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Preface

Ever since I decided to specialize in computer science engineering, I have been in-

trigued by how people interact with computers and machines. Around the same

time, the first smartphones with only a touchscreen were released and social net-

works like Twi�er and Facebook were breaking through. During my Masters, I

learned that the user experience in applications on a smartphone, or any other

device, is o�en driven by how data is integrated in the front-end and back-end,

and how data is structured ‘behind the scenes’. In my Master thesis, I investigated

how data from social media could be used to add a dynamic, real-time context during

scientific conferences to the more static data contained in digital libraries. The focus

lied on connecting researchers with potentially relevant publications. Key to the

approach was the use of semantic annotations to interlink data sources.

Interlinking data sources with semantics is not only useful for the user experience

but also allows more interoperability between machines. Using the same semantics

between users and machines guarantees (real-world) things are being referred to

uniquely and interpreted correctly. Working with semantic annotations introduces

new challenges and opportunities when it comes to interacting and exploring data.

This is the subject of this PhD.

About six years ago, moments before I defended my Master thesis, my supervisor

at that time, prof. Erik Duval, asked me: “A PhD, wouldn’t you consider it?”. It

wasn’t until I met prof. Erik Mannens, I was finally convinced to ‘go for it’. Prof.

Erik Mannens’ presence alone is motivating and his enthusiasm about the work we

do in the lab is extraordinary. My co-supervisor dr. Ruben Verborgh’s eye for detail

and accurate feedback was extremely important, not only for this dissertation but

for almost all publications we worked on. The opportunity to pursue a PhD prof.

Erik Mannens o�ered me, allowed me to continue the research I started at TUGraz

during my Master thesis with Selver So�ic.

iii



Preface

The research with Selver resulted in a tool for exploring research. The tool focuses

on a use case applying the Web 2.0 to scientific research. We looked into how

well dynamic data sources, like social media or data of “call for papers” can be

brought in line with more static data sources like metadata from academic libraries.

The data source “Conference Linked Data” (COLINDA) that Selver developed, with

information on the calls for papers of many scientific conferences, proved to be very

useful for interlinking this data.

With dr. Christian Beecks from RWTH Aachen, I worked on investigating the role

of heuristics in path-based storytelling, the optimization of link estimation between

facts in a path-based story by increasing the consistency of links between facts.

From the beginning, I had the pleasure to work with Raf Buyle, who showed me

the intricacies on how to get the right people to work together for research on

semantics to be picked-up and embedded into governance. In particular the work

we did for “Open Standards for Linked Organizations” (OSLO), aimed to capture the

fundamental characteristics of information exchange for public administrations on

all levels. OSLO resulted in vocabularies and application profiles for the exchange

of information about people, addresses, organizations and public services. Together

with Mathias Van Compernolle and dr. Peter Mechant from MICT we worked on

several related iMinds and imec projects that put the research on linked data in a

more practical and organizational perspective, especially for public administrations

in Flanders.

Thanks to all my colleagues whom I worked with during the past five years: Davy,

Sam, Hajar, Miel, Tom, Anastasia, Pieter C., Pieter H., Dieter D.W., Dieter D.P., Ruben

T., Ben, Joachim, Doërthe, Martin, Gerald, Sven, Julian and everyone else from IDLab

in the other o�ices. In particular Laura, Ellen and Kristof for supporting us with our

administration and IT practicalities.

To all members of the jury: prof. Patrick De Baets, prof. Peter Lambert, dr. Toon

De Pessemier, dr. Bert Van Nu�elen, and prof. Martin Ebner, I would like to express

my gratitude for thoroughly reviewing the work and results presented in this dis-

sertation. Based on your feedback and questions, I made additional changes and

clarifications to several parts of this book.

Thanks to all the people who worked with me on one or more conference contribu-

tions or other papers, and everyone who I met at conferences or other events where

we discussed linked data, its exploration and so many other subjects.
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Thanks to my friends for sticking around and being sincerely interested in this PhD

that occupied me, but most importantly for regularly distracting me from it.

I would like to thank my family for their support and endless patience, in particular

during the times when I was physically present but my thoughts were not.

My grandparents who always believed in me, but were yet each time extremely

impressed and always so proud on the things I have been doing.

My parents Erik and Véronique, sisters Benedikte and Judith, and my brother Ludo.

Last but not least, my partner Laurence, for being there to support me along the

entire way, ever since we met.

Laurens De Vocht

June 2017,

Gent, Belgium.
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Summary

A�er the launch of the World Wide Web, it became clear that searching documents

on the Web would not be trivial. Well-known engines to search the web, like Google,

focus on search in web documents using keywords. The documents are structured

and indexed to ensure keywords match documents as accurately as possible. How-

ever, searching by keywords does not always su�ice. It is o�en the case that users do

not know exactly how to formulate the search query or which keywords guarantee

retrieving the most relevant documents. Besides that, it occurs that users rather

want to browse information than looking up something specific. It turned out that

there is need for systems that enable more interactivity and facilitate the gradual

refinement of search queries to explore the Web. Users expect more from the Web

because the short keyword-based queries they pose during search, do not su�ice for

all cases.

On top of that, the Web is changing structurally. The Web comprises, apart from

a collection of documents, more and more linked data, pieces of information struc-

tured so they can be processed by machines. The consequently applied semantics

allow users to exactly indicate machines their search intentions. This is made possi-

ble by describing data following controlled vocabularies, concept lists composed by

experts, published uniquely identifiable on the Web. Even so, it is still not trivial to

explore data on the Web. There is a large variety of vocabularies and various data

sources use di�erent terms to identify the same concepts.

This PhD-thesis describes how to e�ectively explore linked data on the Web. The

main focus is on scenarios where users want to discover relationships between re-

sources rather than finding out more about something specific. Searching for a

specific document or piece of information fits in the theoretical framework of infor-

mation retrieval and is associated with exploratory search. Exploratory search goes

beyond ‘looking up something’ when users are seeking more detailed understanding,

xix



Summary

further investigation or navigation of the initial search results. The ideas behind

exploratory search and querying linked data merge when it comes to the way knowl-

edge is represented and indexed by machines – how data is structured and stored

for optimal searchability. �eries and information should be aligned to facilitate

that searches also reveal connections between results. This implies that they take

into account the same semantic entities, relevant at that moment. To realize this, we

research three techniques that are evaluated one by one in an experimental set-up

to assess how well they succeed in their goals. In the end, the techniques are applied

to a practical use case that focuses on forming a bridge between the Web and the

use of digital libraries in scientific research.

Our first technique focuses on the interactive visualization of search results. Linked

data resources can be brought in relation with each other at will. This leads to

complex and diverse graphs structures. Our technique facilitates navigation and

supports a workflow starting from a broad overview on the data and allows nar-

rowing down until the desired level of detail to then broaden again. To validate the

flow, two visualizations where implemented and presented to test-users. The users

judged the usability of the visualizations, how the visualizations fit in the workflow

and to which degree their features seemed useful for the exploration of linked data.

There is a di�erence in the way users interact with resources, visually or textually,

and how resources are represented for machines to be processed by algorithms. This

di�erence complicates bridging the users’ intents and machine executable queries.

It is important to implement this ‘translation’ mechanism to impact the search

as favorable as possible in terms of performance, complexity and accuracy. To do

this, we explain a second technique, that supports such a bridging component. Our

second technique is developed around three features that support the search pro-

cess: looking up, relating and ranking resources. The main goal is to ensure that

resources in the results are as precise and relevant as possible. During the evaluation

of this technique, we did not only look at the precision of the search results but also

investigated how the e�ectiveness of the search evolved while the user executed

certain actions sequentially.

When we speak about finding relationships between resources, it is necessary to

dive deeper in the structure. The graph structure of linked data where the seman-

tics give meaning to the relationships between resources enable the execution of

pathfinding algorithms. The assigned weights and heuristics are base components
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of such algorithms and ultimately define (the order) which resources are included

in a path. These paths explain indirect connections between resources. Our third

technique proposes an algorithm that optimizes the choice of resources in terms of

serendipity. Some optimizations guard the consistence of candidate-paths where the

coherence of consecutive connections is maximized to avoid trivial and too arbitrary

paths. The implementation uses the A* algorithm, the de-facto reference when it

comes to heuristically optimized minimal cost paths. The e�ectiveness of paths was

measured based on common automatic metrics and surveys where the users could

indicate their preference for paths, generated each time in a di�erent way.

Finally, all our techniques are applied to a use case about publications in digital

libraries where they are aligned with information about scientific conferences and

researchers. The application to this use case is a practical example because the

di�erent aspects of exploratory search come together. In fact, the techniques also

evolved from the experiences when implementing the use case. Practical details

about the semantic model are explained and the implementation of the search sys-

tem is clarified module by module. The evaluation positions the result, a prototype

of a tool to explore scientific publications, researchers and conferences next to some

important alternatives.
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Samenva�ing

Na de lancering van het wereldwijde Web werd het duidelijk dat zoeken naar docu-

menten op het Web geen evidentie zou zijn. Met alombekende zoekmachines voor

het Web, zoals Google, kunnen gebruikers met sleutelwoorden zoeken in webdoc-

umenten. Daarvoor worden de documenten zodanig gestructureerd en geïndex-

eerd dat de sleutelwoorden er zo nauwkeurig mogelijke raakpunten mee kunnen

hebben. Het zoeken op sleutelwoorden volstaat echter niet altijd. Vaak is het zo

dat gebruikers niet exact weten hoe ze een zoekopdracht best formuleren of welke

sleutelwoorden ze nodig hebben om relevante documenten kunnen terugvinden.

Daarnaast gebeurt het ook dat gebruikers eerder willen bladeren door informatie

dan iets specifiek opzoeken. Er waren systemen nodig zijn die meer interactiviteit

creëren en het mogelijk maken om geleidelijk aan zoekopdrachten te verfijnen om

het Web te kunnen verkennen. Gebruikers verwachten meer van het Web omdat de

korte sleutelwoord-gebaseerde vragen die ze kunnen stellen tijdens het zoeken, niet

steeds volstaan.

Bovendien is het Web structureel aan het veranderen. Naast een verzameling van

documenten, bestaat het Web steeds meer uit gelinkte data (linked data), stukjes

informatie die zodanig gestructureerd en beschreven zijn dat ze door machines kun-

nen verwerkt worden. De daarvoor toegepaste semantiek laat gebruikers toe om

exact aan machines aan te geven waarnaar ze op zoek zijn. Dit gebeurt door data

te beschrijven met gecontroleerde vocabularia, door experts samengestelde lijsten

van vastgelegde concepten, uniek identificeerbaar op het Web gepubliceerd. Toch is

het daarmee nog niet evident om data via het Web te verkennen. Er is immers een

ruime verscheidenheid aan vocabularia en bronnen gebruiken regelmatig verschil-

lende termen om dezelfde concepten te benoemen.

Deze doctoraatsthesis beschrij� hoe het verkennen van het Web van gelinkte data

te realiseren op een e�ectieve manier. De voornaamste focus ligt op scenario’s waar
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Summary (in Dutch)

gebruikers verbanden tussen zaken (resources) willen ontdekken, eerder dan meer

informatie te weten komen over één iets specifiek. Het zoeken naar één speci-

fiek document of stukje informatie past in het typische theoretische kader van het

‘ophalen van informatie’ (information retrieval) en sluit aan bij verkennend zoeken.

Verkennend zoeken gaat verder dan louter ‘iets opzoeken’ wanneer gebruikers een

diepgaander begrip, verder onderzoek of navigatie van de initiële zoekresultaten

vereisen. De ideeën achter verkennend zoeken en het bevragen van gelinkte data

komen samen wanneer het gaat over hoe kennis wordt voorgesteld en door machines

wordt geïndexeerd – of hoe gegevens gestructureerd en bijgehouden worden met het

oog op optimale doorzoekbaarheid. Om mogelijk te maken dat zoekopdrachten en

vragen die gebruikers stellen ook verbanden tussen resultaten onthullen, moeten

zowel de vraagstelling (query) als de informatie op elkaar afgestemd worden. Dit

betekent dat ze rekening houden met dezelfde semantische entiteiten, die op dat

moment relevant zijn. Om dit te realiseren, worden er drie technieken onderzocht en

één voor één geëvalueerd in een experimentele opstelling om te valideren of ze slagen

in hun opzet. Deze technieken worden uiteindelijk toegepast in een praktische use

case waar een brug wordt geslagen tussen het Web en het gebruik van digitale

bibliotheken in wetenschappelijk onderzoek.

Onze techniek die het eerst besproken wordt gaat over het interactief visualiseren

van zoekresultaten. Bij gelinkte data, kunnen zaken naar believen met elkaar in

relatie worden gebracht. Dit leidt vaak tot complexe, gevarieerde graafstructuren.

Om gebruikers te helpen bij het navigeren, ondersteunt de techniek een workflow

die vertrekt van een ruim overzicht op de data en laat toe om de scope te vernauwen

tot op het gewenste detailniveau en vervolgens terug te verbreden. Om de flow te

valideren werden twee visualisaties geïmplementeerd en voorgesteld aan de gebruik-

ers. De gebruikers beoordeelden de bruikbaarheid van de visualisaties, maar ook hoe

de visualisaties pasten in de workflow en in welke mate hun functionaliteiten nu�ig

bleken bij het verkennen van gelinkte data.

Er is een groot verschil tussen hoe gebruikers zaken te zien krijgen – visueel of

tekstueel – en hoe dezelfde zaken gerepresenteerd worden voor machines om door

algoritmen verwerkt te kunnen worden. Dit verschil maakt het niet evident om

de brug te slaan van de intenties van gebruikers naar vraagstellingen en acties die

een machine kan uitvoeren. Het komt eropaan dit ‘vertaalmechanisme’ zodanig te

implementeren dat de impact op het zoeken zo gunstig mogelijk is zowel wat betre�

performantie, complexiteit als nauwkeurigheid. Om een dergelijke brugcomponent
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te ondersteunen, wordt een tweede techniek onderzocht. Onze tweede techniek is

ontwikkeld rond drie functionaliteiten die het zoekproces ondersteunen: opzoeken

-, in verband brengen - en rangschikken van zaken tijdens het zoeken. Het voor-

naamste doel is ervoor zorgen dat de zaken die in de resultaten voorgesteld worden

aan de gebruiker zo relevant en precies mogelijk zijn. Tijdens de evaluatie van deze

techniek werd er niet alleen gekeken naar de kwaliteit van de zoekresultaten, maar

ook hoe de e�ectiviteit van het zoeken evolueerde terwijl bepaalde gebruiker-acties

stapsgewijs werden uitgevoerd.

Zodra het gaat om het vinden van verbanden tussen zaken, is het nodig om verder

in de structuur te duiken. De graafstructuur van gelinkte data waarbij de semantiek

betekenis gee� aan de relaties tussen zaken maakt het mogelijk om pad-algoritmes

los te laten. De gewichten en heuristieken die worden toegekend en die basis-

componenten zijn van dergelijke algoritmes bepalen uiteindelijk welke zaken al-

dan niet in de paden worden opgenomen. Deze paden verklaren onrechtstreekse

verbanden tussen zaken. Onze derde techniek stelt een basisalgoritme voor die de

keuze van zaken optimaliseert in functie van hun ‘toevalstre�er’-gehalte (serendip-

ity). Enkele optimalisaties waken over de consistentie van kandidaat-paden waarbij

over de samenhang van de opeenvolgende verbanden wordt gewaakt om te triviale

en te willekeurige paden te vermijden. De implementatie maakt gebruik van het

A*-algoritme, de de-facto referentie als het gaat over heuristisch geoptimaliseerde

minimale-kost paden. De e�ectiviteit van de paden werd gemeten op basis van

een aantal gangbare automatische metrieken en aan de hand van surveys waarbij

gebruikers de voorkeur konden aangeven voor paden, die telkens op een andere

manier gegenereerd werden.

Ten slo�e worden onze technieken toegepast in een use case omtrent publicaties in

digitale bibliotheken, waar ze met informatie over wetenschappelijke conferenties

en onderzoekers in verband worden gebracht. De toepassing in deze use case is een

praktisch voorbeeld omdat hier de verschillende aspecten van verkennend zoeken

samenkomen. Verder zorgden de ervaringen met het uitwerken van de use case

ook voor de verdere ontwikkeling van de technieken. Praktische details omtrent

het semantisch model worden uiteengezet en de implementatie van het zoeksys-

teem wordt module per module uitgelegd. De evaluatie plaatst het resultaat, een

prototype van een hulpmiddel om wetenschappelijke publicaties, onderzoekers en

conferenties te verkennen, naast een aantal belangrijke alternatieven.
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Chapter 1

Introduction

I start in the middle of a sentence and

move both directions at once.

—John Coltrane.

The Web as a huge collection of linked documents [2] created new challenges for

information retrieval. To address these challenges, Brin and Page introduced Google

in 1998, the most popular large-scale Web search engine. Google heavily uses the

links present in ‘hypertext’ documents and is designed to automatically crawl and

index the Web e�iciently [4].

In many cases when users search for information, it is very hard to exactly pinpoint

(the document containing) the specific pieces of information they are looking for. In

other cases users rather try to explore information than looking for a specific piece of

information. Hence, users cannot realistically construct their intended search query

correctly at the first a�empt. “Users demand more of Web services, short queries

typed into search boxes are not robust enough to meet all of their demands” [12].

Studies of early hypertext systems distinguished various search strategies and ar-

gued that “defining a hybrid system that guides discovery seems an appropriate

compromise, but involves a number of trade-o� decisions; how deeply the database

is indexed, if some automatic controlled vocabulary is included, and how feedback

is summarized and even forma�ed on the screen a�ect the strategies users will

apply” [13]. Typically, when users formulate search queries to find relevant content

on the Web, they intend to address a single target source that needs to match their

entire query. In cases when users want to discover and explore resources across
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1. Introduction

the Web they o�en need to repeat many sequences of search, check and rephrase

until they have precisely refined their searches. In short, users need a system which

facilitates iteratively refining what they are searching for.

Furthermore, the Web is changing. The Web is no longer only a huge collection

of documents [1], but also more and more linked data [3], a ‘Web of Data’. Linked

data may be represented specifically for machine processing using the “Resource De-

scription Framework” (RDF) [11] besides human-friendly readable representations

in web documents. Linking data instead of documents introduces nevertheless (i)

additional complexity when searching for information; and (ii) enables distributing

search tasks across datasets directly benefiting from a semantic description.

Therefore, this PhD proposes a set of complementary techniques, each addressing a

‘layer’ of the search: (i) focusing on the user interface; (ii) acting as an intermediary;

or (iii) taking care of the actual retrieval. We explain how each technique sup-

ports Web applications in fulfilling exploratory searches e�ectively. This is validated

by measuring the user e�ectiveness, precision of search results, and the impact of

certain features when isolated in terms of performance. The general focus is the

iterative exploration of linked data spread across di�erent data sources on the web.

The generic methods and techniques developed in this PhD thesis find an application

in various areas, among others in scientific research, industry, and media. Some

example applications in each of these sectors:

• Scientific Research. The evolution of the Web enabled a wide range of users

via wikis, blogs and other content publishing platforms to become content

providers. Research data and many publications are publicly available online,

not only via institutional repositories. However, data is o�en being stored in

separate silos, a so-called ‘walled garden’ of platforms and institutional repos-

itories for ‘Science 2.0’. Combining information sources leads to mismatches

between vocabularies and data structures of the di�erent sources [10]. For

example, a linked open data project for the Department of Economy, Science

and Innovation Flanders (EWI), in which we participated, consisted of a use

case on academic library, publications and research project metadata. The use

case focused on the integration of a search and exploration interface for open

data. Users had to interact with the data as graphs. The integrated workflow

consisted of several aligned visualizations and facilitated dealing with such

2



datasets. The project’s outcome resulted in an article for the popular scientific

Dutch EOS magazine in March 2015 [6].

• Industry. Data intensive applications, for example in the pharmaceutical-

industry, involve many partners in the development of a product and benefit

from embedding interactive and exploratory data visualizations in industry

search applications. Typically this data is very well structured or has high

quality meta-data about a variety of aspects, such as the clinical trials, com-

pounds and processes. But it is complex to build systems that integrate and

align this variety of data. We participated in a project named “Semantic �ery

Engine for Life Sciences” (SEQUEL), in cooperation with the company Onto-

force1. The goal was to gain deeper insight into query federation and the join-

ing of (distributed) search results. The project investigated di�erent back-end

storage solutions [8, 9] for Ontoforce’s semantic search platform DisQover2.

DisQover is an exploratory search engine developed for the domain of life

sciences and allows researchers to access and discover biomedical data. This

leads to new insights in medicine and drug development [14]. Until the start

of the project, companies mainly linked their privately held data into their

own, o�en closed, semantic framework (if any at all). However, a multitude of

relevant linked (open) data about drugs, chemicals and medical publications

became available in the meantime. Particular a�ention went to mapping the

technical requirements for implementing such a framework and developing

a reusable and reproducible benchmark. This allowed adapting the query

interface to the latest advances in database technology.

• Media and Entertainment. The media and entertainment sector can benefit

from exploratory search techniques: when recombining data from multime-

dia archives or social media for storytelling, new hidden relations and trends

among existing sources could be discovered. This enables application devel-

opers to design a whole range of interesting and entertaining applications and

visualizations [15]. I participated in the project ‘Towards a sustainable mobile

tourism guide’ [7]. The goal of the research project, consisting of a consortium

of parties from Flanders, was twofold:

(i) to stimulate innovation in the (mobile) tourism sector; and

1http://ontoforce.com
2http://disqover.com
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1. Introduction

(ii) to identify a sustainable solution for developing such innovations.

Particular a�ention went to creating a reusable data model for mobile tourism

guides to obtain data from many data sources. Many digital innovations have

a recurring approach in regard to content production: digitize information

relevant to the application at hand using some form of content management

system and linking this digital content to a mobile application for example.

The process of digitalizing the information and entering it into the content

management system takes a considerable time investment. At the time of

writing, most mobile applications have their own content management system

built custom to the needs of the application itself, thus limiting the reusability

for future applications as well as the reusability of the data inside.

Regardless of the application area, transitioning from traditional web search and

retrieval to exploratory Semantic Web search is challenging [5]. More and more

use cases and scenarios on the Web appear where exploratory search is beneficial.

The additional required e�ort put into pre-processing, generating, interlinking and

maintaining data sources as linked data, improves data re-usability and ensures that

the methods and techniques for exploratory search are applicable to other domains.

Each technique was refined in an applied and experimental se�ing where the set-

up, data and queries were chosen carefully to address certain aspects of exploratory

search (as shown in Figure 1.1): front-end (a), back-end (c), or as bridge in-between

(b).

(a) (b) (c)

Figure 1.1: The techniques address a di�erent level of the exploration: interactive
visualization of search results in the front-end (a); processing queries to bridge front-
end and back-end (b); and retrieving data and finding relationships through path-
based storytelling in the back-end (c).
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This PhD thesis consists of 4 parts and has 9 chapters in total:

• Part I – Fundamentals introduces the core concepts of exploratory search

in Chapter 2 and explains the basics of linked data. The application of query

techniques leads to the research questions. How linked data can be queried

and the relation to exploratory search is outlined in Chapter 3.

• Part II – Techniques investigates three complementary query techniques,

each contributing to exploratory search from a di�erent perspective: user,

machine, and in-between both. Each technique is presented following the

same structure: (i) Introduction; (ii) Architectural Model: conceptual descrip-

tion and specification of the technique; (iii) Implementation: the practical

application of the technique to the Web of data; and (iv) the Evaluation.

Chapter 4 focuses on our technique for interactive search visualization and

investigates how various exploration principles are perceived by users.

Chapter 5 describes our proposed way to bridge the front-end and back-end

of exploratory search.

Chapter 6 studies revealing facts about how search results relate to each other.

Strong emphasis lies on the path-based aspect of our technique, which is a

possibility due to the graph structure of linked data.

• Part III – Use Case focuses on the application of exploratory search in aca-

demic libraries for scientific research. The use case itself is described in Chap-

ter 7 and the implementation combining all three techniques is elaborated on

in Chapter 8.

• Part IV – Conclusions in Chapter 9 reflects on our presented techniques,

and explains how they provide answers to the research questions posed in

Chapter 2.
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Part I

Fundamentals





Chapter 2

Exploratory Search

Exploratory search makes us all pioneers and adventurers

in a new world of information riches awaiting discovery

along with new pitfalls and costs.

—Gary Marchionini.

This chapter starts with a background and theoretic conceptualization of exploratory

search, giving a clear understanding of the term and continues with an overview on

several applications of exploratory search to the Web in a variety of domains, each

with their own focus. It appears that most practical implementations for the Web

are isolated or at least in disarray. This leads to the identification of the research

questions in this doctoral dissertation.

2.1 Background

Before diving into exploratory search and ways to implement it, we take a step back

and look into the term ‘Web search’. Systems developed to search for information

on the Web, the so-called ‘Web search engines’, are popular and visible information

retrieval applications. The goal of these engines can be seen as serving lookup search

tasks, which correspond to a classic model of information retrieval. Figure 2.1 shows

the conceptualization of this kind of retrieval according to Bates [3].

Each search process has a connection with the task that generates it [34]. The

search e�ectiveness is associated with the ‘relevance’ of items in the search, which

expresses how well a certain document matches an information need [35], in other
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document

match

query information
need

document
representation

Figure 2.1: Bates’ look-up based search model [3].

words, handling the search as an information retrieval process [29]. The search

e�ectiveness is expressed as the “degree of relevant retrieved documents in relation

to the total number of retrieved documents (precision) and degree of relevant retrieved

documents in relation to all the documents available (recall)” [28].

Measuring recall and precision when all relevance judgments are available is possi-

ble, especially with a limited sets of documents. The provision of such judgments

rapidly becomes impracticable when the size of the document set increases. This

is particularly the case for the Web: back in 2005 the total number of indexable

documents was estimated at 11.5 billion [12], in 2011 the largest estimated search

index had peaks up to 50 billion web pages [5]. Simulation approaches could be used

to measure performance of web access and search methods [27]. Hence, practically

measuring recall is only possible relative to a sampled or pooled set of documents,

not the Web as a whole [8].

Search tasks and activities are not limited to lookup, many real-life tasks contain

multiple iterations, browsing results, finding relationships and detailed examination

of results. This cannot be captured by Bates model on its own [38]. Marchionini

introduced an extension of Bates’ search model, incorporating the various di�erent

aspects of user-system interaction during exploratory search [20], a simplified ver-

sion is presented in Figure 2.2. Marchionini identified lookup tasks such as known-

item search, navigation, verification and question answering and associated them

exploratory search in two dimensions: learn (comparison, integration, knowledge

acquisition...) and investigate (analysis, accretion, synthesis...). In Part II, Tech-

niques, we refer to methods and actions to support learning and investigation under

the terms relate and expand. Each action corresponds to what Bates defined as “a

move”, each of them “a part of information searching” and “the basic unit of analysis

of search behavior considered” [4]. Following this definition we consider “typing in

a search term formulation" (for lookup) as an action.

An exploration session may start the search from a vague but still goal-oriented
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lookup learn investigate

Exploratory Search

Figure 2.2: Associations between search activities according to Marchionini [20].

defined information need and users are able to refine their need upon the availability

of new information to address it [9]. Task-oriented search scenarios go beyond

retrieving information when a one-time perception of search tasks is neither possible

nor su�icient. Such scenarios typically need further investigation, navigation or un-

derstanding of the search results. This requires that the data is presented first in an

initial overview map that can be used as a starting point for further di�erentiation,

learning and interpretation of the results to achieve a search task’s goal.

Exploratory search represents “... a shi� from the analytic approach of query-to-

document matching to direct guidance at all stages of the information-seeking pro-

cess.” [37], where users can at all stages see immediate impact of their decisions. By

following hyperlinks, users can be�er state and precise their information problem,

and bring it closer to resolution. Exploratory search can describe either the context

that motivates the search or the process by which the search is conducted [20].

Most work about exploratory and semantic search focuses explicitly more on the

front-end or on the back-end. Typically they handle a single or few datasets and

mainly concern preprocessing, structuring or indexing data. In exploratory and

semantic search two aspects are equally important: representation of data for search

and the way exploratory search actually takes place with the data (instead of doc-

uments). Table 2.1 lists related work on exploratory search with key variables, the

core contribution and the datasets used to test the approach.
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2. Exploratory Search

Table 2.1: Existing work on exploratory and semantic search has each it own distinct
focus in terms of key variables, domain and main contribution. The column with test
data sources lists the datasets that were used to evaluate the referenced system.

Reference Year Main Contribution Test Data Sources Key Variables
mSpace [30] 2005 Interactive Faceted Browsing for hyper-

text exploration with the aid of the Se-
mantic Web.

Music Library
Metadata

Interactivity

Sindice [26] 2008 indexing infrastructure with a Web front-
end and API to locate SemanticWeb data
sources such as RDF files and SPARQL
endpoints

web crawler E�iciency,
Index �ality

Hermes [33] 2009 Translating keyword queries to struc-
tured queries based on an integrated
schema of heterogeneous data sources

DBLPa, Freebaseb,
DBpediac, seman-
ticweb.org d

E�iciency,
E�ectiveness

RelFinder [13] 2009 Systematic analysis of relationships in
large knowledge bases

DBpedia Interactivity

Waitelonis et al. [36] 2010 navigate and explore video data enriched
with linked data along guided routes.

DBpedia, Yovistoe

annotated videos
E�ectiveness

SWSE [15] 2011 Distributed keyword - and focus query
processing

web crawler E�iciency

Li [17] 2012 Ranked top-k answers semanticweb.org E�ectiveness
PowerAqua [18] 2012 Ontology-based question answering sys-

tem, exploiting large, distibuted semantic
web resources

DBpedia, 500+
distributed semantic
documentsf

E�ectiveness

Discovery Hub [23] 2013 Faceted search drawing a�ention to ini-
tial query

DBpedia E�iciency

Pinta [10] 2013 Uni-focal semantic browsing interface for
exploratory search through several data
sets linked via domain ontologies.

DBpedia, DBTuneg,
Amazon Reviews

Interactivity,
E�ectiveness

LODMilla [24] 2013 Users can navigate and explore multiple
LOD datasets and they can also save LOD
views and share them with other users

DBpedia, DBLP,
National Hungarian
Data Archiveh.

Interactivity

SemFacet [1] 2016 Theoretical faceted search foundation in
RDF, establish computational complex-
ity, updating faceted interfaces: critical in
the formulation of meaningful queries.

Yagoi E�iciency

Aemoo [25] 2017 Encyclopedic Knowledge Pa�erns (EKPs)
as relevance criteria for selecting, organ-
ising, and visualising knowledge. EKPs
are instantiated by mining Wikipedia fol-
lowing ontology pa�erns.

DBpedia E�ectiveness

ahttp://dblp.uni-trier.de
bhttps://developers.google.com/freebase
chttp://dbpedia.org
dhttp://data.semanticweb.org/
ehttp://www.yovisto.com
fAcross 100+ repositories, which provided around 3GB of metadata.
ghttp://DBTune.org
hContains books, movies, articles. At http://lod.sztaki.hu
ihttp://yago-knowledge.org
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2.1. Background

The related work shows that there are many di�erent approaches to look at ex-

ploratory search with semantic data and the table specifically indicates that each

of these related works focuses on a very specific aspect about exploring (linked)

data. Furthermore, it shows the various aspects and possible datasets/domains of

application. This work is an alternative way explore data, with its own focus on the

visualization of relationships between resources, tested with DBLP, DBpedia, and

data from social media. There is a strong emphasis on e�iciency and e�ectiveness

in the evaluation: both from a user perspective and from an information retrieval

perspective. Rather than focusing on top-k results or faceting, the presented exper-

iments look into the trade-o�s in terms of serendipity while exploring data on the

web.

Semantic Search

Many di�erent concepts and definitions for semantic search exist [7, 11, 16, 39].

