson diversity of 0.2828. We therefore have that p =

1
D

for  ∈ {1, ...,6} and that HS = 0.2828 =
∑6
=1 p

2
 . It only remains to solve for D.

We obtain D = 3.54, implying that our six-species community is “effectively as
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diverse” as a community of 3.54 equally abundant species.

Thus any diversity index can be converted into an effective number in a few
straightforward steps. Converting “raw” indices to effective numbers of species
in this way gives them a set of common behaviours and properties. After conver-
sion, diversity is always measured in units of number of species, allowing for easy
comparison and interpretation. It also lets us avoid the serious misinterpretations
spawned by the non-linearity of most diversity indices (cfr. Section 4.2.3).

Examples of the use of effective number diversity indices to assess changes in mi-
crobiological communities are given in Section 4.2.7. We will first address further
techniques to clarify and improve the choice and use of diversity indices.

4.2.5 Hill numbers

Most of the diversity indices used in the sciences, including all generalized en-
tropies used in biology and mentioned above, are monotonic functions of

∑S
=1 p

q
 ,

or limits of such functions as q approaches unity (Ricotta, 2003). Such indices
include: species richness, Shannon entropy, all Simpson measures, all Rényi en-
tropies (Rényi, 1961; Patil, 2002), all Tsallis entropies (Keylock, 2005; Czachor and
Naudts, 2002), and many others. All such measures yield a single expression for
diversity when the algorithm described in Section 4.2.4 is applied in order to trans-
form the indices into effective numbers (Jost, 2006):

qD (p) ≡

 

S
∑

=1

p
q


!1/(1−q)

, (4.8)

where the exponent and superscript q is known as the order of the diversity. These
are often called Hill numbers (Hill, 1973). For all indices that are functions of
∑S
=1 p

q
 , the true diversity depends only on the value of q and the relative spe-

cies abundances, and not on the functional form of the index. This means that
when calculating the diversity of a single community, it does not matter whether
one uses the Simpson diversity index, inverse Simpson diversity index, the Gini–
Simpson index, etc.; all give the same effective number diversity (or Hill number):

2D (p) = 1/

 

S
∑

=1

p2


!

. (4.9)

This diversity index depends not only on the species abundance distribution p,
but also on q, and hence the index is not univariate, unlike the classical indices
described in Section 4.2.1. The parameter q gives the order of the diversity (in
the equation above, the order is 2) which indicates its sensitivity to common and
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rare species. The diversity of order zero (q = 0) is completely insensitive to relative
species abundances and is in fact just species richness, which is clearly unaffected
by evenness.

All values of q less than one result in diversities that disproportionately favour rare
species, while all values of q greater than one lead to diversities that dispropor-
tionately favour the most common species (Keylock, 2005). The critical point that
weighs all species by their frequency, without favouring either common or rare
species, occurs when q = 1. Note that qD is undefined at q = 1 (Hill, 1973), but
the limit exists and equals

1D = exp

 

−
S
∑

=1

p lnp

!

= exp (HSh) , (4.10)

which is the exponential Shannon entropy. This quantity plays a central role in
biology, information theory, physics, and mathematics (Lin, 1991; Jost and Chao,
2008; Tuomisto, 2011), and this “is not a matter of definition, prejudice, or fashion

(as some biologists have claimed) but rather a consequence of its unique ability to

weigh elements precisely by their frequency, without disproportionately favouring

either rare or common elements” (Jost, 2006).

The diversity of order one (1D) has the properties we would intuitively expect of a
diversity index. It always gives exactly S when applied to a perfectly even com-
munity with S species. It also possesses the “doubling” property introduced by Hill
(1973): suppose we have a community of S species with arbitrary species frequen-
cies p1, ..., pS with diversity qD. Suppose further that we divide each species into
two equal groups, say males and females, and we treat each group as a separate
“species”. Intuitively, we have doubled the diversity of the community by this re-
classification, and indeed the diversity of the doubled community is always 2×q D
regardless of the values of the p (Hill, 1973).

4.2.6 Similarity-sensitive measures

4.2.6.1 The problem with microbial species

Converting the established diversity indices into effective numbers is already one
improvement. But there is another issue: all of the most commonly-used indices
are based on the assumption that distinct species are assumed to have nothing
in common. From the definitions of all the indices described in Section 4.2.1, it
is clear that they take into account only the number S of different species in a
community, and what proportion p of the community each species represents. No
allowance is made for whether for example species S is more similar to Sj than it is
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to Sk. This would imply for instance that a community of six dramatically different
species is considered to be no more diverse than a community of six species of
butterflies.

Diversity indices depend too much on the notion of species, a concept based upon
the division of living organisms into different classes that is notoriously problem-
atic (Leinster and Cobbold, 2012). Conventional indices such as Shannon’s, Simp-
son’s and species richness depend entirely on this division, and behave badly in
the face of taxonomic reclassification. Microbial ecologists in particular have long
recognized the need for similarity or distance measures in the quantification of
diversity, because of the complexities of microbial taxonomy (Mills and Wassel,
1980).

Ogunseitan (2005) outlines three broad and interrelated causes for the lack of a
coherent solution to this issue in microbial ecology:

1. incomplete information on the number of existing microbial species;

2. non-operational definition of a microbial niche;

3. loose definition of microbial strains and species.

The first point has to do with the deficiencies of the currently available technolo-
gies and techniques for finding, isolating and culturing microbes. These barriers
prevent an accurate estimate of microbiome richness. The second point refers to
the difficulties in applying the macro-ecological concept of a niche to microbial
ecology. Niches delineate under which environmental conditions a species may
persist (Faust and Raes, 2012). This is often very difficult to determine for micro-
bial communities, due to the obstacles in identifying, quantifying and explaining
the wide “geographical, geological and ecological” ranges of conditions under wh-
ich specific microbial species persist (Ogunseitan, 2005). Finally, the third point
refers to the difficulty in neatly delineating microbial species, due to such life his-
tory features as frequent genetic exchanges, nonhomologous recombination and
the lack of sexual reproduction (Doll et al., 2013).

As a result, there is a lack of good diversity measures that reflect the more re-
alistic and nuanced view of varying dissimilarities between species, or at least a
lack of understanding of how to use them. Such measures are termed similarity-

sensitive (Leinster and Cobbold, 2012). The best-known similarity-sensitive diver-
sity measure is Rao’s quadratic entropy, HR (Ricotta and Szeidl, 2009). This mea-
sure has been receiving increasing attention, but is still used much less than either
the Shannon entropy or Simpson index. The reason for the dearth of similarity-
sensitive measures may well be the fact that “theoretical ecologists have been
hesitant to introduce new diversity indices when the profusion of similarity insensi-
tive indices is already perceived to form an impenetrable jungle.” (Leinster and
Cobbold, 2012)
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While similarity-sensitive measures already represent an improvement over mea-
sures insensitive to species similarity, we can move a step further. Similarity-
sensitive measures that are effective numbers have an advantage over earlier
similarity-sensitive indices, such as Rao’s (De Bello et al., 2010) and Ricotta and
Szeidl’s (Ricotta and Szeidl, 2006), for the reasons discussed in Section 4.2.4. One
such measure was described by Chao et al. (2010), who defined a family of ef-
fective number similarity-sensitive measures tailored specifically to phylogenetic
diversity. These were quickly adopted by the phylogenetic community.

Another family of similarity-sensitive diversity measures was described by Lein-
ster and Cobbold (2012). This family includes — either directly or upon applying
a simple transformation — Rao’s quadratic entropy, species richness, Shannon
entropy, the Gini–Simpson index, the Berger–Parker index, the Hill numbers, the
Tsallis entropies, and the entropies of Ricotta and Szeidl. Thus almost all of the
measures discussed in Section 4.2.1 can be subsumed in one family of measures
that are both effective numbers and similarity-sensitive, as we describe in detail
in the next subsection.

4.2.6.2 Leinster & Cobbold

The diversity index proposed by Leinster and Cobbold (2012) takes two inputs:

� Relative abundance data: the proportions in which the different species
are present, where “species” can represent any biologically meaningful unit,
such as species, genus, phylogenetic taxa, etc.

� Similarity data: for each pair of species, a number specifying how similar
they are, where “similar” can also be used in any biologically meaningful way.
For example, a genetic notion of similarity will lead to a measure of genetic
diversity, a functional notion of similarity will lead to a measure of functional
diversity, and so on. The traditional “naive” model - in which similarities
between species are ignored - implicitly takes all similarities between distinct
species to be zero. This leads to the so-called naive measure of diversity
represented by the Hill numbers (Section 4.2.5).

The diversity index also involves a parameter q ranging from 0 to ∞, which as for
the Hill numbers determines how much significance is attached to species abun-
dance. Again, for q = 0 species richness attaches as much significance to rare
species as common ones. At the other extreme, i.e. q = ∞, the index, which cor-
responds to the one described by Berger and Parker (Berger and Parker, 1970),
depends only on the most abundant species; rare species are ignored altogether.

The similarities between S species are encoded in an S× S matrix Z =
�

Zj
�

, where
Zj is a measure of the similarity between the ith and jth species. We assume that
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0 ≤ Zj ≤ 1, with 0 indicating total dissimilarity and 1 indicating identical species;
therefore Z = 1. Genetic measures of similarity (often used in microbial ecology
and microbiology) are often expressed as percentages, which gives us similarity
coefficients Zj scaled to the unit interval (Lande, 1996). Other typical measures
of inter-species distance dj range instead between 0 and infinity, but these can be
scaled to the unit interval through various transformations. The simplest uses the
formula Zj = e−dj , where  is a constant (Nei, 1972).

Various methods for determining a similarity matrix Z have already been de-
veloped, most in connection with Rao’s quadratic entropy, which as mentioned
in Section 4.2.6 is a similarity-sensitive measure, but is not an effective num-
ber. Some are genetic (Hughes et al., 2008), others are functional (Botta-Dukát,
2005; Petchey and Gaston, 2006), taxonomic (Vane-Wright et al., 1991; Warwick
et al., 1995; Shimatani, 2001), morphological (Pavoine et al., 2005), or phyloge-
netic (Faith, 1992; Hardy and Senterre, 2007). They generally associate with each
focal species some data concerning the characteristics deemed to be important,
such as a list of functional traits, a DNA sequence, a location on a phylogenetic
tree, etc. The similarity coefficients Zj are then computed in terms of some notion
of difference between the associated data, depending on its particular character-
istics.

Although we might assume that similarity matrices are always symmetric (i.e.Zj =
Zj) since this seems intuitive, this is not necessarily the case (Leinster and Cob-
bold, 2012). The definition of similarity matrix does not require symmetry, and
there are useful non-symmetric similarity matrices; the most relevant to our inter-
ests are those corresponding to certain existing measures of phylogenetic diver-
sity (Chao et al., 2010).

The inclusion of a similarity matrix Z is what differentiates the Leinster-Cobbold
index from the Hill numbers (see Eq. (4.8)), since the Leinster-Cobbold index also
includes a sensitivity parameter q ranging from 0 to ∞. Then for 1 6= q 6= ∞ the
Leinster-Cobbold diversity of order q of the community is given by

qDZ (p) =

 

S
∑

=1

p (Zp)
q−1


!1/(1−q)

(4.11)

for  ∈ {1, ..., S} such that p 6= 0, i.e. accounting for all species that are actually
present.

The cases q = 1 and q = ∞ are excluded because qDZ (p) is not valid for these
values. At these values, the index does, however, converge to

1DZ (p) =
1

(Zp)p11 (Zp)
p2
2 · · · (Zp)

pS
S

, (4.12)
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as q→ 1, and to

∞DZ (p) =
1

mx∈{1,...,S|p 6=0} (Zp)
, (4.13)

as q→∞.

The oldest measure of diversity is species richness. In our notation, this is given
by the number s ≤ S of values of  such that p 6= 0. This measure clearly takes no
account of unequal similarities between species; it uses the naive model of a com-
munity, in which the similarity coefficient Zj is taken to be 0 (total dissimilarity)
if  6= j, and 1 (total similarity) if  = j, so Z is the identity matrix , and (Zp) = p.
Hence species richness is the naive diversity of order zero: qD (p) =q DI (p) and
thus 0D (p) = s.

The diversity of order 2 is

2DZ (p) =
1

∑

,j pZjpj
=
1

μ2
(4.14)

where μ2 is the expected similarity between two individuals chosen at random.
This quantity is closely related to a common measure of genetic diversity, which
we shall discuss shortly. In the naive model where Z = , Eq. (4.14) represents the
inverse Simpson index 1/

∑

p2 .

More generally, if we consider any integer q ≥ 2, and q individuals of respective
species 1, 2, ..., q, then the product

Z1 2Z1 3 · · · ·Z1 q (4.15)

is a measure of their group similarity. If we now let μq be the expected similarity
of a randomly chosen group of q individuals (sampled with replacement), then

qDZ (p) = μ1/(1−q)
q

. (4.16)

This implies that diversity qDZ (p) increases as the mean group similarity μq de-
creases. Equation (4.16) can be applied in situations where many diversity indices
are not applicable. The most interesting for our purposes is its application to the
estimation of the diversity of a community of microbes, where the notion of sim-
ilarity can be fairly well-defined, but the question of what constitutes a microbial
species is highly problematic (Johnson, 1973; Watve and Gangal, 1996).

The advantage of Eq. 4.16 is that we do not need to know how to differentiate
between microbial species. It is sufficient to have a measure of similarity be-
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tween two microbial strains. An estimate for μq and therefore qDZ (p) can there-
fore be obtained by repeatedly taking q samples from the community, calculating
the group similarity for each, and then taking the mean (Leinster and Cobbold,
2012).

4.2.6.3 Diversity profiles

We now have a family of similarity-sensitive diversity measures qDZ (p) for each
value of the sensitivity parameter q, as opposed to a single measure. The diversity

profile of a community is defined as the graph of qDZ (p) against q. Different
communities can thus be compared by means of their diversity profiles as opposed
to comparing any single statistic (Patil, 2002).

The region of a diversity profile where q is small gives information about species
richness and rare species, since qDZ (p) is affected almost as much by rare species
as common ones. The tail where q is large gives information about dominance and
common species, since here qDZ (p) is almost entirely unaffected by rare species.
As the sensitivity parameter q increases, the perceived diversity qDZ (p) drops.
More precisely, the diversity profile is always a decreasing continuous curve (Lein-
ster and Cobbold, 2012).

We can illustrate the usefulness of a diversity profile with an example using a
dataset that will be discussed in more detail in Chapter 9. Amongst other informa-
tion, this dataset includes time series of the species abundance distribution (SAD)
for a community of 13 microbial strains, under different experimental conditions.
An example of the SAD for a single time point is shown in Figure 4.2, thus repre-
senting a static snapshot of the community at that moment. At this time point,
the different microbial strains are present in unequal proportions: one strain dom-
inates the community (although not excessively), several strains are present in
roughly equal proportions, and there are also several rare strains.
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Figure 4.2: Example of a species abundance distribution for a community of 13 microbial strains (de-
scribed in detail in Chapter 9).

To compare how different diversity indices represent this SAD, we can compute
the diversity value for univariate indices and the diversity profile for multivariate
indices. Recall that univariate indices do not account for sensitivity to rare or
common species, hence they do not vary with q, unlike multivariate indices. We
plot in Figure 4.3 three univariate indices, and two multivariate indices. One of
the multivariate indices is similarity-sensitive (the Leinster-Cobbold index) and the
other is not (the Hill numbers).
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Figure 4.3: Comparison of univariate and multivariate diversity indices applied to the community in Fig-
ure 4.2. Multivariate indices (Hill numbers and Leinster-Cobbold index) result in profiles, while univariate
indices do not account for sensitivity to rare species and hence do not vary with q.

We can first note the differences between the univariate indices, due to the fact

• • • • • 
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that they are not effective number indices. Hence they do not have a common unit,
and the diversity values they produce for the same community can be significantly
different. For the multivariate indices, we notice the difference that results from
the inclusion of a similarity measure. For all values of q, the similarity-sensitive
index gives a lower value of diversity than the naive index. This is to be expected
since the naive index treats all strains as equally different, whereas the similarity-
sensitive index considers some strains to be less distinct than others. Thus for
example at q = 1, where rare and common species are given the same weight, the
naive index calculates there to be 8 effective strains in the community, while the
similarity-sensitive index calculates there to be 6.

The steepness of the left-hand end of the profiles, where q is small, give us in-
formation about the rare species in the community. As q increases, these rare
species are given less weight by the index, and therefore the steeper the drop of
the profile, the more rare species there are in the community. Again we notice
that the naive index considers there to be more rare species than the similarity-
sensitive index, since the slope of the former is steeper. In fact, the slope of the
similarity-sensitive profile is so small that we can surmise that the similarity mea-
sure considers the rare species to be very similar.

As a further example of the application of diversity profiles to microbiologal stud-
ies, Turnbaugh et al. (2009) conducted an experiment comparing the microbial
communities in the guts of lean and overweight humans. The diversity profiles
for two particular test subjects from that study were compared, one subject be-
ing overweight and the other not. Since only a fraction of microbial species have
been isolated and given taxonomic classifications, it was not possible for the au-
thors to partition the microbes into species. Instead, they turned directly to DNA
sequencing data. Using the naive similarity matrix (Figure 4.4(a)), the diversity
profiles cross at q ≈ 1. This suggests that the microbiome in the gut of the lean
child has greater variety (higher richness), but is less evenly distributed, than that
of the overweight subject. However, using a similarity matrix based on genetic
measures (Figure 4.4(b)), the diversity in the lean subject is seen to be greater for
all values of q, a conclusion supported by results of Turnbaugh et al. (2009).
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Example 3

Again we use the butterfly data of DeVries et al.

(1997), this time taking the species of subfamily

Charaxinae (Fig. 3a, b).

According to the naive model, the diversity profile of

the canopy lies above that of the understory until about

q¼ 5, from which point they are almost identical. So for

any sensitivity value, the canopy is more diverse than, or

as diverse as, the understory.

When no other species similarity data are available,

one can fall back on taxonomy. Define a similarity

matrix Z by

Zij ¼
0 if the ith and jth species are of different genera

0:5 if the ith and jth species are different but

congeneric

1 if i ¼ j:

8>><
>>:

The diversity profiles now tell a different story. For q

greater than about 1, it is the understory that is more

diverse. It is easy to see why. Most of the population in

the canopy is from the Memphis genus, whereas the

understory population is spread more evenly between

genera. So when we build into the model the principle

that species of the same genus tend to be somewhat

similar, the canopy looks much less diverse than it did

before.

All the diversity values drop when similarity is taken

into account. This illustrates the ‘‘naive model’’ property

of the previous section.

Taxonomic models of this kind are certainly crude,

and the similarity coefficient 0.5 was chosen arbitrarily.

(Existing taxonomic models are just as arbitrary, e.g.,

Warwick and Clarke [1995] and Shimatani [2001].) Some

ecologists might prefer to stick to the naive model,

FIG. 3. Illustration of different similarity matrices: diversity profiles of six butterfly species of subfamily Charaxinae (with an
abundance table) using (a) the naive similarity matrix, and (b) a taxonomic similarity matrix (data from DeVries et al. [1997: Table
5]). The bottom two panels show diversity profiles of the gut microbiomes in a lean child (TS1) and an overweight mother (TS3)
(Turnbaugh et al. 2009), using (c) naive and (d) genetic similarity matrices. Note the different scales.
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Figure 4.4: Comparison of diversity profiles using (a) a naive similarity measure and (b) a genetic simi-
larity measure (Leinster and Cobbold, 2012) for the datasets of Turnbaugh et al. (2009) representing two
human gut microbiomes (TS1 and TS3). Using the naive measure, the profiles in (a) cross at a low q value,
suggests that the TS1 microbiome has higher richness but is less evenly distributed than that of TS3. But
using a non-naive similarity measure in (b) suggests that diversity in the TS1 microbiome is greater for all
values of q.

Another study used the Leinster–Cobbold index to calculate the diversity profiles
of four microbial datasets, in order to investigate whether these profiles altered
the interpretation of said datasets (Doll et al., 2013). For the sensitivity matrix,
the authors tested both naive and similarity-sensitive matrices, the latter being
based on phylogenetic similarity. The authors found that the results using the lat-
ter diversity measure provided insights into the microbial datasets that were not
detectable with classical (univariate) diversity metrics (Doll et al., 2013). In partic-
ular, they found that the similarity-based and naive diversity profiles only agreed
for approximately 50% of cases in their classification of which microbial sample
was most diverse, a strong argument for incorporating similarity information into
diversity quantification.

A third study used the same index to re-analyze four datasets of fungal microbial
communities to determine whether the diversity quantification was different from
the classical approach (Veresoglou et al., 2014). Using a phylogenetic similarity
measure, the authors noted that the similarity-sensitive measure not only repro-
duced the patterns obtained using classical measures, but also revealed additional
patterns, leading the authors to conclude that their approach was “more likely to
uncover subtle treatment effects” (Veresoglou et al., 2014).

4.2.7 Diversity indices in microbiological studies

In contrast to the approaches discussed in Section 4.2.6.2, diversity analysis and
quantification of experimental microbial community data are generally still per-
formed using classical univariate, similarity-insensitive diversity measures, al-
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though recognition of the benefits of other approaches to diversity is beginning to
spread (Doll et al., 2013; Acosta et al., 2015; Presley et al., 2014). In such studies,
diversity indices are typically employed to demonstrate a change in community
size and composition following a disturbance, such as a change in environmental
conditions or an invasion event (De Roy et al., 2013). This generally takes the
form of a straightforward comparison, using statistical analysis to prove the sig-
nificance of the change. Studies may focus on short-term or long-term impacts of
the disturbance, depending on how frequently diversity is measured following the
event (Acosta et al., 2015).

By far the most commonly employed diversity indices for this purpose are tax-
onomic richness (the naive diversity measure) and the Shannon diversity index
(Eq. 4.1) (Horňák and Corno, 2012; Acosta et al., 2015; Bonanomi et al., 2014;
Vivant et al., 2013; Van Elsas et al., 2007; Matos et al., 2005).

Where taxonomic richness information is unavailable or unobtainable, for any of
the reasons discussed in Section 4.2.6, functional richness levels can be assessed
using different approaches (Matos et al., 2005; Liu et al., 2012). Occasionally, func-
tional richness is used to complement taxonomic richness information (Eisenhauer
et al., 2012, 2013). Functional diversity levels can be assessed using substrate
or carbon source utilization patterns, or dedicated indices (Petchey and Gaston,
2006).

While these approaches can often clearly demonstrate for example an inverse di-
versity/invasibility relationship, little insight can typically be drawn about the true
mechanism of the effect, since experimental designs generally cannot separate
individualistic biodiversity effects from synergistic ones (Matos et al., 2005).

This piecemeal approach to diversity measurement can be significantly improved
by the use of measures that synthesize the different facets of diversity, an advance
that is already being advocated for by microbial ecologists (Armitage et al., 2012;
Hodgson et al., 2002; Scheiner, 2012; Presley et al., 2014; Doll et al., 2013). These
works illustrate the potential of similarity-sensitive and effective number indices
for use in microbiological studies, where they may lead to additional insights that
are not detectable with classical diversity measures (Veresoglou et al., 2014).

4.3 Evenness

Diversity is a key mediator of microbial dynamics, yet as we have seen in Sec-
tion 4.2, there is little consensus about precisely how to measure it. Practically
the only agreed upon characteristic of diversity is that it is composed of two com-
ponents: richness and evenness (Tuomisto, 2012). If we now move our review of
diversity to this level, we find that one of these components is fairly straightfor-
ward. Richness is (generally) easy to define and measure. So long as there is
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an accepted delineation of species in a community, richness is simply a matter
of counting. The picture is much cloudier for evenness, the second component of
diversity.

Evenness is generally agreed to reflect the equitability of the species abundance
distribution in a community (Peet, 1974). It is at this point that the consensus ends.
Most likely due to the difficulties in merely defining evenness, much less measur-
ing or modelling it, studies focused on this characteristic are far outnumbered by
studies relating to community richness (Hillebrand et al., 2008). However, species
evenness has been shown to be a key factor in preserving the functional stability
of ecosystems (De Roy et al., 2013). This is particularly true for microbial systems,
where it has been shown to promote the resilience of communities to stressors and
disturbances (Wittebolle et al., 2009; Yachi and Loreau, 1999). This was discussed
in more detail in Section 2.6.

4.3.1 Defining evenness

Before we can address how evenness affects community dynamics, our natural
first question is how to measure evenness. However, at this point there is again no
consensus on any single evenness index (Smith and Wilson, 1996). Consequently,
as was also the case with diversity, there are dozens of different evenness in-
dices to be found in the scientific literature, with more being proposed every year.
The high number of evenness indices stems in large part from the lack of a rigor-
ous definition of the concept of “evenness” itself. As Tuomisto (2012) points out,
“because different indices can quantify conceptually different things, two studies

whose stated purpose is to document ‘evenness’ can actually focus on entirely

different phenomena”. The huge number of indices can make the field seem im-
penetrable, but researchers have proposed several approaches to help scientists
choose which index is most suited to their needs (Alatalo, 1981; Smith and Wilson,
1996; Stirling and Wilsey, 2001; Kvalseth, 2015), as we shall see in the following
sections.

First, we provide a brief list of the most commonly used evenness indices in the mi-
crobiological literature. Descriptions of more indices, including those typically used
in other disciplines such as macro-ecology, economics and the social sciences, can
be found in reviews by Maignan et al. (2003), Ginebra and Puig (2010), Eliazar and
Sokolov (2012), and Ricotta (2003) among others. Again we use p = (p1, ..., pS)
to denote a vector of species proportions, where S is the number of species in the
community.

The Simpson evenness index is based on the probability that two individuals
taken at random from the dataset of interest represent the same type (Hill, 1973).
The index ranges from 1/S (perfect inequality) to 1 (perfect equality), and is de-
fined as
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E(p) =
1

S
S
∑

=1
p2

.

This index has for instance been used in studies on the impact of soil invertebrates
on grassland diversity (De Deyn et al., 2003) and to assess the positive effects of
parasites on biodiversity in animal communities (Mouritsen and Poulin, 2005).

The Gini evenness index is based on Lorenz curves, where the cumulative pro-
portion of species is plotted against the cumulative proportion of individuals (Rou-
sseau and Van Hecke, 1999). Aside from its ecological applications, this index is
also used as a measure of equality in economic and social studies (Eliazar and
Sokolov, 2010). The index ranges from zero (perfect inequality) to 1 (perfect
equality) — note that this is typically reversed in economic applications (Eliazar
and Sokolov, 2012). The Gini index is defined as

G(p) =
2

S − 1











S −

S
∑

=1
 p

S
∑

=1
p











, (4.17)

where the p are sorted such that p ≤ p+1. Amongst other applications, this index
has been used in ecological studies focusing on communities of moss-dwelling
fauna (Vincke et al., 2006) and bacterial soil communities (Harch et al., 1997).
It is also frequently used in economic and sociological applications (Lambert and
Aronson, 1993).

The Shannon evenness index is based on the Shannon-Weaver information en-
tropy H (Shannon, 1948), which was described in Section 4.2.1. The evenness
index quantifies the uncertainty in predicting the species identity of an individual
taken at random from the dataset of interest (Tuomisto, 2012). The index ranges
from zero (perfect inequality) to 1 (perfect equality) and is calculated as

HE(p) = −

S
∑

=1
pln(p)

ln(S)
. (4.18)

In ecological studies, it has been used to investigate phenomena such as functional
diversity in contaminated soil communities (Derry et al., 1998) and heterogeneous
soil communities grazed upon by sheep (Gibson, 1988). This index is also referred
to as the Pielou evenness index, where it is formulated as

J(p) =
H(p)

mx
S

H(p)
(4.19)
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where H(p) is the Shannon entropy (see Eq. (4.1)), and mx
S

H(p) is the maximum

value H can take for a community of S species. Since this maximum value is
ln (S), Pielou (1966) framed the index as the Shannon entropy normalized by its
maximum value for a given community.

The Heip evenness index is again based on the Shannon entropy (Heip, 1974) ,
and is given by

EH(p) =
eH(p) − 1

S − 1
, (4.20)

where H is the Shannon entropy. This index was proposed to address the tendency
of other indices to overly depend on richness S and their failure to attain suffi-
ciently low values when community evenness should be low (Heip, 1974). This
index has for instance been used in the ecological literature to compare the even-
ness of insect communities subsisting on different vegetation types (Sanderson,
1992), and to study the evenness of marine meiofauna along pollution gradi-
ents (Heip et al., 1988).

To illustrate the differences between these evenness indices, we again provide an
example with the same microbial dataset used in Section 4.2.6.3 (described in
detail in Chapter 9). Now, rather than examine the SAD at a single time point, we
can follow it through time by calculating the community evenness at each time
point. In Figure 4.5(a) we show the evolution through time of the community’s
SAD by plotting at each time point the proportion of the population each strain
represents. In Figure 4.5(b), we plot the corresponding community evenness at
each time point for the four indices described above.

The community is initially very even, but over time evenness decreases sharply as
one species begins to dominate the community. All four evenness indices repro-
duce this behaviour qualitatively, but quantify it differently. Note for example the
difference in the curves produced by the Shannon and the Gini evenness indices,
which represent the extremes in behaviour of these four indices. The Shannon
index is more sensitive to rare species, while the Gini index is more sensitive to
common species, which in this example is reflected in the curves the indices pro-
duce: the curve of the Shannon index is concave while the curve of the Gini index
is convex. These characteristics are sometimes used to classify evenness indices
as Type I or Type II, respectively (Peet, 1974). More specifically, Type I indices are
characterized by having a second derivative with respect to p that increases as p
tends to zero, whereas Type II indices produce curves with second derivatives that
are constant or decreasing for values of p tending to zero. The Simpson and Heip
indices fall in between these two cases. We can also note that this ordering is not
strict: the curves of the Simpson, Gini and Heip indices cross at low evenness.
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Figure 4.5: Comparison of different evenness indices for the same time series of species abundance
distributions.

Many more evenness indices have been proposed in the literature, and to varying
extents applied in ecological or theoretical studies. Among others, Smith and Wil-
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son (1996), Magurran (2004), Tuomisto (2012) and Kvålseth (2015) provide tables
listing lesser known evenness indices than those described here.

4.3.2 Desired properties of an evenness index

4.3.2.1 Biological properties

Many researchers have attempted to address the problem of choosing one even-
ness index from the plethora available by listing desirable criteria for an index,
and then assessing how well these are satisfied by candidate indices. In their in-
fluential review paper on the subject, Smith and Wilson (1996) listed 14 criteria for
evenness indices, and subdivided these into four essential requirements and 10
desirable features. The four essential requirements have a long history; they can
be traced back at least as far as Dalton (1920). The requirements are as follows:

1. Evenness should be invariant under replication: it should not change when a
dataset is replicated so that each of the species gives rise to n new species
of the same absolute abundance as the original one.

2. Evenness should decrease when abundance shifts from a less abundant spe-
cies to a more abundant one.

3. Evenness should decrease when a very rare species is added to the popula-
tion.

4. Evenness should be invariant to scale, so that it depends on the proportional
(not absolute) species abundances.

Similarly, Beisel et al. (2003) conducted a comparative analysis of 15 different
evenness indices, and concluded that the measure should be chosen based on
both the type of data to be analysed, and the index properties desired by the users.
More recently, but in the same manner, Tuomisto (2012) compared 19 evenness
indices, with more indices dismissed on conceptual grounds, and reached similar
conclusions.

Another widely agreed upon criterion for an index is known as the Lorenz criterion.
This criterion is based on Lorenz curves, which plot the cumulative proportion of
species against the cumulative proportion of individuals (Rousseau and Van Hecke,
1999). Hence a perfectly even community has a Lorenz curve that is simply a
straight line along the y-diagonal. As the community becomes more and more
uneven, its Lorenz curve falls farther from the diagonal. Then to satisfy the Lorenz
criterion, an index must correctly reflect whether the Lorenz curve of one com-
munity is below the Lorenz curve of another community (Rousseau, 2011). This
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determines a partial order for the indices; only partial since there is a possibility
that Lorenz curves of two communities may cross, and therefore it is not possible
to strictly order them in this sense. In the case of crossing Lorenz curves, different
indices may rank the two community differently in terms of their evenness, and
still satisfy the Lorenz criterion (Gosselin, 2001).

Tuomisto (2012) went further, and proposed four basic characteristics that an
evenness index must possess if it is to agree with the definition that diversity
consists of two independent components, namely richness and evenness. From
this statement, which is perhaps the only statement relating to evenness that is
nearly universally agreed upon, Tuomisto (2012) inferred the following four char-
acteristics:

1. “Independent” refers to conceptual independence, hence each term (diver-
sity, richness, evenness) refers to a different phenomenon, rather than the
same phenomenon measured for different parts of the community.

2. “Independent” also refers to numerical independence, so that richness and
evenness can vary independently of each other.

