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Abstract 
This paper investigates the effect of construct redundancy on readers’ understanding of conceptual 

models. Conceptual models play a crucial role in understanding the domain related to information system 

development. The clarity of such models can be compromised if they are constructed using a conceptual 

modelling grammar exhibiting construct redundancy where one real-world phenomenon maps to two or 

more grammar constructs. With two empirical studies on solving domain-related problems using Unified 

Modeling Language (UML) class diagrams as conceptual domain models, it was found that when 

construct redundancy is present at different strengths, then the effect of the redundancy on the 

understanding of a model depends on the modeling knowledge of the reader. Novice readers with minimal 

modeling knowledge find models difficult to interpret when a strong level of redundancy caused by 

distinct construct redundancy exists. However, when the models have a weak level of redundancy then 

these readers find them easier to understand compared to models without redundancy. In contrast, trained 

readers are indifferent to a weak level of redundancy in a model.   

1. Introduction 

Information systems (IS) are representations of other real-world systems. Wand and Weber 

(2017) suggest that to determine what constitutes a good representation, we need to refer to 

ontological theories.  They introduced a theory of ontological expressiveness (1993) that predicts 

that if a conceptual modeling grammar does not have a one-one mapping between its constructs 

and the constructs of an ontological theory then the scripts generated by the grammar will not be 

clean and complete. One way to compromise ontological expressiveness is if an ontological 

construct that conceptualizes some real-world phenomenon maps to two or more grammatical 

constructs, a situation known as construct redundancy. Such a compromise might reduce the 

clarity of a model and thus affect its interpretation.  
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The literature has identified construct redundancy in conceptual modeling grammars such 

as in UML (Opdahl & Henderson-Sellers, 2002) and in process modeling languages (Recker, 

Indulska, Rosemann, & Green, 2010). However, the empirical research in this area is limited. 

Fickinger and Recker (2013) find that the studies on redundancies in process modeling obtain 

mixed results. Green and Rosemann (2001) find that construct redundancy in the views of the 

ARIS framework provides users a mechanism to manage complexity in modeling. Recker et al. 

(2010) find that practitioners have little problems with construct redundancy in the BPMN 

modelling grammar. Modelers with medium to extensive experience seemed to be more aware of 

ontological deficiencies in BPMN (including instances of construct redundancy), but could 

mitigate these deficiencies by developing workarounds. Recker and Rosemann (2010) find that 

experienced modelers perceive ontological deficiencies in BPMN (including construct 

redundancy related to the representation in BPMN diagrams of events and transformations) more 

strongly than inexperienced modelers. Recker et al. (2010) find that construct redundancy in the 

BPMN representation of real-world objects and events negatively impacts the perceived ease of 

use of BPMN but that this effect only holds for users that were previously confronted with 

modeling situations where ambiguities related to construct redundancy showed up. Thus, the 

effect of construct redundancy on model understanding might depend on the readers’ knowledge 

of the models. In the same vein, Fickinger and Recker (2013) not only suggest that more 

empirical research should be carried out on construct redundancy but such research should focus 

on individual differences. Accordingly, in this paper, we focus on the question of how 

conceptual models with construct redundancy affect the understanding of readers with varied 

modeling knowledge. 
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In section 2, we discuss ontological expressiveness and operationalize two kinds of 

construct redundancy with different strengths which we illustrate using UML class diagrams. 

Using cognitive and learning theories, we predict that these construct redundant models have 

different effects on the readers’ understanding based on their modeling knowledge.  We test the 

prediction in section 3 by conducting two empirical studies. We discuss our results in section 4 

and present a conclusion in section 5. 

2. Theoretical Background and Prediction 

Ontological theory explains the structure and behavior of the world. If one agrees to the 

worldview expressed by the ontological theory, then a mental model of some real-world situation 

can be created in terms of the ontological constructs and this model can be externalized by 

articulating it with grammatical constructs (Guizzardi, 2005). The theory of ontological 

expressiveness (Wand & Weber, 1993) identifies four types of ontological deficiency of a 

conceptual modeling grammar that might affect the ability to represent some real-world 

phenomena completely and clearly. These deficiencies are: (a) construct deficit – when the 

grammar contains no construct that maps to a particular ontological construct, (b) construct 

excess- when the grammar contains a construct that does not map to any ontological construct, 

(c) construct overload- when the grammar contains a construct that maps to two or more 

ontological constructs, and (d) construct redundancy- when the grammar contains two or more 

constructs that map to a single ontological construct.  Wand and Weber (2017) mention that 

construct deficit undermines the ontological completeness of a grammar and ontological excess, 

overload, and redundancy undermine its ontological clarity. 

As the theory of ontological expressiveness can by itself not explain why a lack of 

ontological clarity impacts the ability to understand a conceptual modeling script, researchers 
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have resorted to various theories of perception, cognition, memory, and language to propose 

empirically verifiable hypotheses. Using such theories, several conceptual modeling grammars or 

some of their constructs have been evaluated. This includes the use of entities to represent both 

things and events (construct overload) (Allen & March, 2006), the use of optional attributes and 

relationships to represent optional properties (construct excess) (Bodart, Patel, Sim, & Weber, 

2004; Bowen, O'Farrell, & Rohde, 2009; Dunn, Gerard, & Grabski, 2011; Gemino & Wand, 

2005), the use of relationships or associations to represent composites (construct overload) 

(Graeme Shanks, Tansley, Nuredini, Tobin, & Weber, 2008), and the use of entities to represent 

intrinsic properties (construct overload) (Weber & Zhang, 1996). Recently, Tilakaratna & 

Rajapakse (2017) evaluated the ontological completeness and clarity of UML and suggest a 

subset of UML constructs that is better suitable for conceptual modeling.  

The types of deficiencies regarding ontological clarity investigated in these studies are 

mostly construct overload and construct excess. The lack of studies investigating construct 

redundancy is surprising as numerous ontological deficiencies of the construct redundancy type 

have been discovered in conceptual modeling grammars like UML (Opdahl & Henderson-

Sellers, 2002) and process modeling languages (Recker et al., 2010). As stated in the 

introduction, we noted that empirical studies investigating predictions derived from ontological 

analysis of process modeling languages found mixed effects (i.e., positive, neutral or negative) 

related to construct redundancy. Furthermore, these effects might depend on user’s knowledge of 

or experience with the grammar (Fickinger & Recker, 2013).  

