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Abstract. We present a theory of ultradistributional boundary values for har-
monic functions defined on the Euclidean unit ball. We also give a characteriza-
tion of ultradifferentiable functions and ultradistributions on the sphere in terms
of their spherical harmonic expansions. To this end, we obtain explicit estimates
for partial derivatives of spherical harmonics, which are of independent interest
and refine earlier estimates by Calderón and Zygmund. We apply our results to
characterize the support of ultradistributions on the sphere via Abel summability
of their spherical harmonic expansions.

1. Introduction

The study of boundary values of harmonic and analytic functions is a classical
and important subject in distribution and ultradistribution theory. There is a vast
literature dealing with boundary values on Rn, see e.g. [1, 5, 6, 10, 12, 14, 20]
and references therein. In the case of the unit sphere Sn−1, the characterization of
harmonic functions in the Euclidean unit ball of Rn having distributional boundary
values on Sn−1 was given by Estrada and Kanwal in [11]. In a recent article [13],
González Vieli has used the Poisson transform to obtain a very useful description
of the support of a Schwartz distribution on the sphere (cf. [27] for support char-
acterizations on Rn). Representations of analytic functionals on the sphere [17] as
initial values of solutions to the heat equation were studied by Morimoto and Suwa
[18].

In this article we generalize the results from [11] to the framework of ultra-
distributions [15, 16] and supply a theory of ultradistributional boundary values
of harmonic functions on Sn−1. Our goal is to characterize all those harmonic
functions U , defined in the unit ball, that admit boundary values limr→1− U(rω)
in an ultradistribution space E∗′(Sn−1). Our considerations apply to both non-
quasianalytic and quasianalytic ultradistributions, and, in particular, to analytic
functionals. As an application, we also obtain a characterization of the support of
a non-quasianalytic ultradistribution in terms of Abel summability of its spherical
harmonic series expansion. Since Schwartz distributions are naturally embedded
into the spaces of ultradistributions in a support preserving fashion, our support
characterization contains as a particular instance that of González Vieli quoted
above.
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In Section 4 we study spaces of ultradifferentiable functions and ultradistributions
through spherical harmonics. Our main results there are descriptions of these spaces
in terms of the decay or growth rate of the norms of the projections of a function
or an ultradistribution onto the spaces of spherical harmonics. We also establish
the convergence of the spherical harmonic series in the corresponding space. Note
that eigenfunction expansions of ultradistributions on compact analytic manifolds
have recently been investigated in [8, 9] with the aid of pseudodifferential calculus
(cf. [28] for the Euclidean global setting). However, our approach here is quite
different and is rather based on explicit estimates for partial derivatives of solid
harmonics and spherical harmonics that are obtained in Section 3. Such estimates
are of independent interest and refine earlier bounds by Calderón and Zygmund
from [4].

Harmonic functions with ultradistributional boundary values are characterized
in Section 5. The characterization is in terms of the growth order of the harmonic
function near the boundary Sn−1; we also show in Section 5 that a harmonic func-
tion satisfying such growth conditions must necessarily be the Poisson transform
of an ultradistribution. In the special case of analytic functionals, our result yields
as a corollary: any harmonic function on the unit ball arises as the Poisson trans-
form of some analytic functional on the sphere. Finally, Section 6 deals with the
characterization of the support of non-quasianalytic ultradistributions on Sn−1.

2. Preliminaries

We employ the notation Bn for the open unit ball of Rn. We work in dimension
n ≥ 2.

2.1. Spherical harmonics. The theory of spherical harmonics is a classical sub-
ject in analysis and it is very well explained in several textbooks (see e.g. [2, 3]).
The space of solid harmonics of degree j will be denoted by Hj(Rn), its elements are
the harmonic homogeneous polynomials of degree j on Rn. A spherical harmonic
of degree j is the restriction to Sn−1 of a solid harmonic of degree j and we write
Hj(Sn−1) for space of all spherical harmonics of degree j. Its dimension, denoted
as dj = dimHj(Sn−1), is (cf. [3] or [26, Thm. 2, p. 117])

dj =
(2j + n− 2)(n+ j − 3)!

j!(n− 2)!
∼ 2jn−2

(n− 2)!
.

From this exact formula, it is not hard to see that dj satisfies the bounds

(2.1)
2

(n− 2)!
jn−2 < dj ≤ njn−2, for all j ≥ 1.

It is well known [3] that

L2(Sn−1) =
∞⊕
j=0

Hj(Sn−1),

where the L2-inner product is taken with respect to the surface measure of Sn−1.
The orthogonal projection of f ∈ L2(Sn−1) onto Hj(Sn−1) will always be denoted
as fj; it is explicitly given by

fj(ω) =
1

|Sn−1|

∫
Sn−1

f(ξ)Zj(ω, ξ)dξ,
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where Zj(ω, x) is the zonal harmonic of degree j with pole ω [3]. We then have that
|Sn−1|−1Zj(ξ, x) is the reproducing kernel of Hj(Sn−1), namely,

(2.2) Yj(ω) =
1

|Sn−1|

∫
Sn−1

Yj(ξ)Zj(ω, ξ)dξ, for every Yj ∈ Hj(Sn−1).

2.2. Homogeneous extensions and differential operators on Sn−1. We write
E(Ω) = C∞(Ω), where Ω is an open subset of Rn or Sn−1. Given a function ϕ on
Sn−1, its homogeneous extension (of order 0) is the function ϕ� defined as ϕ�(x) =
ϕ(x/|x|) on Rn\{0}. It is easy to see that ϕ ∈ E(Sn−1) if and only if ϕ� ∈ E(Rn\{0}).
Furthermore, we define the differential operators ∂αSn−1 : E(Sn−1)→ E(Sn−1) via

(∂αSn−1ϕ)(ω) = (∂αϕ�)(ω), ω ∈ Sn−1.

We can then consider L(∂Sn−1) for any differential operator L(∂) defined on Rn\{0}.
In particular, ∆Sn−1 stands for the Laplace-Beltrami operator of the sphere.

Finally, if F is a function on Rn, we simply write ‖F‖Lq(Sn−1) for the Lq(Sn−1)-
norm of its restriction to Sn−1.

