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Abstract

The introduction of factor analysis techniques in a speaker diarization system en-
hances its performance by facilitating the use of speaker specific information, by im-
proving the suppression of nuisance factors such as phonetic content, and by facilitating
various forms of adaptation. This paper describes a state-of-the-art iVector-based diariza-
tion system which employs factor analysis and adaptation on all levels. The diarization
modules relevant for this work are: the speaker segmentation which searches for speaker
boundaries and the speaker clustering which aims at grouping speech segments of the
same speaker. The speaker segmentation relies on speaker factors which are extracted
on a frame-by-frame basis using eigenvoices. We incorporate soft voice activity detection
in this extraction process as the speaker change detection should be based on speaker
information only and we want it to disregard the non-speech frames by applying speech
posteriors. Potential speaker boundaries are inserted at positions where rapid changes in
speaker factors are witnessed. By employing Mahalanobis distances, the effect of the pho-
netic content can be further reduced, which results in more accurate speaker boundaries.
This iVector-based segmentation significantly outperforms more common segmentation
methods based on the Bayesian Information Criterion (BIC) or speech activity marks.
The speaker clustering employs two-step Agglomerative Hierarchical Clustering (AHC):
after initial BIC clustering, the second cluster stage is realized by either an iVector
Probabilistic Linear Discriminant Analysis (PLDA) system or Cosine Distance Scoring
(CDS) of extracted speaker factors. The segmentation system is made adaptive on a
file-by-file basis by iterating the diarization process using eigenvoice matrices adapted
(unsupervised) on the output of the previous iteration. Assuming that for most use cases
material similar to the recording in question is readily available, unsupervised domain
adaptation of the speaker clustering is possible as well. We obtain this by expanding the
eigenvoice matrix used during speaker factor extraction for the CDS clustering stage with
a small set of new eigenvoices that, in combination with the initial generic eigenvoices,
models the recurring speakers and acoustic conditions more accurately. Experiments on
the COST278 multilingual broadcast news database show the generation of significantly
more accurate speaker boundaries by using adaptive speaker segmentation which also re-
sults in more accurate clustering. The obtained speaker error rate (SER) can be further
reduced by another 13% relative to 7.4% via domain adaptation of the CDS clustering.

Keywords: speaker diarization, speaker segmentation, iVector, domain adaptation,
factor analysis
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1. Introduction

Speaker diarization systems deal with the “who-spoke-when?” problem. The ob-
jective is to assign a speaker label to every speech segment (sentence). Numerous ap-
plications can benefit from such information. In this work, the ultimate goal is the
semi-automatic creation of subtitles. VRT, the public broadcaster of Flanders, wants to5

speed up this subtitling process by employing speech technology. VRT’s subtitles are
primarily aimed at the hard-of-hearing and deaf. Hence, the subtitles must be of a very
high quality and all spoken language constructs must be correctly converted to compact
written forms. As a result, full automation is not an option yet. The main idea is there-
fore to reduce the manual work by letting the human operator correct the output of an10

automatic system, rather than starting from scratch. A detailed description of the full
subtitle creation work flow can be found in (Verwimp et al., 2016). The output of the
speaker diarization is used to add informative color codes to the generated subtitles and
to profit from speaker adapted models during automatic speech recognition (ASR). We
also note that ASR benefits from the location of the speaker change points as it gives an15

indication to the language model that a new sentence should be started at that place.
Speaker diarization encompasses both speaker segmentation and speaker clustering.

After an initial speech/non-speech detection stage, the segmentation stage splits the con-
tinuous speech segments of the audio stream into homogenous segments with one active
speaker. Next, the clustering stage groups the generated segments into clusters repre-20

senting single speakers. There exist several approaches to speaker diarization such as
Hierarchical Dirichlet Process Hidden Markov Modeling (HDP-HMM) (Fox et al., 2011),
iterative mean shift clustering (Senoussaoui et al., 2014), K-means clustering (Shum
et al., 2011), spectral clustering (Ning et al., 2006), Variational Bayes Expectation Max-
imization Gaussian Mixture Modeling (VBEM-GMM) (Shum et al., 2012), etc. In this25

paper we opt for bottom-up Agglomerative Hierarchical Clustering (AHC) that builds
speaker models based on an initial speaker segmentation and successively merges the
segments until one cluster per speaker remains. This AHC approach is by far the most
popular technique and has proven to consistently achieve state-of-the-art results (Žibert
et al., 2005; Zelenák et al., 2012; Bell et al., 2015).30

We revise the initial segmentation stage because we noticed that inaccuracies in the
boundaries can have a detrimental effect on both the speaker clustering and the speech
recognition that follows. In previous work (Desplanques et al., 2015), we replaced our
conventional speaker segmenter which employed log-likelihood ratios (LLR) and Bayesian
Information Criterion (BIC) distances (Chen and Gopalakrishnan, 1998) in the acoustic35

feature space, by a segmenter that operates in the so-called speaker factor space. This
resulted in enhanced boundary detection because phonetic variability is better suppressed
in the speaker factor space, reducing the chance that phonetic variability is confused with
a speaker transition. This state-of-the-art speaker factor extraction (SFE) method, which
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is described in Section 2.2.1, follows a paradigm that very much resembles the iVector40

paradigm proposed by Dehak et al. (2011). We propose to further enhance the SFE
method by letting it differentiate between true speech frames and frames which belong
to short silences between words or closures in plosives by including a soft voice activity
detection (VAD) pre-processing step. This step generates frame-wise speech posteriors,
and employs these probabilities to suppress the impact of the “nonspeech-like” frames45

on the speaker factors.
Although further improvements in speaker segmentation could be pursued by devel-

oping techniques that exploit prior speaker information retrievable from television show
scripts, the improvements suggested here boil down to a better acoustic analysis that
can also be applied if no script information is available. We will show that the transition50

to more speaker specific models results in substantial improvements for both speaker
segmentation and speaker clustering. The factor analysis techniques use generic speaker
models for both speaker segmentation an clustering as they should be able to discern
between a wide range of speakers. However, after a first pass of the diarization algorithm
more information about the active and relevant speakers is available. We propose to use55

this extra information to retrain the segmentation eigenvoice model. This ensures that
the relevant speakers are modeled more accurately which in turn results in the generation
of more accurate speaker boundaries during a second segmentation pass.

The actual clustering of the segments is performed by the two-step Agglomerative Hi-
erarchical Clustering (AHC) system proposed in (Silovský et al., 2011). In this approach60

an initial BIC clustering stage is followed by iVector Probabilistic Linear Discriminant
Analysis (PLDA) clustering. The iVector PLDA paradigm has shown to deliver state-of-
the-art performance in the related field of speaker recognition (Bansé et al., 2014). In a
way similar to the adaptive segmentation we can enhance the generic speaker clustering
model. Given the subtitling use case, we can assume there are TV shows available that65

are related to the show in question. One option to use such additional information, is
the longitudinal speaker diarization pursued in the recent 2015 Multi-Genre Broadcast
(MGB) Challenge (Bell et al., 2015) where detected speakers were to be linked with
previously broadcasted material of the same show. The approach proposed in this pa-
per is more limited in scope but still allows us to enhance the speaker models based70

on speaker information of earlier episodes. This was achieved by replacing the iVector
PLDA clustering by Cosine Distance Scoring (CDS) of speaker factors extracted by a
generic eigenvoice matrix. Next, a more speaker specific set of eigenvoices based on
earlier episodes is generated. Finally, to model recurring and important speakers more
accurately the eigenvoice matrix is expanded with this extra set of eigenvoices and the75

CDS speaker clustering is re-executed.
The outline of this paper is as follows. The next section covers the use of proven

factor analysis techniques to verify if snippets of speech are uttered by the same speaker
or not. The following section explains how these techniques can be used at various stages
of the speaker diarization in the context of automatic subtitling . Section 4 presents how80

the detected speaker change points can be made more accurate by incorporating voice
activity detection and by exploiting speaker information in an unsupervised way. It
also describes a similar way to apply domain adaptation to the speaker clustering. In
the last section the proposed systems and adaptation techniques are evaluated on the
COST278 multilingual broadcast news data set (Vandecatseye et al., 2004). We evaluate85

the boundary accuracy before and after clustering, discuss the speaker error rate, and
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study the impact of the initial speech/non-speech detection on the speaker diarization.