In the first sub-section, we further explore the concept of construct redundancy, discuss 

different types that result in weak or stronger forms of redundancy, and illustrate these using a 

grammar based on UML class diagrams. Next, we review relevant theories on which predictions 
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regarding the effect of weak and strong construct redundancy on model understanding can be 

built, differentiating between novice and more advanced model users. 

2.1 Construct Redundancy in UML Class Diagrams 

Conceptual modeling grammars such as the UML and ERD are often used to formally describe 

some aspects of the domain for the purpose of understanding and communicating about it 

(Mylopoulos, 1992). The UML class diagram is a popular conceptual model in practice (Dobing 

& Parsons, 2006). Construct redundancy can confuse the users of a conceptual model because 

the use of multiple grammatical constructs to represent some type of real-world phenomenon 

creates ambiguity in the interpretation of the phenomenon (Weber, 2003). To illustrate this, we 

focus on three ontological constructs, generalization, composition, and aggregation, as they are 

commonly represented in UML class diagrams. We introduce redundancy at two levels to create 

construct redundant UML class diagrams. At the first level, we introduce redundancy in the 

form of labels. Labels are added to the current symbols of generalization, composition, and 

aggregation. Thus, in the class diagrams, the label “is part of” is redundant in representing the 

aggregation construct. Similarly, the labels “isComponentOf and “isA” are redundant for the 

constructs composition and generalization respectively. We call these class diagrams weak 

construct redundant UML class diagrams. At the second level, we use three alternative 

(combinations of) grammatical constructs to represent an ontological construct. For instance, to 

represent generalization, we use either the UML generalization symbol, a combination of the 

UML generalization symbol and the “isA” label (as in weak construct redundant UML class 

diagrams), or the combination of an UML association line and the “isA” label. Similarly, 

redundancy is introduced in aggregation and composition constructs. These class diagrams are 

termed strong construct redundant UML class diagrams. Whereas in weak construct redundant 
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UML class diagrams, redundancy is only manifested in the grammatical construct (i.e., the label 

is redundant), in strong construct redundant UML class diagrams real-world phenomena 

corresponding to a same ontological construct (e.g., generalization) are represented by different 

(combinations of) grammatical constructs in the same model. This latter form of redundancy is 

similar to the concepts of distinct construct redundancy of Fickinger and Recker (2013) and non-

laconicity of Guizzardi (2005), and is considered to be a detrimental form of construct 

redundancy, hence it’s labelled as ‘strong.’  

Table 1 illustrates the two types of construct redundant UML class diagrams along with a 

corresponding ontologically clear UML class diagram (i.e., no presence of weak or strong 

construct redundancy). Note that the weak construct redundant model exhibits the property of 

laconicity (Guizzardi, 2005), meaning that although the grammar is characterized by the 

ontological deficiency of construct redundancy, the model constructed with the grammar is 

consistent throughout the model (i.e., all generalizations are represented using the combination 

of UML generalization symbol and “isA” label). In the strong redundant UML class diagrams, 

multiple grammatical constructs in the same model create complexity that can hamper the 

model’s understandability. The exact meaning of generalization is difficult to interpret when it is 

represented in three different ways. Thus, a question such as “is a quarantined animal a different 

type of generalization than an exhibited animal?” can arise in the readers’ mind. Such redundant 

class diagrams can become even more complex when composition and aggregation are also 

represented in multiple ways. 
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Table 1: Examples of ontologically clear and weak and strong construct redundant models 

Clear model Weak redundant model Strong redundant model 

 
 

 

-English_Name
-Latin_Name
-NativeLocation

Species

-ArrivalDate
-

Shipment_Animal

-DisplayTime
Exhibited_Animal

-QuarantineLength
Quarantined_Animal

 

-English_Name
-Latin_Name
-NativeLocation

Species

-ArrivalDate
-

Shipment_Animal

-DisplayTime
Exhibited_Animal

-QuarantineLength
Quarantined_Animal

isA

isA

isA

 

-English_Name
-Latin_Name
-NativeLocation

Species

-ArrivalDate
-

Shipment_Animal

-DisplayTime
Exhibited_Animal

-QuarantineLength
Quarantined_Animal

isA

isA

 

Grammatical construct UML 
generalization symbol 
represents the ontological 
construct generalization 

Grammatical construct “isA”-
labelled UML generalization 
symbol represents the 
ontological construct 
generalization. The 
information conveyed by the 
“isA” label is redundant to that 
of the generalization symbol 

The ontological construct 
generalization is represented in 
three different ways: UML 
generalization symbol; “isA”-
labelled UML generalization 
symbol; “isA”-labelled UML 
association symbol. 

2.2 Effects of Readers’ Knowledge on Understanding Construct Redundant Models 

We propose that the readers’ knowledge of modeling techniques might affect their understanding 

of models. Accordingly, we discuss the differences between expert and novice readers and then 

we discuss theories on how the readers’ model understanding is affected by weak and strong 

construct redundant models. 

Klayuga et al. (2003) differentiate experts from novices. While experts possess domain 

specific schemas that help them to categorize information at higher level and solve problems, 
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novices do not and therefore require greater cognitive effort to solve problems. If the effort to 

solve a problem is large, then chances increase that cognitive overload is imposed on the novice 

(Ward & Sweller, 1990). Research shows that experts possess an extensive long-term memory 

with structured information (Glaser, 1984). Thus for solving problems, experts often bypass their 

working memory and rely on their structured information that then reduces the burden on their 

working memory (Chandler & Sweller, 1991). In contrast, novices, with limited acquired 

knowledge, have greater difficulty in solving problems as they need to process information 

through a limited working memory. Similarly, Mayer (1989) points out that those learners’ who 

have low prior knowledge have difficulty in creating mental representations of tasks. 