3. Estimates for partial derivatives of spherical harmonics

Calderón and Zygmund showed [4, Eq. (4), p. 904] the following estimates for
the partial derivatives of a spherical harmonic Yj ∈ Hj(Sn−1),

(3.1) ‖∂αSn−1Yj‖L∞(Sn−1) ≤ Cα,n j
|α|‖Yj‖L∞(Sn−1),

where the constants Cα,n depend on the order of differentiation and the dimension
on an unspecified way. The same topic is treated in Seeley’s article [26].

The goal of this section is to refine (3.1) by exhibiting explicit constants Cα,n.
We also give explicit bounds for the partial derivatives of spherical harmonics in
spherical coordinates. Such estimates in spherical coordinates play an important
role in the next section. We consider here p(θ) = (p1(θ), . . . , pn(θ)),

p(θ) = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 · · · sin θn−2 cos θn−1, sin θ1 . . . sin θn−2 sin θn−1),

where θ ∈ Rn−1. Naturally, the estimate (3.3) below also holds if we choose the
north pole to be located at a point other than (1, 0, . . . , 0).

Theorem 3.1. We have the bounds:

(a) For every solid harmonic Qj ∈ Hj(Rn) and all α 6= 0,

(3.2) ‖∂αQj‖L∞(Sn−1) ≤ e
n
4
− 1

2
√
n 2

|α|
2 j|α|+

n
2
−1‖Qj‖L∞(Sn−1).

(b) For all spherical harmonic Yj ∈ Hj(Sn−1) and all α 6= 0,

(3.3) ‖∂αθ (Yj ◦ p)‖L∞(Rn−1) ≤ e
n
4
− 1

2
√
n
(
(n+ 1)|α| − 1

)
2
|α|
2 j|α|+

n
2
−1‖Yj‖L∞(Sn−1).

(c) For all spherical harmonic Yj ∈ Hj(Sn−1), all α 6= 0, and any ε > 0,
(3.4)

‖∂αSn−1Yj‖L∞(Sn−1) ≤ e
n
(

1
4

+
√

2+3
√

2+4/ε
)
− 1

2n
|α|+1

2 (2 + ε)|α|j|α|+
n
2
−1|α|!‖Yj‖L∞(Sn−1).

Proof. (a) For (3.2), we assume that |α| ≤ j, otherwise the result trivially holds.
Our starting point is the same as the inductive step in the proof of [26, Thm. 4, p.
120], namely, the inequality

(3.5)

∫
Sn−1

|∂αQj(ω)|2dω ≤ (j − |α|+ 1)(n+ 2j − 2|α|)
∫
Sn−1

|∂βQj(ω)|2dω,
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valid for all multi-index β with |β| = |α| − 1 and β ≤ α. Successive application of
(3.5) leads to∫

Sn−1

|∂αQj(ω)|2dω ≤
|α|−1∏
i=0

(j − i) ·
|α|∏
i=1

(n+ 2j − 2i)

∫
Sn−1

|Qj(ω)|2dω.

The coefficient in this bound can be estimated as follows,

|α|−1∏
i=0

(j − i) ·
|α|∏
i=1

(n+ 2j − 2i) ≤ j2|α|2|α|
|α|∏
i=1

(
1 +

n/2− i
j

)

≤ 2|α|j2|α|
(

1 +
n/2− 1

j

)|α|
≤ 2|α|j2|α|e

n
2
−1.

Now, ∂αQj ∈ Hj−|α|(Rn) and ‖Zj−|α|(ω, · )‖2
L2(Sn−1) = dj−|α||Sn−1| for each ω ∈ Sn−1

(cf. [3, pp. 79–80]). Thus, we obtain (cf. (2.2)), for all ω ∈ Sn−1,

|∂αQj(ω)| ≤ 1

|Sn−1|
‖∂αQj‖L2(Sn−1)‖Zj−|α|(ω, · )‖L2(Sn−1) =

√
dj−|α|
|Sn−1|

‖∂αQj‖L2(Sn−1)

≤ e
n
4
− 1

2

√
n

|Sn−1|
2
|α|
2 j|α|+

n
2
−1‖Qj‖L2(Sn−1),

where we have used dj−|α| ≤ njn−2 (see (2.1)). This shows (3.2).
(b) Our proof of (3.3) is based on the multivariate Faà di Bruno formula for the

partial derivatives of the composition of functions. Let m = |α|. Specializing [7,
Eq. (2.4)] to h = f ◦ p, where f is a function on Rn, we obtain

∂αθ h =
∑

1≤|λ|≤m

(∂λxf) ◦ p
∑

(k,l)∈p(α,λ)

α!
n∏
j=1

[∂
lj
θ pj]

kj

(kj!)[lj!]|kj |
,

where the set of multi-indices p(α, λ) ⊂ N2n is as described in [7, p. 506]. We also
employ the identity [7, Cor. 2.9]

α!
∑
|λ|=k

∑
p(α,λ)

n∏
j=1

1

(kj!)[lj!]|kj |
= nkS(m, k),

where S(m, k) are the Stirling numbers of the second kind. For such numbers [22,
Thm. 3] we have the estimates1

S(m, k) ≤
(
m

k

)
km−k, 1 ≤ k ≤ m.

Since obviously |∂ljpj(θ)| ≤ 1, we obtain

(3.6) ‖∂αθ (f ◦ p)‖L∞(Ω) ≤
m∑
k=1

(
m

k

)
km−knk max

|λ|=k
‖∂λxf‖L∞(p(Ω)),

1Actually, S(m, k) ≤ 1

2

(
m

k

)
km−k holds for 1 ≤ k ≤ m− 1 if m ≥ 2, and S(m,m) = 1.
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for any Ω ⊆ Rn−1 and the corresponding set p(Ω) ⊆ Sn−1. We now apply this
inequality to estimate ∂αθ (Yj ◦ p). Let Qj ∈ Hj(Rn) be the solid harmonic corre-
sponding to Yj, clearly Qj ◦p = Yj ◦p and ‖Qj‖L∞(Sn−1) = ‖Yj‖L∞(Sn−1). Using (3.6)
with f = Qj, the bound (3.2), and the fact that ∂λxQj = 0 if |λ| > j, we conclude
that

‖∂αθ (Yj ◦ p)‖L∞(Rn−1) ≤ e
n
4
− 1

2
√
n2

m
2 j

n
2
−1‖Yj‖L∞(Sn−1)

m∑
k=1

(
m

k

)
nkjm−kjk

= e
n
4
− 1

2
√
n ((n+ 1)m − 1) 2

m
2 jm+n−2

2 ‖Yj‖L∞(Sn−1).