The understanding of semantic search in the scope of information retrieval (IR) [6]

di�ers in many aspects from the one in the Semantic Web community [32]. However,

common to all semantic search approaches is the use of a semantic model which in-

cludes describing resources using controlled vocabularies, a query - and a matching

framework.

Hermes [33] translates the keywords into structured queries while our approach tries

to satisfy the user needs by expanding the results using the paths within the con-

nected linked data graphs in the context of the user’s social profile upon which the

user can than expand or refine to context over several iterations. The experimental

user interface requires a special domain knowledge to get useful information. Her-

mes’ core consists of query disambiguation and of distributed query processing. An

alternative is Poweraqua [18, 19], a query answering system which does not assume

that the user has any prior information about the underlying semantic structure or

resources. Relation similarities are determined and triples are linked by expressing

the input query as ontology concepts a�er identifying and mapping the terminology

using a dedicated service.

Instead of working on top of well-structured datasets, web crawling engines for

the semantic web followed hyperlinks through documents whose annotations were

indexed and delivered classical lists as results, for instance SWSE [15] and Sindice

[26]. Other engines added support for top-k queries and allow matching keywords
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within a�ributes and relations in the RDF data to improve scoring functions based

on textual relevancy and relationship popularity [17]. Well-defined SPARQL frag-

ments were identified that can be naturally captured using faceted search as a query

paradigm [1] for the development of SemFacet, a faceted search interface for ex-

ploratory search. In a typical exploratory search session users combine keyword-

based search with visual feedback allowing to extend the search iteratively based

on di�erent aspects, which they can recognize as facets. These facets are similar

through what would be exposed in a faceted search. The idea behind presenting

the results with di�erent facets is to o�er always and at each step an explanation

to foster understanding why certain results are showed, or as Waitelonis described

it: “Exploratory semantic search is based on generic facets, enabling the user to

be�er refine and broaden search queries and to provide content-based recommen-

dations” [36].

Interactive Search

The mSpace framework and architecture is a platform to deploy lightweight Se-

mantic Web applications where foreground associative interaction is one of first

such interfaces [30] and linked data is not presented as a list or a graph but in

parallel tabs. Other related work emphasized more the aspect of the relationship

exploration. As noted by Heim et al. interactive exploration is only possible with a

human involved, since only a user can judge whether a found relationship is relevant

in a certain situation or not. In their work they presented an approach for the

interactive discovery of relationships between selected elements via the Semantic

Web [14] and implemented the RelFinder [13] as a proof-of-concept. Another re-

lated graph exploration tool that maximally exploits the linkedness of linked data is

LODMilla [24].

The resources users discover along the paths among resources encountered during

search is becoming ‘a destination’ on its own. Waitelonis et al., who investigated

the analysis and cleansing of linked data resources on structural, semantical level

because they found publicly available linked datasets o�en did not meet quality

requirements, concluded [36]: “by harnessing the meaning of content associative,

faceted, and exploratory search interfaces can be developed providing high quality

search results (by means of recall and precision) ... shi�ing to an exploratory ap-

proach, web search is becoming a quest for knowledge, guiding the user along new

pathways to serendipitous findings”.
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The Discovery Hub, an exploratory search system supporting faceted browsing of

search results, enables the exploratory search tasks by drawing a�ention to resources

and associations that convey a lot of knowledge regarding the users’ initial interest

and leverages linked data richness to explore topics of interest over DBpedia through

several perspectives [22, 23].

A study on an exploratory semantic browser applied to the musical domain, Pinta, in-

dicated that semantic facets support exploratory search and facilitate serendipitous

learning and confirmed that the overview of a knowledge structure presented with

classification level tags is beneficial for the success of analytical tasks [10]. Aemoo

was implemented leveraging ontology pa�erns for data exploration and integrated

data coming from heterogeneous data sources [25].

2.2 Principles

Exploratory search covers a broader class of tasks than typical information retrieval

where new information is sought in a bounded conceptual area rather than having

a specific goal in mind. The users’ demand to discover data across a variety of

sources at once, requires searching facilities adaptive to their adjustments while

they discover the data that were just put at their disposal.

In general exploratory search describes either the problem context that motivates

the search or the process by which the search is conducted [20]. This means that

the users start from a vague but still goal-oriented defined information need and are

able to refine their need upon the availability of new information to address it, with

a mix of keyword look-up, expanding or rearranging the search context, filtering

and analysis. Such queries will start simple but become more complicated as users

get more and more familiar with the data a�er a while. The resolution of vague or

complex information problems requires exploratory behaviors, for instance: multiple

publishers providing resources. During exploratory search and analysis, it is likely

that the problem context becomes be�er understood, allowing the searchers to make

more informed decisions about interaction or information use [38].

Rather than a�empting a direct search and then immediately jumping to the (final)

result, the observed advantages of searching by taking small steps include that it

allowed users to specify less of their information need and provided a context in

which to understand their results [31]. During exploratory searches, it is likely
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2. Exploratory Search

that the problem context becomes be�er understood, allowing users to make more

informed decisions about interaction or information use [38].

Aula and Russel made a distinction between complex and exploratory search tasks [2]:

“... exploratory search may sometimes be complex, but is not necessarily so, and is

characterized more accurately by the degree of clarity the searcher has about the

goal. Complex search tasks o�en include exploring the topic, but do not necessarily

require exploration or may require exploration only in certain phases of the search

process.” They suggested that complex search tasks with an unclear initial goal are

the ones where current search tools do not o�er su�icient support. From a system

survey on linked data exploration systems [21], it was observed that massive use

of linked data based exploratory search functionalities and systems constitutes an

improvement for the evolving web search experience and this tendency is enhanced

by the observation that users are ge�ing more and more familiar with structured

data in search through the major search engines.

2.3 Research �estions and Hypotheses

We investigate how users explore information and gain insights through applica-

tions that enable them to interact with distributed heterogeneous data sources. The

following questions are addressed for a�aining a set of techniques for exploratory

search:

RQ1 Can exploratory search e�iciently and adequately address the user’s intent when

revealing relationships between resources?

RQ2 To what degree do users’ search actions influence the relevance and precision of

search results?

RQ3 How does a justification of the presented results influence the user’s certainty in

ge�ing closer to achieving the search goal?

RQ4 How do users gradually refine a search query by interacting with its search re-

sults?

It is relevant to measure if and how well agreeing on semantics proves to be useful in

tackling these issues. Our approach and evaluation illustrates how to apply semantic

paradigms for search, exploration and querying.
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2.3. Research �estions and Hypotheses

The research questions induce the following hypotheses:

HYP1 Interaction with the result set makes the information contained in the initial

search query more specific, leading to more and more specific queries, tar-

geted towards the search goal.

HYP2 When exploring the data, indications such as facets, visualizations (charts,

graphs etc.) reduce the number of steps to achieve a search goal.

HYP3 The way search results are ordered a�ects the precision but does not a�ect the

search process, for example in terms of the number of steps needed to reach

the search goal.

The research questions and hypotheses posed here are addressed in the following

chapters.

• Chapter 4: RQ2, RQ4 and HYP2.

• Chapter 5: RQ1, RQ4, HYP1 and HYP3.

• Chapter 6: RQ1 and RQ3.

• Chapter 8: all research questions and hypotheses, applied to the use case on

research exploration explained in Chapter 7.
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Chapter 3

Linked Data on the Web

We’re entering a new world in which data may be more

important than so�ware.

—Tim O’Reilly.

This chapter summarizes the key concepts behind linked data and in particular

querying linked data. We sketch briefly the origin and give a clear definition of

each concept.

3.1 The Semantic Web

One of the main motivations behind the Semantic Web, a vision of Tim Berners-Lee

et al. [3, 4] was bootstrapping a web of intelligent machines. The machines are so�-

ware agents which carry out sophisticated tasks such as intelligent search. Several

definitions were examined to capture the essence of ‘agent’ in a formal definition to

allow a clear distinction between a so�ware agent and an arbitrary program [15].

Note though that the ‘intelligent agents’ intended in this context for example do not

try to do everything for a user or as Hendler posed it with a travel agent analogy: “...

the agents would find possible ways to meet user needs and o�er the user choices for

their achievement; much as a travel agent might give you a list of several flights to

take, or a choice of flying as opposed to taking a train, a Web agent could o�er

several possible ways to get you what you need on the Web” [19]. He claimed

that this vision on intelligent agents “is quite compelling and many people now (in

2001, author’s note) believe they (intelligent agents, author’s note) will be necessary
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if we are ever to tame the increasing complexities caused by the accelerating and

virtually uncontrolled growth of the World Wide Web” [20]. The semantic web and

its data described following semantic models provides a huge “global database” for

knowledge based applications. It a�empts to adapt information access by addressing

both users and machines.

Open World versus Closed World Assumption

There are two ways to treat databases: following an ‘open world’ or a ‘closed world’

assumption. This distinction was introduced by Reiter [23]: “... the open world

assumption, assumes only the information given in the database and hence requires

all facts, both positive and negative, to be explicitly represented; under the open

world assumption, –gaps– in one’s knowledge about the domain are permi�ed”.

To derive a negative fact from a database under the closed world assumption, one

a�empts to prove the positive fact true; if one fails to prove the positive fact, then

the negative data is assumed to be true [22].

Plurality and contradictions cannot be excluded on the semantic web. A database

traditionally presents one view on the ‘truth’, while the semantic web may have

multiple possible worlds, where each world represent a view in which one truth is

represented. This is because the semantic web, as a global database, has an open

world assumption. Two of the most essential semantic web building blocks explicitly

declared this [9]:

(i) the Resource Description Framework (RDF): “RDF is an open-world framework

that allows anyone to make statements about any resource; in general, it is not

assumed that complete information about any resource is available”1.

(ii) the Web Ontology Language (OWL): “OWL makes an open world assumption;

that is, descriptions of resources are not confined to a single file or scope;

while class C1 may be defined originally in ontology O1, it can be extended

in other ontologies ... new information cannot retract previous information;

new information can be contradictory, but facts and entailments can only be

added, never deleted.”2

1https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
2https://www.w3.org/TR/owl-guide/
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3.1. The Semantic Web

Resources

The term ‘resource’ has been mentioned in the previous chapters. The term was first

introduced to refer to special pages and content within a webpage3, more specifically

the destination of a Uniform Resource Locator (URL), for example: someone’s con-

tact information page. Later, the definition was extended to any piece of information

that can be pointed at4, not only web pages, such as the geo-location of an address.

The W3C Web Architecture5 distinguishes between two types of resources:

(i) Information resources6: things that may have a digital representation (on

the web) such as data, web-services, ontologies, and documents.

(ii) Non-information resources7: things, concepts and events that do not have

a representation on a machine but where their description might have (e.g.

in a document). For example: a meeting report is a document (information

resource) but the meeting itself is a non-information resource.

Unique Identification of Resources on the Web

Data on the Web represented as linked data are uniquely identified by a string of

characters, a Universal Resource indicator (URI). A URI is a formal way to refer to

a resource. The most well-known form of a URI is a URL, which can be seen as

equivalent to an address for a webpage. The World Wide Web Consortium (W3C)

best practices for linked data8 expect that URIs follow the hypertext transfer protocol

(HTTP) protocol9. URIs should be resolvable, to be able to retrieve the content

they refer to. This happens either by answering to the URI directly or by following

redirects. Unique identification of resources enables interaction with their represen-

tations on the Web.

According to W3C guidelines for so-called “cool URIs for the Semantic Web” it is

important that URIs make a distinction between “a thing (which may exist outside

3RFC3986. https://tools.ietf.org/html/rfc3986
4RFC3987. https://tools.ietf.org/html/rfc3987
5https://www.w3.org/TR/webarch/
6https://www.w3.org/TR/webarch/#id-resources
7https://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/HttpRange-14#

iddiv193805720
8https://www.w3.org/TR/ld-bp/#HTTP-URIS
9RFC2616, https://www.ietf.org/rfc/rfc2616
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the web) and a web document describing the thing”10. This corresponds to the two

types of resources: non-information and information resources.

Resource Description Framework

The Resource Description Framework (RDF) [21] is a graph based representation

of linked data instances. It is a method for conceptual description or modeling of

information on the Web11. Around 2000, when RDF was slowly gaining popularity, it

had to compete with XML as technology for interoperability. The main motivation

behind RDF was the notion that “XML and RDF are the current standards for es-

tablishing semantic interoperability on the Web, but XML addresses only document

structure; RDF be�er facilitates interoperation because it provides a data model that

can be extended to address sophisticated ontology representation techniques” [10].

The base unit of expression in RDF is a ‘triple’: a statement containing subject, pred-

icate and object. For example: Tim Berners-Lee, birthPlace, London; meaning literally

as stated, Tim Berners-Lee’s birthplace (is) London. Essentially, every component

that is a subject or a predicate is a URI, such as dbo:birthPlace. The advantage is

that every subject and predicate can be uniquely identified on the Web. Objects can

be a URI but also literally represented. Furthermore every request to a URI may

result in more triples, thus more RDF data in one of its representations. Triples may

be extended with a name (also a URI) of the graph they belong to, each statement

then consists of four elements: subject, predicate, object and graph; this is called a

‘quad’.

RDF has multiple representations recommended by the W3C. The representations

either support RDF datasets with a single unnamed graph (triples) or multiple named

graphs (quads).

The following representations focus on triples:

• RDF/XML: an XML syntax for RDF;

• N-Triples: N-Triples is a line-based, plain text format for encoding an (single)

RDF graph12;

10https://www.w3.org/TR/cooluris/#distinguishing
11https://www.w3.org/TR/rdf-syntax-grammar/
12https://www.w3.org/TR/n-triples
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• Turtle: a superset of N-Triples and a common syntax allowing RDF graphs to

be wri�en in a compact and natural text form. Even though RDF is mainly

intended for machine interoperability, the popularity of Turtle is mainly due

to the human-friendly and easy-to-read syntax13.

Some representations support ‘named graphs’, sets of RDF triples grouped in one or

more graphs identified by a URI, rather than a default graph without a name:

• JSON-LD: a JSON-based serialization14;

• N-�ads: as a superset of N-Triples, N-�ads is also a line-based represen-

tation format but it adds support for datasets consisting of multiple graphs15;

• TriG: a textual syntax for RDF allowing an RDF dataset to be completely

wri�en in a compact and natural text form, with abbreviations for common

usage pa�erns and datatypes16. TriG is an extension of Turtle.

RDF can be embedded in HTML:

• Interleaved: RDFa is an addition to HTML to support the enrichment of

documents with RDF triples17;

• Appended: Inside an HTML script-tag RDF content may be included. For

example, JSON-LD by se�ing the script type a�ribute to application/ld+json
18.

Vocabularies, Ontologies

The strict definition of a vocabulary is a ‘set or list of words’. The term vocabulary

is o�en used in exchange with the term ontology. The distinction is subtle:

• Vocabulary: Building blocks to model data, reusable concepts and properties.

• Ontology: A set of concepts and their relationships.

13https://www.w3.org/TR/turtle
14https://www.w3.org/TR/json-ld
15https://www.w3.org/TR/n-quads/
16https://www.w3.org/TR/trig/
17https://www.w3.org/TR/html-rdfa/
18https://www.w3.org/TR/json-ld/#embedding-json-ld-in-html-documents
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The term vocabulary occurs mostly in less formal contexts while the term ontology

occurs mostly in complex and formal context. However, according to W3C there is

“no clear division”19 between vocabulary and ontology.

Certain ontologies are well-known and o�en reused:

• RDFS: RDF Schema20, base vocabulary to describe other vocabularies;

• OWL: The Web Ontology Language21. A family of knowledge representation

languages. Concepts for detailed vocabularies with strict constraints;

• SKOS: Simple Knowledge Organization System22 Organization of concepts

and hierarchies, taxonomies;

• Dublin Core: Common meta-data terms.

• Schema.org: A common set of schemas for structured data markup on a web

page23. In practice the schemas are being used for a wider variety of purposes.

Linked Data

Linked Data is a method of publishing structured data so that it can be interlinked

and become more meaningful. It builds on standard Web technologies like HTTP

and RDF. It does not primarily serve documents and pages for human readers, it

shares machine-readable pieces of information. This enables data from di�erent

sources to be connected and queried. The developments around linked data lead to

the exposure of large amounts of data on the Web eligible for automated processing

in so�ware agents [5].

Linked Data follows the principles, as issued by a note of Tim Berners-Lee24:

• Use URIs as names for things

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL)

19https://www.w3.org/standards/semanticweb/ontology
20https://www.w3.org/TR/rdf-schema/
21https://www.w3.org/TR/owl-features/
22https://www.w3.org/TR/skos-reference/
23http://schema.org
24https://www.w3.org/DesignIssues/LinkedData.html
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• Include links to other URIs. so that they can discover more things.

In the same note he also stated that “the Semantic Web is not just about pu�ing

data on the web; it is about making links, so that a person or machine can explore

the web of data. With linked data, when you have some of it, you can find other,

related, data.” Linked data can be seen as many RDF statements, a combination

of triples, forming a graph on web-scale. The smallest unit there being the URI,

uniquely identifying nodes and edges.

From Structured and Unstructured Data to Linked Data

Most data is not available as linked data by default. Even though tools exist to

integrate data from distributed heterogeneous sources and convert them to Linked

Data, the process as a whole remains complicated [11].

Structured data is typically available in relational databases as tables or spread-

sheets. To make this data available in RDF we use two types of processes, Predefined

(static) annotations using the API of the resource provider to load the information

from the data repository and dynamic mapping between the ontology and the data

repository, such as with a tool like D2RQ [6] or Ontop [8] in case of relational

databases, or the RDF Mapping Language (RML) [11] for heterogeneous mappings.

Unstructured data can be converted into structured data using natural language

processing techniques, mainly named entity recognition. The quality of the entity

recognition is influenced by the richness of the ontology [12]. Some important

Named Entity Recognition/Linked Data systems are: GATE25, DBpedia Spotlight26,

Alchemy27, or Apache Stanbol28. They are increasingly applied to automatically

generate structured data (entities) from unstructured resources such as Web sites,

documents or social media. Each of the tools has their own strengths and weak-

nesses in regard to the type of extracted named entities and in terms of provided

specific (and precise) results given a ground truth “golden standard” established by

a test panel [24].

25http://gate.ac.uk
26http://spotlight.dbpedia.org
27http://www.alchemyapi.com
28http://stanbol.apache.org
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3.2 �ery Execution

Selecting specific data from an RDF dataset is done via the SPARQL protocol and

query language, a W3C recommendation [18]. SPARQL as a query language defines

fixed keywords, like other query languages, to select, insert, update or delete data.

SPARQL as a protocol defines an API for querying RDF datasets over HTTP. An RDF

dataset may be exposed on the Web via a SPARQL endpoint. A SPARQL endpoint is

a web service allowing the execution of queries sent by client applications through

HTTP.

Basic Graph Pa�erns

A SPARQL query’s main composition unit is the ‘basic graph pa�ern’ (BGP). Each

BGP consists of one or more triple pa�erns. Each pa�ern can have one or more

variables in its components (subject, predicate and/or object). It is the task of the

query engine to find solutions that bind to the variables occurring in the BGPs.

For example the query in Listing 3.1 asks to select triples matching the outcome of

Napoleon’s commanded wars with the number of casualies and results in the response

in Listing 3.1.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>

SELECT ?war ?outcome ?casualties
WHERE {

?war dbo:result ?outcome .
?war dbo:commander dbr:Napoleon .
?war dbp:casualties ?casualties

}

Listing 3.1: Example SPARQL query about the outcomes and casualties of ba�les
with Napoleon as commander.

SPARQL �ery Processing

To be able to respond to a SPARQL query, the query engine interprets the query

using SPARQL algebra29, similar as to SQL engines translate SQL queries to SQL

algebra. Each query is being translated to a tree-structure. A SPARQL engine, like

Jena ARQ30, will iterate over this tree to resolve the query. Each engine will have its

29https://www.w3.org/TR/sparql11-query/#sparqlQuery
30https://jena.apache.org/documentation/query
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Table 3.1: Results matching the SPARQL SELECT query about Napleon’s com-
manded wars, their outcomes and casualties.

war outcome casualties
dbr:Ba�le_of_Waterloo Decisive Coalition victory Total: 41,000* 24,000 to

26,000 killed, wounded in-
cluding 6,000 to 7,000 cap-
tured* 15,000 missing

dbr:Ba�le_of_Craonne French victory 5400
dbr:Ba�le_of_Eckmuhl French victory 12000
dbr:Ba�le_of_Landshut_(1809) French victory 9000
dbr:Ulm_Campaign Decisive French victory 2000
dbr:Ba�le_of_Borghe�o French victory 500
(... 283 results)

own strategy to do this. ARQ, for example, visits the nodes one by one, executing any

operations if necessary. Before query processing, engines might tweak and optimize

the algebraic structure of the tree for be�er query performance [25].

Basic operations. The tree in Figure 3.1 represents the SPARQL algebra for the

example in Listing 3.1. There are five operations in this tree: triple, bgp, pre-
fix, project and base. There are more operations in SPARQL, we refer the reader

therefore to literature. A good starting point is the W3C recommended SPARQL

specification31.

base <h�p://example/base/>prefix

dbo: <h�p://dbpedia.org/ontology/>

dbp: <h�p://dbpedia.org/property/>

dbr: <h�p://dbpedia.org/resource/>

project

?war ?outcome ?casualties

bgp

triple ?war dbo:result ?outcome

triple ?war dbo:commander dbr:Napoleon

triple ?war dbp:casualties ?casualties

Figure 3.1: SPARQL Algebra for the example in listing 3.1 with a single BGP consist-
ing of two triple pa�erns.

The triple operation retrieves the matching triples for this node. This operation can

only be a leaf, because it can have no children. It takes subject, predicate and object

as a�ributes. The prefix operation resolves prefixes within the graph and the base
operation sets the domain in the response for all results that have relative URIs.

31https://www.w3.org/TR/sparql11-query/#sparqlQuery
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The project operation binds the results to the requested variables, in this case ?war,

?outcome and ?casualties.

An operation that may have one or more children is bgp. A bgp will join the un-

derlying results of its children. In the example case, it are the triples matching the

triple pa�erns. When unsure whether the military conflict (?war) has information

about the number of casualties, it might be interesting to include the OPTIONAL

keyword, as shown in Listing 3.2. The OPTIONAL keyword indicates that a certain

BGP is optional.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>

SELECT ?war ?outcome ?casualties
WHERE {

?war dbo:result ?outcome .
?war dbo:commander dbr:Napoleon .
OPTIONAL { ?war dbp:casualties ?casualties }

}

Listing 3.2: Making the casualty count optional.

Le�join. Translating the query in Listing 3.2 to SPARQL algebra introduces a

le�join (shown in Figure 3.2) of the two BGPs instead of a single BGP operation.

le�join

bgp
triple ?war dbo:result ?outcome

triple ?war dbo:commander dbr:Napoleon

bgptriple ?war dbp:casualties ?casualties

Figure 3.2: SPARQL Algebra for the example in Listing 3.2 with OPTIONAL state-
ment introduces a le�join of two BGPs. The base, prefix and project operation are
not shown here for clarity, but they remain una�ected.

The di�erence between the bgp and the le�join is that the bgp will traverse all

underlying triple pa�ern matches and ‘tie’ them together based on co-occurring

variables. In the example ?war occurs in both cases. This means that any result a�er

the bgp operation will have to occur as subject in the triple pa�erns of dbo:result,

dbo:commander and as subject of dbp:casualties in the third triple pa�ern. With the

le�join all results from the first, the ‘le�’, child, will be enriched with results from

the second, ‘right’, child. All additional triples where the results for the common

variables, in this case ?war, overlap will be added. The le� child corresponds to the

bgp with two triple pa�erns: dbo:result and dbo:commander ; and the right child
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Table 3.2: Results matching the SPARQL SELECT query about Napleon’s com-
manded wars their outcome with the number of casualties optional.

war outcome casualties
dbr:Ba�le_of_Waterloo Decisive Coalition victory Total: 41,000* 24,000 to

26,000 killed, wounded in-
cluding 6,000 to 7,000 cap-
tured* 15,000 missing

dbr:Ba�le_of_Craonne French victory 5400
dbr:Ba�le_of_Eckmühl French victory 12000
(...)
dbr:War_of_the_Fourth_Coalition French victory,Treaties of Tilsit
dbr:Mediterranean_campaign_of_1798 Allied victory
dbr:French_campaign_in_Egypt_and_Syria O�oman-British victory
(... 337 results)

to the bgp with a single triple pa�ern about the dbp:casualties. The results will

contain the same results as in Table 3.1 and also contain additional results where no

information on the casualties is present (empty cells), as shown in Table 3.2.

Property paths. One may be interested in finding out which military conflicts

these wars and ba�les commanded by Napoleon may belong to, according to DBpe-

dia. One way to do this, would be to explicitly ask for the military conflict informa-

tion using a query, as shown in Listing 3.3. The SELECT query results in Table 3.3.

The results indicate that some of the wars and ba�les belong to a military conflict

which in turn belongs to the Napoleonic Wars. This means that some wars and

ba�les are indirectly related.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?war ?conflict
WHERE {

?war dbo:commander dbp:Napoleon .
?war dbo:isPartOfMilitaryConflict ?conflict

}

Listing 3.3: Listing the wars and ba�les commanded by Napoleon with military
conflicts they belong to.

A way to include the indirect relations, is to use SPARQL property paths32, for

example to be sure to include all wars and ba�les commanded by Napoleon during

the Napoleonic wars. SPARQL property paths allow chaining one or more predicates

to retrieve indirectly related nodes bound to these predicates.

32https://www.w3.org/TR/sparql11-property-paths
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Table 3.3: List of wars and ba�les commanded by Napoleon. We note that for
example the Ba�le of Craonne is part of the War of the Sixth Coalition which belongs
to the Napoleonic Wars. This does not mean that this is the case for all the ba�les, for
example �asi-War belongs to the French Revolutionary Wars which took not place
during the Napoleonic Wars but in the decade before.

war conflict
dbr:Ba�le_of_Waterloo dbr:Waterloo_Campaign
dbr:Ba�le_of_Craonne dbr:War_of_the_Sixth_Coalition
dbr:Ba�le_of_Eckmühl dbr:War_of_the_Fi�h_Coalition
dbr:Ba�le_of_Ceva dbr:French_Revolutionary_Wars
dbr:�asi-War dbr:French_Revolutionary_Wars
dbr:Waterloo_Campaign dbr:Hundred_Days
dbr:Hundred_Days dbr:Napoleonic_Wars
dbr:War_of_the_Fi�h_Coalition dbr:Napoleonic_Wars
dbr:War_of_the_Sixth_Coalition dbr:Napoleonic_Wars
(...)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

CONSTRUCT { ?war dbp:result ?outcome }
WHERE {

?war dbo:result ?outcome .
?war dbo:commander dbr:Napoleon .
?war dbo:isPartOfMilitaryConflict dbr:Napoleonic_Wars

}

Listing 3.4: Example SPARQL query about the result of ba�les with Napoleon as
commander and part of the Napoleonic Wars.

@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix dbr: <http://dbpedia.org/resource/> .

dbr:War_of_the_Sixth_Coalition dbo:result "Coalition victory,Treaty of Fontainebleau,First
Treaty of Paris" .

dbr:War_of_the_Fifth_Coalition dbo:result "French victory,Treaty of Schonbrunn" .
dbr:War_of_the_Fourth_Coalition dbo:result "French victory,Treaties of Tilsit" .
dbr:War_of_the_Third_Coalition dbo:result "French victory,Treaty of Pressburg" .
dbr:French_invasion_of_Russia dbo:result "Destruction of French Allied Army" .
dbr:Haitian_Revolution dbo:result "Haitian victory" .
dbr:Peninsular_War dbo:result "Treaty of Paris" .
dbr:Hundred_Days dbo:result "Coalition victory,Second Treaty of Paris" .

# (... 34 statements)

Listing 3.5: Triples matching the SPARQL CONSTRUCT query about Napleon’s
commanded wars outcome.

The example of Listing 3.4 changes to the query in Listing 3.6, adding a + operator to

the dbo:isPartOfMilitaryConflict property, the + indicates one or more occurrences.

A snippet from the results of the query in Listing 3.6 is given in Listing 3.7. We
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note that there are 109 statements in the results compared to 34 in the results in

Listing 3.5 of the query in Listing 3.4 without the property path.

In this case the predicate is fixed and not a variable. An arbitrary number of variable

predicates could lead to an explosion of possible matching results. Chapter 6 will

explain a heuristically optimized solution for this.

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

CONSTRUCT { ?war dbp:result ?outcome }
WHERE {

?war dbo:result ?outcome .
?war dbo:commander dbr:Napoleon .
?war dbo:isPartOfMilitaryConflict+ dbr:Napoleonic_Wars

}

Listing 3.6: Example SPARQL query about the result of ba�les with Napoleon as
commander indirectly part of the Napoleonic Wars.

@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix dbr: <http://dbpedia.org/resource/> .

dbr:Battle_of_Waterloo dbr:result "Decisive Coalition victory" .
dbr:Battle_of_Craonne dbr:result "French victory" .
dbr:Battle_of_Eckmuhl dbr:result "French victory" .
dbr:War_of_the_Sixth_Coalition dbr:result "Coalition victory,Treaty of Fontainebleau,First

Treaty of Paris" .
dbr:Battle_of_Landshut_(1809) dbr:result "French victory" .
dbr:Ulm_Campaign dbr:result "Decisive French victory" .
dbr:War_of_the_Fifth_Coalition dbr:result "French victory,Treaty of Schonbrunn" .
dbr:Waterloo_Campaign dbr:result "Coalition victory,Second Treaty of Paris" .

# (... 109 statements)

Listing 3.7: Triples matching the SPARQL CONSTRUCT query about Napleon’s
commanded wars indirectly part of the Napoleonic Wars and their result.

Resolving triples. To resolve a triple operation, the query engine depends on

the underlying index structure of the triples. One way to store the triples is using

a ‘triple store’ (or RDF store) like Virtuoso33 or Blazegraph34. The SPARQL query

engines of these stores have optimized their underlying data structures and indexes.

Other engines like RDF for Java (RDF4J)35 and Jena36 are more generic and may

work on di�erent data structures using an Open Database Connectivity (ODBC)

coupling or a custom API. Another way is to use compression such as for example

33https://virtuoso.com/
34https://blazegraph.org/
35http://rdf4j.org/
36https://jena.apache.org/
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Header Dictionary Triples (HDT) [14]. HDT is a compressed binary file-format which

supports only triple pa�erns, but enriched with a SPARQL query engine full read-

only SPARQL support is available37.

Figure 3.3 shows the typical architecture of a SPARQL query infrastructure. SPARQL

queries are transformed to a SPARQL algebra representation which may be opti-

mized. Following the optional optimization, a query plan will be generated that

resolves the SPARQL query (via its algebraic tree representation). A query execution

plan can be straightforward to complex, the order of which branches in the tree are

resolved has an impact on the execution time.

SPARQL Query

Results of
ontology-based

indexing

(...)

uri: dbp:Tim_Berners-Lee
label: Tim Berners-Lee

Indexed Triples

Query Engine
Search for

Information 
Resources

Query
Transformation

SPARQL Algebra

Query
Optimization

Query
Planning

Query
Execution

SELECT *
WHERE 
{ ?s ?p ?o }

(...)

Figure 3.3: A typical SPARQL query infrastructure.

Client vs. Server Trade-o�s

SPARQL queries can have varying structures of any complexity depending on the

user or application requirements. This large degree of freedom for querying knowl-

edge graphs on the Web can be made possible with:

• SPARQL endpoints: the processing load is entirely on the server;

• Data dumps: the client processes the data as desired without loading the

server, except while downloading the dumps.

The above two methods are extremes when it comes to making data available, re-

gardless of the data’s purpose.
37http://www.rdfhdt.org/manual-of-hdt-integration-with-jena/
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It was found that the majority of published knowledge graphs are not easy to query [13].