In the context of conceptual modeling, several researchers have investigated the 

difference between novice and expert analysts. Batra and Davis (1992) investigate the 

performance of experts and novices in developing conceptual models. They find that experts are 

able to conceptualize and understand model descriptions better than novices. Shanks (1997) 

traces the cognitive process of expert and novice data modelers and finds that expert modelers 

are better able to conceptualize and understand a case’s description than novices. In terms of the 

quality of the models developed by the experts, Shanks (1997) finds that data models are more 

correct, complete, innovative, flexible, and better understood than those built by novices. 

Theories related to cognitive psychology can be used to predict the effect of strong and 

weak redundant UML class diagrams on novice and expert readers. The theories on secondary 

notation and the redundancy effect are particularly relevant to novice readers. Secondary 

notation (Petre, 2006) is the use of symbols, graphs, or texts in a conceptual model to denote 

elements in real-world situations that are redundant to the grammatical constructs. Secondary 

notation reduces the cognitive effort involved in interpreting conceptual modeling scripts 
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(Moody, 2009). The “isA”, “isComponentOf”, and “isPartOf” labels used in the 

operationalization of weak construct redundant UML class diagrams (see middle column, Table 

1) are examples of such a notation in conjunction with the UML generalization, composition and 

aggregation symbols.  These labels do not convey any additional information about the 

relationship but are used as a clue (Petre, 2006) that speeds up the perception and subsequent 

recognition of the relationship semantics. Moody (2009) stresses in the dual coding principle of 

the Physics of Notations theory that the label has a reinforcing function and should not replace 

the symbolic grammatical construct. 

 The redundancy effect relates to how redundant elements in a diagram (e.g., text and 

figures) affect the reader’s ability to learn (Chandler & Sweller, 1991). Chandler and Sweller 

propose that if readers can fully learn from a diagram alone, then the text in the diagram becomes 

redundant. Integrating the diagram with the text is thus likely to unnecessarily force readers to 

process the text that leads to negative rather than positive effects. They also find that if redundant 

elements can easily and readily be assimilated by the readers, then the inclusion of such elements 

might not have any negative consequences. The redundancy effect could also be complementary 

if learners are not able to fully learn from a diagram (Ainsworth, 2006) and need the additional 

information. This need might occur when learners are not familiar with the constructs in the 

diagrams. In this circumstance, when learners find it difficult to understand the structure of the 

diagrams, they might find an intermediate representation easier to understand (Robertson, 2003). 

Kalyuga et al. (2003) report several studies that show that less knowledgeable learners benefit 

from redundant text but for those with more knowledge, the added text interferes with their 

learning from the diagram.  
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For novice readers, the redundancy in weak construct redundant models aids in 

understanding as the labels act as complementary elements in understanding unfamiliar symbols. 

However, expert readers might ignore the labels in the weak construct redundant models as they 

are already familiar with the grammatical constructs.  

When novice readers use strong construct redundant models, they have a higher chance to 

experience cognitive overload (Sweller, 1988) as humans have limited cognitive resources that 

are available during learning and problem solving. When the same ontological construct is 

displayed in using multiple grammatical constructs, novices get confused and their cognitive 

load increases. In this case, grammatical constructs no longer have a complementary effect. We 

expect that expert readers will be less confused by the use of multiple grammatical constructs in 

the strong construct redundant models, hence there will be less chance of cognitive overload 

Table 2 summarizes the above discussion by showing the effects of model understanding based 

on model and reader types. 

Table 2: Effects of model types on model understanding 
Model type Reader type Effect on model understanding Supported theory 

Weak 
construct 
redundant 

Novice Redundancy aids in model understanding Secondary notation 
and complimentary 
redundancy effect 

Strong 
construct 
redundant 

Novice Redundancy does not aid but rather 
creates confusion in model 
understanding  

Cognitive overload 

Weak 
construct 
redundant 

Expert Redundancy does not aid in model 
understanding 

No redundancy effect  

Strong 
construct 
redundant 

Expert Redundancy does not aid in model 
understanding 

No redundancy effect 

 

Based on Table 2, we propose that the effects of construct redundancy (i.e., beneficial, neutral, 

and detrimental) depend on the reader’s modeling knowledge. If the readers are well-versed in 
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the modeling language, then manipulating redundancy will not have any effect on their model 

understanding. However, if the readers are not well-versed in the modeling language, then the 

effect of weak construct redundant models on model understanding will be beneficial but the 

effect of strong construct redundant models on model understanding will be detrimental. Figure 1 

illustrates these proposals. The horizontal blue line represents expert readers and the red line 

represents novice readers. The Y axis represents understanding performance as a dependent 

variable and the combinations of model types in the X axis (e.g., clear versus weak redundant 

versus strong redundant) represent the independent variable. An assumption is made here that 

expert readers will overall perform better than novice readers.  However, the actual performance 

on model understanding (i.e., high, medium, or low) will depend on the subjects who are selected 

as expert and novice readers. 

 
Figure 1: The effect of readers’ modeling knowledge and model type on task performance 

3. Empirical Studies 

In the first study we test the ontological prediction captured in Figure 1 (sub-section 3.1). The 

aim of the second study was to obtain a better understanding of the underlying mechanism of the 

observed effects (sub-section 3.2). 

3.1 Empirical Study 1 

Tasks 
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In this study, we use problem-solving tasks as a measure of the understanding of conceptual 

models. Problem solving is a cognitive process where a problem solver finds “a way out of a 

difficulty, a way around an obstacle, attaining an aim that was not immediately attainable” 

(Polya, (1968 p. ix). Understanding a domain is equivalent to learning. The outcomes of learning 

can be evaluated as a transfer (Mayer, 1989) in which the ability to use knowledge gained from 

the material is used to solve related problems not directly answerable from the material (Gemino 

& Wand, 2005). Accordingly, a high score on problem-solving questions reflects a high 

understanding of the model (Gemino, 1998; Mayer, 1989).  

We develop three sets of UML class diagrams as per the three variations (clear, weak 

construct redundant, and strong construct redundant). To increase external validity, each set has 

two class diagrams: “flight management” and “aquarium management”. Thus, we prepare in total 

six class diagrams. Appendix A shows all the variations of these models. 

