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2013-2017: Four years in
a right-angled mood

After four years of research in a very specific topic, it is a very inter-
esting exercise to come back to the beginning of the story, motivate
the research done and highlight the most beautiful and productive
moments of my PhD. The solution of that exercise is provided in this
introductory chapter that, by lack of a better name, can also be called
preface.

The initial project of my PhD, and the reason why I left the
beautiful weather of Lisbon in 2013 to move to Gent, was to study
groups acting on locally finite trees from a combinatorial, geometri-
cal, topological and algebraic point of view. So many points of view!
The possibility of connecting so many areas of mathematics to study
structures that at first glance seemed simple really attracted my at-
tention and turned the trip from Lisbon to Gent way shorter than it
actually is (and it is already really short).

Reading the title of this thesis, one can think that I engaged in
another research project during my PhD. That is really not the case.
As soon as I arrived to the department of Mathematics in Gent,
buildings were everywhere. And I do not have in mind the “beauti-
ful” location of the department. I am considering the “mathematical
structures” called buildings, that were made by gluing together apart-
ments which, in turn, were constructed with chambers, walls, etc. I
had never heard of anything like that before and in Gent everyone
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seemed to be more or less familiar with the notion and to have a few
examples of those “buildings” ready at hand.

If my curiosity was already piqued regarding these geometric struc-
tures, my mind was blown when I heard the first time that “a tree is
a building”. What a beautiful and curious world Mathematics is!

So this sentence, that I often use in the introduction of my talks as
a catch up phrase, justifies that in fact my PhD involves groups acting
on locally finite trees and also on a more general class of structures
of which trees are examples.

Framing the research

Totally disconnected locally compact groups

I started my PhD by studying a topology that one considers in the
automorphism group of a locally finite tree, called the permutation
topology. Endowed with that topology, the automorphism group of
a locally finite tree (or of a locally finite graph in general) is a totally
disconnected locally compact (t.d.l.c.) group.

The study of locally compact groups GG can naturally be split into
the connected and totally disconnected cases. This is due to the fact
that the connected component of the identity, Gg, is a closed normal
subgroup of G and G/Gj is a totally disconnected group.

The connected case has found a satisfactory answer with the so-
lution of Hilbert’s fifth problem.

Theorem (Gleason [Gle52], Montgomery and Zippin [MZ52], Yam-
abe [Yamb53b] and [Yamb3a)]). Let G be a connected locally compact
group and let O be a neighborhood of the identity. Then there is a
compact, normal subgroup K < G with K C O such that G/K is a
Lie group.

This means roughly that a connected locally compact group can
be approximated by Lie groups. Lie groups were investigated by look-
ing separately at the soluble groups and at the simple case. Simple
Lie groups were classified first by Killing ([Kil88] and [Kil89]) and
Killing’s proofs were completed by Cartan in[Car84].

Therefore, a contemporary study of locally compact groups con-
cerns the theory of totally disconnected groups. For a long time,

—vi-—
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the only structure theorem known regarding t.d.l.c. groups was van
Dantzig’s theorem:

Theorem ([VD36)]). Every totally disconnected locally compact group
contains a compact open subgroup.

Recently (in fact I was 5 years old at the time and I do not consider
myself so old) a program on the study of t.d.l.c. groups was initiated
by George Willis in [Wil94] with the concept of the scale function
and then continued for instance in [CRW13] and [CRW14].

There are several theorems that relate the structure of compact
open subgroups and the global structure of a t.d.l.c. group (see for
instance [BEW11] and [Wil07]). These global structure consequences
obtained from local properties are often called local-to-global argu-
ments and this designation was introduced by Marc Burger and Sha-
har Mozes [BM00a] in their study of specific groups of automorphisms
of trees.

Universal groups for regular trees

One of the first papers that I read when I started my PhD was the
beautiful groundbreaking work of Burger and Mozes ([BM0Oa]) on
groups acting on trees with a prescribed local action (see Section
for a detailed description of these groups).

They introduced the universal groups U (F') as groups of automor-
phisms of a regular tree, which are defined by prescribing the local
action around every vertex of the tree with a finite permutation group
F.

Universal groups form a large class of subgroups of the automor-
phism group Aut(T') of a locally finite tree T. This is due to the
fact that any closed vertex-transitive subgroup of Aut(7") whose lo-
cal action on the vertices is permutationally isomorphic to F' can be
embedded in a universal group. Moreover, universal groups are exam-
ples of compactly generated t.d.l.c. groups and they are non-discrete
under mild conditions on the local action. They naturally satisfy
Tits’s independence property so they have, under some conditions on
the local action, an index 2 simple subgroup.

Universal groups are also fundamental in the study of lattices in
the automorphism groups of the product of two trees and are a key to

— vii —
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prove the normal subgroup theorem, analogous to Margulis’s normal
subgroup theorem for semisimple Lie groups (see [BMOOD]).

Several results on local-to-global arguments in the universal groups
were accomplished, considering for instance the case where the local
action is 2-transitive [BM0Oal or primitive [CDII] (see Section
and these results show the beauty of the universal groups, in case it
was not yet clear.

The universal groups defined by Burger and Mozes are the main
motivation for this thesis which, following a suggestion of Pierre-
Emmanuel Caprace, generalizes the idea of prescribing a local action
to the broader setting of right-angled buildings, for which trees are
examples (here is the catchy sentence again).

Right-angled buildings

Buildings were defined by Tits [Tit74] as a way to understand semisim-
ple Lie groups as automorphism groups of some geometric structures.
In the afore-mentioned paper he defined buildings as simplicial com-
plexes with some special subcomplexes called apartments where the
group acts with some regularity. By gluing the apartments together
following a set of axioms, Tits reached the first definition of a build-
ing.

A few years later, he rewrote the definition of a building in terms
of chamber systems [Tit81] and that is the characterization that we
will follow in this thesis. Although not clear at first sight, the two defi-
nitions of buildings are equivalent, as explained for instance in [ABO0S].

Despite the initial motivations of Tits, which led to the classifica-
tion of spherical buildings [Tit74], these geometric objects became a
world of their own and let to innumerous directions of research. The
classification of affine buildings ([Tit86]), the study of Moufang poly-
gons [TW02] and Moufang sets (see for instance [DMWO06]) which
are Moufang buildings of rank 2 and 1, respectively, or the study of
groups of Kac-Moody type acting on twin buildings [Tit92] are just
a very incomplete list of examples.

There is also another way to look at buildings, which we will use
when convenient, that is to regard buildings as metric spaces. This is
done by considering geometric realizations of the buildings (see Sec-
tion for more details). In the spherical and Euclidean case, this

— viil —
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can be done since apartments of such buildings can be seen as groups
of reflections of a sphere (in the first case) and tessellations of Eu-
clidean spaces (in the second case). Moussong in his thesis [Mou88al
obtained a general construction, normally called Davis realization,
that can be done in general for any building. This construction is
developed by Davis who gives an explicit proof that this construction
gives rise to CAT(0)-metric spaces (see [Dav9g]).

The protagonists of this thesis will be right-angled buildings. Trees
are the simplest examples of right-angled buildings, but also some hy-
perbolic buildings such as Bourdon’s buildings (see Example or
some Euclidean buildings, as for instance the product of trees, belong
to this class.

There are different lines of research in the world of right-angled
buildings. To mention a few, Anne Thomas has been developing a
theory of lattices in right-angled buildings (for references see [TW11]
and [Tho06]), Dymara, Osajda [DOOQ7| and Clais [Clal6] considered
boundaries on these buildings, and there is also a construction by
Rémi and Ronan [RR06] of twin buildings of right-angled Coxeter
type acted upon Kac-Moody groups.

The class of semi-regular right-angled buildings, i.e., buildings
whose panels of the same type have the same cardinality (for a precise
characterization, see Definition will be of main interest for us
and it will be the class for which we will generalize the ideas of Burger
and Mozes [BM00a].

Semi-regular buildings are interesting objects to look at. Given
a Coxeter group W and a set of parameters ), Haglund and Paulin
in [HPO3] proved that, up to automorphism, there is a unique right-
angled building of type W whose panels of each type have the size
of the respective parameter in @) (see the precise statement in Theo-
rem . Furthermore, in the thick irreducible case, that is, when
all the panels have size at least three and we cannot decompose the
Coxeter group as a direct product, Caprace |[Capl4] proved that the
automorphism group of such a building is an abstractly simple group.

—ix —
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Main results and methodology

The main results in this dissertation concern groups acting on semi-
regular right-angled buildings and are of geometric, topological and
group theoretical nature. We will always consider irreducible right-
angled buildings, otherwise we can decompose the building as a direct
product of irreducible buildings.

We first focus on the full automorphism group of a right-angled
building and study its open subgroups. It is known in the case of
trees that any open subgroup of the automorphism group is compact
(¢f. [CD11l Theorem A]). We generalize this result to the right-angled
buildings setting and we obtain a weaker version of the aforemen-
tioned fact.

Theorem 1. Let A be locally finite semi-reqular thick right-angled
building and let G denote the automorphism group of A.

Then any proper open subgroup of G is contained in the stabilizer
in G of a proper residue of A.

This result is presented in this thesis as Theorem [3.4.19 The
proof relies on considering groups that resemble root groups (namely
root wing groups defined in Section and, surprisingly, it uses a
strategy adopted previously for Kac-Moody groups acting on twin
buildings [CM13].

In Chapter [3] as an attempt to obtain the proof of the previous
theorem, we also show that the fixator of a ball in the automorphism
group acts on the building with a bounded fixed-point set (see Propo-
sition . That implies that an open subgroup of the automor-
phism group of a thick semi-regular right-angled building is compact
if and only if it acts locally elliptically in the Davis realization of the
building (see Corollary [3.4.3).

In Chapter [4 we define the universal group for a semi-regular
building and, after proving basic (and less basic) initial properties,
we reach the main result of the chapter.