On top of that, the mileage may vary when it comes to knowledge graphs that are

published queryable as a public SPARQL endpoint: LODStats38 gives good insight in

the availability status of di�erent public SPARQL endpoints [1]. This varying avail-

ability is an issue to build any kind of web application, including search applications.

In Figure 3.3, there is a distinction between the query engine and the triple index.

How (tightly) the two are coupled greatly a�ects performance, in particular how the

communication is established between both, the bandwidth consumption and the

CPU and memory use during query processing. In a SPARQL endpoint both the

query engine and the triple index are on the same machine, o�en within the same

triple store. When a query engine is used to query multiple remote, distributed

SPARQL endpoints, this is called ‘federated (SPARQL) querying’ [26]. Other inter-

faces than SPARQL endpoints are also possible, for example Linked Data interfaces

based on hypermedia links and controls [27].

Most use cases need more flexible trade-o� options, the two extremes do not su�ice:

downloading data dumps means a huge data overhead – o�en requiring the set-up

of local SPARQL endpoints anyway – and it is too unreliable to do remote querying

on SPARQL endpoints via the Web because of the uncertainty about their avail-

ability [7]. ‘Triple Pa�ern Fragments’ (TPF) is an architectural solution to this by

providing self-descriptive hypermedia and being straightforward to maintain [28].

TPFs allow clients to query for triple pa�erns at the server [29]. TPFs are a type

of ‘Linked Data Fragments’ (LDF). LDF is a way to balance the load between client

and server by working with several gradations of pre-defined supported ‘fragments’

besides supporting the all or nothing granularity (SPARQL vs. data-dump). Strictly

speaking, a data dump and SPARQL-endpoint can be seen as a linked data fragment

as well, respectively the largest (all data) versus the most flexible (any kind of query).

Dereferencing URIs can be seen as another type of fragment: a document with triple

statements about a particular subject. When pu�ing these fragments on a horizontal

axis expressing the workload more towards client and server we get Figure 3.4. The

axis goes from generic (le�) to very specific queries (right).

In theory, both client side and server side processing of SPARQL queries allow the

same applications. Client side processing is particularly useful for federated query-

ing, as the client has to do remote retrieval of results in any case. It has the advantage

that multiple resources can be queried at once (using SPARQL). One of the disadvan-

38http://stats.lod2.eu/rdfdocs
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data dump SPARQL endpoint

client server

Linked Data Fragments

Triple Pattern Fragments

Dereferencing URIs

Figure 3.4: Linked Data Fragments organized on an axis expressing the workload
trade-o� more towards server or client [28].

tages of client side querying processing is the lack of implementations at the moment

for analytical queries (counts, aggregates, ...). For these kind of scenarios server side

processing is be�er suited as all data is gathered centrally which allows more specific

optimizations, in particular for analytical queries. But the disadvantage of a server

side approach is its limited scalability besides increasing the amount of resources.

A server could be well functioning for a certain application, but for example when

opening up the data for external use, there is less control about the nature or the

amount of incoming queries. In those scenarios a client side approach would be

advised.

3.3 Link with Exploratory Search

The ideas of exploratory search in combination with the principles of linked data

querying align with each other when it comes to knowledge representation and

indexing data. To expand and refine search results and to enable revealing paths

between results, both queries and results should be aligned to semantic entities that

are interlinked by content based relationships. This facilitates extending “the search

scope by the option to investigate the semantic context, di�erent time references, or

geographical references that are related to the search query or to the original search

results.” [30]. The data and structure of an indexing language or a knowledge repre-

sentation should not only be the basis for indexing and searching, but also support

navigational purposes and thematic exploration [17]. To facilitate exploratory web

search in dealing with a large variety in types of resources, the RDF representations

and common vocabularies such as OWL and SKOS come into play. This results in the

model contributed by Gödert, outlined in figure 3.5, and is referred to as ontology-

based indexing and retrieval [16].

Central in Gödert’s model is a symbolization of the search index (middle cylinder)

of information resources (of which the indexing process itself is represented in the
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RDF
OWL
SKOSIndexing

Languages

Navigation

Ontologies 
Formal Knowledge Representation

Results of
ontology-based

indexing

Indexing of
information
resources

Dictionaries
algorithms

Search for
information 
resources

Web 
representation

Automatic
indexing
- identification
- extraction

Cognitive
indexing
- analysis

Ontology-based
retrieval

Figure 3.5: Gödert’s ontology-based model for indexing and retrieval [16].

block on the le�), backs navigation, supports algorithms to operate on it, and aligns

indexing languages with a formal knowledge representation with a web counterpart

in RDF (top le� and top right blocks respectively). There are many ways to develop

indexing languages and their relationship types, the internationally standardized

way is to follow ISO 2596439, the standard for thesauri and interoperability with

other vocabularies. Indexing languages comprise di�erent types of taxonomies, clas-

sification schemes and each type has their own kind of elements. In the model,

formal knowledge representation corresponds to the concept of ontology as we de-

fined it. It is important to note that there is a boundary between the cognitive

interpretation of concepts and the way it is formalized in an ontology. Dictionaries

and algorithms may benefit from automated indexing (identification and extraction

of resources), shown in the bo�om-le�. However, the formal representation itself

is the result of a cognitive analysis process based on given information resources

(shown in the top-le�).

Baeza-Yates et al. stated that “search engines are hindered by their limited un-

derstanding of user queries and the content of the Web, and therefore limited in

their ways of matching the two” [2]. A formal knowledge representation, an ontol-

ogy, allows semantic modeling of the human cognition of real-world entities (non-

information resources), and representing the descriptive content in information re-

sources on the Web, which should lead to be�er matching a user need and Web con-

tents. The formal representation is necessary to allow machine processing of infor-

mation resources. This includes linking data and querying the data using SPARQL.

39ISO 25964, http://www.niso.org/schemas/iso25964
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Concluding Remarks

In this chapter, we explained exploratory search and the Web from a semantic per-

spective, starting with the definition of the Semantic Web and linked data. Through

the Semantic Web’s architectural building blocks: resources, URIs, RDF, vocabular-

ies and ontologies; we identified the basics for executing linked data queries with

SPARQL. Furthermore, the link between exploratory search and querying linked

data is deeply rooted as they are both relying on the result of an ontology-based

indexing process, which is a representation of triples optimized for a certain search

and query purpose. This optimization can be very generic or application specific

and there is a trade-o� to be made where the processing workload is placed: more

towards clients or more towards servers. The semantic building blocks and link to

the index structure is fundamental for the techniques explained and applied in the

remainder of this PhD.
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Techniques





Chapter 4

Interactive Search Visualization

If you feel that you’re not ge�ing enough out of a song,

change the instrument

- go from an acoustic to an electric or vice versa,

or try an open tuning. Do something to shake it up.

—Mark Knopfler.

This chapter discusses the exploration technique focusing on the front-end. Looking

into front-end aspects addresses the di�erent kinds of user activities of exploratory

search introduced in Chapter 2. A lack of in-depth understanding of the inherent

complexity of linked data graphs and the many degrees of freedom in modeling

and querying of data limits many users to optimally query and interpret linked

data. Therefore, this chapter explains an interactive visual graph-based workflow.

It details how useful the workflow is for users to explore data and the relationships

between the data. Furthermore, this chapter describes the architectural model, its

implementation and illustrates the potential of interactive search visualization from

a users point of view, both in terms of the workflow as well as the visualization. The

majority of the evaluation respondents welcomed the workflow and considered its

potential for linked data exploration and the insights they can get out of it.
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4.1 Introduction

Interactive visual search goes further than the paradigm of keyword-based search

or lookup based information retrieval, introduced in the beginning of Chapter 2. In

keyword-based search a user would repeatedly try out di�erent results and if not

satisfied retry the search with slightly or completely di�erent keywords. As linked

data are typically represented as graphs [6], exploring their visualization as such is

one of the ways to allow users to implicitly compose queries, identify links between

resources, and intuitively discover new relevant pieces of information [3]. This chap-

ter discusses a workflow that uses an interactive visualization to facilitate linked

data query formulation. Background processes seek additional relations between

the search results and present them as alternatives to the already delivered results.

In this way, users are guided in expanding or narrowing down the range of facets

available corresponding to a certain search query. This o�ers the users each iteration

several exploration options and involves new and already found items in the search.

To this end, we considered for our workflow: (i) exploratory data analysis (EDA) [23]

to assist data consumers to analyze the available dataset; and (ii) exploratory search [19]

to facilitate them synthesizing complex queries.

EDA allows the data itself to reveal its underlying model and its relationships with-

out requiring any formal statistical modeling and inference (non hypothesis-driven).

Graphical EDA employs a variety of techniques to present the underlying data,

maximizes the insight into a dataset and uncovers the underlying data pa�erns,

allowing the users to discover the resources in the dataset. Exploratory search, on

the other hand, describes either the problem context that motivates the search or the

process by which the search is conducted. The users start from a vague but still goal-

oriented defined information need and refine their need upon the availability of new

information to address it, with a mix of keyword look-up, expanding or rearranging

the search context, filtering and analysis.

The challenge we address here is the way a visualization involves the users and lead

them through facets expressed in visually recognizable dimensions (e.g. shape, size,

color etc.) rather than textual representations (e.g. lists). The key variables (KV) are

broadly used (see the related work in Table 2.1). They address research questions

RQ2 and RQ4, test hypothesis HYP2 and give insight on the perceived usefulness

of the added interactivity and visualization:
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interactivity user perception of the visualization in terms of the goal;

e�ectiveness productivity of the way resources are shown to users;

features the impact of personalization, centering the search around the

users based on their social media profile, and discovering links

between resources shown to the users.

Other related work covers the creation of di�erent views of linked data or study

in particular use cases evaluating prototype interfaces. One editor that facilitates

the process of creating web-based visualizations relying on linked data is “Visual-

box” [16]. The developers concluded though that their editor was still too general for

users to work practically with a visualization. However, test users valued that once

a query was ready, the construction of a visualization was trivial. The “Linked Data

Visualization Model” (LDVM) allows to connect di�erent datasets, data extractions

and visualizations in a dynamic way [1] rather than focusing on a single platform.

Tvarozek et al. [24] empower users with access to semantic information spaces via an

exploratory browser. At the end of an exploration session users need to start a new

search, a history view allows users to step back. Dadzie and Rowe [3] concluded in

their study on linked data interfaces and visualizations that only a limited number

was available at the time of writing and each of them focuses on a separate aspect to

support users. They highlighted the issue, an important motivation for our workflow

as well, that without good quality linked data there is li�le motivation to build

such interfaces for end-users while these interfaces are needed to locate and retrieve

linked data in the first place.

4.2 Architectural Model

During interactive visualization of search results, users interact with the visualiza-

tions and their actions are translated and refined to more precise or broader queries

iteratively. In this chapter, we explain workflow to interact with the results visualiza-

tion. Figure 4.1 shows a schema of the di�erent techniques working together during

exploratory search. Further details on the dynamics on this process are explained in

Chapter 5 and onwards.

The workflow consists of four phases and starts from a broad overview towards a

detailed narrow view which serves as starting point for further exploration [6]. Fig-

ure 4.2 shows how users start with an overview of the dataset (Figure 4.2a) through

which the users “dive” in more narrow perspectives (Figure 4.2b) by selecting a group

to find out details and see the internal relations of the subdivisions (Figure 4.2b). A
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Results Visualization Query Processing

Index

Path-based
Storytelling

Figure 4.1: Interactive search results visualization relies on the combination of
di�erent techniques.

coordinated view (Figure 4.2c) of selected resources leads them through a broadened

view (Figure 4.2d) by exploring relations of these resources.

c. Coordinated Viewa. Overview of Groups b. Group Details d. Broadened View

Narrowing Broadening

Figure 4.2: Narrowing views (a, b) allow users to analyse the dataset. The coordi-
nated view (c) allows perspective switching in the workflow. Broadening views (d)
allow users to explore the interlinked information beyond the dataset’s boundaries.

Narrowing Views

The narrowing views (a, b) aim to familiarize the users with a certain dataset, as they

are not aware of its context. The dataset itself reveals its underlying model and the

relationships between its resources. Given the “unlimited” extent of a dataset, the

initial view is focused on this certain dataset and its broader concepts are demon-

strated. Exploration continues by following the links until reaching the resources

that can not be further decomposed.
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Coordinated View

The interactive visualization workflow is streamlined through a coordinated view [2]

of the two di�erent parts. This view centralizes the link focused on a specific resource

that binds them. As the users, supported by the visualizations, narrow down to more

detailed resources (a certain resource or the links between two resources), they reach

the resources that cannot be further decomposed and thus act as the coordinated

view (c). Starting from this view, the users, being aware of the underlying dataset,

start exploring the dataset. The coordinated view forms a “bridge” between the

narrow view and the broader view, which exploits existing links amongst resources

across di�erent datasets. The use of coordinated views to facilitate integration of

visualizations [21], is a way to allow switching between visualization methods to

successfully seek and discover information [20]. Coordinated views align multiple

perspectives on a dataset.

Broadening Views

In the case of broadening views (d), data consumers find novel relations between

existing and known to them resources interacting with visualizations of the data.

The possible views are not limited to the data of the narrowing view but the links to

other datasets are also revealed and visualized if considered relevant. It is a new way

to search and explore the information. This way, users get an overview by using an

approach that visualizes the search process interactively in, e.g. our aligned linked

data knowledge base of related resources.

Applying Information Exploration Techniques to the Workflow

The narrowing view is achieved based on exploratory analysis techniques [23] ap-

plied to the dataset. Without any formal modeling or assumption about the un-

derlying dataset, the main concepts and their relationships are gradually revealed.

Subsequent views narrow the broader concepts and reveal more details about the

relations among the concepts. The broadening view is achieved using exploratory

search techniques [19] over individual instances of the linked data. Users iterate

over individual concepts, their direct neighbors and their relationships. Iteratively

expanding and focusing the visualization leads to more insight in selected concepts

in the datasets. This way, the workflow enables users to discover, search and analyze

linked data.
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4.3 Implementation

A combination of two tools implements the interactive search visualization and

workflow. The result is a graph based exploration interface supporting narrowing

views by LOD/VizSuite and broadening views by ResXplorer over a coordinated view.

The implementation uses researcher and academic library metadata as example,

more details on the data used and the conducted experiment are given in Section 4.4.

LOD/VizSuite. The goal of the lod Visualization Suite (LOD/VizSuite)1 is to cre-

ate an easily customizable visualization framework on top of lod. LOD/ VizSuite

aims to be data and schema agnostic, therefore it can be easily transferable to vi-

sualize di�erent datasets. Its functionality is based on sparql queries which are

published as sparql templates. Parameters can be passed to the sparql template

at request time, which replace placeholders to construct a valid sparql query. The

sparql templates are published at a DataTank2 instance, a RESTful (Linked) Open

Data management system which publishes data on the Web.

ResXplorer. ResXplorer3 is used by researchers to find novel relationships be-

tween existing known items such as authors, publications, or conferences. Users in-

teract with a visualization of resources [7] using an interface combining an optimized

pathfinding algorithm [5] with Web 2.0 technologies (such as J�ery and Django).

The result is a semantic search tool providing both a technical demonstration and a

visualization that is applicable to many other applications beyond academic library

metadata.

Making Search Decisions

The decision making process during search is supported by a real-time keyword

disambiguation. This allows users to select the intended meaning from a drop down

menu that appears below the search box. Presenting candidate query expansion

terms in real-time, as users type their queries, can be useful during the early stages

of the search [25].

Users can define and select their ‘intended’ search goal over several iterations. A

combination of various resources is then presented to the users. In case they have

1http://ewi.mmlab.be/academic
2http://thedatatank.com
3http://www.ResXplorer.org
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no idea which resource to investigate next, they get an overview of possible objects

of interest (like points of interest on a street map).

Embedding Visualizations in the Workflow

In this section, the visualizations are embedded in the architectural model and im-

plement the three types of views of our exploration workflow. Figure 4.3 shows the

visualizations embedded in the workflow.

Narrowing Coordinated View

Broadening

a

b

c

d

Figure 4.3: Corresponding with steps a, b, c, d in Figure 4.2, users narrow down from
disciplines (a) to research groups and further to the individual researchers in this
group (b). To find out relations between researchers they select two researchers and,
using the coordinated view (c), shi� to the broadening view and expand to resources
beyond their research community (d).

Narrowing Views. The broadest concepts, which cover all the dataset, are chosen

for the overview view. The overview view serves the users to discover the main concepts

of the dataset, the strength of the relations between them and the diversification of

the total number of the instances that constitute the broader concept. From the

overview view, the users discover the narrower entities. Broader views are achieved

by aggregating narrower entities using sparql queries that select and group them.

Visualizations that provide an overview view of a topic or type are achieved by aggre-

gating the underlying entities as groups and providing links considering of things

they have in common. The groups are shown as graph nodes that diversify in size

depending on the total number of common things of a certain topic or type they

have, while the strength of the links depends on other commonalities of the entity.
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Each group is the aggregation of individual entities, a user can further narrow down

and view the entities and their commonalities (decomposed views). This is the nar-

rowest view which acts as the coordinated view.

Coordinated View. In our use case such a resource can be a single entity or the

links between two entities whose extensive commonalities are shown. As the end

users view the network formed around a researcher or the exhaust list of paths

between two researchers, they can be transposed to the corresponding view of the

broadening part of the workflow.

Broadening Views. By the time the users explore the dataset, they can start

expanding the network. While exploring the broadening view, data consumers are

not limited to the data of the dataset but their exploration is enhanced with links

to other datasets of the linked open data cloud that might be relevant to their

exploration (e.g., DBLP in our use case).

4.4 Evaluation

Based on the implementation of the workflow for a use case concerning academic

library metadata (which is further detailed in Chapter 8) we evaluated:

(i) The Workflow: how di�erent aspects are perceived by the users: the useful-

ness, exportability, complexity, learnability, and innovation potential [interac-

tivity];

(ii) Embedding Visualizations in the Workflow: assessed the end-user e�ec-

tiveness, and productivity of the visualizations in the workflow [e�ectiveness];

(iii) Feature Impact: the impact of personalization and pathfinding as features in

the visualization [features].

Methodology. Exploratory search represents a cognitively intensive activity. There-

fore conduction of searches should be possible with minimal interruptions. Accord-

ing to White et al. [25, 26] : “Techniques such as questionnaires and interview

techniques can be valuable tools, but one must be careful to include them in the

experiment in such a way as to not interfere with their exploration”. The choice

of evaluation methodology was made by applying relevant aspects out of already
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existing achievements in this field introduced in [15, 17, 25] and adapting them to

our specific use case. Since we want to o�er a solution for research and learning

purposes but also for wider community of users, a user centered methodology plays

a decisive role in our evaluation process.

We evaluated the tools in two ways: end-user tests and expert user reviews. Both

ways gave us insight in how the users perceived the tools and showed us potential

bo�lenecks [16]. They also delivered us insights on how precise our solution per-

forms in comparison to the existing state of the art solutions of industry as well

as academia. This evaluation includes a summary of the most important results

explained in our work [8, 12], where we selected experts and researchers in computer

science and digital media as test group representatives. We asked the test-users to

participate in a controlled experiment - to find a relevant person to contact or a

conference to a�end.

Datasets. LOD/VizSuite provides visualizations based on the linked open data

provided by the “Research Information Linked Open Data” (RILOD) data-set. RILOD

is the result of the integration of heterogeneous sources related to research in Flan-

ders, ending up in a rich and diverse dataset. The datasets contain resources of

researchers from the region of Flanders, their publications and projects, which are

associated with the corresponding research groups and institutes, and classified

under the iweto Discipline classification 4. LOD/VizSuite exposes research and

collaboration networks, communities of practice in a certain discipline [13] and

timelines to monitor a discipline’s evolution over time [14].

ResXplorer uses the “Digital Bibliography and Library Project”
5 (DBLP), an on-line

reference for computer science bibliography for bibliographic information on ma-

jor computer science publications [18]. The binding between RILOD and DBLP is

their content’s intersection: the same researchers and publications appear in both

datasets.

Furthermore the computer science publications are aligned with data from call for

papers from “Conference Linked Data” (COLINDA). COLINDA was added to the

Linked Open Data Cloud in 2015 [22]. COLINDA exposes information about scien-

tific events (conferences and workshops) for the period from 2002 up to 2015. Besides

title, description and time COLINDA includes venue information of scientific events

4https://www.ugent.be/en/research/research-staff/iweto/
5http://dblp.l3s.de/
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which is interlinked with Linked Data sets of GeoNames, and DBPedia. Additionally

information about events is enhanced with links to corresponding proceedings from

the computer science bibliography, DBLP (L3S). The main sources of COLINDA are

WikiCfP and Eventseer. The research questions addressed by this work in particular

were: how scientific events can be extracted and summarized from the Web, how

to model them in Semantic Web to be useful for mining and adapting of research

related social media content in particular micro blogs [11], and finally how they can

be interlinked with other scientific information from the Linked Data Cloud to be

used as base for explorative search for researchers.

The Workflow

For the evaluation of the workflow, data was gathered using a multi-method ap-

proach: observing their behavior while interacting with the tools, noting their actions

and an end-user survey. We used the think-aloud protocol during the experiments to

collect feedback from the participants and we recorded the screen actions of partici-

pants using QTrace 6. Apart from the 17 users who participated in the evaluation, 19

additional users participated in the evaluation by filling out the same survey a�er

receiving information about the visualizations, giving us richer data for the survey

analysis. According to Faulkner [15], the number of test users is enough to reach

nearly high level of certainty for finding the most of the existing usability problems.

This way we gained a broader group of respondents, giving us richer data for the

survey analysis.

We kept the audience of the assessment broad by conducting also semi-structured

interviews with various stakeholders. All of them are likely to be a�ected by the

impact and value of accessible and explorable linked data. The use case was situated

in the context of research information. Thus interviewees are active for the Flemish

government department of Research and Innovation, the Department of Research

policy from Ghent University, and, from a commercial point of view, in the domain

of Business Development & Academic Relations.

Observations. The think-aloud analysis gave us information regarding the per-

ception of the visualisations by the participants, during the executions of the assign-

ments. Via this direct feedback, we concluded that test users are able to reason via

6http://www.qasymphony.com/qtrace.html
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the tools: for example by appointing missing research groups in the visualizations,

or by pu�ing the size of the nodes into discussion in LOD/VizSuite.

The observations give us further insights regarding how the users expect the ex-

ploration to happen: clicking on the broad views, e.g., clicking on research groups

within disciplines, they expect they get an intermediate overview and each step

forward in the workflow can give additional input to explore. Once they realize

the fact of the narrowed view and the e�ect of the coordinated view, users are able

to fully comprehend the workflow and start with simple reasoning that supports the

intention of the exploratory search tool.

We observed that, once test users comprehend the exploration workflow, they be�er

accept the visualized data and become more able to form their exploration path.

This a�ects their exploration behavior: they use the di�erent features to get further

insights (search query’s, top a�inity suggestions, or expanding via node clicking).

Although complexity raises within the visualizations during the explorations (earlier

explored data stay visualized), test users understand the potential of visualizing aca-

demic data and can name how they are related to another researcher via conferences

or publications from intermediate researchers. Test users declared that further input

could bring in additional points of interests.

End-User Survey. To evaluate the exploration, we asked the test users and twenty

extra respondents their impression of the views using a questionnaire. We have

collected for the evaluation typical keyword queries that have been asked by the

target group of the use case (N = 36 users) [12], both researchers and innovation

policy makers - all in the field of information and communication science, against the

system during the evaluation of “usefulness” based upon the Technology Acceptance

Model (TAM) [4]. They judged their experience with search interface on a Likert-

Scale with values (Strongly Disagree, Disagree, Undecided, Agree, Strongly Agree).

The result of the evaluation can be seen in Table 4.1. According to users, the interface

is meant primarily to serve as an exploration interface which makes our approach

focused more on the user experience and less on classical search issues.

To determine the impact and quality of the workflow considering their use, we ana-

lyzed how the users explored and perceived the visualizations in the corresponding

views. We especially measured the perceived usefulness and learnability and how

the participants estimate the potential of the visualizations.
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Answer Score Variance
1. Explore 4.00 2.00
2. Discover 3.89 1.65
3. Search 3.42 1.70
4. Analyse 3.05 1.72
5. Clarify 3.00 1.78
6. Tell stories 2.35 1.62

Table 4.1: Results of the short survey on perceived usefulness.

Explorability
Usefulness

Complexity
Learnability

Potential
Innovativeness

LOD Quality
Transparency

40%

50%

60%

70%

80%

90%

100%

Narrowing Broadening Overall

Figure 4.4: User perceived goals of the views (le�) indicate that the narrowing
view is perceived to be more suitable for analysis while the broadening view scores
slightly be�er for exploration. User satisfaction for the workflow (right) shows
that overall the views don’t seem to expose innovation. In terms of usefulness and
complexity the users are very satisfied with the narrowing, they need some time to
learn how the broadening works.

Visual workflow’s goals. To understand how the users perceive this visual work-

flow and its goals, we asked them to score possible purposes of use. As displayed

in Figure 4.4, the respondents indeed perceived both the narrowing and broadening

views as adequate tools to explore, discover and search. The broadening view is

considered by the respondents as being a tool for exploration in the first place and

discovery in the second place. The narrowing view is considered as a means to

explore and to search.

Usefulness and Explorability. Test users agree that the visualizations are useful

in terms of what it exposes 22 out of 34 (65%) agree for the broadening views and 28

out of 34 (82%) for the narrowing views. 28 out of the 34 respondents (74%) agree or

strongly agree that the displayed relations of the broadening view are presented as
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an optimized selection of all results. Although, respondents stay rather undecided

when it comes to the limitations: 16 out of 34 respondents (47%) agree or strongly

agree that it is useful that the number of visualized resources and relations are

limited, whereas 11 out of 34 (32%) disagree or strongly disagree on this. Finally, the

respondents strongly agree that both the broadening view and the narrowing views

support them gaining insights into the published data, but they were less confident

in the case of the narrowing view.

Complexity and Learnability. The majority of the respondents agreed that they

can learn quickly to interpret the visualizations both for the narrowing views, 27 out

of 34 (79%), and the broadening views, 23 out of 34 (68%). Most of them think they

found relevant insights at the narrowing and coordinated views as well during the

broadening views. It is noteworthy that most of the respondents agree with the

statement that once people get familiar with the visualizations in the narrowing

view they can get benefit out of it, i.e. 30 out of 34 (88%) and even more of them

agree for the broadening exploration, i.e. 31 out of 34 (91%).

Workflow Potential and Innovativeness. The respondents were asked how they

perceive the potential of the workflow for linked data exploration. 23 of 34 test users

(68%) state that the visual exploration workflow clearly helps them to understand the

potential of Open Data. 16 out of 34 (47%) respondents agreed or strongly agreed

that the visualizations help to get insight into innovation. However, 11 out of 34

(32%) respondents remained undecided.

Embedding Visualizations in the Workflows

In line with earlier work [12], we evaluated how appealing the workflow and the

visualizations are to the end users by assessing the productivity and precision of the

narrowing part and the complexity and searchability of the broadening view. Our

evaluation showed that the implemented visualizations were capable of assisting

the end-users to interpret the visualizations, thus adequate for the scope they were

designed.

During a controlled experiment for evaluating the visualization aspect of the work-

flow, users were asked to think aloud and their actions were recorded while an

evaluator observed the comments and took notes. Each test took about 30 to 45

minutes. We observed how the test users executed the assignment and we asked
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them to think aloud. The test users were asked (i) to start from their preferred

research discipline (overview view), (ii) to go on towards their preferred research

group and researchers and, explore their collaborations (explore the links of the

narrower views) and (iii) to explore the links of one of the researchers that they

concluded at while they navigated to broader views (broadening view).

Their assignment was as follows:

Assignment The users had to mark all found resources relevant to them. Then,

users could choose between three actions: searching, adding top related re-

sources; this is done through disambiguated keyword based search on topics

knowingly related to the initial search term, e.g. choosing Tim Berners-Lee as

initial keyword and WWW 2013 next related keyword in search, or expanding

neighbors of found resources. In the last case they could chose between direct

or indirect neighbors of the centrally focused node in the visualization. A ‘top

related’ resource is the resource directly linked to the node in focus (centered)

that shares the most common links with it.

E�ectiveness measures how o�en a displayed result (R) related to a resource was

marked relevant by the user (M).

e�ectiveness = E =
|M∩R |
| R |

(4.1)

Each action that delivered new resources to the result set resulted in an increase of

quality of the result set.

Productivity measures this increase. The quality of a result set is the number of

marked relevant resources compared to the total number of visualized resources.

Productivity Pr measures the increase of e�ectiveness Ek a�er each test-user set of

search actions in A = {a1, ...,ak, ...}:

productivity = Pr = ∑
k∈A

Ek−Ek−1

| A |
(4.2)

where Ek is measured e�ectiveness a�er the action ak. E0 is the first measured

e�ectiveness, so in the formula for Pr we note that k > 0.

The data in Table 4.2 shows that adding a top related resource was not done o�en by

the users and added only a couple of resources to the result set. However, it proved
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Table 4.2: Overview of user actions used to visualize new resources to measure the
e�ectiveness of the actions

Visualized (#) Marked Relevant (#)
Search Resource 124 54
Add Top Related Resource 26 13
Expand Neighbours 94 34
Expand Neighbour of Neighbours 51 13
Expand Futher Related Resource 21 6

to be the most e�ective action as the users marked 13/26 (50%) of the visualized re-

sources relevant. The data in Table 4.2 also shows an increase of 12% in productivity

in based on an average over all test users. This can be interpreted as follows: the

search process is split into phases, where each phase is marked with a new set of

visualized resources (thus changes in the result set), this figure indicated that when

the result set changed, on average the new result set contains 12% more relevant

resources than the previous view. For example if two new resources are added to a

result set with 2/8 (25%) relevant resources and both are relevant, this results in 4/10

(40%) relevant resources, an increase of 15%. The average of all these increases is

the productivity. Adding top related resources resulted in a result set that contained

12% more relevant nodes as before adding top related nodes.

As Table 4.3 indicates, searching for a resource was the most productive of all type

of actions (+25%). This is remarkable as the user action e�ectiveness of searching is

much lower than adding a top related resource on average over all test users. Adding

top related resources resulted in a result set that contained +12% more relevant nodes

as before adding top related nodes, even though it has higher e�ectiveness (50%).

This means that the impact of each added resource when searching is much bigger,

because the quality of the result set was not relatively high at the moment users

decided searching.

Table 4.3: User action e�ectiveness and productivity (results on a scale from -100%
tot 100%).

Productivity (%) E�ectiveness (%)
Search Resource 25 31
Add Top Related Resource 12 50
Expand Neighbours 6 32
Expand Neighbour of Neighbours 1 25
Expand Futher Related Resource 1 29
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The e�ectiveness of expanding resources 53/166 (32%) is about the same as searching

for a resource 54/174 (31%). As the user actions resulted in about as many new

resources in the case of searching and expanding, this is a very reliable comparison.

Expanding the direct neighbours is the most productive (+6%) expansion. Expanding

further related neighbours retains the quality of the result set and barely impacts it.

Feature Impact

We conducted a survey among the users to measure the impact of the two most im-

portant features of ResXplorer: personalization (using social media data, cfr. Chap-

ter 7 for more details) and paths (enabling pathfinding). We presented the users

screenshots of result sets in ResXplorer in A/B pairs to measure the impact of the

personalization and relation discovery features, with one of the features enabled,

both disabled and both enabled. They were asked to rate on a Likert scale from −3

to +3, from more towards A to more towards B, which result set they preferred

for simple and complex queries. They did not know in advance which one had

which feature(s) enabled. A simple query could be for example: ‘Finding research

publications that share (co-)authors with another paper (optionally: which the user

also contributed to)’. Complex queries solve tasks like: ‘Finding at least two people

that presented a paper two years in a row in a certain conference series (optionally:

where the user also had presented a paper)’.