The clear class diagrams use only the conventional UML symbols for generalization, 

aggregation, and composition. The weak construct redundant diagrams use the labelled symbols 

for these relationships. In the strong construct redundant diagrams, three alternative 

(combinations of) grammatical constructs are used to represent different instances of the same 

ontological construct. However, as there are less than three generalization, composition and 

aggregation constructs in each diagram, we cannot include all three types of grammatical 

constructs for the same ontological construct in the same diagram. Rather we spread them across 

two diagrams. For example, in the flight model, aggregation is represented by “symbol and 

label” and by “association line and label,” and in the aquarium model, aggregation is represented 

by symbol only. We develop three problem-solving questions for each model. Because the 
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answers for these questions are open-ended, we use two graders. The responses are graded as 

correct and incorrect.  

We now demonstrate how expert readers and novice readers answer a problem-solving 

question. The domain used for this purpose is “flight management.” Three fragments of 

conceptual models from this domain are used (shown in Table 3) where each fragment represents 

an ontologically clear, weak construct redundant, or a strong construct redundant model. Table 3 

provides reasons for why novice readers may find weak redundant models more useful than clear 

models and clear models more useful than strong redundant models. The table also provides 

justification on why expert readers do not prefer any particular model over others.  

Table 3: Illustrating the effects of the three types of UML models on problem-solving questions  

 
Sample problem-solving question:   Some of the safety procedures were not followed by a few crew 
members during a certain chartered flight. Explain how this could have happened? 

-CrewID
-NumberOfMembers

Crew+Maintain flight systems()
-DateOfAppointment

Flight Engineer

-PilotID
-DateOfAppointment
-AviationLicense#
-SeatingPosition

Pilot

-SupportedBy

*

*

1

*

1

 
Fig 2A: Example of a 
fragment of a clear model. 

isPartOf

-CrewID
-NumberOfMembers

Crew+Maintain flight systems()
-DateOfAppointment

Flight Engineer

-PilotID
-DateOfAppointment
-AviationLicense#
-SeatingPosition

Pilot

-SupportedBy

*

*

1

*

1

 
Fig 2B: Example of a fragment of a 
weak redundant model. 

isPartOf

-CrewID
-NumberOfMembers

Crew+Maintain flight systems()
-DateOfAppointment

Flight Engineer

-PilotID
-DateOfAppointment
-AviationLicense#
-SeatingPosition

Pilot

-SupportedBy

*

*

1
*

*

Fig 2C: Example of a fragment of a 
strong redundant model. 

 Novice Readers  Expert Readers 
Relevant correct responses to 
the problem-solving question   

Why 2B should be more effective 
than 2A and 2A more effective 
than 2C in identifying such 
responses? 

Why there should not be any 
difference in using 2A, 2B, or 2C 
in identifying such responses?  
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1. The flight engineers were 
not trained adequately. 
2. Some of the crew members 
other than flight engineers 
were absent on that flight. 

Better understanding of the 
relationship among crew, pilot, and 
flight engineer can lead to a higher 
number of correct responses. 
Referring to Fig 2A, novice readers 
are not much familiar with the 
aggregation symbol between the 
flight engineer and crew. But the 
meaning of aggregation is clear in 
Fig 2B. In Fig 2C, aggregation is 
represented by a new symbol 
hindering the understanding of the 
concepts in this figure. Also 
presence of multiple symbols (in 
other parts of the model) to 
represent aggregation should 
confuse the novice readers. Thus, 
novice readers should understand 
Fig 2B better than Fig 2A and Fig 
2A better than Fig. 2C. 
 

The presence of the label “isPartOf” 
in Fig. 2B does not have any effect 
on the expert readers’ 
understanding of the model as they 
are already familiar with the 
aggregation symbol. On the other 
hand, the cardinality of one in the 
new aggregation symbol in Fig 2C 
provides a clue to the expert readers 
on how to read the direction of the 
aggregation that is linked with the 
classes. In both cases (Fig. 2B and 
2C), expert readers’ understanding 
of the models does not change when 
compared to the understanding of 
Fig. 2A.   
 

 

Hypotheses 

To understand the effect of the redundancies in models, they should be compared to the 

ontological clear model as a benchmark. We develop hypotheses based on the information 

provided in Tables 2 and 3. 

We operationalize expert readers by using graduate students who have substantial 

knowledge of UML class diagrams. We name such subjects as trained readers. We use 

undergraduate students who had minimum knowledge on UML class diagrams as novice 

readers.  The details of the subjects are provided in the next section. To ensure that the desired 

effects (as indicated in Table 3) are obtained, undergraduate students are deliberately chosen as 

novice readers. With bare minimum knowledge of the constructs of generalization, composition, 

and aggregation, it is expected that there will be a high chance of cognitive overload on these 

readers when they refer to the strong redundant models. With up to nine grammatical constructs 
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representing the three ontological constructs, the novices are expected to get confused on the real 

interpretations of the grammatical constructs. 

We expect that for novice readers, the redundancy effect becomes complementary when 

they refer to the weak redundant models, whereas for trained readers, the redundancy effect will 

not be manifested when they refer to the redundant models. Sweller (1988) finds that redundancy 

effects are likely to be unnoticed when the intrinsic (i.e., complexity of the models) cognitive 

load is low. For trained readers, low intrinsic load is not likely to result in cognitive overload 

because of their greater knowledge of the constructs in the models. Accordingly, the hypotheses 

for the study are the following: 

H1: Novice readers will obtain a better understanding of the domain when reading weak 

redundant UML class diagrams compared to reading clear UML class diagrams.  

H2: Novice readers will obtain a better understanding of the domain reading ontologically clear 

UML class diagrams compared to reading strong redundant UML class diagrams.  

H3: Trained readers do not have a significantly better understanding of the domain by reading 

ontologically clear UML class diagrams compared to reading weak redundant UML class 

diagrams.  

H4: Trained readers do not have a significantly better understanding of the domain by reading 

ontologically clear UML class diagrams compared to reading strong redundant UML class 

diagrams.  