2. Factor analysis based speaker characterization

A recurring problem in speaker diarization is the verification of the hypothesis that
two sets of acoustic feature vectors Ni and Nj are uttered by one and the same speaker.90

In this work we will rely on two related factor analysis techniques that are predominant in
the domain of speaker verification to extract speaker specific information and to evaluate
this same-speaker hypothesis. The concepts of both approaches will be readily used
throughout the remainder of this work.

2.1. Total Variability approach95

The main idea behind the Total Variability (TV) (Dehak et al., 2011) approach is
that there are different sources of variability between the acoustic frames in each set
(speaker, channel, language, phonetic content, . . . ) and the emphasis during speaker
characterization should be on the variability that is induced by changes of the speaker.
The TV approach aims to describe this total acoustic variability in a low dimensional100

subspace. To that end, a fixed-length iVector is extracted for each set. The iVector
includes information about all sources of variability but should be independent of the
phonetic content encountered in the set. During the Probabilistic Linear Discriminant
Analysis (PLDA) (Kenny, 2010) scoring stage this compact representation is used to
extract and compare the speaker-specific information.105

2.1.1. iVector extraction

The compact representations are estimated from a common Gaussian Mixture Model
(GMM), called the Universal Background Model (UBM) for speech. First, a high-
dimensional supervector mUBM is constructed by concatenating all the mean vectors
of the Gaussians in the speech UBM. Subsequently, to extract the iVector of set N , a
low rank matrix T , called the TV matrix or the iVector extractor, is used to approximate
the GMM mean supervector mN as

mN = mUBM + TxN (1)

where xN is the fixed length iVector that encodes the observed acoustics in a compact
form. The prior distribution of the iVectors is assumed to be a standard normal distri-
bution. By focusing on the shifts of the supervectors, the extracted iVectors should be
largely independent of the phonetic content in set N . The TV matrix is obtained on a110

large data corpus by means of Principal Component Analysis (PCA) initialization (Bur-
get et al., 2007) followed by a number of iterations of the non-simplified Expectation-
Maximization algorithm described by Glembek et al. (2011). The data corpus should
contain a sufficient number of speakers that appear in multiple recordings. By treating
all speaker turns as separate entities, the TV matrix is forced to learn both the within115

speaker variability and the across speaker variability.
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2.1.2. PLDA scoring

Once iVectors of a sufficiently small dimensionality are obtained, a modified PLDA
framework (Kenny, 2010) is used to highlight the speaker-specific components. In a first
step, whitening and length normalization is applied to make the iVectors more Gaussian
distributed (Garcia-Romero and Espy-Wilson, 2011). Then, each normalized iVector xN
is modeled as

xN = µ+ VPLDAyN + εr (2)

where µ is a global offset, VPLDA represents the basis of the speaker-specific subspace
and yN is a MAP point estimate of the latent variable y which is supposed to have
a standard normal distribution. The residual term εr is the nuisance variable which is120

computed with a zero-mean Gaussian with a full covariance matrix Σr.
The same-speaker hypothesis can now be verified by estimating log-likelihood ratio

LLRPLDA(Ni,Nj) = log
p(xNi

,xNj
|Hs)

p(xNi |Hd)p(xNj |Hd)
(3)

where Hs is the hypothesis that the speech in Ni and Nj is uttered by the same speaker,
Hd assumes different speakers. A closed-form solution of the log-likelihood ratio can be
found in (Garcia-Romero and Espy-Wilson, 2011). The higher the ratio, the higher the
likelihood of the same-speaker hypothesis.125

2.2. Eigenvoice approach

Instead of delaying the extraction of the speaker-specific information to the scor-
ing stage, one can extract the speaker-specific information during the estimation of the
fixed-length representation of the acoustic feature vector set. This will enable the use
of a more basic Cosine Distance Scoring (CDS) stage as the nuisance variability is al-130

ready largely suppressed. We call this method the eigenvoice approach (Castaldo et al.,
2008). This more basic approach allows for straightforward adaption strategies as will
be explained in Section 4. The technique might also be more suited to extract low-
dimensional speaker specific information from a very small acoustic feature set N as it
immediately imposes the relevant constraints whereas the iVector approach has to work135

with a higher dimensional intermediate representation of all information. The sliding
window speaker segmentation algorithm described in Section 3.3.1 certainly falls into
this problem category.

2.2.1. speaker factor extraction

The procedure for extracting the speaker factors is similar to the iVector extraction140

described in Section 2.1.1. We also use the same training procedure to construct an
eigenvoice matrix V instead of TV matrix T . However, we want the speaker factors to
react to speaker changes only and not to intra-speaker variability due to changes in the
channel or the background. Thus, during the training of the eigenvoice matrix V we
pool together all turns of a certain speaker into one instance of that speaker, meaning145

that the channel and background variability are incorporated in the speaker model.
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2.2.2. CDS scoring

Tang et al. (2009) claim that intra-speaker variability results in directional scattering
of the corresponding supervectors. So the directions of these supervectors relative to
the UBM supervector deliver more speaker-specific information than the magnitudes.
Cosine Distance Scoring (CDS) exploits this fact via length normalization of the extracted
speaker factor vectors:

CDS(Ni,Nj) = 1−
xNi · xNj

‖xNi
‖‖xNj

‖
(4)

The lower the distance score the higher the likelihood of the same-speaker hypothesis.

3. Speaker diarization for subtitling

The complete speaker diarization work flow intended for automatic subtitle creation150

is depicted in Fig. 1. The speaker diarization system is initialized by a speech/non-
speech module which divides the audio into speech segments of at least 300ms long
interleaved with long non-speech segments (having a length of at least 1 second). The
speaker segmentation is then performed per speech segment whereas the speaker clus-
tering considers all the speaker segments across speech segments in the entire audio155

file. The proposed segmentation into speaker turns is achieved by means of a two-stage
procedure, as explained in (Desplanques et al., 2015; Vandecatseye and Martens, 2003).
The first stage generates boundaries on the basis of a sliding window approach. We
will refer to this process as the boundary generation stage. The second stage eliminates
as many of the false positives as possible on the basis of similarities between adjacent160

segments of variable length as they emerge from the first stage, we call this boundary
elimination. Then, two-stage agglomerative clustering is employed to group the detected
speaker turns into speaker clusters representing single speakers. Recent evaluation on
the 2015 Multi-Genre Broadcast MGB Challenge (Bell et al., 2015) of systems such as
the one described in (Karanasou et al., 2015) has shown that this agglomerative cluster-165

ing approach delivers state-of-the-art diarization results for broadcast media. Finally, an
adaptive language identification strategy determines which speech recognizers to use in
the subsequent stages (Verwimp et al., 2016).

Fig. 1 also includes adaptation schemes for both speaker segmentation and clustering.
A two-pass approach allows for more precise speaker segmentation, whereas domain-170

adapted models help improve the speaker clustering. More details about this adaptation
strategy can be found in Section 4. The following subsections will handle the baseline
diarization modules in more detail.

3.1. Acoustic feature extraction

The diarization system (segmentation and clustering) works on 10ms frames. For
each frame, 16 MFCCs (C1-C16) and a normalized log-energy are computed. The latter
is defined as

logEnrm(t) = logE(t)− logE(t) (5)

It is equal to zero when the log-energy is equal to a running mean log-energy logE(t) and175

positive when it is larger. The running mean is computed by means of a leaky integrator
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Figure 1: The complete speaker diarization process from audio file to annotations for automatic subti-
tling.

with a time constant of 5 seconds. A basic voice activity detection discarding all frames
with a logEnrm(t) < −1 for example results in the removal of all frames with an energy
level that is more than 4.3dB below the running mean energy, and was found to strike
a good balance between retaining most of the speech frames and removing close to all180

inter-word silence frames. A more aggressive configuration with a positive threshold of
0.5 on the other hand only maintains frames with a relatively high energy level, most
likely corresponding with syllable nuclei.