(c) We need to estimate the partial derivatives of Y �
j = Qj◦F , where Qj ∈ Hj(Rn)

and F (x) = x/|x|, x ∈ Rn\{0}. Instead of using the Faà di Bruno formula to handle
directly the partial derivatives of this composition, we will adapt Hörmander’s proof
of [14, Prop. 8.4.1, p. 281] to our problem. Let 0 < r < 1/2 and ω ∈ Sn−1. Note
that if |z − ω| ≤ r and we write z = x+ iy, then

<e (z2
1 + · · ·+ z2

n) = |x|2 − |y|2 ≥ 1− 2r > 0.

So, F is holomorphic on this region of Cn. For m ≥ 1, we define the sequence of
functions

Gm(z) =
∑
|β|≤m

(
∂βQj

)
(F (ω))

(F (z)− F (ω))β

β!
.

Each Gm is holomorphic when |z − ω| ≤ r and the derivatives of Gm of order m at

z = ω are the same as those of Y �
j (x) at x = ω. We keep |z − ω| ≤ r. We have the

bound

|F (z)− F (ω)| ≤ 1 +
|z|√

<e (z2
1 + · · ·+ z2

n)
< 1 +

3

2
√

1− 2r
= Cr,

and hence, by (3.2),

|Gm(z)| ≤ e
n
4
− 1

2
√
n ‖Yj‖L∞(Sn−1)

∑
|β|≤min{m,j}

j|β|+
n
2
−1 (Cr

√
2)|β|

β!

≤ e
n
4
− 1

2
√
n jm+n

2
−1‖Yj‖L∞(Sn−1)

∑
β∈Nn

(Cr
√

2)|β|

β!

= en(
1
4

+
√

2Cr)− 1
2
√
n jm+n

2
−1‖Yj‖L∞(Sn−1).

The Cauchy inequality applied in the polydisc |zj − ωj| ≤ r/
√
n yields

|∂αSn−1Yj(ω)| = |∂αG|α|(ω)| ≤ en(
1
4

+
√

2Cr)− 1
2n
|α|+1

2 r−|α|j|α|+
n
2
−1α!‖Yj‖L∞(Sn−1).

One obtains (3.4) upon setting r = 1/(2 + ε). �

4. Spherical harmonic characterization of ultradifferentiable
functions and ultradistributions

In this section we characterize ultradifferentiability properties of a function on
the sphere in terms of its spherical harmonic expansion. We also obtain a spherical
harmonic characterization of ultradistributions on the sphere.
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We start by introducing ultradifferentiable functions on Sn−1. A weight sequence
is simply a positive sequence (Mp)p∈N of real numbers with M0 = 1. Throughout the
rest of the article, we always impose the following assumptions on weight sequences,

(M.0) p! ≤ A0H
p
0Mp, p ∈ N, for some A0 > 0 and H0 > 1,

(M.1) M2
p ≤Mp−1Mp+1, p ≥ 1,

(M.2)′ Mp+1 ≤ AHpMp, p ∈ N, for some A,H > 1.

The meaning of these standard conditions is explained in [15]. The associated
function of the sequence Mp is defined as

M(t) = sup
p∈N

log
tp

Mp

, t > 0,

and M(0) = 0. See also [15] for its properties and the translation of (M.1) and
(M.2)′ into properties of M . In particular, we shall often make use of the inequality

(4.1) tηe−M(Hηt) ≤ Aηe−M(t), for all t > 0,

for any η > 0, implied by (M.1) and (M.2)′ [15, Eq. (3.13), p. 50]. We also
point out that, under (M.1), the condition (M.0) becomes equivalent to the bound
M(t) = O(t) [15, Lemma 3.8]. As a typical example, we mention Mp = (p!)s with
s ≥ 1, whose associated function has growth order M(t) � t1/s.

We define the space E{Mp}(Sn−1) of ultradifferentiable functions of Roumieu type
(or class {Mp}) as the space of all smooth functions ϕ ∈ E(Sn−1) such that

(4.2) sup
α∈N

h|α|‖∂αSn−1ϕ‖L∞(Sn−1)

M|α|
<∞,

for some h > 0. Note that if Mp = (p!)s with s ≥ 1, one recovers the spaces of
Gevrey differentiable functions on the sphere. In the special but very important
case Mp = p!, we also write A(Sn−1) = E{p!}(Sn−1); this is in fact the space of real
analytic functions on Sn−1 [17].

The space E (Mp)(Sn−1) of ultradifferentiable functions of Beurling type (class
(Mp)) is defined by requiring that (4.2) holds for every h > 0. Whenever we
consider the Beurling case, we suppose that Mp satisfies the ensuing stronger as-
sumption than (M.0),

(NA) For each L > 0 there is AL > 0 such that p! ≤ ALL
pMp, p ∈ N.

Notice (M.1) implies that (NA) is equivalent to M(t) = o(t) as t→∞ [15, Lemma
3.10].

As customary, we write ∗ = {Mp} or (Mp) when considering both cases simulta-
neously. It should be noticed that the condition (M.0) (the condition (NA)) implies
that A(Sn−1) is the smallest among all spaces of ultradifferentiable functions that
we consider here, that is, one always has the inclusion A(Sn−1) ⊆ E∗(Sn−1).

A word about the definition of E∗(Sn−1) that we have adopted here. Since we
have used the differential operators ∂αSn−1 in (4.2), ∗-ultradifferentiability of ϕ on
Sn−1 is the same as ∗-ultradifferentiability of its homogeneous extension (of order
0) on Rn \ {0}, namely,

ϕ ∈ E∗(Sn−1) if and only if ϕ� ∈ E∗(Rn \ {0}),
with the spaces of ultradifferentiable functions on an open subset of Rn defined in the
usual way [15]. Moreover, in view of the analyticity of the mapping x→ x/|x| and
the fact that the pullbacks by analytic functions induce mappings between spaces of
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∗-ultradifferentiable functions under the assumptions (M.0) ((NA) in the Beurling
case), (M.1) and (M.2)′ (cf. [14, Prop. 8.4.1], [16, p. 626], [23]), our definition of
E∗(Sn−1) coincides with that of ∗-ultradifferentiable functions on compact analytic
manifolds via local analytic coordinates.