Theorem 2. The universal group for a semi-reqular thick right-
angled building is simple if and only if the local actions are prescribed
by finite groups that are transitive and generated by point stabilizers.
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The proof of the simplicity of these groups, which is stated as
Theorem [4.6.7]in the thesis, requires the development of several con-
cepts. The first is a generalization (or better said, an adaptation) of
Tits’s independence property to the setting of right-angled buildings.
This result is proved in [Cap14] for the full automorphism group and
we prove it for the universal groups in Proposition [4.4.1] The sec-
ond is the concept of a tree-wall tree defined in Section [2.2.4 and the
study of the action of the universal groups on those trees, which is
investigated in Section [£.5]

Once we prove the simplicity of the universal groups, we focus on
the structure of the compact open subgroups of the universal group
of a locally finite thick semi-regular right-angled building, which is a
compactly generated totally disconnected locally compact group.

The maximal compact open subgroups are stabilizers of spherical
residues, as proved in Proposition and we focus on the structure
of a chamber stabilizer, which is a finite index subgroup of those.
These groups are profinite and hence, in Chapter |5, we describe each
of the finite groups appearing in the projective limit through different
points of view. These finite groups are, concretely, the induced action
of the stabilizer of a chamber in the balls around that chamber.

First we describe an iterated process to construct these groups,
which is stated as Theorem [5.2.7] in the thesis, in a similar fashion
as Burger and Mozes did for trees in [BMO0Oa, Section 3.2]. Each
of these induced actions is constructed through a semi-direct product
that resembles complete wreath products in imprimitive action (in the
case of trees they are actually complete wreath products). This fact
lead us to investigate more deeply the structure of induced actions on
spheres through a more directed way. First we consider these groups
as subdirect products of the induced actions on w-spheres, for words
w of length n, and then we study the structure of the induced action
on an w-sphere through a group theoretical construction.

Theorem 3. The induced action of chamber stabilizers in the univer-
sal group on w-spheres is permutationally isomorphic to generalized
wreath products constructed using the finite groups that prescribe the
local action.

A more precise statement of this result is presented in Chapter
as Proposition [5.3.3]

—xi—
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Once more, we want to spend a couple of lines exhibiting the
main ingredients of the proof. The very first one is the way that we
regard a right-angled building. Since in this chapter we are consider-
ing chamber stabilizers, we want to regard this fixed chamber ¢ as
an “initial point” and obtain directions from that chamber. That is
achieved in Section where we consider a parametrization of the
chambers of a thick semi-regular right-angled building using directed
colorings of the chambers, introduced in Definition which are
colorings such that, in each panel, the chamber closest to the initial
fixed chamber ¢y has color 1.

Generalized wreath products, which are discussed in Section|1.1.2
require a partial order to be defined. We provide a partial order in
reduced words of the associated Coxeter group (see Definition
and we use this partial order to construct generalized wreath products
of the finite groups that prescribe the local action, each associated to
a generator of the Coxeter group.

As most results, the description of the sphere stabilizers in the
universal group did not start as beautifully as shown in Theorem [3]
Starting from the case of trees, where one gets complete wreath prod-
ucts, the first next step was to consider a few commutation relations
for some generators of the right-angled Coxeter group, to see how the
situation “evolved”. Looking at the different representations of a re-
duced word, for which one gets a different associated complete wreath
product, considering intersections of wreath products seemed to be
the solution. The next task was then to realize the different complete
wreath products as subgroups of the same symmetric group, which
we accomplished in Section with a clear description for the case
of two groups in Proposition [1.1.7] Then, after the use of enough
brute force in several concrete examples, we finally realized the w-
sphere stabilizers in the universal group as intersections of iterated
complete wreath products in imprimitive action.

Then a natural question arose. Are the two concepts the same in
our setting? Or in other words, do generalized wreath products and
intersections of iterated complete wreath products coincide when one
considers a partial order coming from a right-angled Coxeter group?
It turns out that it is indeed the case.

Theorem 4. The intersection of iterated complete wreath products in

—xiil —
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imprimitive action corresponding to distinct reduced representations
of an element w of a right-angled Cozxeter group is permutationally
isomorphic to a generalized wreath product obtained by considering a
partial order on the letters of w.

This result is stated in the thesis as Proposition and the
beauty (and surprise) of it resides in the fact that to obtain the de-
scription of the induced action of a chamber stabilizer on a sphere of
the building, one does not have to investigate the building itself. It
is enough to look at the Coxeter diagram of the associated Coxeter
group.

We also succeed in describing the induced action of chamber sta-
bilizers on the whole n-sphere directly through generalized wreath
products (see Theorem . For that we consider a new partial
order, this time on the tree-walls of a right-angled building.

An open chapter

Although not yet considered a main result at the time of finishing
this thesis, but definitely considered as a main idea, is the work de-
veloped in the last chapter of this dissertation. In joint work with
Anne Thomas during a perfect one month stay in ETH Zurich, we
transported the idea of prescribing a local action as Burger and Mozes
[BM00a] did for trees, to a world where one does not have the machin-
ery of buildings or the combinatorial properties of Coxeter groups, but
where one still has enough regularity to even define what it would be
to prescribe a local action. We introduce, in Chapter [6 the con-
cept of a universal group for a particularly regular class of polygonal
complexes.

These are complexes, called (T, k)-complexes, whose 2-cells are
regular k-gons and whose links of vertices are isomorphic to a fixed
finite simple graph (see Definition . The automorphism groups
of these complexes still belong to the class of topological groups that
we are interested in in this thesis, that is, the automorphism group
of (T', k)-complexes are totally disconnected locally compact groups.
For instance Bourdon’s buildings, already mentioned as examples of
right-angled buildings, are examples of (I", k)-complexes, but one of

— xiii —



2013-2017: FOUR YEARS IN A RIGHT-ANGLED MOOD

the only examples in the intersection of the two classes of geometric
objects.

Ballmann and Brin in [BB94] developed a process to construct
CAT(0) (T, k)-complexes inductively and moreover they proved that
any (I, k)-complex can be constructed using that process. Under
some graph theoretical conditions on the link (see Theorem ,
Nir Lazarovich proved in [Lazl4] that (T, k)-complexes are unique
objects, up to isomorphism. A similar situation as in the case of
semi-regular right-angled buildings.

Therefore we define the universal group on (T, k)-complexes that
are unique up to isomorphism of polygonal complexes. In this thesis
we focus on the case where the links of the vertices of the complex
are isomorphic to a finite cover of the Petersen graph for which all
the automorphisms lift.

We define legal colorings on the polygons of a such (T, k)-complex
and we prove, due to the graph theoretical properties of the Petersen
graph and its finite covers, that these legal colorings are unique, up
to isomorphism (see Proposition . After the initial setting is
layed down, we define in Section the universal group U(F) for a
(T, k)-complex Y by prescribing a local action on the links of vertices
of Y with a group F' of automorphisms of the Petersen graph. In Sec-
tion [6.4.2] we prove basic properties of these groups and also provide
some local-to-global results for the universal group of a (I, k)-complex
Y.

Assuming some conditions on the local action F', we are able to
prove that these groups are actually universal. This means that if H
is a closed subgroup of the automorphism group of Y such that the
local action on the links of vertices of Y is permutationally isomorphic
to F, then H is embedded in the universal group U(F'). This result
is presented as Proposition [6.4.11]in the dissertation.

By the time of the conclusion of this PhD, there are plenty of open
questions related to these groups. In fact there are more questions
than answers. Some of these questions, together with comments, are
presented in the last section of the thesis.

— xiv —
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CHAPTER

Preliminaries

This thesis is inserted in the area of geometric group theory. As the
name suggests, there will be plenty of groups and group constructions
acting on geometrical objects. Moreover, the (topological) groups
of automorphisms of infinite objects that will be defined will often
be studied by investigating their local structure, that is, by using
techniques from finite group theory.

Therefore this preliminary chapter will be structured by introduc-
ing first the group theoretical constructions of finite groups. Next we
present some notation and definitions of graph theory and proceed to
the notion and basic properties of topological groups, focusing on the
definition of the permutation topology for groups acting on graphs.
Then the geometry will take over and we go towards the definition
of buildings, through a brief stay in Coxeter groups, and we exhibit
some of their properties that will be useful later on.

We finish this introductory chapter by presenting a class of com-
pactly generated totally disconnected and locally compact groups de-
fined by Burger and Mozes in [BM00a] called the universal groups.
These groups act on regular trees with local action prescribed by a
finite permutation group and they are the motivation for our study
of similar groups acting on the broader class of right-angled buildings

1=
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in Chapter [l and on polygonal complexes in Chapter [6]

1.1 Group theoretical constructions

We start by introducing the notation on groups and group actions
that we will (try to) consistently use throughout this thesis. Our
groups will be assumed to act on the left, unless otherwise stated.
If Ais a set and « is an element of A then the image of o under a
permutation g of A will be denoted by g.«, or ga.

That means that if g and h are permutations then we define com-
position by the rule that gh means “apply first A and then ¢”. Then
(gh).a = g.(ha).

Also, if H and K are subgroups of a group G then we denote
conjugation of k € K by h € H by

he = hkh1.

When H acts on a group K, that is, p : H — Aut(K) is a group
homomorphism, we denote by "k the image p(h)k.

For functions, the notation in use will be the normal composition
on the left, that is, 11 o ¥9 will mean to first apply ¥o and then ;.

If we consider group automorphisms, then the multiplication on
those groups will be composition, and here the notation adapted will
be as follows. Assume that G is a group of automorphisms of an
object A. If g1,90 € G and ¢ € A then we can either write

(g1 092)(c) = 91(g2(c)), g192.c or gigac,

depending on whether we want to emphasize that the elements of G
are functions of the elements of A or elements of the symmetric group
on the set A.

We now establish the notation that we will use for stabilizers and
induced actions.

Definition 1.1.1. Let G be a group acting on a set A, or in other
words, G < Sym(A). Let B be a subset if A.