3. Diversity can be partitioned into two components, and there is no need for
more; i.e. diversity can be expressed as a function of richness and evenness
only.

4. When richness and evenness are combined, the result is a single value: di-
versity. For the units of conceptually different phenomena such as richness
and evenness to combine in this way, they must be combined using multipli-
cation rather than addition.

Tuomisto found these inferences sufficient to derive the formulation:

Diversity = Richness× Evenness,

and hence defined evenness as

Evenness = Diversity/Richness.

She then went on to apply this conceptual framework to various indices in the
literature in an attempt to come up with a conceptually coherent assessment of
the different established indices, and in this way was able to compile a table of the
most commonly used indices using a unified notation to describe their calculation.

A different approach was taken by Kvålseth (2015), who instead surveyed how
evenness indices are typically used, and therefore how an index should behave in
order to make these applications justifiable. He stated that the general purpose of
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using an evenness index was to compare the evenness values of different species
abundance distributions, in order to draw some conclusions about the similarity
or differences between these distributions (as was discussed in Section 4.2.3).
For various evenness values e1, e2, e3, ... of the same evenness index, he distin-
guished the following comparisons:

� Size/order comparisons, where the goal is to compare e1 with e2 to deter-
mine if it is greater: e1 > e2

� Difference comparisons, where the goal is to compare changes in evenness
rather than the values themselves: e1 − e2 > e3 − e4

� Proportional difference comparisons: e1 − e2 > c (e3 − e4)

Using this framework, Kvålseth (2015) found that for an index to behave as intu-
itively expected when used for such comparisons, it must take values throughout
its range that are “accurate, true or valid representations”. He therefore proposed
a further index requirement, namely the value validity test, to ensure that all po-
tential numerical values of an index must be reasonable with respect to some gen-
eral criterion. This essentially ensures that an index measures what it is supposed
to measure, and is best illustrated with a numerical example.

Consider, as Kvålseth suggests, the abundance distributions p = (0.75,0.25) and
q = (0.60,0.10,0.10,0.10,0.10). Using the Pielou evenness index (Eq. 4.19), we
find J(p) = 0.81 and J(q) = 0.76. On the basis of this index, we would conclude that
both abundance distributions have high levels of evenness, with p being slightly
more even. However, when comparing p and q to their two extreme distributions
(entirely even and entirely uneven), the components of p and q are equally far
from the corresponding components of the extreme distributions, so that in this
sense we would conclude that the "reasonable" evenness values for both p and q
would be 0.5.

Thus while introducing an additional numerical requirement may seem unneces-
sarily complex, Kvålseth argues that an index may otherwise provide only limited
information about an abundance distribution’s evenness, for example by signif-
icantly overestimating the distribution’s evenness, or demonstrating discontinu-
ously large increases in evenness when the number of species in the community
is increased. These problems have previously been noted elsewhere in the litera-
ture (Bulla, 1994; Smith and Wilson, 1996), and can lead to misleading interpreta-
tions and comparisons.

4.3.2.2 Mathematical properties

In their influential review paper, Smith and Wilson proposed 10 desirable features
that an evenness index should possess in order to behave as would “mathemati-
cally” be expected (Smith and Wilson, 1996):
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1. The index is maximal when the species abundances are equal.

2. The maximum value of the index is 1.0.

3. The index is minimal, for any number of species, when the species abun-
dances are as unequal as possible.

4. Unrealistically uneven communities should not be necessary before the index
value is low (arbitrarily defined as 0.05).

5. The minimum value of the index is 0.

6. The minimum is attainable with any number of species.

7. The index should show a value in the middle of the scale for values we intu-
itively consider intermediate (arbitrarily defined as 0.25 to 0.75).

8. The index should respond in a reasonable way to a series of communities
that changes in evenness (using a series proposed by Alatalo (1981); “rea-
sonable” is taken to mean a convex curve.

9. The index should be symmetric with respect to minor and abundant species,
i.e. a community with several abundant species and one minor species should
have the same evenness value as one with several minor species and one
abundant one.

10. Species abundance distributions that are more skewed should give a lower
value of the index.

Many of these are taken from the extensive literature on the subject of differenti-
ating and choosing between evenness indices. These features are not as widely
accepted as the four essential biological requirements, in part because they con-
tradict the Lorenz criterion, and even conflict with each other (Ricotta, 2004). The
list has also been modified and/or expanded by others, e.g. Eliazar and Sokolov
(2012), Ricotta (2004), Ginebra and Puig (2010), Jost (2010) and Mendes et al.

(2008).

Thus the question of an index’s desirable mathematical behaviour is much less
settled. However, this can be seen as a consequence of the fact that the math-
ematical behaviour of an index is often of lesser importance to researchers in
ecological or microbial ecological fields. Most reviews on the topic conclude by
stating that there is no universal way to measure evenness, and thus researchers
must choose the index most suited for their particular needs (Alatalo, 1981; Smith
and Wilson, 1996; Ricotta, 2004; Tuomisto, 2012; Kvalseth, 2015). This subjectivity
can be regarded instead as flexibility: depending on the particular research ques-
tion or data type, an index can be selected that is optimal for those specificities.
While this limits the comparability of different studies, it also reflects the reality
that studies are generally interested in different facets and aspects of evenness
and diversity, which consequently can be optimally described by different indices.
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4.4 Conclusions

The mathematical consensus is that the ideal diversity measure is one that is an
effective number — this will allow for easy interpretation and comparison of the
diversities of different communities. As outlined in Section 4.2.4, any diversity
index may be converted to its effective number equivalent via straightforward
algebra. For this reason, the choice of diversity index need not be constrained by
the desire to work with effective numbers, since any shortlist of candidates is not
reduced by this requirement, and researchers may choose freely from any of the
established indices.

The next choice to be made is whether to work with a diversity measure that is
similarity-sensitive or not. The traditional, similarity-insensitive measures (also
called the naive measures) are most commonly used in the literature, and the eas-
iest to work with. However, they incorporate no similarity measures due to their
key assumption that all species are equally dissimilar. This is clearly not always
the case, but it may be that in some cases this simplifying assumption presents no
significant drawbacks — for example, if the community under investigation hap-
pens to be composed of wildly different species. In the context of the microbial
communities that we will be studying and modelling throughout this thesis, this
may or may not be the case. In particular, the concept of a “species” in microbial
ecology is not always evident, as discussed in Section 4.2.6.

In cases where microbial strains cannot easily be separated into distinct classes, a
similarity measure enables researchers to study the community’s diversity without
confronting the sometimes tricky issue of species. Several such similarity mea-
sures can be found in the literature, based on notions ranging from functionality
to phylogenetics. Ultimately, the choice of similarity measure can be based on the
type of data being generated.
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PART II
MAINTAINING DIVERSITY IN

COMPETITIVE COMMUNITIES





5

5
The impact of initial

evenness on biodiversity in a
three-species in silico
microbial community

5.1 Introduction

In Chapter 2, we have discussed the importance of maintaining biodiversity in nat-
ural ecosystems, and particularly in microbial systems. Several key mechanisms
underpinning biodiversity were highlighted, most notably non-transitive competi-
tion (see Section 2.5) and high community evenness (Section 2.6). However, we
have also seen in Chapter 3 that empirical and, in particular, modelling studies
of microbial community biodiversity often overlook one if not both of these mech-
anisms (see Section 3.4), despite their significant and well-recognized ecological
role.
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More specifically, variable evenness in microbial ecosystems has not yet been in-
vestigated in computational studies concerning non-transitive competition (see for
example Case et al. (2010), Cheng et al. (2014), and Frachebourg et al. (1996).
Additionally, there is substantial evidence to suggest that perfectly even commun-
ities are rarely found in nature (Wilsey and Polley, 2004; Huston, 1997; Grime,
1998; Smith and Knapp, 2003). Thus it may well be dangerous to assume, as
previous studies have done (Hillebrand et al., 2008), that community evenness
is always maximal. To address this gap, we develop an individual-based model
incorporating both of these two key mechanisms, in order to better understand
their roles in maintaining biodiversity at the microscopic scale. In this way, we can
address research questions 1 and 2 (see Section 1.2):

� What effect does initial evenness have on maintaining community diversity?

� Which types of competitive interactions can help maintain community diver-
sity, and which types can threaten it?

This chapter is structured as follows. In Section 5.2, we introduce the fundamental
processes that underpin ecosystem functioning, and discuss how they are typically
modelled. Then in Section 5.3, we describe our model and the set-up of the simu-
lation studies, and describe the computing resources in Section 5.4. The results of
these simulation studies are presented and discussed in Section 5.5. In the final
section, some conclusions are drawn.

5.2 Fundamental ecosystem processes

As discussed in Chapter 3, recent efforts to understand non-transitive competition
as a mechanism maintaining biodiversity have focused on microscopic models de-
scribing the interactions at the individual rather than the population level (Adam-
son and Morozov, 2012). The individuals — whether they represent microbes,
lizards or humans — are referred to as agents. In such microscopic models, agents
are typically subject to three key demographic processes: reproduction, competi-
tion and mobility, which we denote as occurring at rates μ, σ and ε

�

T−1
�

, respec-
tively, and which in our setting are not dependent on the particular species in the
modelled community.

5.2.1 Rate equations

In these settings, reproduction can occur when an agent finds itself adjacent to
an empty space — “a space” can be defined in various ways, depending on the
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particular model (see Section 3.3) — which is then filled with a new agent of the
same species. In order to provide a form of mobility, all agents can at some rate
ε exchange their position with a nearby neighbour (which can again be defined in
several ways) or move to a neighbouring empty space. For a community of three
species A, B and C, these processes are represented by the rate equations (5.1),
in which ∅ represents an empty space:























A∅
μ
→ AA

B∅
μ
→ BB

C∅
μ
→ CC

,























AB
σ→ A∅

BC
σ→ B∅

CA
σ→ C∅

,























A∅
ε→ ∅A

B∅
ε→ ∅B

C∅
ε→ ∅C

. (5.1)

5.2.2 Competition

When competition between the species in a community is fully connected — that
is, each species interacts with every other species — this competition structure
is called a tournament graph. In the terminology of graph theory, a tournament
graph is a directed graph in which every pair of distinct vertices is connected by a
single directed edge (Dutton and Brigham, 1983). Such a graph can be interpreted
as the outcome of a “round-robin tournament” where every player competes with
every other player exactly once; the vertices correspond to the players and the
edge between each pair of players is oriented from the winner to the loser (Laird
and Schamp, 2015).

Between three species, there are two possible tournament graphs (Figure 5.1). In
the first case, known as hierarchical competition, species A beats both species B
and species C, while species B beats species C. This leads to a simple chain. In
the second case, known as cyclic competition, the three species are engaged in a
rock-paper-scissors game.
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Figure 5.1: Competition between three species: (a) hierarchical (transitive) and (b) cyclic (non-
transitive).

5.2.3 Mean field analysis

System (5.1) of rate equations gives rise to System (5.2) of ODEs, which model
the population densities A,B and C of the three species through time. These
equations hold for a well-mixed system with a large number of agents (Reichen-
bach et al., 2008), two significant simplifying assumptions. As is the convention in
such models, the equations include a reproduction rate μ, competition rate σ and
ρ = A + B + C:







































dA

dt
= A[μ (1 − ρ) − σC]

dB

dt
= B[μ (1 − ρ) − σA]

dC

dt
= C[μ (1 − ρ) − σB]

(5.2)

However, these equations ignore a key characteristic of interactions between agents,
namely the spatial component. This oversight can be addressed by shifting to
PDEs. The population densities then become functions of both space and time. In
addition, diffusion is introduced to describe spatial movement.

As a further extension, in order to mimic the stochasticity of the system, Gaussian
white noise terms ξ(r, t) with a spatio-temporal dependence are also included. The
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resulting system of stochastic PDEs (SPDEs) is given by:



































∂A

∂t
(r, t) = δ∇2A(r, t) + μA(r, t)[1 − ρ(r, t)] − σA(r, t)C(r, t) + cAξA(r, t)

∂B

∂t
(r, t) = δ∇2B(r, t) + μB(r, t)[1 − ρ(r, t)] − σB(r, t)A(r, t) + cBξB(r, t)

∂C

∂t
(r, t) = δ∇2C(r, t) + μC(r, t)[1 − ρ(r, t)] − σC(r, t)B(r, t) + cCξC(r, t),

(5.3)

where ∇2 is the Laplacian operator, r = (r1, ...., rn) is a vector in n-dimensional
space and δ is the diffusion coefficient (with units of area per time).

By ignoring the noise terms in System (5.3), Reichenbach et al. (2007) were able
to cast the deterministic equations into the form of a complex Ginzburg-Landau
equation:

∂z

∂t
= M

∂2z

∂r2
+ c1z − (1 − c3) |z|2 z, (5.4)

where z is a complex variable, M = 2εN−1 is the mobility assigned to the individu-
als, and c1 and c3 are constants dependent on σ and μ.

This equation gives rise to the formation of dynamic spirals and allows for the
derivation of analytic results relating to their wavelength (the distance over which
the spiral’s shape repeats) and frequency (how often the spiral’s shape repeats
over a distance relative to its point of origin). When the spirals exceed a certain
critical wavelength (which can be associated with a critical mobility value), the spi-
rals exceed the system size, resulting in their destruction and the loss of system
biodiversity — the same type of behaviour seen in the deterministic three-species
system. Thus by casting System (5.3) into the form of Eq. (5.4), Reichenbach
et al. (2007) were able to analytically predict whether biodiversity would be pre-
served or lost, given the position in the parameter space.

While this PDE-based approach allowed for an improved mechanistic understand-
ing of the system’s route to extinction, it also comes with the usual drawbacks
of population-level models that were discussed in detail in Section 3.2.1. Given
the important role that individual variability plays in microbial systems (see Sec-
tion 2.3.2), and the recent pronounced shift towards individual-based models in
the microbiological and microbial ecological literature (see Section 3.2.3), this rep-
resents an important gap deserving of further investigation.

5.3 Model description

Our goal is to study the effects of both variable evenness and non-transitive com-
petition on the maintenance of biodiversity. Given the limitations of the mean
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field approach discussed in Section 5.2.3, we turn to computational methods to
study this system. To this end, we consider a system of three interacting bacte-
rial species, and present a stochastic, spatial individual-based model simulating
the system dynamics and allowing for the assessment of the effect of variable
initial evenness. As a foundational framework, we use the model discussed in
Section 3.3, proposed by Reichenbach et al. (Reichenbach et al., 2007). We de-
scribe our IBM using the ODD (Overview, Design Concepts and Details) protocol
described in Section 3.2.3.

5.3.1 Overview

5.3.1.1 Purpose

The aim of the model is to investigate how variable initial evenness and non-
transitive competition between individuals affect the maintenance of community
biodiversity.

5.3.1.2 State variables and scales

The model is a two-dimensional representation of an experimental domain divided
into a regular grid of size L× L = N, and populated by a community of three species
denoted by A, B and C. Each grid site is either occupied by a single individual, or
is empty. Individuals are characterized by two state variables: grid position (, y)
and species identity s ∈ {A,B,C}.

5.3.1.3 Process overview

We consider an in silico microbial community that is initially placed on the grid
with a random spatial distribution. The community’s initial species abundance
distribution is constructed to obtain a desired level of evenness.

An individual can interact with its nearest neighbours, defined as those individu-
als in its von Neumann neighbourhood (the four grid cells with which it shares an
edge). Three possible interactions can occur, representing the three key demo-
graphic processes discussed in Section 3.4: reproduction, competition and mobil-
ity.

The mechanisms of these interactions are illustrated in Figure 5.2. Reproduction
can occur when an individual is located adjacent to an empty grid site, which is
then filled with a new individual of the same species. In order to provide a form
of mobility, all individuals can exchange their position with a nearest neighbour or
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move to a neighbouring empty site. Competition can occur between two neigh-
bouring individuals of different species. The outcome of the competition event is
determined by the governing cyclic competition scheme; the defeated individual
is removed from the grid and the grid site becomes empty.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Mechanisms of demographic processes, for individual in silico bacteria of three species.

5.3.1.4 Scheduling

The IBM proceeds in discrete time steps. Within each time step, the dynamics
of the IBM are governed by reproduction, competition and mobility. To simulate
the evolution of the in silico community, we must specify which type of interac-
tion event will occur and which individual will be the focus of the interaction. For
this purpose, we used a modified version of a procedure called the Gillespie algo-
rithm, which is often used in models of biological or chemical systems (Gillespie,
1976). The procedure involves an asynchronous random execution of the inter-
action events, and assumes that one event occurs at a time. It iterates over the
following steps:

1. Set time to t = 0 and set the event rates:

(a) reproduction with rate μ

(b) competition with rate σ

(c) mobility with rate ε
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2. Calculate the overall rate of events r = μ + σ + ε

3. Select an individual at random

4. Select one of the focal individual’s nearest neighbours at random

5. Select an interaction event with the following probabilities, by drawing a ran-
dom number from the interval [0, r]:

(a) reproduction with a probability μ
r

(b) competition with a probability σ
r

(c) mobility with a probability ε
r

6. Execute the selected interaction event on the selected individual (if permit-
ted) and determine the outcome according to the governing rules

7. Update the grid according to the outcome of step 6

8. Update the time step to t = t + 1

9. Return to step 3 and continue until t = tend

Thus the algorithm advances by use of a Monte Carlo step, where random numbers
are generated to determine the next process to occur. We aggregate these time
steps into generations: a generation is defined as the number of time steps for,
on average, each individual to be the subject of one interaction event, i.e.N Monte
Carlo steps for a grid of size L× L = N. The length of the simulation is then defined
by the number of generations for which the model is evolved (Reichenbach et al.,
2007).

5.3.2 Design concepts

� Emergence: the spatial patterns and population-level dynamics of the com-
munity emerge naturally from the interactions occurring between individuals.

� Interactions: individuals interact with each other and their environment
by reproducing if located next to an empty site, exchanging sites with their
neighbours, or competing with their neighbours.

� Stochasticity: the stochasticity in the model arises from the initial spatial
distribution of the grid; the interactions between individuals and the envi-
ronment (reproduction); and the interactions between individuals (mobility,
competition).

� Sensing: if selected for reproduction, individuals can sense whether their
neighbouring site is empty; if so, they will reproduce. If the site is occupied
by an individual, no reproduction will occur.
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� Observation: the data collected from the IBM includes the population count
of each species, the community evenness, the spatial distribution of individ-
uals, and their time to extinction. These are tracked for each time step.

5.3.3 Details

5.3.3.1 Initialization

The model is initialized with a random spatial distribution of individuals and empty
sites. Initially, a certain proportion of grid sites are left empty; thus the system
is initially below carrying capacity. The initial species abundance distribution is
determined by a selected evenness value, which is used to generate a vector of
population abundances. Individuals are then randomly placed in the remaining
grid sites according to these proportions.

To determine the relative proportions of each species in an initial community con-
figuration, we must generate a vector of population proportions satisfying a given
initial evenness, using a particular index. For this purpose, we must be able to
rely on dedicated sampling algorithms. These algorithms must sample from the
space of all possible vectors as uniformly, accurately and inexpensively as possi-
ble. In the three-species setting, the space of all possible population vectors is the
simplex (Figure 5.3).

Figure 5.3: Examples of population vectors for a three-species communities corresponding to an even-
ness value of 0.8 (Gini), plotted in the simplex. In the simplex, points closer to the centre are more even,
so that the point in the centre represents the population vector ( 13 ,

1
3 ,

1
3 ), while points closer to the ver-

tices represent more uneven population vectors, so that for example a point at vertex A represents the
population vector (1,0,0).

Three evenness indices were chosen for implementation: the Simpson, Gini and
Shannon indices. As discussed in Section 4.3.2.2, these indices satisfy Smith and
Wilson’s axioms and are among the most frequently used in the literature.
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Recall that the Simpson index ranges from 1/S (perfect inequality) to 1 (perfect
equality), and is defined as

E(p) =
1

S
S
∑

=1
p2

where p = (p1, ..., pS) is the vector of species proportions and S is the number of
species.

For the Simpson index, sampling is straightforward because it is possible to obtain
a geometrical description of the sampling region in the space of proportions p; that
is, solving the expression for the Simpson index to obtain the limiting proportions
p in terms of evenness E.

Thus for a given evenness value E, species proportions are sampled from the two-

dimensional region enclosed by the p-axis and the curves p = 1
2 −

Ç
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2
p
3

; p =
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Ç
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The first species proportion is selected randomly along the line segments given
by the intersection between the sampling region and the line p = E. Then the
second species proportion is selected randomly along the same segments, subject
to constraints imposed by the value of the first species proportion; and so on. The
final species proportion is then determined by the proportions of the rest of the
species, since these proportions must sum to one.

The Gini index ranges from zero (perfect inequality) to 1 (perfect equality) and is
defined as

G(p) =
2

S − 1











S −

S
∑

=1
 p

S
∑

=1
p











where the p are sorted such that p < p+1.

The Gini index can be sampled using a consistent estimator (Davidson, 2009).
Species proportions are sampled from the two-dimensional region enclosed by the
p-axis and the lines p = 3

4E −
1
2 ; p = − 34E + 1; p = − 32E + 1; and p = 3

2E, where E

is the given evenness value. The proportion of each species is sampled according
to a given evenness value in a similar manner as described above for the Simpson
index.

The Shannon index ranges from zero (perfect inequality) to 1 (perfect equality)
and is calculated as

H(p) = −

S
∑

=1
pln(p)

ln(S)
.

An analytic expression generating population vectors satisfying the Shannon index
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is not possible, thus population vectors for this index were sampled using the sim-
ulated annealing minimization algorithm, a commonly used algorithm for global
optimization (Kirkpatrick et al., 1983). The following parameters were used: a
maximum of 50 iterations to stay at a given point; a random jump scale of 2.0;
and a tolerance of 0.0001.

In Figure 5.4 we show the results of these sampling algorithms, for 1.000 different
evenness values. Although the three indices measure the same quantity, namely
the evenness of the community, we have seen in Section 4.3.1 that they can be-
have differently due to the differences in their formulation. Accordingly, we can
notice in Figure 5.4 differences in their sampling regions. Most notably, the Simp-
son index ranges between 1

3 and 1, while the other two indices range between zero
and 1. However, they all share the same general shape. For low evenness values,
one species is necessarily dominating the community, while the other two species
are present in very low proportions. This results in the sampling regions taking
the shape of two ”arms“ for low evenness values. In contrast, for high evenness
values the three species proportions are all close to 1

3 .
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Figure 5.4: Results of sampling algorithms for (a) Simpson evenness index, (b) Gini evenness index, and
(c) Shannon evenness index. The evenness value of the population vector is shown on the -axis, while
the three corresponding population proportions are plotted (in different colours) on the y-axis.

Aside from the input variables, all other parameters used to initialize the model
are fixed for all simulations, and are shown in Table 5.1.
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Table 5.1: Parameters of the individual-based model.

Parameter Description Value
L Grid side length 100
ø Initial proportion empty sites 0.1
μ Reproduction rate 1
σ Competition rate 1
ε Mobility rate 4.25
T Number of generations evolved 500

5.3.3.2 Input

The input variable is the initial community evenness. We check a range of initial
evenness values, systematically chosen so as to sample the entire range of pos-
sible values: [0,1] for the Gini and Shannon indices, and

�

0, 1S
�

for the Simpson
index, where S is the richness of the community.

5.4 Computing infrastructure

The model was implemented using Mathematica (Version 10, Wolfram Research
Inc.). Simulations were executed using the High Performance Computing (HPC)
infrastructure at Ghent University1. As of 2016, the UGent HPC infrastructure con-
sisted of 568 computing nodes distributed among seven computing clusters. Every
node comprises at least eight cores, resulting in a total of 11,328 processor cores
available for performing intense computational tasks.

For this work, computing jobs were submitted to the HPC as array jobs, which are
useful when confronted with very large numbers of jobs that are largely identical
and differ only in the values of parameters they use. Hence, for each competition
scheme, an array job was submitted to test a range of initial evenness values. The
HPC provides an efficient implementation of array jobs, handling the computations
as an array of independent tasks joined into a single job. For the simulations
described in this chapter, a typical array job tested 50 different initial evenness
values, computing 100 replicates of each condition, for a total of 5000 jobs; each
job represented a simulation of 500 generations, or 5 million Monte Carlo steps.
This required a total computing time of approximately 200 minutes for the three
species model.

1https://www.ugent.be/hpc/
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5.5 Results and discussion

We present the results of simulation studies of variable initial evenness for the
three-species models. For the sake of brevity, in the results shown in the following
section we use the Gini evenness index. Simulations using the other two indices
(Simpson and Shannon) produce qualitatively similar results, although in the case
of the Simpson index, evenness values are contained in the interval [ 1S ,1], where
S is the number of species, as opposed to the unit interval as in the cases of the
Gini and Shannon indices.

5.5.1 Final community configuration

As discussed in Section 5.2.2, there are two possible tournament graphs for three
species: hierarchical competition and cyclic competition (Figure 5.1). In Figure 5.5,
for each competition scheme we plot the final community configuration of 5.000
simulations on the simplex. Points located at the vertices represent communities
with only one surviving species, and two others extinct. Points on the edges of the
simplex represent communities with one species extinct (the one represented by
the vertex opposite the edge) and two surviving. A point located in the centre of
the simplex represents a community where the three species are present in equal
proportions, i.e. where evenness is maximal. Thus the closer a point is located
to the centre, the higher the evenness of that community. In contrast, a point
located close to a vertex (say, species A) represents a community with a very
high proportion of species A, and very low proportions of species B and C, i.e. a
very uneven community. A point’s colour represents the initial evenness of the
community.

It is then immediately obvious that hierarchical competition — Figure 5.5(a) —
results in extremely uneven communities. The final community configurations of
almost all simulations are unsurprisingly located at the A-vertex, indicating survival
of the top predator and extinction of the two other species. In no cases did the
species C at the bottom of the food chain survive. In addition, all points not located
at the A-vertex represent communities with with very low initial evenness. These
communities were initially dominated by a species other than the top predator,
thus extending the time necessary for the system to reach its steady state of
complete apex predator domination.

In the case of cyclic competition — Figure 5.5(b) — the final community configu-
rations are distributed much more evenly over the simplex, indicating that a wide
variety of final configurations is possible. Most points (45%) are located in the inte-
rior of the simplex, indicating that all species persist; 29% are located on an edge,
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indicating extinction of one species, whereas 27% of points are located at a ver-
tex, indicating extinction of two species. We note that points located closer to the
centre of the simplex (indicating very high final evenness) represent communities
with high initial evenness. In contrast, points not in the interior (thus having suf-
fered at least one extinction) represent communities with lower initial evenness.
There is thus a positive relationship between initial evenness and coexistence.

(a) (b)

0 0.2 0.4 0.6 0.8 1.0

Figure 5.5: Final community configurations of 5.000 simulations for communities of three species me-
diated by: (a) hierarchical competition and (b) cyclic competition. Colours indicate initial community
evenness, according to the colour bar legend.

5.5.2 Extinctions

We can attempt to quantify this positive relationship by looking at the probability
of extinction for each species as a function of initial community evenness, shown
in Figure 5.6. We firstly note that initial evenness appears to have no effect on
the dynamics of communities with hierarchical competition. The dominance of the
apex predator is so complete that even in initially extremely uneven communities,
which may be dominated by one of the prey species, the probability of extinc-
tion is almost zero for the apex predator, and very high for the two prey species
lower in the food chain. Thus when considering probability of species extinction,
initial evenness does not have any effect on the system dynamics of hierarchical
competition.
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Figure 5.6: For each species, probability of extinction within 500 generations as a function of initial
evenness, based on 5.000 simulations: (a) hierarchical competition and (b) cyclic competition.

In contrast, initial evenness has a marked effect on the extinction probabilities of
species in cyclic competition. We first note that, as expected, extinction probabil-
ities are extremely similar between species, due to the symmetrical nature of the
competition scheme. Any differences are due to stochastic fluctuations. We also
note a significant drop in probability of extinction as initial evenness increases,
from as high as 0.6 for very low evenness to zero for complete initial evenness.
Note that an extinction probability of zero relates to the finite and fixed simulation
period, and does not imply that the species will never go extinct.

These transitions are not difficult to understand; with low initial evenness, one
species outnumbers the other two, which are present in only small proportions
and are hence more vulnerable to their predator, as well as to stochastic fluctua-
tions. They are thus more easily driven to extinction. As evenness increases, the
three species are present in ever more equal proportions, allowing them to stay
locked in cyclic competition (thus not especially vulnerable to one predator) and
less vulnerable to stochastic fluctuations.

As another measure of system stability, we can examine the time until the first
extinction event (Figure 5.7). Here the differences between the two competition
schemes are again evident. Hierarchical competition implies extremely rapid ex-
tinction events, so that biodiversity cannot be maintained over any significant
length of time. The variability of extinction times is significantly larger for lower
initial evenness. This is due to the fact that low initial evenness can imply commun-
ities where the apex predator is initially present in very low proportions. In such

+· +· 

• • • 
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cases there is an initial transient period while the apex predator grows in number,
during which the other species can temporarily persist, though their numbers are
declining monotonically due to predation by the rapidly increasing population of
apex predators.

We note here that these results are in effect “blind” to different compositions of
communities with the same initial evenness. For example, two communities may
have an evenness value of say 0.2, but Community 1 has a high proportion of
species A and low proportions of species B and C, while Community 2 has a high
proportion of species C and low proportions of species A and B. In the majority
of cases, these two communities do not evolve to give different final results. For
example, in virtually all cases with hierarchical competition, species A (at the top
of the chain) will dominate and persist alone, regardless of the composition of the
initial uneven community. The varying compositions of the communities in general
merely delay the system arriving at its steady state. The important exception to
this is the case of extremely uneven communities. In such cases, all but one of the
species are initially present in such low proportions that they are vulnerable to ex-
tinction due to stochastic fluctuations, regardless of their place in the competition
structure. This can be seen in Figure 5.7(a), where the variability in the mean time
to extinction is significantly larger for very low evenness.

Thus the time until the first extinction can be extended with lower initial evenness,
but is in generally still extremely brief. On the other hand, aside from the region of
very low evenness where dynamics are dominated by stochastic fluctuations, the
average time to extinction increases slightly with initial evenness. In this narrow
sense, initial evenness can be said to have a small stabilizing effect on system
dynamics.
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Figure 5.7: Time to first extinction event as a function of initial evenness: (a) hierarchical competition
and (b) cyclic competition. Orange points represent the mean time to extinction for each initial evenness
value.

In the case of cyclic competition, the behaviour is reversed in that the variability
in the time until the first extinction increases with initial evenness. The average
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time to extinction also increases exponentially (with growth rate 2.7). In addition,
note that very few extinction events occur for evenness higher than 0.8, and none
occur for evenness higher than 0.9. Thus a higher initial evenness significantly
extends the region of the parameter space where diversity is maintained, support-
ing experimental observations that shifting to a more even community promotes
biodiversity (Isbell et al., 2009b).

This finding is also supported by theoretical results. It was shown for the basic
two-species (predator-prey) Lotka-Volterra model that while deterministic dynam-
ics correspond to oscillations about an elliptic fixed point at the center (corre-
sponding here to perfect evenness), extinction occurs via radial diffusion towards
the edges (Parker and Kamenev, 2010). In our case, the initial distance from the
centre of the simplex corresponds to the initial evenness and hence the larger the
initial evenness, the larger the distance to the edges of the simplex, and the longer
it takes for the system to reach a homogeneous state.

The mean time to extinction in well-mixed systems for cyclic competition has been
well-studied in the literature (Szabó and Fath, 2007). Comparing the results from
our IBM to those obtained in (Dobrinevski and Frey, 2012), we do not find a very
good agreement: both the qualitative and quantitative behaviour is different. The
mean time to extinction, as a function of the initial condition, is much shorter for
the IBM than for the mean field approximation. This points to the important role
that spatial heterogeneities play in this system, which agrees with previous mod-
elling studies that also found significant differences in behaviour and dynamics
between well-mixed and spatially heterogeneous versions of the same experimen-
tal system (Adamson and Morozov, 2012; Schreiber and Killingback, 2013; Laird,
2014).

5.6 Conclusions

Two competition schemes have been examined with simulation studies modelling
various possible communities, which result in qualitatively different coexistence
and extinction scenarios. System behaviour is strongly dependent on initial even-
ness and competition scheme.

The dynamics induced by the hierarchical competition scheme do not permit co-
existence of all species. There are frequent extinction events, which typically oc-
cur very rapidly. Varying the community’s initial evenness cannot counteract the
competitive dynamics which necessarily result in the persistence of a single spe-
cies, with the other two species quickly collapsing to extinction. Very low initial
evenness can only extend the initial transient period before the system settles to
its steady state, because in this case the community can be initialized with the
apex predator present in initially very low proportions. This effect is lost as initial
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evenness increases, after which the community dynamics become insensitive to
varying initial evenness.