We are ready to characterize E∗(Sn−1) in terms the norm decay of projections
onto the spaces of spherical harmonics. Recall our convention is to write ϕj for the
projection of ϕ onto Hj(Sn−1).

Theorem 4.1. Let ϕ ∈ L2(Sn−1) and let 1 ≤ q ≤ ∞. The following statements are
equivalent:

(i) ϕ belongs to E{Mp}(Sn−1) (to E (Mp)(Sn−1)) .
(ii) ∆p

Sn−1ϕ ∈ L2(Sn−1) for all p ∈ N and there are h,C > 0 (for every h > 0
there is C = Ch > 0) such that

(4.3) ‖∆p
Sn−1ϕ‖L2(Sn−1) ≤ Ch−2pM2p.

(iii) There are C, h > 0 (for every h > 0 there is C = Ch > 0) such that

(4.4) ‖ϕj‖Lq(Sn−1) ≤ Ce−M(hj).

Proof. (i)⇒(ii). The proof of this implication is simple. Indeed, suppose that

|∂αϕ�(x)| ≤ Ch−|α|M|α|, for all x ∈ Rn \ {0}.
Since (

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)p
=

∑
α1+···+αn=p

p!

α1!α2! . . . αn!

∂2α1

∂x2α1
1

· · · ∂
2αn

∂x2αn
n

and ∑
α1+···+αn=p

p!

α1!α2! . . . αn!
= np,

the condition (M.1) gives

‖∆p
Sn−1ϕ‖L2(Sn−1) ≤

‖∆p
Sn−1ϕ‖L∞(Sn−1)

|Sn−1| 12
≤ C

|Sn−1| 12
(h/
√
n)−2pMp.

(ii)⇒(iii). Suppose (4.3) holds. The projection of ϕ onto Hj(Sn−1) is

(4.5) ϕj(ω) =
1

|Sn−1|

∫
Sn−1

ϕ(ξ)Zj(ω, ξ)dξ.

We first assume that j ≥ 1. The Laplace-Beltrami operator is self-adjoint [26,
Lemma 1] and each spherical harmonic of degree j, such as Zj(ω, ξ), is an eigenfunc-

tion of ∆Sn−1 with eigenvalue −j(j+n−2). Also, ‖Zj(ω, · )‖L2(Sn−1) =
√
dj|Sn−1| ≤

j
n
2
−1
√
n|Sn−1| (see (2.1) and [3, pp. 79–80]); therefore,

|ϕj(ω)| = 1

jp(j + n− 2)p|Sn−1|

∣∣∣∣∫
Sn−1

(∆pϕ)(ξ)Zj(ω, ξ)dξ

∣∣∣∣
≤ C

√
n

|Sn−1| 12
j−2p+n

2
−1h−2pM2p.

Taking supremum over ω and infimum over p, we conclude that

‖ϕj‖Lq(Sn−1) ≤ |Sn−1|
1
q ‖ϕj‖L∞(Sn−1) ≤ C|Sn−1|

1
q
− 1

2
√
n j

n
2
−1e−M(hj).
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Taking η = n/2− 1 in (4.1), we obtain

‖ϕj‖L2(Sn−1) ≤ C|Sn−1|
1
q
− 1

2
√
n(A/h)

n
2
−1H(n

2
−1)2e−M(jhH1−n/2), j ≥ 1.

For j = 0, using (4.5), we have ‖ϕj‖Lq(Sn−1) ≤ C|Sn−1|
1
q
− 1

2 , thus

‖ϕj‖Lq(Sn−1) ≤ ChCe
−M(jhH1−n/2), j ≥ 0.

with Ch = |Sn−1|
1
q
− 1

2 max{1,
√
n(A/h)

n
2
−1H(n

2
−1)2}.

(iii)⇒(i). Assume now (4.4). In view of (4.5) and (4.1), we may also assume that
q = ∞. We estimate the partial derivatives of ϕ in spherical coordinates. Write
ϕ̃ = ϕ ◦ p and ϕ̃j = ϕj ◦ p. Let α 6= 0. Let r be an integer larger than n/2 + 1. If
we combine the estimate (3.3) with (4.4), we obtain

‖∂αθ ϕ̃j‖L∞(Rn−1) ≤ e
n
4
− 1

2
√
n
(√

2(n+ 1)
)|α|

j|α|+
n
2
−1‖ϕj‖L∞(Sn−1)

≤ C
h−r

j2
e
n
4
− 1

2
√
n
(√

2(n+ 1)/h
)|α|

M|α|+r, j ≥ 1.

Calling Ch = e
n
4
− 1

2h−r
√
nπ2/6, we conclude that

‖∂αθ ϕ̃‖L∞(Rn−1) ≤
∞∑
j=1

‖∂αθ ϕ̃j‖L∞(Rn−1) ≤ Ch

(√
2(n+ 1)/h

)|α|
M|α|+r.

The assumption (M.2)′ implies Mp+r ≤ HrpArH
r(r−1)

2 Mp, so

(4.6) ‖∂αθ ϕ̃‖L∞(Sn−1) ≤ CChA
rH

r(r−1)
2

(
Hr
√

2(n+ 1)/h
)|α|

M|α|.

Setting the north pole at different points of the sphere induces an analytic atlas
of Sn−1 and x → x/|x| is analytic on Rn. As previously mentioned, the conditions
(M.0) ((NA) in the Beurling case), (M.1), and (M.2)′ ensure that pullbacks by an-
alytic functions preserve ∗-ultradifferentiability. So, ϕ ∈ E∗(Sn−1). The inequality
(4.6) and the proof of [14, Prop. 8.1.4] give actually a more accurate result: There
are constants C ′h and `, depending also on the sequence Mp and the dimension n
but not on ϕ, such that

‖∂αSn−1ϕ‖L∞(Sn−1) ≤ CC ′h(`h)−|α|M|α|.