1. We denote the setwise stabilizer of B in G as

Staba(B) = {g € G | gB = B},
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and the pointwise stabilizer, also called fizator, of B in G as
Fixg(B) ={g € G | g8 = j for all g € B}.

Observe that if B = {a} then these two subgroups coincide and
we denote the stabilizer of @ in G by G4, or by Stabg ().

2. One can also look at the action of the group G restricted to
the subset B. This is called the induced action of G on B, it is
denoted by G|p and it is isomorphic to Stabg(B)/ Fixg(B).

With initial notation set up, it is time to present three group
theoretical constructions that we will use later on in our study of
universal groups.

1.1.1 Wreath products

In this section we define wreath products of finite permutation groups.
We will follow the notation of Dixon and Mortimer in [DM96], with
the suitable modifications to consider left actions. For the purposes
of this dissertation, we will only be interested in considering wreath
products in imprimitive action though other actions can be defined
in these groups (see loc. cit.). We will first quickly introduce the
notation for semidirect products before defining wreath products. In
the end of the section we compute intersections of wreath products
by realizing them as subgroups of the same symmetric group. This
will be useful in Chapter o to study compact open groups acting on
right-angled buildings.

Let H and K be groups and suppose that we have an action of
H on K which respects the group structure on K. In other words,
for each h € H the mapping k — "k is an automorphism of K. Put
G ={(h,k) | h € H,k € K} and define a product on G by

1
(h1, k1) (h2, k2) = (hihe, "2 kiks),

for all (h1, k1), (ha, k2) € G. This product is associative and hence G
is a group under this operation with identity (1,1) and with inverse
(h7 k)il = (h717 (hk)il)'

We call G the semidirect product of K by H and shall use the
notation H x K to denote G. Clearly |G| = |H||K].
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The semidirect product G contains subgroups H' = {(h,1) | z €
H} and K’ = {(1,k) | k € K} which are isomorphic to H and K
respectively, and such that G = H'K’ and K’ N H' = 1. Moreover,
K’ is normal in G and the way that H' acts on K’ by conjugation
reflects the original action of H on K, namely,

(h’ 1)(1’ k)(h’ 1)_1 = (1a hk)’

forallhe H and k € K.

Sometimes in the literature the semidirect product H x K is called
an external semidirect product and the group H' x K’ is called the
internal semidirect product, since both H' and K’ are considered
already as subgroups of G.

For groups H and K, their semidirect product is not unique as it
depends implicitly on the action of H on K even though the action is
not specified in the notation. The next example (which can be found
for instance in [ST00, Section 2.9]) illustrates the importance of the
action of H on K.

Example 1.1.2. Suppose H = Zy and K = Zs. Then we can con-
sider more than one possibility for the semidirect product G = H x K.
The automorphism group of K is H. There are two homomorphisms
from H to H = Aut(K).

1. In the first case, when the whole H is in the kernel of the
automorphism, we obtain that H is also normal in G and so
G = K x H. In this case G is abelian and isomorphic to Zg.

2. The bijective homomorphism H — H gives rise to the case
when H is not normal in G. In this case we obtain that G is
isomorphic to Sym(3), that H = Alt(3) = {(1),(123),(132)}
(as a subgroup of Sym(3)) and that K = {(1), (12)}.

We now proceed to the definition of wreath products. If A and B
are nonempty sets then we write Fun(A, B) to denote the set of all
functions from A into B. In the case that K is a group, we can turn
Fun(A, K) into a group by defining a product “pointwise”:

(¢1¢2)(04) = ¢1(O&)¢2(O¢) for all ¢1, ¢2 € Fun(A, B) and a € A,

4
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where the product on the right hand side is in K. In the case that A
is finite of size m, say A = {au,...,an}, then the group Fun(A4, K)
is isomorphic to K™ (a direct product of m copies of K) via the
isomorphism ¢ — (p(aq),. .., ¢(om)).

Definition 1.1.3. Let K and H be groups and suppose H acts on
the nonempty set A. Then the (complete) wreath product of K by
H with respect to this action is defined to be the semidirect product
H x Fun(A, K) where H acts on the group Fun(A4, K) via

"p(a) = ¢p(hta) for all ¢ € Fun(A,K),a € Aand h € H. (1.1.1)
We denote this group by H 14 K.

There are two subgroups of the wreath product that one can easily
identify

P={(1,¢) | ¢ € Fun(4, K)} = Fun(A, K) and
H*={(h,id) |he H} 2 H,

which are called, respectively, the base group and the top group of
the wreath product. We have that the wreath product normalizes
the group P.

Again, it is helpful to look at the case where A is finite, say
A=1{1,2,...,m}. In this case we can identify the base group P with
the direct product K x --- x K (m factors), and the action of the
top group H* on P corresponds to permuting the components of the
direct product in the same way that H permutes the elements of A:

1 -+ m
Mk, .. km) = (kv ..., kpy) where h = < Vo m,),
for all (ki1,...,kn) € P and h € H. Clearly, |H 14 K| = |H||K|™.

Now we will consider the imprimitive action of a wreath product.

Definition 1.1.4. Let G = H 4 K be a wreath product as above, in
which the group H acts on the set A and there is an action of H on
Fun(A, K) given by Equation (L.1.1). If K acts on a set B then we
can define an action of G on A x B by

(h,d)(a, B) = (ha, ¢(«)B) for all (a, B) € A x B, (1.1.2)

where (h, ¢) € HxFun(A, K) = Hl4 K. This is called the imprimitive
action of the wreath product.
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If the set A is finite then this action of the wreath product can be
regarded as looking at A x B as a cover of A by sort of fibres indexed
by B, that is,

A x B =UgeaFa, where Fp, = {(a,f) € Ax B | B € B}.

Then each factor of the direct product K4 acts on the corresponding
fibre as K acts on B and the top group H* permutes the fibres F,
in the same way as H acts on the set A. As the name suggests,
this action of the wreath product on the set A x B is imprimitive
if |Al,|B|] > 1. Indeed the relation “being in the same fibre” is a
congruence relation for the action of H1K on A x B whose congruence
blocks are the fibres.

Example 1.1.5 (Section 2 in [CamI0]). Consider the wreath product
Sym(n) ! Sym(2), defined with the obvious action on the semidirect
product, and also known as the Weyl group of type B,. It has a
normal subgroup Sym(2)" that is elementary abelian of order 2" and
which is the base group. The top group is the group Sym(n).

The imprimitive action is on the vertices of the n-dimensional
cross-polytope (or hyper octahedron), consisting of vectors with +1
in one coordinate and 0 in all others. The ith factor of the base group
changes the signs of the ith basis vector and fixes all other; the top
group permutes the coordinates.

Remark 1.1.6. Observe that the wreath product is associative in
the sense that if H{, Ho, H3 are groups acting on sets A, Ao and As,
respectively, then the groups (H; ! Hy) { H3 and Hy ! (H2 ! H3) are
isomorphic. Moreover, if we identify the sets (A; x A2) x Az and
A X (A2 x As) with A; x Ag x As then the actions actually coincide
(see [Hal76l, Section 5.9] for more details).

Here Hi ! Hy--- ! H, denotes the iterated wreath product

H1 X Fun(Al,Hg) KXo X Fun(A1 X oo X An—l,Hn)y

where each of the groups Hj ! --- ! H; acts on the group Fun(4; x
- x A;,Hi11) as in Equation(1.1.1)). If the sets A; are finite then
the action is given by permuting the coordinates of

Apxex Ail o
HiIJrix xAil = Fun(A1 X X Aisz’—&—l)-
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The construction above and the definition of imprimitive action
showed how wreath products arise as imprimitive groups. Wreath
products also play an important role in the study of primitive per-
mutation groups by defining an action on the set Fun(A, B), nor-
mally called product action. More details on the product action of
the wreath product can be found for instance in [DM96, Section 2.7].

Intersection of finite wreath products

We finish the section on wreath products with the study of intersec-
tions of wreath products in imprimitive action on finite sets. We will
do that by regarding all the considered wreath products as subgroups
of the same symmetric group.

Let A and B be finite sets. Let H and K be permutation groups
on Sym(A) and Sym(B), respectively. Consider the wreath products
G1 = H ! K and Gy = K ! H in their imprimitive actions on the sets
A x B and B x A, respectively.

If p is a bijection between the sets {1,...,|Ax B|} and Ax B then,
identifying a point («, 8) in A x B with the point (3, ) in B x A, then
we can consider G and G as subgroups of Sym(|A x B|). Hence it
makes sense to consider the intersection of such groups.

Proposition 1.1.7. With the notation above, the group G1 N Gy is
isomorphic to H x K.

Proof. An element (h,¢) € Gy (where ¢ : A — K) acts on a typical
point (a,3) € A x B by mapping (a, ) to (ha,¢(a)s). We can
embed K inside K4 by defining ¢ = k for all &« € A. Then we get
(a copy of) H x K as a subgroup of G; = H! K = H X Fun(A, K).
Using a similar argument to embed H in HBl we get K x H as a
subgroup of Go = K ! H. Therefore K x H C G1 N Gs.

Now let g be an element in G; N G2. Then g can be written as
(h,¢) € G and as (k,v) € G2 and the action of these two elements
has to be the same, that is, for all («, §) € A x B, we have

(h, @) (e, B) = (K, 9)(B, @) <= (ha, ¢()B) = (Y(B)e, kD).

Hence we obtain that ¢(«) = k for all § € B and therefore ¢ = ¢y.
Similarly 1 = . Thus the elements in the intersection G1 N G4 are

-7 -
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of the form (¢, ¢r), with k € K and h € H. Therefore there is an
isomorphism between H x K and G1 NGz (given by (h, k) — (¢n, ¢r))
since the action of these groups on the set A x B is the same, because

(Vn, dr) sends («, B) to (ha, kS). O
The identification of the sets A x B and B x A with the set
{1,...,]A x B|} can be done in a more general setting. Let H; <

Sym(A41),...,H, < Sym(A,) be groups acting on finite sets, for all
i € {1,...,n}, and consider the iterated wreath product G = H;
-+l H, with its imprimitive action on the set Ay x --- X A,.
Let o be a permutation of Sym(n) and consider the group

Ga = GU.IZ"'ZGU.'IU

with its imprimitive action on As1 X --- X Asyn. Then G and G,
can be considered as subgroups of Sym(|A; x --- x Ay|) making sim-
ilar identifications of the sets Ay X --- X A,, Ag1 X -+ X Ay and
{1,...,]A1 x --- x Ay|}. Furthermore it is possible to consider their
intersection in a similar fashion. However, the outcome is not always
so nicely presented as in the case of only two groups, as it is shown
in the next example.