In the case of the cyclic competition scheme, low initial evenness can counteract
the stabilizing dynamics of the competition scheme and provoke extinctions. In
contrast, higher initial evenness can have an important stabilizing effect, in the
sense that the time until the first species extinction increases significantly as ini-
tial evenness increases. By extending the region of biodiversity in this way, there
is sufficient time for system behaviour to be affected by other factors such as com-
petition scheme, rates of competition and mobility. These results support experi-
mental observations that biodiversity is promoted by increasing evenness (Isbell
et al., 2009b).

Our results demonstrate the danger in overlooking variable community evenness
and making the typical assumption that communities are maximally even, despite
mounting evidence to the contrary (Wilsey and Polley, 2004; Huston, 1997; Grime,
1998; Smith and Knapp, 2003). This oversight also ignores the fact that damages
due to human actions can affect the evenness of natural communities, often mak-
ing them more vulnerable to invasion, stresses and disturbances (Wittebolle et al.,
2009). While theoretical studies such as this one are beginning to increase in num-
ber, experimental studies to validate their conclusions are still lacking (Isbell et al.,
2009b).
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6

6
The impact of initial

evenness and invasion on
biodiversity in a four-species
in silico microbial community

6.1 Introduction

In Chapter 5, we have investigated the effects of variable community evenness on
communities’ ability to maintain their diversity when there is competition occur-
ring between the community members. We focused in particular on non-transitive
competition, since this has been shown to be key in preserving community di-
versity and functionality (Hillebrand et al., 2008; Wittebolle et al., 2009; De Roy
et al., 2013), and has not previously been investigated in conjunction with variable
community evenness (Case et al., 2010; Cheng et al., 2014; Frachebourg et al.,
1996).
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We now shift our focus to communities of four interacting species. This setting
is much less studied than the three-species case (Szabó and Fath, 2007). It not
only admits more complicated competition schemes, but also allows for different
experimental approaches to be considered.

We have previously discussed the different experimental techniques that are used
to study interactions in microbial communities, in particular competitive interac-
tions. The first of two broad approaches are co-cultures, where all species are
inoculated at the start of the experiment and allowed to evolve together towards
a steady state, whatever it might be. This was discussed in detail in Section 2.3.3.
The second experimental approach considers invasion, where an alien species in-
filtrates a stable resident community and must compete with the resident commu-
nity members in order to establish itself. Invasion theory and experiments were
discussed in Section 3.4.2.3.

It has been shown that these two different experimental set-ups can result in very
different outcomes even when using the same group of microbial species (Tan
et al., 2015; Sekhar et al., 2016; Gilbert et al., 2003; Yoshida et al., 2009) (Hore-
mans et al., 2017, in prep).

With only three species, it is not possible to investigate invasion when the species
are engaged in non-transitive competition, since the initial absence of one species
results in unbalanced dynamics and leads to extinctions. In contrast, with four
species we may begin an experiment with a stable coexisting community of three
species, and later add a fourth species.

We therefore develop an IBM of four interacting species, in order to study the
effects of non-transitive competition and variable community evenness on the
maintenance of community diversity, under the two different experimental set-
ups defined above. In this way, we can address research questions 1 and 2 (see
Section 1.2) in a more complex setting than in Chapter 5, while also considering
question 3:

� What effect does initial evenness have on maintaining community diversity?

� Which types of competitive interactions can help maintain community diver-
sity, and which types can threaten it?

� What effect does initial evenness have when a community is faced with in-
vasion?

This chapter is structured as follows. In Section 6.2, we study non-transitive com-
petition and variable evenness via the use of in silico co-culture experiments, in
order to understand their effects on community biodiversity. Thus in Section 6.2.1
we discuss non-transitive competition in the case of four species, and in Sec-
tion 6.2.2 outline the predictions of the mean field approximation in this case.
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In Section 6.2.3, we present our IBM incorporating cyclic competition and variable
evenness, and describe the set-up of the co-culture simulation studies, the results
of which are presented and discussed in Section 6.2.4.

Then in Section 6.3 we study the same phenomena of cyclic competition and vari-
able evenness in the context of invasion, again to understand the effects on com-
munity diversity and stability. The corresponding IBM and in silico experimental
set-up are described in Section 6.3.1, and the results of these experiments are
presented and discussed in Section 6.3.2. Finally, in Section 6.4 conclusions re-
garding the two different set-ups are drawn.

6.2 Co-culture experiments

6.2.1 Competition

Competition in the four-species setting is more complex than in the three-species
case, since there are now four possible tournament graphs (up to a re-labelling of
species) for fully connected competition between four species (Figure 6.1).

A

B C

D

(a) Scheme 1

A

B C

D

(b) Scheme 2

A

B C

D

(c) Scheme 3

A

B C

D

(d) Scheme 4

Figure 6.1: Competition between four species.
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Schemes 1, 2 and 3 involve three species engaged in cyclic competition between
themselves, with a fourth species that interacts with the others in various ways.
In Scheme 1, the fourth species dominates all others (and is referred to as the top,
or apex, predator); in Scheme 2 it is preyed upon by all others; and in Scheme 3 it
dominates two species and is preyed upon by the third. This is shown in Figure 6.1,
where those species coloured in red are members of a sub-cycle of three species,
while those in green are not. Note that Scheme 3 contains two sub-cycles of three
species (A-B-C and A-B-D), while Schemes 1 and 2 each contain only one. Finally,
Scheme 4 is the only competition scheme that does not contain a sub-cycle of
three species, but rather is a strict competitive hierarchy with the ranking A, B, C,
D.

If we relax our requirement that the competition structure be fully connected, we
can find many simpler cases. We mention in particular the case of a cycle with
neutral pairs (Figure 6.2), which has been extensively studied in the literature (see
e.g. Szabó and Szanaider (2004), Intoy and Pleiming (2013), Lütz et al. (2013),
and Durney et al. (2012)). In this case, each species interacts with only two other
species (one prey, one predator), and ignores the third. Therefore there are two
pairs of non-interacting species, A paired with C and B paired with D, whence the
term neutral pairs (Durney et al., 2011), and we are left with a simple cycle of four
species.

This four-species neutral pairs scheme produces behaviour qualitatively different
from the corresponding three-species case (Figure 5.1(a)), which typically results
in either sustained coexistence of all three species or (in the case of oscillations
that approach too closely the edge of the simplex) extinction of two species and
persistence of the third. In contrast, the four-species neutral pairs case typically
results in communities of two non-interacting species (A and C, or B and D) or
communities of all four species that are located in the simplex along a gradient
connecting the two non-interacting steady states (Dobrinevski and Frey, 2012).

A

B C

D

Figure 6.2: Cyclic competition with neutral pairs.
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6.2.2 Mean field analysis

In the setting of four species, the mean field approach can be applied to the case
of a simple cycle with neutral pairs (Figure 6.2), yielding the following system of
ODEs modelling the population densities A,B,C and D of the four species through
time:
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dA

dt
= A[μ (1 − Ω) − σD]

dB

dt
= B[μ (1 − Ω) − σA]

dC

dt
= C[μ (1 − Ω) − σB]

dD

dt
= D[μ (1 − Ω) − σC]

(6.1)

where Ω = A + B + C + D.

However, even in this simpler case, the mean field approach fails to yield insight
into extinctions (Case et al., 2010). This is because the mean field assumption is
only suitable for large populations; the fractions in the mean field equations will
never vanish in finite time and hence the approximation breaks down near the
extinction of one or more species (Durney et al., 2011). Thus the mean field equa-
tions cannot be used to analytically determine either the probability of extinction
for each species or the average time to extinction.

Thus for more precise insights into the dynamics of the system, we must turn to
other approaches. One study uses a PDE, known as the Fokker-Planck equation,
to approximate the dynamics of the stochastic system; the Fokker-Planck equation
can then in turn be reformulated as an SPDE called the Langevin equation (Do-
brinevski and Frey, 2012). Stochastic simulations of this equation can then be
used to obtain mean extinction times and extinction probabilities as a function of
the system’s parameter values (Dobrinevski and Frey, 2012). However, it should
be noted that this approximation of the stochastic system can result in exponen-
tially large errors (Doering et al., 2005).

In the more complex case of fully connected competition (Figure 6.1), we show
System (6.2) as an example of the system of ODEs one obtains by applying the
mean field approach to Scheme 2 (Figure 6.1b).
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

























































dA

dt
= A[μ (1 − P) − σC]

dB

dt
= B[μ (1 − P) − σA]

dC

dt
= C[μ (1 − P) − σB]

dD

dt
= D[μ (1 − P) − σ (A + B + C)]

(6.2)

Similar systems can easily be obtained for the other fully connected competition
schemes. These equations admit several equilibria, whose linear stability can be
determined from the governing Jacobian, more specifically the sign of the real part
of its eigenvalues. A fixed point is unstable if at least one of the corresponding
eigenvalues has a positive real part; otherwise it is stable (Glendinning, 1994).

The system of ODEs representing Scheme 1 (Figure 6.1a) has five equilibrium
points: ∗1 = (1,0,0,0), 

∗
2 = (0,1,0,0), 

∗
3 = (0,0,1,0), 

∗
4 = (0,0,0,1) and

∗5 = (
1
3 ,

1
3 ,

1
3 ,0). The first four equilibria are homogeneous states representing

the persistence of a single species, while the fifth equilibrium is the only one per-
mitting a level of coexistence. Of these five equilibria, all are unstable except
for ∗4 , which indicates the persistence of species D alone. This is unsurprising
given that species D is the apex predator in this competition scheme, and hence
dominates the competitive interactions.

Scheme 2 (Figure 6.1b) admits the same five equilibrium points as Scheme 1, but
in this case the only stable state is ∗5 : coexistence of the three species in cyclic
competition and extinction of the fourth, species D. All other equilibria are unsta-
ble. Again this reflects what we would intuitively expect from this competition sch-
eme — the species that is preyed upon by all others collapses to extinction, while
the three remaining species persist in cyclic competition identical to System (5.2),
the case of three species in cyclic competition.

Scheme 3 (Figure 6.1c) admits an additional coexistence equilibrium ∗6 =

( 13 ,
1
3 ,0,

1
3 ), which is unstable. In this case, the stable states are ∗2 and ∗4 , indi-

cating the sole persistence of either species B or species D.

Scheme 4 (Figure 6.1d) has only four equilibrium points — it does not admit any
steady state permitting coexistence, only the four equilibrium points ∗1 to ∗4 . Of
these, only ∗1 is stable, representing the homogeneous state of species A persis-
tence.

In Figure 6.3 below we show the evolution of the species fractions for each compe-
tition scheme, starting from an initial condition with fractions (0.25,0.2,0.25,0.2)
for species A - D respectively. The differences between the competition schemes in
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the mean field approximation are clear: Schemes 1 and 4 quickly settle to a homo-
geneous steady state, with a single species persisting and all others extinct, while
Schemes 2 and 3 result in a fast extinction of one species, with the other three
persisting in oscillating fractions. The amplitude of the oscillations is greater, and
the period shorter, for Scheme 3 than for Scheme 2.
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(c) Scheme 3
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(d) Scheme 4
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Figure 6.3: Mean field evolution of the species fractions over time, for each competition scheme.

For the fully connected cases, no invariant of motion exists that involves all four
species fractions. In contrast, the neutral pairs case (Figure 6.2) admits two such
invariants, which therefore prevent any species collapsing to extinction (Case
et al., 2010). This is why coexistence equilibria involving all four species can be
found for the neutral pairs case, where the species fractions oscillate indefinitely
along a fixed, closed orbit in the phase space (Dobrinevski and Frey, 2012). This
does not hold for the fully connected cases. We can find an invariant of motion if
we allow one species to go extinct. For Scheme 2, if D = 0 then the algebraic prod-
uct ABC is an invariant, while for Scheme 3, if C = 0 then the algebraic product
ABD is an invariant (Lütz et al., 2013). Thus the mean field equations suggest that
extinction events occur rapidly and frequently for these competition schemes.
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6.2.3 Model description

Given the limitations of the mean field approach discussed in Section 6.2.2, we
again turn to computational methods to study the effects of both variable even-
ness and non-transitive competition on the maintenance of biodiversity in this sys-
tem. We therefore extend the model developed in Chapter 5 to incorporate a fourth
species, and the corresponding competition schemes. We describe our IBM using
an abbreviated ODD (Overview, Design Concepts and Details) protocol. Since the
four-species model is constructed in an analogous way to the three-species model,
we address only the sections of the ODD protocol where the four-species model
differs from the three-species model.

6.2.3.1 Overview

Purpose

The aim of the model is again to investigate how variable initial evenness and non-
transitive competition between individuals affect the maintenance of biodiversity,
this time for a community of four species.

State variables and scales

The model is a two-dimensional representation of an experimental domain divided
into a regular grid of size L× L = N, and populated by a community of four species
denoted by A, B, C and D. Each grid site is either occupied by a single individual, or
is empty. Individuals are characterized by two state variables: grid position (, y)
and species identity s ∈ {A,B,C,D}.

Process overview

Three possible interactions can occur: reproduction, competition and mobility. The
mechanisms of these interactions are implemented in the same way as for the
three-species model (see Section 5.3.1.3). These are illustrated in Figure 6.4 for
the case of four species.
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Figure 6.4: Mechanisms of demographic processes, for individual in silico bacteria of four species.

Scheduling

The IBM proceeds in the same way as the three-species model, using a modified
version of the Gillespie algorithm to determine which interaction occurs at each
time step (Section 5.3.1.4). Recall that time steps are aggregated into generations:
the number of time steps for, on average, each individual to be the subject of one
interaction event, i.e.N Monte Carlo steps for a grid of size L× L = N. The length of
the simulation is then defined by the number of generations for which the model
is evolved.

6.2.3.2 Design concepts

The design concepts of the four-species IBM are the same as those of the three-
species IBM (Section 5.3.2).

6.2.3.3 Details

Initialization

The model is initialized with a random spatial distribution of individuals and empty
sites. All species are present in this initial seeding, representing a co-culture ex-
periment of simultaneous inoculation of all species. The initial species abundance
distribution is determined by a selected evenness value, which is used to generate
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a vector of population abundances. Individuals are then randomly placed in the
remaining grid sites according to these proportions.

We again use sampling algorithms to generate vectors of population proportions
satisfying a given initial evenness, for our three selected indices: Simpson, Gini
and Shannon. In the four-species setting, the space of all possible population
vectors is the 3-simplex, also called a tetrahedron (Figure 6.5).

A

B

C

D

Figure 6.5: Population vectors for four-species communities corresponding to a fixed evenness value
of 0.8 (Gini) plotted in the 3-simplex. In this representation, points closer to the centre of the simplex
represent population vectors that are more even, while points closer to the vertices represent population
vectors which are more uneven. For example, a point at the vertex B represent the population vector
(0,1,0,0), while a point at the centre represents the population vector ( 14 ,

1
4 ,

1
4 ,

1
4 ).

Aside from the input variables, all other parameters used to initialize the model
are fixed for all simulations, and are the same as those for the three-species model
(shown in Table 5.1).

Input

The input variables are: the competition scheme, and the initial community even-
ness.

First, the competition scheme is specified. The schemes under investigation are
those shown in Figure 6.1. These consist of all possible fully connected competition
structures for the richness level S under investigation: four schemes for S = 4. The
rules of the particular scheme are used to determine the outcome of competitive
interactions as described in Section 6.2.3.1.

For each competition scheme, we sample a range of initial evenness values, sys-
tematically chosen so as to sample the entire range of possible values: [0,1] for
the Gini and Shannon indices, and

�

0, 1S
�

for the Simpson index, where S is the
richness of the community.
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6.2.4 Results and discussion

We present the results of simulation studies of variable initial evenness for the four-
species model using the co-culture set-up. For the sake of brevity, in the results
shown in the following section we use the Gini evenness index. Simulations using
the other two indices (Simpson and Shannon) produce qualitatively similar results,
although in the case of the Simpson index, evenness values are contained in the
interval [ 1S ,1], where S is the number of species, as opposed to the unit interval
as in the cases of the Gini and Shannon indices.

As discussed in Section 6.2.1, there are four possible tournament graphs in the
four-species setting (Figure 6.1). Simulations show that long-term system be-
haviour is again strongly dependent on both initial community evenness and the
details of the competition scheme. High initial evenness extends the region of
the parameter space where biodiversity is preserved, in addition to prolonging
the time until the first species extinction. Hence there is sufficient time for other
factors (such as details of competition scheme, rates of competition and mobility,
etc.) to affect the system dynamics. In contrast, if evenness is too low, biodiversity
can be lost before other emergent behaviour can be observed.

6.2.4.1 Final community configuration

In Figure 6.6, the final population configurations of 5.000 simulations are plotted
on the 3-simplex. Note that when plotting population vectors on the 3-simplex,
points located at the vertices correspond to extinction of all but one species, edges
correspond to extinction of two out of the four species, and faces correspond to
extinction of one species. Points located in the interior of the simplex thus repre-
sent communities with coexistence of all four species. Note that the faces of the
simplex are “absorbing” in the sense that trajectories into a face are irreversible
— once a species has become extinct it cannot reappear.

Echoing the mean field approximations (Figure 6.3), we find that communities gov-
erned by Schemes 1 or 4 are almost always dominated by the top predator — all
other species quickly collapse to extinction, while the apex predator persists alone.

Table 6.1: Location of final community configurations in the 3-simplex, for simulation length of 200
generations. Points in the interior represent communities with all four species coexisting, those on a face
represent communities with three species coexisting, those on an edge represent communities with two
species coexisting, and points at a vertex represent monocultures.

Scheme Interior Face Edge Vertex
1 0% 0% 6% 94%
2 1% 23% 38% 38%
3 0% 1% 15% 84%
4 0% 0% 6% 94%
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(a) Scheme 1 (b) Scheme 2

(c) Scheme 3 (d) Scheme 4

0 0.2 0.4 0.6 0.8 1.0

A

B C

D A

B C

D A

B C

D A

B C

D

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Figure 6.6: Final community configurations for the four different competition schemes. Colours indicate
initial community evenness, according to the colour bar legend.
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This trajectory is followed in 94% of simulations (see Table 1). The few simulations
that do not result in three extinctions instead result in two — not a great differ-
ence in terms of biodiversity. Of these, all involve communities that were initially
very uneven. This suggests that these communities were initially dominated by
a species other than the apex predator, delaying the system’s trajectory towards
its steady state. This type of behaviour at low evenness has also been noted ex-
perimentally, where “idiosyncratic effects” of dominant species at lower evenness
initially dampened resource uptake by the community as a whole (Wilsey and Pol-
ley, 2004).

In both schemes, there are no points located in the interior of the simplex, indicat-
ing that extinction events always occur. Indeed, in the vast majority of cases the
maximum of three extinctions occurs. Those points not located at the vertex of
the apex predator represent communities with low initial evenness.

In communities subject to Scheme 2, the species preyed upon by all others quickly
collapses to extinction, reducing the system dynamics to the cyclic competition
seen in the three-species model. Note the similarity between the A-B-C plane in
Figure 6.6(b) and the simplex in Figure 5.5(b).

Communities governed by Scheme 3 exhibit richer behaviour, particularly at higher
initial evenness. No single species is especially dominant, nor is one species weak
to the extent seen under other competition schemes. Extinctions are again ubiq-
uitous — there are almost no points located in the interior of the simplex. Most
points are located at a vertex or an edge, indicating at least two extinctions. The
few points located on a face are to be found on the A-B-D face, suggesting that
when only one species is lost, it is species C; results in the next section regarding
extinction further support this observation, as did the mean field approximation
in Section 6.2.2. Additionally, these points represent communities with high initial
evenness, again suggesting that higher initial evenness supports the preservation
of biodiversity.

We note the dependence of some of the results in Table 6.1 on the simulation time
— if we extend the simulation time, these probabilities may change. For Schemes 1
and 4, if the simulation time is doubled these probabilities barely change: again
approximately 95% of simulations result in lone persistence of the apex predator.
This robustness to the maximal simulation time indicates that a certain amount of
deviation from the steady state exists due to stochastic fluctuations, which is not
mitigated by extending the simulation time. In contrast, for Schemes 2 and 3, dou-
bling the simulation time roughly halves the number of simulations not located at
a vertex. This indicates that for these schemes, those simulations that do not com-
plete a trajectory to a steady state are only delayed, and not deflected elsewhere
as for Schemes 1 and 4.

Finally, we can examine the change in community diversity for each competition
scheme. For this purpose, we use the Leinster-Cobbold index described in Sec-
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tion 4.2.6.2. Since all species in our system are equally distinct, it is most appro-
priate to use the identity matrix as the similarity matrix. Recall that this index
permits the use of diversity profiles, where diversity is plotted as a function of the
sensitivity parameter q, which measures the relative weight assigned to rare and
common species; q = 0 corresponds to species richness, q = 1 weighs all species
equally, and higher values of q give more weight to common species.

The main purpose of diversity profiles is to study the effects of giving different
weights to rare and common species. For the system under consideration, this will
not be very informative since there are relatively few species in our community. We
instead look at how diversity varies as a function of initial evenness, for different
values of the sensitivity parameter q.

For the two schemes that are dominated by a single apex predator (Schemes 1
and 4), final community diversity is extremely low, as expected given the frequent
and numerous extinction events. These plots are therefore omitted. For Schemes 2
and 3, we show in Figures 6.7 and 6.8 respectively the mean final community
diversity as a function of initial community evenness, for q = 0 and q = 1.

For Scheme 2, the diversity of order zero (equivalent to species richness) is shown
in Figure 6.7(a), and demonstrates a positive relationship between initial even-
ness and final richness, with an increase in the order of one species between low
and high initial evenness. However even with very high or complete evenness,
coexistence of all four species is not possible. Recall that the typical behaviour
for communities under this competition scheme is the rapid extinction of one spe-
cies; the dynamics is then reduced to the cyclic three-species case. There is also
fairly large variability for lower evenness, indicating the possibility of more than
one species extinction. For q = 1 (Figure 6.7(b)), the index now takes evenness
into account, and we find a stronger positive relationship between initial commu-
nity evenness and final community diversity, with less variability. We note again
that diversity higher than three effective species is not possible even for very high
initial evenness values.
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(b) q = 1

Figure 6.7: Mean final diversity (with standard deviation) as a function of initial evenness, for Scheme 2
with (a) q = 0, and (b) q = 1.

For Scheme 3, the diversity of order zero is shown in Figure 6.8(a). Here there is
no apparent relationship between initial community evenness and final community
richness, which remains low for all initial evenness values, indicating the frequency
of extinction events. For q = 1 (Figure 6.8(b)), there is again no evident relationship
between final community diversity and initial community evenness, although the
variability in final community diversity does increase with initial evenness. Final
community diversity is quite low for all simulations, indicating that communities
that do persist with more than one species tend to be fairly uneven.
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Figure 6.8: Mean final diversity (with standard deviation) as a function of initial evenness, for Scheme 3
with (a) q = 0, and (b) q = 1.

To examine the effect on evenness in isolation, in Figure 6.9 we plot the mean final
community evenness as a function of initial community evenness, for the 5.000
simulations. We note the same general relationships as were found for the diver-
sities of order one (Figures 6.7(b) and 6.8(b)) In the case of Scheme 2, the mean
final evenness can remain quite high, and generally increases with initial even-
ness. However, final community evenness always remains under a threshold rep-

t· 
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resenting the loss of one species. In contrast, in communities subject to Scheme 3
the final community evenness is again generally low, indicating the frequency of
extinction events, although the variability in the final evenness increases.
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(a) Scheme 1
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(c) Scheme 3
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(d) Scheme 4

Figure 6.9: Mean final community evenness (with standard deviation) as a function of initial evenness,
for the four competition schemes.

6.2.4.2 Extinctions

Having examined how the final state of communities varies with initial evenness,
we now turn our attention to extinction events. We have seen that these occur
frequently, and asymmetrically between species. In Figure 6.10 we plot for each
competition scheme, the probability of extinction of each species as a function of
initial evenness.
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Figure 6.10: Probability of extinction within 500 generations as a function of initial community evenness,
defined as the number of simulations per evenness condition that resulted in the extinction of at least one
species.

The behaviour of the extinction probabilities reflects the dynamics seen in Chap-
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ter 5 for three species, and also mirrors the mean field approximations discussed
in Section 6.2.2. The extinction probabilities of species under Schemes 1 and 4
again illustrate the dominance of the apex predator, with the other species very
vulnerable to extinction. Increasing initial evenness cannot mitigate the effects of
the competition scheme in these cases.

For Scheme 2, we note that the species at the bottom of the food chain cannot be
saved from extinction by increasing initial evenness. Rather, species D has a high
probability of extinction for all evenness values. However, the other three spe-
cies (which are engaged in cyclic competition between themselves) benefit from
a lower probability of extinction as initial evenness increases. These probabilities
decline to nearly zero for sufficiently high initial evenness. Thus high evenness
preserves the stabilizing effects of the competition scheme for those species that
benefit from it, while it is unable to counteract the effects for the species that
suffers.

Communities governed by Scheme 3 exhibit richer behaviour, particularly at higher
initial evenness, as can be seen in Figure 6.11. No single species is especially domi-
nant, nor is one species weak to the extent seen under other competition schemes.
Recall that in Scheme 3, there are two sub-cycles of three species — a cycle A-B-C
and a cycle A-B-D (Figure 6.3(d)). Between them, species B can be considered the
“stronger” in the sense that it has two preys and only one predator, while species
A has one prey and two predators. However, for high evenness, species B has
a higher probability of extinction than species A, an analogue of the “survival of
the weakest" law seen in the three-species case (Reichenbach et al., 2007) and
supported by experimental observations (Berr et al., 2009).

The mechanism that has been suggested to explain this “survival of the weakest"
is that at high evenness, species B initially grows quickly as a result of dominating
its two prey species. This leads to a sharp drop in species C (which is also preyed
on by species D), permitting a rapid increase in the levels of its prey, species A. This
in turns leads to a crash in species B, being killed off by the numerous individuals
of species A preying on it. This mechanism explains at once the high probability
of extinction for species C and species B and the low probability of extinction for
species D at high evenness, because species B is the only predator of species D.
So as the population levels of species B crash, the population levels of species D
may rise unchecked.
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(b) Species B
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(c) Species C
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(d) Species D

Figure 6.11: For each species, probability of extinction within 500 generations under Scheme 3.

To attempt to elucidate the relative “strength” of each species in the different
competition schemes, we can look at the time before each species goes extinct
and rank the species according to longer persistence. Thus the species that per-
sists the longest will be ranked first, while the first species to go extinct is ranked
last. We can then follow these rankings as initial evenness is varied (Figure 6.12).
Note that the rankings shown are averages of many simulations, and thus are not
integer-valued.
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Figure 6.12: For each competition scheme, ranking of species in terms of longer persistence, as a
function of initial community evenness.

The values of the rankings are as expected given the probabilities of extinction
examined in Figure 6.10. For Schemes 1 and 2, the rankings of the species A,
B and C that are in cyclic competition are extremely similar (oscillating slightly
due to stochastic events), with species D respectively leading or trailing them
in rank. We again observe the positive effect of higher initial evenness on the
persistence time for Scheme 2, but not for Scheme 1. For Scheme 4, we see
clearly the hierarchy imposed by the competition scheme, with a strict ranking
A-B-C-D (we note occasional overlap between species C and D, due to extremely
short time between their respective extinctions).

The most interesting feature in Figure 6.12 is that Scheme 3 is the only scheme
in which the order of rankings changes with initial evenness. So whereas for low
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initial evenness species B is ranked first in terms of persistence, as evenness in-
creases the highest ranked species changes between species A, B and D until fi-
nally species D takes first place. The mechanism driving this behaviour is the same
one underlying the “weakness” of species C, which also leads to its consistently
low ranking across initial evenness values.

As evenness increases, the dynamics of the competition scheme exerts a strong
effect on the system behaviour as the species proportions become more equal.
Then we find the situation described above for Figure 6.11: species C has the
highest probability of extinction (and hence the lowest ranking), while species D
has the lowest probability of extinction and thus the highest ranking.

This also explains why the rankings of species A and C differ at higher evenness,
whereas for low evenness they are nearly equal: as evenness increases and spe-
cies C starts to decline in proportion, species A benefits from a decrease in pre-
dation due to species C, and its ranking increases accordingly. We note the same
trend for species B and D: as one declines in ranking, the other increases.

In contrast, at low initial evenness the “survival of the weakest” mechanism is
counteracted. In uneven communities, one species dominates, while the other
three are present in small proportions. All species have a similar chance of being
drawn as the dominant species in terms of proportion, since this is done randomly
in the initialization step; thus all species are equally “strong” in that sense. On
the other hand, a species initially present in low proportion has a better chance
of persisting longer if it is able to benefit from the dominance of the species with
high proportion. There are two ways to benefit from the numerical dominance of
a particular species (call it X). The first is direct, as a result of being able to prey
upon species X. The second is indirect, as a result of decreased predation from
those species preyed upon by species X.

If we look at communities dominated by a single species on a case-by-case basis,
we find that species B has the best chances to persist in very unequal commun-
ities, as can be seen in Figure 6.12. The reasoning is as follows:

(i) if species A is numerically dominant, this directly and indirectly benefits spe-
cies C and D;

(ii) if species B is numerically dominant, this directly and indirectly benefits spe-
cies A;

(iii) if species C is numerically dominant, this directly benefits species B and D
and indirectly benefits species B;

(iv) if species D is numerically dominant, this directly and indirectly benefits spe-
cies B.
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Thus in communities that are initially very uneven, the survival of the weakest
mechanism is counteracted to a sufficient extent as to reduce the differences be-
tween the species that can be noted at higher evenness, a phenomenon reflected
in both the rankings and probabilities of extinction.

6.2.4.3 Time to extinction

The system behaviours are not absolute — lower initial evenness can counteract
the dominance of species favoured by the competition scheme, allowing for dif-
ferent dynamics to be observed in all four cases. However, in the majority of
such cases, low initial evenness only extends the initial transient period before the
system settles to a steady state. This can be seen in Figure 6.13.

For three competition schemes, the time until the first extinction event is very
brief. Scheme 3 again stands out — there is a much larger variability in the time
to the first extinction in communities subject to this competition scheme, and the
average is significantly higher than for the other competition schemes. In addi-
tion, the average time to the first extinction grows significantly as initial evenness
increases. For the other three schemes, increasing initial evenness yields a small
increase in the average time until the first extinction event. Thus we see a small
stabilizing effect due to initial evenness, as was the case with the three-species
model (Figure 5.7).

6.2.4.4 Sensitivity analysis

A global sensitivity analysis of the model was carried out by calculating Sobol
indices (Lilburne and Tarantola, 2009). These indices indicate how sensitive a
model’s outputs are to changes in its inputs, by determining what proportion of
the variance of the output is due to each input. In our case, the inputs inves-
tigated were reproduction rate μ, competition rate σ, mobility rate ε, and initial
evenness E0. The outputs checked were final community evenness, identity of the
first species to go extinct, and the time until the first extinction. The Sobol indices
for these three outputs were computed for each of the four competition schemes.

This was done by performing a large number of simulation runs with varying val-
ues of the inputs. The variance in the outputs is then decomposed into proportions
assigned to each input, following a procedure due to Sobol (2001). Computation-
ally, this involves generating two matrices Q and R of dimension M × k, where k

is the number of model inputs and M the size of the base sample. The columns of
these matrices are samples of the model inputs, selected using Latin Hypercube
Sampling (Iman, 2008). Then a matrix Q is formed by taking the -th column from
R and all other columns from Q, and a matrix R is formed by taking the -th column
from Q and all other columns from R. Then the model outputs are computed for
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Figure 6.13: Mean time to first extinction event, as function of initial community evenness (plotted with
standard deviation).

all the input values in the matrices Q, R, Q and R, yielding four vectors of model
outputs:

yQ = ƒ (Q) , yR = ƒ (R) , yQ
= ƒ (Q) , yR = ƒ (R) .

The Sobol index for each input is then obtained from these outputs using the fol-
lowing formula:

bX =
ÒV
ÒV
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yQ · yQ
− bƒ20
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,

and y
j
Q is the j-th element of the vector yQ.

This procedure then reveals what proportion of the variance in the selected model
outputs can be assigned to each of the selected model inputs. By comparing the
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Sobol indices of the different input parameters, we can check which one explains
the largest part of the variance in the key model outputs: final evenness, identity
of first species extinction, and the time to the first extinction.

The results show that in the large majority of cases (10 out of 12), initial evenness
was indeed the input parameter with the largest Sobol index, and hence the input
which explained the largest part of the variation in the three selected model out-
puts. This can be seen in Table 6.2, where we show the Sobol index corresponding
to initial evenness, for each of the three selected model outputs, and for each com-
petition schemes. Thus for example, initial evenness explained more than 82% of
the variation in the time to first extinction for Scheme 1.