�

The proof of Theorem 4.1 actually yields stronger information than what has
been stated. The canonical topology of E∗(Sn−1) is defined as follows. For each
h > 0, consider the Banach space E{Mp},h(Sn−1) of all smooth functions ϕ on Sn−1

such that the norm

(4.7) ‖ϕ‖h = sup
α∈N

h|α|‖∂αSn−1ϕ‖L∞(Sn−1)

M|α|

is finite. As locally convex spaces, we obtain the (DFS)-space and (FS)-space

E{Mp}(Sn−1) = lim−→
h→0+

E{Mp},h(Sn−1) and E (Mp)(Sn−1) = lim←−
h→∞
E{Mp},h(Sn−1).
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What we have shown is that the family of norms (4.7) is tamely equivalent to the
norms

(4.8) ‖ϕ‖′h = sup
j∈N

eM(hj)‖ϕj‖Lq(Sn−1), h > 0 (1 ≤ q ≤ ∞),

in the sense that there are positive constants ` and L, only depending on the
dimension n, the parameter q, and the weight sequence, such that one can find
Ch > 0 and ch > 0 with

ch‖ · ‖′`h ≤ ‖ · ‖h ≤ Ch‖ · ‖′Lh, for all h > 0.

Working with the family of norms (4.8) is more convenient than (4.7) when dealing
with assertions about spherical harmonic expansions.

Proposition 4.2. Let ϕ ∈ E∗(Sn−1). Then its spherical harmonic series expansion
ϕ =

∑∞
j=0 ϕj converges in (the strong topology of) E∗(Sn−1).

Proof. Let h > 0. Invoking (4.1) with η = 1,

‖ϕ−
k∑
j=0

ϕj‖′h = sup
j>k

eM(hj)‖ϕj‖ ≤
A

kh
‖ϕ‖′Hh, for each k ≥ 1.

�

If we specialize our results to the space of real analytic functions and use the fact
that the associated function of p! is M(t) � t, we obtain the following characteri-
zation of A(Sn−1) = E{p!}(Sn−1).

Corollary 4.3. A sequence of spherical harmonics with ϕj ∈ Hj(Sn−1) gives rise
to a real analytic function ϕ =

∑∞
j=0 ϕj on Sn−1 if and only if

lim sup
j→∞

(
‖ϕj‖Lq(Sn−1)

) 1
j < 1.

Here is another application of the norms (4.8). The space of ultradistributions
E∗′(Sn−1) (of class ∗) on Sn−1 is the strong dual of E∗(Sn−1). When ∗ = {p!}, one
obtains the space of analytic functionals A′(Sn−1) [17]. Given f ∈ E∗′(Sn−1), we
can also define its projection onto Hj(Sn−1) as

fj(ω) =
1

|Sn−1|
〈f(ξ), Zj(ω, ξ)〉,

where the ultradistributional evaluation in the dual pairing is naturally with respect
to the variable ξ. Note that, clearly,

(4.9) 〈fj, ϕ〉 =

∫
Sn−1

fj(ω)ϕ(ω)dω = 〈f, ϕj〉, for each ϕ ∈ E∗(Sn−1).

Theorem 4.4. Every ultradistribution f ∈ E{Mp}′(Sn−1) (f ∈ E (Mp)′(Sn−1)) has
spherical harmonic expansion

(4.10) f =
∞∑
j=0

fj,

where its spherical harmonic projections fj satisfy

(4.11) sup
j∈R

e−M(hj)‖fj‖Lq(Sn−1) <∞ (1 ≤ q ≤ ∞),
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for all h > 0 (for some h > 0). Conversely, a series (4.10) converges in the strong

topology of E{Mp}′(Sn−1) (of E (Mp)′(Sn−1)) if the Lq(Sn−1)-norms of fj have the stated
growth properties.

Proof. Since E∗(Sn−1) are Montel spaces, the strong convergence of (4.10) follows
from its weak convergence, and the latter is a consequence of Proposition 4.2 and
(4.9). For the bound (4.11), the continuity of f implies that for each h > 0 (for
some h > 0) there is a constant Ch such that

|〈f, ϕ〉| ≤ Ch‖ϕ‖′h, for all ϕ ∈ A(Sn−1).

We may assume that j ≥ 1. Considering the case q = 2 of (4.8), taking ϕ(ξ) =
|Sn−1|−1Zj(ω, ξ), and using the inequalities (2.1) and (4.1), one has

‖fj‖Lq(Sn−1) ≤ |Sn−1|
1
q ‖fj‖L∞(Sn−1) ≤ |Sn−1|

1
q
− 1

2Ch
√
nj

n
2
−1eM(hj)

≤ |Sn−1|
1
q
− 1

2Ch(A/h)
n
2
−1
√
neM(jhH

n
2−1).

�

For analytic functionals we have,

Corollary 4.5. A sequence fj ∈ Hj(Sn−1) gives rise to an analytic functional
f =

∑∞
j=0 fj on Sn−1 if and only if

lim sup
j→∞

(
‖fj‖Lq(Sn−1)

) 1
j ≤ 1.

We mention that the strong topologies of the (FS)-space E{Mp}′(Sn−1) and the

(DFS)-space E (Mp)′(Sn−1) can also be induced via the family of norms (4.11) as
the projective and inductive limits of the Banach spaces of ultradistributions f =∑∞

j=0 fj satisfying (4.11).

For each j ∈ N select an orthonormal basis of real spherical harmonics {Yk,j}
dj
k=1

of Hj(Sn−1). It is then clear that every ultradistribution f ∈ E∗′(Sn−1) and every
ϕ ∈ E∗(Sn−1) can be expanded as

(4.12) f =
∞∑
j=0

dj∑
k=1

ck,jYk,j

and

(4.13) ϕ(ω) =
∞∑
j=0

dj∑
k=1

ak,jYk,j(ω),

where the coefficients satisfy

sup
k,j
|ck,j|e−M(hj) <∞

(for each h > 0 in the Roumieu case and for some h > 0 in the Beurling case), and

sup
k,j
|ak,j|eM(hj) <∞

(for some h > 0 or for each h > 0, respectively). Conversely, any series (4.12) and
(4.13) converge in E∗′(Sn−1) and E∗(Sn−1), respectively, if the coefficients have the
stated growth properties. We have used here (4.4), (4.11), and (4.1).
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From here one easily derives that E∗(Sn−1) (and hence E∗′(Sn−1)) is a nuclear
space. We also obtain that {Yk,j} is an absolute Schauder basis [25, p. 340] for both
E∗(Sn−1) and E∗′(Sn−1). We end this section with a remark concerning Theorem
4.1.