Example 1.1.8 (Explaining example of the intersection). Let H; <
Sym(Al), HQ S Sym(AQ), H3 S Sym(Ag) and H4 S Sym(A4) be
groups acting on finite sets. Consider the iterated wreath product
G1 = H1 ! Hy ! H3 ! Hy acting with its imprimitive action on the set
51:A1><A2><A3XA4.

Consider the permutations

1234 1234

o4 = ( ;fé ) (12)(34) and o5 = < g;’j > — (132)

of Sym(4). Now take the respective iterated wreath products

Gy =Gy, = Hy L Hy L HyV H3 acting on So = Ay X Ay X Ay X Ag
Gs =G, . =HoV Hy { H3V Hy acting on S3 = Ay x A1 X A3 x Ay
G4_GU4_H22H12H42H3 acting on Sy = Ay X Ay X Ay X Ag
Gs Go5 = Hy ! H3!H1 ! Hy acting on S; = Ay X A3 X A1 X Ay
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We can consider these 5 groups acting on the set X = {1,...,|A4; X
Ag x A3 x A4|} so it makes sense to consider their intersection.

Let us identify the sets X and S; through f. Then for (a,b,c,d) €
S1 we make the natural identifications with the sets S;, for j €
{2,...,5}, that is,

(a,b,c,d) € S1 > (a,b,d,c) € Sy
— (bya,c,d) € S3
— (bya,d,c) € Sy
= )

b,c,a,d) € Sy

We now want to compute the intersection of these 5 wreath prod-
ucts, as subgroups of Sym(X), which we denote by I. An element in
I can be written as an element g1 € Gy, g2 € Go,...,g5 € G5 with
the same action on the set X. This means that for all x € X, we can
identify = with the element f(z) = (a,b,c,d) € S; and we obtain,
with slight abuse of notation, that

g1 ((I, ba G, d) = 92(a7 b7 d’ C) = 93(b7 a, ¢, d) = 94(b7 a, d7 C) = 95(b7 ¢, a, d)

(1.1.3)
Now we have to see how the elements in each of these wreath products
look like in order to give a meaning to Equation [1.1.3

g1 = (h1, p1, 1, ¢1) in which g2 = (ha, p2, @2, ¢2) in which

h, € Hy ho € Hy

p1:A1—>HQ p22A1—>H2
@1:A1XA2—)H3 g02:A1XA2—>H4
¢12A1><A2XA3—>H4 ¢2:A1XA2XA4—)H3
g3 = (h3, p3, 3, ¢#3) in which g4 = (h4, pa, 4, ¢4) in which
hgeHg hy € Ho

p3: A — Hy pa: A — Hy
@3:A2XA1—>H3 (p4:A2><A1—>H4
(;53:A2><A1XA3—>H4 ¢4:A2XA1><A4—>H3
95 = (hs, ps, 5, ¢5) in which

hs € Ho

p5:A2 —>H3

@52A2XA3—>H1
¢52A2><A3XA1—>H4
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Using the description above, we obtain

gi(a,b,c,d) = (h1a, p1(a)b, pi(a,b)c, ¢1(a,b,c)d)
g2(a,b,d,c) = (hga, pa(a) b, pa2(a,b)d, ¢a(a,b,d)c)
gs(b,a,c,d) = (hsb, p3(b)a, p3(b,a)c, 3(b,a,c)d)
ga(b,a,d,c) = (hab, pa(b)a, p4(b,a)d, ¢4(b,a,d)c)
gs(b,c,a,d) = (hsb, ps(b)c, ¢5(b,c)a, ¢5(b, c,a)d)

Since the action of these elements is the same, we can match the
letters of the pair (a, b, ¢, d) in Equation that is,

(( (1) hia=hoa = p3(b)a=ps(b)a = ps(b,c)a
(2) pi(a)b=p2(a)b=hgb=hsb=hsb

(3) pi(a,b)c = ¢a2(a,b,d)c = p3(b,a)c = ¢4(b,a,d)c = ps(b) c

(4) o1(a,b,c)d = @a(a,b)d = ¢3(b,a,c)d = p4(b,a)d
= ¢5(b7 ¢, a)d

Simplifying these expressions, we obtain that an element in the in-
tersection I of these five wreath products will act in the element
(a,b,c,d) as

(haa, hs b, ps(b)c, pa(a,b)d)

1.1.2 Generalized wreath products

Generalized wreath products, as the name openly suggests, are gen-
eralizations of sets of complete wreath products, indexed by a partial
ordered set. There is more than one natural way to generalize wreath
products and the main first references to such generalizations are
done by Holland in [Hol69] and Wells in [Wel76] (the latter concerns
semigroup actions). In [BPRS83] the authors analyze the semigroup
construction of Wells and prove that if one starts with a group action
instead of semigroup actions then the construction gives indeed rise
to groups.

In this thesis we will follow a more general construction due to
Gerhard Behrendt. In [Beh90], Behrendt relates his construction with
the ones in [Hol69] and [Wel76] and points out in Section 3 that if
the partial ordered set is finite then the 3 constructions coincide.

~10 -
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We remark that this definition of a generalized wreath product
requires a systematic subset of a set X (see [Beh90, Section 2]) but
in our setting we will always consider the whole set X, which is auto-
matically a systematic subset. Hence we will not be concerned with
that concept.

Moreover, in this section we also illustrate a connection between
intersections of complete wreath products in imprimitive action and
generalized wreath products (see Example [I.1.11). This connection
will be completely uncovered in Chapter [5| where we will consider par-
tial orders coming from a right-angled Coxeter group, while studying
compact profinite groups

Definition 1.1.9. 1. An equivalence system (X, E) is a pair con-
sisting of a set X and a set E of equivalence relations on X. The
automorphism group of (X, E) is the set of all permutations of
the set X which leave the relations in the set F invariant, i.e.,

Aw(X,E)={geSym(X) |z ~y < gx~gy
for all x,y € X and for all ~ € E}.

2. Let (S, <) be a poset (i.e., a partially ordered setEI). For each
s € 5, let G® be a permutation group acting on a set X;. Let
X = [[;eg Xs be the direct product of the sets {X}scs.

For each s € S, we define two equivalence relations on X as
follows. For each pair of tuples z,y € X we define

T~y < xp =1y forall t > s,

T~y < xp =1y forallt > s. (1.1.4)

Let E = {~s| s € S} U{~4| s € S} be the set of all these
equivalence relations. Then the generalized wreath product
G = X-WR4csG? is defined as

for each z € X and s € S there is
G =1 g€ Aut(X,E)| gsz € G®such that (¢9.y)s = gs2-Us
for all y € X with y ~5 x

! All partial orders occurring in this thesis are strict partial orders, i.e., binary
relations that are irreflexive, transitive and antisymmetric. When < is a (strict)
partial order, we write < for the corresponding non-strict partial order.

- 11 -
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We note that X-WRcsG? is indeed a group, with (¢71)s, =
(gsagfl-x)il and (gh)S,m = 9s,h.x hs,:v-

Remark 1.1.10. There is a close relation between generalized wreath
products and wreath products, when one considers different partial
orders. If the poset S is a chain, then we get the iterated complete
wreath product of the groups G* with its imprimitive action, as de-
fined in the previous section. If < is the empty partial order, then the
generalized wreath product is the direct product of the groups G*.

In the most general case where we will apply this construction,
it will, in fact, be possible to view the generalized wreath product in
imprimitive action as an intersection of wreath products acting on
the same product set. This is illustrated in the next example.

Example 1.1.11. Let S = {s1, s2, 53,54} and define a partial order
< between the elements of S as follows

83 < 82, S4 < S1, S4 < S2.

Then (S, <) is a poset. For i € {1,...,4}, consider 4; = A, and
H; = Hy, be as in Example where A, is a finite set and Hy;, is
a permutation group acting on Ag,. Let X = [[ .4 As. Consider the
partial orders ~; and ~, as in Equation , that in this concrete
example can be described as:

~s, and ~g, are the empty partial relation,
(a/s1 y sg sy Usgy a/84) ~s3 (bsl ) b827 b837 b84) & Agy = bsza
(asl,(SLSQ,a53, (154) s (bslvbsz’ b837 b54) < as, = bs, and ag, = bs,.
(1.1.5)
We now consider E = {~gs}scs U {~s}ses and Aut(X, E) as in
Definition [1.1.9] The generalized wreath product in this case is the
group

G={g€Aut(X,E) | for each x € X and s € S there is g, , € H,
such that (g.y)s = gs,z.ys for all y € X with y ~ z}.

Claim. The group G is isomorphic to the intersection I of wreath

products of Example[1.1.8

- 12 —
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We observe that both groups act on the same set. Moreover, we
recall that an element g € I acts on a typical point (as,, as,, Gss, @s,) €
X as

g(asl y Asgy Usgy a84) = (h1a81 ) h2a52a p(aSQ)a’Ssv @(asl ) a82)a84)7

where hy € Hy,, ho € Hg,, p: As, = Hg, and ¢ 1 Ag, X Ag, = Hg,.

Let g € I. Tt its clear that g € Aut(X,E). Let us show that
g € G. Consider for instance z,y € X such that x ~g, y. Then,
using Equation (L.1.5)), we know that z = (as,, as,, asy, as,) and y =
(bsy, bsy, bsg, bs,) With as, = bs, and as, = bs,. Thus

(g(asuaswasaa as4>)84 = 90(a817as2)a84 and
(g(b51 ) b527 b837 b54))54 = 90(b51 ) bsz)bs4 = @(asz y Asy )b54'

Hence there is gs, » € Hg, such that (g.y)s, = gsy,0-Ys, for ally ~, x,
namely, ¢(as,,as,). One can check that the same holds for any s;.
Thus g € G and hence I C G.