3.2. Speech/non-speech segmentation

The speech/non-speech module detects long non-speech intervals (>1s) that need no185

lexical transcription. These intervals can be discarded in the further processing of the
audio stream. Non-speech intervals can contain music and strong background sounds
such as applause and street noise, so we rely on a model-based approach (Desplanques
and Martens, 2013) to detect these segments.

The sequential modeling is performed by means of a Hidden Markov Model (HMM)190

and the acoustic likelihoods are provided by Gaussian Mixture Models (GMMs) as shown
in Fig. 2. The HMM comprises just one speech state (=S) and one non-speech (=NS)
state and the sequence modeling is controlled by a transition penalty Ps. The S (or
NS) state likelihood at some time is obtained by taking the maximum of the scores
computed by a small set of GMMs representing specific acoustic conditions within the S195

(or NS) category. It utilizes the subcategories broadband speech, telephone band speech,
speech+music and speech+other for state S and the subcategories music and other for
state NS. To reduce the sensitivity of the model-based method to mismatches between
the test and the training data, the acoustic models are MAP-adapted (Reynolds, 1997)
per TV show in a two-pass approach. By increasing the penalty on transitions (lowering200

Ps) one increases the average duration of the S and NS segments being generated, but
there is no absolute minimum segment duration. In order to achieve that, the outputs of
the system are supplied to a post-processor which eliminates speech segments that are
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Figure 2: Speech/non-speech HMM.

shorter than 300ms and non-speech segments that are shorter than 1.0s. These duration
thresholds are chosen to comply with the guidelines given to the annotators of the test205

data.

3.3. Speaker segmentation

This section describes the two-stage procedure that generates a set of potential
speaker change points and then reduces it by local clustering.

3.3.1. Boundary generation210

Each detected speech segment is analyzed for potential speaker changes. Candidate
change points are generated at places of maximum difference between the statistical dis-
tributions of the acoustic vectors in two fixed-length windows to the left and to the right
of the potential boundary. In (Desplanques et al., 2015) we proposed such a boundary
generation method based on eigenvoices as a replacement for a conventional log-likehood215

ratio (LLR) based criterion. The online speaker factor extraction (SFE) produces speaker
factors xt (Section 2.2.1) at time t by considering the frames inside a window of length Te

centered around t (Castaldo et al., 2008). A detection of significant local changes in the
speaker factors is then used to localize potential speaker changes. In order to constrain
the computational load we use GMMs with a low number of mixtures (=32) and a low220

rank eigenvoice matrix V (rank = 20).
To assess the plausibility of having a speaker change at time t, we compare the speaker

factors found at times t− τ and t+ τ and we define ∆xt as ∆xt = xt−τ −xt+τ . Sensible
values for the time difference 2τ (in frames) are values close to or somewhat smaller than
the window length Te used for extracting the speaker factors. On the one hand, the time225

difference 2τ (in frames) should not be much smaller than the window length Te as this
would imply a significant overlap between the windows that give rise to the two speaker
factors being involved. On the other hand, 2τ should also not be too large either, because
we do not want to miss a short speaker turn that could be located in the gap between
the two extraction windows.230

Due to the rather small size of the speaker factor extraction window (Te = 1.0s), the
phonetic content in the extraction window has a significant impact on the extracted xt.
Let us now define a window of length TΣ to the left of t − τ and assume that (a) the
frames in that window stem from the same speaker and (b) the statistics of the speaker
factors in that window are represented by a full-covariance Gaussian distribution with
means µL,t and covariances ΣL,t. Similarly the statistics of the speaker vectors in a
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window of the same length to the right of t+ τ yield means µR,t and covariances ΣR,t.
Under these hypotheses the covariance matrices ΣL and ΣR are expected to model the
phonetic variability within speech of the left and right speaker respectively. The following
distance (the sum of two Mahalanobis distances)

DMAH(t) =
√

∆xTt Σ−1
L,t∆xt +

√
∆xTt Σ−1

R,t∆xt (6)

is then expected to reach a maximum when the changes in xt cannot be explained by
changes in the phonetic content alone. Moreover, since the phonetic variability ΣL(R) is
measured on the test data itself, the approach is presumed to be insensitive to mismatches
between training and test data. This Mahalanobis metric outperforms the more basic
Euclidean metric and cosine distance based scoring (Desplanques et al., 2015).235

To avoid the detection of spurious peaks, DMAH(t) is first smoothed by a moving
average filter that uses a hamming window of length Navg. For each speech segment S
up to Np(S) of the largest peaks are selected in the smoothed pattern. The number of
peaks Np is chosen proportional to the duration T (S) of S:

Np(S) = max(Np,min,
⌈T (S)

Tmasl

⌉
) (7)

Np,min is the minimum number of peaks to detect and Tmasl denotes the minimal average
length of the speaker segments one wants to enforce (e.g. 5 seconds). The introduction
of Np,min allows for turn-taking within very short speech segments. However, these short
speaker turns are rare in the broadcast news domain and the impact of this parameter
negligible. In addition we prevent the system from generating speaker segments that are240

shorter than Tmin (fixed to 1 second).
Note that this general peak detection algorithm can be readily combined with other

distance measures that express the difference in statistical distributions of the acoustic
vectors in the two sliding comparison windows. A frequently used metric in that regard
is the log-likelihood ratio (LLR) verifying the hypothesis of having two speakers versus
one speaker when the data in the comparison window are modeled with a single Gaussian
per speaker:

DLLR(t) = 2 log |ΣL+R| − log |ΣL| − log |ΣR| (8)

with each Σ the Maximum Likelihood (ML) full covariance of the acoustic features in the
left (L), right (R) and merged (L+R) window. A detailed analysis of the DLLR metric
is given by Desplanques et al. (2016).

The peak detection algorithm can also be used in combination with the normalized245

log-energy defined in Eq. (5). High values of logEnrm indicate speech activity. Pauses
between words and sentences on the other hand correspond with troughs in the energy
signal and can be used to insert potential speaker change points as there is a low chance of
incorrectly splitting up words. The peak detection is applied on the smoothed − logEnrm

signal in order to detect the relevant negative peaks.250

3.3.2. Boundary elimination

The operating point of the boundary generation stage is set to maximize the recall at
the cost of a lower precision. The hope is that by performing an agglomerative clustering
of adjacent segments on the basis of the Bayesian Information Criterion (BIC) (Chen and

9



Gopalakrishnan, 1998), it will be possible to reach a working point that is well above the
point with a similar recall/precision trade-off that could be reached with the boundary
generation stage alone. The segmental BIC distance (Stafylakis et al., 2010) between
two segments is given by

∆BIC = (NL +NR) log |ΣL+R|
−NL log |ΣL| −NR log |ΣR| − λP (9)

with N and Σ being the number of frames and the full covariance matrix of the feature
vectors in the considered segment and with P being given by

P =
1

2

(
d+

1

2
d(d+ 1)

)
log

NL ×NR
NL +NR

(10)

where d is the dimension of the feature vectors. Stafylakis et al. (2010) introduced
segmental BIC as a replacement for the local BIC with P ∝ log (NL +NR), in order to
more accurately penalize the parameters of the models with the effective sample size.
Starting from the segment set of the analyzed speech segment, an iterative procedure255

merges the two adjacent segments with the lowest ∆BIC for as long as this value is
negative. Obviously, at every merge, the ∆BIC values of the endpoints of the newly
formed segment have to be updated. The parameter λ in Eq. (9) controls the number of
boundaries that will be eliminated.

3.4. Speaker clustering260

The detected speaker segments are finally clustered using the two-stage Agglomerative
Hierarchical Clustering (AHC) approach proposed by Silovský et al. (2011). Two-stage
speaker clustering systems have proven their efficiency before (Zhu et al., 2005) and the
main idea is to rely on more complex speaker identification methods as the clustering
advances and the clusters contain more acoustic data on average. Each cluster in the265

final output is supposed to encompass all the segments of a particular speaker. The AHC
algorithms do not fix the number of speakers explicitly but merge clusters based on a
series of speaker recognition decisions.