Remark 4.6. It is very important to emphasize that Theorem 4.1 is no longer true
without the assumption (M.0).

To see that it is imperative to assume (M.0), we give an example in which the
implication (ii)⇒(i) fails without it. In fact, let Mp be any weight sequence for

which (M.1) and (M.2)′ hold but limp→∞ (Mp/p!)
1
p = 0. (For example, the sequence

Mp = p!s with 0 < s < 1.) We consider ϕ(ω) = Y1(ω1, . . . , ωn) = ω1. This function
is a spherical harmonic of degree 1, and thus it is an eigenfunction for the Laplace-
Beltrami operator corresponding to the eigenvalue −(n− 2). Thus,

‖∆p
Sn−1ϕ‖L2(Sn−1) ≤

np

|Sn−1| 12
and in particular (4.3) is satisfied for Mp. If there would be an h > 0 such that
(4.2) holds with Mp = p!s, we would have for the function

f(t) =
1√

t2 + 1/2

that

‖f (p)‖L∞(R) =
√

2 sup
t∈R
|∂px2ϕ

�(
√

2/2, t, 0, . . . , 0)| ≤ C ′h−pMp, for all p ∈ N,

for some C ′ > 0. But then f would be analytically continuable to the whole C
as an entire function, which is impossible because f has branch singularities at
t = ±i

√
2/2.

On the other hand, note that in establishing the implications (i)⇒(ii)⇒(iii) the
condition (M.0) plays no role because we have only made use there of (M.1) and
(M.2)′.

5. Boundary values of harmonic functions

We now generalize the results from [11] to ultradistributions. We shall charac-
terize all those harmonic functions on the open unit ball Bn that admit ultradistri-
butional boundary values on Sn−1 in terms of their growth near the boundary. Our
characterization applies for sequences satisfying the additional conditions discussed
below.

Let us fix some notation and terminology. We write H(Bn) for the space of all
harmonic functions on Bn. We say that U ∈ H(Bn) has ultradistribution boundary
values in the space E∗′(Sn−1) if there is f ∈ E∗′(Sn−1) such that

(5.1) lim
r→1−

U(rω) = f(ω) in E∗′(Sn−1).

Since E∗′(Sn−1) is Montel, the converge of (5.1) in the strong topology is equivalent
to weak convergence, i.e.,

(5.2) lim
r→1−
〈U(rω), ϕ(ω)〉 = lim

r→1−

∫
Sn−1

U(rω)ϕ(ω)dω = 〈f, ϕ〉,

for each ϕ ∈ E∗(Sn−1).
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We first show that (5.1) holds with U being the Poisson transform of f . For this,
our assumptions are the same as in the previous section, i.e., (M.1), (M.2)′ and
(M.0) ((NA) in the Beurling case). The Poisson kernel of Sn−1 is [3]

(5.3) P (x, ξ) =
1

|Sn−1|
1− |x|2

|x− ξ|n
=

1

|Sn−1|

∞∑
j=0

|x|jZj
(
x

|x|
, ξ

)
, ξ ∈ Sn−1, x ∈ Bn.

Since P is real analytic with respect to ξ, we can define the Poisson transform of
f ∈ E∗′(Sn−1) as

(5.4) P [f ](x) = 〈f(ξ), P (x, ξ)〉, x ∈ Bn.

Clearly, P [f ] ∈ H(Bn) and, by (5.3), P [f ](rω) =
∑∞

j=0 r
jfj(ω).

Proposition 5.1. For each f ∈ E∗′(Sn−1) and ϕ ∈ E∗(Sn−1), we have

(5.5) lim
r→1−

P [f ](rω) = f(ω) in E∗′(Sn−1)

and

(5.6) lim
r→1−

P [ϕ](rω) = ϕ(ω) in E∗(Sn−1).

Proof. Due to the Montel property of these spaces (which also implies they are
reflexive), it is enough to verify weak convergence of the Poisson transform in both
cases in order to prove strong convergence of (5.5) and (5.6). By Theorem 4.4 (or
Theorem 4.1), we have that 〈f, ϕ〉 =

∑∞
j=0〈fj, ϕj〉; Abel’s limit theorem on power

series then yields

lim
r→1−

∫
Sn−1

P [f ](rω)ϕ(ω)dω = lim
r→1−
〈f(ω), P [ϕ](rω)〉 = lim

r→1−

∞∑
j=0

rj〈fj, ϕj〉 = 〈f, ϕ〉.

�

We now deal with the characterization of harmonic functions U that satisfy (5.1).
This characterization is in terms of the associated function of Mp/p!, which we
denote by M∗ as in [15], i.e., the function

M∗(t) = sup
p∈N

log

(
p!tp

Mp

)
for t > 0

and M∗(0) = 0. We need two extra assumptions on the sequence, namely,

(M.1)∗ Mp/p! satisfies (M.1),
(M.2) Mp+q ≤ AHp+qMqMq, p, q ∈ N, for some A,H ≥ 1.

Naturally, (M.1)∗ implies (M.0) and (M.1) while (M.2) is stronger than (M.2)′.
Note that (M.1)∗ delivers essentially two cases. Either (NA) holds or there are

constants such that C1L
p
1p! ≤Mp ≤ C2L

p
2p!. In the latter case we may assume that

Mp = p! as for any such a sequence E{Mp}(Sn−1) = A(Sn−1). When (NA) holds
M∗(t) is finite for all t ∈ [0,∞), whereas Mp = p! gives M∗(t) = 0 for 0 ≤ t ≤ 1
and M∗(t) =∞ for t > 1. In the (NA) case we also have M∗(t) = 0 for t ∈ [0,M1].
The importance of the assumptions (M.1)∗ and (M.2) lies in the ensuing lemma of
Petzsche and Vogt:
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Lemma 5.2 ([20]). Suppose that Mp satisfies (M.1)∗ and (M.2). Then, there are
constants L, ` > 0 such that

inf
y>0

(M∗(1/y) + ty) ≤M(`t) + logL, for all t > 0.