The dependent variable is the number of correct responses to the problem-solving questions. The 

independent variable is the use of different types of the class diagrams as mentioned in the 

hypotheses.  To test the above hypotheses, we conduct a laboratory study with student subjects, 

which is common in conceptual modeling studies (Burton-Jones & Meso, 2006). 
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Experiment design 

The study has two factors (trained and novice readers) in each type of UML class diagram—

clear, weak redundant, and strong redundant. Thus, we designed a between-subjects study with 

six groups where each subject receives only one type of diagram. For this purpose, three sets of 

class diagrams were developed that are similar to the diagrams in Table 3. To increase the 

external validity, each set had class diagrams developed in two models: “flight management” and 

“aquarium management.”  

Subjects and procedure  

The study had 120 subject participants in four groups of 20 and 21 for the group where novice 

readers received clear models and 19 for the group where trained subjects received strong 

redundant models. A total of 110 subjects (18 in each group) are required to achieve 80% power 

at two sided 5% significance level. Undergraduate and graduate students enrolled in a MIS 

program from a Southern US University were recruited as subjects. A key issue in this 

experiment was to recruit subjects so that they represented novice and trained readers. To ensure 

this, subjects as trained readers were recruited from MIS graduate students who were finishing 

the IS design courses. Prior to participation, through course work, these subjects were trained 

extensively in the use of UML class diagrams. These subjects also learned the UML concepts 

from the IS analysis course that they took prior to the IS design course. Thus, the subjects were 

exposed to UML concepts over a period of two semesters. As experts depend on their long-term 

memory to perform tasks (Glaser, 1984), some length of exposure is required to get expertise in 

UML class diagrams. For novices, subjects were enrolled in undergraduate introductory IS and 

IS analysis courses. In these courses, subjects were taught about the modeling concepts 

(primarily through ER diagrams) but were not exposed to UML class diagrams prior to the study.  
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Prior to participation, the novice readers were trained for three hours on the basics of a 

UML class diagram - classes, attributes, operations, and associations. These subjects were not 

exposed to generalization, composition, and aggregation concepts in UML. This was done to get 

the maximum effect of the treatment because prior exposure to the constructs would bias them 

and would have threatened the internal validity of the research. Each subject was randomly 

allocated to one of the three types of UML class diagrams (clear, weak redundant, and strong 

redundant).   

The following experimental procedure was followed: First, subjects answered 

background questions on their modeling knowledge (also referred to as IS domain knowledge 

(Khatri, Vessey, Ramesh, Clay, & Park, 2006)). To check the level of UML knowledge 

possessed by these subjects, they were asked to draw a UML class diagram that involved 

modeling classes and associations. Following this step, all subjects browsed through the general 

concepts of a UML class diagram that focused on the three ontological concepts of 

generalization, composition, and aggregation. These constructs were shown using the usual UML 

symbols (i.e., triangle, black diamond, and white diamond). Thus, subjects who were placed in 

the weak and strong redundant groups were unaware of the new grammatical constructs (i.e., 

labels, labels and association line) that were mentioned in the experimental class diagrams. Next, 

subjects were trained to answer problem-solving tasks. This was important as answering 

problem-solving questions requires the assimilation of information from the diagram and the 

subjects’ prior knowledge. Subjects then answered a set of comprehension questions (True or 

False) that covered the content of the diagram. The purpose of this task was to familiarize and 

involve the subjects with the diagram. Following this step, the subjects answered three problem-

solving questions. This sequence of answering comprehension and problem-solving questions 
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was repeated for another domain from a different model but in the same experimental condition. 

The order of the diagrams provided to the subjects was reversed for half of the subjects. This was 

done to cancel any domain order effect. The experimental materials are provided in Appendix B. 

Results 

The UML class diagrams developed by subjects were marked by an independent coder who 

coded each diagram on a scale of 1 to 5 (1, very poor representation and 5, excellent 

representation). The average scores for the novice groups using the clear and weak and strong 

redundant diagrams respectively were 3.48, 3.60, and 3.50; and for the trained groups, they were 

4.25, 4.40, and 4.37. A t-test analysis (t-test = 6.31, p = 0.00) for the mean score difference 

established the difference in UML proficiency between the two groups (novice and trained). 

Table 4 provides the descriptive statistics for the study.  

Table 4: Descriptive Statistics 

Variables Scale C  
M 

C 
SD 

RW  
M 

RW 
SD 

RS  
M 

RS 
SD 

C 
M 

C  
SD 

RW  
M 

RW  
SD 

RS  
M 

RS 
SD 

Total 
M 

Total 
SD 

  N=20 N=20 N= 19 N=21 N=20 N=20 N=120 
  Trained Readers Novice Readers   
Flight fam. 1-7 3.58 0.37 3.73 0.41 3.74 0.45 3.40 0.58 3.55 0.48 3.62 0.42 3.60 0.46 
Aquarium fam. 1-7 3.78 0.37 3.85 0.33 3.74 0.31 3.83 0.72 3.65 0.49 3.77 0.34 3.77 0.45 
Domain fam. 1-7 3.68 0.27 3.79 0.22 3.74 0.26 3.62 0.53 3.60 0.43 3.70 0.24 3.69 0.34 
Modeling Kno.  1-7 4.45 0.35 4.52 0.43 4.41 0.30 3.60 0.39 3.63 0.38 3.44 0.37 4.00 0.58 
PS-flight 1-5* 2.70 0.76 2.53 0.93 2.21 0.42 1.49 0.43 1.78 0.73 1.03 0.36 1.97 0.86 
PS-aquarium 1-4* 2.63 0.83 2.78 0.83 2.23 0.64 1.56 0.32 2.15 0.96 1.23 0.41 2.09 0.88 
Problem solving 1-4* 2.67 0.65 2.66 0.80 2.22 0.36 1.52 0.30 1.97 0.79 1.13 0.27 2.03 0.79 
Key:  Comp: Average number of correct comprehension score; PS: Average number of correct problem-
solving responses per question; fam-familiarity; Kno.- Knowledge, C- Clear; RW- Redundant-Weak; RS- 
Redundant-Strong; M- Mean; SD- Standard Deviation; **The problem-solving questions were open-
ended, so the maximum score is undefined.  However, the list of correct answers suggests a “practical” 
maximum of 5 and 4 for the two domains 
 

The scores on domain familiarity of the trained readers are similar to those of the novices across 

the three treatments. However, the scores on modeling knowledge of the trained readers are 
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higher than the novices across the three treatments. This difference matches with the earlier 

reported manipulation test on the subject’s proficiency in creating UML class diagrams.  