The two entries marked with an asterisk are the only cases where initial evenness
did not have the largest Sobol index. This occurred for Schemes 1 and 4, and in
both cases the input parameter with the largest Sobol index was mobility. This
reflects the findings of Reichenbach et al. (2007) who determined (for a system
assuming maximal evenness) that coexistence was mediated by mobility.

For all other outputs and all other schemes, initial evenness represented the largest
proportion of the variance in final evenness, the identity of the first extinction, and
the time until the first extinction. In several cases initial evenness explained more
than 80% of these variances. The results in Table 6.2 therefore underline the im-
portant role that initial evenness plays in the dynamics of the system.

6.3 Invasion experiments

As discussed in Section 6.1, there are two general experimental set-ups used to in-
vestigate microbial competition: co-culture experiments, where all species are in-
oculated together at the start of the experiment, and invasion experiments, where
one species is added at a later stage to a community that has already had a cer-
tain amount of time to evolve towards a stable state. In Section 6.2, we have
studied in silico co-culture experiments addressing non-transitive competition and
variable evenness in a community of four species. In this section, we will study
these phenomena in the context of an invasion experiment.

Table 6.2: First order Sobol indices for initial evenness, describing what proportion of the variation in
the three model outputs can be assigned to changes in this input parameter. The Sobol indices were
calculated for each of the competition schemes. The two entries marked with an asterisk are the only
cases where initial evenness did not have the highest Sobol index of the tested model input parameters.

Scheme Final evenness Identity of first extinction Time to first extinction
1 0.0709∗ 0.5186 0.8268
2 0.5726 0.6469 0.8305
3 0.3719 0.4554 0.6408
4 0.4588∗ 0.8860 0.8351
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6.3.1 Model description

To represent invasion of a microbial community, we can use the IBM from Sec-
tion 6.2. However, we now designate one of our four species as an invader, which
will be introduced in the in silico community at a later stage than the other three
species. To build on the knowledge we have gained in Chapter 5, it is sensible
to take species A, B and C as our resident community, since these three species
form a stable coexisting community when they engage in cyclic competition, the
dynamics of which are well-understood. Thus species D is our invader species,
which can interact with the resident community in different ways, depending on
the particular competition scheme.

We describe in this section the resulting IBM and experimental set-up using the
ODD protocol. Again we outline only those sections where the model or experi-
mental procedure differs from Section 6.2.3.

6.3.1.1 Overview

Purpose

The aim of the model is to investigate how variable initial evenness and non-
transitive competition between individuals affect community diversity and stability
in the face of invasion, for a stable resident community of three species that is in-
vaded by a fourth alien species.

State variables and scales

The state variables and scales are the same as for the co-culture experiments (de-
scribed in Section 6.2.3.1).

Process overview

The same demographic interactions as in the co-culture experiments are repre-
sented in this invasion experiment: reproduction, competition and mobility. The
mechanisms of these interactions are implemented in the same way, as was de-
scribed in Section 6.2.3.1.

Scheduling

The IBM proceeds in the same way as the co-culture model, using the Gillespie
algorithm to determine which interaction occurs at each time step (see Section
6.2.3.1).
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6.3.1.2 Design concepts

The design concepts of the invasion IBM are the same as those of the co-culture
IBM (Section 6.2.3.2).

6.3.1.3 Details

Initialization

The model is initialized in two stages, representing a first phase of a three-species
co-culture, followed by a second phase beginning with an invasion by a fourth
species.

The co-culture phase is initialized with a random spatial distribution of empty sites
and individuals of species A, B and C. Hence species D is not initially present in
the community. The initial species abundance distribution of species A, B and C
is determined by a selected evenness value, which is used to generate a vector
of population abundances. Individuals are then randomly placed in the remaining
grid sites according to these proportions. To generate these vectors of population
proportions satisfying a given initial evenness, we use the sampling algorithms de-
scribed in Section 5.3.3 for the three-species model. Again we use three selected
indices: Simpson, Gini and Shannon.

The three-species community is then allowed to evolve for 200 generations. An
example of the in silico community at this point is shown in Figure 6.14(a) for a
high initial evenness condition.

After 200 generations, we model an invasion by species D by emptying a small
region in the centre of the grid, and filling these sites with individuals of species D.
This is illustrated in Figure 6.14(b). This particular type of invasion geometry has
previously been used in the study of biofilm invasions (Merkey et al., 2011) and
can represent either artificial inoculation of the invader (in the case of a synthetic
community) or an invader colonizing the experimental system via transfer from
a bulk liquid or reservoir adjoining the two-dimensional experimental space (Kreft
et al., 1998).

After invasion by species D, the system is allowed to evolve as in the co-culture
model for another 200 generations. No further invasion events are included, so
population growth of species D can occur only through reproduction.

Aside from the input variables, all other parameters used to initialize the model
are fixed for all simulations, and are the same as those for the co-culture model
(shown in Table 5.1).

Input
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(a) (b)

Figure 6.14: A three-species community with high initial evenness (a) after 200 generations which is
then (b) invaded by a fourth species (in green).

The input variables are: the competition scheme, and the initial evenness of the
resident community.

First, the competition scheme is specified. Starting from a resident community
of three species engaged in cyclic competition, there are three possible ways to
extend the competition structure to include a fourth species (since we require a
fully-connected competition scheme). These three possibilities are represented by
Schemes 1, 2 and 3 in Figure 6.1, where the three-species subcycles represent the
resident community. In Scheme 1, the invader species preys upon all three species
in the resident community, whereas in Scheme 2 the opposite is true: the invader
is preyed upon by all three species in the resident community. In Scheme 3, the
invader preys upon two species in the resident community, and is itself preyed
upon by the third. The rules of the particular scheme are used to determine the
outcome of competitive interactions as described in Section 6.3.1.1.

For each competition scheme, we sample 20 initial evenness values, systemati-
cally chosen so as to sample the entire range of possible values: [0,1] for the Gini
and Shannon indices, and

�

0, 1S
�

for the Simpson index, where S is the richness of
the community.

6.3.2 Results and discussion

In Figure 6.15, we show the final community configurations for each of the three
competition schemes. These represent the community compositions after a total
of 400 generations. The colours of the points in this figure represent the initial
evenness of the three-species co-culture at T = 0 .

In the case of Scheme 1, the invader is able to defeat all three species in the
resident community (see Figure 6.1). Thus we unsurprisingly find in the invasion
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experiments that the invader always succeeds in dominating the community to
the almost complete exclusion of the other species. Many simulations result in in-
vader monoculture, represented by points located at the vertex D in the 3-simplex
in Figure 6.15(a). Some simulations result in different communities, however these
communities are extremely uneven and always dominated by the invader. In con-
clusion, we do not find behaviour significantly different from the corresponding
co-culture experiment (compare with Figure 6.6(a)).

For Scheme 2, simulations reveal the opposite situation: the invader is always
successfully repelled by the resident community. Thus once again the competitive
dynamics are not affected by switching from a co-culture set-up to an invasion set-
up, as can be seen when comparing Figure 6.15(b) with Figure 6.6(b). We also note
that some simulations result in the extinction of not only the invader, but also one
of the resident community members. These simulations represent communities
that were initially less even, mirroring the evenness effects seen in Chapter 5.

Table 6.3: Location of final community configurations in the 3-simplex, after a total of 400 generations.

Scheme Interior Face Edge Vertex
1 0 % 0 % 80 % 20 %
2 0 % 80 % 0 % 20 %
3 20 % 11 % 34 % 35 %
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(a) Scheme 1 (b) Scheme 2

(c) Scheme 3
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Figure 6.15: Final community configurations (after 400 generations) for each of the three invasion exper-
iments. Colours indicate initial community evenness, according to the colour bar legend. 200 replicates
are plotted for each of the 20 initial evenness values.

For Scheme 3, we again find richer behaviour since in this competition scheme
the invader is not significantly stronger or weaker than the resident community
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members. We notice that communities with the highest proportion of the invader
(those points closest to the D vertex) generally represent those communities that
were initially less even. We also find some resemblance to the co-culture case for
high evenness, where most of the final configurations of most communities ended
up on the A-B-D face (see Figure 6.6(c)).

To measure the success of the invasion, we can check how well established in the
community the invader was by the end of the simulation period, at T = 400, by
calculating what proportion of the community it represented. These results are
shown in Figure 6.16, as a function of the evenness of the community at the mo-
ment of invasion. Using evenness after 200 generations (E200) is more informative
than using evenness at T = 0 (E0) since during the intervening time the evenness
and configuration of the three-species community can change, as is illustrated in
Figure 5.5. This can also be seen in Figure 6.16, which reveals that the sampling
coverage of evenness is no longer uniform or equidistant across the entire range
of possible evenness values.
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(b) Scheme 2
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(c) Scheme 3

Figure 6.16: Population proportion representing the invader species (species D) after a total of T = 400
generations, as a function of community evenness at the moment of invasion (T = 200 generations), for
three competition schemes (Figure 6.1). 200 replicates are plotted for each of the 20 initial evenness
conditions.

In Figure 6.16, we see that for Scheme 1, the invader always represents the largest
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proportion of the final community, to an extensive degree. There is practically no
effect of resident community evenness. The same is true for Scheme 2: the in-
vader is always nearly completely excluded, and varying the evenness of the resi-
dent community does not change this. In contrast, for Scheme 3 we note a definite
evenness effect. We find that a higher resident community evenness before inva-
sion leads to a less successful invasion, in terms of invader proportion at T = 400.
This agrees with in vitro studies which found that less diverse communities were
more susceptible to invasion (Wilsey and Polley, 2004; Hillebrand et al., 2008); this
is true in particular for synthetic bacterial communities (Hodgson et al., 2002).

As a measure of resident community stability, and its resistance to invasion, we
also calculate the average time until the first species extinction within the resi-
dent community. These results are shown in Figure 6.17. For Scheme 1, the time
to the first extinction within the resident community increases with higher resident
community evenness at invasion. However, we have seen that invasions for com-
munities subject to this competition scheme are always almost entirely successful.
Hence higher evenness increases the resident community’s resistance in terms of
time to extinction, but increasing evenness cannot counteract the invader’s com-
petitive strength in terms of the competition scheme.
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Figure 6.17: Mean time to first species extinction within the resident community as a function of com-
munity evenness at the moment of invasion (T = 200 generations), for three competition schemes. Mean
and standard deviation calculated from 200 replicates per condition.
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We find a similar mechanism underlying the invasion dynamics in communities
subject to Scheme 2. Increasing evenness of the resident community at the time
of invasion results in longer times to extinction for these three species. For high
evenness, there are no extinctions within the simulation time (these are plotted as
extinction time equal to 201 generations). Scheme 3 exhibits similar behaviour:
an abrupt jump in the time to extinction at intermediate resident community even-
ness, and no resident community extinctions for high resident community even-
ness.
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Figure 6.18: Mean time to invader extinction as a function of community evenness at the moment of
invasion (T = 200 generations), for three competition schemes. Mean and standard deviation calculated
from 200 replicates per condition.

As a further measure of resident community resistance to invasion, we can check
the average time until extinction of the invader. These results are shown in Fig-
ure 6.18. For Schemes 1 and 2, we note no dependence of average time to invader
extinction on the evenness of the resident community at the time of invasion. For
Scheme 1, the invader never goes extinct, while for Scheme 2 it always collapses
to extinction fairly rapidly, regardless of resident community evenness. For Sch-
eme 3, the picture is less clear. For low resident community evenness, the invader
generally persists or has a fairly long time to extinction. The time to extinction
drops for intermediate evenness, before increasing again for high resident com-
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munity evenness. This may seem to run counter to what we expect, but we should
note that it does not disagree with our previous finding, that higher resident com-
munity evenness results in lower invader establishment (Figure 6.16).
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Figure 6.19: Mean extinction probability for the resident community species as a function of community
evenness at the moment of invasion (T = 200 generations), for Scheme 3. Mean calculated from 200
replicates per condition.

Additionally, in Figure 6.19 we plot the probability of extinction for the resident
community species in terms of resident community evenness at the time of in-
vasion. Again find a positive effect of evenness in resisting invasion. For low
evenness, at least one member species of the resident community always col-
lapses to extinction in the face of invasion. From the 3-simplex of this experiment
(Figure 6.15(c)), we note that this is generally species C. Recall that in co-culture
simulations for Scheme 3, this species was highlighted as the weakest in the com-
petition scheme, particularly for low evenness (see Section 6.2.4). Thus our results
agree with the co-culture simulations.

6.4 Conclusions

Multiple competition schemes have been examined with simulation studies mod-
elling various possible communities under two different experimental set-ups, wh-
ich result in diverse coexistence and extinction scenarios. With fully connected
competition, the four-species system is generally unstable for all competition sch-
emes under both experimental set-ups. There are frequent extinction events,
which typically occur very rapidly relative to the persistence time of stable sub-
populations. The dynamics induced by the competition schemes works against
the coexistence of all species (Cheng et al., 2014).

System behaviour is strongly dependent on initial evenness and competition sch-
eme. The importance of initial evenness was confirmed by means of a sensitivity
analysis. Low initial evenness can counteract the dynamics of the competition sch-
eme in the sense that the identity of the first species to collapse to extinction can
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change. But generally, low initial evenness will only extend the initial transient pe-
riod before the system settles to its steady state. If initial evenness is excessively
low, system biodiversity is lost before other emergent behaviours can be noticed.

In contrast, higher initial evenness can have a small stabilizing effect, in the sense
that the time until the first species extinction is slightly extended as initial even-
ness increases. The time until the first extinction is generally quite short for all
competition schemes except Scheme 3. In this case, the time until the first spe-
cies extinction can vary significantly. By extending the region of biodiversity in this
way, there is sufficient time for system behaviour to be affected by other factors
such as competition scheme, rates of competition and mobility. These results sup-
port experimental observations that biodiversity is promoted by increasing even-
ness (Isbell et al., 2009b).

When considering an invasion experiment, we find similar evenness effects. Higher
resident community evenness before invasion leads to a less successful invasion,
in terms of invader proportion at the end of the simulation, probability of extinction
and time until the first extinction of a resident community member. These results
agree with empirical studies from different natural and synthetic systems (Wilsey
and Polley, 2004; Hillebrand et al., 2008; Hodgson et al., 2002).

Our results demonstrate the danger in overlooking variable community evenness
and making the typical assumption that communities are maximally even, despite
mounting evidence to the contrary (Wilsey and Polley, 2004; Huston, 1997; Grime,
1998; Smith and Knapp, 2003). This oversight also ignores the fact that damages
due to human actions can affect the evenness of natural communities, often mak-
ing them more vulnerable to invasion, stresses and disturbances (Wittebolle et al.,
2009). While theoretical studies such as this one are beginning to increase in num-
ber, experimental studies to validate their conclusions are still lacking (Isbell et al.,
2009b).
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7
In silico substrate

dependence increases
community productivity but

threatens biodiversity

7.1 Introduction

In Chapters 5 and 6 we formulated and analysed models incorporating non-transi-
tive competition and variable initial evenness, two mechanisms known to strongly
affect the biodiversity of a system. In this chapter, we go a step further and in-
corporate another mechanism shown to be key in mediating biodiversity, namely
resource dependence. Existing microscopic models of communities with cyclic
competition typically neglect the resource-dependent nature of demographic pro-
cesses (Reichenbach et al., 2007; Kreft et al., 1998; Cheng et al., 2014). However,
as discussed in Section 3.4, this is a key mechanism that can have significant
effects on community composition and functioning.
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As addressed in Chapters 5 and 6, community diversity can be promoted by non-
transitive competition. In the particular case of competition in a microbial setting,
nutritional resources are a particular focus (Hibbing et al., 2010). The resource ra-
tio model of competition suggests that the prevalence of species in a community is
mediated by the available nutrients, in particular their availability and rate of con-
sumption (Tilman, 1977). Thus competing microbial species can coexist for certain
ratios of nutrient concentrations. But if nutrient availability is limited, some species
can die out as a result of being outcompeted, leading to a biodiversity loss. The re-
source ratio competition model has been shown to explain, for various ecosystems
including microbial communities (Murray and Baird, 2008; Smith, 2002), some of
the most typical dynamics between resource competitors, including for example
that the species better able to survive at lower levels of a limiting resource will be
the best competitor for that resource (Miller et al., 2005).

Competition for a limiting resource can be categorised as either scramble compe-
tition or contest competition (Hibbing et al., 2010). Scramble competition occurs
when one species deprives its competitor(s) of the communal resource by deplet-
ing said resource, whereas contest competition occurs when one species actively
harms its competitor(s), for example by producing harmful toxins or otherwise at-
tacking other individuals (Nicholson, 1954). An example of scramble competition is
the non-interference competition between different microbial strains for a common
but limited carbon source needed to drive their growth (Smith, 2002). An example
of contest competition is the secretion, by bacteria such as Streptococcus ther-

mophilus, of toxic antimicrobial compounds that directly reduce the growth rates
of its competitor species (Hibbing et al., 2010).

In microscopic models, the typical approach to resource limitation has been to rep-
resent it by imposing a constant limit on population size, rather than modelling the
resource dynamics explicitly (Nowak, 2006; Riolo et al., 2001). More recently, this
approach has been altered to consider resource fluxes and dynamic population
sizes (Requejo and Camacho, 2013; Melbinger et al., 2010; Requejo and Camacho,
2011; Centler and Thullner, 2015). This echoes recent developments in the more
specific case of modelling biofilm formation, where both the growth of cells and
the diffusion of nutrients through the bulk liquid are taken into account (Lardon
et al., 2011; Kragh et al., 2016; Ardré et al., 2015). This approach has in recent
years been extended to IBMs (Centler and Thullner, 2015), where a typical exam-
ple admits a limiting resource that constrains individuals’ reproduction (Requejo
and Camacho, 2012). However, some models of resource-limited reproduction as-
sume that the population in question is well mixed, a typical yet significant simpli-
fying assumption which by design does not permit any effects of spatial structure
to emerge. This is despite the fact that spatially structured environments have
been acknowledged to result in a significantly different population dynamics than
well-mixed environments (Allison, 2005).

We therefore extend established models by incorporating these factors, as such
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aligning them more closely with real-world microbial ecosystems, and to inves-
tigate how this more realistic approach affects community productivity and bio-
diversity, two key indicators of ecosystem functionality. In doing so, we address
research questions 1, 4, and 5 (see Section 1.2):

� What effect does initial evenness have on maintaining community diversity?

� What effect does initial evenness have on maintaining community function-
ality?

� If interactions within a community are dependent on resource availability and
use, how does this affect community diversity and functionality?

In Section 7.2 we describe the model developed for this purpose, and in Section 7.3
the set-up of the in silico experiments conducted to understand the model’s be-
haviour. The results of these simulation studies are presented and discussed in
Section 7.4. In the final section, some conclusions are drawn.

7.2 Model description

Our goal is to study the effects on the maintenance of biodiversity of both vari-
able initial evenness and resource dependence in the demographic processes. We
therefore formulate an IBM representing a community of three interacting bacte-
rial species, and present a stochastic, spatial IBM simulating the system dynamics
and allowing for the assessment of the effect of variable initial evenness and re-
source dependence. As a foundational framework, we use the model described
in Chapter 6, which we extend by incorporating environmental substrate dynam-
ics, individual substrate uptake and biomass growth, and linking the demographic
processes to internal substrate level. We again describe our IBM using the ODD
protocol introduced in Section 3.2.3.

7.2.1 Overview

7.2.1.1 Purpose

The aim of the model is to investigate how community evenness and resource
dependence in demographic processes affect community biodiversity and produc-
tivity, which are key proxies of community functionality.
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7.2.1.2 State variables and scales

The model is a two-dimensional representation of a closed experimental domain,
mimicking the closed environment typically employed for in vitro studies, for ex-
ample a Petri dish. The domain is divided into a regular grid of size L × L = N.
The model comprises two entities: bacterial cells and their local environment (grid
sites). The grid is populated by a community of three species denoted by A, B
and C. In terms of bacteria, each grid site is either occupied by a single individual,
or is empty. The grid also contains a substrate, which is displaced by a diffusion
process.

Individual microbes are characterized by three state variables: grid position (, j),
species identity s ∈ {A,B,C}, and internal substrate level  (, j). A grid site is
characterized by two state variables, namely substrate concentration s (, j) and
substrate uptake rate rs (, j).

7.2.1.3 Process overview

We consider an in silico microbial community that is initially placed on the grid
with a random spatial distribution. The community’s initial species abundance
distribution is constructed to obtain a desired level of evenness. There is an ini-
tial environmental substrate gradient so that all grid sites initially contain a small
amount of substrate. The amount of substrate in the in silico environment is then
maintained via a constant inflow from a source in the centre of the grid. Sub-
strate is displaced via a diffusion process, resulting in a heterogeneous substrate
gradient.

An individual can interact with its nearest neighbours, defined as those individuals
in its von Neumann neighbourhood. Three possible interactions can occur: repro-
duction, competition and mobility. Interactions are dependent on an individual’s
biomass, which is fuelled by its uptake of the environmental substrate. The growth
of an individual is modelled using Monod kinetics (Monod, 1948).

The basic mechanisms of these interactions are illustrated in Figure 7.1. An inter-
action can only occur if the individual’s internal substrate (the amount of substrate
at its disposal if its biomass is converted to substrate) is above a certain threshold.
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Figure 7.1: Mechanisms of demographic processes, following Reichenbach et al. (Reichenbach et al.,
2007). Whether an interaction occurs or not depends on the individuals’ internal substrate levels (details
given in Section 7.2.3.3).

7.2.1.4 Scheduling

The IBM proceeds in discrete time steps. The following processes are performed
sequentially at each time step:

� Substrate inflow and diffusion: substrate flows into the in silico environ-
ment from a source in the centre of the grid. It then diffuses around the grid.
Local substrate concentrations are updated accordingly.

� Uptake of substrate and conversion to biomass: individuals uptake
substrate (if they are not already saturated) and convert this to biomass
according to Monod kinetics. After uptake, their biomass and the amount
of substrate in their local environment are updated accordingly, so that the
mass balance is respected.

� Demographic interactions: reproduction, competition and mobility.

The demographic interactions are simulated using a modified version of the Gille-
spie algorithm (Gillespie, 1976) described in Section 5.3.1.4. The only alteration
is that now an additional check must be performed on the individuals’ biomass to
determine if the selected interaction can take place:

1. Set time to t = 0 and set the event rates (as in Chapter 6):

Competition ( 

(rate o) 

Reproduetion 

(rate 11) 

t I 
Mobility 

(rate E) 
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(a) reproduction with rate μ

(b) competition with rate σ

(c) mobility with rate ε

2. Calculate the overall rate of events r = μ + σ + ε

3. Calculate inflow and diffusion of substrate; update each grid site with new
substrate concentrations (where a change occurred)

4. Calculate each individual’s substrate uptake and conversion to biomass (if
this occurs); update each individual’s biomass and the local environmental
substrate concentration to respect the mass balance

5. Select an individual at random

6. Select one of the focal individual’s nearest neighbours at random

7. Select an interaction event with the following probabilities, by drawing a ran-
dom number from the interval [0, r]:

(a) reproduction with a probability μ
r

(b) competition with a probability σ
r

(c) mobility with a probability ε
r

8. Execute the selected interaction event on the selected individual (if permit-
ted by the governing rules and the individuals’ internal substrate levels) and
determine the outcome according to the governing rules

9. Update the grid according to the outcome of step 8

10. Update the time step to t = t + 1

11. Return to step 3 and continue until t = tend

Details of the submodels mentioned above can be found in Section 7.2.3. We again
evolve the model for 500 generations, where a generation is defined as the number
of time steps required for each individual to be the subject of one interaction on
average.

7.2.2 Design concepts

� Emergence: the population-level dynamics of the community, and the spa-
tial patterns of the individuals and the environmental substrate emerge nat-
urally from the local interactions.



7

7.2 MODEL DESCRIPTION 151

� Interactions: individuals interact with each other and their environment by
consuming substrate, reproducing if located next to an empty site, exchang-
ing sites with their neighbours, or competing with their neighbours.

� Stochasticity: the stochasticity in the model arises from the initial spatial
distribution of the grid; the interactions between individuals and the environ-
ment; and the interactions between individuals.

� Sensing: if selected for reproduction, individuals can sense whether their
neighbouring site is empty; if so, they will reproduce. Individuals can also
sense the substrate concentration within the grid site where they are located,
which affects their uptake and growth rate,

� Observation: the data collected from the IBM includes: the spatial distri-
bution of substrate, the population count of each species, the community
evenness, a spatial aggregation measure, the biomass distribution of indi-
viduals, and their time to extinction. These are tracked for each time step.

7.2.3 Details

7.2.3.1 Initialization

The model is initialized with a random spatial distribution of individuals and empty
sites. Initially, a certain proportion of grid sites are left empty; thus the system
is initially below carrying capacity. The initial species abundance distribution is
determined by a selected evenness value using the Gini index, which is used to
generate a vector of population abundances as described in Section 5.3.3. Indi-
viduals are then randomly placed in the remaining grid sites according to these
proportions. The domain is also initialized with a small amount of substrate in
each grid site.

Aside from the input variables described in the next section, all parameters are
fixed for all simulations, and are shown in Table 7.1.

7.2.3.2 Input

The input variables are: the initial community evenness, and substrate limitation
scenario. The possibilities for the latter are described in detail in Section 7.3.

For each scenario, we check a range of initial evenness values, chosen so as to
sample across the range of possible values of the Gini index, namely the unit
interval.
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Table 7.1: Parameters of the three-species IBM with substrate dynamics.

Parameter Description Value Unit
L Grid side length 100 -
ø Initial proportion empty sites 0.1 -
μ Reproduction rate 1 T−1

σ Competition rate 1 T−1

ε Mobility rate 4.25 T−1

T Generations evolved 500 -
0 Initial substrate concentration 10−17 g
r Substrate inflow rate 8.3 × 10−20 gµm−2 s−1

D Diffusion coefficient 1.7 × 10−3 µm2 s−1

μm Maximum growth rate 8.3 × 10−4 s−1

Ks Half-saturation constant 4.5 × 10−3 gL−1

Ec Substrate conversion efficiency 0.44 gmass/ gsub
mm Maximum biomass of individuals 2.5 × 10−15 g
Er Reproductive efficiency 0.85 gmass/ gmass

7.2.3.3 Submodels

� Substrate diffusion: after the grid is initialized, substrate flows into the
grid at each time step at a fixed rate r via a source located in the centre of
the grid, and a fixed number of diffusion steps (with coefficient D) is then car-
ried out. The time scales of the diffusion and individual interaction processes
are separated so that diffusion occurrs at a faster time scale than individual
interactions, since otherwise all substrate would be very quickly consumed.

The diffusion process is implemented using the following scheme:

Ut+1(, j) =Ut(, j) +
Δt

Δ2
D
�

Ut( − 1, j) + Ut( + 1, j)

+ Ut(, j − 1) + Ut(, j + 1) − 4Ut(, j)
�

, (7.1)

where Δt and Δ are respectively the time and space discretization step size.
These parameters are chosen so that their ratio Δt

Δ satisfies the Courant-
Friedrichs-Lewy (CFL) condition which is necessary for stability of the time-
explicit numerical scheme (Courant et al., 1928). An excess of environmental
substrate (an atypical situation in natural systems) was avoided through the
appropriate choice of the inflow and diffusion parameters.

� Bacterial growth: After the diffusion steps have taken place, the environ-
mental substrate concentration is updated for each grid cell. Then each
individual consumes substrate if it is not yet at maximum biomass mm.
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Substrate uptake is governed by the Monod equation (Monod, 1948):

rt(, j) = μm
t−1(, j)Ut−1(, j)

Ks + Ut−1(, j)
, (7.2)

where rt(, j) is the uptake rate of the individual at grid cell (, j) at time step t,
and the Monod parameters are as described in Table 7.1.

The individual’s internal substrate concentration t(, j) and the environmen-
tal substrate concentration St(, j) are then updated for each grid cell where
uptake occurred.

For the sake of completeness, it should be mentioned that we implemented
several different bacterial growth models with the IBM, and tested these
for significant differences in model output. The additional growth models
tested were the Blackman (Koch, 2012), Tessier (Pinna et al., 2009) and Pow-
ell (Koch, 1982) models. These led to very similar model outputs, hence we
opted for the Monod since it is the most well-established and commonly used
growth model in the microbiological literature (Koch et al., 2012).

� Reproduction/division: if an individual is stochastically selected for repro-
duction, and located next to an empty grid site, its internal substrate level is
checked. If it is higher than the threshold value τR, the parent with biomass
m splits into two offspring with equal biomass m−m

2 . The combined biomass
of the offspring is less than that of the parent because reproduction is as-
sumed to be less than fully efficient. The lost mass m is given by (1 − Er)m,
where Er is the reproductive efficiency reported in Table 7.1. The second off-
spring is placed in the neighbouring grid cell.

� Competition: if stochastically selected for competition and located next to
an individual of a different species, competition occurs if at least one individ-
ual’s internal substrate level is above the threshold τC. The outcome of the
competition event is then determined as follows:

– if one individual’s internal substrate is above the threshold while the
other individual’s is below it, then the second individual is assumed to
be too weak to compete and loses the competition regardless of its place
in the cyclic competition structure;

– if both individuals’ internal substrate is above the threshold, the out-
come of the competition is determined by the cyclic competition sch-
eme (Figure 5.1(b)).

When an individual is killed, its internal substrate is instantaneously released
into its local environment.

� Mobility: if stochastically selected for mobility, individuals can exchange
places if their internal substrate levels are above the threshold τM.
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7.3 In silico scenarios

We can use our IBM to investigate the effects of resource dependence on commu-
nity diversity and productivity in different ways. Firstly, by varying the amount of
substrate required for a demographic process to occur (the substrate threshold τ),
and secondly by specifying that the species in the community may have different
substrate utilization profiles. Motivated by examples of microbial communities in
nature (Allison, 2005; Ratledge, 1993; Velicer, 2003), we selected three substrate
utilization scenarios. To facilitate analysis and comparison of the different scenar-
ios, we also investigate a benchmark case.

In the benchmark case, demographic processes occur regardless of individuals’
internal substrate level, at the rates μ, σ and ε given in Table 7.1. Individuals ab-
sorb environmental substrate and convert this to biomass, but their biomass has
no impact on interaction events. This is analogous to the original Reichenbach
model (Reichenbach et al., 2007), where there is no influence of biomass on inter-
action events, since in that model there is no substrate and individuals have no
mass. Thus, in the benchmark case, a pair of neighbours is selected randomly,
an interaction occurs and its outcome is calculated, the grid is updated and the
process repeats.

In the following three substrate utilization scenarios, we impose a substrate thresh-
old on a specific demographic process, for example reproduction. In that case,
individuals, when stochastically selected for reproduction, may only carry out this
process if their internal substrate level is above the substrate threshold.

In the first scenario, all three species are subject to the same substrate threshold
and therefore have the same reproductive/competitive/mobile capacity: τA = τB =
τC. This symmetric limitation scenario represents the simplest case of an ecosys-
tem with similar species that all depend on a common environmental resource in
the same way (Smalla et al., 1998).

In the second scenario, one species is subject to a substrate threshold τ, while
the other two species are not (asymmetric limitation). Then for example species A
has substrate threshold τA > 0 while species B and C have substrate thresholds
equal to zero, i.e. τB = τC = 0. Thus only one species is constrained in its capacity
for reproduction/competition/mobility. This scenario can represent, for example,
a community with one species that must produce an extracellular enzyme to de-
grade the substrate into a usable form, whereas the other species do not and
hence do not face the same cost in synthesizing the substrate to drive their gro-
wth (Ratledge, 1993).

In the third scenario, a hierarchy in terms of substrate limitation is imposed on
the community, e.g. τA > τB > τC. This scenario can represent, for example, a
community where the common strategy of ‘cheating’ is present (Velicer, 2003).
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Two species require an extracellular enzyme to degrade the substrate, but one of
them intercepts the reaction products secreted by the other species, in this way
avoiding the need to produce its own enzyme, and cheating to benefit more from
the common resource (Allison, 2005). This phenomenon is also known as sequen-
tial cross-feeding, and has been recognized in many different microbial systems.
A particular example is anaerobic methane oxidation, which involves two types of
bacteria engaged in this relationship: methanogenic and sulfate-reducing bacte-
ria (Hummert et al., 2014).

For each substrate limitation scenario (symmetric, asymmetric and hierarchical),
we limit separately each of the three demographic processes (reproduction, com-
petition and mobility) to avoid confounding effects. For example, reproduction
may be limited asymmetrically among the species, while competition and mobility
are not substrate-limited. With the addition of the benchmark scenario without
substrate dependence, this results in ten scenarios. For each of these, we in-
vestigate three initial evenness settings using the Gini index: maximal (E0 = 1),
intermediate (E0 = 0.5) and low (E0 = 0.2).