We then have,

Theorem 5.3. Assume Mp satisfies (M.1)∗ and (M.2). Then, a harmonic function

U ∈ H(Bn) admits boundary values in E{Mp}′(Sn−1) (in E (Mp)′(Sn−1)) if and only if
for each h > 0 there is C = Ch > 0 (there are h > 0 and C > 0) such that

(5.7) |U(x)| ≤ CeM
∗( h

1−|x|) for all x ∈ Bn.
In such a case U = P [f ], where f is its boundary ultradistribution given by (5.1).

Proof. Suppose U(x) = P [f ](x) with f ∈ E∗′(Sn−1). Then,

U(rω) =
∞∑
j=0

rjfj(ω).

If ‖fj‖L∞(Sn−1) ≤ CeM(hj), for a fixed h > 0, the inequality (4.1) gives

|U(rω)| ≤
∞∑
j=0

|fj(ω)|rj = C +
A2

h2

∞∑
j=1

1

j2
|fj(ω)|e−M(hj)eM(hH2j)rj

≤ C

(
1 +

A2π2

6h2

)
sup
j∈N

rjeM(hH2j).

Now,

sup
j∈N

rjeM(hH2j) = sup
p∈N

(H2h)p

Mp

sup
j∈N

rjjp

and

sup
j∈N

rjjp ≤
∞∑
j=0

rjjp ≤
∞∑
j=0

(j + p)!

j!
rj =

(
1

1− r

)(p)

=
p!

(1− r)p+1
<

(p+ 1)!

(1− r)p+1
.

Therefore, by (M.2)′,

|U(rω)| ≤ C
A

H3h

(
1 +

A2π2

6h2

)
sup
p

(p+ 1)!(H3h)p+1

Mp+1(1− r)p+1
≤ CChe

M∗
(
H3h
1−r

)
.

Assume now that (5.7) holds for each h > 0 (for some h > 0). Every harmonic
function on Bn can be written as

U(rω) =
∞∑
j=0

rjfj(ω),

with each fj a spherical harmonic of degree j. By Proposition 5.1, it is enough to
check that f =

∑∞
j=0 fj ∈ E∗

′(Sn−1), because in this case U = P [f ] and f would be
the boundary ultradistribution of U . By Theorem 4.4, it is then suffices to verify
that the sequence fj satisfies the bounds (4.11) for each h > 0 (for some h > 0).
Here we use q =∞. Fix h > 0 and assume that (5.7) holds. One clearly has

fj(ω) =
1

rj|Sn−1|

∫
Sn−1

U(rξ)Zj(ω, ξ)dξ.
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When j = 0, we obtain f0 = U(0) and so ‖f0‖L∞(Sn−1) ≤ CeM
∗(h). Keep now j ≥ 1.

Since the zonal harmonic satisfies ‖Zj(·, ξ)‖L∞(Sn−1) = dj ≤ njn−2 [3, p. 80], we
obtain, for all j ≥ 1,

‖fj‖L∞(Sn−1) ≤ Cnjn−2 inf
0<r<1

r−jeM
∗( h

1−r ).

Performing the substitution r = e−y, and using Lemma 5.2 and M∗(t) = 0 for
t ≤M1,

‖fj‖L∞(Sn−1) ≤ CChnj
n−2 exp

(
inf

0<y<∞
M∗ (2h/y) + jy

)
≤ CChLnj

n−2eM(2`hj).

Finally, using the estimate (4.1), we conclude that there is C ′h such that

‖fj‖L∞(Sn−1) ≤ CC ′he
M(2`hj), for each j ∈ N.

�

When Mp = p!, the bound (5.7) holds for any arbitrary harmonic function since
M∗(t) =∞ for t > 1. Hence,

Corollary 5.4. Any harmonic function U ∈ H(Bn) can be written as the Poisson
transform U = P [f ] of an analytic functional f on Sn−1.

Suppose that Mp satisfies (NA). Consider the family of Banach spaces

HMp,h(Bn) = {U ∈ H(Bn) : ‖U‖HMp,h(Bn) = sup
x∈Bn
|U(x)|e−M

∗( h
1−|x| ) <∞}.

We define the Fréchet and (LB) spaces of harmonic functions

H{Mp}(Bn) = lim←−
h→0+

H{Mp},h(Bn) and H(Mp)(Bn) = lim−→
h→∞
H{Mp},h(Bn).

This definition still makes sense for {p!} because for h < 1 we have

sup
x∈Bn
|U(x)|e−M

∗( h
1−|x|) = sup

|x|≤1−h
|U(x)|.

In this case we obtain the space of all harmonic functions H(Bn) = H{p!}(Bn)
with the canonical topology of uniform convergence on compact subsets of Bn. By
Theorem 5.3, the mapping bv(U) = f , with f given by (5.1), provides a linear
isomorphism from H∗(Bn) onto E∗′(Sn−1) if Mp satisfies (M.1)∗ and (M.2). Our
proof given above actually yields a topological result:

Theorem 5.5. Suppose Mp satisfies (M.1)∗ and (M.2). The boundary value map-
ping

bv : H∗(Bn)→ E∗′(Sn−1)

is a topological vector space isomorphism with the Poisson transform

P : E∗′(Sn−1)→ H∗(Bn)

as inverse.

Remark 5.6. Suppose Mp satisfies (M.0) ((NA) in the Beurling case). Theorem 5.5
is valid if one replaces (M.1)∗ by the condition

(M.4) Mp ≤ Lp+1p!M∗
p , p ∈ N, for some L ≥ 1.
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Here M∗
p is the convex regularization of Mp/p!, namely, the sequence

M∗
p = sup

t>0

tp

eM∗(t)
.

In fact, p!M∗
p satisfies (M.1)∗ and, under (M.4), gives rise to the same ultradistri-

bution spaces as Mp. We mention that strong non-quasianalyticity (i.e., Komatsu’s
condition (M.3) [15]) automatically yields (M.4), as was shown by Petzsche [19,
Prop. 1.1]. Furthermore, Petzsche and Vogt [20, Sect. 5] proved under the assump-
tion (M.2) that (M.4) is equivalent to the so-called Rudin condition:

(M.4)′′ max
q≤p

(
Mq

q!

) 1
q

≤ A

(
Mp

p!

) 1
p

, p ∈ N, for some A > 0,

which is itself equivalent to the property that E∗(Sn−1) is inverse closed (cf. [21, 24]).