Figure 4.5: Impact on the result set relevancy of ResXplorer features according to
users.

Figure 4.5 shows disagreement or no clear positive impact for simple queries when

pathfinding is enabled and a rather negative impact when personalization is enabled

for simple queries. A possible explanation is that for simple queries, the personalized

results seemed to introduce extra overhead in the search results. The additional

relationships to the user included in the results are not always that beneficial com-
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pared to the cases when the query was complicated. Many relationships were shown

already in the case of complex queries, so there is probably less overhead. The results

are more positive where more than 60% of the users agrees that for complex queries

the results when using pathfinding are preferred. For personalization the ratio is

45% positive against 36% negative, the bias is less positive here, but clearly be�er

than the case for personalization with simple queries. When looking at enabling

both features vs. disabling both features, nearly 66% prefers the results with both

personalization and pathfinding enabled and 56% in case of the simple queries.

Discussion

The results on interactivity learned that when users get familiar with the workflow:

the narrowing and coordinated view helps them in the discovery and exploration

of the linked data published in a dataset; and the broadening part helps them to

discover, find new insights and explore the links of the data in the dataset with the

data from the broader Linked Open Data cloud.

Analyzing the observations for the e�ectiveness and productivity indicated that

searching by keywords for resources increases the result set with the most new

relevant resources, while it is on average as e�ective as expanding existing resources

in the result set. The most e�ective user action was adding top-related nodes to

the visualization. The results on the impact of features are in line with previous

studies we did on the dynamic alignment of social data with conference publication

data [10] and the usability study of the “Researcher A�inity Browser” [9]. All these

findings back the emphasis at several places in the paper on the positive influence

of pathfinding and personalization in exploratory search.

The results of the productivity are a�ected by the technique for processing and

translating the user actions to queries for the underlying index structure, this is the

main topic of Chapter 5. The analysis of the contribution of the features for finding

relationships between resources is subject of Chapter 6.

61



4. Interactive Search Visualization

Summary

An interactive workflow for search based on visualizations allows users to have a

unique, multifaceted experience when combined with techniques for information

exploration. Two such interfaces were implemented to demonstrate the workflow

for the exploration of an example dataset. Even though the workflow forces users to

interact with the data in a certain way, di�erent and unfamiliar to them, at the end it

achieves its goal and users become acquainted with the underlying dataset and can

bring in new unexplored information and knowledge. According to the respondents,

they, as users, became acquainted with the underlying data and found the work-

flow to bring in new unexplored information as soon they familiarized themselves

with the workflow. According to the users the visualization pinpoints resources for

researchers e�iciently and e�ectively. Considering that the implementation of the

visualizations are still in the prototype phase, the potential of a visual and interactive

search interface is well demonstrated and understood by the users.
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Chapter 5

�ery Processing

The question of whether a computer can think

is no more interesting than

the question of whether a submarine can swim.

—Edsger W. Dijkstra.

Search queries to find relevant content on the Web, typically consist of keywords

that can only be matched in the content or its metadata. The Web of Data extends

this functionality by bringing structure and giving well-defined meaning to the con-

tent and it enables humans and machines to work together using controlled vocab-

ularies. Due to the high degree of mismatches between the structure of the content

and the vocabularies in di�erent sources, searching over multiple heterogeneous

repositories of structured data is considered challenging. This chapter explains the

e�iciency and e�ectiveness trade-o�s in for a query processing technique forming

the bridge between the content from a user’s perspective and its representation as

machine-readable data.

5.1 Introduction

The way real world objects are shown to the user, be it visualized or described textu-

ally, di�ers from how they are represented in the back-end for machines, as raw data

to be processed by algorithms. Because of this, translating what the users intend

through their actions is not trivial. Some kind of bridge component responsible

for interpreting the user intents and translating them to machine understandable
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queries is necessary. Because of this, every search action ends-up in this bridge

component. The way the query processing interprets this action has an impact

on the overall search e�iciency (performance, complexity) and e�ectiveness (search

precision). The metrics address research questions RQ1 and RQ4, test hypothesis

HYP1 and HYP3.

For example, a user wants to explore how two scientists, Carl Linnaeus and Charles

Darwin, are related to each other, the user is able to recognize both as scientists by

reading their names, by seeing a picture or reading a description. This is also the case

when a user types in the names of the scientists in a search system, the user expects

the system to recognize them as such. Without an intermediary step the string

corresponding to the user input of the scientist’s name, such as “carl linnaeus”, would

be fired directly upon the data representation in the back-end. The only possible way

of linking would be to match the characters in the string with how in the contents -

regardless of their data structure and aside from advanced algorithms that optimize

the matching of text in the content (e.g. dealing with typos). There would be no way

to be sure the documents containing the string input would give back the scientist

the user is looking for. One of the things the bridge component takes care of is this

lookup. Every entity, such as a person, is indexed with a type and a unique identifier.

During the lookup of “carl linnaeus” the bridge component will retrieve all entities

from the index matching the user’s search with a�ributes such as the type and add

a reference to the unique identifier - invisible to the user - under the form of a URI,

in this case: h�p://dbpedia.org/resource/Carl_Linnaeus. This process appears to the

user as a common typeahead or autocomplete functionality in a search input field.

However, as the input of the user, is literally being hooked to an entity with a specific

URI, it will allow the search to take into account semantics and to be more precise.

The evaluation section 5.4 shows the cases where and to which degree the query

processing technique is more precise. The query processing technique described in

this chapter acts as the internals of the bridge component between the user interface

and the back-end. It facilitates reuse, and exposure linked data by coupling the

results visualization and path-based storytelling that o�er data or provide advanced

algorithms on the data. It uses the ‘a�inity’ of entities in relation to the initially

formulated query as a measure for ranking the results. The main contribution of this

technique is the way it adds an exploration aspect to interactive (visual) search and

how it forms a bridge between the front-end interface and the back-end. This chap-

ter continues with a broad description of the dynamics of this technique and details
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about its implementation before deep-diving in the the evaluation of its e�iciency

e�ectiveness. The top level interface, the user interface, delivers an aggregated

and enriched view to users. All exposed content follows a common pa�ern from

an aligned model through a protocol layer resulting in a semantically interpreted

repository.

5.2 Architectural Model

Figure 5.1 depicts the overall architecture with the di�erence points of interaction

between the di�erent techniques. In this chapter we make abstraction of the Path-

based storytelling technique which chapter 6 describes in detail. The query process-

ing technique introduces three distinct modules that form the basis for preparing the

data for exploration tasks and supporting end-users in exploring the data: lookup,

relate and rank.

Results Visualization

Query Processing

Index

Path-based
Storytelling

Lookup

Relate

Rank

Figure 5.1: Keyword mapping, query translation and ranking within the search
process through the query processing technique.

In this particular case we are interested in the e�ectiveness of the following modules

• Lookup, the translation of a keyword to a resource in a semantic representa-

tion, thus taking into account the unique reference, URI.

• Relate, functionality which looks into how pairs of resources are associated.
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• Rank, functionality comprises the computation of a score of each of the re-

sources in a particular search context. The rank can be used to order or visually

tweak the appearance of the search results in the interface.

All modules of the query processing technique translate queries and result from one

format to the other: they take input from users (keywords, resources or pairs of

resources) and transform it to queries for the index or the path-based storytelling

technique. The ranking module adds ordering with regards to the search context to

it.

Looking up Resources

The module responsible for looking up resources can have two types of input: key-

words or resources. In the case of keywords, they are forwarded directly to the search

index. The index will return one or more resources, depending on its configuration of

the index. Resources are usually typed with the rdf:type property. This property can

be used to assign a category to each resource. In the case of a resource, the index will

again be requested to provide more information about the resource requested. This

can be detailed information such as a label, description or other resources it points

to. In both cases the results are converted into a format that a component taking care

of search results visualization understands. The look-up of the resources facilitates

high-precision interactive search, because it succeeds in mapping annotated and

interlinked structured data with ontologies from the various indexed repositories

in an e�ective way. Figure 5.2 shows an example of a user iteratively looking up

the terms Linked Data, WWW 2012, Germany which the lookup module retrieves

from the index which returns the results. In the example the matching of keywords

with resources is relatively loose: case insensitive, space insensitive, and search

takes place over multiple indexed fields (tag, label, keywords). Depending on the

configuration of each index in this regard, results may vary.

Once the user retrieved matches for the keywords, the user can choose to expand

one or more of them further. In the example shown in Figure 5.3 the user chooses to

find out more about the resource related to Germany.

Relating Resources

Each iteration, typically lookup-actions, results in more and more resources in a

user’s search session. Here the module that relates resources has a crucial rule. Be it

68



5.2. Architectural Model

"Linked Data"

germany

"WWW 2012"

"Germany"

Query Processing

Lookup

Index

search

(...)

results

uri: example.com/www2012
type: conference
label: World Wide Web Conference
tag: www2012 

uri: dbpedia.org/resource/Germany
type: conference
label: germany

uri: example.com/dois/12345678*
type: publication
label: World Wide Web Conference
keywords: linked data, rdf 

linked data

www 2012

(...)

Figure 5.2: Looking-up resources by keyword.

dbpedia:Germany

Query Processing

Lookup

Index

search

results

uri: dbpedia:Germany

(...)

dbpedia:Germany

Figure 5.3: Looking-up details about a certain resource.

the user explicitly asking to relate a pair of resources or an automated request based

on the resources currently shown in the results to the user, the query processing

technique takes in the resources that need to be related and transforms it to queries

for the path-based storytelling component. Figure 5.4 shows an example query

where the user is interested in relating the resources bound to France and Germany.

Again, just like when looking-up resources by keyword or retrieving more details

about a resource, the results are being translated to a form that can be interpreted

by the search results visualization.

Ranking Resources

Ranking resources and relationships in the Web of Data di�ers from traditional

document ranking because semantic search engines interpret query results and their

relation to the data sources. In traditional, document-based ranking, the ranking
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dbpedia:Germany

Query Processing
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Storytelling
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dbpedia:Germany

dbpedia:France
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Figure 5.4: Relating two (or more) resources.

boils down to (re)-ordering the resources and optionally giving them a certain score.

This is shown conceptually in Figure 5.5. Aleman-Meza et al. have demonstrated

Query Processing

Rank

results

(...)

ranking 1

2

3

4

5

Figure 5.5: Ranking multiple resources.

the e�ectiveness of a flexible ranking approach that distinguishes between statistical

and semantic metrics [1]. They used proximity to the search context as an important

metric. Because it is critical for the success of an interactive tool for research [12],

a ranking should take into account the discovery of newer unexpected relations.

This has been applied in SemRank, which is a method for top-k ranking of semantic

relations in search results [2]. Their approach permits changing a parameter to

switch between a targeted search and a pure discovery mode. In pure discovery
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mode higher rank values are being assigned to the most unpredictable paths. Daoud

et al. have shown the e�ectiveness of a personalized graph-based ranking model [4].

By considering cross links between graphs and distances between nodes, the work

described in this chapter achieves personalization by a�ecting the original ranking

of resources. Pintado et al. identified relationships, using dynamical and statistical

analysis, between classes and objects and used metrics to quantify these relation-

ships in order to express them in terms of object a�inity in the context of So�ware

Engineering [16]. Their goal and interface is similar to ours and the introduced con-

cept ‘a�inities’ is characterized by high levels sharing of similar properties and rela-

tions. Therefore, we apply this concept as a base for defining our ranking approach.

The di�erence in the way we apply the concept a�inity is in the interpretation

and visualization. In Pintado, the a�inity represents an object similarity measure

which is computed based on class hierarchy, inheritance, composition etc. It can

be seen as a projected multi-dimensional vector space with multiple possible slices.

In our interpretation, the a�inity is computed based on factors involving the object

‘resource’ semantics, its presentation will always include the graph topology and

show resources that are in the graph linked to each other. The presentation is not

based on a vector space projection. The visual positioning does not depend on some

kind of object or semantic similarity measure. However, the a�inity results in a

number that the expresses the ‘rank’ which may be used to express the: order of

which resources are shown, a threshold for a resource to be shown, or the size of the

resource.

Pre-Ranking. Before we rank the relations between resources, the candidate re-

sources to be included in relations are pre-ranked. The pre-ranking takes “popular-

ity” and “rarity” into account, essential components in the PageRank algorithm [15]

and is used to sort candidate related nodes in the proposed engine. The implemen-

tation takes these relations into account by using the Jaccard-coe�icient to measure

the dissimilarity and to assign a random-walk based weight, which ranks more rare

resources higher, thereby guaranteeing that paths between resources prefer specific

relations over general ones [13].

A�inity Ranking. We identified three important criteria for ranking in a search

engine according to the architectural model:

CR proximity to the search context;

71



5. Query Processing

NR novelty, the discovery of newer unexpected relations to exceed predictable fact

retrieval;

PR personalization.

Alternatively, we quantify the relationships to help researchers focus. These metrics

are always executed between an object pair. The path between them represents

whether they are directly connected or not. The results are limited and optimized

according this ranking mechanism.

The remainder of this section gives an overview of important semantic ranking cri-

teria and explain why they are useful for our a�inity ranking approach and discuss

how they contribute to measuring a�inity for a resource AR. We define this hybrid

ranking criterion as:

AR = wc ∗CR +wn ∗NR +wp ∗PR (5.1)

where we make sure that the weights are normalized to an application global con-

figured constant k:

k = wc +wn +wp (5.2)

For each criterion users can configure a weight w, this can be used to optimize

the focus on resources. In our evaluation we show the e�ectiveness of our search

infrastructure with the presented ranking criterion and make a distinction between a

personalized (wp =wc) and anonymous search case (wp = 0). Proximity to the search

context CR is one of the main indicators of a�inity. Novelty NR and personalization

PR then refine the ranking further. It is very important that the weights in the

a�inity criterion AR are adequately configured. Depending on the use case di�erent

factors might be more important than others. Novelty becomes more important

when di�erences in type of relations are essential, so wn should be relatively high.

The amount of personalization can be taken into account as well by making wp

greater than 0, typically in the order of magnitude of wc. All weights are relative to

the proximity, which always is taken into account (wc > 0). The weights depend on

the application and the goal of the use case.

Proximity. In our case, the proximity to the context marks the number of relations

found in a path between two resources, that belong to the search context. The

context can be initiated by a user profile if the user so desires. Found resources
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can be related to it to personalize the ranking. In an anonymous search, the rela-

tionships binding the resources that represent the researchers input query keywords

determine the context. We measure “proximity” - how semantically related resources

are. A set of objects that are close in one context can seem quite unrelated in

another context. Distance between the resources (path length) is another way of

looking at this ranking criterion for the context. The further the distance between

two resources is, the less related they are, since the increasing distance between the

two resources also brings with it the fact that they do not really relate to each other,

but have common intermediate resources which relate to them both. This on its

own however does not guarantee a high quality relation between the two resources

at the start and end of the path.

A�er we have defined the resources and relations belonging to the context C we

define for each other resource R, out of the context, the proximity criterion CR such

that

d = distance(C,R) = min
Ck∈C

distance(Ck,R) (5.3)

d is the minimum of distance(Ck,R), the distances of the optimal cost paths between

each resource Ck in the context C and R, as computed by the search engine. The

optimal cost path depends on the path algorithm’s configuration. For the minimum

distance k = min. We use d to normalize the expression and then look for each

intermediate resource Ii in the path between C and R whether it belongs to the

context or not. The path between Cmin and R can be noted as: (Cmin, ..., Ii, ...,R).

xi =

{
1, : Ii ∈C

0, : Ii /∈C
(5.4)

CR =
∑

d−1
i=0 xi

d
(5.5)

The distance(C,R) is at least 1. The context typically consists of the mapped key-

words, the relations between those resources and their properties.

Novelty. In research, unexpected discoveries make interacting with the search re-

sults more interesting. A�inity with resources in research is greatly a�ected by new

discoveries and always searching within the same kind of resources and relation-

ships does not guarantee it. We want to encourage sudden shi�s of paradigm in

paths. More shi�s lead to higher novelty. This means that if a path switches from
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relations that describe people to relations that describe countries, the novelty score

will be high, depending on how di�erent the new paradigm is from the original and

how many shi�s there are.

We compute novelty NR for a resource R along the relations belonging to the path

from the nearest resource c of the search context C. We need to define the domain

Di for a relationship Ri, typically these are all other predicates for which there exists

a connection to, such that

ni =

{
1, : Ri /∈ Di−1

0, : Ri ∈ Di−1
(5.6)

which means that we check whether Ri belongs to the domain of the previous rela-

tion Ri−1 and i > 1. D0 is the domain of R0 (the first relation in the path). Except for

the first relationship we can thus compute the novelty of the relation belonging to

the path between C and R.

NR =
∑

d−1
i=1 ni

d−1
(5.7)

We note that NR = 1 if none of the relations in the domain of the previous relation

and NR = 0 if all relations belong to the same domain.

Personalization. To optimize and ensure a personal ranking we need to properly

connect the found resources with the user’s profile. We combine the graph of re-

sources and the graph of the user profile through common concepts and cross links

connecting the two graphs. Even in an anonymous search session we can optimize

the ranking of the found results according to the users search context defined by the

input keywords and selected resource representations.

We define n as a property of the user. Each user has a set of properties U and an

element of this set is n. We compute the personalization criterion PR for a resource R

as the averaged sum of all properties of R related to the personalized context, which

consists of the properties n, resulting in following equations:

dn = distance(R,n) (5.8)

where the distance dn between R and n is computed along the path between R and

n. The exact configuration of the distance depends on the search engine and more

specifically, the configured path algorithm. The inverse distance 1
dn

= 0 if there is

no path. We compute PR by iterating over each n ∈U .

PR =
1
|U | ∑

n∈U

1
dn

(5.9)
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5.3 Implementation

The query processing technique leverages annotated semantic graphs by relying on

the fact that the vocabularies used in them can be used to link the source reposito-

ries. The relate module expects that there is some other component, in this case the

path-based storytelling component, that can relate a particular resource with more

information about it. This could be resources directly connected tot the resource,

but also indirectly connected resources. Similar data of di�erent sources can thus

be described in using the same terms, making it possible to explore these sources

with the same queries. Each of these resources is connected through a link, and

these links are semantically annotated. These annotations are important to rank

the resulting resources but also to give an indication to the user of the meaning of

each relationship.

Underlying datamodel

Semantically annotated data in RDF, supports a flexible mediator-exchange model.

RDF has several very appealing properties that position it as the exchange model

of choice. The implementation uses the RDF data model to exchange the data and

the results because it can act as a flexible mediator between various applications

and across diverse infrastructures of complex heterogeneous data. RDF provides a

graph representation of data and frees the data modeller and application developer

from a priori having to define a schema.

Deployment

Figure 5.6 shows the deployment of the implementation. The actual search ‘engine’

is spread over both client and server. As bridge between front-end and back-end

it deals both with processing results for the user and taking care of more low-level

dealing with data in the back-end.

On client-side the engine’s main function is to act as controller, in model-view-

controller so�ware-architectural terms. It is there that the modules are located

responsible for transforming the results for viewing and visualization, looking up

resources and relations between resources.

On server-side it provides the business logic and model level abstraction. The main

modules there are the search and provider function.
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Query Processing
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HTTP
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+ describeResource
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Figure 5.6: The query processing implementation is deployed both client-side and
server-side.

The search function may be implemented depending on the strategy according to the

‘strategy design pa�ern’ [10]. The strategy design pa�ern allows the configuration

of di�erent contexts with the same programming interface and input-output format.

The calls originate in this case from the user and going via the client-side part of the

engine. Depending on the context, di�erent strategies are chosen to answer to the

call, but the response then again goes through the same interface. In a broad sense,

the top-level modules consist of such contexts. Contexts for dealing with keyword

lookup requests and contexts for dealing with resource requests, for example to find

neighbours of a resource or paths between resources.

The provider function takes care of pre-loading the data from the Web into the index.

It organizes data adequately for each resource from the configured data sources.

Index

Separate fields are foreseen for the unique identifier, type, label, and description.

The remainder of the structured data is put in a separate field together without

special distinction of certain a�ributes or relations. The properties type and la-

bel are indexed separately, because they are required for each linked data entity

described in RDF1 and allow retrieving entities by label and disambiguating them

by type. The indices contain a special type of field ntriple that makes use of the

SIREn Lucene/Solr plugin that allows executing star-shaped queries on the resulting

linked data [7]. Star-shaped queries are essential to immediately find neighbouring

1h�p://www.w3.org/2009/12/rdf-ws/papers/ws17
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entities for each entity and to ultimately find paths between non adjacent nodes.

We chose Lucene because it is the defacto industry search engine for text search, it

is stable, as its implemented based on state machines. Solr is implementation on of

the most advanced HTTP layers on top of Lucene. Furthermore Solr was the only

search framework at the time where a plug-in (Siren) was available that had a fast

compressed data structure for storing triples inside a Lucene document. Even at the

time of writing, Lucene/Solr and the more and more common ElasticSearch is still

one of the most advanced search indices available.
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5.4 Evaluation

We have evaluated the e�iciency and e�ectiveness of a proposed query process-

ing technique with a sample configuration and context. The execution of consec-

utive benchmarks facilitated tweaking the configuration for optimal back-end per-

formance. Additionally we tested the retrieval quality with the sample test queries

shown in Table 5.1. Expert users reviewed its information retrieval potential. The

expert users did not interact through a user interface but were given the list of

keywords and resources, literally as in the table, and the results were presented

similar to the output of the query processing before visualization. They did not come

in contact with, the more complex, underlying linked data model. They received

the results under the form of ordered lists, according to the ranking scores, with

dereferenceable URL’s.

Another group of users which we must bear in mind are domain experts, as they

are likely to have a very good understanding of data structure and content in their

domain, and bring this knowledge to guide both browsing research and targeted

searches. For this group we had to extend the sample to a full-fledged use case that

included a proper interactive search interface as well. This evaluation is detailed in

Chapter 8.

This section firstly explains a new benchmark model we used to measure the inter-

action between users, the semantic search engine and the interface. It then provides

information about the datasets and finally reports on the applied and executed

benchmark results for the experimental setup we implemented for our use case.

Benchmark Model

Existing work on benchmarks for semantic search, SPARQL queries, and linked data

retrieval cover only the “bo�om layer”, the machine interface, of our needs for evalu-

ation since our semantic search relies on user pre-sets and content the user published

on social media. Some techniques of our model, like the path-based storytelling,

use SPARQL queries for certain operations. Therefore, we considered the use of

SP2Bench [18] and others alike, but it would not cover all aspects of the search

functionality we implemented.

The e�orts on defining benchmarks for semantic search are evolving [3, 9] and

they delivered only single-experience recommendations so far. In the experience
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report [19] the authors: reflected about their experience over years on evaluation

of semantic search systems (i); concluded that such evaluations are generally small

scale due to the lack of appropriate resources and test collections, agreed perfor-

mance criteria and independent judgment of performance (ii); and proposed for

future evaluation work: “the development of extensible evaluation benchmarks and

the use of logging parameters for evaluating individual components of search sys-

tems” (iii). Led by these findings and absence of adequate benchmarks that cover all

facets of our approach we necessitated to define our own user-centered benchmark

for social semantic search.

The goal of the benchmark is to evaluate the search engine with datasets relevant

to researchers available on the Web of Data. The benchmark aggregates the other

related approaches and optimizes aspects for use with interactive exploration, social

data, Linked Open Data and involvement of end-users. As the benchmark focuses

on end-users, the benchmark requires input from users to define the queries and

measure the parameters.

Parameter Definition. The benchmark consists of variable parameters for input:

a set of test queries Q and an experimental setup X = 〈O,V, I〉. X contains the

semantic search engine under test O, an interactive search interface V and indexes

static datasets S and a dynamic dataset, for example containing links to social media,

D, in a search index I, so I = 〈S,D〉.

Baseline. As a baseline for the query engine O we used SPARQL transitive paths,

basically giving the shortest possible chain of links connecting two entities. This is

not standard SPARQL but is supported by some RDF stores like Virtuoso.

�ery Selection. A set of n queries Q = {q1, ...,qn} are identified by observing

queries asked by at least N test-users in a controlled experiment, to guarantee a

‘varied’ mix consisting of distinct query pa�erns. Each query qi consists of a number

of keywords ni fi�ed by selecting examples wki in the query pa�erns the test-users

were interested in: qi = {w1, ...,wni}.

Indexed Datasets. It is important that both indexed datasets in the index I, the

static S and the dynamic D, have su�icient links between them. If all test-users can

start a personalized search, they can find out how several of their preferred keywords
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are related to their user profile. Each test-user profile is expressed as a set of triples

in S.

Measures. The main parameters under test are the engine O and the interface V .

The test-user interacts with the data through the interface V and the engine O is

the bridging component between V and the datasets in the index I. All intermediary

interfaces are optimized according to the semantic model for the selected datasets.

Key-variables.

We measure the e�iciency and e�ectiveness to obtain insight in how well the system

performs and its individual components interact. Each of these measures indicate a

di�erent aspect of the search engine.

E�iciency. The e�iciency learns how the engine with its implementation E be-

have when parsing queries, such as the test set Q. The e�iciency is divided in

three independent sub-measures: (i) quality, (ii) complexity, and (iii) performance.

The quality indicates how much relations between concepts a�er translating the

keyword queries can be found. Complexity and performance focus on time and

space (memory-usage) requirements for executing the translation and finding these

relations.

E�ectiveness. E�ectiveness E on the other hand indicates the overall perception

of the results by the users taking into account expert-user feedback. This is expressed

as the search precision P [17].

P =
# relevant objects
# retrieved objects

(5.10)

The reason why we have only measured precision but not recall is because comput-

ing relevant results for the entire dataset is complex due to its size and dynamic

nature (D). However we can compute the relevance for each result set. Each query

qi ∈Q delivers a di�erent number of relevant results, which makes the usage of mean

average precision MAP an important measure. The aim of this averaging technique

is to summarize the e�ectiveness of a specific ranking algorithm over the collection
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# Keywords
Q1 LDOW, Bizer
Q2 ISWC2012, Lyon, France,
Q3 ISWC2008, linked data, Germany
Q4 linked data, WWW2012
Q5 Selver So�ic, Semantic Web, Michael Hausenblas
Q6 Selver So�ic, linked data, Information Retrieval
Q7 Laurens De Vocht, Selver So�ic
Q8 Laurens De Vocht, Selver So�ic, 2011
Q9 Laurens De Vocht, linked data, WWW2013

Q10 Chris Bizer, WWW2013, ISWC2010

Table 5.1: Selected queries by test-users, keywords matching to loaded user profiles
are underlined.

of queries Q.

AvP(qi) =
∑

Ai
k=1 P(k) · rel(k)

# relevant objects
(5.11)

where Ai is the number of actions taken by the user when resolving the query qi and

P(k) is the precision in the result set a�er user action ak in search iteration k−1 via

the interface V and rel(k) equals to 1 if there are relevant documents a�er ak and 0

otherwise. As a result, the items contained in P(k) are k (where k > 0) steps away

from the matched keyword search context items P(0).

MAP =
∑qi∈Q AvP(qi)

| Q |
(5.12)

�eries

For the evaluation, we restricted our tests to 10 queries which are answerable by the

data sets we indexed. These are shown in Table 5.1. These queries representatively

cover some of the commonly used search terms within a researcher context: Search

for an event (Q1,2,3,4,9,10), a person, author or group of authors (Q1,5,6,7,8,9,10) or

scientific resources (Q1,2,3,6,9,10).

Each search runs through the scenario: users enter the first keyword and select

the matching result that is resolving their search focus at least one step forward.

The users view selected results and can expand them at any time except when the

research selects the suggestions from a typeahead interface. Parallel with this select-

ing and narrowing down the scope, our engine finds relations between the resources

and reflects the context. Additionally neighbours which match the selection are

81



5. Query Processing

found. In the case that users logged in via their Twi�er account or Mendeley account

or both at same time, their profiles of researcher personalize the boundaries of the

search space.

Experimental Setup

We will now explain the experimental setup we have deployed for our system im-

plementing the presented search infrastructure.

Table 5.2 highlights statistics on the used datasets.

Dataset #Triples #Instances #Literals
DBpedia 332 089 989 27 127 750 161 710 008

DBLP (L3S) 95 263 081 13 173 372 17 564 126
COLINDA 143 535 15 788 70 334
Social LD 41 438 7 344 15 350

Table 5.2: Datasets used in the search experiments.

Index Configuration. Table 5.3 shows the statistics of the size of the indexed

data sets. The total time for building all indices for all the data sources is about 6

hours. Throughout all the experiments, we use a 8-core single-machine server with

16GB RAM running Ubuntu 12.04 LTS.

Index #Resources (K) Temp Space (MB) Size (MB)
DBpedia 28 384 38 000 30 000

COLINDA + DBLP (L3S) 3 307 15 000 12 000
Social LD 7 5 170

Table 5.3: Resulting index properties based on input datasets.

To ensure maximal scalability and optimally use available resources, we primarily

use simple, but e�ective measures based on topical and structural features of the en-

tities in the search engine. Relations are only computed between pairs in a subgraph

of the larger dataset. Every resulting relation as a path between entities are exam-

ined for ranking. Only entities belonging to a specific search context are requested.

Since the result set of entities might be very large, this “targeted” exploration of

relations is essential for the e�iciency and scalability.
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Resource Alignment. Our earlier results of a case based study, containing several

types of user profiles using Twi�er and Mendeley to varying degrees, indicate sensi-

tivity, precision and accuracy when linking tags, authors and articles to conferences

[6]. Conference tags were be�er recognized than other tags, this is not surprising

because we optimized our model for this task. We never obtained false positives

when interlinking authors and articles. When we interlinked followed users on

Twi�er as authors, we encountered a high amount of negatives. All found links

of users as authors were correct but there is room for reducing false negatives.

E�iciency

In order to measure the e�iciency of our approach, we stored data about all executed

queries: source, destination, all the hops of the path with the links between them

and the execution time. We qualify the combined datasets and our algorithm by

measuring the average path length and the resolved paths. A found path is relevant

if it belongs or has entities relevant to the search context. We measured the hit-

rate, distribution of execution time and path lengths for a test set. We compared the

results with some metrics used when developing the pathfinding algorithm [5].

�ality. The queries Q1 to Q10 were translated into 576 pathfinding queries be-

tween pairs of resources and 400 of those were connected. About 76% were found

with the time frame of the evaluation (5 minutes), which is high, considering the

relatively small number of resources that had to actually be checked compared to the

size of the entire dataset (31.6M resources). Checking a resource means retrieving

the resource from the index and identifying the linked resources (neighbours).

The length of the calculated paths is between 0 and 8 hops, a clear majority is be-

tween 4 and 6 hops as shown in Figure 5.7. Paths of length 3 and 5 are exceptionally

low represented. This is due to the focused nature of the search queries and the

resulting manageable number of pathfinding queries. It seemed that the majority

paths always go via some publication (publication - author - other publication),

which besides a direct link between the resources almost always leads to an even

number of hops. This is something particular for the dataset structure and the fact

that people mostly look how authors are related. Therefore the majority of paths

will have this pa�ern as a structure. It would not really make sense to consider the

average path length, however it is very close to 4.
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Figure 5.7: There are an unexpected low number of paths with length 3 and 5.

Complexity. Figure 5.8 and Figure 5.9 show respectively the time and space com-

plexity. Except for paths with a length of 3, the average complexities do not increase

obviously linearly or exponentially. The engine performs di�erently than in Chap-

Figure 5.8: Time complexity on a logarithmic scale

ter 6 because of the multiple datasets we loaded compared to testing with only a

single index (DBpedia) loaded [5]. The current results were more volatile and had

the pinpointed unexpected deviations with path lengths 3 and 5 from what was

expected. This is likely because: (i) the queries were not randomly chosen, (ii) the

number of queries was much smaller, and (iii) the dataset is not homogeneous. Some
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Figure 5.9: Space complexity

paths hop between datasets while others do not. These peculiarities could not occur

in the original evaluation. This finding is neither ‘good or bad’, but it is relevant to

notice that the selection and nature of datasets does impact the distribution of path

lengths and influences time and space complexity.