Once the simulation set-up is specified (with specific substrate limitation and spe-
cific initial evenness), a set of simulations is carried out with the substrate thresh-
old systematically varied from the lowest substrate threshold (10−16 g) to the
highest (2 × 10−15 g), in twenty increments. Multiple outputs are tracked for each
simulation, listed under “Observations” in Section 7.2.2.

7.4 Results and discussion

7.4.1 Impact of substrate limitations

Since productivity is a key indicator of ecosystem functionality (Isbell et al., 2009a),
we compare in Figure 7.2 the mean final community biomass yield for each exper-
iment as the substrate threshold is varied. Recall that the benchmark scenario
by design involves no substrate limitation, and hence is insensitive to substrate
threshold.
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Figure 7.2: Comparison of average biomass yield for the different scenarios, as a function of substrate
threshold. Each curve represents the mean of 200 simulations.

For nearly all substrate threshold values, all scenarios result in a higher biomass
yield than the benchmark scenario. This can be explained by a “quality over
quantity” phenomenon (Reznick et al., 2002). When the substrate threshold is
increased, those individuals able to carry out the focal demographic process are
fitter (in terms of biomass) than in the benchmark case. Since individuals may
only reproduce once they gain sufficient biomass, fewer individuals can reproduce
at any given time but these high-biomass individuals will produce high-biomass
offspring, which more than compensates for the decrease in the number of repro-
duction events.

The demographic process most sensitive to this effect is reproduction: linking this
process to internal substrate results in consistently higher biomass yields for all
threshold values. However, this effect levels off as the substrate threshold in-
creases further, before decreasing sharply to approach again the benchmark pro-
ductivity. This occurs once the decrease in the number of reproduction events is
no longer compensated by the increased biomass of the offspring.

Linking competition to substrate utilization also impacts productivity dramatically,
even for high substrate thresholds. This is due to the fact that if individuals can
only compete once they have sufficient biomass, they will release more substrate
into the environment if killed, which can then be absorbed by neighbouring in-
dividuals. This effect saturates at a certain threshold value, indicating that the
deaths of high-biomass individuals are releasing substrate into the environment at
a rate higher than their neighbours can absorb it, thus individuals are now limited
by their maximal uptake rate.

We also note that for both competition and reproduction, symmetric substrate lim-
itation scenarios result in qualitatively different behaviour than their asymmetric
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and hierarchical counterparts. These latter cases are more likely to result in mono-
cultures, communities which have a higher biomass yield since no effort needs to
be diverted to competition with other individuals. This effect can also be seen in
Figure 7.3, where symmetric limitation scenarios result in significantly higher final
community evenness than their asymmetric and hierarchical counterparts.

Comparing Figures 7.2 and 7.3, we note that those scenarios that give rise to the
highest biomass yields also result in the least diverse communities. This differ-
ence in biomass output between monocultures and more diverse communities is
caused by a negative dominance effect that originates from a trade-off between
growth rate (due to a high substrate threshold) and final biomass level. In mono-
cultures, species with a high substrate threshold can build up higher biomass lev-
els than fast-growing ones (with a lower substrate threshold), albeit more slowly.
However, in more diverse communities a fast-growing but low biomass produc-
tive species will monopolize most of the substrate and prevent competing species
from producing the high biomass levels seen in monocultures. This effect has
also been observed in experimental studies, which have noted an underyielding of
diverse communities compared to their component monocultures due to the com-
petitive suppression of highly productive species (Schmidtke et al., 2010; Hooper
and Dukes, 2004; Loreau and Hector, 2001; Weis et al., 2007).
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Figure 7.3: Comparison of average final evenness for the different scenarios, as a function of substrate
threshold. Each curve represents the mean of 200 simulations.

Linking mobility to substrate utilization has a comparatively weak effect on com-
munity biomass yield. Increasing an individual’s mobility results in a mild increase
of its reproductive capacity, since it increases the chance it will encounter an
empty site into which it can reproduce. It has been demonstrated that as long
as the mobility rate remains below a critical value, biodiversity will be maintained
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regardless of the details of the competition structure (Reichenbach et al., 2007).
Linking mobility to substrate utilization does not push the mobility rate above this
critical value, and hence does not greatly impact the system dynamics.

7.4.2 Impact of initial evenness

While substrate utilization has often been overlooked in modelling studies of mi-
croscopic communities, it is not the only factor that has been largely neglected.
Community evenness has been shown to be a key factor in preserving the func-
tional stability of ecosystems (Hillebrand et al., 2008), but has often been over-
looked in experimental and modelling studies (Daly et al., 2015) where it is typi-
cally assumed to be maximal despite experimental evidence to the contrary (Hus-
ton, 1997; Grime, 1998; Smith and Knapp, 2003).

Varying the initial evenness of the community has a significant impact on biodi-
versity maintenance. This is shown in Figure 7.4 for the case of substrate-limited
competition; other scenarios demonstrate similar behaviour. Lower initial even-
ness magnifies the impact of increasing the substrate threshold, negatively im-
pacts the maintenance of biodiversity, and increases the probability of species
extinctions and hence the tendency towards monoculture. Thus we find again the
trade-off between biomass yield and biodiversity maintenance, due to the strong
competition effects that are exacerbated by lower evenness, since species with
low abundances relative to the rest of the community are more vulnerable to ex-
tinction.
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Figure 7.4: Comparison of average final evenness as a function of substrate threshold, for different initial
evenness values E0 under the symmetric competition limitation scenario. Each curve represents the mean
of 200 simulations.

In the case of substrate-limited competition illustrated in Figure 7.4, this effect
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saturates at higher substrate thresholds as individuals of different species become
increasingly spatially disaggregated, acting as a further brake on the frequency of
competition events. This effect will be discussed in more detail in Section 8.4.1.

In general, lower initial evenness unbalances community dynamics by magnifying
destabilizing effects such as one species outpacing the others in terms of growth or
competitive ability, and so on. When such effects occur in more even communities,
the higher level of community diversity acts as a buffer against the destabilization,
so that the community’s functionality is more difficult to disturb. This phenomenon
has also been observed in experimental studies of the behaviour of communities
with different levels of evenness in the face of various stresses (Hillebrand et al.,
2008; Wittebolle et al., 2009; De Roy et al., 2013).

Further study of this system using approximate analytic methods could be done
on the basis of a system of PDEs mimicking both the species and substrate dy-
namics. The typical mean field approximation approach assumes a well-mixed
environment, so spatial aspects are not accounted for, which would imply a ho-
mogeneous distribution of substrate due to the lack of diffusion. We consider this
to be an excessive simplification. Essentially, an analytic treatment must be done
using a system of four PDEs: one equation for each of the bacterial species, and
one equation for the substrate. The rates at which the demographic processes
occur would be functions of the substrate concentration. Such a system must
be solved numerically since a steady-state analysis would result in the case of a
homogeneous distribution of substrate.

7.5 Conclusions

By extending existing models to incorporate both the resource-dependent nature
of demographic processes and the variability of community evenness, we provide
a more realistic in silico representation of natural systems. In silico experiments re-
veal a trade-off between maintaining community diversity and increasing biomass
yield. This result is consistent with experimental observations of a negative dom-
inance effect. In addition, the important role that evenness plays in maintaining
the functional stability of ecosystem is demonstrated, indicating the danger in
overlooking this key feature in modelling or experimental studies.
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8

8
The impact of resource
dependence on spatial

microbial population
dynamics

8.1 Introduction

Most early models of population growth, ranging from the Malthusian or expo-
nential growth model (Malthus, 1798) through to the logistic (density-dependent)
growth model (Verhulst, 1845) and the Lotka-Volterra predator-prey model (Lotka,
1925; Volterra, 1926), were based on ODEs. Therefore these models did not take
spatial considerations into account, and instead focused on determining the equi-
libria of the system in order to conduct stability analyses.

Models of this sort also typically use the mass-action law as the basis of the interac-
tions they mimic. This law originates from the study of chemical reactions (Murray,
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2002). The mass-action law dictates that if the different molecules must collide in
order to start the reaction, and the experimental system is well mixed, then the
collision and hence reaction rate is proportional to the product of the concentra-
tions of the reactants (Song et al., 2014). In the ODE population models mentioned
above, this law is used to describe the interactions between species as a function
of their density. This description depends on the mean field assumption: that the
environment is sufficiently well mixed to allow any individual to come in contact
with any other. This assumption justifies the use of species or population-level
averages (Zomorrodi and Segrè, 2016).

However, in many ecological settings in the real world, the mean field assumption
of a well-mixed environment does not hold. Therefore, models should take into
account heterogeneous space and local interactions in order to obtain a more re-
alistic representation of reality (Hellweger et al., 2016a). This paradigm shift has
been shown to result in representations and predictions significantly different, and
more realistic, than those obtained using mean field models. More details can be
found in Section 3.3, where we provided a more in-depth survey of spatial models
and their characteristics.

The key conclusion is that spatial heterogeneity can promote species coexistence
and thus help to maintain diversity. This heterogeneity can have two broad sources,
namely environmental and population dynamical (Neuhauser, 2001).

If environmental factors (such as temperature, pH, salinity, substrate concentra-
tion, etc.) vary over sufficiently small scales, then species can coexist by special-
izing in particular conditions (Hibbing et al., 2010). This is a key biological factor
underpinning coexistence. From a modelling perspective, this type of coexistence
is less interesting, since the species in the community do not interact with each
other in any meaningful way. Each population is adapted and specialized to its own
local habitat, therefore if dispersal allows for immigration and emigration between
habitats, then coexistence is trivial (Neuhauser, 2001).

Spatial heterogeneity due to population dynamics is mathematically more inter-
esting, while of course still being biologically significant. It should be noted that
spatial heterogeneity does not always support coexistence, hence the complex
and interesting nature of the topic. For example, the fragmentation of habitats
(due to ecological disturbances or human actions) has been identified as a signifi-
cant driver of species extinctions (Neuhauser, 2001). On the other hand, theoret-
ical models have shown that merely limiting the number of (possibly threatening)
neighbours an individual comes into contact with, is not the key mechanism sup-
porting coexistence. Somehow, the spatially explicit nature of the interactions are
playing a further role in promoting diversity (Laird, 2014)

The explicit consideration of realistic spatial heterogeneities is therefore an addi-
tional factor that contributes to the variability between individuals, which can be
amplified to differences in population-level characteristics, and ultimately the pop-
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ulation dynamics, including species coexistence (Werner et al., 2001). This can be
particularly important in models of microbial systems, since “practically everything
[microbes] do is in response to their environment“ (Hellweger et al., 2016a), and
hence a more realistic depiction of this environment will result in a more realistic
depiction of the microbial community’s dynamics.

We have seen in Chapter 6 that the dynamics of our foundational modelling frame-
work is largely mediated by mobility - if individuals’ interactions are sufficiently
localized, then stable spatial structures will form and enable coexistence of all spe-
cies in the community, thereby maintaining community biodiversity. Importantly,
this occurred in a spatially explicit but homogeneous environment. With the ex-
tended IBM developed in Chapter 7, our in silico landscape is now heterogeneous
due to the resource gradient. What effect does this spatial heterogeneity have on
the community’s population dynamics, and most importantly its biodiversity and
functionality?

To address this question, we extend the approach presented in Chapter 7, in order
to present in this chapter a comprehensive study of how resource dependence im-
pacts biodiversity maintenance for in silico communities in heterogeneous space.
We thus focus on studying the emergence of spatial patterns and the population
dynamics of the community, as well as their underlying mechanisms and the inter-
play between them. For this purpose, we employ the spatially explicit individual-
based model described in Chapter 6 to conduct further in silico experiments. This
allows us to address research questions 2, 4, 5, and 6:

� Which types of competitive interactions can help maintain community diver-
sity, and which types can threaten it?

� What effect does initial evenness have on maintaining community function-
ality?

� If interactions within a community are dependent on resource availability and
use, how does this affect community diversity and functionality?

� How does the spatial structure of a community affect its stability and func-
tionality?

In Section 8.2, we give a brief description of the model and how it is deployed
to address our research questions. Then in Section 8.3 we describe the set-up of
the in silico experiments which aim to uncover the system’s dynamics. Results of
these experiments are presented and discussed in Section 8.4, before conclusions
are drawn in Section 8.5.
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8.2 Model description

Our goal is to study the effects of emergent spatial patterns, due to resource de-
pendence in the demographic processes, on biodiversity maintenance. For this
purpose, we use the model developed in Chapter 7 with a different goal. We de-
scribe briefly the IBM using the ODD protocol, highlighting the aspects which differ
from the protocol described in Chapter 7.

8.2.1 Overview

8.2.1.1 Purpose

The aim of the model is to investigate how community evenness and resource
dependence in demographic processes affect the community’s spatial population
dynamics, including the probability of extinction. We also wish to investigate the
effects of multiple demographic processes being simultaneously substrate limited,
in particular the effects on community diversity and productivity, as proxies of the
community’s functionality.

8.2.1.2 State variables and scales

The state variables and scales are the same as those described in Section 7.2.1.2.

8.2.1.3 Process overview

The processes are the same as those described in Section 7.2.1.3.

8.2.1.4 Scheduling

The scheduling of the IBM is the same as described in Section 7.2.1.4.

8.2.2 Design concepts

� Emergence: the spatial patterns of the individuals and the environmental
substrate, and the population-level dynamics of the community emerge nat-
urally from the interactions at the local scale.
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� Interactions: individuals interact with each other and their environment by
consuming substrate, reproducing if located next to an empty site, exchang-
ing sites with their neighbours, or competing with their neighbours.

� Stochasticity: the stochastic processes in the model are: the initial spatial
distribution of the grid; the interactions between individuals and the environ-
ment; and the interactions between individuals.

� Sensing: if selected for reproduction, individuals can sense whether their
neighbouring site is empty; if so, they will reproduce. Individuals can also
sense the substrate concentration within the grid site where they are located,
which affects their uptake and growth rate,

� Observation: the data collected from the IBM includes: the spatial distribu-
tion of individuals, the spatial distribution of substrate, the population count
of each species and their probability of extinction, the community evenness,
a spatial aggregation measure per individuals, the biomass distribution of
individuals, their time to extinction. These are tracked for each time step.

8.2.3 Details

8.2.3.1 Initialization

The model is initialized in the same way as in Section 7.2.3.1.

8.2.3.2 Input

The input variables are: the initial community evenness, and substrate limitation
scenario. Aside from the scenarios described previously in Section 7.3, we investi-
gate additional subtrate limitation scenarios which are described in more detail in
Section 8.3.

For each scenario, we check a range of initial evenness values, chosen so as to
sample across the range of possible values of the Gini index, namely the unit
interval.

8.2.3.3 Submodels

The submodels are implemented in the same way as described in Section 7.2.3.3.
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8.3 In silico scenarios

We investigate the three substrate utilization scenarios described in Section 7.3.
To facilitate analysis and comparison of the different scenarios, we also investigate
a benchmark case.

In the benchmark case, demographic processes occur regardless of individuals’
internal substrate level. Individuals absorb environmental substrate and convert
this to biomass, but their biomass has no impact on interaction events.

In the first substrate limitation scenario, all three species are subject to the same
substrate threshold and therefore have the same reproductive/competitive/mobile
capacity: τA = τB = τC.

In the second scenario, one species is subject to a substrate threshold τ, while the
other two species are not (asymmetric limitation). Then for example species A has
substrate threshold τA > 0 while species B and C have substrate thresholds equal
to zero, i.e. τB = τC = 0.

In the third scenario, a hierarchy in terms of substrate limitation is imposed on the
community, e.g. τA > τB > τC.

This results in ten scenarios: the benchmark scenario, and three scenarios for each
of the demographic processes (reproduction, competition and mobility).

Aside from studying the spatial population dynamics of these ten resource limita-
tion scenarios in isolation to avoid confounding effects, we also investigate simul-
taneously substrate-limited processes – that is, scenarios where two demographic
processes are both substrate-limited.

To investigate the interaction between these two phenomena, we assign the same
substrate threshold in the same way (symmetrically, asymmetrically or hierarchi-
cally between species) to both processes. For example, in the simultaneous sym-
metric scenario, we assign the thresholds for reproduction as τr

A
= τr

B
= τr

C
=

10−16 g, and the thresholds for competition as τcA = τcB = τcC = 10−16 g. In an
asymmetric scenario, we assign for example τr

A
= 10−16 g and τcA = 10−16 g to

species A while the other species are not subject to substrate thresholds.

Once the simulation set-up is specified (with specific substrate limitation and spe-
cific initial evenness), a set of simulations is carried out with the substrate thresh-
old systematically varied from the lowest substrate threshold (10−16 g) to the
highest (2 × 10−15 g), in twenty increments. Multiple outputs are tracked for each
simulation; these are listed under “Observations” in Section 8.2.2 above.
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8.4 Results and discussion

In Chapter 7, we used this model to study the impact of substrate limitation on
community productivity, as a proxy for ecosystem functioning. Here, we present
a more comprehensive study of the model’s behaviour, and the insights this can
lead to with regard to the mechanisms under investigation. We present and discuss
results related to pattern formation, population dynamics, the effects of more than
one demographic process being simultaneously substrate-limited, and the effect
of resource dependence on the system’s critical mobility rate.

8.4.1 Pattern formation

To study the role of space in maintaining biodiversity in our system, we examined
the spatial evolution of our modelled communities under the different resource
limitation scenarios.

In the benchmark case, the different species arrange themselves into stable ro-
tating spirals, as seen in the Reichenbach model (2007), and experimental results
for cyclically competing E. coli strains (Kerr et al., 2002). Introducing resource de-
pendence restricts the development of these spiral structures to those areas of
the grid where there is firstly sufficient substrate (which we recall is diffusing out-
wards from the central source), and secondly individuals with the ability to exploit
such substrate (Figure 8.1). These emergent spatial patterns broadly agree with
those observed in experimental studies of three bacterial strains in cyclic compe-
tition (Weber et al., 2014).

We notice a significant difference in behaviour between resource-dependent repro-
duction and competition when compared to resource-dependent mobility. In the
first two cases, a notable zone of activity emerges where interactions occur more
frequently due to the relatively higher concentration of environmental substrate
compared to the outer areas of the grid.

We observe little impact of resource dependence on mobility. As noted previously,
strong effects are only observed when mobility exceeds a critical rate, allowing in-
dividuals to move over distances too great to permit local interactions. In this case
of high mobility, we approach a setting where the population can be considered
well mixed, and therefore the mean field approximation becomes relevant. This
approximation predicts that the coexistence equilibrium is not asymptotically sta-
ble and therefore extinctions are frequent (Szabó and Fath, 2007). Hence as long
as mobility in our model does not decline to zero nor exceed the critical rate, we
notice little difference between low mobility and even lower mobility (as induced
by increasing the substrate threshold).
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Figure 8.1: Comparison of pattern formation for resource-dependent demographic processes, after 500
generations. The box in the centre indicates the size of the substrate source. Top: substrate threshold
τ = 10−16 g. Bottom: substrate threshold τ = 2 × 10−15 g. Left to right: substrate-limited process —
reproduction, competition, mobility.

In the case of substrate-limited reproduction, the substrate gradient implies that
most reproductive events occur closer to the centre of the grid, where the high-
biomass individuals are predominantly located. Outside this zone, reproductive
events occur rarely since there is less environmental substrate to fuel growth.
Thus individuals killed in competition events in this zone are not replaced, and the
grid becomes depopulated. When the substrate threshold is increased (see bottom
row of Figure 8.1) the zone of activity expands due to the increased substrate cost
to reproduce.

The existence of the zone of activity is confirmed using the density plots in Fig-
ure 8.2, which illustrate the number of interaction events that occurred per cell
over the course of a simulation. We observe similar behaviour in the cases of
substrate-limited reproduction and competition (hence we show only one exam-
ple of each in Figure 8.2): most of the interaction activity occurs in a central zone,
which expands when the substrate threshold is increased. In the case of substrate-
limited mobility, the interaction activity is not confined to any particular area, but
occurs throughout the grid. It is possible in this case to distinguish the character-
istic spiral formations, since there is much activity occurring at their edges, being
the interfaces of different species aggregations.
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Figure 8.2: Activity for resource-dependent demographic processes, after 500 generations. Darker colour
indicates that a higher number of interaction events were executed during the course of the simulation.
Left to right, substrate-limited process: competition (threshold τ = 10−16 g), reproduction (threshold
τ = 1.2 × 10−15 g), mobility (threshold τ = 5 × 10−16 g).

The mechanism driving the formation of the zone of activity is the following: in-
dividuals require more time to grow sufficient biomass to reproduce, and in this
extended time the substrate has diffused farther away from the centre, expanding
the zone of activity. However, within this expanded zone, comparatively fewer re-
productive events are occurring. Hence individuals become more disaggregated,
since empty grid cells are not filled as easily as for lower substrate thresholds.
Thus increasing the substrate threshold does not greatly affect spatial aggrega-
tion per species, as measured by patchiness (Bez, 2000), since the expansion in
the zone of activity is counterbalanced by the decrease in aggregation (van de
Koppel et al., 2005).

An analogous phenomenon is seen for substrate-limited competition, where in-
stead of depopulation in the outer areas of the grid, we observe a lack of spatial
structure. The spiral structures characteristic of this type of model emerge as a
result of the local cyclic competition scheme, and hence are confined to the zone
of activity where individuals can find sufficient substrate to fuel competition. Out-
side this zone, few competition events occur and thus the community remains
well mixed. Again the zone of activity expands when the substrate threshold is
increased, while there is no disaggregation as seen for substrate-limited reproduc-
tion.

These results support the mechanistic explanation of spatial structures in micro-
bial biofilms, which describes the formation of various structures in biofilms as a
consequence of differences in local substrate availability (Wimpenny and Colas-
anti, 1997), more specifically as occurring under substrate-limited conditions such
as those modelled here (Tolker-Nielsen and Molin, 2000).

In addition to the scenarios described above with a square source in the centre
of the lattice, we also investigated different geometries for the substrate inflow
region. If the substrate inflow was homogeneous across the lattice, the lattice
became saturated homogeneously with substrate, and we did not observe any
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spatial gradient in this case. In particular, the population aggregation patterns
seen in Figure 8.1 do not occur. Instead, due to the lack of a significant spatial
substrate gradient, the characteristic spiral structures may form over the entire
grid in a similar way to the substrate-less case, but with a delay due to the time
needed for individuals to uptake sufficient substrate. Thus the same population
persistence typical of the original Reichenbach (2007) model can be observed. On
the other hand, if the substrate flows into the lattice via the boundaries, we found
the same qualitative effects as in the central source case, but the lattice became
saturated with substrate more quickly since the diffusive front was larger. These
results are omitted for reasons of length, and since we considered the case of a
central source inflow more interesting due to the spatial gradients it produces,
and its representation of an experimental set-up where substrate is provided via a
deposit in the centre of a Petri dish, for example.

8.4.2 Population dynamics

The spatial structures described in Section 8.4.1 also have significant effects on
the overall population dynamics. The mean field approximation of the rock-paper-
scissors model predicts a single coexistence equilibrium (which is stable but not
asymptotically so) and three stable homogeneous equilibria representing the three
possible monocultures (Reichenbach et al., 2006). However, the mean field ap-
proximation relies on the assumption that the population is well mixed, which is
not relevant in the spatially explicit case we consider. This explicit consideration of
space therefore produces significantly different population dynamics, as does the
resource dependence of the demographic processes.

An example of the evolution of the species proportions for hierarchically limited
competition is shown in Figure 8.3. In this scenario, species A is subject to the high-
est substrate threshold for successful competition, with τA = 2 × 10−16 g, while
species B has a substrate threshold that is half that of species A, and species C
has no substrate threshold and may therefore compete with no regard to its inter-
nal substrate level. The simulation is initialized with a completely even community.
As the simulation evolves, species B and C benefit from lower substrate thresholds
than species A, and prosper and persist in oscillating proportions. Meanwhile spe-
cies A declines but does not collapse to extinction.

The mechanism underlying this behaviour has previously been noted in a voter-
type model of cyclic competition between three populations, with the additional
process of one population type being “externally supported”, in the sense of hav-
ing stronger competitive and reproductive ability than the other two types (Tainaka,
1993). In our model, this “externally supported” species is species C, since it is
not resource-limited in contrast to the other two species. Thus species C kills more
of its prey (species A), whose population decreases. Thus species A kills fewer of
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species B, which thereby achieves an advantage in the dynamical balance since
it has more prey (species C) and less predators (species A). The advantage of
species B is less dramatic in our model than in that of Tainaka (1993) and other
models (Szabó and Fath, 2007), since in our model the externally supported spe-
cies enjoys an advantage in only one process (competition) as opposed to two, as
in the voter model studied for example by Tainaka (1993), where reproduction and
competition are coupled, which is characteristic of such models and in contrast to
rock-paper-scissors models.

Thus all three species may coexist in unequal proportions, behaviour not seen
in the cases without a substrate limitation, or homogeneous substrate inflow. In
these cases, the species can only coexist in roughly equal proportions, since any
small differences in population proportions unbalance the rock-paper-scissors dy-
namics (Laird, 2014). These differences in proportions (due to stochasticity or oth-
erwise) are quickly magnified and inevitably lead to the extinction of two species,
with the third species persisting alone. A clue to the mechanism underlying this
behaviour can be found in the mean field approximation of the three species model
in the substrate-less case, where the only stable equilibria are those representing
equal coexistence, or survival of a single species (see Section 5.2.2).

The existence of a stable unbalanced community also agrees qualitatively with
the predicted outcome of siderophore-mediated bacterial competition between
two species (Hibbing et al., 2010). In this system, both species require a com-
pound, called a siderophore, to chelate iron. When one species does not produce
a siderophore itself, but rather uses that produced by the other species, the pre-
dicted outcome of the competition for iron is that the ‘cheating’ species will dom-
inate the ‘honest’ species, since it benefits from a lower cost by not producing its
own siderophore (Hibbing et al., 2010). Our model produces analogous behaviour
for a three-species equivalent, where the third species C also benefits from cheat-
ing.



8

8 EFFECTS OF RESOURCE DEPENDENCE ON SPATIAL POPULATION
DYNAMICS 172

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●
●
●●
●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Generation

R
el
at
iv
e
p
o
p
u
la
ti
o
n
si
ze

A B C

Figure 8.3: Evolution of species proportions for hierarchically limited competition (τA > τB > τC) in a
community which is initially completely even.

The existence of this type of stable unbalanced community in our model is facili-
tated by the emergence of the spatial structures discussed in Section 8.4.1, where
most of the interaction events occur in a central ‘zone of activity’ determined by
the substrate gradient, where all three species are present. Outside this zone,
dynamics are significantly different (see Figure 8.4). This behaviour agrees quali-
tatively with patterns observed in juvenile mussel banks, where it was noted that
“self-organization allows mussels to persist at algal concentrations that would not
permit survival of mussels in a homogeneous bed” (van de Koppel et al., 2005).
In our model, the spatial structures permit the persistence of species at lower lev-
els than would be possible under homogeneous spatial conditions, as the spatial
heterogeneities provide ‘refuges’ for these species, notably in the central zone of
activity.

That these unbalanced communities are stable and persisting agrees with micro-
biological studies showing that the presence of spatial refuges can enhance com-
munity resistance to stress and disturbance, providing a buffer against adverse
effects on community composition and function (Baho et al., 2012).
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A B C

Figure 8.4: Grid configuration after 500 generations for hierarchically limited competition (τA > τB > τC)
with high initial evenness.

We note that the formation of spatial refuges observed in our model is qualitatively
different from a phenomenon described as “coexistence by small numbers”, wh-
ich has been observed in other individual-based modelling studies of non-transitive
competition (Abrudan et al., 2016). This term refers to the situation where a spe-
cies collapses to near extinction due to competition effects, but does not disappear
completely - a very small number of individuals remains present, completely dis-
aggregated from other individuals of the same species, and entirely surrounded
by non-competitors (e.g. an individual of species A survives in a neighbourhood
consisting entirely of individuals of species B). Such a scenario is theoretically
consistent with experimental studies that suggest that communities in nature are
often dominated by only a few species, with many other species present in low
quantities (McGill et al., 2007), but has also been suggested as an artefact of the
neighbourhood structure that was used (Abrudan et al., 2016).

The stable unbalanced communities evolved using our model are much less un-
balanced than those in the case of “coexistence by small numbers”, where the
least abundant species may number only a handful of individuals. In our case,
the least abundant species is still present in a significant proportion relative to the
rest of the community, and individuals remain fairly aggregated with their con-
specifics (Figure 8.4).

A different type of behaviour is illustrated in Figure 8.5, where the evolution of the
species proportions is shown for a simulation of the asymmetrically limited repro-
duction scenario with substrate thresholds τA = 2 × 10−16 g and τB = τC = 0. In
this case, a cheater species (B) again dominates the honest species (A), but here
the second cheater species (C) does not prosper. This is due to the imposed cyclic
competition structure, which in this case is not substrate limited. Hence species C
is more vulnerable to its predator (species B) than in the case shown in Figure 8.3,

• • • 
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and is depressed by the increased competitive pressure despite its stronger re-
productive capacity relative to the honest species (A). The stable persistence of
all three species in unbalanced proportions is again permitted by the emergent
spatial structure discussed in Section 8.4.1, which resembles the one shown in
Figure 8.4, but now species C is also absent from the outer regions of the grid.
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Figure 8.5: Evolution of species proportions for asymmetrically limited reproduction (τA > τB = τC = 0)
in a community which was initially completely even.

In a third and final example, we show in Figure 8.6 the evolution of the species
proportions for the scenario of asymmetrically limited reproduction with substrate
threshold τA = 2 × 10−16 g and τB = τC = 0, with intermediate initial evenness.
The behaviour again agrees with results observed in siderophore-mediated com-
petition (Hibbing et al., 2010), where a species able to monopolize the available
iron will force the other species into extinction. In our three species case, the
species with the highest cost (A) quickly collapses to extinction as the others mo-
nopolize the available substrate. The subsequent resource competition between
the remaining two species is then once more determined by the cyclic competi-
tion scheme, which explains why species B outcompetes species C until the latter
species collapses to extinction. In this case, the unstable dynamics are magni-
fied by the lower initial evenness, which we previously observed as increasing the
probability of species extinctions by increasing the amplitudes of the population
oscillations (see Section 7.4.2).
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Figure 8.6: Evolution of species proportions for asymmetrically limited reproduction (τA > τB = τC = 0)
in a community with initially intermediate evenness.

8.4.3 Probability of extinction

In the benchmark case of no resource dependence (analogous to the model of
Reichenbach et al. (2007)), the biodiversity of the system is moderated by the
mobility rate; once the mobility exceeds a certain critical rate εc (which scales with
system size), the interactions are no longer sufficiently localized to permit long-
term coexistence, and the system will suffer extinctions and tend to monoculture.

When the demographic processes become resource-dependent, we have seen in
Section 8.4.2 that extinction events become more common, and the tendency to
monoculture increases, particularly for the asymmetric and hierarchical limitation
scenarios. This raises the question of what effect the substrate threshold has on
the extinction probability of the system, and whether strength of resource limita-
tion or mobility rate takes precedence in moderating long-term coexistence.

Therefore, selecting a mobility rate significantly smaller than the critical value of
the benchmark case (εc = 10.63), which would in the benchmark case ensure
long-term coexistence, we calculated the extinction probabilities obtained for sim-
ulations with varying substrate thresholds. In this way we observed the impact
of the different resource limitation scenarios and substrate thresholds on the ex-
tinction probability of the system. The results are shown in Figure 8.7. For the
symmetric limitation scenario, imposing a substrate threshold does not increase
the probability of extinction past the benchmark level (approximately zero, imply-
ing long-term coexistence). This agrees with the results reported in Section 7.4.1,
which show that imposing a substrate threshold reduces biodiversity levels slightly
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below benchmark levels, but does not provoke extinction events to reduce biodi-
versity more dramatically. We observe a similar effect here.

For the asymmetric and hierarchical scenarios, the results of increasing the sub-
strate threshold are more dramatic, again in agreement with results in Section 7.4.1
where it was observed that above very small substrate thresholds, for these two
scenarios there was a significant decrease in biodiversity due to extinction events,
in particular for the asymmetric limitation scenario (compare with Figure 7.4).
There remains a significant range of the tested values of τ where extinction prob-
abilities remain low or close to zero, permitting the type of coexistence seen for
example in Figures 8.3, 8.4, and 8.5.
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Figure 8.7: Probability of extinction as a function of substrate threshold. The symmetric, asymmetric
and hierarchical limitation scenarios were tested, for the competition process. The mobility rate of the
system was fixed at ε = 4.5.