6. The support of ultradistributions on the sphere

This section is devoted to characterizing the support of non-quasianalytic ul-
tradistributions in terms of (uniform) Abel-Poisson summability of their spherical
harmonic expansions. Our assumptions on the weight sequence are (M.1), (M.2)′,
and non-quasianalyticity [15], that is,

(M.3)′
∞∑
p=1

Mp−1

Mp

<∞.

Note that (NA) is automatically fulfilled because of (M.3)′ [15, Lemma 4.1, p. 56].
To emphasize we are assuming (M.3)′, we write D∗′(Sn−1) = E∗′(Sn−1). By the

Denjoy-Carleman theorem [15], the support of an ultradistribution f ∈ D∗′(Sn−1)
can be defined in the usual way. Since the natural inclusion D′(Sn−1) ⊂ D∗′(Sn−1)
is support preserving, Theorem 6.2 below contains González Vieli’s characterization
of the support of Schwartz distributions on the sphere [13]. The key to the proof
of our generalization is the ensuing lemma about the Poisson kernel. Given a non-
empty closed set K ⊂ Sn−1 and a weight sequence Np, we consider the family of
seminorms

‖ϕ‖E{Np},h(K) = sup
α∈N

h|α|‖∂αSn−1ϕ‖L∞(K)

N|α|
.

Lemma 6.1. Let K1 and K2 be two disjoint non-empty closed subsets of Sn−1.
Write Prω(ξ) = P (rω, ξ), regarded as a function in the variable ξ ∈ Sn−1. Then,
there are two positive constants ` and C, only depending on K1 and K2, such that

‖Prω‖E{p!},`(K2) ≤ C(1− r), for all ω ∈ K1 and
1

2
≤ r < 1.

Proof. For the sake of convenience, we introduce the spherical type distance

d(ω, ξ) = 1− ω · ξ.

Let V ⊂ Sn−1 be open such that K1 ∩ V = ∅ and K2 ⊂ V . Set ρ = d(K1, V ). Note
that if ω ∈ K1 and ξ ∈ V , the term in the denominator of the Poisson kernel,

P (rω, ξ) =
1

|Sn−1|
1− r2

(1− 2rω · ξ + r2)
n
2

,
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can be estimated by using the lower bound

1− 2rω · ξ + r2 = (1− r)2 + 2r(1− ω · ξ) > 2rρ.

We estimate the derivatives of the Poisson kernel in spherical coordinates p(θ)
where the north pole is chosen to be located at an arbitrary point of the sphere.
Keep ω ∈ K1 and 1/2 ≤ r < 1 arbitrary. Let V ′ ⊂ Rn−1 be such that V = p(V ′).
Call m = |α|. Using the estimate (3.6) and the obvious inequality mm ≤ em−1m! ,
we obtain

‖∂αθ (Prω ◦ p)‖L∞(V ′) ≤
1− r2

|Sn−1|

m∑
k=1

(
m

k

)
km−knk

Γ
(
n
2

+ k
)

Γ
(
n
2

) sup
ξ∈V

(2r)k|ω|k

(1− 2rω · ξ) + r2)k+n
2

<
1− r2

(2rρ)
n
2 |Sn−1|

mm

m∑
k=1

(
m

k

)(
1 +

n
2
− 1

k

)k (
n

ρ

)k
<

3e
n
2
−2

2ρ
n
2 |Sn−1|

(1− r)m!

(
e

(
n

ρ
+ 1

))m
= C1(1− r)`−|α|1 |α|!.

Varying the north poles, we can cover K2 by a finite number of open subsets of V ,
each of which parametrized by a system of invertible spherical coordinates. Inverting
the polar coordinates on each of the open sets of this covering with the aid of [14,
Prop. 8.1.4], we deduce that there are `, C > 0, depending only on V , such that

`α‖∂αSn−1Prω‖L∞(K2)

|α|!
≤ C(1− r), for all α ∈ Nn.

This completes the proof of the lemma. �

We are ready to state and prove our last result:

Theorem 6.2. Let f =
∑∞

j=0 fj ∈ D∗
′(Sn−1) and let Ω be an open subset of Sn−1.

If

(6.1) lim
r→1−

∞∑
j=1

rjfj(ω) = lim
r→1

P [f ](rω) = 0

holds uniformly for ω on compact subsets of Ω, then Ω ⊆ Sn−1 \ supp f .
Conversely, (6.1) holds uniformly on any compact subset of Sn−1 \ supp f .

Proof. The first part follows immediately from Proposition 5.1. Indeed, let ϕ ∈
E∗(Sn−1) be an arbitrary test function such that suppϕ ⊂ Ω. Then,

〈f, ϕ〉 = lim
r→1−

∫
Sn−1

P [f ](rω)ϕ(ω)dω = lim
r→1−

∫
suppϕ

P [f ](rω)ϕ(ω)dω = 0,

which gives that f vanishes on Ω.
Conversely, since we have the dense and continuous embeddings E (Mp)(Sn−1) ↪→
E{Mp}(Sn−1) (by Proposition 4.2 the linear span of the spherical harmonics is dense

in both spaces), we have the natural inclusion E{Mp}′(Sn−1)→ E (Mp)′(Sn−1) which is

obviously support preserving. Thus, we may just deal with the case f ∈ E (Mp)′(Sn−1).
Let K1 be closed such that K1 ∩ supp f = ∅. Select a closed subset of the sphere
K2 such that K1 ∩K2 = ∅ and supp f ⊂ intK2. There are then C1 and h > 0 such
that

|〈f, ϕ〉| ≤ C1‖ϕ‖E{Mp},h(K2), for all ϕ ∈ E (Mp)(Sn−1).
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The sequence Mp satisfies (NA), hence, given `, one can find C2 > 0, depending
only on h and `, such that ‖ϕ‖E{Mp},h(K2) ≤ C2‖ϕ‖E{p!},`(K2) for all ϕ ∈ A(Sn−1).
Using this with ϕ = Prω and employing Lemma 6.1,

|P [f ](rω)| = |〈f, Prω〉| ≤ C1C2C(1− r), for all ω ∈ K1 and
1

2
≤ r < 1,

whence (6.1) holds uniformly for ω ∈ K1. �
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