The segments returned by the boundary elimination stage may still be rather short,
and hence the first stage employs robust techniques such as ∆BIC that are known to270

work well even if only a limited amount of frames is available. As few as 30 frames per
segment is possible, which corresponds with the imposed minimum duration of a speech
segment. The agglomerative clustering starts with as many clusters as there are speaker
segments and it gradually merges the two most similar clusters until the ∆BIC distance
between these clusters, defined in Eq. (9), turns out to be positive.275

In the second stage, the segments are longer on average and hence more advanced
techniques can be used. First of all, the second stage clustering discards the frames
with a low logEnrm because the spectral content of these frames (e.g. the closures in
plosives) is frequently dominated by background noise. Second, the acoustic features of
the selected frames are normalized by means of Feature Warping (Pelecanos and Sridha-280

ran, 2001). This technique transforms the individual features via a monotonic non-linear
function so that their distribution over the processed time interval fits the standard nor-
mal distribution. The normalized features are more robust against additive noise and
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channel mismatch. For this work, we apply Feature Warping on all the speech frames in
the clusters returned by the first stage. Whereas the use of a sliding window approach285

is typically advocated as a means to limit the influence of changing noise/channel con-
ditions, we observed that different noise/channel conditions give rise to different “first
stage” clusters anyhow, alleviating the problem altogether. Third, iVector Probabilis-
tic Linear Discriminant Analysis (PLDA) described in Section 2.1 is used to iteratively
merge the BIC clusters on the basis of these normalized feature vectors.290

When the two most similar clusters are being merged during PLDA clustering a new
iVector has to be computed for the new cluster. This is realized by extracting a new
iVector based on the summed up Baum-Welch statistics of the two merged clusters. The
relevant log-likelihood ratios are updated and the clustering process is terminated when
all ratios fall below a predetermined threshold βPLDA.295

We note that speaker recognition saw some recent gains by incorporating Deep Neural
Network (DNN) senone posteriors as a replacement for the UBM posteriors into the
iVector extraction (Kenny et al., 2014). But for now there are no indications yet that this
approach will consistently result in significant improvements for the speaker diarization
task (Sell et al., 2015, 2016).300

3.5. Adaptive language identification

In Flanders foreign speech in international news items is not dubbed but presented
with subtitles. As a result, language recognition (LR) is an indispensable pre-processor
in any computer assisted TV captioning system for a Flemish TV broadcaster.

In (Desplanques et al., 2014), we assume that each speaker (cluster) uses one language305

only and depart from an acoustic language identification system that employs an iVector-
based technique to characterize the speech. However, contrary to common practice, it
does not project all variability in a single Total Variability space, but it utilizes Joint
Factor Analysis (JFA) (Kenny et al., 2007) to separate the language variability from the
speaker variability. In other words, it simultaneously extracts language factors as well310

as speaker factors per speaker. The language classification is implemented by a simple
Gaussian back-end operating on the language factors. To cope with foreign accents and
the everlasting influence of dialect on the standard language the language factors and
the back-end are adapted to the language variants encountered in the audio file that is
being processed. Experiments show reductions of speaker-based error rate by more than315

20% relative by adapting the language variability model. We refer to (Desplanques et al.,
2014) for more details.

4. Proposed adaptive framework for speaker diarization

In this section we propose methods to integrate our factor analysis based speaker
diarization into an adaptive framework. The challenges are again tackled with an eye to320

better and more robust automatic subtitle generation.

4.1. Adaptive speaker segmentation

The eigenvoice model of Section 3.3.1 may be trained on data which may deviate
substantially from the evaluation data. This, in combination with the fact that we use
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low-dimensional models for computational reasons, can result in sub-optimal speaker seg-325

mentation models. The model mismatch can be eliminated by making the segmentation
system adaptive in a two-pass approach. The first and second iteration employ the same
SFE segmentation algorithm but with different UBMs and different eigenvoices. There
are also arguments for choosing a different boundary elimination criterion after adap-
tation. Furthermore, we integrate a soft voice activity module in this adaptive speaker330

segmentation framework so that the speaker change detection is based on speaker infor-
mation only. The adaptive work flow is shown in Fig. 1.

4.1.1. Adaptive soft voice activity detection

We incorporate a soft Voice Activity Detector (VAD) in the speaker factor extrac-
tion of the speaker segmentation to make it differentiate between speech frames and335

non-speech frames, as the non-speech frames are not expected to contribute informa-
tion concerning the speaker identity. We chose to implement the soft VAD using a
simple GMM-based approach (McLaren et al., 2015). This involves the training of a
speech UBM θS and a non-speech UBM θNS on some training data. The speech GMM
is trained on the high-energy frames (logEnrm > −1) found in the speech segments.340

The non-speech training data is created by pooling the low-energy speech frames and
the non-speech frames. Note that the introduction of a voice activity detection (VAD)
has already become common practice in related fields such as speaker recognition and
language recognition. See e.g. (Ferrer et al., 2013, 2015).

The frame-wise speech posteriors generated by the VAD are used to weigh the de-
tected speech frames during the speaker factor extraction. This modifies the intermediate
estimation of the zero- and first-order Baum-Welch statistics (Glembek et al., 2011) to

Nm
X =

∑
ot∈X

p(θS |ot) γ(θS,m|ot) (11)

fmX =
∑
ot∈X

p(θS |ot) γ(θS,m|ot) ot (12)

with γ(θS,m|ot) being the occupation probability of mixture m of the speech GMM and
X being the relevant set of frames for which the speaker factors are extracted. The
speech posterior p(θS |ot) for observation (frame) ot is obtained by combining the speech
and non-speech log-likelihoods log p(ot|θS/NS) with their priors PS/NS as follows:

p(θS |ot) =
pS e

ρ log p(ot|θS)

pS eρ log p(ot|θS) + pNS eρ log p(ot|θNS)
(13)

Factor ρ can be manipulated to calibrate the speech posteriors. For our application the345

impact of ρ is rather limited and it is therefore fixed to ρ = 1.0. We also assume equal
priors for both classes in all experiments.

To optimize the soft VAD in the two-pass system, we retrained both the speech GMM
and the non-speech GMM in the second pass. Similar to the training of the default models
we retrain the speech GMM on the high-energy frames in the speech regions of the file350

and the NS model on the low-energy frames in the speech regions as well as on the frames
in the non-speech regions of the file. The weighted Baum-Welch statistics needed for the
eigenvoice model retraining described in the next section on the other hand are extracted
across all frames of the speech regions belonging to the considered speaker cluster.
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4.1.2. Eigenvoice model retraining355

We use the speaker clusters emerging from the first pass and the retrained GMMs to
create a new eigenvoice model V for the file under analysis and we repeat the segmenta-
tion with the new models. As the eigenvoices now match the speakers in the file well, the
speaker factors are expected to be more robust against phonetic variability. The rank
of the retrained eigenvoice matrix V is either the same as that of the original matrix,360

or it is changed to the number of clusters emerging from the first pass, whichever is the
lowest.

4.1.3. CDS boundary elimination

In (Desplanques et al., 2015) we showed that Cosine Distance Scoring (CDS) outper-
forms BIC in the boundary elimination stage of a speaker segmenter when the eigenvoices365

match the test data well. For each speaker segment s inside a speech segment S we extract
speaker factors xs using the new eigenvoice model and we merge the adjacent segments
exhibiting the lowest cosine distance. The elimination in the second iteration continues
until the lowest CDS value exceeds a predefined threshold αCDS.

4.2. Domain adaptation for speaker clustering370

In our subtitling use case we can assume that there is a small amount of TV shows
available that are related to the show in question. Given our successful attempts to
exploit speaker specific information during speaker segmentation we argue that more
speaker specific models can also benefit the speaker clustering stage. The main idea
is that by dedicating more parameters of the speaker models to relevant and recurring375

speakers one can significantly improve the speaker clustering. We will refer to this adap-
tation process as domain adaptation. Note that initial attempts to only exploit speaker
information inside the considered audio file (similar to the adaptation of the speaker
segmentation) were unsuccessful and only led to an reinforcement of errors made in the
first diarization pass.380

Adaptation of the PLDA parameters has been successfully explored before in speaker
recognition tasks (Garcia-Romero and McCree, 2014). The basic idea is to adapt an exist-
ing resource-rich out-of-domain system by using a small amount of in-domain data. This
could for example be achieved by interpolating between an in-domain PLDA model and
an out-of-domain PLDA model. Even unsupervised adaptation in which the in-domain385

speaker labels were automatically generated still resulted in significant gains (Brummer
et al., 2014). Unsupervised PLDA adaptation was also beneficial for cross-show speaker
diarization (Le Lan et al., 2016) when the complete target corpus with a few hundreds
of speakers was used as adaptation data. However, in our system, we also want to cover
the scenario were only limited amounts of unlabeled in-domain data with few speakers390

and few sessions per speaker are available. In these conditions, adaptation towards an
in-domain PLDA model is expected to be problematic. Therefore, we will fall back on a
more simple but more robust adaptation technique.