The reliability of the instruments for the dependent variable, problem solving is checked 

next. Cronbach’s alpha for items measuring the dependent variable is 0.83 (aquarium model) and 

0.88 (flight model).  The two graders evaluated the responses of the problem-solving questions 

using a code book that contained sample answers for each question. Grader one coded all the 

responses, and grader two coded only one-third of the responses randomly. Their inter-rater 

reliability (alpha) is high (average Pearson correlation coefficient for the correct number of 

responses is 0.89).  

Tables 5 and 6 show the ANCOVA results for each domain with the effects of the 

covariates for hypotheses 1-2 and 3-4 respectively. To test the above hypotheses, the average 

number of correct responses of the problem solving questions for both domains was used as the 

measure for dependent variable.  

Table 5: ANCOVA Analysis H1-H2 (novice readers) 

ANCOVA analysis 
for novice readers 

H1 (C-RW difference) H2 (C-RS difference) 

 PS RW (1.97) > PS C (1.52) PS C (1.52) > PS RS (1.13) 
Variables F P F P 
Order 0.70 0.21 0.43 0.26 
Domain familiarity 0.95 0.17 0.46 0.25 
Treatment 7.24 0.01* 8.67 0.01* 
 Partial eta squared =0.17  Partial eta squared = 0.19 
Key: Order- Order of the domains presented to the subjects, PS- Problem solving average correct score C- 
Clear, RW- Redundant Weak, RS- Redundant Strong, *Significance at 0.05 level 
 

Table 6: ANCOVA Analysis H3-H4 (trained readers) 

ANCOVA analysis 
for trained readers 

H3 (C-RW difference) H4 (C-RS difference) 

 PS C (2.67) > PS RW (2.66) PS C (2.67) > PS RS (2.22) 
Variables F P F P 
Order 0.04 0.42 0.01 0.48 
Domain familiarity 1.75 0.10 0.01 0.47 
Treatment 0.02 0.45 3.22 0.04* 
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 Partial eta squared =0.01 Partial eta squared = 0.08 
Key: Order- Order of the domains presented to the subjects, PS- Problem solving average correct score C- 
Clear, RW- Redundant Weak, RS- Redundant Strong, *Significance at 0.05 level 

 

The average correct problem-solving scores for trained readers are higher than for the novices. 

Tables 5 and 6 indicate that H1, H2, and H3 were supported but not H4. The results are 

consistent with the prediction on how novices and trained readers react to weak and strong 

redundant models. As H4 was not supported therefore it might be possible that trained readers 

faced cognitive overload using the strong redundant models. The partial eta squared for H4 

analysis is low (0.08) indicating a very small effect size. 

3.2 Empirical Study 2 

Background 

From study 1 there is evidence that trained readers can better understand UML class diagrams 

than novice readers. However, there is no evidence that any difference exists between trained and 

novice readers’ cognitive processes on how they understand UML class diagrams. If evidence 

exists that there are differences in cognitive processes, then the results of study 1 can be 

strengthened. Therefore, the objectives of this follow-up protocol study are to: (1) identify the 

difference in mental processes of trained and novice readers in understanding the models and (2) 

understand whether the differences support the hypotheses.  

In IS research, verbal protocol analysis is used to understand the processes by which 

users perform tasks. This technique provides data that reveal the mental processes that take place 

as individuals work on problem-solving tasks (Ericsson & Simon, 1984).  To use this technique, 

the subjects are required to verbalize their thought processes and strategies as they solve specific 

problem-solving tasks.  

Experimental Design 
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To limit the scope of the study, we provide only weak construct redundant models to a small 

sample of ten subjects (five trained and five novices). Consistent with other such studies (e.g., 

(Burton-Jones & Meso, 2006)), this number of subjects provides immense verbal data for such a 

small sample size. The subject’s profile, experimental procedure, tasks were similar to that of the 

earlier study, except that subjects had to verbalize their thought processes while performing the 

problem-solving tasks. A different set of subjects was selected in this study. 

Results 

The verbal data was transcribed and coded by a PhD student in conceptual modeling who was 

unaware of the objectives of the study. The analysis was done by collecting evidence on the 

behavior of readers while answering the problem-solving tasks. The analysis is reported in 

Tables 7 and 8. 

Earlier studies have demonstrated that experts depend on long-term memory whereas 

novices depend on short-term memory for solving problems (Glaser, 1984). Thus, trained readers 

should use their long-term memory to understand the model concepts whereas novices should 

rely on the diagrams. The trained readers used words or phrases that refer to the constructs in the 

diagrams much more than the novices (Tables 7, 8). For example, the trained readers used words 

such as generalization, composition, aggregation, “sub class of,” and “consists of” to refer to the 

labels “isPartOf”, “isA”, and “isComponentOf”.  These words were not present in the models. 

On the other hand, as expected, the novices read the labels directly from the diagrams to 

understand the model concepts.   

Previous conceptual modeling studies find that trained readers understand the model 

better than novices (Batra & Davis, 1992). In this study, we observe that trained readers were 

able to make more inferences from the diagrams than novices (Tables 7, 8). Some examples of 
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trained readers’ verbalization that reflect inferences include “exhibited animals have same 

attributes as species” (inferred from ExhibitedAnimal is a subclass of ShipmentAnimal which is 

a subclass of Species) and “though crew do not consist of pilots” and “flight engineer are all part 

of the crew but not pilot…”  (both phrases were inferred from the classes that are related to the 

crew, only pilots had association with the crew and other classes had aggregation relations with 

the crew). Also, only trained readers demonstrated that they could read the relations between the 

classes from both directions especially when the aggregation, generalization, and composition 

labels were used. For example, trained readers verbalized “there are two types of shipment 

animals” and “aircraft consists of cargo.” In contrast, novices read the diagrams in one direction 

only using the labels (e.g., cargo is part of the aircraft). These observations reflect that unlike 

novices, trained readers relied more on their long-term memory than short-term memory, and 

trained readers understood the diagrams better than novices. 

