
Automated UML-Based Ontology Generation in
OSLO2

Dieter De Paepe1, Geert Thijs2, Raf Buyle1,
Ruben Verborgh1, and Erik Mannens1

1 IDLab, Department of Electronics and Information Systems, Ghent University – imec
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

{firstname.lastname}@ugent.be
2 Flanders Information

Koningin Maria Hendrikaplein 70, B-9000 Ghent, Belgium
geert.thijs@kb.vlaanderen.be

Abstract. In 2015, Flanders Information started the OSLO2 project,
aimed at easing the exchange of data and increasing the interoperability
of Belgian government services. RDF ontologies were developed to break
apart the government data silos and stimulate data reuse. However, ontol-
ogy design still encounters a number of difficulties. Since domain experts
are generally unfamiliar with RDF, a design process is needed that allows
these experts to efficiently contribute to intermediate ontology prototypes.
We designed the OSLO2 ontologies using UML, a modeling language well
known within the government, as a single source specification. From this
source, the ontology and other relevant documents are generated. This
paper describes the conversion tooling and the pragmatic approaches that
were taken into account in its design. While this tooling is somewhat
focused on the design principles used in the OSLO2 project, it can serve as
the basis for a generic conversion tool. All source code and documentation
are available online.

Keywords: Linked Data, UML, ontology design, RDF generation, OSLO2

1 Introduction

In 2015, the Flemish government started a project to stimulate data reuse
between Belgian governments and improving semantic interoperability between
government services. They initiated the OSLO2 project as a continuation of
OSLO [2], the aim of OSLO2 was to define multiple ontologies to model 4 core
government domains. The project was led by the Flanders Information agency
and involved local, regional, federal, European and private stakeholders in the
process through working groups.

Governments are slowly finding their way to the Semantic Web. Working
with Semantic Web still requires a lot of technical knowledge not familiar to
domain experts. Yet, the input of these domain experts is essential to model
an ontology in line with business requirements. As such it is very important



2 Dieter De Paepe et al.

to either train domain experts or to use more familiar techniques for modeling.
This led us to the decision to use UML, a well known formal modeling language.
The UML model was familiar enough to domain experts to understand it and
provide feedback, while also serving as a source from which both the ontology
and corresponding documentation could be generated.

In this demo, we will demonstrate the tool developed for and used in the
OSLO2 project. This tool is capable of transforming a UML diagram, intended
for communication with stakeholders and domain experts rather than being
modeled specifically for RDF generation, into an ontology. The tool is currently
a command line tool with a focus on the design choices made by Information
Flanders. Nevertheless, it displays great potential and could be extended into a
fully generic tool in future work. All source code is available at https://github.
com/Informatievlaanderen/OSLO-EA-to-RDF.

2 Related Work

Specialized ontology design tools such as Protégé [5] or TopBraid Composer are
well known in the Semantic Web world. Because of their ontology-centered design
method, these tools are powerful in the hands of experienced users but more
obscure for users not familiar with ontologies.

UML3 is a modeling language standardized by the Object Management Group
(OMG). It originally focused on object oriented software engineering, but grew
to cover more uses later on such as interaction or object diagrams. UML can be
serialized to a machine readable format using the XML Metadata Interchange
(XMI) format, also a standard created by the OMG.

UML has been already been investigated as a tool for assisting ontology devel-
opment and has several advantages, mainly related to its adoption [4]. Cranefield
et al. describe the use of XSLT transformations to transform UML represented
in XMI into RDF-XML and supporting Java classes [3]. Stuckenschmidt et al.
describe how UML could be used as a way of visualizing RDF as well as serving
as a basis for generating RDF, again using an XSLT transformation [6]. They
also describe the mismatch between both worlds, most notably the fact that
properties are first class citizens in RDF but not in UML. Lastly, ISO 19150-2
describes how UML from geographical standards can be converted into OWL
ontologies [1].

We see two shortcomings in the approaches described. Firstly, none of them
demonstrate how to integrate existing ontologies in the design. Secondly, they
rely on modeling the UML diagram very close to the RDF model, which will
make the intended structure unfamiliar to domain experts.

3 http://www.omg.org/spec/UML/

https://github.com/Informatievlaanderen/OSLO-EA-to-RDF
https://github.com/Informatievlaanderen/OSLO-EA-to-RDF


Automated UML-Based Ontology Generation in OSLO2 3

3 RDF Transformation

3.1 Source Data Model

Because of its wide usability and simple representation, Flanders Information
uses UML to model their data models. For this, they use Enterprise Architect
(EA)4, a commercial tool with extended UML features. EA uses an internal
database to store the models and has the capability to export XMI.

Despite XMI being a common exchange format for UML, subtle differences
cause information loss when importing this data into other tools, such as the
freely available Visual Paradigm software5. Further difficulties arise when using
XMI, as the XSLT transformations are very sensitive to the exact format of the
source [6]. Lastly, the UML used in previously mentioned papers was mostly
designed with an RDF model in mind, rather than following a data-modeling
centric methodology. These reasons caused us to focus on the EA data model
rather than the XMI format.