4.2.1. CDS eigenvoice clustering

In order to avoid the complex PLDA adaptation, the combination of iVectors and395

PLDA scoring (Total Variability modeling followed by a speaker sensitive distance met-
ric) is replaced by Cosine Distance Scores (CDS) on speaker factors extracted by an eigen-
voice matrix (i.e. more selective features combined with a more generic distance metric).
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Although this could result in a small degradation of the diarization accuracy (Sell and
Garcia-Romero, 2014), the adaptive speaker segmentation already learned us that CDS400

clustering is highly effective when the eigenvoices closely match the test data.
For the CDS-based clustering, we apply the same pre-processing as before: energy-

based frame selection and feature normalization by means of Feature Warping. For each
cluster a speaker factor factor is extracted through an eigenvoices matrix V which models
the speaker variability in a low dimensional subspace. Details concerning the training of405

this eigenvoice matrix are given in the next section. The speaker factors are expected to
reflect the speaker’s characteristics in a compact form, and will serve as input for the CDS.
The cluster algorithm merges the cluster pair with the lowest distance first. After each
merge operation, new speaker factors are extracted for the resulting “merged” cluster.
The cluster algorithm stops when all cluster pair scores exceed the threshold βCDS.410

4.2.2. Expanding the eigenvoice model

To train the UBM and the generic eigenvoice model Vgeneric that covers a broad
range of speakers we use a large but out-of-domain database containing labeled data.
The procedure is identical as described in Section 2.2.1. Thus, during the training we
pool together all speech of a certain speaker. The rank RVg of the eigenvoice matrix415

Vgeneric is set to 100 for our experiments.
For each TV show we can easily obtain some in-domain data by selecting related

broadcasts. This in-domain data contains both speech from key speakers appearing in
several episodes and speech uttered by guest speakers appearing only once. All data
is considered useful since our adaptation scheme primarily wants to learn the charac-420

teristics typical to the specific TV show such as live versus prepared audio, languages
or dialects being spoken, recording and background conditions, etc. Note that by be-
ing more prominently present, key speakers will be better represented in the eigenvoices
and hence the average accuracy on the key speakers will automatically improve. In case
the adaptation data is unlabeled, we use the generic speaker cluster model to generate425

speaker labels. Once the labels are acquired one can train an in-domain eigenvoice model
Vspecific. The rank RVs

of this eigenvoice matrix is either limited to RVg
or the number

of speakers in the adaptation data, whichever is the lowest. Finally, both sets of eigen-
voices are concatenated: V = [Vgeneric, Vspecific], hence combining the specificity of the
in-domain eigenvoices with the robustness and broad coverage of the generic eigenvoices.430

The adaptation process keeps the original UBM unchanged, so that the original Vgeneric

remains meaningful. Note that preliminary experiments with more complex adaptation
schemes which trained a completely new eigenvoice model on the original training data
pooled with the adaptation data did not deliver similar improvements, even when the
adaptation data was weighed more heavily during the training.435

One could argue that in the unsupervised adaptation case (no speaker labels avail-
able), speakers should be linked across TV shows in the in-domain data set. For the
current setup the difference between the number of detected speakers and the effective
number of speakers in the in-domain data is small and the impact is negligible as shown
by our experimental results. But in the case of e.g. call center data with fixed operators440

the number of estimated eigenvoices could get significantly larger than the real number
of speakers and speaker linking across telephone conversations might be recommended.
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5. Experimental conditions

5.1. Training data

The English 1996 HUB4 Broadcast News (Garofolo et al., 1997) training data (66445

hours, 3009 speakers) is the main source for training the various models. This includes
the speech GMM, non-speech GMM and eigenvoice model V needed for the speaker
segmentation. For the clustering, we either train an UBM, Total Variability matrix,
whitening matrix and PLDA model (iVector+PLDA clustering) or an UBM and generic
eigenvoice matrix (CDS clustering on speaker factors). The initial speech/non-speech450

segmentation uses a wider variety of speech and non-speech data sources including music
and telephone data. For a full description of that data, we refer to (Desplanques and
Martens, 2013).

5.2. Evaluation data and experimental setup

The evaluation corpus is the multilingual COST278 corpus1. It is composed of com-455

plete TV news show broadcasts by 16 European TV stations. It covers 9 national and 2
regional languages (Basque, Croatian, Czech, Dutch, Galician, Greek, Hungarian, Por-
tuguese, Slovakian, Slovenian, Spanish). The corpus is divided into 12 sets of about three
hours each: one set per language except for the 6 hours of Slovenian which is divided
into two sets. Each hour of audio contains 55 minutes of speech on average.460

The Belgian Dutch (BE) language set was set aside for parameter tuning and the 11
remaining language sets were used for evaluation. The evaluation data consists of 5997
speaker segments uttered by 2286 speakers. There are 4569 speaker changes within the
continuous speech segments. Please consult (Vandecatseye et al., 2004) and the website
for more details about the corpus.465

5.3. Evaluation measures

For the evaluation of the speaker segmentation the real (correct) and computed
speaker change points are linked to one-another if the gap between both is not larger
than a forgiveness collar. The error margin is set to either 500ms or 1s, depending on
the goal of the performance analysis. The formed links determine the recall (percentage470

of real boundaries mapped to a computed one) and precision (percentage of computed
boundaries mapped to a real one).

The Diarization Error Rate (NIST, 2009) is a popular metric to evaluate the per-
formance of diarization systems. In the case that the systems are initialized by oracle
speech/non-speech marks we only study the relevant Speaker Error Rate (SER) compo-475

nent. This SER is the percentage of frames that are attributed to a wrong speaker given
an optimal mapping between the speaker clusters and the reference annotation. If auto-
matic speech/non-speech is enabled we fall back to the original Diarization Error Rate
(DER). This DER is defined as the sum of a False Alarm (FA) component (percentage
of non-speech detected as speech), Missed Speech (MS) (percentage of speech detected480

as non-speech) and the SER, now relative to the total duration of the file.
Note that with a final goal of building a semi-automatic subtitling tool we slightly

deviate from the NIST standard formulation of the error rates. All error components of

1http://dssp.elis.ugent.be/cost278bn
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the DER are relative to the total duration of the file instead of the cumulative duration of
speech as we want the DER to correlate better with the total time it will take to correct485

the output. For example, a nature documentary can include lots of non-speech sounds
(music, noises,...), and the FA component could undesirably become too dominant in the
NIST formulation of the DER. We also do not allow a forgiveness collar around the real
speaker and speech/non-speech changes as we want the DER to directly reflect if words
could be dropped or assigned to the wrong speaker in the subsequent subtitle generation490

process. However, the annotation protocol specified that at the top level the audio
should be split into speech segments separated by non-speech segments with a duration
of at least 1 second. Shorter non-speech segments should be detected as speech and are
included in the evaluation. The rationale was that this should be achievable by automatic
speech/non-speech segmentation (Desplanques and Martens, 2013) and that subsequent495

processing of the speech segments (e.g. speech recognition) can be made robust against
these short pauses between words and sentences. Finally, we do not include overlapping
speech in our evaluation as this is not specifically annotated in the COST278 evaluation
data set.

6. Experimental results500

In order to separate the contribution of the various components and techniques, we
first evaluate the performance of the techniques when starting from an oracle speech/non-
speech (SNS) annotation. In Section 6.3 we will verify if the conclusions still hold when
the diarization system is initialized with the output of an automatic SNS segmentation
system.505

6.1. Speaker segmentation

First, we discuss the performance of the baseline segmentation systems described
in Section 3.3 and continue with the proposed adaptation framework proposed in Sec-
tion 4.1.