We therefore conclude that the main determinant of long-term coexistence be-
comes firstly the resource limitation scenario. If the scenario is asymmetric or
hierarchical, this will imply significant extinctions despite a low mobility rate. Indi-
viduals may benefit from spatial refuges and persist in unbalanced but coexisting
communities (cfr. Section 8.4.2), but these scenarios are vulnerable to stochastic
effects which may provoke extinctions, and thus extinction probabilities for these
cases can be significant. If the limitation scenario is symmetric (mirroring the
more balanced dynamics of the benchmark case), increasing the substrate thresh-
old within the same range does not induce extinctions, and therefore the mobility
rate remains the principal determinant of long-term coexistence.



8

8.4 RESULTS AND DISCUSSION 177

8.4.4 Simultaneous substrate limitations

Examples of the grid configurations produced by these simulations are shown in
Figure 8.8, where a clear separation of regions can be observed. When repro-
duction and competition are both symmetrically limited, we observe two central
zones: the characteristic spiral formations in the centre, enclosed firstly by empty
space (as was seen for substrate-limited reproduction) and secondly by a region
where individuals are present, but randomly mixed (as was seen for substrate-
limited competition).

In the cases where reproduction and competition are both asymmetrically or hi-
erarchically limited, we again observe unbalanced communities due to the spatial
heterogeneities providing refuges for a vulnerable species. For asymmetric simul-
taneous limitations, the vulnerable species is species C; compare with Figures 8.5
and 8.6 where in the case of a single substrate-limited process, for high initial
evenness species C persisted in similar proportion to species B and for lower initial
evenness species C collapsed to extinction. In this simultaneous limitation case,
the effect is somewhere in between: species C persists but at a lower proportion
than the other two species.

When both reproduction and competition are hierarchically limited, the vulnerable
species is species A, which in this scenario is subject to the highest substrate
threshold. This behaviour is similar to the effects of a single hierarchically limited
process (see Figure 8.4).

Figure 8.8: Grid configuration after 500 generations for a community where both competition and repro-
duction are (left to right) symmetrically, asymmetrically and hierarchically substrate-limited (τ = 10−16 g).

Making reproduction and competition simultaneously resource-dependent also has
a significant effect on community productivity, which collapses compared to the
cases of individual processes being resource-dependent. This is shown in Fig-
ures 8.9-8.11, where community productivity is compared for symmetric, asym-
metric and hierarchical scenarios, respectively. In all cases, the productivity of
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communities subject to simultaneous process limitations never exceeds the pro-
ductivity of the benchmark case.

Thus while resource-limiting two processes simultaneously does not greatly alter
the population dynamics by way of significantly increased extinctions compared
to individual limitation scenarios, in the simultaneous case individuals must divide
their resource allocation between reproducing and competing with their neigh-
bours. This trade-off significantly depresses community productivity, although
this effect is not greatly increased by increasing the substrate threshold, having
reached a plateau at intermediate threshold values. This suggests that for high
substrate thresholds, the resource allocation trade-off between reproduction and
competition has constrained biomass growth to its minimum, and thus further in-
creasing the substrate threshold has little effect on productivity.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●
●

●
●

●

●
●

●
● ● ●

●

● ● ●

●

●
●

● ●

● ●

●
● ●

●

●

●

● ●
●

●

●

●

●

●
●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.0
0

1000

2000

3000

4000

5000

6000

7000

Substrate threshold (10-15 g substrate)

M
ea
n
b
io
m
as
s
yi
el
d
(1
0
-
15
g
)

● no substrate limitation
● limited competition
● limited reproduction
● simultaneous limitation

Figure 8.9: Comparison of average biomass yield for the symmetrically limited scenarios. Each curve
represents the mean of 200 simulations.
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Figure 8.10: Comparison of average biomass yield for the asymmetrically limited scenarios. Each curve
represents the mean of 200 simulations.
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Figure 8.11: Comparison of average biomass yield for the hierarchically limited scenarios. Each curve
represents the mean of 200 simulations.

8.5 Conclusions

We have extended existing microscopic models of three cyclically competing spe-
cies by considering resource-dependent demographic processes in a spatially het-
erogeneous landscape, thereby providing a more realistic in silico representation
of natural systems. The explicit treatment of space, which permits resource gra-
dients, can induce dramatic effects in the system population dynamics. These
effects, consistent with other modelling and experimental studies, are not seen in
well-mixed models due to the absence of spatial heterogeneities in such models,
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thereby neglecting this key facet of natural systems. Our findings have implica-
tions for the formation and maintenance of spatial patterns in microbial popula-
tions such as biofilms.

If validated with experimental data, such a model can be used to predict and vi-
sualize unobserved substrate gradients which can be experimentally impractical
or infeasible to measure directly (Hellweger et al., 2016a). The validation would
require the spatial distribution of the cells, acquired for example from image anal-
ysis of microscopy images, as well as the quantification of the substrate uptake
kinetics.
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Towards a simulation
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microbial communities

9.1 Introduction

In Chapters 7 and 8, we have studied in silico synthetic microbial communities
under co-culture conditions, addressing research questions related to community
diversity, functionality and productivity. In this chapter, we will draw on data from
an in vitro synthetic community in order to investigate whether our in silico ap-
proach is capable of mimicking the dynamics of a similar in vitro counterpart.

We have discussed in Section 2.3 the use of co-culture experiments to study inter-
actions between microbes, which we have applied in silico in Chapters 5–8. A more
specific application of co-cultures is bioaugmentation, where the biomass in water
treatment plants is altered by the addition of certain microbial strains that have
been selected for their ability to degrade specific chemical compounds (Hairston
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et al., 1997). For example, during the treatment of drinking water, the common
groundwater pollutant 2,6-dichlorobenzamide (BAM) must be removed below a
threshold concentration of 0.1 µgL−1 to meet the EU Directive on Drinking Wa-
ter (EU, 2006). However, the endogenous microbial communities in the sand filters
(SFs) of such drinking water treatment plants are not capable of achieving BAM re-
moval to concentrations below this threshold (Björklund et al., 2011). Therefore,
bioaugmentation of SFs has been proposed as an alternative strategy, by the ad-
dition of a specialized BAM mineralizer such as Aminobacter sp. MSH1 (Sørensen
et al., 2007). This has already been tested in laboratory-scale SFs containing differ-
ent types of filter material (Albers et al., 2014) and in pilot scale rapid SFs (Albers
et al., 2015). However, studies of this type of bioaugmentation of drinking water
ecosystems rarely address how exactly the pesticide degrader interacts with the
resident community, or other such fundamental ecological questions (Thompson
et al., 2005).

From an ecological point of view, bioaugmentation represents a form of microbial
invasion process (cfr. Section 3.4.2.3), where the strains introduced to augment
resident community functionality are the invaders. The introduced strains must
establish themselves in the resident community, by maintaining a metabolically
active population for a significant period of time (Kinnunen et al., 2016).

In Vandermaesen et al. (2017, in prep), the authors hypothesize that the estab-
lishment of MSH1 and its subsequent BAM mineralization in SFs not only depend
on exploitative competition effects, but also on other features such as interactions
with resident community members. Therefore, the BAM mineralization activity of
MSH1 was evaluated in sand microcosms in the presence of a selection of the 13
sand filter isolates (SFI) described in Vandermaesen et al. (2017, in prep). Syn-
thetic microbial communities of MSH1 combined with SFI were subjected to an
initial competition phase. Subsequently, BAM was added and the kinetics of BAM
mineralization was evaluated as a measure of bioaugmentation success.

To characterize the interactions between resident community members, co-cultures
of various combinations of SFI with MSH1 were inoculated, and their mineralization
kinetics was followed. However, given the total number of strains in the commu-
nity, it is practically impossible to experimentally study all possible co-culture com-
binations. In addition, for the limited number of combinations that is feasible to
investigate, one runs into the issues with in vitro co-culture experiments described
in Section 2.3.1. In such cases, predictive modelling is becoming more and more
appreciated as a tool for identifying possible co-cultures of interest (Esser et al.,
2015; Seshan et al., 2014; Poschet et al., 2005; Widder et al., 2016). If the miner-
alization kinetics can be predicted for all co-cultures, the subset of combinations
that appear interesting for the particular application (in this case, bioaugmenta-
tion) can then be extensively studied in vitro, thereby reducing the experimental
load.

To determine the feasibility of such an approach for the experimental system de-
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scribed in more detail in Section 9.2, we will illustrate in Section 9.3 how to predict
of the mineralization kinetics of co-cultures of two SFIs with MSH1, from the min-
eralization kinetics of monocultures of SFI with MSH1. In this case, we have a
completely characterized dataset. This provides us with an ideal setting to inves-
tigate in Section 9.3 the possibilities of predictive modelling of co-culture growth
in this well-defined system.

Then in Section 9.4, we use the modelling framework developed in previous chap-
ters to construct the in silico counterpart of the in vitro synthetic community used
in the experiments of Vandermaesen et al. (2017, in prep), with the goal of qual-
itatively reproducing the observed dynamics. This requires adjustments to our
modelling framework to bring it closer to reality, particularly in modelling the com-
petitive interactions between individual microbes, in order to take advantage of
the knowledge and data gained from the Vandermaesen et al. experiment. This
process is described in Section 9.4.2, and the resultant model is described in Sec-
tion 9.4.3, as well as the set-up of the in silico experiments it is employed for.
The results of these experiments are presented and discussed in Section 9.4.4. Fi-
nally, in Section 9.5 we summarize the conclusions of the modelling and simulation
studies carried out in this chapter.

9.2 Materials and methods

In this section, we summarize the experimental set-up and procedure used by
Vandermaesen et al. (2017, in prep) to obtain the dataset that we will use in the
remainder of this chapter for our modelling and simulation studies.

9.2.1 Experimental set-up

The hypothesis of this in vitro study was that the establishment of MSH1 and its
subsequent BAM mineralization in SFs depend on interactions with and between
resident community members. Therefore, the BAM mineralization activity of MSH1
was evaluated in sand microcosm co-cultures in the presence of different com-
binations of 13 SFI. Synthetic microbial communities of MSH1 combined with SFI
were co-cultured, then BAM was added and the kinetics of BAM mineralization was
evaluated as a measure of bioaugmentation success.

9.2.1.1 Bacterial strains

The specific variant of the BAM mineralizing Aminobacter sp. MSH1 (Sørensen
et al., 2007) used in this study, MSH1-GFP, was fluorescently tagged. The 13
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SFI used were isolated from SF material from two drinking water treatment plants
(Vandermaesen et al., 2017, in prep): Acidovorax sp. S9, Undibacterium sp. S22,
Brachybacterium sp. S51, Mesorhizobium sp. S158, Acidovorax sp. S164, Rhodococ-

cus sp. K27, Acidovorax sp. K52, Aeromonas sp. K62, Paucibacter sp. K67, Pelo-

monas sp. K89, Rhodoferax sp. K112, Rhodoferax sp. K129, and Piscinibacter sp.
K169. None of the selected SFI were capable of BAM mineralization, avoiding any
confounding effects with the BAM mineralization performance of MSH1.

9.2.1.2 Microcosm set-up

Microcosms were created in deep 96-well plates, containing sterile sand in every
well. MSH1 and SFI were cultured and prepared as described in Vandermaesen et

al. (2017, in prep) and combined in synthetic communities in such a way that the
number of cells of every strain was 107 cells/mL. Since each community included
MSH1, the total richness of a community RT is given by RT = RSFI + 1, where RSFI

is the number of SFI present. In addition to all combinations of individual SFI with
MSH1 (13 combinations at RSFI = 1), all 78 different pair combinations of two SFI
with MSH1 (RSFI = 2) were tested.

Sodium acetate was provided as the only carbon source at a concentration of
150 µgL−1 in MMO (Minimal Medium ONPG) medium. Assuming that 50% of
acetate-C is actually assimilated, this corresponds to an AOC concentration of
22 µgC /L, which is within the range of AOC values in drinking water ecosystems
(20-100 µgC /L) (Lehtola et al., 2002). Of every synthetic community, 100 µL was
inoculated in the sand microcosms. A reference microcosm inoculated with 100 µL
MSH1 at 107 cells/mL (RSFI = 0) was included in every deep well plate. In addi-
tion, to account for abiotic 14CO2 production, one negative control (RT = 0) was
included, containing sand amended with 100 µL MMO+Ac. All synthetic commun-
ities and controls were replicated four times. No 14CO2 production was observed
in the abiotic control. The plates were sealed and incubated at 20°C for 7 days.

After this initial competition phase, all wells were spiked with 14C-BAM, dissolved
in 5 µL MMO, which corresponds to a final BAM concentration of 150 µgL−1. BAM
mineralization was then followed for ±130 h by trapping the BAM-produced 14CO2
with Ca(OH)2. Trapped 14CO2 radioactivity was quantified by digital autoradiogra-
phy. The cumulative percentage 14CO2 was plotted relative to the total amount of
14C added as a function of the incubation time, and hence cumulative mineraliza-
tion curves were obtained.

9.2.2 Modelling of mineralization kinetics

To describe the kinetics of BAM mineralization, the modified Gompertz model (Zwi-
etering et al., 1990) was used. This model is one of the most commonly used
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microbial growth models (Buchanan et al., 1997), and is given by

P = A exp
�

− exp
�μe

A
(λ − ct) + 1

��

, (9.1)

where P (%) is the percentage mineralization at time t (h), A (%) is the total extent
of mineralization after the exponential mineralization phase, λ (% h−1) is the lag
time, c (%h−1) is the endogenous mineralization rate, and μ (%h−1) is the maxi-
mum mineralization rate constant. The modified Gompertz model differs from the
standard Gompertz model (Zwietering et al., 1990) in that its parameters each
have a biological meaning, whereas the parameters of the standard model do not
reflect any biological attribute but merely determine the function’s shape.

The Gompertz parameters of the cumulative mineralization curves were deter-
mined by least squares curve fitting, using the Trust-Region-Reflective algorithm
(Coleman and Li, 1994, 1996), at a termination tolerance of 10−14 and allowing
at most 2 × 105 function evaluations and 3 × 105 iterations. Initial parameter esti-
mates were set at 30, 5, 0.1, and 2 for A, μ, c, and λ, respectively (Vandermeeren
et al., 2016). This was implemented using Matlab R2012b (Mathworks, USA). All
values of c were zero or close to, and were hence excluded.

9.2.3 Description of the dataset

From the experimental set-up described in Section 9.2.1, we obtained a dataset
representing 13 monocultures (the individual strains) and 78 co-cultures (the pair
combinations). For each of these 91 conditions, we have two types of mineraliza-
tion data.

First, a cumulative BAM mineralization time series consisting of achieved mineral-
ization values at 13 time points, from t = 0h to t = 130h. There are four biological
replicates of each time series, except where some outliers were removed as indi-
cated in Vandermaesen et al. (2017, under review). In total, 21 out of 364 time
series were removed. After removal of these outliers, no condition had less than
three replicates. The second data type consists of the fitted Gompertz parameters
λ, μ and A describing the mineralization kinetics. Examples of both data types are
shown in Figure 9.1.
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9.3 Predictive modelling

9.3.1 Modelling approach

An initial inspection of the experimental data reveals clear interaction and identity
effects as hypothesized in Vandermaesen et al. (2017, in prep). Examples are
shown in Figure 9.1. Figure 9.1(a) shows a case where the mineralization achieved
by the co-culture has a lower lag time λ, a higher mineralization rate μ, and a
higher mineralization extent A than the constituent monocultures (in this case,
strains S9 and S22).

The most important factor in bioaugmentation success has been postulated (Ekelund
et al., 2015) as the invader’s ability to grow quickly and establish itself, reflected
by the mineralization rate μ and the lag time λ, and not the total amount of accu-
mulated mineralization A. Therefore, positive interactions between MSH1 and SFI
in co-culture were defined as those increasing the mineralization rate and short-
ening the lag time, and vice versa for negative interactions. Therefore, the effect
shown in Figure 9.1(a) is classified as positive. In contrast, some co-cultures result
in poorer mineralization performance compared to the monoculture cases, i.e. a
longer lag time λ and a lower mineralization rate μ (Figure 9.1(b)). These interac-
tion effects are classified as negative. Finally, there are cases where the co-culture
mineralization performance falls between the monoculture performances, and are
therefore classified as neutral.
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Figure 9.1: Observed mineralization curves (mean and standard
deviation) for three pairs with different interactions, plotted with
their constituent observed monoculture mineralization curves.

Such comparisons of the kinetic mineralization parameters of the pairwise combi-
nations make it clear that strong interaction effects are occurring. This raises the
question of whether we can predict these co-culture effects, based on monocul-
ture mineralization performances, in order to pinpoint strain combinations that are
interesting for BAM mineralization bioaugmentation in our experimental system.

To construct such a predictive model, we adopted a regression approach. This
method is not complex, but given the limited dataset and the exploratory nature
of this work, we opted for a straightforward approach, deciding to resort to more
involved predictive techniques only if unsatisfactory results were obtained with the
regression approach. Additionally, this method is well established in the literature
of predictive models in microbiological settings (Seshan et al., 2014; Baty and
Delignette-Muller, 2004; Song et al., 2014; Baranyi and Roberts, 1995; Gil et al.,
2006), increasing the accessibility of this work for microbiologists.

Therefore, we performed a non-linear regression for each mineralization parame-
ter. Each model took as input variables the key features of the monocultures, and
their outputs were the respective mineralization parameters of the co-culture. The
key features of the monocultures were: the identity of each strain (a numerical
identifier from 1 to 13, i.e. S ∈ {1, ...,13}, with the order assigned according to
the list in Section 9.2.1.1), and its three mineralization parameters λ, μ and A.

Hence the predictive model for the lag time λ̂ of the co-culture of S1 and S2 with
MSH1 took the form:
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Mλ (S1, A1, μ1, λ1, S2, A2, μ2, λ2)

= β0 + β1S1 + β2A1 + β3μ1 + β4λ1

+ β5S2 + β6A2 + β7μ2 + β8λ2

+ β9λ1λ2

= λ̂

(9.2)

Likewise, the corresponding predictive models for μ̂ and Â (the other co-culture
mineralization parameters of S1 and S2 with MSH1) included instead an interaction
term for the parameters μ and A: β9μ1μ2 and β9A1A2 respectively.

To determine the model coefficients β0, ..., β9, we performed a weighted least
squares regression, which searches for the parameter values that minimize a
weighted sum of squared residuals (where each weight is equal to the recipro-
cal of the variance) (Brown, 1978). This was done using the NonlinearModelFit
function in Mathematica (version 11.0.1, Wolfram Research Inc., USA).

The models were validated using an exhaustive cross-validation (Friedman et al.,
2008), where the models are trained and tested on every possible division of the
original sample into a training and a test set of a certain size. Specifically, we used
leave-one-out cross-validation (Friedman et al., 2008). In this procedure, each of
the n observations is dropped in turn to form n training sets of n − 1 samples. For
each of the training sets, the model is fitted and then tested on the corresponding
test set (the dropped observation). The performance of the models was evaluated
using the cross-validated R2 statistic, given by

R2CV = 1 −

∑�

Ytrain − Ŷtrain
�2

∑

�

Ytrain − Ytrain

�2

where Ytrain and Ŷtrain are, respectively, the observed and predicted values from
the -th training set obtained using leave-one-out cross-validation (Roy et al., 2015).
We also computed the root-mean-square error (RMSE) of the models’ predictions.

9.3.2 Results and discussion

We constructed a predictive model for each mineralization parameter as described
in Section 9.3. For completeness, we report in Table 1 the best fit parameters of
the regression models. The cross-validated R2 values for the regression models
were: 0.68 for the λ model, 0.55 for the μ model and 0.45 for the A model. Thus
we found a range of predictive performances across the three parameters.
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Table 9.1: Best fit regression parameters, to two significant figures, for λ, μ and A regression models.

Parameter λ μ A

β0 4.84 2.05 63.60
β1 -0.011 0.0020 0.064
β2 0.039 -0.029 0.027
β3 -0.20 0.85 -2.31
β4 1.42 -0.080 0.64
β5 -0.0045 0.025 -0.10
β6 -0.090 0.016 -0.77
β7 0.26 -0.12 1.60
β8 -0.20 0.076 -0.48
β9 -0.035 -0.047 0.010

We also tested our predictive models’ performance against the raw mineralization
data, as well as the fitted parameters (since this may be a source of error, as
will be discussed shortly). Thus for each pair, we used the model to predict the
mineralization values for the 13 time points used in the lab experiment. By using
these values, we reconstructed the cumulative mineralization curve, which was
subsequently compared to the mean cumulative mineralization curve obtained
from the experimental observations (Figure 9.3).

To further test our predictive models’ performance, for each strain pair we used
their predicted pairwise growth parameters to parameterize the modified Gom-
pertz model (see Section 9.2.2). We then used this Gompertz model to compute
the mineralization values for the 13 time points used in the experiment. With this
time series, we obtained a predicted cumulative mineralization curve that could
be compared with the observed cumulative mineralization curve.

The goodness-of-fit of the 78 predicted mineralization curves (one for each pair)
was verified using the root-mean-square error and the R2 statistic, given by R2 =
1 − SSres

SStot
where SSres is the residual sum of squares and SStot is the total sum of

squares (Roy et al., 2015). The distribution of the R2 values is shown in Figure 9.2.
The mean R2 value obtained for the predicted mineralization curves of the 78 pairs
was 0.85 ± 0.2, while the average root-mean-square error of the mineralization
percentage was 7.04 % ± 6.85 %.

0.0 0.2 0.4 0.6 0.8 1.0

R squared

Figure 9.2: R2
CV

values for regression model predictions of mineralization curves, compared to experi-
mental observations. Mean and standard deviation shown in blue.
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In Figure 9.3, we show some examples of predicted mineralization curves com-
pared to the observed mineralization curves. The first example, predicting the
mineralization curve of strains S22 and K82 in co-culture with MSH1, shows a very
good agreement with the corresponding observed mineralization curve, achieving
a goodness-of-fit value of 0.98. Thus in this case the models led to a very good
prediction of all three mineralization parameters, evidenced by the key features of
the mineralization curve: the lag time λ, the mineralization rate μ and the miner-
alization extent A.

An example of a poorer goodness-of-fit is shown in Figure 9.3b, where the predicted
mineralization curve of strains S158 and K169 in co-culture with MSH1 differs fairly
significantly from the observed mineralization curve. However, as can be seen in
Figure 9.2, most of the 78 pairs were predicted with a very good agreement to
observations.

It is clear from Figure 9.2 that despite a relatively poor R2CV value for the predictive
model for the mineralization extent A, reconstruction of the cumulative mineral-
ization curves can still be achieved with a very good experimental agreement.
This reinforces the relative importance of the mineralization parameters in the co-
culture dynamics, as discussed in Section 9.3. It is also a positive point for this
modelling approach that its best performances are for the most important param-
eters: if its best predictive performances were for parameter A, the model would
be less useful for the bioaugmentation purpose for which it was conceived.

There are several possible explanations for the lower accuracy in the case of some
pairs. Firstly, the natural variability between the experimental replicates, which led
to a small number of outliers being removed from the dataset before the modelling
stage. Although the removal of outliers led to a more consistent dataset, some
natural variability between replicates undoubtedly remains, which leads to less
accurate parameter estimates in the initial fitting procedure. Although regressing
on the fitted parameters rather than the raw mineralization data therefore brings
an additional source of error, we used this approach since it resulted in a reduced
dataset that was easily comparable and biologically meaningful at a glance (in
contrast to the mineralization time series).
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Figure 9.3: Predicted vs observed mineralization curves for two pairs, showing examples of (a) excellent
and (b) relatively poor fit.

Secondly, it is almost certainly true that some interactions are taking place in the
co-cultures that are not captured by the models. Based on the specific strains
involved, these interactions could include cooperation in the form of degrada-
tion of BAM metabolites (Little et al., 2008), interference competition between
strains (Moons et al., 2009), and competition for additional resources such as
metabolites or the scavenging of lysed cells (Kerr et al., 1999) (Vandermaesen
et al., 2017).

Despite these possible sources of error, the model still achieved a very good pre-
dictive performance even using the fitted parameters and without resorting to a
detailed metabolic model, which would have involved a more intensive experimen-
tal and modelling characterization (Seshan et al., 2014; Poschet et al., 2005).
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The same modelling approach could also be used for co-cultures involving higher
numbers of species. This would require a larger but not necessarily exhaustive
dataset. Although the possible number of co-culture combinations increases dra-
matically with the number of strains present (from our 13 strains, there are 286
possible co-cultures of three species, and 715 of four species), not all of these
combinations would need to be tested. Instead, a combinatorial experimental de-
sign (Shasha et al., 2001) could be used to investigate certain subsets of combina-
tions (based on interesting results at lower richness), and a predictive model could
then be constructed on this basis. We believe that such an approach, if conducted
using a careful selection of combinations, can still result in a good predictive per-
formance without being experimentally impractical.

9.4 Emergent competition

9.4.1 Motivation and scope

Previous results with synthetic microbial communities with similar characteristics
in terms of diversity and composition (Horemans et al., 2017, in prep,) and also
for this particular synthetic community of MSH1 and 13 SFI (Vandermaesen et

al., 2017, in prep), show that after the initial competition phase only some of
the strains persist, forming a stable subcommunity of reduced richness. It is this
subcommunity that is present at the moment of the BAM spike and during the
subsequent mineralization period that determines the bioaugmentation success.
In Section 9.3 we have demonstrated the possibilities of predictive modelling for
highlighting SFI co-culture combinations that improve the BAM mineralization per-
formance of MSH1, and thus support bioaugmention success. These results refer
to the second phase, where the subcommunity and MSH1 interact as MSH1 miner-
alizes BAM.

Now we turn our attention to the first phase, before the addition of BAM, where
all 13 SFI are inoculated in the co-culture, and competition between them results
in extinctions that lead to a persisting subcommunity that would then be spiked
with BAM. Can we retrieve this behaviour using the IBM framework developed
throughout the previous chapters, supported with data and knowledge from the in

vitro experiments?

For this purpose, we require information about the interactions between the SFI.
Here it is important to note that the experiments described above were not pur-
posely conceived and designed for use in a modelling study. Hence we do not have
all information we would wish for in order to parameterize our model. However,
we can still make use of the information that we do have.
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9.4.2 Assessing strain interactions

Ideally, we would like to dispose of as much information as possible about the
13 SFI and, most importantly, the interactions between them. However, the ex-
periments of Vandermaesen et al. (2017, in prep) focused on bioaugmentation
success (the second experimental phase) and therefore collected data relating to
BAM mineralization and MSH1 survival. The only data we have that directly re-
lates to the SFI themselves are their monoculture growth curves (Figure 9.4), and
their monoculture survival curves on acetate (Figure 9.5), relevant to the first ex-
perimental phase that we now seek to model. These data can give us an idea of
how the SFI grow and persist in isolation, and on this basis Vandermaesen et al.

(2017, in prep) classified the strains according to their “intrinsic competitiveness”,
a classification that we can use as an additional feature of the strains. However
these data do not give us any information about how the SFI may interact, and in
particular compete, when they are inoculated together in co-culture.

Thus if we were to attempt to use these data in a model based for example on
exploitative competition between the SFI, we would somehow have to infer the
interaction effects. One possibility is to look at the respective rankings of the
different SFI in terms of their growth rates by the end of the initial growth period of
seven days. However, this would result in straightforward hierarchical competition,
where the SFI with the highest growth rate or survival rate would persist to the
exclusion of all other SFI. This is not realistic given the in vitro experimental results
which demonstrate the persistence of a coexisting sub-community of SFI.
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Figure 9.4: SFI monoculture growth curves on acetate (Vandermaesen et al., 2017, in prep).
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Figure 9.5: SFI monoculture survival curves on acetate (Vandermaesen et al., 2017, in prep).

Another possibility is to use the classification of Vandermaesen et al. (2017, in
prep) based on the intrinsic competitiveness of the SFI, which grouped the SFI in
strong, intermediate or weak competitors. However, again without further infor-
mation about how these classifications might change when the SFI interact with
each other, we would merely find that the “strong” competitors persist to the
exclusion of the other groups. Furthermore, we would not be able to infer any
intra-group interactions and would therefore not be able to distinguish between
different SFI with the same classification.

Thus we need further information regarding the interactions between SFI, which
we do in fact dispose of —however, this information is indirect, namely the effect
on MSH1’s mineralization performance in the presence of different combinations
of strains, in the second experimental phase. From the differences in mineral-
ization parameters between these different co-culture combinations, we can infer
when there are interaction effects occurring between strains, by comparing the
mineralization performances of MSH1 alone, in co-culture with individual SFI, and
in co-culture with both strains.

For these interaction effects, we focus on two of the three mineralization param-
eters: the lag time λ and the maximum mineralization rate μ. As discussed in
Section 9.3, these two parameters have been highlighted as key to the success
of bioaugmentation strategies and are more strongly linked with both positive and
negative mineralization effects than the mineralization extent A (Ekelund et al.,
2015).
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9.4.2.1 Identifying strain identity effects

To compare values for λ and μ across different RSFI levels, the pairwise Tukey
test (Tukey, 1949) was used. With this test it is possible to evaluate whether λ or
μ values observed for a specific synthetic community were significantly different
from the respective parameter values observed for a different community. The
test statistic is z = mA−mB

SE , where mA and mB are the respective means of the
observations of two populations being compared, and SE is the data’s standard er-
ror (Haynes, 2013). The null hypothesis of the test is that the means are from the
same population. The test statistic is then compared to a critical test statistic value
zcrit which is obtained from the studentized range distribution (Keuls, 1952). If z
is larger than zcrit, then the null hypothesis is rejected and it is concluded that the
two populations are significantly different. Tests were performed at the 95% sig-
nificance level, using Mathematica (version 11.0, Wolfram Research, Champaign,
IL, USA).

Two types of tests were conducted. First, we compared λ or μ values for RSFI = 1
communities against RSFI = 0 (i.e. MSH1 alone) as a benchmark population. We
have 16 replicates for this control population. These results are shown in Fig-
ures 9.6 and 9.7, where the λ and μ values, respectively, for each RSFI = 1 com-
munity are plotted, and the points are coloured according to the Tukey test results.
Recall that for λ, a decrease in this parameter is considered a positive effect while
an increase is considered a negative effect. For μ, the opposite is true.

The second type of test required selecting one of the SFI as the focal strain. The
test then compared λ or μ values for the RSFI = 2 communities including this focal
strain, against the λ or μ values for the corresponding RSFI = 1 community for the
non-focal strain. An example is shown in Figure 9.8, where S9 is the focal strain
of the test and the parameter under consideration is λ. We therefore selected all
RSFI = 2 communities containing S9. One such community contained S9, S22 and
MSH1. We then compared the λ values of this community against the λ values
of the community containing S22 and MSH1. This allowed us to conclude if in
this case there were significant differences in lag time due to the inclusion of S9.
This was repeated for every strain other than the focal strain. The results of the
equivalent test for μ with S9 as the focal strain are shown in Figure 9.9.

This test was done 13 times for each parameter, so that each of the strains was
used once as the focal strain. The results of these tests are collected in the tables
shown in Tables 9.10 and 9.11. In these tables, each row collects the results of
Tukey tests with a particular focal strain, e.g. the first row shows the results of
tests where S9 was the focal strain, and the columns indicate the other strains
being tested for interaction effects with S9.
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Figure 9.6: Tukey test results when comparing λ parameters for RSFI = 1 co-cultures against RSFI = 0 (i.e.
MSH1 alone).
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Figure 9.7: Tukey test comparing μ parameters for RSFI = 1 co-cultures against RSFI = 0 (i.e. MSH1 alone).
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Figure 9.8: Tukey test with S9 as the focal strain, comparing λ parameters of RSFI = 2 combinations
including S9 against their corresponding RSFI = 1 co-culture not including S9.