Performance. The performance of the algorithm is promising. Even though the

configuration was not optimized for speed, but for quality, and was run for the

evaluation on a single server only, the algorithm found over 25% of paths in a couple

of seconds. Within 30 seconds it found already results for over 50% of the path

queries. This is fair as a tolerable waiting time for users is about two seconds [14],

but there is room for improvement as the more complex queries take more time to

execute. Resolving a keyword and retrieve the matching entities happened instantly.

Figure 5.10 shows distribution of the execution times. The search interface and the

search engine execute the necessary queries asynchronously and in parallel. While

executing the queries – and early results are coming in – the user can immediately

start exploring.

E�ectiveness

Based upon insights a�er the first run we reevaluated our system with specific focus

on independent judgment of query result and on a comparison to a valid state-of-
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Figure 5.10: More than half of the relations are found in 30 seconds.

the art technology baseline aiming at confirmation of our achieved good results on

retrieval.

Baseline. Virtuoso is one of the most common triple stores. It has support for the -

non-standard SPARQL - transitive paths and has its own built-in index for text search

(via the bif:contains property). In many projects dealing with the same amount of

data(sets) as we did, it would be the de-facto choice. Therefore we consider it as a

baseline for our solution. For the benchmarks we used version 6.1.3127. We compared

executing the ‘underlying’ queries and the keyword queries in the same way. For

example to find non-direct relationships between two resources we used the query

as in example Listing 5.1

Two expert-users evaluated independently the results of the baseline. We computed

a F-Measure (or positive specific agreement) of 0.68 and a chance corrected agreement

(or inter-rater agreement) of κ = 0.62 (where always −1 < κ < 1). According to

Landis et al. [11] this level of agreement is substantial to verify that the judgment

across both of them is similar enough to be considered.

The mean average precision, MAP for the baseline is 0.52.

The results delivered by baseline approach shown in Figure 5.11 confirm our as-

sumption about very solid retrieval responsiveness with traditional SPARQL queries,

however the results from P(2) on are quite low.
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Figure 5.11: Precision results of the baseline for the test queries

SELECT ?link ?p ?step ?path
WHERE {
{
SELECT ?s ?p ?o
WHERE {
{ ?s ?p ?o }
UNION
{ ?o ?p ?s }
}
}
OPTION ( TRANSITIVE,
t_in(?s),
t_out(?o),
t_no_cycles,
t_distinct,
t_shortest_only,
t_min (0),
t_max (20),
t_step (?s) AS ?link,
t_step (’path_id’) AS ?path,
t_step (’step_no’) AS ?step,
t_direction 3
) .

FILTER ( ?o = :Laurens_De_Vocht && ?s = :Selver_Softic )
}

Listing 5.1: SPARQL TRANSITIVE �ery between resources Selver So�ic and
Laurens De Vocht

Proposed Engine. To assess the e�ectiveness of query translation, the same ex-

pert users measured the precision and the mean average precision over all queries to

evaluate that the search algorithm used in our search engine returns enough high

quality relevant results for researchers to achieve their research goals e�ectively.

There was a F-Measure (or positive specific agreement) of 0.90 and a chance corrected

agreement (or inter-rater agreement): κ = 0.82. According to Landis et al. [11] this

level of agreement is almost perfect.
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In order to assess our search system we measured the precision of the results for the

queries in Table 5.1. To determine the relevance of each resource we relied on expert

judgment and we verified expected results against what comes out of the system ac-

cording to the ranking mechanism. We defined what the expected outcome scenario

was based on familiarizing with each of the visualized keyword searches and than

having an expert compare the output of the system against the predefined scenario

by checking each visualized item one by one a�er each expansion.

Additionally, we used personalized data to generate a user profile and project the

expected search results, see Chapter ?? for more details. This extension is specifically

important in the case of the queries with Selver So�ic and Laurens De Vocht, where we

loaded these test user profiles. We measured e�ectiveness using the search interface

specified in subsection 5.4 and as described in subsection 5.4.

We judged very precisely each result to enable a more accurate evaluation of the

context driven aspect of our search approach. The personalized queries Q5-Q9 have

been evaluated especially strict. This means that each found resource without direct

link to the person, event or topic specified by keyword, are considered a non-relevant

result. Even if the resource is relevant in the wider context, for instance a co-author

that corresponds to the person but does not fit to the specified event.

Figure 5.12 shows the precision over queries. With exception of Q1, Q4, and Q10,

queries with preloaded profile data (Q5-Q9) deliver more precise results than anony-

mous queries. This di�erence is because the main focus of queries Q5-Q9 is a person

which resolves initially very good within key mapping step, thus following results

keep the average precision high. �eries Q1, Q4, and Q10 have very high precision

since they have broader focus which includes more relevant results. The mean aver-

age precision MAP overall reaches the score of 0.60 which is high but not surprising

since the resources within the linked datasets are well-connected and interlinked.

The MAP we measured in is 8% higher than the baseline case. This first impression

strengthens our first evaluation and brings us more near to the confirmation of

hypothesis. However to explain the deviation between the results, an additional

detailed comparative analysis has to be done. Figure 5.12 shows the precision per

query distinguished by path length. As expected the precision decreases with the

length of paths. As the path finding progresses over extended links relation to the

core concept is becoming weaker. Encouraging however is that the first step of
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keyword search as well the path finding results of length one, always deliver the

results that exceed the value of mean average precision.
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Figure 5.12: Precision of the proposed engine for the test queries over di�erent path
lengths

Comparative Analysis. We compared the precision of both sets of results. We

have the baseline Virtuoso, which is an integrated system, vs. our proposed semantic

engine. While we could just average the expert results or choose on of the results

as a reference, we can definitely detect the overall tendencies that reoccur since

the inter-rater agreement is su�iciently high, but we can also learn about the cases

where they disagree [8]. Therefore, we looked at two scenarios: a strict scenario

(both need to agree on relevancy) and a tolerant scenario (at least one needs to

judge a result relevant). The results are shown in Figure 5.13 and Figure 5.14.

To be able to compare the results, we included precision until a certain level. Our

engine did not contain any items beyond a certain level, P(3). In most cases, this

means that the displayed results are all contained within a range of 3 steps from

the matched search keyword context. The baseline results are very low from P(4):

only a couple of resources at this distance from the search context were considered

relevant. At P(5) there are no more results. We choose a strict and tolerant scenario

where we either require both experts to judge an element relevant or not respectively.

We computed the di�erence between the precision expressed as ∆P = Pproposed −
Pbaseline.

Overall we see the tendency that the proposed engine performs more precise or

on par (very li�le di�erence) with the baseline, except for Q5 and Q8. Q8 scored bad
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Figure 5.13: The strict delta precision is overall be�er for the proposed engine except
fo Q5 and Q8. The be�er results at P(2) remarkable.

because of the failed interpretation by our engine of 2011. In either case the precision

is there only moderate.
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Figure 5.14: The tolerant delta precision is overall similar to the strict delta precision.
The proposed engine’s precision is less distinct and the results Q2, Q3 and Q9 have
less precision compared to the baseline and the strict delta precision.
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In the tolerant scenario, we detect overall similar results, but they are more clear-

cut, except for Q2, Q3 and Q9. Mainly due to improved results for P(0) and P(1) for

the baseline. Q2, which was on par in the strict case, scores here obviously be�er for

the baseline, particularly because at P(1) one of the reviewers thinks the baseline

is more precise. Q2 is a tricky query because, ISWC2012 did not take place in Lyon,

France. The di�erence is even more distinct for Q9, as the baseline scored clearly

be�er in the strict case. This is because we found there a larger part of the results at

P(1) relevant. Q9 contains a topic keyword, so it is not trivial for an (expert) user to

judge if the results matching this keyword were relevant to both of the keywords.

We also see in Q2−Q3 that the judgment of P(0) is on par in the tolerant case but

much worse for the proposed engine. This is because the expert users did not agree

about the relevance of the keyword mapping in the proposed engine. There is an

remarkably strong similarity of the results of Q1, Q4, Q6, Q7, and Q8. These are

also the cases where the proposed engine has the highest precision. This finding is

backed with a strong agreement between the raters for both systems.
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Summary

In exploratory search scenarios, intermediary link dynamics could lead to relevant

discoveries and are therefore not to be neglected. The technique presented in this

chapter contributes to data authenticity by guaranteeing that the final output to-

wards the user has useful results in the application domain. Because the technique

works with a linked data structure, it is applicable to other domains, if it is structured

by adapting the chosen vocabularies according to the datasets used. The evaluation

focused not only on pure information retrieval metrics, such as precision (which is

more biased towards the final result), but also highlighted how the search e�ective-

ness was gradually influenced by the user’s actions.

In terms of e�ectiveness, the proposed engine is more precise than a raw SPARQL

baseline for query well-defined contexts, i.e. consist of keywords in which the mean-

ing is unambiguous, for example when a specific conference, author or publication

are combined in a search. On the other hand when there are inconsistencies or vague

terms, such as topics or years, even mismatches in the query context, expert users

disagree about the e�ectiveness: they judge the relevancy of entities in the results

di�erently.

In terms of e�iciency, facilitating exploration and search across semantically aligned

data sources is feasible as the evaluation showed a linear execution time complexity

(scaling with increasing number of hops between resources) and an optimized space

complexity. The typical alternative – constructing separate search queries for each

of those sources – is a laborious task.
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Chapter 6

Path-based Storytelling

The computer can’t tell you the emotional story.

It can give you the exact mathematical design,

but what’s missing is the eyebrows.

—Frank Zappa.

This chapter investigates algorithms to generate semantically annotated paths that

‘tell stories’, an important technique to explore and discover ‘serendipitous’, mean-

ingful and non-trivial connections between multiple resources in linked data on the

Web. The weights of links in paths and heuristics to order candidate resources form

the essential building blocks of the algorithm’s architecture and address di�erent

aspects of serendipity. Furthermore, optimizations of the base algorithm tweak the

link estimation and the selection of resources in a path. Experimental findings with

path-based stories in DBpedia indicate the performance of the base algorithm and

measure the improvements when applying optimizations.

6.1 Introduction

Path-based storytelling can be seen as a particular kind of querying data. Given

a set of keywords or entities, which are typically, but not necessarily dissimilar,

it aims at generating a path by explicitly relating the query context with a path

that includes semantically related resources. The semantic relations in linked data

between a single chain of links (or nodes) define how two concepts are related to each
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other. For example, in DBpedia1, we can find associations being a direct link such as

Paris is the capital of France; but also longer chains such as Paris is the birthPlace

of Martine Aubry, which is the successor (as First Secretary of the Socialist Party)

of Francois Hollande, which is the president of France. Any single chain of links

preserves the value of well-assigned information fi�ing to a context and concepts

of the underlying graph. This kind of search and exploration algorithms serves the

objective of qualitative informational retrieval and knowledge discovery.

Relating chains of indirectly connected resources through paths provides users the

ability to explore concepts in a non-traditional, more entertaining and educational

way. Many state-of-the-art pathfinding approaches aim at combining sequences

of resources that coincide with the user’s expectations. According to Heim et al.

“real discovery is only possible with a human involved, since only the user can ulti-

mately decide if a found relationship is relevant in a certain situation” [27]. Graph

algorithms are designed to make optimal use of available computation resources to

find paths in structured data in a variety of applications (e.g. navigation systems).

Applying them to linked data can facilitate the resolution of complex queries that

involve the semantics of the relations between resources. In doing so, it is a challenge

to improve and tailor existing approaches to match user expectations so that users

are able to explore relevant data as much as possible. The evaluated measures

(performance, semantic relatedness, and relevance) for the base implementation and

optimization of the proposed algorithm address research questions RQ1 and RQ3.

Motivating Examples

Finding precise relations within chains of linked entities is not only interesting for

semantic search in fact-based knowledge repositories or digital archives. Path-based

storytelling is also applied for example in entertaining applications and visualiza-

tions [40] to enrich related linked data resources with data from multimedia archives

and social media [14], as well as in scientific research fields such as bio-informatics

where biologists try to relate sets of genes arising from di�erent experiments by in-

vestigating the implicated pathways [30], discovering stories through linked books [10],

or refining event contexts in named entity recognition [39].

1http://dbpedia.org
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Serendipity

The aspects that make a path or story ‘relevant’ are captured in the term serendipity.

The term depicts “a mixture between casual, lucky, helpful, and unforeseen facts, in

general but also in an information context” [21]. This means that a path-based story

should be relevant but include things that the user did not expect. In fact, when users

during exploration not only want to confirm, but also extend knowledge, discover

and even be surprised, they do not want to feel unsure while doing so. This means

that users can always relate presented facts to their background knowledge.

Semantics

When the links between nodes are semantically annotated, such as in large real-

world linked data graphs, users are able to directly interpret the transitions between

nodes and thus the meaning of a path. Applying pathfinding approaches increases

arbitrariness due to the large number of possible relations that connect two entities

in a query context. This arbitrariness becomes clearly visible precisely because of

the semantics. Even optimal paths frequently show a high extent of arbitrariness

caused by the inevitable increasing number of nodes and sometimes loosely related

links among them: paths appear to be determined by chance and not by reason or

principle and are o�en a�ected by resources that share many links. In addition,

large real-world linked data graphs typically exhibit small-world properties. This

means that the graphs o�en consist of sub-graphs which have connections between

almost any two nodes within them and contain nodes with a very high degree. For

example, countries are nodes with a very high degree: every person and city link to

the country they belong to and countries are frequently linked to other countries

which then link further to other persons and cities.

Applying Graph-based Algorithms

Applying path algorithms to linked data has the advantage that the links between

nodes are annotated, thus introducing semantics. This allows interpretation of the

transitions between nodes and the meaning of each path. It is not trivial to rely on

linked data queries when designing an algorithm to find path-based stories in linked

data graphs. State-of-the art RDF stores like Virtuoso or Allegrograph [33] or graph

databases like Neo4J are not designed specifically for this purpose, but it may be

argued that they provide API’s that would allow for the development of algorithms
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that work on top of them. In that case, the database delivers only the functionality

to do local exploration, but the intelligence has to come from the path algorithm.

SPARQL is not able to query for arbitrary paths, it is currently only possible to check

for the existence of an arbitrary connection, so-called ‘property paths’ (SPARQL 1.1).

Most implementations of pathfinding algorithms are application specific, for in-

stance routing in navigation systems for vehicles [4, 32]. Pathfinding is a well known

issue in graph theory and mathematics [7]. It refers to finding a path between two

nodes in a graph. Various algorithms have been described to solve this issue in

graphs. The two most common algorithms are Dijkstra [18] and A* [24]. The former

finds a path by selecting nodes with the shortest distance to the source. This distance

is calculated using the weight of the edges, resulting in the optimal path. The la�er

extends Dijktra’s algorithm with a minimal approximated remaining distance, based

on a provided heuristic, between a node and the end node. This allows the algorithm

to evaluate less nodes, which increases its performance. During the execution of the

algorithm evaluating a node is an expensive operation because data needs to be

retrieved and checked. If the data needs to be retrieved via the web, this causes

an additional delay making the operation even more expensive. A* commits to be

memory e�icient, but that does not mean at larger distances it is still very complex

to find paths. Nevertheless, adequately limiting of the search scope a priori and

fi�ing weights and heuristics at runtime, contribute to the overall execution.

Cui and Chi [9] reviewed A*-based algorithms and techniques from di�erent per-

spectives but did not investigate the semantics. Eliassi-rad and Chow [20] used on-

tological information, probability theory, and heuristic search algorithms to reduce

and prioritize the search space between a source vertex and a destination vertex.

They developed two heuristics for semantic graphs to be used with the A* algo-

rithm. In the biomedicine domain, He et al. [26] demonstrated how graph-theoretic

algorithms for mining relational paths can be used together with Chem2Bio2RDF [6]

data to extract new biological insights about the relationships between its data. They

presented a scalable path finding algorithm that works on RDF to find complex

relationships between biological entities, e.g., genes, compounds, pathways, and

diseases. Pathfinding has been performed in metabolic graph by searching for one

or more paths with lowest weight. The weights assigned to each compound were

the number of reactions in which it participates.

A* is based on a graph representation of the underlying data (i.e., resources and
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links between them define nodes and edges, respectively) and determines an opti-

mal solution in form of a lowest-cost traversable path between two resources. The

optimality of a path, which is guaranteed by the A* algorithm, does not necessarily

comply with the users’ expectations [13].

Presenting Paths as a Story

Each path will contain multiple facts that may contribute to a story. This is because

each step in the path is separated with at least one hop from the next node. For

example, to present a story about Carl Linnaeus and Charles Darwin, the story could

start from a path that goes via J.W. von Goethe. The resulting statements serve as

basic facts, which are subject-relation-object statements, that make up the story.

A set of statements is not a presentable story. The story’s statements may originate

from multiple paths. It is up to the application or visualization engine to present it to

end-users and enrich it with descriptions, media or further facts. Table 6.1 exemplary

explicates the idea of statements as story facts.

Table 6.1: The statements from which a story can be generated.

About Relation Object
Carl Linnaeus and Charles Darwin are scientists
J.W. von Goethe influenced Carl Linnaeus and Charles Darwin
J.W. von Goethe and Charles Darwin influenced Karl Marx and Sigmund Freud

6.2 Architectural Model

A component for path-based storytelling, shown in figure 6.1, consists of a ‘pathfinder’

that focuses on the execution of the algorithms. The pre-processor takes care of

selecting the required data and transforming it to the adequate data structure. The

post-processor handles the results of the pathfinding algorithm and prepares them

for further handling by the bridge component taking care of the query processing.

The proposed base algorithm, which is given in Algorithm 1 takes a start and des-

tination resource as inputs, and returns a possible path between them. It consist of

two parts: pre-processing and graph browsing. This approach enables finding paths

in linked data graphs and makes use of the A* algorithm during the iterate step.

The algorithm uses the blackboard design pa�ern, which provides a computational

framework for the design and implementation of systems that need to integrate
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Results Visualization

Index

Query Processing

Path Based 
Storytelling

Pre-process

Find paths

Post-process

Figure 6.1: Three main modules for path-based storytelling: pre-processor,
pathfinder and post-processor.

large and diverse specialized modules, and implement complex, non deterministic

control strategies [31]. Additional steps make the approach work because the A*

algorithm is memory intensive:

• Pre-processing is required to generated the indexed linked data.

• A�er the initialization, the part of the graph being considered for inclusion

in the blackboard, grows with each iteration and it is decided if the search

should continue. In the blackboard the graph is represented as an adjacency

matrix. Section 6.2 goes into details about this process.

Figure 6.2 shows how the blackboard is used for the execution of the A* algorithm.

The figure shows the points where the base algorithm has to decide upon the in-

clusion or exclusion of certain resources to make the algorithm work and deal with

memory issues. Each iteration follows these steps:

1. filtering the input graph;

2. rank reduction of the graph’s adjacency matrix;
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Data:
start: source

destination: target

Result:
path between source and target

adjacency_matrix = initialize(start,destination)
iteration = 0
path = False
stop_condition = not path and iteration < MAX
while stop_condition:
path = iterate(adjacency_matrix)
iteration += 1

termination(path)

Algorithm 1: The algorithm iterates over the adjacency matrix until the stop
condition is met.

3. check if a path exists;

4. if no path exists: (a) reiterate, or (b) compute the path ;

5. (a) if no path is found the graph will be expanded; (b) if a path is found, the

algorithm will determine the rank of the path: if the ranking score of the

highest ranking path is su�icient terminate, otherwise reiterate.

Pre-processing

The algorithm converts the source data to lists of triples and groups them in docu-

ments per subject and loads those documents into an index. Figure 6.3 shows this

for example for a graph containing resources related to France and Germany. The

index contains references (URIs) to all the considered candidate-resouces. The index

is an e�icient method to instantly retrieve a resource given a match pa�ern.

Finding Paths

Given the index, source and destination, the base algorithm outputs the path be-

tween source and destination nodes as a list of all the URIs and the predicates

connecting them. The algorithm iterates over a growing pool of candidate resources

that might lead to a path. Figure 6.4 shows that during the process of finding paths
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Indexed Linked Data

5a. expand

Blackboard

1. filter

Select which links?
How many?
Which one first?
e.g. blacklist 
and/or whitelist

?

How important is each link?
e.g. Combined node degree 
+ Jaccard Dissimilarity

2. rank reduction

Which nodes to keep?
e.g. Node centrality
based on PageRank

4a. reiterate

3. path exists?

4b. compute paths

Which nodes to expand?
How many?
e.g. Highest central first,
optimized increasing number at
experimentally optimized rate

1.

2.

3.

5b. ranking

How to rank paths?
How many paths to compute
e.g. One, the top ranked, is
based on the lowest weighted path.

top rank 
high enough?

?

When to stop?
e.g. as soon as a
path is found

iteration

Figure 6.2: The overview of an iteration of the graph-based storytelling approach,
a�er initialization. The questions that the algorithm ‘asks’ at each step during the
process are shown in the text bubbles.

Path Based 
Storytelling

Pre-process Index

initiate

:Republic

:France

(...)
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documents

"France"

"Germany"

uri: 
     :Germany
label: 
    "germany"

:Germany

:France

:Germany

:Republic
:Berlin

:Berlin

Figure 6.3: Pre-processing resources

between France and Germany, the pool of nodes taken into consideration is expanded

on both sides. The links between candidate resources are verified against a list of

acceptable paths. This ensures quality of the paths and avoids senseless or trivial

connections between the resources. The users are only interested in meaningful

links, so the algorithm makes optimal use of the semantic properties of each re-
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Path Based 
Storytelling

relate
dbpedia:Germany

dbpedia:France

(...)

paths

? Find Paths

Figure 6.4: Finding paths between resources. The dashed ellipses show the expand-
ing pool of candidate nodes starting from the indexed documents (marked grey) of
the start and the destination node.

source. The base algorithm consists of three main steps: initialization, iterations,

and termination.

Initialization. The algorithm fetches all the children of the start node, named

source, and the destination node, named target. A global set containing references

to all resources is retained, as in for example Table 6.2. In the example is Paris the

source and Barack_Obama the target. Next, all the children of source and target are

Resources
:Paris
:Barack_Obama
:France
:Ei�el_Tower
:United_States

Table 6.2: Example global set of resources

stored in the global set with references to the original resources. Table 6.3 shows

that each child is also a set with the resources as keys, and that the predicates are

linked to it as values.

These data structures are converted to an adjacency matrix. The adjacency matrix

represents which resources have a direct link to each other. The use of an adjacency

matrix allows implementing A* with low-level math libraries. A list with positions
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:Paris
:France :capital
:Ei�el_Tower :monument

Table 6.3: Example resource with predicates and objects

corresponding to the row and column numbers refers to the resources stored inside

the global set. The resources are kept also in a list with index positions:

resources = (0 = Paris,1 = Barack_Obama,2 = France,3 = Ei f f el_Tower,

4 =United_States)

The positions in the list resources correspond with the rows and columns of the

adjacency matrix in Table 6.4.

The adjacency matrix is a symmetrical sparse matrix, as most of the cells are 0. Most

of the cells are 0 because there is no direct link between most resources. Note that

index does not distinguish between forward and backward links. This has the benefit

of resulting in a symmetrical matrix. For example: France is linked to Paris as "has

capital" and the inverse link "is capital of" is equally important. Only when there is

a parent-child connection or vice-versa a cell gets value 1. Links between the same

resources are ignored, resulting in a value of 0 in the matrix, to avoid loops.


∗ 0 1 2 3 4
0 0 0 1 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 1 0 0 0 0
4 0 1 0 0 0


Table 6.4: Row and column 0 show a link with row and column 2 and 3 which
correspond in the list resources with Paris, France and Ei�el_Tower respectively.

Iterations. Each iteration executes the A* algorithm on the resources that made

it in the blackboard during this iteration. Before the actual execution, each link be-

tween nodes is assigned a weight using a Dice-based [17] semantic weight measure:

degree(node) = sum(nodelinks)

weight(parent,child) = log(degree(parent)+degree(child))
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This semantic weight measure is perfectly suited as a metric for weighting the paths.

It was introduced to optimize the quality of the links. Rare nodes, nodes with low

probability that a random walk returns to the same node, lead to be�er and more

interesting paths. It was shown that a weight as the sum of the links of each node

is a valid measure for this [36].

A* requires a heuristic for estimating the distance between nodes. This allows the

sorting of the links in order of probability of leading to a path, without having to

calculate the actual distance, resulting into a performance gain. As a suitable heuris-

tic, we selected the Jaccard distance. The Jaccard distance measures dissimilarity

between sample sets and is complementary to the Jaccard similarity coe�icient.

The Jaccard similarity coe�icient is one of the most e�icient measures for semantic

relatedness [29]. If nodes share a lot of the same predicates, we assume that they

are closely related to each other. This makes it very likely to find a path between

them. We obtain the Jaccard distance by dividing the di�erence of the sizes of the

union and the intersection of two sets by the size of the union. The sets contain the

predicates of each node (nodex = set of predicates in node x).

jaccarddistance(nodeA,nodeB) =
‖nodeA∪nodeB‖−‖nodeA∩nodeB‖

‖nodeA∪nodeB‖

Once we have defined the weights for each link and defined our heuristic, we try to

find a path in the pool of resources using the adjacency matrix provided. If no path

is found, we find the children of the bo�om level nodes and add them to the set of

resources. They will be used in the next iteration. We update the existing parents

of all generations to see if there are any links to the newly added nodes. The child

resources added in each iteration form a generation. If we have found a path the

algorithm terminates.

Termination. A stop condition prevents the algorithm from running indefinitely

when no path is found. Since it is unlikely to find a path if no path has been found

a�er a while, the algorithm should stop. Therefore the algorithm can be configured

to stop a�er a limited: amount of iterations, execution time, number of checked

resources. This limit depends on the dataset and the target application. Another

possibility is to consider a threshold on the found paths: continue until a path that

obtains a certain score or rank.
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6.3 Implementation

This section explains the implementation of the base algorithm for path-based sto-

rytelling corresponding to the architectural model outlined in section 6.2. As men-

tioned in section 6.1, searching for relationships between Linked Data resources is

typically interpreted as a pathfinding problem: looking for chains of intermediary

nodes (hops) forming the connection or bridge between these resources in a single

dataset or across multiple datasets. Linked Open Data, linked datasets available via

the web, introduce challenges for pathfinding algorithms. In many cases centralizing

all needed linked data in a certain (specialized) repository or index to be able to run

the algorithm is not possible or at least not desired [15]. An optimized version of the

base algorithm is introduced to improve the serendipity of paths and make the im-

plementation more web-oriented and reduce the dependency on the custom index.

This e�ectively eliminates the pre-processing step required by the base algorithm by

implementing the optimized algorithm on top of triple pa�ern fragments [41]. This

allows to use the implementation in combination with any triple pa�ern fragments

compatible web server.

Base Algorithm

To implement the framework, we first indexed DBpedia and tested the performance

of a test set with random queries. The base algorithm was implemented using

Python with Numpy and exposed as a REST Service2 with Linked Open Data3 ex-

tracted from Wikipedia: the DBpedia dataset [5]. DBpedia defines linked data URIs

for millions of concepts. Many other initiatives create links from their datasets to

DBpedia, making DBpedia the most centralized dataset on the Web.

The index speeds up the information retrieval process and allows processing hun-

dreds of match requests on the graph per second. To be able to achieve this per-

formance, the data structure of each index entry needs to be optimal. SPARQL

endpoints and RDF stores are only scalable to a certain degree and the query time

depends on the size of the dataset [25, 33]. For the combination of frequency and

type of queries needed for our algorithm none of the current SPARQL endpoints was

suitable. At the time of implementing the base algorithm, "Semantic Information

Retrieval Engine" (SIREn) was a popular semantic index and proved to be the most

2Pathfinding Service. http://pathfinding.restdesc.org - last accessed: March 2017
3Open Data represented as RDF
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adequate solution for our algorithm. SIREn started as a specialized SOLr 4 extension

for linked data [16] and was later released in 2013 as a search solution for (JSON)

semi-structured documents in general 5. SOLr is a HTTP layer over Lucene, the

well-known indexing system for textual data lookup. SIREn extends SOLr to allow

indexing and querying of linked data resources.

The time to create an adjacency matrix increases exponentially and the required

memory space quickly hits machine limits. We noticed that this is due to the ad-

jacency matrix becoming too large. To avoid that the adjacency matrix becomes

too large to process, we ensure a limited number of resources to check while still

increasing the probability of finding a valid path with each iteration. To increase the

probability of finding a path with each new iteration, we estimate which resources

are the most important and drop those who are not. Important nodes have the

highest probability of leading to a path and thus have links to many other important

nodes. Thus, we link resources to as many as possible related resources that are again

linked to a lot of highly linked resources (hubs). We do not distinguish between

outgoing and incoming links. All relations in linked data have an inverse that is

equally important. Both hubs and resources that receive a lot of incoming links

(authorities) behave the same in the algorithm. This is because all links are reversible

(as explained earlier in the architectural model section 6.2).

We can find a reduced rank approximation to the adjacency matrix by se�ing all but

the first k largest singular values equal to zero and using only the first k columns

of the resulting decomposed matrices. We get the singular values through Singular

Value Decomposition (SVD). Though our adjacency matrices were sparse, we noticed

that the required SVD performs slowly. SVD requires a complete dataset, and has

significant memory requirements. The SVD leads to Hyperlink-Induced Topic Search

(HITS) (also known as hubs and authorities), a link analysis algorithm.

Another centrality measure is the PageRank algorithm, it reflects the so-called ran-

dom surfer model, meaning that the PageRank of a particular page is derived from

the theoretical probability of visiting that page when clicking on links at random.

However, real users do not randomly surf the web, but follow links according to

their interest and intention. A page ranking model that reflects the importance of

a particular page as a function of how many actual visits it receives by real users is

called the intentional surfer model.

4http://lucene.apache.org/solr/
5http://rdelbru.github.io/SIREn/

107

http://lucene.apache.org/solr/
http://rdelbru.github.io/SIREn/


6. Path-based Storytelling

The di�erence between the two approaches mentioned above is that SVD / HITS

uses singular values while PageRank uses eigenvalues [19]. HITS emphasizes mutual

reinforcement between authority and hub webpages, while PageRank emphasizes

link weight normalization and node hopping based on random walk models. We

did not look into hybrid or unified approaches because it was out of scope and

PageRank and HITS, lead to similar ranking of the nodes. We were thus convinced

that it was fast enough and guaranteed a good ranking of nodes. Initially, the algo-

rithm ordered nodes according to node centrality with SVD at first, but quickly the

intensive memory requirements became clear. A sparse matrix iterative numerical

optimization of SVD and HITS was much faster but did not converge to a solution

frequently enough. PageRank on sparse matrices performs in this case faster, the

iterative implementation always converges and produces a ranking of the nodes that

guarantees that the most important nodes stay in the candidate pool each iteration.

We also tested simply ignoring the nodes below a certain threshold, with less than

a fixed number of links. It was much faster to compute, but it did not introduce a

more densely linked node pool with each iteration. This is because keeping nodes

with many links to nodes with few links is not really interesting and results in a

node pool with too many unimportant nodes compared to the node centrality based

approaches.

Optimized Algorithm

Each path is determined within a query context comprising both start and destina-

tion resources as is the case for the base algorithm. The optimized algorithm reduces

the arbitrariness of a path between these resources by increasing the relevance of

the links between the nodes using a domain-delineation step. The path is refined

by iteratively applying the A* algorithm and with each iteration a�empting to im-

prove the overall semantic relatedness between the resources until a fixed number

of iterations or a certain similarity threshold is reached.