6.1.1. Baseline speaker segmentation510

The speaker segmentation is performed independently for each of the given speech
segments. We compare the speaker segmentation performances of three baseline systems:
(1) minimal logEnrm + BIC-based boundary elimination, (2) baseline LLR boundary
generation + BIC-based boundary elimination and (3) SFE boundary generation + BIC-
based boundary elimination. The boundary generation of the first system looks for515

pauses between words and inserts potential speaker change points at places where the
logEnrm is minimal. The LLR boundary generation of the second system uses overlapping
comparison windows to enhance the accuracy of the detected boundaries. More details
and optimal parameters settings of this LLR system can be found in (Desplanques et al.,
2016). We note that the SFE system uses the soft VAD speaker factor extraction proposed520

in Section 4.1.1. This did not result in significant performance gains in this one-pass
approach.

All speaker segmentation parameters are tuned to get optimal precision-recall (PR)
curves on the development COST278 BE data. The minimum number of selected peaks
per speech segment Np,min is fixed to 3 (if there are that many peaks). We enforce a525
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Figure 3: Precision-recall curves of the proposed speaker segmentation methods on the COST278 test
data. The error margin is set to 500ms, and hence focus is on the accuracy of the position of the
estimated speaker change points.

minimum average length of the generated speaker segments Tmasl of 5 seconds unless
mentioned otherwise and the minimum speaker turn duration Tmin is set to 1 second.
The moving average window length Navg of all systems is fixed to 150 frames. The SFE
boundary generation parameters are: the number of mixtures of the speech/non-speech
GMM (32), the rank R of V (20), the speaker factor extraction window size Te (1.0s),530

the time difference τ (250ms), and the window size TΣ used for estimating ΣL and ΣR in
Eq. (6) (1750ms). All parameters have sensible values given their function described in
Section 3.3.1 and deliver consistent performance across all language sets of the COST278
data set. Note that preliminary experiments on the AMI Meeting Corpus Carletta et al.
(2006) revealed that lower values for Tmasl, TΣ and Navg are recommended for meeting535

data or other domains in which short speaker turns are commonplace, with Tmasl being
the most critical parameter.

The boundary generation (without boundary elimination) performance for all ap-
proaches is evaluated in combination with the peak detection algorithm described in
Section 3.3.1. The parameter Tmasl in Eq. (7) is used to create the precision-recall (PR)540

curves of the systems. The PR curves of the test data are generated for error margins
of 500ms (Fig. 3) and 1000ms (Fig. 4). The more strict 500ms margin curves better
reflect how accurate the positions of the boundaries are, whereas the broad 1000ms mar-
gin curves reveal how many speaker changes are actually detected. The initial and final
points of the speech fragments (speech/non-speech boundaries) are excluded from the545

evaluation because they would always turn out to be correct in our experiment.
Surprisingly, the relatively simple logEnrm boundary generation outperforms the

more complex LLR method for low precision values. This corresponds with low val-
ues of Tmasl and the generation of many short segments. The performance of logEnrm

quickly drops as Tmasl increases. This can be explained by the fact that low values of550

logEnrm coincide with pauses between words including speaker changes, but there is no
reason to assume that pauses between speakers correspond with lower values compared
to the inter-word pauses. Thus potential speaker changes will be incorrectly dropped as
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Figure 4: Precision-recall curves of the proposed speaker segmentation methods on the COST278 test
data. The error margin is set to 1000ms, and hence focus is on whether real speaker change points are
detected or not.

the selection criterion gets more strict. The SFE methods lead to significantly better
located change points than the LLR method and logEnrm as illustrated in Fig. 3.555

The next step is to select optimal operating points on the PR curves of the develop-
ment data to initialize the boundary elimination. We enforce a minimum average length
of the generated speaker segments Tmasl of 5 seconds for all boundary generation sys-
tems except for the logEnrm boundary generation. For the latter we enforce Tmasl = 1s
which will result in over-segmentation that should be handled by the subsequent bound-560

ary elimination. The parameter λ in Eq. (9) is used to create the precision-recall (PR)
curves for the boundary elimination of the one-pass logEnrm, DLLR and DMAH speaker
segmentation systems. The results can again be found in Fig. 3 and Fig. 4.

The over-segmentation of the logEnrm boundary generation does not severely dete-
riorate the subsequent BIC boundary elimination. This causes logEnrm to significantly565

outperform the DLLR method when considering an error margin of 500ms. The more
accurate SFE initialization results in significantly better located change points after
boundary elimination compared to the logEnrm boundary generation.

The final step is to select an operating point on the boundary generation PR curve
to initialize the subsequent speaker clustering. The segmentation parameters that result570

in optimal clustering results and corresponding precision-recall values are presented in
Table 1.

6.1.2. Adaptive speaker segmentation

The results of the two-pass system proposed in Section 4.1 are also presented in Fig. 3
and Fig. 4. The system uses SFE boundary generation in both passes and CDS-based575

boundary elimination in the second pass. The boundary elimination of the second pass
is evaluated for different values of the CDS boundary elimination threshold αCDS. We
evaluate the system with and without the soft VAD during speaker factor extraction. In
the first pass, the system applies PLDA clustering on the output of the BIC boundary
elimination. The clustering parameters are tuned to minimize the SER on the develop-580

ment data, see Section 6.2 for more details. Next, we use a threshold logEnrm(t) > −1
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Table 1: Optimal operating points (boundary Precision and Recall) produced by the different boundary
elimination modules on the COST278 test data.

segmentation
500ms margin 1000ms margin boundary elimination

thresholdP(%) R(%) P(%) R(%)

logEnrm+BIC 52.1 83.0 56.1 89.6 λ = 4.0
DLLR+BIC 49.2 77.5 56.3 89.0 λ = 4.0
DMAH+BIC 57.7 86.1 60.3 90.3 λ = 4.0

2-pass DMAH+CDS (no VAD) 74.3 83.5 78.5 88.4 λ = 4.0, αCDS = 0.5
2-pass DMAH+CDS 78.9 85.5 81.9 89.1 λ = 4.0, αCDS = 0.5

to differentiate between speech and non-speech frames and retrain the soft VAD speech
and non-speech GMMs accordingly. If soft VAD is disabled we simply retrain the GMM
on all frames in the speech regions. Finally, the new eigenvoices are determined on basis
of the output clusters.585

The introduction of speaker-specific eigenvoices in the two-pass system does not only
deliver more accurate estimations of the speaker change points, it also leads to the de-
tection of speaker changes that were initially discarded by the non-adaptive speaker
segmentation. More specifically, the two-pass SFE system outperforms the one-pass SFE
system for high values of the precision corresponding to longer speaker segments on av-590

erage. The higher recall in the high precision operating area is mainly caused by the
fact that CDS boundary elimination is outperforming the BIC clustering of adjacent
speaker segments. This will benefit the global speaker clustering as it will start from
these high precision operating points to enforce more data to build the initial speaker
models for the AHC. The incorporation of adaptive soft VAD during speaker factor ex-595

traction mainly results in the generation of more accurate speaker change points but
also in a small improvement of the number of detected change points for high precision
operating points.

Table 1 shows that the 2-pass approach allows us to select operating points with
comparable recall rates to the one-pass DMAH but with a 20% absolute increase in preci-600

sion. This results in significantly longer detected speaker turns which should benefit the
speaker clustering that follows. The 2-pass system significantly outperforms all speaker
segmentation systems reported in (Žibert et al., 2005).

6.2. Speaker clustering

The next section contains a thorough analysis of agglomerative speaker clustering605

described in Section 3.4, followed by an evaluation of the domain adaptation technique
proposed in Section 4.2.