Conversely, let ¢ € G and let s € S. For each t € S such that
s < t, one can define a function fs : Ay x -+ x A, — Hg by
fs(aty, ... at,) = gsx where x € X has the t;-th coordinate a;, for
every i € {1,...,n} and g, is the element of Hy such that g acts
on T, as gsz. We remark that any element y ~4 x has also a; in its
t;-th coordinate, so the element g, is well defined and independent
of the choice of x. We can define fs for every element s € S and like
this we can visualize the action of g on X as an element of I since
the functions fs, for s € {s1,...s4}, are defined as hy, ha, p and ¢,
respectively. Thus the two groups are isomorphic.

In Chapter when we study some compact subgroups of the
universal group it will be useful to consider certain quotients of gen-
eralized wreath products. That is what we will focus on next. We
retain the notation of the previous paragraphs.

Definition 1.1.12. A subset I of the poset (S, <) is called an ideal
of S if for every s € [ and t € S, t < s implies t € I. We define a
new equivalence relation on X as

T ~pYy = x5 =y forall s ¢ 1.
As before, let G = X-WR;csG®. We consider its subset
D(I)={g9e€ G|z ~yguforall z € X}
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Proposition 1.1.13 ([Beh90l Proposition 7.1]). Let I be an ideal of
S. Then D(I) is a normal subgroup of G.

The group D(I) can also be described as a generalized wreath
product; see [Beh90, Theorem 7.2]. We will describe such a general-
ized wreath product in the case that |I| = 1. Let r» € S such that
I = {r}isanideal of S. Then by definition ¢t £ r for allt € S. We will
write D(r) rather than D({r}). For any subset T' C S, let pr denote
the projection map pr: X — [[,cp X defined by = — (z4)ser-

Proposition 1.1.14. Let (S,<) be a poset, and let I = {r} be an
ideal of S. Consider d. = [],._, |X¢| (where d, = 1 if there are no
t = r). Then D(r) is isomorphic to the direct product of d, copies of
G". In particular, if the sets X4 are finite, then

|D(r)| = |G"|.

Proof. This follows from [Beh90, Theorem 7.2]. Notice that the gen-
eral statement from loc. cit. requires the definition of an additional
partial order, which is empty in our case because we are considering
ideals of size 1. O

Lemma 1.1.15. Let (S, <) be a poset, let I = {r} be an ideal of S
and let 8" = S\ {r}. Let H®> = G* for all s € S, let H" = 1 and
consider the group

H =X WRyesH*® < G.
Then G = H x D(r).

Proof. Let X' = [[,cq» Xs and X = X' x X,., and consider the gen-
eralized wreath product

G = X' WRyes G

Since {r} is an ideal of S, the group D(r) is a normal subgroup of G
by Proposition [1.1.13

Consider two elements x1 = (2/,2,) and zo = (2/,y,) of the set
X = X' x X,. Since r # s for all s € S’ (because {r} is an ideal of
S), we have x1 ~ o for all s € S’. Therefore, by definition of G (see
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1.1. GROUP THEORETICAL CONSTRUCTIONS

Definition [1.1.9), we obtain that (g.21)s = (g.z2)s for all s € 5" and
all g € G.

Consider the projection map pg/: X — X’. Then this projec-
tion induces a homomorphism p: G — G’ defined by (p(g).2')s =
(9.(2',x,))s, for s € S" and for any x, € X, (the choice of the ele-
ment of X, is irrelevant by the observation in the previous paragraph).
Notice that the kernel of p is precisely D(r).

Observe now that for any h € G, the element h x id belongs to
G. In particular, p is surjective, the map o: G’ — G: h — h x id
is a section for p and therefore im(c) = H. We conclude that G =
H % D(r). O

1.1.3 Subdirect products

In Chapter [5| we will encounter groups that are subdirect products
of generalized wreath products. We will recall the definition of a
subdirect product and then we will exhibit a procedure to realize
intransitive groups G as subdirect products of groups acting on dis-
joint G-invariant sets. This section follows the general ideas in [Hal76),
Section 5.5] and [Hull0, Section II.4] and we make the construction
explicit when necessary.

Definition 1.1.16. Let G1,...,G, be groups. A subdirect product
of the groups Gy, ...,G, is a subgroup P < G X --- X G, of the
direct product of the groups G; such that, for each i € {1,...,n}, the
canonical projections P — G; are surjective.

Example 1.1.17. 1. The direct product G; x G is always itself
a subdirect product.

2. The diagonal group {(g,9) | ¢ € G} is a subdirect product of
G x G.

3. More generally, if p : G; — G2 is a surjective homomorphism,
the subgroup of Gi x G2 given by {(g9,p(9)) | g € G1} is a
subdirect product.

Now we will consider intransitive groups as subdirect products.
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Definition 1.1.18. Let G be a group acting faithfully on a set S,
and let
S=5uUSu---us,

be a decomposition of S into G-invariant subsets, i.e., each set S; is a
union of orbits for the action of G on S. Then we get corresponding
homomorphisms

a;: G — Sym(S;).

Let G; = Im(o;), and define a new homomorphism
¢: G — G x - xGpi g (a1(g), ..., anlg)). (1.1.6)
The homomorphism ¢ is injective. Therefore
G=¢(G) <Gy x- - x Gy,

and by definition, ¢(G) surjects onto each G;. Hence we have realized
G as a subdirect product of the groups G1,...,Gy.

For completeness, let us consider the detailed construction of the
isomorphism G = ¢(G) in Equation , for the case n = 2. Let G
be a group acting on a set S and let S = 57 LU S5 be a decomposition
of S into G-invariant sets. For ¢ € {1,2}, let oy : G — Sym(S;)
be a homomorphism and G; = Im(«a;). Then, with the notation as
in Definition we have ¢ : G — G1 x G2 defined by ¢(g) =

(a1(g), a2(g)) and G = ¢(G).

Proposition 1.1.19. Consider N; = aq(ker(ag)) <G and Ny =
ag(ker(ay)) < Gy. Let ¢ : Gl/Nl — G2/N2 to be an isomorphism
defined by N1g1 — Naaso(g), where g € G 1s such that a1(g) = ¢1-
Furthermore, let p; : G; — G’VN, be the projection maps, for i €

{1,2}. Then ¢(G) = {(g1,92) € G1 x G2 | p(p1(91)) = p2(g2)}-
Proof. First we observe that by the isomorphism theorems we have
YN, = /(ker(al),ker(a2)> =YYNy

Hence the isomorphism ¢ is well defined.

Let B = {(91,92) € G1 X G2 | ¢(p1(g1)) = p2(g2)}- If (g1,92) €
®(G) then there exists g € G such that g1 = a;1(g) and g2 = aa(g).
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Hence we can choose g in the definition of ¢ as g1 N1 — «as(g)No =
g2No.

On the other hand, if (g1, g2) € R then ¢(p1(g1)) = p2(g2). Take
g € G such that a1(g) = g1. Hence g1 N1 — aa(g) N2 through ¢. By
definition of R we obtain that as(g) N2 = galNa. Thus as(g)as(kr) =
g2 for some ky € ker(aq). Consider ¢’ = gk1 € G then a1(¢') = 1
and as(g’') = g2. Hence (g1, g2) € ¢(G), which finishes the proof. [

1.2 Graph theoretical notions

The groups that play the main role in this thesis will act on infinite
(mostly locally finite) geometrical objects. In the cases that we will
be interested in, will it be sufficient to look at the 1-skeleton of the
geometrical objects, that is, to look at groups acting on graphs.

In the next section we will define a topology for groups acting
on graphs, whose properties we will use to study groups acting on
buildings and in other CAT(0)-spaces. Therefore in this section we
will gather the basic definitions and notation on graphs that we will
need throughout the thesis.

Definition 1.2.1. 1. A graph T is a pair (V, E) where the set V
is called the set of vertices of I and the set £ C VT{2} is subset
of unordered pair of vertices of I, called the set of edges of I'. If
e = {v1,v2} is an edge in I', we say that v; and vy are adjacent
vertices in I' and that they are the ends of e. Furthermore we
say that e € E is incident to vy (and v2). We might sometimes
write VI' and ET' to emphasize the graph whose vertex and
edge-set we are referring to.

2. Given a vertex v € VI' we call the set
St(v) = {e € ET" | e is incident to v} (1.2.1)

the star of the vertex v. If the graph I' is not clear from the
context then we can also denote the star of the vertex v € VI
by St(v,T").

3. The degree of a vertex v, denoted deg(v), is the number of edges
incident to v, that is, |St(v)].
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We call a graph I' regular is all its vertices have the same degree.
In particular if that degree is ¢, we say that I' is a g-regular
graph.

A graph is said to be locally finite is each of its vertices has
finite degree.

4. A morphism between two graphs I' and I” is a map ¢ : VI’ —
VI from the set of vertices of I" to the set of vertices of I
such that ¢ maps edges of I" to edges of I'. A subgraph of I is
a graph I such that the inclusion map VI" — VT is a graph
morphism.

We will always consider simple graphs, i.e., graphs I' that have no
loops and that any two edges with the same origin and same terminus
are equal. Moreover, we are assuming that the graphs are unoriented
but for any edge e = {v1, v2} we will keep in mind, for when necessary,
that there are two oriented edges (v1,v2) and (ve, v1) associated to e.

The next definition concerns galleries in the graph, a distance
defined on galleries and related concepts.

Definition 1.2.2. Let I' be a graph.

1. A gallery of length k in I" (for some k£ > 0) from z to y is a
sequence v = (vg,v1,...,vx) of k+ 1 vertices vg, v1, ..., v such
that vg =z, vy = y and

vi—1 is adjacent to v; for all i € {1,... k}.