Table 7: Analysis of verbal data- trained readers 

Trained 
readers 

Verbalizing 
concepts not in 
the diagram 

Verbalizing 
labels  in the 
diagram 

Number of times 
reading reverse/ 
inference 

Flight domain 
1 3 1 2 
 2 10 1 1 
 3 2 2 2 
 4 1 0 0 
 5 2 2 2 
Subtotal 18 6 7 

Aquarium management domain 
1 4 1 0 
 2 6 3 2 
 3 1 1 0 
 4 2 2 1 
 5 1 0 2 
Subtotal 14 7 5 
Total 32 13 12 
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Table 8: Analysis of verbal data-novice readers 

Novice 
readers 

Verbalizing 
concepts not in 
the diagram 

Verbalizing 
labels  in the 
diagram 

Number of times 
reading reverse/ 
inference 

Flight domain 
1 0 1 0 
 2 1 1 1 
 3 0 1 0 
 4 1 1 1 
 5 0 0 0 
Subtotal 2 4 2 

Aquarium management domain 
1 0 2 0 
 2 0 2 0 
 3 2 4 0 
 4 0 1 0 
 5 0 3 0 
Subtotal 2 12 0 
Total 4 16 2 

 

The above results should be used with some caution as the protocol analysis has a limitation in 

that the subjects might not explicitly verbalize their thought processes (Dimoka, Pavlou, & 

Davis, 2011). Thus, the actual number of instances as indicated in Tables 7 and 8 cannot be 

determined accurately. However, the results can still be used to understand the differences in the 

cognitive processes of the two groups. While the novices rely on the labels as depicted in the 

diagrams, the trained readers rely more on their long-term memory. Thus the results support 

study 1. Although the labels are redundant, the trained readers do not seem to use them to 

understand the diagrams and thus they do not face any redundancy effect. Therefore, for the 

trained readers there is not much difference between ontologically clear and redundant models. 

In contrast, novices primarily used the labels to understand the new constructs. Thus, for them 

the redundant models are more useful than the clear models.   
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4. Discussion 

Predictions based on ontological analysis of conceptual modeling grammars using the Bunge-

Wand-Weber representation model as reference ontology have mostly been supported by 

empirical testing (Wand & Weber, 2017). A notable exception is the predicted detrimental effect 

of ambiguity caused by construct redundancy, which was only investigated for process modeling 

and with mixed effects (Fickinger & Recker, 2013). Our research results provide further insights 

into when and why construct redundancy in conceptual modeling grammars has positive or 

negative effects on model understanding.  

To perform our research, we operationalized construct redundancy by means of a 

conceptual modelling grammar based on UML class diagrams. First, we made a distinction 

between two types of redundancy in conceptual models. A weak form of redundancy in models 

is introduced by extending a symbolic grammatical construct with a textual label that acts as 

secondary notation (Petre, 2006), hence adhering to the dual code principle (Moody, 2009). Our 

first empirical study showed that consistently using this grammatical construct with redundant 

coding throughout the model for representing the same ontological construct significantly 

improved model understanding of novice users as measured by their performance of problem-

solving tasks. This positive effect was predicted by the complementarity of the redundancy effect 

for readers that are not completely familiar with the symbols used for encoding the information 

in the diagram (Ainsworth, 2006). Our second study confirmed this prediction by means of a 

protocol analysis study which showed that such novice readers rely much more on the textual 

information (i.e., labels) in a domain model than more advanced readers. This is in line with the 

study of Recker et al. (2010) who find that the reduced perceived ease of use of BPMN because 

of its construct redundancy for representing real-world objects and events holds for those users 
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who can identify these ontological deficiencies. Clearly, for novice users the labels added to the 

graphical symbols are not perceived as redundant and actually help them understand the 

information conveyed by the model. As expected, this positive effect did not hold for the more 

knowledgeable users who were neither helped nor distracted by the redundant information. Our 

protocol analysis confirmed this. 

We also introduced a stronger form of construct redundancy in models by creating three 

alternative representations of the same ontological construct. Redundancy was induced into the 

models by having the same ontological construct represented in different ways in the same 

model, resulting in non-laconic models (Guizzardi, 2005). We predicted that the ambiguity 

caused by such alternative representations is likely to cause increased cognitive load, especially 

for novice users. This prediction was confirmed by the results of our first study which showed a 

significant decrease of problem-solving performance for novice users when using strong 

construct redundant models compared to ontologically clear models. Contrary to our 

expectations, also the more advanced users saw their performance decrease, though the effect 

size was low. Previous studies by Recker and Rosemann (2010) and Recker et al. (2010) 

concluded that experienced modelers perceive ontological deficiencies of conceptual modeling 

grammars and also find ways to mitigate the deficiencies. These studies were survey-based and 

did not directly investigate performance effects caused by the ambiguity of ontologically unclear 

grammars. In contrast, our empirical study demonstrated such negative effect of strong 

redundancy in conceptual models, both for novice and more advanced users, hence providing 

further evidence for Wand and Weber’s theory of ontological expressiveness. 

4.1 Implications for Research and Practice 
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Our studies suggest two implications for research. First, in further research on theorizing, 

applying, and testing ontological predictions (see Wand and Weber (2017) for possible future 

research avenues on the theory of ontological expressiveness), construct redundancy needs to be 

carefully conceptualized and operationalized. Our research demonstrates differential effects for 

deliberate kinds of redundancy (i.e., secondary notation, dual coding) and unwanted construct 

redundancy that is built in the grammar’s design. Further, even when a grammar offers multiple 

constructs to represent the same ontological construct, models can be constructed that are laconic 

(Guizzardi, 2005), meaning that only one grammatical alternative is actually used to represent 

the ontological construct in the models. The latter consideration is especially relevant for studies 

investigating the impact of lack of ontological clarity caused by construct redundancy in a 

grammar on model understanding. 