6.2.1. Baseline speaker clustering

In order to evaluate the actual speaker clustering performance of the different sys-
tems irrespective of the errors made by the speech/non-speech segmentation or speaker610

segmentation, we initially feed the different speaker clustering algorithms the sentence
boundaries given by ground truth annotations. We do not merge subsequent sentences
of the same speaker in the ground truth. This results in a over-segmented initialization
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Figure 5: Speaker clustering performance analysis initialized by oracle speaker segments: Speaker Error
Rate (SER) vs. cluster to speaker ratio for different cluster algorithms on the COST278 test data.

for the cluster algorithms comparable to the automatic speaker segmentation and thus,
in turn, should deliver reliable cluster parameter settings for both scenarios. We com-615

pare five AHC systems: (1) BIC clustering (BIC), (2) CDS of speaker factors (CDS), (3)
iVector PLDA clustering (PLDA), (4) initial BIC clustering followed by CDS of speaker
factors (BIC+CDS) and (5) initial BIC clustering followed by iVector PLDA cluster-
ing (BIC+PLDA). We assess the performance by plotting the achieved SER versus the
ratio of number of estimated speakers by the number of real speakers by varying the620

AHC merger threshold. For BIC, CDS and PLDA clustering this corresponds with the
parameters λ, βCDS and βPLDA respectively. The results are shown in Fig. 5.

All described clustering techniques operate on the original acoustic feature vectors
appended with their ∆-features. The iVector PLDA clustering uses a speech UBM of
256 mixtures and only considers speech frames with logEnrm(t) > 0.5. The ranks of T625

and V are set to 100 and 80 respectively. CDS clustering uses the same speech UBM
and the rank of the eigenvoice matrix is set to 100.

The one-stage clustering algorithms BIC, CDS, and PLDA are able to achieve a
similar optimal SER of about 18%. It is clear however that BIC clustering achieves this
level of performance by merging too many clusters and it therefore underestimates the630

number of speakers. The advanced CDS and PLDA factor analysis techniques on the
other hand are not able to process short speaker segments very well. This is expressed
by the competitive optimal SER, but gross overestimation of number of speakers at that
optimal working point.

Based on this observation, a logical next step is to perform initial BIC clustering with635

a conservative threshold (λ = 6.0) and to apply CDS clustering or PLDA clustering in
a second stage using the BIC clusters as initialization. The results are again depicted
in Fig. 5. This two-stage approach delivers a huge reduction in SER. We see a relative
decrease of 58% resulting in a optimal SER of 7.6% for both BIC+CDS and BIC+PLDA
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Table 2: Speaker clustering performance (Speaker Error Rate, boundary Precision and Recall in per-
centage) after initialization by different speaker segmentation modules and initial BIC clustering.

PLDA clustering CDS clustering

error margin 500ms 1000ms 500ms 1000ms

segmentation SER P R P R SER P R P R

logEnrm 10.1 70.5 82.0 75.5 88.2 10.4 70.3 81.8 75.3 88.0
DLLR 10.3 64.4 76.8 73.5 87.9 10.1 64.8 76.8 74.0 87.9
DMAH 10.0 73.9 85.1 77.2 89.1 9.8 74.0 85.0 77.3 89.0

2-pass DMAH (no VAD) 9.6 78.7 82.7 83.1 87.5 9.2 78.8 83.0 83.3 88.0
2-pass DMAH 9.1 81.9 84.9 85.0 88.6 8.8 82.2 84.8 85.3 88.5

clustering. There is only a slight over-estimation of speakers at the optimal working640

point. The number of clusters by number of speakers ratio is 1.05. The BIC+CDS
clustering obtains an optimal SER of 6.0% when it is initialized with oracle segments
with subsequent sentences of the same speaker already merged. This gives us an upper
limit for the performance we can obtain when the clustering is started with automatically
generated speaker segments.645

We select the cluster parameters by minimizing the SER on the development data
and initialize the clustering with the segmentation outputs. The PLDA cluster thresh-
old βPLDA is set to 2.5, the CDS cluster threshold βCDS is fixed to 0.35. The final results
on the test data are listed in Table 2, together with the boundary precision and recall
after clustering for the two values of the error margin.650

Table 2 shows that an improved segmentation normally results in a reduction of the
SER. This is especially true if the segmentation quality is measured with the more strict
error margin. BIC+PLDA and BIC+CDS clustering deliver competitive results. The
most striking result is that the two-pass system causes a relative drop of the SER by 10%
(from 9.8% to 8.8%). This reduced the absolute performance difference with the oracle655

cluster system with optimal cluster threshold from 3.8% to 2.8%. The integration of soft
VAD in the speaker segmentation module plays a significant role in this performance
gain. Additional Viterbi resegmentation to refine the boundaries returned mixed results:
the LLR-based baseline system showed a small improvement while all other speaker
segmentation systems showed small degradations. The speaker error rates of the CDS660

cluster system per language set of the COST78 data set are shown in Fig. 6. There are
no large discrepancies in performance and we achieve a minimum SER of 4.7% and a
maximum SER of 12% for the GA and SK language sets respectively. Note that the
BE language set is used for parameter tuning which leads to an SER of 4.9%. Using
a subset of each language set for development, Silovský and Prazak (2012) achieved an665

average SER of 11.8% on the BE, CZ, HU, SI, SI2 and SK language sets. Our BIC+CDS
clustering achieves an average SER of 8.6% across the same language sets.

6.2.2. Domain adaptation of eigenvoices

To explore the potential of the domain adaptation described in Section 4.2, each
language set is divided into two equal parts (according to the number of files) in order670

to perform two-fold cross-validation. One part is used to train the in-domain eigenvoices
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Figure 6: BIC+CDS clustering performance on the COST278 data set per language set initialized
with 2-pass speaker segmentation. With and without unsupervised domain adaptation enabled. The *
denotes development data.

while the other subset is used for evaluation. Each language set of the COST278 data
(partially) consists out of episodes from the same news show and hence several key
speakers appear in multiple episodes. We consider two scenarios. In the first scenario, the
speaking time of recurring speakers is divided more or less evenly across both sets, hence675

maximizing the impact of recurring key speakers. In the second scenario we minimize the
amount of recurring key speakers by dividing the speaking time of all recurring speakers
as unevenly as possible across the two sets. This should give us an upper and lower limit
estimation of the performance gains that could be achieved by domain adaptation for
speaker clustering. The optimal split results in 10% of the speakers appearing in both680

sets, which account for 36% of the speaking time. The worst split results in 5% recurring
speakers covering 16% of the speaking time. We refer to these two scenarios as maximum
overlap and minimum overlap.

There are two use cases to be considered for domain adaptation of speaker cluster-
ing. A supervised use case in which speaker labels of the data used for adaptation were685

manually created or auto-generated diarization output was corrected. And unsupervised
domain adaptation in which no extra time was invested in correcting this diarization
output. In the supervised case we use the ground truth speaker labels of the COST278
data. The unsupervised adaptation uses the speaker labels generated by our top per-
forming BIC+CDS clustering initialized with the 2-pass DMAH speaker segments which690

achieved an SER of 8.8%. Fig. 5 shows the initial supervised domain adaptation results
where the speaker clustering starts from oracle speaker segments. The optimal SER
of 7.5% achieved by BIC+CDS clustering drops to 5.9% and 6.4% for the maximum
speaker overlap and the minimum speaker overlap respectively. This corresponds with a
21% (15%) relative error reduction in the best (worst) case. The extra speaker-specific695

eigenvoices clearly help to make a distinction between the speakers inside the domain.
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Table 3: Impact of domain adaptation on the BIC+CDS clustering performance initialized by the 2-pass
speaker segmentation (Speaker Error Rate in percentage) with the four different test setups.

speaker overlap maximal minimal

no-adaptation supervised unsupervised supervised unsupervised

8.8 7.6 7.6 7.8 7.9

Also the ratio between the number of detected speakers and the real number of speakers
at the optimal SER working point is closer to the ideal value of one. A ratio of 1.02 is
achieved with maximum overlap between speakers. The optimal SER of 6.0% achieved by
BIC+CDS clustering initialized with oracle segments where subsequent sentences of the700

same speaker are already merged drops down to 5.0% (5.3%) when domain adaptation
is enabled with maximum (minimum) speaker overlap.

The results of the complete work flow with supervised and unsupervised domain adap-
tation can be found in Table 3. Due to the expanded eigenvoice matrix, the dimension
of the speaker factor vectors increased and a new optimal CDS clustering threshold βCDS705

had to be determined. The threshold is now set to 0.525. In future work more automatic
ways of determining the AHC thresholds might be explored, but for now the manual
tuning of the parameter on a single development language delivers reasonable results in
the broadcast news domain as illustrated by the per language set results shown in Fig. 6.