▲▲

▲

▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

◆

◆
◆

◆

●

●●

●

◆◆
◆

◆ ○○
○
○ ○

○
○

○
○

○○○

○

○

○○ ○

○
○

○○○
○

○○○

○

○
○

○
○○

○

○
○

◆

◆◆◆

◆

◆

◆
◆

◆◆
◆ ◆◆◆◆ ◆◆

◆◆

◆◆
◆◆

◆◆
◆

◆
◆◆◆

◆◆

◆

◆

◆◆

◆ ◆

◆
◆
◆

S9 S2
2

S5
1

S1
58

S1
64 K2

7
K5
2

K6
2

K6
7

K8
9

K1
12

K1
29

K1
69

M
SH
1

0

1

2

3

4

5

6

7

8

μ
(%

/h
)

▲ MSH1 ◆ S9 ◆ R=1

● RSFI = 2 significantly larger than RSFI = 1 ● RSFI = 2 significantly less than RSFI = 1

○ RSFI = 2 not significantly different than RSFI = 1

Figure 9.9: Tukey test with S9 as the focal strain, comparing μ parameters of RSFI = 2 combinations
including S9 against their corresponding RSFI = 1 co-culture not including S9.
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S9 S22 S51 S158 S164 K27 K52 K62 K67 K89 K112 K129 K169

S9 + 0 + + 0 + + + + + + -

S22 + - + + 0 + 0 + 0 + + -

S51 0 - 0 0 - 0 - 0 - 0 - -

S158 + + 0 + 0 + + + + + + -

S164 + + 0 + 0 + + + + + + -

K27 0 0 - 0 0 0 - 0 - 0 - -

K52 + + 0 + + 0 + + + + + -

K62 + 0 - + + - + + 0 + 0 -

K67 + + 0 + + 0 + + + + + -

K89 + 0 - + + - + 0 + + 0 -

K112 + + 0 + + 0 + + + + + 0

K129 + + - + + - + 0 + 0 + -

K169 - - - - - - - - - - 0 -

Figure 9.10: Table of Tukey test results for the λ parameter. Each row collects the results of Tukey
tests with a particular strain as the focal strain, the columns then indicate the strains that were tested for
interaction effects with the focal strain. The entry in cell (, j) indicates the difference (if any) between the
RSFI = 2 community containing species  and species j, and the control RSFI = 0 community: "+" indicates
the RSFI = 2 parameter values were significantly larger than the RSFI = 0 values, "–" indicates they were
significantly less, and "0" indicates no significant difference. The background colour of cell (, j) indicates
the difference (if any) between the RSFI = 2 community containing species  and species j, and the RSFI = 1
community containing species j: green indicates the RSFI = 2 parameter values were significantly less
than the RSFI = 0 values, red indicates they were significantly larger, and no colour indicates no significant
difference.
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S9 S22 S51 S158 S164 K27 K52 K62 K67 K89 K112 K129 K169

S9 - 0 - - 0 - - - - - - 0

S22 - 0 - - - - - - - - - 0

S51 0 0 - - 0 - - - - - 0 0

S158 - - - - - - - - - - - 0

S164 - - - - - - - - - - - -

K27 0 - 0 - - - 0 - 0 - 0 0

K52 - - - - - - - - - - - 0

K62 - - - - - 0 - - - - 0 0

K67 - - - - - - - - - - - 0

K89 - - - - - 0 - - - - 0 0

K112 - - - - - - - - - - - 0

K129 - - 0 - - 0 - 0 - 0 - 0

K169 0 0 0 0 - 0 0 0 0 0 0 0

Figure 9.11: Table of Tukey test results for the μ parameter. Each row collects the results of Tukey
tests with a particular strain as the focal strain, the columns then indicate the strains that were tested for
interaction effects with the focal strain. The entry in cell (, j) indicates the difference (if any) between the
RSFI = 2 community containing species  and species j, and the control RSFI = 0 community: "+" indicates
the RSFI = 2 parameter values were significantly larger than the RSFI = 0 values, "–" indicates they were
significantly less, and "0" indicates no significant difference. The background colour of cell (, j) indicates
the difference (if any) between the RSFI = 2 community containing species  and species j, and the RSFI = 1
community containing species j: green indicates the RSFI = 2 parameter values were significantly larger
than the RSFI = 0 values, red indicates they were significantly less, and no colour indicates no significant
difference.

9.4.2.2 Building the competition structures

Using the information gathered in Tables 9.9 and 9.10, we will now consider how to
model the competition occurring between the SFI. It is clear from the interaction
effects noticeable in these tables that using the same approach of Chapters 4–8
will not be sufficiently realistic. Whereas before we imposed a competition struc-
ture on the community as a whole, to say for example that A always beats B which
always beats C, we must now model competition in a different way. We dispose
of data relating to (indirect) pairwise interaction effects, so it is more suitable to
“build up” the competition structure in this way.

Using the information in Tables 9.9 and 9.10 will result in a so-called tournament
matrix. Such a matrix M for s species has dimensions s × s. If the species repre-
sented by row  outcompetes the species represented by column j, then Mj = 1. On
the other hand, if the species represented by row  is outcompeted by the species
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represented by column j, we have Mj = −1. If  = j, then Mj = 0. Using the infor-
mation in Tables 9.9 and 9.10, we can compile such a tournament or competition
matrix. The question remains how precisely to do so.

We have two possibilities: to merge the information about λ and μ interaction
effects, or to treat the parameters separately. The latter option is justified by con-
sidering that the parameters represent different biological attributes and different
underlying processes (Ekelund et al., 2015). This is most noticeable in their oppos-
ing effects on mineralization performance in particular; an increased λ parameter
is considered a negative effect while an increased μ parameter is considered a
positive effect.

We will however consider both cases, which results in three different competition
matrices. The first is based on λ and μ interaction effects, the second on λ inter-
action effects only, and the third on μ interaction effects only. We look in Table 9.9
(λ interaction effects) or Table 9.10 (μ interaction effects), or both (for λ and μ

interaction effects) for pairs of SFI which appear to interact with each other, and
check what kind of interaction appears to be taking place: is it positive or negative
with respect to each of the SFI?

This corresponds in Tables 9.9 and 9.10 to both the cell entries and the cell back-
ground colours. The cell entries indicate which kind of difference (if any) exists
between the control community and the RSFI = 2 community containing the par-
ticular species corresponding to the cell row and column. These relationships can
be positive, negative, or not significant. The cell background colours indicates the
difference (if any) between the RSFI = 1 community containing the species corre-
sponding to the cell column, and the RSFI = 2 community containing the particular
species corresponding to the cell row and column. These relationships can also be
positive, negative, or not significant. Recall that positive or negative relationships
are defined in the biological sense: a positive relationship increases μ or decreases
λ, while a negative relationship decreases μ or increases λ.

This approach results in matrices that are noticeably sparser than the competition
structures used in previous chapters, but this attribute is also more realistic, since
the SFI do not necessarily interact and compete with every other strain they meet.
In fact, it is clear from Tables 9.9 and 9.10 that some strains do not interact in any
significant way, and this must be reflected in the competition structures.

We then obtain the following matrices representing competition between the SFI.
When considering interactions based on λ or μ effects, the matrix has the form:
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Mλμ =


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








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0 0 1 1 0 1 0 0 0 0 0 1 0

0 0 1 −1 1 0 0 0 0 0 1 1 0

−1 −1 0 0 −1 0 −1 0 −1 0 0 0 0

−1 1 0 0 1 −1 1 1 1 1 1 1 0

0 −1 1 −1 0 0 0 −1 0 0 0 1 −1

−1 0 0 1 0 0 1 0 0 −1 0 0 1

0 0 1 −1 0 −1 0 1 0 0 0 1 0

0 0 0 −1 1 0 −1 0 0 0 0 1 0

0 0 1 −1 0 0 0 0 0 0 0 1 −1

0 0 0 −1 0 1 0 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 0 −1 0

−1 −1 0 −1 −1 0 −1 −1 −1 0 1 0 0

0 0 0 0 1 −1 0 0 1 0 0 0 0
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. (9.3)

When considering interactions based only on λ effects, the matrix reads:

Mλ =


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0 0 1 1 0 0 0 0 0 0 0 1 0

0 0 0 −1 1 0 0 0 0 0 1 1 0

−1 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 1 0 0 1 0 0 1 1 0

0 −1 0 −1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 0 1 0
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. (9.4)

When considering interactions based only on μ effects, the matrix has the form:
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Mμ =
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0 0 0 −1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 0 1 0

0 −1 0 0 0 0 0 −1 0 −1 0 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 1 0 1 0

0 0 0 −1 1 0 −1 0 1 0 1 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 −1

0 0 0 −1 1 0 −1 0 0 0 0 0 0

0 −1 0 0 0 0 0 −1 0 0 0 −1 0
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. (9.5)

An additional extension of our modelling approach that will bring it closer to reality
is to also consider non-deterministic competition. Thus far we have considered
deterministic competition, where if the competition structure specifies that A beats
B, this will always occur: it will never be possible for B to beat A. But this is not
always realistic (Planque et al., 2014). Variation between individuals can result in
an individual of species A that is a particularly weak competitor, and an individual
of species B that is a particularly strong competitor. If these two specific individuals
meet, the outcome of the competition can be in doubt. It may be more realistic
to specify a so-called winning probability: the probability that A beats B. Including
a winning probability allows for different competition outcomes to occur, and the
value of the winning probability allows us to account for the relative strengths of
the individuals.

Therefore we will also consider non-deterministic competition between the SFI,
not only in terms of its effects on the diversity and stability of the community (and
possible subcommunity), but in comparison with the same effects due to deter-
ministic competition. Our immediate question is then how to assign the winning
probabilities to the different pairwise competitions.

Using data relating to the SFI’s monoculture growth and survival curves, Vander-
maesen et al. (2017, in prep) classified the “intrinsic competitiveness” of the SFI
and on this basis grouped them into strong, intermediate and weak competitors
(2017, in prep). Using this information, we can assign winning probabilities to
each pairwise competition based on the differences in intrinsic competitiveness
between the two strains. For example, competition between a weak intrinsic com-
petitor and a strong intrinsic competitor will most likely result in the success of the
latter. It should also be clear that this winning probability should be higher than the
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winning probability assigned to an intermediate intrinsic competitor when faced
with a weak intrinsic competitor. Using this approach, we replace the 1’s and -1’s
populating our matrices Mλμ, Mλ and Mμ with rational numbers of absolute value
less than 1, representing the appropriate winning probability.

Using this approach, we obtain the following matrices representing non-determin-
istic competition. When considering interactions based on λ or μ effects, the ma-
trix has the form:

M∗
λμ
=

































































0 0 .9 .9 0 .9 0 0 0 0 0 .9 0

0 0 .7 −.6 .7 0 0 0 0 0 .7 .7 0

−.9 −.7 0 0 −.9 0 −.9 0 −.7 0 0 0 0

−.9 .6 0 0 .9 −.9 .9 .9 .9 .9 .9 .9 0

0 −.7 .9 −.9 0 0 0 −.7 0 0 0 .9 −.7

−.9 0 0 .9 0 0 .9 0 0 −.6 0 0 .9

0 0 .9 −.9 0 −.9 0 .9 0 0 0 .9 0

0 0 0 −.9 .7 0 −.9 0 0 0 0 .7 0

0 0 .7 −.9 0 0 0 0 0 0 0 .7 −.7

0 0 0 −.9 0 .6 0 0 0 0 0 0 0

0 −.7 0 −.9 0 0 0 0 0 0 0 −.6 0

−.9 −.7 0 −.9 −.9 0 −.9 −.7 −.7 0 .6 0 0

0 0 0 0 .7 −.9 0 0 .7 0 0 0 0


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(9.6)

When considering interactions based only on λ effects, the matrix has the form:
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M∗
λ
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−.9 .9 0 0 .9 0 0 .9 0 0 .9 .9 0

0 −.7 0 −.9 0 0 0 0 0 0 0 .9 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −.9 0 0 0 0 0 0 0 .9 0

0 0 0 −.9 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
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0 −.7 0 −.9 0 0 0 0 0 0 0 −.6 0
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(9.7)

When considering interactions based only on μ effects, the matrix has the form:

M∗
μ
=


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0 .9 0 0 0 0 0 .9 0 .9 0 .9 0

0 −.7 0 0 0 0 0 −.7 0 −.6 0 .9 −.7

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 .9 0 0 0 0 .9 0 .9 0 .9 0

0 0 0 −.9 .7 0 −.9 0 .7 0 .7 0 0

0 0 0 0 0 0 0 −.7 0 0 0 0 −.7

0 0 0 −.9 .6 0 −.9 0 0 0 0 0 0
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0 0 0 0 .7 0 0 0 .7 0 0 0 0
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(9.8)

9.4.3 Model description

To understand how the different competition structures affect the dynamics of the
system, we consider the in silico counterpart of the synthetic community of 13 SFI.
We model this community using an individual-based approach similar to previous
chapters, which we again describe using the ODD protocol.
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9.4.3.1 Overview

Purpose

The aim of the model is to study how more realistic competition structures affect
the in silico dynamics, particularly in terms of community diversity and stability,
and investigate whether this approach can qualitatively reproduce the dynamics
observed in similar in vitro studies, namely a persisting subcommunity.

State variables and scales

The model is a two-dimensional representation of an experimental domain divided
into a regular grid of size L × L = N, and populated by a community of 13 SFI.
We use the same labels as in Section 9.3. Namely, we assign to each strain a
numerical label between one and 13, in the order given in Section 9.2.1.1: S9,
S22, S51, S158, S164, K27, K52, K62, K67, K89, K112, K129, K169.

Each grid site is either occupied by a single individual, or is empty. Individuals
are characterized by two state variables: grid position (, y) and species identity
s ∈ {1, ...,13}.

Process overview

We consider an in silico microbial community that is initially placed on the grid
with a random spatial distribution. The community’s initial species abundance
distribution is completely even, to mimic the in vitro experimental set-up.

An individual can interact with its nearest neighbours, defined as those individu-
als in its von Neumann neighbourhood (the four grid cells with which it shares an
edge). Three possible interactions can occur, representing the three key demo-
graphic processes discussed in Section 3.4: reproduction, competition and mobil-
ity.

The mechanisms of these interactions are the same as in Chapters 5–8. Repro-
duction can occur when an individual is located adjacent to an empty grid site,
which is then filled with a new individual of the same species. In order to provide a
form of mobility, all individuals can exchange their position with a nearest neigh-
bour or move to a neighbouring empty site. Competition can occur between two
neighbouring individuals that do not represent the same species. The outcome
of the competition event is determined by the governing competition matrix; the
defeated individual is removed from the grid and the grid site becomes empty.
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Scheduling

The IBM proceeds in a similar way as the three- and four-species models in Chap-
ters 6–8, using the modified version of the Gillespie algorithm described in Sec-
tion 5.3.1.4, to determine which interaction occurs at each time step and calculate
the interaction outcome. The algorithm iterates over the following steps:

1. Set time to t = 0 and set the event rates:

(a) reproduction with rate μ

(b) competition with rate σ

(c) mobility with rate ε

2. Calculate the overall rate of events r = μ + σ + ε

3. Select an individual at random

4. Select one of the focal individual’s nearest neighbours at random

5. Select an interaction event with the following probabilities, by drawing a ran-
dom number from the interval [0, r]:

(a) reproduction with a probability μ
r

(b) competition with a probability σ
r

(c) mobility with a probability ε
r

6. Execute the selected interaction event on the selected individual (if permit-
ted) and determine the outcome according to the governing rules:

(a) reproduction occurs deterministically (it is always carried out if possible)

(b) mobility occurs deterministically

(c) competition can occur:

i. deterministically: the winner is determined by the appropriate entry
(being 1 or −1) in the competition matrix Mλμ,Mλ or Mμ

ii. non-deterministically: a random number rc is drawn from the unit
interval and compared to the appropriate winning probability Mj in
the competition matrix M∗

λμ
,M∗

λ
or M∗

μ
, where species  and species

j are competing.
If Mj > 0:

� species  wins the competitive event if rc < Mj

� species j wins the competitive event rc > Mj

If Mj < 0:

� species  wins the competitive event if rc > |Mj|
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� species j wins the competitive event rc < |Mj|

7. Update the grid according to the outcome of step 6

8. Update the time step to t = t + 1

9. Return to step 3 and continue until t = tend

9.4.3.2 Design concepts

� Emergence: the spatial patterns and population-level dynamics of the com-
munity emerge naturally from the interactions occurring between individuals.

� Competition based on pairwise interaction effects: we no longer im-
pose a competition scheme on the community as a whole, as in Chapters 5–8.
Instead, the competition scheme is constructed based on pairwise interaction
effects, encoded in a competition matrix.

� Non-deterministic competition: In addition to deterministic competition,
we also investigate the effects of non-deterministic competition, where the
victor of any competition event is not predetermined but is instead probability-
based.

� Interactions: individuals interact with each other and their environment
by reproducing if located next to an empty site, exchanging sites with their
neighbours, or competing with their neighbours.

� Stochasticity: the stochasticity in the model arises from the initial spatial
distribution of the grid; the interactions between individuals and the environ-
ment (reproduction); the interactions between individuals (mobility, compe-
tition); and from the non-deterministic competition.

� Sensing: if selected for reproduction, individuals can sense whether their
neighbouring site is empty; if so, they will reproduce. If the site is occupied
by an individual, no reproduction will occur.

� Observation: the data collected from the IBM includes the population count
of each species, the community evenness, the spatial distribution of individ-
uals, and their time to extinction. These are tracked for each time step.

9.4.3.3 Details

Initialization

The model is initialized with a random spatial distribution of individuals and empty
sites. Initially, a certain proportion of grid sites are left empty; thus the system
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is initially below carrying capacity. The initial species abundance distribution is
completely even (E0 = 1). Aside from the input variables, all other parameters
used to initialize the model are fixed for all simulations, and are shown in Table 9.2.

9.4.3.4 Input

The input variable is the competition matrix. There are six different matrices:

� Mλμ: deterministic competition based on λ and μ interaction effects (ma-
trix (9.3))

� Mλ: deterministic competition based on λ interaction effects (matrix (9.4))

� Mμ: deterministic competition based on μ interaction effects (matrix (9.5))

� M∗
λμ

: non-deterministic competition based on λ and μ interaction effects (ma-
trix (9.6))

� M∗
λ

: non-deterministic competition based on λ interaction effects (matrix
(9.7))

� M∗
μ

: non-deterministic competition based on μ interaction effects (matrix
(9.8))

For each of these initial conditions, we run 200 replicates.

9.4.4 Results and discussion

9.4.4.1 Richness

To study the effects of the different types of competition on the diversity of the
in silico synthetic community, we first examine the richness effects, by determin-
ing the number of surviving species after 1000 generations to see what levels of
richness are maintained under the different competition structures.

Table 9.2: Parameters of the individual-based model of 13 SFI.

Parameter Description Value
L Grid side length 200
ø Initial proportion empty sites 0.1
μ Reproduction rate 1
σ Competition rate 1
ε Mobility rate 4.25
T Number of generations evolved 1000
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In Figure 9.12, we show the probability of observing a certain species richness af-
ter 1000 generations, for deterministic and non-deterministic competition based
on combined λ and μ interaction effects. The majority of the simulations result
in monoculture. Indeed, more than 80% for deterministic competition and more
than 75% for non-deterministic competition. In this sense, non-deterministic com-
petition has a minor stabilizing effect on the community dynamics, relative to de-
terministic competition, by slightly reducing the probability of monoculture (and
thus maximal extinctions). For both types of competition, a small percentage of
the simulations results in communities of more than one species. This happens
more frequently for non-deterministic competition (∼ 25%) than for deterministic
competition (∼ 15%), however in neither case do more than four species persist.
Thus competition based on λ and μ interaction effects results in very low richness
levels in both the deterministic and non-deterministic cases.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Number surviving species

P
ro
b
ab
ili
ty

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Number surviving species

P
ro
b
ab
ili
ty

Figure 9.12: Probability of observing a particular species richness after 1000 generations for (a) deter-
ministic and (b) non-deterministic emergent competition based on λ and μ effects. Probabilities calculated
from 200 replicates.

In Figure 9.13, we show the corresponding results for deterministic and non-deter-
ministic competition based on λ interaction effects only. We immediately notice
higher richness levels. With this competition structure, we observe monocultures
very rarely in the deterministic case, and never in the non-deterministic case. We
find final richness levels as high as eight (deterministic case) or nine species (non-
deterministic case). In the deterministic case, approximately 70% of simulations
result in communities of five or six species, and the same for the non-deterministic
case. The distribution of final richness is more skewed towards higher richness for
the non-deterministic case, again indicating a stabilizing effect on the dynamics in
terms of fewer extinctions and thus higher richness. This effect is not surprising,
since non-deterministic competition results in fewer prey extinctions and more
predator extinctions compared to deterministic competition, and thus decreasing
extinction probabilities of the most vulnerable species.
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Figure 9.13: Probability of observing a particular species richness after 1000 generations for (a) deter-
ministic and (b) non-deterministic emergent competition based on λ effects. Probabilities calculated from
200 replicates.

Even higher richness levels are observed for deterministic and non-deterministic
competition based on μ interaction effects only (Figure 9.14). No monocultures
are ever observed, and in fact richness never drops below four (deterministic
case) or five species (non-deterministic case). In the deterministic case, approx-
imately 95% of simulations result in communities of five or six species, in the
non-deterministic case approximately 95% of simulations result in communities of
five, six or seven species. The distribution of final richness is again more skewed
towards higher richness for the non-deterministic case, indicating a stabilizing ef-
fect on the dynamics in terms of fewer extinctions and thus higher richness.
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Figure 9.14: Probability of observing a particular species richness after 1000 generations for (a) deter-
ministic and (b) non-deterministic emergent competition based on μ effects. Probabilities calculated from
200 replicates.

9.4.4.2 Diversity

After observing the richness effects due to the different forms of competition, we
now consider community diversity. We do so using the Leinster-Cobbold diversity
index (see Eq. (4.11) in Section 4.2.6.2). Recall that this is an effective number
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index which is also multivariate, since it includes a sensitivity parameter q that
determines how much weight is assigned to rare or common species. For q < 1,
more weight is given to rare species (q = 0 is exactly species richness), while for
q > 1 more weight is given to common species. All species are weighed equally
for q = 1.

For each of the six competition matrices, we calculate the Leinster-Cobbold diver-
sity index over time, for different values of q so that we may gather information
about the composition and balance of the communities, as well as their changes
in diversity as the different simulations evolve.

In Figure 9.15 we show the average Leinster-Cobbold diversity over time for deter-
ministic and non-deterministic competition based on combined λ and μ interaction
effects, for q ∈ {0,1,20}. With these different orders of diversity, we can infer
changes in species richness (q = 0), evenness (q = 20) and diversity (q = 1). We
firstly note that there is little variation between simulations, as evidenced by the
low levels of variability in diversity values for all values of q.
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Figure 9.15: Mean diversity profiles (Leinster-Cobbold index) for q ∈ {0,1,20}, for (a) deterministic
and (b) non-deterministic emergent competition based on λ and μ effects. Mean and standard deviation
calculated from 200 replicates.

Initially, the community undergoes a sharp drop in evenness (seen in differences
between the two curves for q > 0 relative to the q = 0 curve) while richness is
maintained at its initial level. The time to the first species extinction is roughly
similar for all replicates, namely around 200 generations. This period represents
the time required for the spirals to begin to form, and the first species to be en-
tirely surrounded by its predator(s) and killed off. Following the first extinction,
others rapidly follow, also enabled by the spatial structures as the species have
aggregated sufficiently to begin to chase each other around the grid. Extinctions
occur frequently and continuously, resulting in a final diversity of approximately
one effective species, as in Figure 9.12. The higher order diversities (q = 1 and
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q = 20) reach their minimum much earlier than the diversity of order zero (i.e.
richness), indicating that while more than one species can persist in late simula-
tion time, this occurs in extremely uneven communities. This can also be inferred
by the similarity between the q = 1 and q = 20 curves. Increasing q has the effect
of giving more weight to common species and thus less to rare species, so when
this has little impact on diversity values it implies that there are very few rare spe-
cies and thus ignoring them has little effect (since they have already collapsed to
extinction).

There is little difference between the cases of deterministic and non-deterministic
competition aside from a slightly longer time to first extinction and a slightly higher
final diversity for the non-deterministic case. Thus non-deterministic competition
has a minor stabilizing effects on the community dynamics, but only in the sense
of delaying the onset of monoculture.

In Figure 9.16 we show the equivalent results for deterministic and non-deterministic
competition based on λ interaction effects only. As observed in Figure 9.13, rich-
ness is higher than for the cases of competition based on λ interaction effects.
There is again an initial phase where initial richness is sustained before extinctions
begin. This period is longer compared to Figure 9.15, and final community diver-
sity is higher for all values of q. Additionally, the decrease in similarity between
the q = 1 and q = 20 curves compared to Figure 9.15 implies that communities are
more even when competition is based on λ interaction effects. In Figure 9.16 these
curves approach each other significantly later, indicating that higher evenness is
maintained for longer than in Figure 9.15. However, the higher order diversities
are significantly less than the zero order diversity (richness), indicating that while
multiple species continue to coexist, these communities are quite uneven, though
not so uneven as the communities subject to competition based on both λ and μ

interaction effects. Finally, we again observe a stabilizing effect when considering
non-deterministic rather than deterministic competition, in terms of time to first
extinction and final community diversity.
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Figure 9.16: Mean diversity profiles (Leinster-Cobbold index) for q ∈ {0,1,20}, for (a) deterministic and
(b) non-deterministic emergent competition based on λ effects. Mean and standard deviation calculated
from 200 replicates.

In Figure 9.17, we compare the changes in diversity for communities subject to
deterministic and non-deterministic competition based on μ interaction effects.
Diversity is higher here than for the four previous competition matrices, for all val-
ues of q. Additionally, the communities are more even. Notably, in Figure 9.17
the q = 1 and q = 20 curves never overlap, indicating higher levels of evenness
compared to the previous competition matrices which resulted in curves that con-
verged (see Figures 9.15 and 9.16). This can also be inferred by the smaller dis-
tance between the q = 0 curve and the q > 0 curves in Figure 9.17, which indicates
relatively more species coexisting in relatively more even communities. The minor
stabilizing effect of non-deterministic competition compared to deterministic com-
petition can also be observed in terms of diversity maintenance and time to first
extinction.
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Figure 9.17: Mean diversity profiles (Leinster-Cobbold index) for q ∈ {0,1,20}, for (a) deterministic and
(b) non-deterministic emergent competition based on μ effects. Mean and standard deviation calculated
from 200 replicates.
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9.4.4.3 Spatial structures

These diversity effects, and the spatial dynamics underlying them, can also be
observed in Figure 9.18, where we show two representative examples of the grid
configuration at T = 1000 generations for non-deterministic competition based
on λ (Fig. 9.18(a)) or μ (Fig. 9.18(b)) interaction effects only. As was observed in
Figures 9.16 and 9.17, competition based on the former results in more uneven
communities than competition based on the latter. In the former case, sufficient
species are present in sufficient numbers to form the spiral patterns characteristic
of the models studied in Chapters 4–8, which were shown to help maintain coex-
istence. This occurs even though we no longer impose a competition structure
on the community as a whole. These patterns also qualitatively resemble those
observed in in vitro experiments where a similar synthetic community of SFI was
co-cultured with MSH1 in the presence of BAM (Horemans et al., 2017, in prep).
The spiral formations also enable spatial refuges, which we previously observed
in Chapter 8 as supporting species coexistence by allowing vulnerable species to
persist at low but still significant levels. Such refuges can be observed for example
in Figure 9.18(b) for multiple species.

"S9" "S22" "S51" "S158" "S164" "K27" "K52"

"K62" "K67" "K89" "K112" "K129" "K169"

Figure 9.18: Examples of the grid configurations at T = 1000 generations with emergent non-
deterministic competition based on (a) λ effects, and (b) μ effects.

The link between the spatial dynamics and diversity maintenance can be further
explored by examining patchiness, which is the average number of conspecifics
in individuals’ nearest neighbourhoods. The evolution of patchiness over time is
shown in Figure 9.19 for deterministic and non-deterministic competition based on
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λ or μ interaction effects only. We use relative patchiness, which is the patchiness
normalized to the unit interval through division by four (the maximum number
of nearest neighbours in a von Neumann neighbourhood, and thus the maximum
value that patchiness can take). We also plot the average time to first extinction for
these four competition structures (see Figures 9.16 and 9.17). For all simulations,
patchiness is initially approximately 0.28 = 4

14 , which represents the initially ran-
dom and well-mixed spatial distribution of the SFI around the grid. An individual’s
four nearest neighbours have the same probability of being occupied by a conspe-
cific, namely 1

14 (accounting for the fact they might also be empty). Patchiness
then increases sharply during the initial phase, as the spirals begin to form. By the
time the first extinction occurs, patchiness is typically around 0.4, representing
the value at which the spirals coalesce and the weakest species begin to die off.
As extinctions begin to occur, the variability between the simulations increases
due to the increased stochasticity, since the order of the species extinctions can
change between different replicates.
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Figure 9.19: Mean relative patchiness over time for deterministic and non-deterministic competition
based on λ or μ effects. The black line indicates the mean time of first extinction for these conditions.
Means and standard deviations calculated for 200 replicates.

9.4.4.4 Community composition

Having studied community diversity effects, we can now turn our attention to the
composition of these persisting communities. In Figure 9.20, we show the persis-
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tence probability for each SFI, for deterministic and non-deterministic competition
based on combined λ and μ interaction effects. The results reflect the dynamics
illustrated in Figure 9.18(a): S9 is the dominant strain. It is always present, while
the next most frequently observed strain, K89, only persists in 40% of the sim-
ulations. This is unsurprising, since S9 was the strongest competitor in the two
competition structures based on combined λ and μ interaction effects (Mλμ and
M∗
λμ

). In the deterministic case, S9 is able to defeat more individuals than any
other strain, while in the non-deterministic case it also has the highest possible
winning probability in all its pairwise competitions.
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Figure 9.20: Probability of finding each strain in the community after 1000 generations for (a) determin-
istic and (b) non-deterministic emergent competition based on λ and μ effects.

In Figure 9.21, we show the corresponding results for deterministic and non-deter-
ministic competition based on λ interaction effects only. We find that again S9 is
always present in the final community, but now it is part of a subgroup of SFI that
are present in the majority of the simulations. In more than 80% of the simula-
tions, we observe the same SFI persisting together: S9, K67, K169, K27 and K89.
This is true for both the deterministic and non-deterministic competition cases.
Thus our model is able to qualitatively reproduce the previously observed in vitro

dynamics of a persisting smaller subcommunity (Vandermaesen et al., 2017, in
prep; Horemans et al., 2017, in prep). S9 is again the strongest competitor and
thus it is again the dominant SFI in the persisting subcommunity, which we recall
is quite uneven (see e.g. Figures 9.18 and 9.16).
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Figure 9.21: Probability of finding each strain in the community after 1000 generations for (a) determin-
istic and (b) non-deterministic emergent competition based on λ effects.

Another subgroup of persisting SFI is found for deterministic and non-deterministic
competition based on μ interaction effects only (Figure 9.22), once again match-
ing qualitatively the dynamics observed in in vitro synthetic communities (Vander-
maesen et al., 2017, in prep; Horemans et al., 2017, in prep). The members of this
subgroup are not the same as for Figure 9.21. Instead we find K169, K52, S158,
K27 and S9 coexisting in more than 80% of the simulations. The strains in the
persisting subcommunity are also more equal in terms of their persistence proba-
bilities (and hence their extinction probabilities) than was the case for competition
based on λ interaction effects only (Figure 9.21). These SFI are also more equally
matched in terms of their competitive strengths (see Mμ and M∗

μ
). These factors

result in these subcommunities being able to maintain significantly higher even-
ness levels than the other competition structures, as we noted when studying the
diversity of these communities (Figure 9.17).
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Figure 9.22: Probability of finding each strain in the community after 1000 generations for (a) determin-
istic and (b) non-deterministic emergent competition based on μ effects.

Finally, we examine extinctions in our different communities. We have seen that
extinctions are frequent, but generally limited to the same set of SFI. In Figure 9.23,
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we show the average time to extinction for each SFI, for deterministic and non-
deterministic competition based on combined λ and μ interaction effects. We note
again that these are slightly longer for non-deterministic competition compared to
deterministic competition, and always occur after an initial period of spiral forma-
tion (∼ 200 generations), after which extinctions occur rapidly and continuously
until the community is reduced to S9 monoculture before T = 800 generations.
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Figure 9.23: Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on μ and λ effects. Blue labels indicate strains for which no extinctions occurred.
Means calculated from 200 replicates.

In comparison, the average time to extinction increases for every SFI in the cases
of deterministic and non-deterministic competition based on λ interaction effects
(Figure 9.24). One strain, K129, collapses to extinction not long after spiral for-
mation has commenced (∼ 300 generations); this strain is the weakest in both
these two competition structures. After it disappears, there is another lapse be-
fore extinctions recommence and thereafter proceed fairly continuously until the
community is reduced to the persisting uneven subcommunity dominated by S9
(which never suffers any extinctions) and the other strains in small proportions.
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Figure 9.24: Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on λ effects. Blue labels indicate strains for which no extinctions occurred. Means
calculated from 200 replicates.

For deterministic and non-deterministic competition based on μ interaction effects
(Figure 9.25), we notice a reduction in extinction times compared to competition
based on λ interaction effects. This may seem counterintuitive given that we have
already observed these communities to be more stable, however the key point is
that fewer species go extinct. Those that do collapse to extinction do so more
quickly, but this does not affect the stability of the persisting subcommunity. Now
S9 is not the only SFI to never suffer extinctions, but it is joined by the other mem-
bers of the persisting subcommunity, again indicating that this subcommunity is
more even and thus more stable than in the cases of competition based on λ

interaction effects.
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Figure 9.25: Mean time to extinction per strain for (a) deterministic and (b) non-deterministic emergent
competition based on μ effects. Blue labels indicate strains for which no extinctions occurred. Means
calculated from 200 replicates.
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9.5 Conclusions

In this chapter, we have studied the in silico counterpart of an in vitro synthetic
community of 13 SFI in co-cultures of varying richness with MSH1. These SFI had
been selected based on their potential for improving the BAM mineralization per-
formance of MSH1 for bioaugmentation applications. The in vitro experimental
approach consisted of two phases. First, synthetic microbial communities of MSH1
combined with different numbers of SFI were subjected to an initial competition
phase. Subsequently, BAM was added and the kinetics of BAM mineralization was
evaluated as a measure of bioaugmentation success.