The term gallery will be used in the buildings setting and we
observe that a gallery in a general graph is usually called a walk.

2. The discrete distance from vi to vy is the length of a shortest
gallery from vy to vy if there are galleries from vy to v9, and
oo otherwise. We will denote the distance from v; to vy by
dist(v1, v2). Sometimes dist is also called the discrete metric. A
gallery from v; to vy is called minimal if its length is dist(vq, v2).

3. The graph I' is connected if for any two vertices v1 and vs there
exists a gallery from v; to va. A connected component of I is
the subgraph spanned by an equivalence class with respect to
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the equivalence relation “there exists a gallery from v; to v on
I'”. Hence a graph is connected if and only if it has only one
connected component.

4. The diameter of I is the maximum distance between two ver-
tices of T'.

5. The girth of I is the length of a shortest cycle in I, that is, the
length of a shortest gallery of type (vi,va,...,Upn,v1).

6. The graph I' is called a tree if I" is a connected graph without
cycles.
It is clear that if ¢ > 2, any g-regular tree is infinite, that it, its
set of vertices is infinite.

Next we present the definition of graph automorphism and of the
automorphism group of a graph. We will, in Section [1.3.2] associate
a topology to this group.

Definition 1.2.3. An automorphism of a graph I' is a bijective mor-
phism VI' — VT'. In other words, it is a permutation g of the vertex-
set VT that preserves adjacency, that is,

v1 and vy are adjacent vertices in I if and only if gv; and gve are
adjacent in T.

The set of all graph automorphisms under the operation of compo-
sition of functions forms a group, called the automorphism group of
the graph I' and denoted by Aut(T").

Example 1.2.4. 1. Consider the graph I' as in the figure. The

Figure 1.1: A rigid graph.
only permutation of the vertices of I' preserving adjacency is
the identity. Thus Aut(I') = id. In this case I is called a rigid
graph.
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Figure 1.2: Cycle graph with five vertices.

2. Consider the cycle graph I' with five vertices as in Figure [1.2

Any automorphism of I" is a product of reflections along the
axis r and ¢. Hence the group Aut(T") is the dihedral group D5
with 10 elements.

We finish this section with the notion of cover of a graph. We will
consider covers of graphs to define groups acting on regular geomet-
rical objects in Chapter [6]

Definition 1.2.5. A morphism of graphs f : I'y — I's is called a
covering if f maps VI'1 and ET'; onto VI'y and ET's, respectively, in
such a way that for every vertex v € VI'; the star of v is mapped
bijectively to the star of f(v) € VTs.

The fibre over a vertex v € VI'y is the full pre-image of v under
f- A similar definition holds for the fibre of an edge e € ET's.

The graph Ty is called a cover of I'y with covering map f.

Example 1.2.6. 1. Consider the graphs I'y and I's, as depicted
in Figure Considering f : I'y — T’y defined by f(x;) = =z,
we have that I'1 is a cover of I'y with covering map f.

2. Consider the graphs in Figure [I.4] The Desargues graph is a
finite cover of the Petersen graph, obtained by replacing each
vertex in the Petersen graph by a pair of vertices and each edge
by a pair of crossed edges. The construction is also called the
bipartite double cover.
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T
I'y “ by 2
€
€9 . e1

f
bg as d
Figure 1.3: Example of a cover.
(a) The Desargues graph. (b) The Petersen graph.

Figure 1.4: A bipartite double cover.

1.3 Interlude on topology

The groups that we will consider acting on geometric objects will have
a topology associated. Therefore we start with some basic definitions
regarding general topological groups, mostly following [Dik13] and
[HR79].

Then we define the permutation topology for groups acting on
graphs (which correspond to 1-skeletons of our geometric objects).
In the case that the 1-skeletons of the geometrical objects are locally
finite, this topology will turn our groups into totally disconnected
locally compact groups.

We end the section with introductory notions on CAT(0)-spaces,
for which all the geometric objects that we will consider in this thesis
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are examples.

1.3.1 Topological groups

Definition 1.3.1. Let G be a group. A topology 7 on G is said to be
a group topology if the map f : G x G — G defined by f(x,y) = zy~*
is continuous. A topological group is a pair (G, T) of a group G and a
group topology 7 on G.

Let z € G and B be a set of neighborhoods of . Then B is a
neighborhood basis at x if and only if for each neighborhood N of =,
there is an M € B such that M C N.

Proposition 1.3.2 ((4.5) in [HR79]). The topology of a topological
group is completely determined by a neighborhood basis of the identity.

Once the topology is clear from the context, we will denote the
topological group only by G.

Example 1.3.3. 1. Every group G can be considered as a topo-
logical group in a trivial way, by considering the discrete topol-
ogy, where one defines each subset of G to be open. Such groups
are called discrete groups. If we define the only open sets of G
to be the empty set and the whole group then the associated
topology is called the indiscrete topology.

2. The canonical topology attached to the Euclidean space R"
(n > 1) is defined by the collection of sets U such that, if
x € U, then {y e R" | ||y — z|| < r} C U for some r > 0. Then
R™ with the addition operation becomes a topological group.

3. If G is a topological group and N is a normal subgroup of G then
the quotient group G/N is a topological group with the quotient
topology, that is, considering the quotient map ¢ : G — G/N
a subset M C G/N is open if and only if ¢! (M) is open in G.

Definition 1.3.4. Let G be a topological group.

1. A family Y = {U; | i € I} of non-empty open sets is an open
cover of G if G = J;c; U;. A subfamily {U; | i € J}, for J C I,
is a sub-cover of U if G = J,;c; Us.
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2. @ is called connected if whenever G = W UV, where W and V
are non-empty open sets, we have V. NW # (). In other words,
G has no proper subsets which are open and closed.

3. For g € G, there is a largest connected subset Gy of G such
that g € G4. Such subset is called the connected component of
g in G. Normally the connected component of the identity of
G is denoted by Gy and G is connected if and only if Gy equals
G.

Next we define some classes of topological groups.
Definition 1.3.5. Let GG be a topological group. Then G is called

1. compact if for every open cover of G there exists a finite sub-
cover,

2. locally compact if every element of G has a compact neighbor-
hood in G,

3. totally disconnected if all the connected subsets are singletons,

4. compactly generated if there is a compact subset that generates

G.

Proposition 1.3.6. Let G be a topological group. Then Gq, the
connected component of the identity, is a closed normal subgroup and
G /Gy is a totally disconnected group.

In this thesis we are interested in investigating locally compact
groups. Therefore, by the last proposition, the study can be done by
splitting it into two cases, the connected and the totally disconnected
locally compact (t.d.l.c.) groups.

The connected case has been solved satisfactory with the solution
of Hilbert’s fifth problem, as stated in the next theorem.

Theorem 1.3.7 (Gleason [Gle52], Montgomery and Zippin [MZ52],
Yamabe [Yamb3b| and [Yamb3a]). Let G be a connected locally com-
pact group and O be a neighborhood of the identity. Then there is a
compact, normal subgroup K < G with K C O and such that G\ K
is a Lie group.
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This result is also often stated by saying that connected locally
compact groups can be approximated by Lie groups. Hence, trying
to characterize the totally disconnected case, i.e., studying t.d.l.c.
groups has become a very interesting topic of research in the past
years.

1.3.2 Permutation topology

Let T' be a simple graph. We define a topology in Aut(I') so we
regard this group as a topological group. The topology that we will
consider is normally called permutation topology and, according to
[Mol10], which is the reference that we will mostly follow, the earliest
references to this topology are made in [Maubb| and [KS56]. Since
the topology of a topological group is completely determined by a
neighborhood basis of the identity (see Proposition we will
explicitly describe such neighborhood.

Definition 1.3.8. The permutation topology on Aut(T') is defined
by choosing as a neighborhood basis of the identity, the family of
pointwise stabilizers of finite subsets of VI, that is, a neighborhood
basis of the identity is given by

{Fixpuyry(F) | Fis a finite subset of VT'}.

From this definition it follows that a sequence (g;);en of elements
of Aut(I") has an element g € Aut(I') as a limit if and only if for
every point v € VT there is a number N (possibly depending on v)
such that g,v = gv for every n > N.

Actually, one could also use the property above describing conver-
gence of sequences as a definition of the topology and then we think of
the permutation topology as the topology of pointwise convergence.
If we think of VI' as having the discrete topology and the elements
of Aut(I') as maps VI' — VT, then the permutation topology is the
same as the compact-open topology.

We can characterize now the open subgroups in Aut(I'). A sub-
group G < Aut(T") is open if and only if there is a finite subset F' of
VT such that Fixaum(F) € G.

In the case that I' is a locally finite and connected graph, the
group Aut(T"), equipped with the permutation topology, becomes a
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totally disconnected locally compact (t.d.l.c.) group, as the following
set of lemmas show.

Lemma 1.3.9 (Lemma 1 of [Woe91)). Let T" be a locally finite con-
nected graph. Let v be a vertex in V1.
Then the stabilizer Aut(T"), is compact.

Proof. Let (g,) be a sequence in Aut(I"), and let {vg = v, v1,v9,...}
be an enumeration of VI'. As g,v = v for every n, and as I is lo-
cally finite and connected, the set {gn,vx | n > 0} is finite for every
k. Hence there is a subsequence (§1(n)) of (n) such that all g¢, (,yv1
coincide: write gv; for this common image. Repeating this argu-
ment inductively, we get a sub-subsequence (£x(n)) of the preceding
subsequence (£;—1(n)), such that all ge, (), for n > 0, send vy to
the same element of VT, denoted gvg. Thus, g¢,(n) — g € Aut(I'),
pointwise. O

Lemma 1.3.10 ([ATO08| Corollary 3.1.12)). In a locally compact topo-
logical group G, the connected component of G is the intersection of
all open subgroups of G.

Combining the previous results we obtain that:

Proposition 1.3.11. The automorphism group of a locally finite con-
nected graph is a totally disconnected locally compact group.