Domain Delineation. Instead of directly initializing the graph as-is by including

all links between the resources, we identify the relevance of predicates with respect

to the query context. This is done by extracting and giving higher preference to

the type of relations (predicates) that occur frequently in the query context. In this

way, we make sure that the links included in the relation ma�er because each pred-

icate that describes the semantics of a link also occurs in the direct neighborhood
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Data: start, destination, graph, k
Result: list of important predicates given the context
initialize pf_irf_p_list;
predicates_start = unique predicates start;
predicates_dest = unique predicates destination;
predicates_considered = intersection predicates_start predicates_dest;
foreach predicates_considered as p do

pf_irf_p = compute pf_irf p;
add pf_irf_p to list

end
reverse sort pf_irf_p_list;
take the first k elements of the list as important predicated;

Algorithm 2: Selecting important predicates

of the query context. The selection of the most important predicates for domain

delineation is shown in Algorithm 2.

An adapted variant of the TF/IDF [1] measure, ‘PF/IRF’ orders the links in a graph to

select the ones that are the most relevant based on the given start and destination

nodes. The PF/IRF measure reflects the importance of a predicate with respect to a

resource in a dataset and is defined as follows:

PF(p) =
Number of times predicate p appears in a resource
Total number of predicates linked to the resource

(6.1)

IRF(p) = ln
Total number of resources

Number of resources with predicate p in it
(6.2)

For example, the PF/IRF computation for predicates linked to Carl Linnaeus is ex-

plained below for the case when PF/IRF is determined in the context of start Carl

Linnaeus and destination Charles Darwin based on DBpedia.

1. We determine predicates that are important in the context. This is done by

retrieving the distinct predicates that are linked to the context nodes.

2. For each predicate, we compute its occurrence based on linked nodes. In

addition, the total number of predicates linked to the resource Carl Linnaeus

is determined.

3. As a result, the total number of predicates linked to the resource Carl Linnaeus

is 9890. For the predicates binomialAuthority and label we obtain the values
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2297 and 12, respectively. The total number of resources (including objects)

in the DBpedia is M = 27,318,782.

4. We compute the number of resources which are linked using each predicate by

counting the distinct number of resources through the predicate binomialAu-

thority and label in both directions. This results in 155,207 and 10,471,330

respectively.

5. By using the PF/IRF formula above we finally get the following values:

PF/IRF(binomialAuthority)= 2297/9890∗ln(27,318,782/155,207)= 1.20 and

PF/IRF(label) = 12/9890∗ ln(27,318,782/10,471,330) = 0.0011

Since the PF/IRF value of binomialAuthority is much higher than that of label, the

predicate binomialAuthority is more likely to be included.

Algorithm. The output of the aforementioned domain delineation step can be

thought of a linked data graph comprising nodes and predicates which are semanti-

cally related to the user’s query context. To provide a serendipitous relation based on

this linked data graph, the graph has to be traversed via a meaningful path including

the start and end destination of the query context. A single or multiple paths are

then used as essential building blocks for generating a relation.

To find a path in a linked data graph, we use the A* algorithm due to its ability

of computing an optimal solution, i.e., a (shortest) cost-minimal path between two

nodes with respect to the weights of the linking predicates contained in the path. To

reduce the number of predicates to be examined when computing the lowest-cost

path between two nodes and, thus, to achieve an improvement in the computation

time of the A* algorithm, heuristics are frequently used to determine the order of ex-

pansion of the nodes according to the start and end node provided within the query

context. In addition to a heuristic, the A* algorithm utilizes a weighting function

to determine paths which are semantically related to source and destination nodes

as specified within the query context. Thus, the serendipity of a relation generated

based on a single or multiple paths is strongly connected to the underlying weighting

scheme and heuristic. In the following section, we propose and investigate various

heuristics before we will introduce di�erent weighting schemes.
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Refinement. A�er a path is determined by the A* algorithm, we measure the

semantic relatedness, corresponding to the lowest semantic distance between all

resources occurring in the path with respect to the query context. This is done for

example by counting the number of overlapping predicates (i) among each other

combined with those in the start and destination resources; and then (ii) averaging

and normalizing this count over all resources. Depending on the threshold and

the maximum number of iterations configured, this process is repeated, typically

between 3 and 10 times. Finally, the path with the shortest total distance (or cost) is

selected for the relation. The distance for a path = (s1,s2, ...,sn) is computed based

on a weight function w as distance(path) = ∑
n−1
1 w(si,si+1)

n .

Heuristics

The objective of a heuristic is to determine how a node in a linked data graph is

semantically related to the query context, i.e. source and destination nodes, and

thus a good choice for expansion within the A* algorithm. For this purpose, we

formally define a heuristic as a function heuristic : G×G→ R that assigns all pairs

of nodes na,nb ∈ G from a linked data graph G, a real-valued number indicating

their semantic relation [12].

Jaccard Distance. The first heuristic we consider is the Jaccard distance which

is a simple statistical approach taking into account the relative number of common

predicates of two nodes. The higher the number of common predicates, the more

likely similar properties of the nodes and thus the semantically closer in terms of

distance the corresponding nodes. The Jaccard distance jaccard : G×G → R is

defined for all nodes na,nb ∈ G as follows:

jaccard(na,nb) = 1− ‖na∩nb‖
‖na∪nb‖

(6.3)

Normalized DBpedia Distance. Another approach that can be utilized as a heuris-

tic is the Normalized DBpedia Distance [11, 23]. This approach adapts the idea

of the Normalized Web Distance to DBpedia and considers two nodes na and nb to

be semantically similar if they share a high number of common neighboring nodes
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linking to both na and nb. The Normalized DBpedia Distance NDD : G×G→ R is

defined for all nodes na,nb ∈ G as

NDD(na,nb) =
max(log f (na), log f (nb))− log f (na,nb)

logN−min(log f (na), f (nb))
, (6.4)

where f (n) ∈ N denotes the number of DBpedia nodes linking to node n ∈ G ,

f (n,m) ∈ N denotes the number of DBpedia nodes linking to both nodes n and

m∈G, and where the constant N is defined as the total number of nodes in DBpedia,

which is about 2.5M.

Confidence. Another heuristic that has been proposed for semantic path search

in Wikipedia is the Confidence measure [22]. The Confidence measure is an

asymmetrical statistical measure that can be thought of as the probability that node

na occurs provided that node nb has already occurred. The Confidence measure

P : G×G→ R is defined for all nodes na,nb ∈ G as:

P(na|nb) =
f (na,nb)

f (nb)
(6.5)

As opposed to the heuristics, which a�ect the expansion order within the A* algo-

rithm by estimating the potential semantic relatedness of a node, weighting schemes

are finally utilized to asses the quality of a path. We propose di�erent weighting

schemes in the following section.

Weights

The objective of a weighting function is to determine the exact cost of a path, which

is the sum of weights of linking nodes. A weighting is formalized as a function

weight : G×G→ R between the corresponding nodes from the linked data graph.

Jaccard Distance. We apply the Jaccard distance in exactly the same way to

determine the weights so that the core algorithm prefers similarity in adjacent nodes

in each path. We use this distance between two directly adjacent nodes rather than

unconnected nodes in the graph.

Combined Node Degree. Moore et al. [36] proposed the combined node de-
gree which can be used to compute a weight that encourages rarity of items in a
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path. It ranks more rare resources higher, thereby guaranteeing that paths between

resources prefer specific relations. The main idea is to avoid that paths go via generic

nodes. It makes use of the node degree, the number of in and outgoing links. The

combined node degree w : G×G→ R is defined for all nodes na,nb ∈ G as:

w(na,nb) = log(deg(na))+ log(deg(nb)) (6.6)

Jiang and Conrath Distance. Mazuel et al. [34] suggest to take into account

the object property ontology relation between two adjacent items in a path. The

base distance measure there is the Jiang and Conrath distance [28], which we

can interpret in terms of RDF by looking at the classes of each of the nodes and

determining the most common denominator of those classes in the ontology. Once

this type is determined, the number of subjects that exist with this type is divided

by the total number of subjects. The higher this number, the more generic the class,

thus the more di�erent two nodes.
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Discussion

It is important to note that the main complexity of the approach is in line with the

centrality of underlying graph-indexing and data-processing algorithms. It turns out

that server-side query processing degrades the performance of a server and therefore

limits its scalability. While many approaches are suitable for a small-to-moderate

number of clients, they reveal to be a performance bo�leneck when the number of

clients is increased.

Instead of running the algorithm entirely on the server, we moved CPU and memory

intensive tasks to the client. The server translates user queries into smaller, digestible

fragments for the data endpoint. All optimizations and the execution of the al-

gorithm are moved to the client. This has two benefits: (i) the CPU and memory

bo�leneck at server side are reduced; and (ii) the more complex data fragments to

be translated stay on the server even though they do not require much CPU and

memory resources, but they would introduce to many client-side requests.

A separate index with linked data documents to store the fragments for fast nav-

igating graphs served a first iteration but turned out to be only limited scalable.

It required each time a pre-selection of datasets that would need to be manually

or semi automatically scheduled to be ingested or updated. The improved algo-

rithm6 runs using Triple Pa�ern Fragments (TPF). TPF provides a computationally

inexpensive server-side interface that does not overload the server and guarantees

high availability and instant responses. Basic triple pa�erns (i.e. ?s ?p ?o) su�ice to

navigate across linked data graphs (no complex queries needed).

6.4 Evaluation

This section explains the evaluation of the base algorithm in terms of performance

and result quality. It verifies to which degree the optimized algorithm is able to

reduce the arbitrariness of the paths in comparison to the base algorithm. The base

algorithm used jaccard and combined node degree heuristic and weight but di�erent

heuristic and weights have an impact on the resulting paths. Using the optimized

algorithm this impact is investigated.

6The base algorithm can be found at https://github.com/mmlab/eice and the improved algorithm
at https://www.npmjs.com/package/everything_is_connected_engine
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Base Algorithm

To evaluate the base algorithm approach, we store data about retrieved paths: source,

destination, all the hops of the path with the meaning of the links between them and

the execution time. We check the average length of found paths and we measure

the fraction of paths found within various time frames. A found path is relevant

if it occurs within a tolerable time for the users. Depending on the context and

the size of the dataset this time may vary. We measure the hitrate, distribution

of execution time and path lengths for a testset containing 10000 random path

calculations randomly among 200 DBPedia resources (popular cities, countries or

brands). The total indexed dataset (based on DBPedia version 3.8) contains 10.8M

resources. We set the stop condition for the algorithm on a path length of 12.

Meaningfulness. The found paths should not be arbitrary, for example Paris and

Barack Obama could have been linked because Barack Obama lives in the White

House in Washington DC. Both Paris and Washington DC are cities and this would

be a very short and relevant path. This is however not that meaningful for most

users. Executing a search for path between Paris and Barack Obama gives output

as in Table 6.5.

Path
:Barack_Obama :isPresidentOf :Joe_Biden
:Joe_Biden :religion :Catholic_Church
:Catholic_Church :isReligionOf :Bertrand_Delanoe
:Bertrand_Delanoe :isMayorOf :Paris

Table 6.5: Output for the search for a path between Paris and Barack Obama

We observe that the path goes over Bertrand Delanoe and the shared religion with

Joe Biden. This is still a simple result but it already exposes a route that is mean-

ingful. This is achieved by the introduced weighting and heuristics. Since DBpedia

contains a lot of trivia facts, the exposure of even this result shows the potential

of our approach. Especially since the above computation took just 0.68s there is

definitely margin for more complex logic should the use case require or tolerate it.

Hitrate. The hitrate of our algorithm is above 95% which is high, considering the

relatively small number of resources that had to actually be checked compared to the
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size of the entire dataset (10.8M resources). Checking a resource means retrieving

the resource from the index and identifying the linked resources. This is under 6000

in most of the cases as shown in Figure 6.5. These results indicate that popular

concepts on DBpedia are well interlinked and form a dense graph. Our optimization,

with PageRank to reduce the rank of the adjacency matrix, does not eliminate many

possible results.

Figure 6.5: More than half the paths required less than 500 resources to check.

Path length. The mean length of the calculated paths is about 4 hops. The mean of

the path length values is µ = 4.1. The sudden dip in frequency for paths with length

4 is due to the test set with a random choice of starting points and destinations. The

majority of these resources were geographical and are thus by nature linked with

fewer steps than we would averagely expect. For example, the majority of cities and

countries if o�en linked in two to three steps through some person who was born

in one country and lived in a another country. It is unclear if this behavior would

occur in other datasets. Typical to DBpedia is that a limited number of properties

can be very common to many others. It is likely that if another dataset is structured

hierarchical, contains mainly connected trees, or has a certain type of resource which

has in comparison the entire size of the dataset a small amount of resources but links

to many other entities (such as countries or cities).

Nevertheless, the distribution of the path lengths approximates a gamma function

with µ = 3.4 (see Figure 6.6). A phylogenetic tree or evolutionary tree shows the re-

lationships among various (biological) entities based upon similarities between their
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characteristics. Our heuristic, the Jaccard, takes into account the similarity between

resources’ predicates (equivalent to characteristics) for finding a link between two

resources. Our algorithm finds paths among a combination of two trees which are in

structure similar to a phylogenetic tree. One tree which has as root the source and

the other tree which has the destination as root. Numerical findings from Mir et al.

confirm that the distribution of the distance, or path length, between two nodes in

a phylogenetic tree equiprobably chosen, approximates a gamma distribution [35].

The probability to find a path is very low from a certain path length. Because of the

gamma distribution we safely state that this justifies the choice of a termination of

the algorithm a�er a fixed amount of steps. Most of the path lengths are centered

around the statistical centralities the lower and upper boundary of the statistical

mean and the mean of the gamma distribution.

Figure 6.6: Normalized distribution of found path lengths has a peak of 3 near µ =
3.4 of the fi�ed gamma distribution.

Execution time. The time complexity of A* depends on the complexity for the

evaluation of the heuristic. The evaluation of our heuristic, the Jaccard, is linear to

the number of predicates for the resources. Using our optimization we retained the

linear execution time and have results in the cases in which we found a path despite

the optimizations. We have approximated a sca�erplot in Figure 6.7 with a linear

curve. A* is guaranteed to find a path if the resources are connected. However with

our optimization this is no longer the case, because the optimization limits the search

space of the graph, it is thus possible that existing paths between resources are being

le� out of the search domain. Our algorithm, based on A*, was implemented for an
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optimal amount of resources to be checked. The result has the advantage that the

number of resources to be checked grows linear but the disadvantage that there is

no guarantee to always find a path that exists.

Figure 6.7: Execution time (y) is approximately a linear function of the checked
resources (x) y≈ 4.4x+ k

We can find most of the paths within an tolerable amount of time, a tolerable time for

users when retrieving information is maximum 2 seconds [37]. The algorithm finds

60% of the paths within 2 seconds. With a notification to the user the tolerable time

could extend to 10 seconds or even more. In 10 seconds we find a path for more than

95% of the queries.

We notice furthermore in Figure 6.8 that there is a linear relation in logarithmic

space between execution time and path length. The results for longest paths with

length 11 and 12 (excluded from the plots) are not relevant as they do no not occur

frequently enough compared to the others. There is almost no di�erence between

a path of length 1 and length 2 because other side-e�ects such as set-up time have

an impact when the total execution time is in the order of 20∼ 50ms. This is what

we could expect as the number of resources to check increases exponentially with

increasing path length, see Figure 6.9. The use of an optimal index that ensures

a constant retrieval time is crucial as the number of resources to check increases

exponentially with increasing path length. The execution time is linear compared

to the number of checked resources. This is ensured because the time to retrieve
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Figure 6.8: The execution time in function of path length appears to be linear in a
logarithmic scale.

resources is also linear if the time to retrieve each resource from the index is always

constant.

Figure 6.9: The number of checked resources grows exponentially with path length
except when the amount of test queries is not high enough to draw a conclusion
(path length 10 or 11).
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Optimized Algorithm

To determine if the arbitrariness of a story is reduced, we validated that our opti-

mization improved the link estimation between concepts mentioned in a story. To

this end, we computed stories about the four highest ranked DBpedia scientists,

according to their PageRank score7. Resources with a high PageRank are typically

very well connected and have a high probability to lead to many arbitrary paths.

Initial Sample. We have determined the pairwise semantic relatedness of the

story about them by applying the Normalized Google Distance (NGD). The results

are shown in Table 6.6.

Table 6.6: The comparison between the base and optimized algorithm shows that the
semantic relatedness can be improved in all cases except for the last two when the
entities were already closely related, their NGD in the base algorithm was already
relatively low.

No. �ery Context Base Algorithm NGD Optimized Algorithm NGD
S1 C._Linnaeus - C._Darwin C._H._Merriam 0.50 J._W._Von_Goethe 0.43
S2 C._Linnaeus - A._Einstein Aristotle 0.70 J._W._Von_Goethe 0.45
S3 C._Linnaeus - I._Newton P._L._Maupertuis 0.48 D._Diderot 0.40
S4 A._Einstein - I._Newton Physics 0.62 D._Hume 0.45
S5 C._Darwin - I._Newton D._Hume 0.38 Royal_Liberty_School 0.40
S6 C._Darwin - A._Einstein D._Hume 0.43 B._Spinoza 0.44

Table 6.6 shows that the entities Aristotle and Physics are included in the story when

applying the original algorithm. These entities are perfect examples of arbitrary

resources in a story which decreases the consistency. Except that they are related

to science, it is unclear to the user why the algorithm ‘reasoned’ them to be in

the story. When utilizing the optimized algorithm these entities are replaced by

J._W._Von_Goethe and D._Hume.

Detailed Sample. To verify the results, we include the total semantic similarity of

a path by computing the semantic relatedness between all neighboring node pairs in

that path. As can be seen in Table 6.6, the optimized algorithm seemed to be able to

improve the link estimation of the resulting paths. To evaluate the results we used

three di�erent similarity measures: W2V 8, NGD [8], and SemRank [2][3].

We used an online available Wiki2VecCorpus using vectors with dimension 1000,

no stemming and 10skipgrams9. We computed the similarities based on that model

7http://people.aifb.kit.edu/ath#DBpedia_PageRank
8https://code.google.com/p/word2vec/
9https://github.com/idio/wiki2vec
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Table 6.7: Abbreviations explained and short interpretation of the measures used.

Abbreviation Description
W2Vs Word2Vector similarity using Wikipedia English Corpus
NGD Normalized Web Search Distance using Bing API
SR-C SemRank - Conventional - No particular role for serendipity
SR-M SemRank - Mixed - Serendipity plays partly a role
SR-D SemRank - Discovery - Serendipity has a major role
PR PageRank - Centrality Degree of a Node

by using gensim
10. We implemented the NGD - generalized as the normalized web

search distance, on top of the Bing Search API, using the same formula as depicted

in the heuristic for the algorithm.

We applied SemRank to evaluate the paths, in particular to capture the serendipity

of each path. The serendipity is measured by using a factor µ to indicate the so

called ‘refraction’ how di�erent each new step in a path is compared to the previous

averaged over the entire path. Furthermore the information gain is modulated using

the same factor µ . The information gain is computed from the weakest point along

the path and an average of the rest. So that we get as formula for SemRank and a

path p:

SemRank(µ, p) = [
1−µ

I(p)
+µI(p)]× [1+µR(p)], (6.7)

where I(p) is the overall information gain in the path and R(p) is the average re-

fraction. There are three special cases [3]: (i) conventional with µ = 0 leading to

SemRank(0, p) = 1
I(p) , serendipity plays no role and so no emphasis is put on newly

gained or unexpected information; (ii) mixed with µ = 0.5 leading to SemRank(0.5, p)

= [ 1
2I(p) +

I(p)
2 ]× [1+ R(p)

2 ], a balance between unexpected and newly gained infor-

mation; and (iii) discovery with µ = 1 leading to SemRank(1, p) = I(p)× [1+R(p)],

emphasizing unexpected and newly gained information.

The DBPedia PageRank11 (PR) is an indicator for average ’hub’ factor of resources

and their neighbourhood based links, how ’common’ they are [38].

Table 6.8 shows the various improvements of the control algorithm using di�erent

measures: both the base and optimized algorithms were configured with the same,

the Jaccard distance, weight and heuristic.

E�ect of Weights and Heuristics. The results, shown in Figure 6.10, confirm the

findings in the detailed sample, but this time the base algorithm uses a combination

10https://radimrehurek.com/gensim/
11http://people.aifb.kit.edu/ath#DBpedia_PageRank
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Table 6.8: Detailed comparison between the base and optimized algorithm.

Measure Higher Be�er? S1 S2 S3 S4 S5 S6 AVG STDEV
Base SR-C + 6.46 6.70 5.48 9.47 6.50 9.00 7.17 1.59

SR-M + 4.04 4.05 3.34 5.25 4.11 5.21 4.35 0.75
SR-D + 0.22 0.20 0.25 0.13 0.23 0.14 0.20 0.05
NGD - 0.64 0.69 0.48 0.31 0.48 0.29 0.48 0.16
W2Vs + ? ? 0.18 0.32 0.21 0.39 0.20 0.02
PR - 2631.89 66.27 179.50 62.39 357.36 62.39 166.38 128.58

Improved SR-C + 9.19 8.00 7.17 6.74 9.47 6.50 7.78 1.15
SR-M + 5.39 4.70 4.00 3.98 5.44 3.95 4.52 0.65
SR-D + 0.14 0.16 0.17 0.19 0.13 0.21 0.17 0.03
NGD - 0.53 0.22 0.60 0.38 0.32 0.55 0.45 0.14
W2Vs + 0.21 0.19 0.20 ? 0.34 ? 0.27 0.10
PR - 40.42 97.11 29.29 0.59 62.39 0.89 33.25 34.08

of the Combined Node Degree (CND) and the Jaccard distance, while the optimized

algorithm was configured using a variety of heuristics and weights. To be able to

compare the results with each other each of the SR measures are normalized as

follows: SRn = SR
max(SR) .
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Figure 6.10: E�ects of the di�erent
combinations of weights and heuris-
tics on the measured SemRank.

SRn-C SRn-M SRn-D
0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

0.23

0.25

JaccardJaccard

JaccardNDD

JaccardConfidence

CNDJaccard

JCWJaccard

Random

Original

Similarity Measure

S
ta

nd
ar

d 
D

ev
ia

tio
n

Figure 6.11: Standard deviation of the mea-
sured SemRank when using di�erent heuris-
tics.

The standard deviation of the results, shown in Figure 6.11, highly di�ers for each

case. In particular when using a random number instead of a weighting function

and a heuristic, leads to a high standard deviation, which is expected - given the

randomness. The deviation is also relatively high when using the Jiang-Conrath

distance as weight (JCW) and when using the base algorithm.

On the one hand the conventional and mixed mode for SemRank put less emphasis

on novelty and focuses mainly on semantic association and information content. The

jaccard distance combination used as weight and heuristic is not entirely surpris-

ingly the best choice for this scenario. On the other hand the results of the improved

algorithm with the common node degree confirm the results of the base algorithm

with the common node degree as weight and the jaccard distance as heuristic is.
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There is however a slightly lower rank when using the improved algorithm. Using the

JCW however leads to even higher ranks. In terms of discovery, the base algorithm

outperforms the JaccardJaccard combination. The CNDJaccard improved algorithm

is able to slightly outperform all the other combinations.

User Judgments. We presented the output of each of the algorithms as a list of

story facts using the scientists example cases S1 - S6 as shown in Table 6.8. Typically

1 up to 20 facts depending on the heuristics that were used. As with SemRank,

we are interested in the serendipity as a balance between unexpected facts and

relevant facts. We asked the users to rate the list of facts in terms of: (i) relevance;

(ii) consistency; and (iii) discovery. The users had to indicate how well the list of

facts scored according to them on a Likert scale from -2 (None, Not, Very Poor) to

+2 (Most, Very, Very Good). A score of 0 (neutral) was only possible in the case of

relevance. In total we collected 840 judgments, 20 judgments for each combination

of scenario and heuristic. The overall results of the user judgments, rescaled to a

score between 0 and 1 are: relevancy 0.45; consistency 0.45; and discovery 0.33.

The scores around 0.5 can be interpreted as a disagreement between the users. The

median standard deviations are 0.29; 0.31, and 0.30 respectively.

The overall score is below 0.5, this indicates that the majority of users judges most

of the presented list of story facts below normal or expected relevancy, consistency

and with li�le unexpected new facts. The standard deviation of the user judgments

is relatively high, which means that they cover a broad range of judgments, i.e.,

some users are very positive while other users are very negative. The mixed results

are likely due to varying expectations: some might expected more in-depth results

while others appreciated the basic facts about the scientists. The suggested stories

that center around a certain via-fact are not always considered relevant by some

users even though the algorithms might consider them so. Some examples:

• The users least agreed on the relevancy of the following facts about Carl Lin-

naeus and Albert Einstein, a relevance score of 0.48 and a standard deviation

of 0.31 when using the JCWJaccard:

Carl Linnaeus and Baruch Spinoza are Expert, Intellectual and Scholar
Baruch Spinoza’s and Albert Einstein’s are both Pantheists
Intellectuals and Jewish Philosophers
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• The second most relevant and consistent facts were found between Charles

Darwin and Carl Linnaeus: a score of 0.65 and 0.6 respectively with CNDJac-

card.

Copley Medal is the award of Alfred Russel Wallace and Charles Darwin
Alfred Russel Wallace’s and Charles Darwin’s awards are Royal Medal
and Copley Medal
Alfred Russel Wallace and Charles Darwin are known for their Natural
selection
Carl Linnaeus and Alfred Russel Wallace have as subject ‘Fellows of
the Royal Society’
Carl Linnaeus and Alfred Russel Wallace are Biologists and Colleagues

• In terms of relevance the highest score also has the most agreement among

users, generated by the original algorithm: a score of 0.8 and standard devia-

tion 0.26.

Albert Einstein’s and Isaac Newton’s field is Physics.

• In terms of discovery the highest score has relatively li�le agreement among

users: 0.48 and standard deviation 0.30 with JCWJaccard:

Albert Einstein’s and Charles Darwin’s reward is Copley Medal.

The scores for relevancy, consistency, and discovery as unexpected - but relevant

- facts are highly dependent on the user who judges. Some users might be inter-

ested in the more trivial or arbitrary path as well. Nevertheless, the overall judg-

ment served as a baseline to compare the judgments with the same combinations of

heuristics and weights as before.
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Figure 6.12: The e�ect of the heuristics according to user judgments compared to
the overall median. The JCWJaccard confirms already good results with SemRank.
The CNDJaccard scores relatively well in terms of relevance.
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The most consistent output was generated with the Jaccard distance used both as

weight and heuristic; or as heuristic in combination with the Jiang-Conrath distance

as weight. The most arbitrary facts occur in a story when using the combined node

degree as weight with the Jaccard distance as heuristic, both in the optimized and

the base algorithm. User judgments confirm the findings for the Jiang-Conrath

weight and the base algorithm and for the Jaccard distance used as weight and

heuristic in terms of discovery. There is no clear positive e�ect however according

the users in terms of consistency and relevancy there.
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Summary

A technique combining pre-processing and indexing of datasets is used to implement

a base algorithm for finding paths between two resources in large datasets within a

couple of seconds. Using linked data in combination with a specialized search index

enabled pathfinding algorithms to work in large linked datasets within a tolerable

time for users. The base algorithm delivers a graph-based search approach to explore

the connectivity of resources. A major contribution is the minimization of the size

of the candidate pool of nodes to tweak execution performance and to increase the

quality of the resulting paths. To do this, di�erent ranking algorithms (PageRank,

HITS, SVD) were compared before finally applying the PageRank algorithm. The

testcase using the DBpedia dataset showed promising performance results, but also

exposed issues that some paths were too arbitrary. An optimization of the base

algorithm improves the serendipity level of the relations and mitigates arbitrariness

by increasing the relevance of links between nodes through additional pre-selection

and refinement steps. In both cases, composing stories rely on finding indirect

relationships in linked data based on A* path search. Furthermore the storytelling

algorithms were tested with several heuristics and weights. The results made clear

that the choice of heuristics and weight requires careful consideration, especially as

they clearly have a big impact on the result set.
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Part III

Use Case





Chapter 7

Web 2.0 for Scientific Research

Sou discipulo que aprende, [I am a student who learns,]

Sou mestre que da lição. [I am a master who teaches.]

—Traditional Capoeira Song.

The Web enables new ways to share and explore research. Research collaboration

platforms like Mendeley or ResearchGate are an example of this. Faceted search,

keyword matching and filtering are the main techniques used in current search inter-

faces. They focus mostly on narrowing down the search scope. This chapter explains

a use case for visualizing linked data of research-related data sources to address the

interactive aspect of exploring relationships between resources. By visualizing links

between conferences, publications and proceedings users can discover relationships.

7.1 Introduction

Peer-reviewed research publications as well as related metadata from bibliography

archives are widely available on the web. They o�er a vast amount of information

on related publications and can facilitate suggesting new contacts, collaborators,

and interesting custom events. Usually the platforms supporting this information

exchange expose a Web API that allows access to the structured content, or the in-

formation is present as Linked Data. Facilitating search in an interlinked repository

of linked datasets for research environments is useful because it is still a laborious

task for researchers to construct separate search queries for each of those services.
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The enrichment with Linked Data resources allows researchers to find a vast amount

of resources implicitly related to them.

The Linked Open Data (LOD) Cloud has reached a respectable size and publication

repositories are very numerous. Around 10% of the overall distribution of triples

comes from research publication repositories and publications are the source of

around 30% of the overall links distribution1. Information present within the LOD

Cloud o�ers a solid base of re-usable information to weave the Web and adapt

information for researchers and scientists. The usage of such systems with linked

data is ge�ing wide spread nowadays in a variety of topical domains [20].

Definition

Research 2.0 depicts using Web – 2.0 – tools and principles in scientific research and

learning. It is an application field of “Technology Enhanced Learning” which covers

the entirety of learning and research with use of new media. It is an approach to

science that maximally leverages information-sharing and collaboration tools and

emphasizes the advantages of increased online collaboration between researchers.

Researchers o�en use Social media, such as Twi�er and Facebook, during scientific

events to comment and discuss about each other’s work, and to exchange research

related materials [11]. They also use Web collaboration tools like Mendeley or Re-

searchGate to exchange their scientific work. Such academic social networks have

become wide-spread and can have millions of regular users [26]. These tools and

services have APIs, publishing feeds, and specially designed interfaces based on

social profiles [18, 25]. These tools and services are in line with the principles of

Research 2.0 [25].

Purpose

The purpose of this use case is to o�er a set of tools and services which researchers

can use to discover resources as well as to facilitate collaboration via the web. The

goal is to present users how they are (indirectly) related based on their institutions,

visited locations, and conferences they contributed to.

One of the key variables is the end-user usability of:

• semantically enriched researcher profiles;

1http://lod-cloud.net/state/
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• relations between researchers based upon the semantic analysis of researcher’s

tweets and aligned with information about conferences and proceedings.

As a measure of usability we investigated the ability to support the construction of

a good cognitive model of the underlying data and the relations within the data.

Finally, we measured the e�ectiveness and productivity of the interface by checking

to which extent end-users carry out knowledge-intensive and analytical tasks. This

use case on a personalized interactive exploratory search environment follows the

architectural model of the techniques explained in chapters 4, 5, and 6 with data

from several open Linked Data repositories including scientific publication archives

and social media.

Research �estions

This use case about researchers exploring information to gain insight in the people,

conferences, or publications they wanted to find out more about, led to following

questions:

• How does this approach compare to other related approaches in terms of user

actions and precision?

• How well does the interactive approach perform in scenarios focused on more

straightforward, keyword-based search tasks.

• When does this approach excel in revealing relationships compared to state

of the art?

We implemented the prototype of a ‘research exploration tool’, called ResXplorer 2

to test the use case. Chapter 8 goes into more details about the tool.