Second, ontological predictions might need to be differentiated for separate groups of 

target users of the grammar and/or scripts. Our second study shows that model readers that are 

new to the grammar and more knowledgeable with the grammar use different cognitive 

processes when understanding models, and our first study demonstrates different outcomes for 

those two groups. This means that contingency factors need to be accounted for when 

investigating the theory of ontological expressiveness. Apart from experience and knowledge, 

other human aspects of conceptual modeling (Topi & Ramesh, 2002) such as domain familiarity 

can be considered. Suh and Park (2017) investigate how domain familiarity affects the user’s 

performance in cases of construct overload. Similarly, future studies can investigate the role of 

domain familiarity in construct redundancy. This research can also be replicated with expert 

model readers (e.g., practitioners) and can be extended by studying the effect of a large variety of 

redundant constructs in conceptual models. 
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Our research also suggests practical implications. It shows the advantages of secondary 

notation in conceptual models. Providing textual labels as additional clues improves 

understanding of users who are not familiar with the modelling grammars. On the other hand, 

distinct construct redundancy is to be avoided for all model users. In case modelling grammars 

are used that exhibit such ontological deficiency (e.g., BPMN (Recker et al., 2010), UML 

(Opdahl & Henderson-Sellers, 2002)), modelers should be discouraged using multiple 

grammatical constructs in representing ontological constructs. Proper rules or guidelines should 

be developed and used to represent ontological constructs with minimum grammatical 

constructs, in order to create laconic models that do not suffer from strong detrimental forms of 

redundancy. 

4.2 Limitations 

The results of the studies depend on the operationalization of the grammatical constructs and 

manipulation of modeling knowledge. For example, in the weak redundant model without a 

symbol and a label as a generalization construct, if a new grammatical construct (e.g., a curved 

line) is used, then the results could have been different.  The weak and strong redundant models 

were operationalized, keeping in mind the subjects who were recruited in this study.  If novice 

readers are quite familiar with the ontological constructs then these readers may not find 

difficulty in understanding the semantics of the redundant grammatical constructs.  

A key weakness of this study is the use of students as subjects. The amount of modeling 

exposure that students get is limited in academic programs, and thus the results can vary when 

students with different background are used.  
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5. Conclusion 

This paper investigates the role of redundancy in understanding conceptual models by readers 

with varied modeling knowledge.  The main contribution of this study is the role of redundancy 

in UML class diagrams being investigated at the readers’ level. This research might explain the 

different results obtained in the past on investigating the role of construct redundancy. If trained 

model readers are used in studies, then there should not be any effect of redundancy on task 

performance. But if novice readers are used, then some effect from redundancy exists. Thus, 

depending on the readers’ knowledge of models, the effect of redundancy is mixed.   

There are several ways to extend this research. Ali Jabbari Sabegh and Recker (2017) 

mention that most studies that investigate ontological deficiencies focus on a single conceptual 

modeling grammar or model. But as multiple conceptual models are generally used 

simultaneously in practice, therefore the role of redundancy can be investigated in the context of 

using multiple conceptual models. Kaul, Storey, and Woo (2017) suggest a framework on 

guiding complexity of information system design. Using Wand and Weber’s decomposition 

model (Wand & Weber, 1990), they suggest how complexity can be reduced by decomposing 

information systems. Research can focus on how removal of construct redundancy can help in 

decomposition of conceptual models and subsequently reduce complexity of information 

systems. 
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Appendix A: Experimental Diagrams: Conceptual models 
 

 
Figure A1: Ontologically clear model- Flight domain 

 
Figure A2: Weak redundant model- Flight domain 
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Figure A3: Strong redundant model-Flight domain 

 
Figure A4: Ontologically clear model- aquarium management domain 
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Figure A5: Weak redundant model- aquarium management domain 
 

 
Figure A6: Strong redundant model- aquarium management domain 
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Appendix B: Variables 
Variables: Modeling and domain knowledge (on a scale of 1-7) 
1. To what extent do you know data modeling concepts (such as classes, operations, and attributes) 
2. To what extent do you have experience in using data modeling concepts (such as classes, operations, 

and attributes) 
3. To what extent do you know aggregation, composition, and generalization 
4. To what extent do you have experience in using aggregation, composition, and generalization 
5. To what extent do you know the operation of a chartered flight? 
6. To what extent are you familiar with the operation of a chartered flight? 
7. To what extent are you familiar with the different types of employees that work in an Aquarium? 
8. To what extent do you know the responsibilities of employees working in an Aquarium? 
Dependent Variable: Problem-solving questions (open-ended) 

1. Certain pilots were on strike due to low wages. How can a chartered company still operate chartered 
flights without affecting the operations? 

2. Some of the safety procedures were not followed by a few crew members during a certain chartered 
flight? Explain how this could have happened? 

3. The cargo of a flight was overloaded with more than 10% of its allowed weight? Explain how this 
could have happened? 

4. A new species of animal has just been discovered in Tasmania. The aquarium is thrilled to purchase 
this species. What measures should the aquarium take before it is displayed to the visitors? 

5. Certain species of animals do not feed for few days when they are brought in the aquarium. What 
measures will you suggest to make sure that these animals remain healthy? 

6. An animal from this aquarium needs to be transferred to another aquarium located in a different 
country. What steps should be taken to transfer the animal? 

Comprehension questions (True/False) 

1. A flight engineer is a crew 
2. A load master is a part of a crew 
3. A pilot is a part of a crew 
4. A crew can be assigned to more than one aircraft 
5. A cargo is a component of aircraft 
6. A fight engineer inspects loading 
7. A flight engineer monitors flight data 
8. A co-pilot has an aviation license number 
9. A load master has an attribute CrewID 
10. An animal handler is a part of an aquarium 
11. All shipment animals are quarantined 
12. All shipment animals are exhibited 
13. Exhibit Tank has the attribute Fluid_Capacity 
14. A storage tank is a component of an aquarium 
15. Quarantine Tank has the attribute Fluid_Capacity 
16. All shipment animals are species 
17. Shipment_Animals has an attribute Native_Location 
18. Exhibited_Animals has an attribute Arrival_Date 
Task on developing UML class diagram 

In the following space draw a UML class diagram for the description below using at least three classes. 
“A hospital treats patients. Some of the treated patients are admitted to the hospital.” 
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