1.3.3 CAT(0)-spaces

CAT(0)-spaces were introduced by Aleksandrov in [Ale51] and were
broadly considered by Gromov in the study of manifolds of non-
positive sectional curvature (cf. [BGS85]).

These spaces play an important role in geometric group theory
as CAT(0)-spaces include trees, buildings (cf. [Dav9§|) and other cell
complexes of non-positive curvature, as the polygonal complexes that
we will study in Chapter [6]

Hence in this section we recall the definitions of geodesics and
CAT(0)-spaces that we will need throughout the thesis, for which we
refer to [BH99).
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Definition 1.3.12. Let (X,dx) be a metric space. A continuous
function v : [a,b] — X (for a < b real numbers) is a geodesic if for
all a <t <t <b, we have dx(y(t),y(t')) = t' — t. The metric space
(X,dx) is called geodesic if for all x,y € X, there exists a geodesic
v : [a,b] = X such that y(a) = = and v(b) = y. We denote that
geodesic by [z,y].

Observe that there might be more than one geodesic connecting
x and y. For instance, in the Euclidean space, each geodesic is a
straight line segment and there is a unique geodesic connecting each
pair of points. However, on the sphere S? with its usual metric, each
geodesic is an arc of a great circle, and antipodal points are connected
by infinitely many geodesics.

Definition 1.3.13. Let (X, dx) be a geodesic metric space.

1. A geodesic triangle in X is a triple of points z,y, z, together
with a choice of geodesics [z, y], [y, z] and [z, z].

2. Given a geodesic triangle A = A(z,y, z), a comparison triangle
in the Euclidean plane is a triple of points Z,y,Zz such that
dx(z,y) = d(z,9), dx(y,2z) = d(y,2) and dx(z,z) = d(z,),
where d is the Euclidean metric.

3. For each point p € [z,y], there is a comparison point, denoted
D, in the straight line segment [z, g], with the comparison point
p defined by the equation dx(x,p) = d(z,p).

Definition 1.3.14. A metric space (X, dy) is called a CAT(0)-space
if for every geodesic triangle A = A(z,y, z), and every pair of points
p,q € [x,y| Uy, z] U [z, z], we have dx(p,q) < d(p, ), where d is the
Fuclidean metric and p and ¢ are comparison points. This condition
says that triangles in a CAT(0)-space are “no fatter” than Euclidean
triangles. CAT(0)-spaces are normally called nonpositively curved.

Example 1.3.15. 1. A Banach space is a complete normed vector
space, that is, a vector space with a norm such that the Cauchy
sequences converge with respect to that norm. A particular
instance of Banach spaces are Hilbert spaces.
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A Hilbert space is a vector space X with an inner product (f, g)
such that the norm defined by ||f|| = (f, f) turns X into a
complete metric space.

The real numbers with the standard inner product are an ex-
ample of a Hilbert space.

The space C[0,1] of continuous functions f : [0,1] — R with
the supremum norm is an example of a Banach space which is
not a Hilbert space.

Every Hilbert space is a CAT(0)-space and those are the only
examples of Banach spaces which are CAT(0).

2. A metric space X is an R-tree if

e for z,y € X there is a unique geodesic [z, y];
o if [z,y] N[y, 2] = {y}, then [z, 2] = [z, y] Uy, ].
Every R-tree is a CAT(0)-space.
3. The hyperbolic spaces H" are also examples of CAT(0)-spaces.

4. The geometric realization of any building is a CAT(0)-space.
For a detailed discussion of this result we refer to [Dav9§g].

We can consider comparison triangles in the hyperbolic plane in-
stead, and define the space X to be CAT(-1) or negatively curved if
its triangles are “no fatter” than hyperbolic triangles.

Theorem 1.3.16 ([BH99, Theorem II.1.12]). Let X be a metric
space. If X is a CAT(—1)-space then X is a CAT(0)-space.

In fact, the previous theorem states a more general result, but we
are only interested in negative and non-positive curvatures.

In Chapter[6] we will study simply-connected CAT(0)-spaces. Thus
we finish this section with the definition of a simply-connected topo-
logical space.

Definition 1.3.17. Let X be a topological space.

1. X is called path-connected if for every two elements z,y € G
there is a continuous function f : [0,1] — X such that f(0) = =

and f(1) =v.
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2. The space X is called simply-connected if it is path-connected
and every loop in the space is null homotopic.

Example 1.3.18. The Euclidean plane R? is simply-connected but
R2\{(0,0)} is not simply-connected. For n > 2, both R and R"
minus the origin are simply-connected spaces. A torus is an example
of a space that is not simply-connected.

1.4 Coxeter groups and buildings

It is time for the geometry to take over this preliminary chapter. The
main goal of this section is to reach the definition of a building.

We will start with the definition of Coxeter groups, which are
particular groups generated by reflections, and we will state some
properties of those groups which will be useful for us later on.

Then we will define a particular class of edge-colored graphs,
called chamber systems which will, equipped with a word distance,
give rise to the definition of a building. In the following chapters we
will be interested in the right-angled case but in this section every
Coxeter group and building will be treated in full generality. For the
definitions of Coxeter groups and buildings we will follow [Wei09],
[ABOS| and [Ron09].

1.4.1 Coxeter groups

The study of finite reflection groups started in the nineteenth century,
mainly in two fronts. First, around 1855, Schiéfli classified regular
polytopes in R"*! for n > 2 and he proved that the symmetry groups
of such polytopes were finite groups generated by reflections. Second,
around 1890, Killing and Cartan classified complex semisimple Lie
algebras in terms of their root systems. Then Weyl showed that
the group of symmetries of such a root system was a finite group
generated by reflections.

In 1934, H. S. M. Coxeter [Cox34] connected the two lines of
research by classifying discrete groups generated by reflections on the
n-dimensional sphere or Euclidean plane.

In the second half of the twentieth century, Jacques Tits [Tit64]
introduced the notion of an abstract reflection group, which he called
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a “Coxeter group”, due to the fact to the work done by Coxeter in
the finite dimensional case.

We will present the definitions and properties of Coxeter groups
in a purely group theoretical and combinatorial way. For more details
on reflection groups, we point to the references cited above.

Definition 1.4.1 ([Wei09, Definition 2.1]). 1. A Coxeter matric
is a symmetric array [m;;] with 4,j in some index-set I (of
arbitrarily cardinality) such that for all ¢, € I, the element
m;j is either a positive integer or the symbol oo, and m;; =1
if and only if ¢ = j.

2. The Cozeter diagram of the Coxeter matrix [m;;] is the graph
Y with vertex-set I and edge-set consisting of unordered pairs
{i,7} such that m;; > 3 (including m;; = oo) together with
the labeling which assigns the label m;; to each edge {i,j}. A
Coxeter diagram is called irreducible if its underlying graph is
connected. The rank of a Coxeter diagram is the cardinality of
its vertex-set.

Definition 1.4.2. For each set I, we denote by M7 the free monoid
on I, that is, the set of all finite sequences of element of I includ-
ing the empty sequence, or equivalently, the set of all words in the
alphabet [ including the empty word, with multiplication given by
concatenation.

We are now ready to present the definition of a Coxeter group.

Definition 1.4.3. Let [m;;] be a Coxeter matrix with index-set I and
let 3 denote the corresponding Coxeter diagram. The Cozeter group
of type ¥ is the group W having a set of generators S = {s; | i € I}
indexed by I such that W is defined by

W= (S| (Sisj)mij = 1for all 7,5 € I and m;; # 00).

In particular 322 =1foralliel.

The cardinality |S| is called the rank of W. Moreover, if the Cox-
eter diagram ¥ is connected, then W is called an irreducible Coxeter
group.

Let s : f + s; denote the unique extension of the map i — s; to
a homomorphism s from the free monoid My to W. (Thus sy = 1).
The pair (W, s) is called the Cozeter system of type 3.
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Remark 1.4.4. There is also another convention to associate a graph
to a Coxeter system, sometimes in the literature called the defining
of the Coxeter system. The vertices of this graph are the elements
of I and two vertices ¢ and j are connected by an edge labeled m;;
if and only if m;; is finite (so in particular if m;; = oo then the two
vertices ¢ and j are disconnected). In this thesis, we will only use
Coxeter diagrams.

Theorem 1.4.5 ([Wei09, Theorem 2.3]). Let [m;;] be a Coxeter ma-
triz with indezx-set I and let (W,s) be the corresponding Cozeter sys-
tem. Then |s;| =2 for alli € I and |s;js;| = my; for alli,j € I.

By abuse of notation, once the set of generators for W is fixed, we
will consider the image of s instead and denote the Coxeter system
by (W, S). We will then consider the Coxeter diagram to have vertex-
set S = {s;}icr With edges labeled by m,s; (also denoted by m;; for
simplicity). Then the free monoid M; will also be denoted by Mg.

Next we show a few examples of Coxeter groups.

Example 1.4.6. 1. The symmetric group on n letters, denoted by
Sym(n), is a Coxeter group, considering the set of generators

S ={(12),(23),...,(n—1n)}.
Then Sym(n) can be described by the following set of relations.

(a) (ii+1)2=1forallic{1,...,n};

(b) ((ii+1)(i+1i+2))>=1foralliec{1,...,n};

(c) ((ii+1)(jj+1))*=1,forallie{l,...,n} and
j#{i—1,i+1}.

The corresponding Coxeter diagram of Sym(n) is

(12) (2 3) (n—=2n—-1) (n—1n)

2. The finite dihedral groups D, are also Coxeter groups, as they
can be generated by two reflections s and ¢ (making an angle
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of m/n between them) as in Example [1.2.4)(2)) and they can be
presented as

Dy, = (s,t | s = t* = (st)" = 1).

The Coxeter diagram of Dy, with the set of generators s and ¢
is then

o—n o
S t

3. As in the finite case, the infinite dihedral group D4, is also a
Coxeter group considering a set of two parallel reflections r and
s as set of generators. A presentation of D, is as follows.