7.2 Background

The evolution of the Web 2.0 enabled many users via wikis, blogs and other content

publishing platforms to become the main content providers on the web. The data

is available under the form of raw data, posts, threads, tags, and user information

mappable to semantic form, since widely used and accepted vocabularies for many

2http://www.resxplorer.org
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domains exist. However, the mass produced data remains in so-called ‘data silos’

bound to a specific platform or somewhere within databases. The access to these

data sources is associated with specialized application interfaces (API’s) which re-

quires specialized technical knowledge to retrieve the data in a desirable form. Many

information public interest sources remain captured behind a so-called ‘walled gar-

den’. Combining information resources over the walls leads to a high degree of mis-

matches between vocabulary and data structure of the di�erent sources [13]. When

users formulate a (Web) search in a certain context across multiple data sources,

it o�en includes keywords. In many cases the semantic importance and meaning

of the keyword is not considered. The keyword order and combination in a query

a�ects the context, the precise goal of the search and thus the results.

Researchers’ use of Social Media

As the number of Web 2.0 users increased, Social Media arrived, commonly known as

Social Networks. Researchers especially appreciate this development. For instance,

studies on the use of microblogs like Twi�er3 [9, 10] within the science community

showed that researchers were using Twi�er to discuss and asynchronously com-

municate on topics during conferences [19] and in their everyday work [16, 19].

A survey of the use of Twi�er for scientific purposes [16] has shown that Twi�er

is not only a communication medium but also reliable source of data for scientific

analysis, profiling tasks, and trends detection [1, 17, 21, 23]. Twi�er hashtags have

a strong influence on the structuring of communication within Twi�er as well as for

community building [1, 15].

The Web 2.0 in Scientific Research

The Web 2.0 for Science, also known as Science 2.0 or Research 2.0 aims to adapt the

Web 2.0 to the needs of researchers. The purpose of our research is to o�er a set of

tools and services which researcher can use to discover resources, such as publica-

tions or events they might be interested in [7, 24]. These tools and services, according

to the specifications of Research 2.0, are considered as mash-ups, API’s, publishing

feeds, search and discovery service and specially designed interfaces based on social

profiles [18, 25]. Research 2.0 comprises interacting with information published on

Social Media, online collaboration platforms, and other Web 2.0 tools. Weaving

3h�p://www.twi�er.com
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microblogs in the Web of Data is interesting from the perspective of researcher

centric semantic search. Twi�er, as exemplary microblog Social Media platform,

can help resolving scientific citations [28].

On top of that, most research publications are available via the Web, as most of the

digital libraries and scientific online journals o�er access to their content. Usually

they need a paid membership to get full access to their articles, but most of the

educational institutions can a�ord this kind of service. At the same time a growing

number of “Open Journals” o�er free access to all published works. Most prominent

archives in this area are Directory Of Open Access Journals (DOAJ)4 as well as Online

Journals5. The e�orts to make the scientific resource sharing a reality concerns the

researchers in science and educational informational systems for a long time. The

products of such quests lead to an increasing variety of heterogeneous technologies,

schema, repositories and query mechanisms. Since Linked Data emerged and the

Semantic Web evolved aiming at Web wide interoperability [3, 4], the problem of

sharing resources is beginning to resolve and Linked Data found a wide acceptance

within this community.

This trend produces a constantly growing amount of publicly available Linked Data

about scientific repositories. Within the research community also commercial digital

libraries like ACM (Association for Computer Machinery) Digital Library6 started to

publish their archives into the LOD Cloud [12] providing in this special case more

than 12 million triples. Parallel to the commercial scientific content providers some

academic institutions as well as most famous public libraries (Library of Congress7,

British National Library8 and Bibliothèque Nationale de France9) provided their

public Linked Data.

Linked Data-based Interfaces for Research Exploration

In the past there were a�empts to visualize research networks but most of them did

not rely on linked data. The below mentioned works based on research linked data

consider visualizations as a supportive mean to the presented information.

4h�p://www.doaj.org/
5h�p://online-journals.org/
6http://acm.rkbexplorer.com/
7http://id.loc.gov
8http://bnb.data.bl.uk
9http://data.bnf.fr
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The Semantic Web Journal published its own Drupal-based journal management

system [14] focusing on providing a novel user interface. Among others, they provide

graph-based research networks that visualize the emerging research networks as

researchers author papers together or they review the di�erent submissions. RKB

Explorer
10 [12] is a visual browser which originated from the ReSIST11 network of

excellence, which unites within many sources of scientific data. This visual browsing

interface is based on categorised pre-selection and focuses on people, organisations,

publications, and courses and materials. The search always centers around the

selected category which makes the context based browsing less flexible but focused.

Within the visualisation RKB Explorer evaluates relations of the first degree. In

comparison to RKB Explorer our approach is more user and search centric rather

than concept and context centric. In our interface, a user profile a�ects the pre-

selection of search results. Users can configure the search context by executing

searches for resources or by expanding one or more resources. BibBase
12 [29] has an

interface to leverage the personal publications into the Web of Data and integrates

the retrieval of author publications with a small sample from Mendeley13, DBLP14,

and Zotero15. Finally, “TalkExplorer” [27] takes into consideration bookmarks and

tags for the visualizations of the research groups and puts the focus on providing

recommendations rather than exploring the underlying dataset. In our workflow we

make abstraction of the query creation process and use pre-defined query templates

to facilitate the creation of the visualizations.

Related Work

The coverage of user driven search evaluations aspects which consider the visual rep-

resentation and analysis of search results and interaction possibilities is important.

The implementation of this use case shares the goal of search, data about research

publications, and intended audience with Google Scholar (GScholar)16; Microso�

10http://www.rkbexplorer.com
11http://www.resist-noe.org/
12http://bibbase.org
13http://www.mendeley.com/
14http://www.informatik.uni-trier.de/~ley/db/
15http://zotero.org
16http://scholar.google.com
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Academic (MA) Search17; ARnet Miner [22]18; Falcons [5]19; and Faceted DBLP

Search20.

There is a spread between visually more advanced solutions like MA Search and AR-

Net Miner and those with less search interface interactivity possibilities like Google

Scholar, Faceted DBLP, and Falcons. To outline the di�erences between conventional

search interfaces for scientific resources and the implemented approach, we used

a set of “Visual representation and analytics” based on guidelines identified by [6].

Table 7.1 compares the features of the search interfaces used in the expert evaluation.

Industry references as MA Search and Google Scholar lack the interactivity with a

visual representation, although MA Search for instance o�ers visual interfaces to

the search results. On the other hand, ARNet Miner supports various visualizations

based on data mining algorithms like, e.g., clustering, executed on the retrieved

data in combination with the search results. ArnetMiner distinguishes between

the networks (star graph of co-authors) and the communities of researchers (simple

graphs). Falcons Object Search [5] is considered as a keyword-based search en-

gine for linked objects with extensive virtual documents indexed. Those documents

consist from associated literals but also from the textual descriptions of associated

links and linked objects. The results are ranked according to a combination of their

relevance to the query and their popularity. Falcons allows enhanced text based

browsing of Linked Data as well as filtering on concepts and relations besides a

classical list representation. Faceted DBLP features an interactive, all-round faceted

search interface. The search approach in this case resides on DBLP++ data which

enhances DBLP with additional keywords and abstracts as available on public web

pages. It integrates facets on Time, Venues, Publications Years, and Authors and

delivers the results in various formats. These formats include: BibTeX, regular web

pages, DOI identifiers, or RDF. Faceted DBLP o�ers a good flexibility in filtering and

narrowing down the results as well as implementing basic syntactic query expansion

based upon single word and whole phrase in an anonymous way. Retrieval is done by

classic search engines and result selection is done by ranking without any possible

relation to the user profile.

17http://academic.research.microsoft.com
18http://artnetminer.org
19http://ws.nju.edu.cn/falcons
20http://dblp.l3s.de/
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Table 7.1: Comparision of functionality of di�erent search interfaces for research.

Usability Criterion ResXplorer MA Search GScholar ARnet Miner Falcons Faceted DBLP
�ery (forms / keyword)       

�ery (formal syntax) G#     G#
View results as ordered list #      

Visual presentation   #  # #
Interactively refine search  # # G#  G#

Combine and relate searches  # # # # #
Data overview   #    

Detail on demand       
Generic / Engine Reusable  ? ? G# ? ?

Support for scalability       
Filtering G#      
History  G# G# # # #

View original source    G#   
Feature coverage  = full G#= partially #= none ? = uncertain

7.3 Approach

When looking for the next practical piece of information or when trying to find a

solution for a problem that requires out-of-the-box thinking (e.g., when forming the

exact search query requires background knowledge of a domain unfamiliar to the

researcher). The interaction diagram in Figure 7.1 shows how researchers explore

research objects. The research objects are made available through a two layer ab-

straction consisting of the: (i) data model; and (ii) user model.

Researchers can define and select their intended search goal over several iterations.

When users are looking for new leads, they get an overview of possible objects of

interest (similar to points of interest on a street map) by having their activities and

contributions linked on social media and other platforms such as their own research

publications profile.

We will illustrate the points above with a running example and take a computer sci-

ence researcher investigating the Web. During scientific conferences on the subject

like The World Wide Web Conference the researcher is regularly posting on Twi�er

and using the conference hashtag. At some point the researcher might be interested

in figuring out more about search algorithms, who is involved, and if there is any

match with some publications the research participated as a co-author. The search

starts with the researcher centralized in the middle and the researcher chooses the

most relevant option based on the suggestions, this is shown in Figure 7.2 and 7.3.

Furthermore, this reveals a first relationship between the researcher and this partic-

ular publication, also depicted in Figure 7.4. Further actions from this point available

140



7.3. Approach

Data Model

Linked Open DataLinked Data

Linked Data

Entities
Share

Search

Researchers

Research Objects

Posts, Publications

Conferences, Seminars

Researcher

User Model

Structured Data
Web Services,
Social Media

Figure 7.1: The information researchers share via the Web services of research
collaboration tools and social media is structured and transformed to RDF and
interlinked with Linked Open Data. The resulting entities in the data model form the
base for the user model. This process is outlined in Section 7.3. When researchers
search, they interact indirectly with the user model which we detail in Section 7.3.

Figure 7.2: The search starts with the
researcher centralized and some directly
resources shown around.

Figure 7.3: The researcher chooses the
most related resource.

to the user are, searching again using other keywords or finding out more about a

certain search result by clicking on them. This will center the search around the

publication and give a new perspective.

More details are given given in Chapter 8 on how it is decided which exact resources

are being revealed. Regardless of the resources revealed in this case, the figure shows

documents, people and relationships between them. Furthermore, the visualization

‘hides’ that the searches are in data instead of documents. The only arguable clue

that the search is in data, is the prominent graph structure of the visualization. This

141



7. Web 2.0 for Scientific Research

Figure 7.4: The revealed relationship between the researcher and the found publica-
tion.

is precisely due to the two-layered model of the data that is being searched and its

representation as research objects for the user, as detailed in Figure 7.1.

User Model

Research Objects are a method to identify, aggregate, and exchange research data via

the Web. They center and group refined entities of extracted and integrated data in

the Data Model and represent [8]:

• Events: scientific conferences, seminars and/or lectures

• Publications: articles, reports, tutorials and/or posts

• Locations: both real-world and online (web pages, webinars)

• Concepts: topics, categories and/or classifications

Research objects enable and facilitate the use of research related information. The

metadata that describes research objects facilitates searching and retrieving them.

Defining Research Objects. A single Research Object can contain links to and

information about an online tutorial, details about a seminar, links to fragments

of related papers and tutors or people who are known to have contributed to the
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entities of this specific object. Researchers define a search query for their research

and have it parsed by our system for identification in terms of the User Model.

The use of research objects in a user model should provide the reproducibility that

enables validation of research results [2]. We align the entities present in the Data

Model with the registered activities of researchers by providing their profiles and

feeds of social media. Researchers generate those by sharing and monitoring online

activities such as blogs, (micro)posts, tags, shares, and other resources.

Searching Research Objects. Searches center around several research targets

that a researcher wants to relate with another. Searches also combine related re-

sources based on common links they share, such as being related to and containing

more information about a Research Object. The users generate their own views by

exploring and searching among the Research Objects in the model and can share or

compare those with other researchers or earlier searches. All those views together

lead to a personalized environment. This will boost interaction with and grouping of

similar views and objects to bigger packages that ultimately lead to the discovery of

even more relations. The mapping of all objects for users are customarily based on

their “researcher profile”. Each researcher’s profile is extracted based on the content

researchers monitor on social media or the resources shared over it. Most of the

researchers today own a profile in a scientific or common social network like Twi�er

and Facebook21 or on research related platforms like ResearchGate22, Mendeley, or

Google Scholar.

Impact of Including Tweets Example. We mentioned in the running example

that the researcher is active on Twi�er during conferences related on the Web. When

the researcher is exploring resources related to one of the World Wide Web confer-

ences, the search system may be able to provide more information by taking into

account social data. Figure 7.5 shows how the researcher tweets about a presentation

on smart algorithms by Bob during one of the World Wide Web conferences and

another researcher ‘Anna’, tweets about a paper that is published in the conference

proceedings. They both use a hashtag that is commonly known in their scientific

community to be associated with the conference #WWW. This leads to a direct

connection between them. Without these tweets, a search would never be able to

expose this connection between the two researchers. Anna is in fact a co-author of

21http://www.facebook.com/
22http://www.researchgate.net/
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Linked Data

Researcher

Direct 
Connection

Attending the Q&A session
following the presentation on

smart algorithms by @Bob at #WWW

My paper is published in the 
#WWW conference proceedings: 

http://example.com/www/paper123 

Entities

Research Objects

Anna

Indirect 
Connection

Figure 7.5: Conversations on social media contribute to exposing direct and indirect
connections between resources.

Bob, information that cannot be derived from the tweets, but this may be derived

from a digital archive, or a research collaboration platform. In any case, the mention

@Bob by the researcher enables a search system to expose an additional, but indirect

connection between the researcher and Anna. So there are at least two new potential

relationships between resources that may potentially be revealed:

(i) Direct: The researcher and Anna both mentioned #WWW, the World Wide Web

Conference.

(ii) Indirect The researcher mentions Bob, Bob is an author of the paper with URL

h�p://example.com/www/paper123, and Anna is also a co-author of this paper.

The indirect connections are usually revealed because the representation of entities

in the data model is suitable for this.

Data Model

The Data Model has two spaces. It has a Linked Data space and an Entity space.

The former is the representation of the data loaded into the model and the la�er are

the entities, each having a URI, a label, a type and a description consisting of one or

more Linked Data triples. In this section we describe the two types of data that we

model: Research Data and Linked Data extracted from social media.
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Research Data. Research data is described as Linked Data using state-of-the-art

vocabularies, detailed in Section 8.2. We model research data with respect to their

usage and wide popularity within the Semantic Web community, as well as to their

applicability for the proposed use case. One of the modeling domains of interest are

scientific events and their relatedness to bibliographical archives.

Linked Data from social media. We created an annotated set of extracted con-

ference hashtags mentioned in tweets of researchers which would be associated

with corresponding tweets and which can be used for further mining tasks like label

based matching of scientific events in Linked Data sets, e.g., COLINDA, or DBLP.

The motivation for linking data from social media: ‘social data’ as such, is threefold:

(i) Link discovery To allow detecting and creating links between the users and

the data they are exploring.

(ii) Timely context To enforce a timely and personalized context to the search.

(iii) Relationships To add additional relationships between users and resources

that are contained in the more static data and potentially introduce additional

references to other Linked Open Data.

In this search use case, besides persons, locations, conferences and scientific publi-

cations, the researcher oneself is an important resource for the context.
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Summary

The presented use case focuses on revealing relations between indirectly related

resources about publications, conferences, and researchers. The domain of this use

case became increasingly relevant due to the fact that during scientific conferences

the use of social media, in particular microblogs became more important. The use

case fits against a background on search interfaces, social media, and linked data on

the subject. The approach for the use case entails a two-layered model focusing on

the data and the semantics. In this use case, researchers explore so-called ‘research

objects’ through this abstraction layer. The implementation and evaluation of this

approach is outlined in the next chapter (8).

146



7.3. Approach

References

[1] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Wa�s. Everyone’s an influencer: quantifying

influence on twi�er. Proceedings of the fourth ACM international conference on Web search and

data mining. WSDM 1́1, pages 65–74, ACM, Hong Kong, China, 2011.

[2] S. Bechhofer, I. Buchan, D. D. Roure, P. Missier, J. Ainsworth, J. Bhagat, P. Couch, D. Cruickshank,

M. Delderfield, I. Dunlop, M. Gamble, D. Michaelides, S. Owen, D. Newman, S. Sufi, and C. Goble.

Why linked data is not enough for scientists. Future Generation Computer Systems, 29(2):599–611,

2013.

[3] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked data on the web (ldow2008). Proceedings

of the 17
th

international conference on World Wide Web. WWW ’08, pages 1265–1266, ACM, Beijing,

China, 2008.

[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann. DBpedia - a

crystallization point for the web of data. Web Semantics, 7(3):154–165, September 2009.

[5] G. Cheng and Y. �. Searching linked objects with falcons: approach, implementation and evalu-

ation. Int. J. Semantic Web Inf. Syst. 5(3):49–70, 2009.

[6] A.-S. Dadzie and M. Rowe. Approaches to visualising Linked Data: a survey. Semant. web, 2(2):

89–124, April 2011.

[7] L. De Vocht, S. So�ic, M. Ebner, and H. Mühlburger. Semantically driven social data aggregation

interfaces for research 2.0. Proceedings of the 11
th

International Conference on Knowledge Manage-

ment and Knowledge Technologies. i-KNOW 2011, pages 43:1–43:9, ACM, Graz, Austria, 2011.

[8] L. De Vocht, D. Van Deursen, E. Mannens, and R. Van de Walle. A semantic approach to cross-

disciplinary research collaboration. Internation Journal of Emerging Technologies in Learning (iJET),

7(S2):22–30, 2012.

[9] M. Ebner, T. Altmann, and S. So�ic. @twi�er analysis of #edmedia10 - is the #informationstream

usable for the #mass. Form@re - Open Journal per la formazione in rete, 11(74), 2011.

[10] M. Ebner, H. Mühlburger, S. Scha�ert, M. Schiefner, W. Reinhardt, and S. Wheeler. Ge�ing gran-

ular on twi�er: tweets from a conference and their limited usefulness for non-participants. In:

Key Competencies in the Knowledge Society. Volume 324 of IFIP Advances in Information and

Communication Technology, pages 102–113. Springer Berlin Heidelberg, 2010.

[11] M. Ebner and W. Reinhardt. Social networking in scientific conferences - Twi�er as tool for strengthen

a scientific community. U. Cress, V. Dimitrova, and M. Specht, editors, Learning in the Synergy of

Multiple Disciplines, Proceedings of the EC-TEL 2009. Volume 5794 of Lecture Notes in Computer

Science, Springer, Berlin/Heidelberg, October 2009.

[12] H. Glaser, I. C. Millard, and A. Ja�ri. Rkbexplorer.com: a knowledge driven infrastructure for

linked data providers. Proceedings of the 5
th

European semantic web conference on The semantic

web: research and applications. ESWC’08, pages 797–801, Springer-Verlag, Tenerife, Canary Islands,

Spain, 2008.

[13] D. M. Herzig and T. Tran. Heterogeneous web data search using relevance-based on the fly data

integration. A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab, editors, WWW, pages

141–150, ACM, 2012.

147

http://dx.doi.org/10.1145/1935826.1935845
http://dx.doi.org/10.1145/1935826.1935845
http://dx.doi.org/10.1016/j.future.2011.08.004
http://dx.doi.org/10.1145/1367497.1367760
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.3233/SW-2011-0037
http://dx.doi.org/10.1145/2024288.2024339
http://dx.doi.org/10.1145/2024288.2024339
http://dx.doi.org/10.1007/978-3-642-15378-5\_10
http://dx.doi.org/10.1007/978-3-642-15378-5\_10
http://books.google.com/books?vid=ISBN3-540-68233-3, 978-3-540-68233-2
http://books.google.com/books?vid=ISBN3-540-68233-3, 978-3-540-68233-2
http://dx.doi.org/10.1145/2187836.2187856
http://dx.doi.org/10.1145/2187836.2187856


7. Web 2.0 for Scientific Research

[14] Y. Hu, K. Janowicz, G. McKenzie, K. Sengupta, and P. Hitzler. A linked-data-driven and semantically-

enabled journal portal for scientometrics. In: The Semantic Web - ISWC 2013. Volume 8219 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.

[15] D. Laniado and P. Mika. Making sense of twi�er. P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika,

L. Zhang, J. Z. Pan, I. Horrocks, and B. Glimm, editors, International Semantic Web Conference (1).

Volume 6496 of Lecture Notes in Computer Science, pages 470–485, Springer, 2010.

[16] J. Letierce, A. Passant, J. Breslin, and S. Decker. Understanding how twi�er is used to widely spread

scientific messages. Proceedings of the WebSci10: Extending the Frontiers of Society On-Line, 2010.

[17] M. Mathioudakis and N. Koudas. Twi�ermonitor: trend detection over the twi�er stream. Pro-

ceedings of the 2010 ACM SIGMOD International Conference on Management of data. SIGMOD ’10,

pages 1155–1158, ACM, Indianapolis, Indiana, USA, 2010.

[18] G. Parra Chico and E. Duval. Filling the gaps to know More! about a researcher. Proceedings of the

2
nd

International Workshop on Research 2.0. At the 5
th

European Conference on Technology Enhanced

Learning: Sustaining TEL, pages 18–22, CEUR-WS, September 2010.

[19] W. Reinhardt, M. Ebner, G. Beham, and C. Costa. How people are using twi�er during conferences.

Hornung-Prähauser, V., Luckmann, M.(Hg.): 5
th

EduMedia conference, Salzburg, pages 145–156, 2009.

[20] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the linked data best practices in

di�erent topical domains. In: The Semantic Web–ISWC 2014, pages 245–260. Springer, 2014.

[21] S. So�ic, M. Ebner, H. Mühlburger, T. Altmann, and B. Taraghi. Twi�er mining #microblogs using

#semantic technologies. 6th Workshop on Semantic Web Applications and Perspectives, pages 1–9,

2010.

[22] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: extraction and mining of academic

social networks. Proceedings of the 14
th

ACM SIGKDD international conference on Knowledge dis-

covery and data mining. ACM, pages 990–998, 2008.

[23] K. Tao, F. Abel, Q. Gao, and G.-J. Houben. Tums: Twi�er-based user modeling service. R. Garcia-

Castro, D. Fensel, and G. Antoniou, editors, ESWC Workshops. Volume 7117 of Lecture Notes in

Computer Science, pages 269–283, Springer, 2011.

[24] P. Thonhauser, S. So�ic, and M. Ebner. Thought bubbles: a conceptual prototype for a twi�er

based recommender system for research 2.0. Proceedings of the 12
th

International Conference on

Knowledge Management and Knowledge Technologies. i-KNOW ’12, pages 32:1–32:4, ACM, Graz,

Austria, 2012.

[25] T. D. Ullmann, F. Wild, P. Sco�, E. Duval, B. Vandepu�e, G. A. Parra Chico, W. Reinhardt, N.

Heinze, P. Kraker, A. Fessl, S. Lindstaedt, T. Nagel, and D. Gillet. Components of a research 2.0

infrastructure. Lecture Notes in Computer Science, pages 590–595, Springer, 2010.

[26] R. Van Noorden. Online collaboration: scientists and the social network. Nature News, 512(7513):

126–130, August 2014.

[27] K. Verbert, D. Parra, P. Brusilovsky, and E. Duval. Visualizing recommendations to support ex-

ploration, transparency and controllability. Proceedings of the 2013 International Conference on

Intelligent User Interfaces. IUI ’13, 2013.

148

http://dx.doi.org/10.1007/978-3-642-17746-0_30
http://dx.doi.org/10.1145/1807167.1807306
http://dx.doi.org/10.1007/978-3-642-25953-1\_22
http://dx.doi.org/10.1145/2362456.2362496
http://dx.doi.org/10.1145/2362456.2362496
http://dx.doi.org/10.1007/978-3-642-16020-2\_{}59
http://dx.doi.org/10.1007/978-3-642-16020-2\_{}59
http://dx.doi.org/10.1038/512126a


7.3. Approach

[28] K. Weller, E. Droge, and C. Puschmann. Citation analysis in twi�er: approaches for defining and

measuring information flows within tweets during scientific conferences. M. Rowe, M. Stankovic,

A.-S. Dadzie, and M. Hardey, editors, Making Sense of Microposts (#MSM2011), pages 1–12, 2011.

[29] R. S. Xin, O. Hassanzadeh, C. Fritz, S. Sohrabi, and R. J. Miller. Publishing bibliographic data on

the semantic web using bibbase. Semantic Web, 4(1):15–22, 2013.

149

http://dx.doi.org/10.3233/SW-2012-0062
http://dx.doi.org/10.3233/SW-2012-0062




Chapter 8

Research Exploration Tool

In much of society, research means to investigate something

you do not know or do not understand.

—Neil Armstrong.

This chapter describes the implementation of an approach for searching resources

in the Web of Data for scientific research to demonstrate the use case described in

Chapter 7. The implementation consists of two main components: a semantic search

engine and an aligner. The semantic search engine takes care of the indexing and

interpreting incoming queries, given a query context it ranks the found resources and

presents them to the search interface. The aligner extracts, annotates, and interlinks

the selected data sources.

8.1 Overview

Our approach is one of the first practical solutions combining the social web and

the semantic web in an interactive search environment that visually emphasizes and

represents the search context and results. We introduced the first data architectures

in 2011 [8]. The data modeling concepts were discussed in [22, 24] while back-

end components [6], were investigated. These components were used to serve the

front-end implementation. The aligning and matching of research related seman-

tic resources was the main scope of our work on dynamic alignment of scientific

resources such as web collaboration tools and digital archives [9, 23]. The first

prototypes of the search interface were introduced at conferences in late 2013 [7] and
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2014 [23]. One of the first live versions was selected to participate at the Semantic

Web Challenge 2013 at the International Semantic Web Conference [10]. The goal

was to iteratively develop the use case implementation, demonstrate the interface

and visualization, trigger discussion, and gain insight on the exploration workflow.

Figure 8.1 shows the di�erent components:

(i) The Semantic Search Engine resolves queries consisting of one or more research

concepts by being able to resolve them with refined entities out of Linked Data

sets, represented in the model as “Data Seeds”. The Semantic Search Engine

parses queries and discovers relations between the research objects which are

in fact a refined representation of the resources.

(ii) The Aligner allows configuring a selection and interlinking of structured data,

linked data (semantically described structured data) and data from Social Me-

dia. The Aligner combines data from various heterogeneous sources configured

in the Data Seeds and refines them for the Semantic Search Engine.

(iii) A search interface allows researchers to browse and search for new research ob-

jects based on the researcher’s previous tracked research objects and traversed

paths (such as bookmarks or saved searches).

Listing all relevant contributions of researchers improves the ranking of found re-

sources related to a certain search. Combining the Aligner and the Semantic Search

Engine is an essential aspect for this infrastructure. The semantic aspect (not shown

in the figure) is essential for each search because it takes into account the meaning of

the links between the resources. This meaning is documented in several (commonly

used) vocabularies.

8.2 Data Seeds

There are three important data seeds:

(i) datasets derived from structured data;

(ii) linked data; and

(iii) data from social media.
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Semantic Search Engine

Extracter Interlinker Profiler

Aligner

Search Interface

Refining

Parsing Ranking

Browsing, Searching

Contributing

Monitoring

Linked DataStructured Data

Mapping Integrating

Social Media

Data Seeds

Profiling

Indexer Pathfinder Web 2.0 Tools

Queries Resources Posts, Shares

Figure 8.1: The combination of the Aligner and the Semantic Search Engine forms a
bridge between the source data and researchers.

All this data is annotated with vocabularies. This section firstly introduces the used

vocabularies and then explains the details about the datasets used.

Vocabularies

The Dublin Core vocabulary1[29] has been used besides the Semantic Web for Re-

search Communities (SWRC), the Semantically Interlinked Online Communities

(SIOC) and the Friend-of-a-Friend (FOAF) ontology to annotate information such

as titles, descriptions, authors, and other metadata properties.

Using the Modular Unified Tagging Ontology (MUTO)2 [16] tags are annotated.

MUTO is suitable because it combines and further optimizes succesful approaches

from earlier tag ontologies. MUTO instances bind within the Linked Data hashtags

and tags from Twi�er and Mendeley within the same context. Instances of MUTO

1http://dublincore.org/documents/dcmi-terms
2http://muto.socialtagging.org/core
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support interlinking tags with conference labels in Conference Linked Data3 [22]

(COLINDA).

Common vocabularies to annotate social media as Linked Data are: Friend of A

Friend (FOAF)4, Semantically Interlinked Online Communities (SIOC)5 [3, 4], and

Dublin Core6 [29]. FOAF describes the user profiles, their social relations and re-

sources. SIOC is mostly combined with FOAF and Dublin Core for creating instances

of web entries like blogs, microblogs, mailing list entries, forum posts, along with

other entries from Web 2.0 platforms [8, 24, 27]. Passant et al. improved mapping

social profiles with related content, such as via interlinking tags [18, 19, 20].

Datasets

The selected datasets consist of existing Linked Open Data sets: DBpedia, DBLP

and GeoNames interlinked with research oriented datasets such as COLINDA and a

Social Linked Data set containing information about conferences and social profiles

of the researchers from Twi�er and Mendeley and the data they shared recently.

The “Digital Bibliography and Library Project” (DBLP)7[15] provides bibliographic

information on major computer science journals and proceedings and indexes more

than 2.3 million articles. Besides it also has many links to home pages of computer

scientists. The COLINDA data set resolves this connection. COLINDA describes

conferences using the Semantic Web for Research Communities (SWRC)8 ontology

[26]. Especially important for this decision was that DBLP Linked Data also applies

this ontology to describe its resources. COLINDA bridged GeoNames, DBpedia, and

DBLP since it has links to these three Linked Datasets. Furthermore, it serves as a

conference entity resolver for social data used with the profiles of users from Twi�er

and Mendeley.

3http://www.colinda.org
4http://xmlns.com/foaf/spec/
5http://rdfs.org/sioc/spec/
6http://dublincore.org/documents/dcmi-terms/
7http://dblp.l3s.de
8http://ontoware.org/swrc/
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8.3 Semantic Search Engine

This module parses queries against the aligned data sources and ranks matched

resulting resources. It consists of two modules: the Indexer and the Pathfinder. The

Pathfinder retrieves resources via the Indexer. The Indexer pre-optimizes and stores

each resource by uri and label to be able to serve them instantly. We have used an

implementation that relies on our earlier work on pathfinding in linked data [6].

For all data sources we make sure that we describe their resources using correctly

mapped and applied vocabularies so we can expose them using a uniform interface

and representation, such as RDF.

8.4 Aligner

The Aligner module combines di�erent social and online tools, such as Twi�er or

Mendeley. It interlinks data provided by the users (when they are actively using

these social and personal media tools) to existing (Linked) Open Data such as DB-

pedia, GeoNames9, LinkedGeoData10[25], DBLP, and COLINDA. This interlinking

allows enriching and connecting researchers to a vast amount of resources implicitly

connected to them and thus initially not accessible. This allows to track communica-

tion on Social Media such as Twi�er among researchers and relate it to publications

and conferences. The Aligner module is optimized for the specificities of Social Me-

dia and collaboration tools. Moreover, a part of the alignment analysis, where access

to restricted resources from users on Twi�er and Mendeley is needed, happens on

client-side. Only the results are aligned with the existing Linked Open Data.

Extracter

Each time when a certain source provides access to their structured content, the

Aligner makes sure that provided content is correctly converted conform our data

model. Therefore it selects configured properties and annotates them using the

supported vocabularies.

9http://www.geonames.org
10http://linkedgeodata.org
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Profiler

When users sign up, they authorize access to their Twi�er and Mendeley accounts.