In case of maximum speaker overlap the SER decreases with 13% relative to 7.6%.710

As seen in the previous experiments, the domain adaptation only degrades slightly with
minimum speaker overlap. There is no significant degradation from using auto-generated
speaker labels instead of the oracle speaker labels. The results show that unsupervised
domain adaptation is a viable approach to enhance speaker clustering.

6.3. Impact of automatic speech/non-speech segmentation715

In this section we revisit the different segmentation methods, but now operating on
speech segments generated by the automatic speech/non-speech segmentation of Sec-
tion 3.2 instead of using the oracle speech/non-speech (SNS) segments. The considered
speaker clustering method is BIC+CDS clustering. The different system configurations
are evaluated using the Diarization Error Rate (DER). This is the sum of the of a speaker720

error, false alarm and missed speech component as explained in Section 5.3. However,
all these error components are relative to the total duration of the audio making a direct
comparison with previously obtained speaker error rates problematic as these were rela-
tive to the total ground truth speech duration. Therefore we introduce a compensated
SER that considers the percentage of frames that are attributed to a wrong speaker rel-725

ative to the duration of ground truth speech that was actually classified as speech. This
approach provides speaker error rates that can be compared directly. The results can be
found in Table 4. The false alarm rate is 0.9% and the missed speech amounts to 1.8%.

We observe identical trends as compared to the systems initialized with oracle SNS
segments. The adaptive speaker segmentation with speaker factors (2-pass DMAH) deliv-730

ers a 13% relative decrease of speaker error rate compared to segmentation based on basic
speech activity marks (logEnrm). Domain adaptation (with maximum speaker overlap
between the sets) results in a further relative decrease in SER of 13%. The compensated
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Table 4: BIC+CDS clustering performance in percentage after initialization by different speaker seg-
mentation modules. Both oracle or auto-generated speech/non-speech annotations are considered. The
compensated SER only considers errors within detected speech that overlaps with ground truth speech.
This enables a fair comparison between the SER of the systems initialized by either oracle or auto-
generated speech/non-speech annotations.

SNS segmentation oracle auto-generated

speaker segmentation SER compensated SER DER

logEnrm 10.4 9.8 11.7
DLLR 10.1 9.6 11.5
DMAH 9.8 9.2 11.1

2-pass DMAH 8.8 8.5 10.5
2-pass DMAH + domain adaptation 7.6 7.4 9.4

SER is slightly lower than the SER obtained with oracle speech/non-speech marks. This
might be caused by the fact that the SNS segmentation mainly misclassifies degraded735

speech that is quite hard to assign to one of the speaker clusters in a correct way. The
amount of false alarm errors which now have to be assigned to a cluster is not large
enough to completely cancel out the positive impact of the more pure speaker clusters.
The results also indicate that the automatic speech/non-speech segmentation is robust
enough to justify the speaker segmentation on a per detected speech segment basis. The740

results per language set of BIC+CDS clustering with domain adaptation can be found
in Fig. 7. The lowest DER of 5.3% is achieved on the GR language set, the worst perfor-
mance with a DER of 13.2% is seen on the SI2 language set. The average DER across
the complete test set is 9.4%.

It is clear that the introduction of factor analysis techniques for speaker diarization745

and related adaptation techniques result in a huge performance gain compared to basic
BIC-based approaches. The latter achieved DERs in the range of 19% to 35% on the
COST278 data (Žibert et al., 2005; Žibert and Mihelič, 2008; Silovský and Prazak, 2012).
Note that we achieve a DER of 20% with DLLR speaker segmentation followed by BIC
speaker clustering (λ = 10.5).750

7. Conclusions

At the heart of every speaker diarization system is a component that decides whether
two speech segments were uttered by the same speaker or by different speakers. To
function optimally, this component must be able to get a good idea of the speaker char-
acteristics with only short speech segments available. This in turn requires effective755

suppression of nuisance factors such as phonetic content, channel and back-ground noise.
Total Variability and eigenvoice subspace approaches characterize variable length speech
segments with compact fixed length vectors and integrate out most of the phonetic con-
tent in the process. This makes them well suited as basic components in a speaker
diarization system.760

In this paper, we investigated the use of these two subspace methods in the various
stages of the speaker diarization process. We compared iVectors –which mainly suppress
variability due to phonetic content and hence require additional techniques such as PLDA
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Figure 7: BIC+CDS clustering performance on the COST278 data set per language set with domain
adaptation (maximum speaker overlap) initialized by the 2-pass speaker segmentation. Both oracle or
auto-generated speech/non-speech annotations are considered. The compensated SER only considers
errors within detected speech that overlaps with ground truth speech. This enables a fair compari-
son between the SER of the systems initialized by either oracle or auto-generated speech/non-speech
annotations. The * denotes development data.

to suppress the remaining nuisance factors– with eigenvoices –a subspace method that
tries to suppress all non speaker related variability in one step. As with most techniques,765

some careful design decisions are needed to get the most out of these techniques.
A first set of design decisions involve the trade-off between the precision with which

speakers can be characterized (the number of components in the supervector and the
number of basis vectors in the subspace method) and the number of frames needed to
accurately estimate the weights. This is reflected in our system in the relatively small770

number of eigenvoices used for speaker change detection in combination with the use of
short length overlapping comparison windows (high time resolution of the speaker change
detection vs. lower precision of the speaker characterization). In the clustering phase
(iVector+PLDA or eigenvoices+CDS), the balancing between precision and amount of
data could be relaxed by inserting an initial ∆BIC clustering stage which increases the775

amount of data available to the subspace method. This approach resulted in a 58%
relative reduction in speaker error rate.

Although that robustness to noisy input and suppression of nuisance factors are con-
sidered a key-characteristic of the subspace methods, it still proved very helpful to take
additional measures such as feature selection and feature normalization. For example,780

removing (hard VAD) or suppressing (soft VAD) frames that are dominated by the
background noise and channel (e.g. inter-word silences or closures in plosives) and hence
provide little to no information concerning the speaker, reduced the speaker error rate.
In the same vain, further suppression of nuisance factors is achieved by feature warping
of the acoustic features to a standard normal distribution. The suppression of nuisance785

factors in eigenvoices during speaker segmentation was incomplete and the change in pho-
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netic content still had an impact on the speaker characterization. However, this source of
variability can be modeled on the test file itself and a Mahalanobis-based distance mea-
sure can be deployed to emphasize changes induced by other sources, e.g. the targeted
speaker change.790

Another important aspect proved to be the specificity of the eigenvoices. Most speak-
ers in the training set are only seen in combination with one or a few background condi-
tions. As a result the eigenvoice speaker model is unable to accurately cover all speak-
ers and background conditions encountered in the test data. By employing a two-pass
speaker diarization approach, the eigenvoice model can be made to fit the test audio much795

better. This adaptation process resulted in significant gains for speaker segmentation. It
also proved to be a viable approach to domain-adaptation for speaker clustering. This
adaptive speaker diarization delivered an speaker error rate of 7.4% on the multilingual
COST278 broadcast news data, compared to 9.2% when no adaptation was applied. It
is clear that factor analysis (subspace) techniques have become an indispensable part800

of speaker diarization approaches and pave the way to new straightforward adaptation
techniques.
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Bansé, D., Doddington, G.R., Garcia-Romero, D., Godfrey, J.J., Greenberg, C.S., Martin, A.F., McCree,
A., Przybocki, M.A., Reynolds, D.A., 2014. Summary and initial results of the 2013-2014 speaker
recognition i-vector machine learning challenge, in: Proc. Interspeech, pp. 368–372.

Bell, P., Gales, M., Hain, T., Kilgour, J., Lanchantin, P., Liu, X., McParland, A., Renals, S., Saz,810

O., Wester, M., Woodland, P., 2015. The MGB challenge: Evaluating multi-genre broadcast media
recognition, in: Proc. ASRU, pp. 687–693.

Brummer, N., McCree, A., Shum, S., Garcia-Romero, D., Vaquero, C., 2014. Unsupervised domain
adaptation for i-vector speaker recognition, in: Odyssey 2014, pp. 260–264.

Burget, L., Matějka, P., Schwarz, P., Glembek, O., Černocký, J., 2007. Analysis of feature extraction815
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