In Section 9.3, we have addressed the second phase. We used straightforward
regression modelling to illustrate the potential of predictive models for highlighting
SFI co-culture combinations that improve the BAM mineralization performance of
MSH1, and thus support bioaugmentation success.

Although this modelling approach is straightforward and makes minimal assump-
tions about the kinetics of the strains and their interactions, the use of Gompertz
mineralization parameters and non-linear regression is able to capture the essen-
tials of the interactions taking place, allowing for a very good predictive perfor-
mance on this dataset.

This approach has promise for reducing experimental load, since good prediction
of the mineralization kinetics of all co-cultures can allow the subset of combina-
tions that appear interesting for particular bioaugmentation strategies to be iden-
tified and then extensively studied in vitro. This approach can be extended to
co-cultures of higher richness by the careful choice of co-culture combinations to
test, by using for example combinatorial design principles.

In Section 9.4, we have addressed the second experimental phase, where all 13
SFI were inoculated in co-culture during an initial competition phase. We therefore
developed an IBM representing the in silico counterpart of this synthetic commu-
nity, where a competition structure was no longer imposed on the community as a
whole, but rather pairwise competition outcomes were determined based on data
relating to λ and μ interactions effects in terms of mineralization performance. In
this way, we built up different competition matrices. This approach is more real-
istic than the top-down imposition of a competition structure. We also considered
non-deterministic competition, where winning probabilities were assigned based
on the relative intrinsic competitiveness of each SFI.

Our model was able to recover the qualitative dynamics observed in in vitro exper-
iments with similar synthetic sand filter communities: the majority of the commu-
nity collapsing to extinction and a subcommunity persisting (Vandermaesen et al.,
2017, in prep; Horemans et al., 2017, in prep). It should be emphasized that the
results in this chapter do not represent a validation of our model, since we have
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imposed the competition structures based on the experimental data. Our results
instead demonstrate the consistency of our modelling approach in that they are
able, based on some experimental input, to reproduce the qualitative behaviour
patterns observed in vitro. The memberships of the in silico subcommunities were
consistent, and their presence could be explained based on their attributes as
represented in the competition matrix. The simulation outcomes were explained
based on the underlying competition structures and the resulting spatial dynamics.
Our results again highlighted the importance of diversity and in particular even-
ness in stabilizing the community dynamics, as shown previously in Chapters 5
and 7.

This work therefore serves as a proof-of-concept for using IBMs as in silico coun-
terparts of in vitro synthetic communities, as we were able to find a qualitative
agreement between the in silico and in vitro dynamics. It is important to note that
the data used in this chapter came from experiments not purposely designed for
modelling use, and thus we did not dispose of all the data we would wish for. For
example, it is important to have more information about the SFI themselves, and
their interactions with each other, not just MSH1. The in vitro experimental focus
on MSH1 was understandable given the application to bioaugmentation strategies,
but it would also be informative for this purpose to examine in more detail the in-
teractions between the SFI, not just in terms of effects on BAM mineralization. This
could be done for example by tracking the growth and survival of SFI in pairwise
co-cultures. Despite this, our model was able to retrieve the observed qualitative
dynamics, allowing us to interrogate their development, and thereby illustrating
the potential of this modelling approach for addressing ecological theories relating
to synthetic communities.
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10
General conclusions and

perspectives

10.1 General conclusions

In recent years, synthetic microbial communities have gained increasing interest
from microbiologists due to their reduced complexity and increased controllability,
which favours them over more complex natural systems for examining ecological
theories. In this thesis, the in silico counterpart of this approach was considered for
the purpose of testing ecological theories relating to biodiversity and functionality.
Individual-based models of synthetic microbial communities were developed and
used in simulation studies to answer research questions relating to community
diversity, stability, productivity and functionality.
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10.1.1 Part I: background and literature reviews

In Part I, we gathered and synthesized the knowledge necessary to motivate and
properly underpin this modelling endeavour. This began in Chapter 2, where we
discussed the importance of microbial communities in various vital domains of life,
as well as their significant practical applications. The importance of microbial com-
munities, and in particular synthetic microbial communities, was highlighted for
the purpose of theory development. This field, known as synthetic microbial ecol-
ogy, has undoubted potential but is currently in its infancy and therefore presently
subject to different limitations in terms of its complexity and applicability. One ap-
proach that has been proposed to help synthetic microbial ecology make the jump
to further progress is the use of complementary in silico studies.

Therefore, in Chapter 3 we surveyed the modelling literature related to this topic,
structured in terms of the different possible basic modelling unit: communities,
populations, or individuals. We surveyed the modelling approaches that have been
developed to study functionality effects due to community spatial structure and dy-
namics, the interactions taking place within the community, and the interactions
occurring with the environment. The gaps remaining in our knowledge of the fun-
damental mechanisms and processes underlying these features were highlighted,
as well as the suitability and promise of IBMs for addressing these open questions.

In Chapter 4, we studied the use of diversity and evenness indices. These mea-
sures are key when addressing theories about the relationship between ecosystem
stability and biodiversity, which have been tested in various ways using natural
and synthetic microbial ecosystems (discussed in more detail in Section 2.5). It is
not straightforward to define and select diversity and evenness indices, for reasons
specific to microbial ecology, but also for similar reasons as in classical ecology,
starting with the most basic question of all, namely how to define diversity itself.

Key differences between microbial and macro-scale communities lead to difficul-
ties when microbial ecologists attempt to use classical macro-ecological methods
such as diversity indices to analyze their data. First, microbial communities often
contain organisms of wildly different types, involving different domains of life in a
variability not typically seen in macro-scale ecological communities. Second, the
notion of “species” can be difficult to apply to microbial organisms. Classical mea-
sures of diversity typically require a clear differentiation between species, which
can often be difficult to achieve in microbial communities due to their particular
features such as nonhomologous recombination and a lack of sexual reproduction.
Third, characterizing and classifying microbes is complicated by the difficulties in
directly observing microbes and their distinguishing characteristics.

Researchers in the field have begun to grapple with these issues in recent years,
and have started to turn away from classical diversity indices due to their short-
comings when used with microbiological data. Two notable advances relate to
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the use of effective number and similarity-sensitive diversity indices. Effective
number indices permit easy interpretation and comparison of the diversities of
different communities, while similarity-sensitive indices account for the realistic
varying degrees of similarity between microbial species or strains. In cases where
microbial strains cannot easily be separated into distinct classes, a similarity mea-
sure enables researchers to study the community’s diversity without confronting
the sometimes tricky issue of species. Numerous such similarity measures can be
found in the literature, based on notions ranging from functionality to phylogenet-
ics. Ultimately, the choice of similarity measure can be based on the type of data
being generated.

10.1.2 Part II: modelling studies

Armed with the knowledge gathered in Part I, we then embarked in Part II on our
modelling study, guided by the research questions highlighted in Section 1.2 which
are related to community diversity, stability, productivity and functionality.

In Chapter 5, we considered research questions 1 and 2:

� What effect does initial evenness have on maintaining community diversity?

� Which types of competitive interactions can help maintain community diver-
sity, and which types can threaten it?

To address these questions, we implemented an IBM of a community of three mi-
crobial species, which included the three key demographic processes of reproduc-
tion, competition and mobility. Our model also allowed the initial evenness of the
community to be varied, in order to investigate the consequent effects on commu-
nity diversity.

Two competition schemes, hierarchical competition and cyclic competition, were
investigated using simulation studies which modelled various possible commun-
ities, resulting in qualitatively different coexistence and extinction scenarios. Sys-
tem behaviour was strongly dependent on both initial community evenness and
the particular competition scheme to which the community was subject.

Coexistence of all species was not permitted by the hierarchical competition sch-
eme, due to frequent and rapid extinction events. Varying the community’s initial
evenness could not counteract the competitive dynamics which necessarily re-
sulted in monoculture of the dominant species. Very low initial evenness could
merely extend the initial transient period before the system settled to its steady
state. For the cyclic competition scheme, low initial evenness could counteract
the stabilizing dynamics of the competition scheme and provoke extinctions. In
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contrast, higher initial evenness could stabilize the dynamics by significantly ex-
tending the time until the first species extinction. By extending the region of bio-
diversity in this way, there was sufficient time for system behaviour to be affected
by other factors such as competition scheme, rates of competition and mobility.
These results support experimental observations that biodiversity is promoted by
increasing evenness.

In Chapter 6, we extended our IBM to include a fourth species. This admitted more
competition schemes, which induced more complex behaviour than the three-
species case. In addition to studying the effects of varying initial community even-
ness on the community’s stability and diversity, we also made use of two different
in silico experimental set-ups, motivated by results related to their in vitro coun-
terparts. First, we used a co-culture set-up where all species were inoculated at
the same time and allowed to evolve together. This set-up permitted the study of
four different competition schemes. We also considered an invasion set-up, where
three species were inoculated and allowed to evolve to their coexisting steady
state, at which point a fourth species was added as an invader. This framework
allowed us to address research questions 1 and 2 in a more complicated setting
than in Chapter 5, while also considering question 3:

� What effect does initial evenness have on maintaining community diversity?

� Which types of competitive interactions can help maintain community diver-
sity, and which types can threaten it?

� What effect does initial evenness have when a community is faced with in-
vasion?

The four-species system was generally unstable for all competition schemes under
both experimental set-ups. There were frequent extinction events, which typically
occurred very rapidly. The dynamics induced by the competition schemes worked
against the coexistence of all species, and these effects could not be mitigated by
varying the evenness of the community.

System behaviour was strongly dependent on initial evenness and competition
scheme. The importance of initial evenness was confirmed by means of a sensitiv-
ity analysis. Low initial evenness could counteract the dynamics of the competition
scheme in the sense that the identity of the first species to collapse to extinction
could change. But generally, low initial evenness could only extend the initial tran-
sient period before the system settled to its steady state. If initial evenness was
excessively low, system biodiversity was lost before other emergent behaviours
could be noticed.

In contrast, higher initial evenness could have a small stabilizing effect, in the
sense that the time until the first species extinction was slightly extended as ini-
tial evenness increased. The time until the first extinction was generally quite
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short for all competition schemes except Scheme 3, which was notable as being
the most intransitive competition scheme. In this case, the time until the first
species extinction could vary significantly. By extending the parameter range per-
mitting biodiversity in this way, there was sufficient time for system behaviour
to be affected by other factors such as competition scheme, rates of competition
and mobility. These results support experimental observations that biodiversity is
promoted by increasing evenness (Isbell et al., 2009b).

When considering an invasion experiment, we found similar evenness effects.
Higher resident community evenness before invasion led to a less successful inva-
sion, in terms of invader proportion at the end of the simulation, probability of ex-
tinction and time until the first extinction of a resident community member. These
results agree with empirical studies from different natural and synthetic ecosys-
tems (Wilsey and Polley, 2004; Hillebrand et al., 2008; Hodgson et al., 2002).

The results of Chapters 4 and 5 demonstrate the danger in overlooking variable
community evenness and making the typical assumption that communities are
maximally even, despite mounting evidence to the contrary (Huston, 1997; Grime,
1998; Smith and Knapp, 2003). This oversight also ignores the fact that damages
due to human actions can affect the evenness of natural communities, often mak-
ing them more vulnerable to invasion, stresses and disturbances (Wittebolle et al.,
2009). While theoretical studies such as this one are beginning to increase in num-
ber, experimental studies to validate their conclusions are still lacking (Isbell et al.,
2009b).

After studying non-transitive competition and variable initial evenness, two mech-
anisms known to strongly affect the biodiversity of a system, we moved a step
further in Chapter 7 by extending our IBM to include another mechanism shown
to be key in mediating biodiversity, namely resource dependence. The resource-
dependent nature of demographic processes in real world microbial systems is
typically neglected by microscopic models of communities with cyclic competition.
However, resource dependence is a key mechanism that can have significant ef-
fects on community composition and functioning.

We therefore extended established models by incorporating these three factors,
as such aligning them more closely with real-world microbial ecosystems, and per-
mitting us to investigate how this more realistic approach affected community
productivity and biodiversity, two key indicators of ecosystem functionality. This
allowed us to address research questions 1, 4, and 5:

� What effect does initial evenness have on maintaining community diversity?

� What effect does initial evenness have on maintaining community function-
ality?

� If interactions within a community are dependent on resource availability and
use, how does this affect community diversity and functionality?
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In Chapter 7, in silico experiments revealed a trade-off between maintaining com-
munity diversity and increasing biomass yield. This result is consistent with exper-
imental observations of a negative dominance effect. In addition, the important
role that evenness plays in maintaining the functional stability of ecosystem was
again demonstrated, indicating the danger in overlooking this key feature in mod-
elling or experimental studies.

Our in silico experiments revealed that the dynamics of our IBM framework is me-
diated in a key way by individuals’ mobility. If their interactions were sufficiently
localized, this permitted the formation of stable spatial structures, which facili-
tated the coexistence of all species in the community. In Chapters 5 and 6, this
occurred in a spatially explicit but homogeneous environment. The extension of
our IBM to include environmental resource dynamics resulted in a heterogeneous
in silico landscape. In Chapter 8, we studied the effect of this spatial heterogeneity
on the community’s stability, biodiversity and functionality. We therefore focused
on the emergence of spatial patterns and the population dynamics of the commu-
nity, as well as their underlying mechanisms and the interplay between them. This
addressed research questions 2, 4, 5, and 6:

� Which types of competitive interactions can help maintain community diver-
sity, and which types can threaten it?

� What effect does initial evenness have on maintaining community function-
ality?

� If interactions within a community are dependent on resource availability and
use, how does this affect community diversity and functionality?

� How does the spatial structure of a community affect its stability and func-
tionality?

The explicit treatment of space in our model permitted the formation of resource
gradients, which induced dramatic effects in the community population dynamics.
These effects, consistent with other modelling and experimental studies, are not
seen in well-mixed models due to the absence of spatial heterogeneities in such
models, thereby neglecting this key facet of natural systems. Our findings have
implications for the formation and maintenance of spatial patterns in microbial
populations such as biofilms.

If validated with experimental data, our model could be used to predict and vi-
sualize unobserved substrate gradients, which can be experimentally impractical
or infeasible to measure directly (Hellweger et al., 2016a). The validation would
require the spatial distribution of the cells, acquired for example from image anal-
ysis of microscopy images, as well as the quantification of the substrate uptake
kinetics.



10

10.1 GENERAL CONCLUSIONS 233

10.1.3 Part III: making use of data from in vitro syn-
thetic communities

In Part III, we expanded our scope to work with experimental data obtained from
in vitro studies of bioaugmentation strategies, building on the insights gained in
Chapters 7 and 8. In Chapter 9, we made use of experimental data relating to an
in vitro synthetic community in order to investigate whether our in silico approach
was capable of mimicking the dynamics of a similar in vitro counterpart.

We therefore formulated an in silico counterpart of an in vitro synthetic community
of 13 SFI in co-cultures of varying richness with MSH1. These SFI had been se-
lected based on their potential for improving the BAM mineralization performance
of MSH1 for bioaugmentation applications. The in vitro experimental approach
consisted of two phases. First, synthetic microbial communities of MSH1 combined
with different numbers of SFI were subjected to an initial competition phase. Sub-
sequently, BAM was added and the kinetics of BAM mineralization was evaluated
as a measure of bioaugmentation success.

We addressed the second experimental phase through the use of straightforward
regression modelling to illustrate the potential of predictive models for highlight-
ing SFI co-culture combinations that improve the BAM mineralization performance
of MSH1, and thus support bioaugmentation success. Although this modelling
approach was straightforward and made minimal assumptions about the kinetics
of the strains and their interactions, through the use of Gompertz mineralization
parameters and non-linear regression our approach was able to capture the es-
sentials of the interactions taking place, allowing for a very good predictive perfor-
mance on this dataset.

This approach has promise for reducing experimental load, since a good predic-
tion of the mineralization kinetics of all co-cultures can allow the subset of com-
binations that appear interesting for particular bioaugmentation strategies to be
identified and then extensively studied in vitro. This approach can be extended to
co-cultures of higher richness by the careful choice of the co-culture combinations
to test, by using for example combinatorial design principles.

We then addressed the first experimental phase, where all 13 SFI were inocu-
lated in co-culture during an initial competition phase. We therefore developed
an IBM representing the in silico counterpart of this synthetic community, where
a competition structure was no longer imposed on the community as a whole. In-
stead, pairwise competition outcomes were determined based on data relating to
lag time λ and mineralization rate μ interactions effects in terms of mineralization
performance. This approach is more realistic than the top-down imposition of a
competition structure. We also considered non-deterministic competition, where
winning probabilities were assigned based on the relative intrinsic competitiveness
of each SFI.
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Our model was able to recover the qualitative dynamics observed in in vitro ex-
periments with similar synthetic sand filter communities: the majority of the com-
munity collapsing to extinction and a subcommunity persisting (Vandermaesen et

al., 2017, in prep; Horemans et al., 2017, in prep). The compositions of these sub-
communities were consistent and could be explained based on the attributes of
the community member as represented in the competition matrix. The simulation
outcomes were explained based on the underlying competition structures and the
resulting spatial dynamics. Our results again highlighted the importance of diver-
sity and in particular evenness in stabilizing the community dynamics, as shown
previously in Chapters 5 and 7.

Our work therefore serves as a proof-of-concept for using IBMs as in silico counter-
parts of in vitro synthetic communities, as we were able to find qualitative agree-
ment between the in silico and in vitro dynamics, despite the use of data from
experiments not expressly designed for modelling use, and thus not entirely opti-
mal for the modelling endeavour. For example, significant information was lacking
regarding the features of the SFI, as well as their interactions with each other.
Despite this, our model was able to retrieve the observed qualitative dynamics,
namely the development of a persisting sub-community with consistent composi-
tion. This allowed us to interrogate the development of these communities, and
thereby illustrate the potential of this modelling approach for addressing microbial
ecological theories relating to synthetic communities.

10.2 Perspectives

The work in this thesis demonstrates the potential of in silico synthetic microbial
ecology studies for the purpose of theory testing and development. This field
is still in its infancy, and there is still much more progress to be achieved. The
modelling framework we have developed, and the individual-based techniques it
incorporates, are very flexible. Hence various extensions are possible that would
certainly open new avenues of research, building upon the insights and techniques
developed in this thesis. We outline in the subsequent sections several extensions
that have promise for further progress in this field.

10.2.1 More realistic movement mechanisms

A first extension would be to remove the lattice structure that characterizes the
in silico space in our modelling framework. When considering a lattice-free in sil-

ico space, individuals’ locations are described by coordinates in continuous space.
Individuals are therefore permitted more spatial degrees of freedom. To enable
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coexistence, interactions should still be localized to an individual’s nearest neigh-
bourhood, but a new definition of neighbourhood would need to be developed.
This could be, for example, those individuals with which one is in direct contact, or
could be those individuals located within a certain distance, depending on how far
an individual is able to sense and interact with other microbes.
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(a) Lattice-based model. (b) Lattice-free model.

Figure 3.13: Example of the spatial dynamics arising for both models with ε = 1.
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Figure 3.14: Extinction probability Pext (50 simulations, 10 000 generations)
versus mobility rate ε for the lattice-based (green) and lattice-free model (brown).
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Figure 10.1: Comparison of spatial structures obtained using (a) lattice-based and (b) lattice-free models.

Preliminary studies of a lattice-free counterpart of the model developed in Chap-
ter 5 show that for sufficiently low mobility, the same characteristic spatial struc-
tures are obtained (Figure 10.1), which are lost when the mobility rate exceeds a
certain critical value that is a function of system size (Quaghebeur, 2017). Hence
the lattice-free model produces identical behaviour to the lattice-based model in
this case.

The advantage of this approach is an increased realism in the spatial character-
istics and dynamics which the model can produce. Then, for example, theories
relating to biofilm formation could be studied. The formation of these structures
is key to several different ecological and industrial processes, and has gained
much attention in the modelling of waste water treatment strategies in particu-
lar (Esser et al., 2015). Thus far, these modelling studies have generally been
context-specific, and are not often used for the purpose of theory development.

The disadvantage of an extension to continuous space is the increase in compu-
tational cost. Depending on the particular application, this increase in cost may
not be worth the added realism. For example, removing the lattice structure from
the model studied in Chapter 5 would increase the necessary computation time
without adding much to our understanding of the dynamics under consideration,
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since these are well represented by a lattice-based model, and finer spatial charac-
terization is not required to address the research hypotheses under consideration.
Thus researchers would need to consider if added realism in movement modelling
is necessary for their particular purpose and application. It may be that for theory
development objectives, the more nimble lattice-based models may suffice, but
in cases where the spatial dynamics require finer and more realistic treatment,
shifting to continuous in silico space can represent an important extension.

One area where a more realistic movement mechanism would be important is the
study of directed movement. The movement mechanism in our modelling frame-
work is random, since in silico individuals do not orient themselves in any particular
direction, but rather wherever there is space available for them. Including mecha-
nisms such as chemotaxis, where microbes follow substrate gradients with a pref-
erence for regions of high concentration (Shklarsh et al., 2011), would increase
the realism of the in silico mobility process. This would also permit the study of
other behavioural dynamics, and increase the realism of the interactions with the
in silico environment. It could also be used to study theories relating to community
assembly, where these processes are hypothesized to play key roles, and for which
theory development studies are increasing in number (Mensens et al., 2015).

10.2.2 Extension to three dimensions

Related to increasing the realism of the model’s spatial characteristics is its exten-
sion to three dimensions. An additional dimension is important if this approach is
to be applied to study biofilms (Van Loosdrecht et al., 2002) or sand filter columns,
where the spatial matrix can play a key role in the assembly and functioning of
the resident microbial community (Liu et al., 2012). As noted in Chapter 3, such
biofilm IBMs have been developed with extensive microbiological detail and com-
plexity, for example by Lardon et al. 2011, Bucci et al. 2011, and Picioreanu et

al. 2004 among others.

For example, Momeni et al. (2013) used a three-dimensional IBM of three engi-
neered yeast strains to study heterotypic cooperation, meaning cooperation be-
tween two populations that are exchanging different benefits that each incur a pro-
duction cost. This cooperation can be threatened by cheaters who take advantage
of the public benefits without incurring any production cost. The authors observed
self-organization of the population, driven by the asymmetric fitness effects of
cooperators and cheaters on their partners. This self-organization meant that co-
operators interacted more with other cooperators, while cheaters interacted more
with other cheaters. This phenomenon of “positive assortment” is the mechanism
that stabilized and maintained the heterotypic cooperation, and its emergence
from the model relied strongly on the three-dimensional spatial treatment (Mo-
meni et al., 2013).
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Furthermore, modelling microbes in three dimensions would permit more realis-
tic representations of their morphologies. In two-dimensional modelling studies,
microbes are typically represented by circles or squares. In reality, microbes
demonstrate a wide range of different shapes, which are generally classified as:
coccus in case of a spherical shape, bacillus in case of a rod shape, spirillum in
case of a spiral shape, and pleomorphic in case of no defined shape (Cabeen
and Jacobs-Wagner, 2005). These different morphologies may have importance
in some microbial ecological theories and in these cases should be accounted for
in any corresponding modelling study, for example when studying aggregation
phenomena (Peruani et al., 2006).

Implementing this extension for the modelling framework presented in this the-
sis would have several important implications. First, the possibility of admitting
a wider range of microbial body shapes and sizes would increase the realism of
the obtained spatial patterns, as well as having important effects on the spatial
dynamics. For example, restricting to circular (coccus) morphologies implies an
important symmetry in the spatial patterns, whereas a rod shape would allow for
different kinds of packing or space-filling patterns, which could have particular
significance in cases where the mobility of the in silico microbes is limited, and
hence the topology of the neighbourhood strongly affects the interactions. In gen-
eral, asymmetric space-filling patterns can increase the system’s spatial hetero-
geneity, which may have strong positive or negative effects on coexistence (see
Section 8.1).

Second, increasing the spatial degrees of freedom to three dimensions would per-
mit the study of more realistic and more complex scenarios, by permitting sim-
ulation of the system dynamics over multiple scales of interest. This would re-
quire further extensions to account for the increased complexity of the relevant
microbial ecology processes, but would be an important step towards the future
development of integrated models. However, as with the lattice-free extension dis-
cussed in Section 10.2.1, this extension would represent a significantly increased
cost in terms of computation time, and hence it should be determined which level
of trade-off between computing time and model realism is appropriate for the par-
ticular research question.

10.2.3 Increasing community richness

As demonstrated in Chapter 9, our modelling framework can easily be extended to
represent communities of high richness. Synthetic microbial ecology studies are
characterized by their reduced complexity compared to natural systems, and while
this reduced complexity permits their increased manipulability and controllability,
it also limits the applicability of the insights and theories gained from their experi-
mental exploitation. Indeed, synthetic microbial ecology studies typically consider
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communities consisting of four species or fewer (De Roy et al., 2014), as we have
considered in Chapters 5 to 8. Hence our IBM of 13 microbial strains in Chapter 9
is in this sense an innovative outlier.

Increasing the richness of the in silico community would allow for the study of more
complex interactions and dynamics, but would incur a computational cost. This
may be justifiable and indeed necessary for in silico studies for theory develop-
ment purposes, but developing testable models with higher richness for predictive
purposes is currently limited not by our modelling or computational tools, but by
the difficulties in obtaining appropriate in vitro data (Hellweger et al., 2016a) for
their calibration and validation, necessary steps before models can be used for
generating predictions.

Hence refining the techniques for constructing these models of richer communities
is a worthy endeavour, but their deployment is not yet feasible except in cases of
very simplified synthetic communities.

10.2.4 Cooperative interactions

In this thesis, we have focused on the effects of competitive interactions in com-
munity stability, diversity and functionality. Our modelling framework is equally
able to mimic cooperative interactions. As discussed in Section 2.3.3 cooperation
is one of the key types of interaction that drives community functionality.

Cooperative interactions can take the form of the shared production of public
goods (Tanouchi et al., 2012), or the formation of alliances against common en-
emies (Frey and Reichenbach, 2011). Such dynamics can, like competitive dy-
namics, emerge from an individual-based modelling of the underlying interac-
tions (Wintermute and Silver, 2010). Spatial heterogeneity, the modelling of which
IBMs are particularly suited for, also plays a key role in mediating cooperation
dynamics, since localization and spatial structure affect the interactions between
partners (Nadell et al., 2010).

Incorporating cooperative interactions would also allow the study of social strate-
gies and how these are established and maintained in microbial communities. A
particularly interesting scenario is cheater/cooperator dynamics (Hibbing et al.,
2010), which is at the interface of cooperative and competitive interactions. Such
“selfish” social behaviour has been found in a variety of microbial communities
(Velicer, 2003). Modelling studies of these communities can help to understand
the fundamental dynamics underlying cooperation, as well as their limits.
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10.2.5 Adaptive dynamics

Evolution is typically ignored in ecological models, since it is assumed to occur over
excessively long time scales compared to the ecological processes being modelled,
such as metabolism or reproduction (Jessup et al., 2004). However, this assump-
tion does not always hold true for microbial communities, where ecological and
evolutionary time scales can be similar due to short generation times, large popu-
lation sizes and high rates of horizontal gene transfer (Widder et al., 2016). Hence
an important extension to current models is to account for both ecology and evo-
lution. Individual-based models are very well suited for this purpose, as discussed
in Section 3.2.3.

Evolutionary or adaptive dynamics can be incorporated into our modelling frame-
work by having dynamic interaction rules, which can adapt in response to changes
in the environmental conditions or changes in the behaviour of other strains. This
would allow for example the study of the role of mutants in developing new com-
munity functionalities (Wintermute and Silver, 2010), or selection due to environ-
mental pressures (Hellweger et al., 2016b). This extension could be tested for
example by considering evolutionary rescue, a phenomenon whereby an advan-
tageous genetic change can permit a population to recover from a disturbance
(Schiffers and Travis, 2014). Testing would involve tracking the effect of a local
adaptation in response to an environmental change on the population’s potential
for evolutionary rescue. It should however be noted that such an experiment would
be difficult to replicate in vitro, due to confounding effects which make it difficult to
disentangle evolutionary rescue from demographic rescue (due to immigration) or
genetic rescue (due to genetic mixing and immigration) except in highly controlled
experiments (Kliman, 2016).

10.2.6 Integration with individual-level in vitro data

Incorporating additional and more realistic features of microbes requires appro-
priate data, which relates to the developing field of microbial individual-based
ecology (μIBE) (Kreft et al., 2013), involving the combination of individual-based
modelling and experimental approaches.

This approach is facilitated by the recent technological advances in single-cell anal-
yses, such as microfluidic devices (Hellweger et al., 2016a). These fabricated en-
vironments allow researchers to position individual microbes, as well as to control
their environmental conditions and their interactions (Kim et al., 2008). Through
the use of genetically engineered reporter cells, metabolic and functional activities
can be tracked and their outputs measured (Hol et al., 2014).

Further work with the modelling framework we have developed in this thesis would
strongly benefit from such complementary in vitro studies. These could be used to
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assess the impact of the initial experimental conditions, to give only one example.
The experiments need not only be focused on the individual level, since popula-
tion or even community-level experiments could be used to study the emergent
properties of the model community, which we recall as occurring at the population
level.

Once such data is obtained and used to parameterize a model, then calibration and
validation can be carried out. An important tool in this respect for IBMs (and indeed
other types of stochastic models) is Approximate Bayesian Computation (Beau-
ment, 2010). This is a Monte Carlo-based procedure, whose advantage relative
to other inverse modelling methods is that it permits the computation of the pa-
rameters’ posterior probability distributions, which can then directly be used as
input for probabilistic assessment methods (Franssen et al., 2009). However, like
all Monte Carlo-based method, it requires more computing time.

The procedure for estimating model parameters using Approximate Bayesian Com-
putation can be summarized as follows (van der Vaart et al., 2015):

1. Obtain an empirical dataset relevant for the study (i.e. the data to which the
model will be fitted), and construct the IBM

2. Define prior distributions of the model’s parameters (e.g. within which ranges
are they likely to lie)

3. Using random samples from the prior distributions, run the IBM repeatedly

4. Select the subset of simulation outcomes that best agree with the dataset

5. Using these selected parameters, construct the posterior distributions of the
parameters

6. Using these selected parameters, check how well the IBM fits the data

7. Check the accuracy of the estimation, for example using cross-validation

Models may only be used for quantitative predictive purposes — the ultimate goal
of synthetic microbial ecology — after proper calibration and validation. These
procedures are more complex for IBMs, but still very necessary. Hence the recent
and growing appreciation for Approximate Bayesian Computation in this context
represents an important advance for mathematical microbial ecology studies that
are individual-based, the number of which is increasing every year as their merits
are also increasingly appreciated (Hellweger et al., 2016a).
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10.3 Concluding summary

In this thesis, we have used in silico synthetic microbial communities to test eco-
logical theories. Using an individual-based framework, we assembled communities
with different levels of microbial interactions and complexity. This mathematical
approach to ecological theory development has allowed us to test microbial eco-
logical theories relating to community stability, diversity, functionality and produc-
tivity.

Our work has implications for the management of natural communities, and the en-
gineering of synthetic communities for various applications. The modelling frame-
work we have developed is flexible, extendable to other avenues of research, and
furthermore the modelling techniques described in this thesis are not limited in
their applicability to microbial ecology, but can be used in other disciplines and
fields.

Mathematical approaches like those contained in this thesis will play an impor-
tant role in the development of Microbial Resource Management theory and tools,
which are necessary to permit the management and protection of natural com-
munities, as well as the rational design of engineered communities for industrial
applications. Advancing the MRM field will allow researchers to develop new pro-
cesses and products as well as to manage and improve the natural environment,
and to achieve this progress in a suitably sustainable way.
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Appendix 1

Representative comparison of results using Gini,
Simpson, and Shannon indices

To illustrate the similarities between results obtained with the Gini, Simpson, and
Shannon indices, and motivate the inclusion in the main text of only those cor-
responding to the Gini index, we provide here a representative example of the
comparison of these three indices. These figures relate to the model developed in
Chapter 5 representing three species in cyclic competition, and show mean final
community evenness as a function of initial community evenness.
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Figure 10.2: Comparison of results obtained using three evenness indices (from top to bottom: Gini,
Simpson, Shannon). The results show mean final community evenness as a function of initial community
evenness, after 500 generations. The model used for simulation is the three species cyclic competition
model developed in Chapter 5.
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