The Profiler extracts the timeline and followers of the user’s social account and then

annotates them using the FOAF and SIOC vocabularies. Their author’s profile is

linked to DBLP based on publication title and the Digital Object Identifier (DOI) of

each publication. Listing 8.1 shows how to combine these identifiers with all author

names and use them to find matching author identifiers in DBLP for each publi-

cation. For each article in a Mendeley account linked to a subscribing researcher

it checks the DOI and publication title in DBLP and retrieves the authors. If a

match occurs, the articles are aligned using owl:sameAs. If all author names of the

publication match, we interlink the Mendeley authors with the DBLP authors based

on their URI’s. Because users linked their Twi�er and Mendeley when signing up,

the profiler can link the author representation on DBLP with the author profile on

Mendeley to the other social media accounts of the user and their contributions.

alignArticle(mendeleyArticle)
title = find(mendeleyArticle, "dcterms:title")
articleAuthors = aligner.getAuthors(title, article)
foreach(articleAuthors -> (dblpArticle, authors))

add(mendeleyArticle, "owl:sameAs", dblpArticle)
foreach(authors -> (authorUri, authorName))

add(articleUri, "dcterms:creator", authorUri)
persons = find("foaf:name", authorName)
foreach(persons -> person)

add(person, "rdf:type", "foaf:Person")
add(person, "owl:sameAs", uri)

Listing 8.1: Aligning research publications from Mendeley (mendeleyArticle) and
DBLP (dblpArticle).

Including links to the social profiles of each researcher allows personalized searches.

The resulting user profile extends the search context given a set of keywords.

Interlinker

Interlinking linked data involves several steps to optimally align various sources. The

first step is to define the linked datasets to use, to identify the vocabularies in them

and to define which resource to link with resources occurring in another dataset.

If the dataset is not available as Linked Data, then we must select a vocabulary

to annotate the data. The case of Social Media is particular because Social Media

content o�en consists of small posts and shares which we analyzed based on:
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• URLs referring to and the content in it (enriched with recognized entities);

• hashtags and mentions included;

• entities occurring with the tweets.

A�er we extracted the urls, hashtags, entities and mentions out of each post in Social

Media, we checked each of those against the Linked Open Data Cloud. COLINDA

is used for matching conference hashtags, LinkedGeoData and GeoNames for loca-

tions, DBpedia for general concepts such as persons, places, and events. DBpedia

is the de-facto main hub within the LOD Cloud [2]. It is well-connected to the

GeoNames and DBLP which makes it a very valuable source for search space expan-

sion with more information about some common categories like cities and countries,

persons or institutions. Additionally within the experiment DBpedia was also used

as hub for path finding. We show an example for the hashtags in Listing 8.2: a�er

loading the interlink services ("colinda","geonames","dbpedia","dblp") from a configfile

in a list interlinkServices, we annotate each unique tag occurring in a microblogpost.

annotateTag(tag)
labels = store.find(tag, "rdfs:label");
foreach(labels -> (label))

foreach(interlinkServices -> (service))
meanings.add(getMeaning(service, label))

store.add(tag, "muto:tagLabel", literal(label))
store.add(tag, "muto:tagMeans", meanings)

Listing 8.2: Interlinking tags with the MUTO vocabulary. The tagLabel and
tagMeans properties are used to indicate the label and a URI to the definition
respectively.

Combining these approaches enriches tweets with Linked Data and is a good way to

achieve optimal meaning. Entities occurring in the resources shared via the tweets

lead to the best results [1]. However, we have found in earlier research work that

also the hashtags have consistent enough meaning for interlinking [14].

Example of Interlinking Conferences

The rdfs:seeAlso property connects conferences from COLINDA with corresponding

proceedings instances from DBLP Linked Data set. The rdfs:label, of each conference

instance, matches the tags and hashtags from Social Media content and profiles of

users. COLINDA instances also include the dcterms:spatial
11 property for venues

11h�p://dublincore.org/documents/dcmi-terms/#terms-spatial
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of conferences found in DBpedia. Conference web page links are generated with

the owl:sameAs property. The connection of the COLINDA spatial information to

GeoNames [28], uses the swrc:location property. The description of the conference

venue combines the GeoNames 12 ontology and basic Geo (WGS84 lat/long) Vocabu-

lary 13 within the interlinking process. Data contained in COLINDA originates from

WikiCfP 14 and Eventseer15 and contains information about approximately 15000

conferences in the period from the year 2003 up to 2013.

Listing 8.3 shows, a sample instance of the WWW 2012 conference
16 in COLINDA.

In order to interlink the DBLP instance of proceedings for each single conference

@prefix swrc: <http://swrc.ontoware.org/ontology#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://colinda.org/resource/conference/WWW/2012>
a swrc:Conference ;
rdfs:label "WWW2012" ;
swrc:location <http://sws.geonames.org/2996944/> ;
swrc:eventTitle "WWW 2012" ;
rdfs:seeAlso <http://dblp.l3s.de/d2r/resource/publications/conf/www/2012> ;
owl:sameAs <http://eventseer.net/e/16970/> ;
dc:spatial <http://dbpedia.org/resource/Lyon>,

<http://dbpedia.org/resource/France> ;
swrc:startDate "2012-10-20"^^xsd:date ;
swrc:description "21st international world wide web conference (WWW 2012)" .

Listing 8.3: Sample instance in COLINDA: WWW 2012 conference. The link to DBLP
using the seeAlso and to DBpedia via the spatial property

we used URL structure features of both datasets. DBLP instances follow the URL

pa�ern conf/abbrevation/YYYY to identify the corresponding conference e.g. con-
f/www/2012 . This pa�ern in DBLP is also stored in the instance of swrc:Proceedings

as separate dc:identifier property. The COLINDA URL pa�ern conference/abbreva-

tion/YYYY, e.g., conference/WWW/2012 identifies the same conference. Inter-

linking between the COLINDA and DBLP data sets is done by matching these two

pa�erns. Further, names (labels) of locations of conferences in COLINDA were used

in CURL requests and SPARQL queries against DBpedia and Geonames to interlink

these values from COLINDA over dcterms:spatial, swrc:location properties with the

corresponding elements in DBpedia and Geonames instances. Included conference

12h�p://www.geonames.org/ontology/
13h�p://www.w3.org/2003/01/geo/
14h�p://www.wikicfp.com
15h�p://eventseer.net
16h�p://colinda.org/resource/conference/WWW/2012
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web page links were embedded into COLINDA instances using the owl:sameAs prop-

erty.

The resolution of search results is based upon the properties of Linked Data in-

stances like rdf:label, owl:sameAs, rdf:seeAlso, dc:title, dc:spatial, or dc:description.

Those properties have been used in generation of Linked Data instances to preserve

conference shortcuts (e.g., WWW2012), point to link of proceedings of a conference

or, to connect alternative link about it, as well to literally describe the venues of

scientific events.

8.5 Exploratory Interaction

Based on the ability of humans to rapidly scan, recognize, recall images, and detect

changes in size, color, and shape, we aim to enhance the guidance of users during

their search by using several visual aids of which the three most visible are:

1. Shape: We group sets of types in large groups and represent them using an

embedded shape (an icon) or an outer shape. Figure 8.2 shows di�erent icons

assigned to a conference, location, and tag. Types that cannot be assigned a

group are grouped in a category ’Miscellaneous’. The shapes help the user to

distinguish between the types of o�ered results.

2. Color: Every entity has a type and associated unique color. For a certain

result set the user gets an immediate impression of the nature of the found

resources. Figure 8.3 depicts two di�erent objects related to other objects and

therefore have a di�erent shape and size. On the le� of the search interface

there is a legend explaining the researcher the meaning of shapes and colors.

3. Size: Each entity is ranked according to novelty and relation to the context

and sized according to the degree of a�ention they should a�ract. This is

shown in Figure 8.4. The novelty quantifies the degree of being new, original

or unusual. Particularly in this context it entitles resources that are remarkable

and di�er from the others because of their direct relations with neighbours or

their semantics (in terms of occurring predicates). A goal of the search is to

explore information not seen before which makes it di�icult to define an accu-

rate search goal. Besides allowing to search specific entities, the visualization

facilitates exploratory browsing. This is particularly useful when searching for

information with unclear defined search targets [17].
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Figure 8.2: Di�erent em-
bedded shapes (icons) to
distinguish types.

Figure 8.3: Di�erent
shape and color to
distinguish types.

Figure 8.4: Di�erent sizes
to guide the user’s focus.

Figure 8.5 shows how researchers can track the history of their search: the explored

relations are marked red and clearly highlight the context of a search. This is a

good example of how our system adapts to the users and their environments. It

shows one of the ways how to build a model of the goals and knowledge of an

individual user [5], and the model is used throughout the interaction with the user.

Researchers can click on a list of resources they have searched to focus the visual-

ization. A screencast of the search interface is available online17. In this screencast,

we show how researchers interact with the search interface and the above described

visualization.

Figure 8.5: An emphasized line marks the explored relations in the visualized search
context.

17http://youtu.be/tZU97BQxE-0
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Example Illustrating the Dynamics

Each search starts within the search interface where a user can either login or query

anonymously the Semantic Search Engine. The search interface distinguishes be-

tween two types of queries: a query which consists of several keywords as seeds and

a profile-driven query, used as preset for further search, driven initially by user back-

ground information. We have developed a prototype, called ResXplorer to demon-

strate the search engine [7]. ResXplorer presents search results according to the

principles of a topological radial graph interface [30].

Except for the first step, the querying paradigm applies to the personalized search as

well. The query in the figure illustrates the common case where a researcher enters

the search process by entering simple keywords and tries to resolve the context of

“finding useful resources from a certain conference”.

1. One searches for a specific conference “Linked Data" and articles related to

“WWW2012". Firstly, as Figure 8.6 shows, the visualization focuses first on

the logged in user upon which the user can choose to expand on of the neigh-

bouring resources.

Figure 8.6: User expands a direct neighbor a�er ResXplorer focuses on logged in user
(encircled with dashes).

We note that the user changes the focus of the result view by clicking on a

resource: the resource encircled with a mixed line. Within the simplified query

progression process, entered keywords are first mapped towards the entities

and properties in the index.

2. As a search result the engine delivers first set of links for each keyword en-

tered, such as in Figure 8.7 for “Linked Data".
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Figure 8.7: User searches for “Linked Data" and ResXplorer reveals the chain of links
between the selected document (encircled with dots) and the user.

3. If available, the system also delivers the types of entities discovered in index.

When the user searches for the next keyword “WWW2012”, relations to other

already visualized resources are exposed as indicated in Figure 8.8.

Figure 8.8: A�er the user focused on a common resource of both and searched for
“WWW2012”, ResXplorer reveals relations to the selected conference “WWW2012”
(encircled with dot-dashes).

4. By entering the location, for example “Germany", one could narrow further the

focus of the context by location. Each time a combination of various resources

is visualized, the application suggests new queries: they are generally most

useful for refining the system’s representation of the researcher’s need.
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In case they have no idea which entity to focus on or what topic to investigate

next they get an overview of possible entities of interest, like points of interest

on a street map. By profiling their activities and contributions on social media

and other platforms such as their own research publications, the a�inity with

the proposed resources is enhanced.

5. With each further iteration the user can choose either one of two actions:

• �ery Expansion: The user expands the query space by clicking the

results retrieved by initial keyword based search.

• Additional �ery Formulation: Additional query expansion happens

either through adding further keywords as well as through keyword com-

binations already entered where the back-end tries to deliver additional

results based upon connection paths between the resources. What hap-

pens in return is that the engine tries to identify the terms that have

been searched in the result space. In cases when they can be resolved

by a Linked Data instance, the algorithm continues step by step looking

via links to the neighbors of the instance to find a path to other terms

identified by the engine as well. A�er a certain number of steps (here,

seven) it terminates if it is unsuccessful.
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8.6 Evaluation

We compared the implementation against both popular academic search engines

and highly specialized academic search interfaces and evaluated the visualization

itself by measuring the e�iciency and average precision of the results presented to

users.

We used a task based approach as already applied [12] to obtain expert user reviews.

The goal of the reviews is to compare ResXplorer against industry reference academic

search interfaces and related academic projects, the state-of-the-art (SOTA). Two

researchers – search interface experts – independently reviewed the performance of

each of these search interfaces. They were familiar with all of the tools beforehand.

We selected a set of six representative tasks supported by these systems for the

reviews in Table 8.1.

Table 8.1: List of tasks executed by the expert users.

Task Description
T1 Find proof that Chris(tian) Bizer is an author.
T2 Find out three di�erent people that know or are known by the person in T1 (e.g. co-authors).
T3 Find out three di�erent kinds of relations between the person in T1 and Chris(tian) Bizer.
T4 Find three di�erent conferences on the subject Artificial Intelligence.
T5 Find at least two people that have a paper included in the proceedings in two consequent

editions of the WWW (World Wide Web) Conference.
T6 Find: (i) at least one publication that was presented in 2011 in a WWW workshop (co-

)organized by Tim Berners-Lee (e.g. LDOW - Linked Data on the Web); and (ii) at least one
publication with an author that relates this publication to both the ‘2011 publication and
the ISWC Conference 2010.

We designed the search tasks optimized for the SOTA search engines and for ResX-

plorer and they are either simple (e.g. single fact or source) or complex (combinations

of facts and sources). We outlined the a priori, thus before presenting it to the expert

users, expected suitability of these tasks in Table 8.2.

Table 8.2: A priori optimal suitability of the search tasks.

Straightforward Complex
ResXplorer T3 T6
Both T2, T4
SOTA T1 T5

In each of these tasks the experts had to indicate a�er each interaction by either

a click or text input, how many relevant results they found. Their actions were
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recorded so that we could count the total number of actions for each task and the

number of results a�er each action.

For each of the tasks we measured the average precision (between 0 and 1) and the

e�iciency (expressed as number of actions needed).

Average Precision, measures the average of the search precision over all the re-

quired actions in certain task. Thereby the precision [21] of the kth search action is

defined for the user evaluation as follows:

precision = Pk =
retrieved relevant results

retrieved results
@k (8.1)

and the average precision over all actions A in certain task:

average precision = AP = ∑
k∈A

Pk

| A |
(8.2)

However, the actions are di�erent so a direct comparison for ResXplorer between

the user action e�ectiveness and the precision measured here is not possible. It also

would make no sense as the user tests focused on lean users while the experts are

specialized in search interfaces.

E�iciency, expressed as the number of actions (Nx) when users perform a certain

task (Tx). The lower the score, the less actions the experts needed to successfully

complete the task.

To verify that the expert reviews are similar enough to be considered, we measured

the inter-rater agreement among them. We selected therefore the chance corrected

agreement (κ) measure [11] (−1 < κ < 1). The inter-rater agreement of the results

between the experts is substantial (κ = 0.61 and F-measure 0.83) according to the

Landis et al. scale [13]. The visualization in Figure 8.9 shows the mean average

results for each of the tested search interfaces and indicates how well the expert

reviews match.

Tables 8.3 and 8.4 display the results of the expert evaluations of ResXplorer in

comparison to two industry references and three research projects in the same do-

main. In ARNet Miner and ResXplorer the autocomplete facilitated instant and

precise matches. In Microso� Academic Search, Google Scholar, and Falcons the first

page of results contained the necessary results and Google Scholar and Microso�

Academic Search promoted the matching result as a suggestion on top of the list.

T3 is a non-direct relation finding task and that is the main goal of ResXplorer while

T2 requires zooming in depth around a specific property of a person. ResXplorer
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Figure 8.9: The agreement between the experts on the ratings over all search inter-
faces combined is substantial. (E1 = expert 1, E2 = expert 2)

Table 8.3: The search precision for ge�ing the first search results returns all true pos-
itive matches except ArnetMiner returned 4 out of 5 false positives in T1. ResXplorer
is not as precise as the other interfaces for T2 but excels in T3. (brighter = be�er)

E�ectiveness T1 T2 T3 T4 T5 T6 Mean
Google Scholar 1.00 0.90 0.35 1.00 0.43 0.62 0.72
MA Search 1.00 1.00 0.63 1.00 0.90 0.64 0.86
Falcons 1.00 0.95 0.63 0.78 0.60 0.68 0.77
ResXplorer 1.00 0.84 0.84 0.70 0.39 0.80 0.76
ARNetMiner 0.60 1.00 0.81 0.74 0.20 0.49 0.64
Faceted DBLP 1.00 1.00 0.83 0.95 0.52 0.45 0.79

Table 8.4: An increased number of user actions does not always guarantee more
precise (intermediate) results, but it does for ResXplorer, except in T5. (brighter =

be�er)

E�iciency T1 T2 T3 T4 T5 T6 Sum
Google Scholar 1 1 2 2 5 3 15
MA Search 1 1 3 1 2 4 12
Falcons 1 2 3 3 3 6 18
ResXplorer 1 2 4 3 4 4 21
ARNetMiner 1 1 3 1 2 3 11
Faceted DBLP 1 1 3 1 2 3 10

intends to maintain the broad overview at all times during the search which induces

some noise for a task like T2.

166



8.6. Evaluation

In T4 the industry references beat the research engines. T4 requires skimming or

filtering a list of conferences which is not supported in ResXplorer and in Falcons

and ArnetMiner not to the same degree as the industry references. Faceted DBLP

also scores well for T4 thanks to the faceted search interface and tight DBLP link.

For T4 required the Google Scholar interface scrolling through two pages to find

three di�erent conferences. There were many results of the same conference on a

page. Microso� Academic Research allowed searching specifically for items of the

type conference. That explains the highest rating here, as all results were on the first

page in contrast to Google Scholar. In Falcons the results were a li�le less accurate

and did not allow searching specifically for conferences either. ResXplorer did not

provide a list but a limited set of entry points for exploration. This meant the search

was repeated to find di�erent entry points leading to a conference, in fact three

times, each time to find a new conference. ARNet Miner provided a view of the

results containing distracting widgets, not all material was clearly relevant for the

search. It included relatively many false positives to interpret but all results were

found a�er one search action. The expert users judge the results presented in the a

priori defined complex tasks having the most irrelevant results and they needed at

least 2 actions in T5 and even 3 actions in T6 to resolve the search task. The highest

e�ectiveness was found for MA Search in T5 and for ResXplorer in T6. In terms of

e�iciency Google Scholar required the most actions in T5 and Falcons in T6.
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8.7 Discussion

The evaluation presented a balanced choice of comparable solutions for the same or

closely related use cases: two of them from industry (MA Search and Google Scholar)

and three of them from research domain (ARNet Miner, Falcons and Faceted DBLP).

This allowed good positioning and qualitative reviewing of our use case implemen-

tations. ResXplorer is situated in the mid-range in terms of mean average search

precision and requires relatively lots of action from the user. However, ResXplorer

is best when the task consisted of relating resources that are not directly related or

when at least the user is not aware of how they are related. That is precisely the goal

we wanted to show with ResXplorer and the methods and techniques that drive it.

Room for Improvements

The main concept of ResXplorer resides on the idea of an interactive search interface

which leads the researcher through the process of expansion and exploration of

results to the hidden implicit valuable information discoveries which are uncovered

in such a process. To make ResXplorer more precise in classical search and retrieve

scenarios, more accurate filters on the search keywords and results are crucial. An-

alyzing nuances concerning the e�iciency would be beneficial as a smaller number

of actions does not always lead to the most e�icient interface, certainly if it re-

quires more thinking and judging from the users: more straightforward steps might

be more e�icient than less but more complicated steps. The distinction between

proposing new a�inities between certain resources versus exploring the proposed

resources in detail could be more clear and explaining the motivation behind the

a�inities, where we characterize each a�inity, between researchers and resources,

by the amount of shared interests and other commonalities.

Contributions

With this implementation users can combine any searches and interact with the

results that exposes relationships between them. This is a feature not found in

conventional search interfaces. It o�ers search for publications, as well as supports

relation visualization on author level. We visually emphasize discovered types of

entities and relations. In comparison to the current existing solutions we can use

the snapshot of social content published by researchers on social media and col-

laborative platforms like Twi�er and Mendeley to make a pre-set for exploratory
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search. This feature is unique to our solution. Furthermore, the method by which

we generate context-based results di�ers from ARnet Miner because we do not

rely on data mining and machine learning techniques to resolve the research re-

lated information. Our approach uses a�inity based ranking derived from the social

context and search process itself. We use graph based algorithms which perform

independently of underlying Linked Data. In comparison to the existing search

solutions, our interface is designed to visually explore the research space, rather than

to support classical keyword based search. This exploration is based on personal

preference and serendipity of information in the data set (publications, persons,

events). This data is enhanced by additional information (e.g. venues of events)

related to the search. Unlike Microso� Academic Search and ARnet Miner our graph

visualization is expandable and includes entities from Linked Data and description

of relations between them. Since pre-sets of the search reside on actualized social

media content of the user our solution adapts be�er on changes of information

and trends from social media. This aspect di�ers strongly from the conventional

approaches mentioned here.
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Summary

The resulting semantic search application provided both a technical demonstration

as well as an interactive visualization of search results. The main contribution is,

besides retrieving resources from selected Linked Data repositories, allowing re-

searchers to interactively explore relationships between the resources and entities

like events or persons related to their work. In particular, when a part of the search

consists of finding resources that connect a given statement, such as finding com-

mon items between two authors of an article, the implementation delivered the

relatively highest search precision. Further improvements on the ranking criteria

should improve the precision of proposed a�inities and the results even further.
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Chapter 9

Conclusions

This thesis aims to facilitate exploring semantic relationships between resources on

the Web of Data. To this end, I developed and evaluated three techniques, each

focusing on a separate aspect of exploratory search: front-end, back-end, and the

bridge in between. The techniques involve linking data and semantically modeling

structured data to make data more discoverable via the Web. The fundamental

concepts were outlined in Chapter 3. In this final chapter, I revisit the research

questions and indicate possibilities for future research.

9.1 General Findings

The thesis focused on two cases of exploring data on the Web, when users:

(i) how to formulate a search query (e.g., which keywords to include) to find ex-

actly what they are looking for;

(ii) want to browse information instead of looking up something specific.

The theoretical background, mainly by White and Marchionini et al., explained ex-

ploratory search as a shi� from query-to-document matching to direct guidance at

all stages of information-seeking [2]. They stated that exploratory search is likely to

enable be�er understanding of a problem context, allowing searchers to make more

informed decisions about interaction or information use [3] and emphasized the

relation between the di�erent aspects of user-system interaction during exploratory

search: lookup, investigate and learn [1].
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Many past projects focused on one or more of these aspects. Related work on

this subject appeared to be focused either mainly on the semantic modeling, on

interactivity of the exploration or were implementations for a specific application.

Chapter 2 lists some important relevant work. The distinct support for search scenar-

ios, where the user was not aware of the revealed relationships between resources, is

one of the main contributions of this thesis. Like some other implementations, the

proposed techniques in this thesis rely on controlled vocabularies and the seman-

tic descriptions of connections between resources to drive the implementation of

each technique. The main di�erence is that the proposed techniques in this thesis

emphasize the exploration of relationships between resources rather than a more

detailed exploration of a specific resource. Finally, I combined the techniques and

applied them to a use case about aligning digital libraries, scientific conferences and

researchers. The opportunities lie in applying the techniques to combinations of

di�erent linked data sources, covering an entire workflow ranging from back-end to

front-end, without denormalizing the semantics along the way.

9.2 Answers to the Research �estions

Overall, supporting exploration on top of linked data should turn the potential of

its exploitation more likely, while at the same time allowing users to discover the

data. In Chapter 2, I outlined the research questions with their hypotheses and

the key objectives of the study. This PhD answered the questions across three

di�erent chapters, each dealing with one of the proposed techniques: Chapter 4
– Interactive Search Visualization; Chapter 5 – �ery Processing; Chapter 6 –

Path-based Storytelling.

Finally, more evidence was gathered by combining and applying the techniques to a

use case, detailed in Chapter 7. The implementation and evaluation is described in

Chapter 8. I investigated there how accurate a research exploration tool facilitates

visually exploring linked data, without providing a ‘traditional’ ranked list of results.

The first and main research question RQ1 arose when looking at the combination

of exploratory search on the Web and the new graph structure (consisting of triples)

that the Semantic Web brought. This allowed linking data to each other, more fine-

grained than with hypertext documents or APIs. On top of that, the graph structure

and the (indirect) relationships it brought forth seemed like an obvious addition to

search.
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Can exploratory search e�iciently and adequately address the user’s intent

when revealing relationships between resources?

The results in Chapter 8 indicate that ensuring that retrieved relationships are ad-

equate has a trade-o� in terms of e�iciency. Optimizing both at the same time is

not possible without giving in on other areas such as: e�ort required from the user

(evaluated in Chapter 5), generic applicability or control over the kind of relation-

ships (tested in Chapter 6). When it comes to e�iciency, the performance evaluation

in Chapter 5 showed a linear execution time (scaling with increasing number of hops

between resources) and an optimized space complexity, due to the introduction of

a heuristic. Chapter 6 explains the internals and the performance of the underlying

pathfinding algorithm in combination with linked data, more specifically the use of

the A* algorithm. Choosing a suitable heuristic ensures keeping the execution time

to scale linear with the search space, or in other words the more indirect and the

more hops in between two resources the larger the number of resources needed to

be checked for each query became. The evaluation of the prototype of the research

exploration tool in Chapter 8 shed more light on the adequacy of addressing the

user’s intent. It mainly excels in this area compared to related work, when search

tasks require relations among two or more items. But it comes with a trade-o� in

terms of user interaction.

The findings about the trade-o� are strongly related with how the user’s actions

influence the results, the subject of the next research question RQ2.

To what degree do users’ search actions influence the relevance and preci-

sion of search results?

I found that each type of user action has a completely di�erent influence on the

relevance and the precision of search results. Chapter 4 taught that the processing

of queries and the mapping of keyword queries proved to be of promising precision,

given the complex and dynamic nature of the used datasets: a combination of Linked

Open Data and non-linked data sources. I observed that searching by keywords

for resources increases the result set with more new relevant resources, while it is

on average as precise as expanding existing resources in the result set. The most

precise user action was adding top-related nodes to the result set. The evaluation

of the prototype of the research exploration tool in Chapter 8 showed that when

comparing it to existing industry references (Google Scholar, Microso� Academic
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Search) and more experimental research projects (e.g. ArnetMiner, Falcons, Faceted

DBLP), the implementation requires more interaction from the user and performs

in the mid-range for search and retrieve scenarios.

The decision and actions the user is able to take depends on the results presented to

them. Research question RQ3 looks into this, when a user searches for two or more

resources the relationship between them may be exposed, but it is unclear how this

facilitates the exploration.

How does a justification of the presented results influence the user’s cer-

tainty in ge�ing closer to achieving the search goal?

Firstly, the answer on the ‘how’-part of the question relies mainly on the assessment

of the technique developed for revealing relations between Linked Data resources

using path-based storytelling in Chapter 6. To obtain interesting paths the technique

enables optimizing the graph weights between resources and to take into account

the semantics of the linked properties (predicates). I tried di�erent combinations

of weights and heuristics to find out how they a�ect the search results. The test-

results with the DBpedia dataset indicated that the link estimation for relationships

by the proposed path-algorithm is dependent on the choice of heuristic and weights.

Finally the answer on the ‘ge�ing closer to the goal’-part is tricky because aiming

for a relatively lower number of user actions for exploratory search does not always

lead to the most e�icient search approach. The evaluation in Chapter 8 showed that

advanced exploration features (in this case driven by the path-based storytelling

technique) could come at the cost of dropping basic features (or making them hardly

accessible). This is mainly due to the narrow focusing on the exploration aspect of

search, mismatching the expectation of some users looking for a more traditional

‘search and filter’ approach. Certainly if interacting requires more thinking and

judging (search results) from the users: in this case more familiar, straightforward

steps might be more e�icient than less but more complicated steps.

This leads to the last research question RQ4 looking into how search actions actually

influence the search results.

How do users gradually refine a search query by interacting with its search

results?
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To be able to gradually refine a search query, Chapter 4 proposes a workflow where

users start broad until their desired detail level to then additionally explore until they

reached their search task’s goal or are satisfied with their discoveries. The workflow

was evaluated in chapters 4, 5, and 8 where it came out as at least a facilitator for

exploratory search. Chapter 4 presented the workflow and introduced three parts to

guide the user interaction with the search results. The narrowing part and coordi-

nated view proved to be helpful in terms of productivity for them in discovering and

exploring the linked data published in a dataset. The broadening part helps users to

find new insights and further expand links, in particular exposing direct neighbours

following a specific search query added the most relevant resources to a result set.

Taking into account the semantics of relationships between the visualized search

results, I concluded that this kind of visual workflow at least enables users to discover

and explore the information. This is further backed by the evaluation of the search

precision over consequent actions in Chapter 5, each individual link builds a novel

connection of potential interest to users and this number of connections does not

necessarily have to be high compared to the total number of resources. The proposed

engine is more precise than a raw SPARQL query baseline for query well-defined

contexts, when it consists of keywords with an unambiguous meaning to both users

and machine. The research exploration tool, from the use case implementation in

Chapter 8, is situated in the mid-range, but requires more interaction from its users,

when compared to related industry and academic projects, with similar goals and

the same target audience. However, the implementation delivered relatively the

highest search precision when a part of the search consisted of retrieving relation-

ships. These relationships facilitate figuring out how newly added resources are

connected to one or more existing results, such as finding common items between

two authors of an article.
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9.3 Future Work

Because my approach remains close to the linked structure of the data, this method

is applicable to other domains when adequately structured, for example by align-

ing the selected vocabularies to the used datasets accordingly. All proposed tech-

niques contribute to the authenticity of the semantically modeled data (a�er pre-

processing, indexing). This means that they process queries and results by guar-

anteeing that the final output towards the user has useful results in its domain

of application. However, in this PhD thesis, the techniques were tested mainly

with data about encyclopedic facts derived from Wikipedia (DBpedia), data from

academic libraries (DBLP) and data from social media (Mendeley, Twi�er). A crucial

next step is to repeat some of the experiments with data from a di�erent domains

such as among others biomedical, heritage, tourism and travel data.

Furthermore, it is likely that the user at a certain point may desire to configure

the nature of the semantic connections in the discovered relationships. This implies

extending and modifying the currently investigated optimizations of the path-based

storytelling technique. The optimization now stands in the way of guaranteeing

that the found path is the most suitable path for a specific context as this is not

being taken into account. For example: when a specific path would be of interest for

children rather than adults in a museum; or in a biomedical context where relations

want to be exposed and take into account the background of the expert who is

querying. Such context sensitive paths would require modifying the link weights

and heuristics each time given a new target audience such that preference can be

given to a more suitable path, rather than a default (not user specific) configuration.

To obtain a more nuanced view on the impact of the di�erent weights and heuristics

I plan to repeat the experiments in Chapter 6 with di�erent datasets from di�erent

domains and a larger amount of test queries. This will allow to focus on investigating

the correlation between the e�ect of the link estimation on the arbitrariness as

perceived by users and the used computational semantic relatedness measures. One

way to do this is to present users series of pairs of concepts, that define the story

context; then present the matching stories a�er using di�erent weights and heuris-

tics for each query; and finally ask users to rate each story (select their preference)

and to indicate how arbitrary and how relevant the story is given the context.

Finally, another important aspect is including details that facilitate users to obtain a

more sophisticated selection and linking of contributed resources based on previous
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assessments and explored links. The focus of the algorithm until now mainly lay in

the broadening aspect while narrowing reused existing approaches or only focused

on retrieving more details. To enable this, we will have to modify the path-based

storytelling algorithm to take into account context parameters and (user) feedback

from retrieved results during the search. This opens up the possibility to make the

algorithm (self) learning. The goal would be to e�ectively limit the search space,

instead of a heuristically optimized path where the heuristic is mainly topological

and not taking into account any possible tweaks based on the already found results,

that is the information if the results are actually relevant or not. This thesis focused

on retrieving semantical coherent relationships and aimed for high serendipity, with

a decent ‘a�inity’ between the resources: not too trivial and not too arbitrary.
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