EA provides a Java API, giving access to the EA object model6. We found
this API to be lacking in both usability and capabilities. Performance-wise, a
noticeable load time is needed for the library and queries appear to become slower
over time, possibly caused by the ActiveX COM implementation. Furthermore,
the EA object model is not fully available through the API and no developer-
friendly links are available between core classes. Instead, we created our own API
for accessing the EA object model by directly querying the internal database.

3.2 Transforming UML to RDF

ISO 19150-2, Cranefield [3] and Stuckenschmidt [6] all describe similar ways of
transforming UML into an ontology by mapping UML classes to RDF classes
and UML attributes and associations to RDF properties. However, none provide
any guidance for integrating existing terms into the ontology, a vital concept in
the Linked Data world. Also, all seem to assume that the UML diagram will be
created with the RDF model in mind: any UML attribute or association identifies
a unique property, domain and range are determined by the related UML class,
etc. While these assumptions are valid when strictly considering the modeling,
they obstruct a workflow centered around expressive models, as demonstrated in
Figure 1.

In order to support this more pragmatic way of working, we extended the
conversion rules from existing literature with extra customization options. Specif-
ically, we allow the addition or customization of information through the use of
tags that are added to the UML elements. These tags are stored as meta data in
the EA data model. For example, it is possible to add multiple labels to each

4 http://www.sparxsystems.com/products/ea/
5 https://www.visual-paradigm.com
6 http://www.sparxsystems.fr/resources/user-guides/automation/enterprise-
architect-object-model.pdf



4 Dieter De Paepe et al.

Fig. 1. Two UML versions of the same model. On the left as modeled in typical
(non-RDF) contexts. On the right as modeled according to the RDF model.

element, to use a name for the RDF term that differs from the UML name or to
specify the parent property of an association or attribute.

Through a configuration file, users can specify which tags map to which RDF
terms, allowing them to customize the tool to their design needs instead of the
other way around. The tool provides warnings for missing information or possible
errors such as missing labels or multiple elements being mapped to the same
URI. Nevertheless, any warnings can be ignored at the discretion of the user,
giving them full control over the transformation.

A second addition to the tooling comprises the support for existing terms.
In fact, because we were modeling 4 different domains that were reusing terms
among themselves, we identified 3 types of terms being modeled:
In-scope terms Terms defined by ourselves and contained within the package

(ontology) being converted;
Out-of-scope terms Terms defined by ourselves but contained outside the

package being converted;
External terms Terms used in the model but defined in external ontologies.

Each of these types has a different presence in the generated ontology: in-
scope terms require all information to be included, out-of-scope terms do not
require any information to be included and external terms may need to include
some information such as additional translations. Again, this behavior can be
customized using the configuration file.

Lastly, we allow the user to specify an RDF file containing user terms, which
are simply added to the resulting ontology. This can be used to add additional
information about the ontology itself (such as authors, revision date, changelist...)
since this information varies a lot between ontologies and may contain a deeper
linking structure. A complete workflow of the tool is shown in Figure 2.

4 Demonstration

We will demonstrate our tool by converting different UML diagrams of varying
complexity to RDF ontologies. We will focus on the integration with existing



Automated UML-Based Ontology Generation in OSLO2 5

Fig. 2. Workflow of the tool. Starting from a project containing multiple, possibly
interlinking packages, a single package is converted. RDF is generated based on the
UML information, user specified tags present and the configuration. Depending on the
type of the term, different statements are added to the ontology. Out-of-scope terms
are not exported.

ontologies and UML intended for communication with stakeholders. An example
transformation is available online at https://github.com/Informatievlaanderen/
OSLO-EA-to-RDF/blob/v1.0/Example.md.

References

1. Geographic information – ontology – part 2: Rules for developing ontologies in the
web ontology language (owl), https://www.iso.org/standard/57466.html

2. Buyle, R., De Vocht, L., Van Compernolle, M., De Paepe, D., Verborgh, R., Van-
lishout, Z., De Vidts, B., Mechant, P., Mannens, E.: Oslo: Open standards for linked
organizations. In: Proceedings of the International Conference on Electronic Gover-
nance and Open Society: Challenges in Eurasia. pp. 126–134. EGOSE ’16, ACM,
New York, NY, USA (2016), http://doi.acm.org/10.1145/3014087.3014096

3. Cranefield, S.: Uml and the semantic web. In: Proceedings of the First International
Conference on Semantic Web Working. pp. 113–130. CEUR-WS. org (2001)

4. Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J.:
Uml for ontology development. The Knowledge Engineering Review 17(01), 61–64
(2002)

5. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protege-2000. IEEE intelligent systems 16(2),
60–71 (2001)

6. Stuckenschmidt, K.F.M.S.H.: Uml for the semantic web: Transformation-based
approaches. Knowledge Transformation for the Semantic Web 95, 92 (2003)

https://github.com/Informatievlaanderen/OSLO-EA-to-RDF/blob/v1.0/Example.md
https://github.com/Informatievlaanderen/OSLO-EA-to-RDF/blob/v1.0/Example.md
https://www.iso.org/standard/57466.html
http://doi.acm.org/10.1145/3014087.3014096

	Automated UML-Based Ontology Generation in OSLO2 