Do = (s,t| s> =t>=1).

In this case, since there is no relation between the generators s
and t, the respective Coxeter diagram is

o0—= o
S t

By looking at the diagram spanned by a subset of vertices of the
Coxeter diagram Y, one gets the notion of a sub-Coxeter system and
parabolic subgroup.

Theorem 1.4.7 ([WeiQ9, Theorem 4.6]). Let J C S and let ¥ de-
note the subdiagram of ¥ spanned by the set J (i.e., the subdiagram
obtained from X2 by deleting all the vertices not in J and all the edges
containing a vertex not in J). Let Wy = (t |t € J). Then (Wy,J) is
a Cozxeter system of type ¥ ;.

Definition 1.4.8. Let (W, S) be a Coxeter system and let J be a
subset of S.

The group W as defined in Theorem is called a standard parabolic
subgroup. Any of its conjugates by elements of W = Wg will be called
a parabolic subgroup.
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J is called a spherical set if the standard parabolic subgroup W

is finite (also called spherical in the literature). In other words, if

|sis;| < 2 in the respective Coxeter diagram, for all s;,s; € J.
Otherwise J is called a non-spherical set.

Since any intersection of parabolic subgroups is again parabolic,
it makes sense to define the parabolic closure of a subset of W.

Definition 1.4.9. Let E be a subset of W. We define the parabolic
closure of E, denoted by Pc(E), as the smallest parabolic subgroup
of W containing F.

Lemma 1.4.10 ([CM13], Lemma 2.4]). Let Hy < Ha be subgroups of
W. If Hy is of finite index in Hy then Pc(Hy) is of finite index in
PC(HQ).

Reduced words in Coxeter groups

Let (W, S) be a Coxeter system of type ¥ and set of generators S =
{si}icr- Let Mg denote the free monoid on the alphabet S.

Consider a word si -8, in the monoid Mg. If we assume for
instance that s, = s,_1, then, regarding s1---s, in W (as S is its
set of generators), the word s; - - - $,—28,—15,, and 1 - - - $,,—o Tepresent
the same element of W. Hence it makes sense to define reduced words
in the monoid with respect to a Coxeter diagram (or to a Coxeter
group). We will present that definition and state some properties of
such reduced words.

Definition 1.4.11. 1. Let

(5.1) = (st)mst/2 if mg is even,
PASEZ 1(st)mee=1/2 i my, is odd

be a word in the free monoid Mg of length mg ending in ¢,
for all ordered pairs of distinct s,¢ € S such that my < oco. If
ms = oo then the word p(s,t) is not defined.

2. An elementary homotopy is a transformation of a word of the
form wip(s,t)wy into the word wip(t, s)wa, where w; and wy
are arbitrary elements of Mg. Sometimes in the literature ele-
mentary homotopies are also called braid operations.
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3. Two words w1 and wo in Mg are homotopic if w1 can be trans-
formed into we by a sequence of elementary homotopies.

4. A contraction is a transformation of a word of the form wissws
into the word wiws. The inverse of a contraction is called an
eTPansion.

5. A word in Mg is contractible if it is of the form wqssws for some
seSs.

6. An elementary X-operation on a word in Mg is an elementary
homotopy or a contraction. Two words are called equivalent if
one can be transformed into the other by a sequence of elemen-
tary X-operations.

7. A word in Mg is called reduced if it is not homotopic to a
contractible word.
We emphasize that all of these notions depend on the Coxeter
diagram X.

Next we compile a set of properties that relate reduced words
in the free monoid Mg with the elements of W that those words
represent. These properties can be found in [Wei09] and we state
them without proof.

Proposition 1.4.12. Let (W,S) be a Cozxeter system with Cozeter
diagram X and consider the free monoid Mg. Then the following
hold.

1. Two words wy and we in Mg are equivalent (with respect to X)
as defined in Definition if and only if they represent the
same element of W.

2. If two words w1 and we in Mg are such that w1 = we € W,
then the lengths l(w1) and [(w2) have the same parity.

3. Letw € Mg and t € S. If w is reduced but wt (respectively tw)
is not, then w is homotopic to a word which ends (respectively,
begins) with t.

4. Let wy and we be reduced words on Mg such that they represent
the same element of W. Then wy is homotopic to ws.
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5. Let w € W and let s1---s, be a representation of w in the
monoid Mg. Letl(w) denote the length of w as a group element.
Then l(w) < n with equality if and only if s1--- sy s a reduced
word.

From now on, when we refer to a reduced word in the monoid Mg,
we always mean reduced with respect to X, as in Definition
that is, a word that cannot be shortened using the relations in the
Coxeter diagram, as described in the definition.

Proposition 1.4.13 ([Wei09, Proposition 4.8]). Let w € Mg be a
reduced word, let J C S and let W; as in Theorem [1.4.. Then
w € Wy if and only if w € My, that is, the letters of a reduced
representation of w are in J.

We finish this section by presenting the solution for the word
problem in Coxeter groups, which was solved by Tits in 1969 [Tit69].
The word problem is the following:

Given two words wy = r1---7rp and wy =t - - -t in the free monoid
Mg, decide whether they represent the same element of W.

Theorem 1.4.14 ([Tit69]). Let (W, S) be a Cozeter group with Coz-
eter diagram . If wy and ws are reduced words, then they represent
the same element if and only if wy can be transformed to wy by ap-
plying a sequence of %-elementary homotopies.

1.4.2 Chamber systems

Chamber systems were defined by Tits in [Tit81]. These will be the
geometric objects that, together with a metric coming from a Coxeter
group, will give rise to buildings. We will start with some notions of
edge-colorings and residues in graphs and then we define a chamber
system.

Right after we give some examples of chamber systems of low
rank and we define automorphisms of these geometric structures. We
stress that we will always consider simple undirected graphs.

Definition 1.4.15. Let I' = (V, E) be a simple graph.
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1. An edge-coloring of ' = (V, E) is a map from the edge-set E to
a set S whose elements we think of as colors. We will always
assume that this map is surjective, so that S is unambiguous.

2. An edge-colored graph is a graph I' endowed with an edge-
coloring. The image S of the edge-coloring will be called the
index-set of the edge-colored graph.

A subgraph IV = (V', E’) of an edge-colored graph I' will always
be assumed to have the edge-coloring obtained by restricting the edge-
coloring of " to E’. The index-set of I is then a subset of the index-set
of T.

In edge-colored graphs, we can associate a type of adjacency if
two vertices share an edge of a certain color. In the next definition
we set up notation for such adjacencies in edge-colored graphs.

Definition 1.4.16. Suppose that I' = (V, E) is an edge-colored graph
with index-set S. Rather than giving a name to the edge-coloring,
we will write, for vi,v9 € V and s € S,

S . .
vy ~ vg for ‘{v1,va} is an edge of I' whose color is s’.

Two vertices v1 and vy will be called s-adjacent (for some s € S)
if v; ~ vg, and two vertices will be called adjacent if they are s-
adjacent for some s € S. (Since E consists of two-element subsets of
V, a vertex is never adjacent to itself).

Next we define types of galleries using the coloring and types of
connected components of the graph, called residues.

Definition 1.4.17. Let I be an edge-colored graph with index-set
S and let J C S. Consider a gallery v = (vg,v1,...,v;) (for some
k > 0) from vy to vy such that

vj_1 < vj, for some s; € S for all j € {1,...,k}.

Then we say that the type of the gallery ~ is the word s --- s (an
element of the free monoid Mg).

A J-gallery is a gallery whose type is in Mj;. The graph T is
J-connected if for any two vertices v; and vy of I' there exists a J-
gallery from vy to ve. In particular I' is connected if and only if it is
S-connected.
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Definition 1.4.18. A J-residue R of I is a connected component of
the subgraph of I' obtained from I' by discarding all the edges whose
color is not in J. A residue of T' is a J-residue for some J C S. If
s € S then an s-residue (that is, a residue where |J| is one) is called
an s-panel.

If v € VI' we will denote by R, (sometimes also R;(v)) the
J-residue of I' containing the vertex v. Normally if J = {s} we will
denote the s-panel of v in " by P, (or (Ps(v)).

Example 1.4.19. In Figure we have a connected edge-colored
graph with index-set {1,2,3}. The colors highlight examples of a
2-residue, two 1-residues and a {2, 3}-residue.

Figure 1.5: Examples of residues.

After the initial concepts we are in a place to define chamber
systems.

Definition 1.4.20. A chamber system is an edge-colored graph A
with index-set S such that for each s € S, all s-panels of A are com-
plete graphs with at least two vertices. We will refer to the elements
of V' as chambers rather than vertices and we will write Ch(A) instead
of V. The cardinality of S is called the rank of A.
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A chamber system is thin if every panel contains exactly two
chambers and is thick if every panel contains at least three chambers.

From this definition, we infer that, for each s € S, “being in the
same s-panel” is an equivalence relation on the chambers where each
equivalence class has at least two elements.

We observe that the edge-colored graph of Figure is not an
example of a chamber system as, for instance, the highlighted bottom
red residue of type 1 is not a complete graph.

Example 1.4.21. A chamber system of rank zero is just a collection
of chambers with no edges (and no colors). A chamber system of
rank one is a graph with edges all of the same color, each of whose
connected components is a complete graph with at least two chambers
(observe that we are not requiring chamber systems to be connected

graphs).

A chamber system of rank two can be viewed as a bipartite graph.
In fact, chambers systems of rank two and bipartite graphs are es-
sentially the same thing, as we explain in the next example.

Example 1.4.22 ([Wei09, Example 1.8]). Let I' = (V, E) be a bi-
partite graph (with no edge-coloring). This means that there exists
a partition of V' into subsets V; and Va2 such that each edge joins a
vertex of V} to a vertex of V5. Suppose also that every vertex of T’
has at least two neighbors. Let Ar = E and let S = {1,2}. We set
g ca, for ¢1,c0 € Ar and s € S whenever the edges ¢y and ¢y are
distinct but have a vertex in common in V,. This makes Ar into a
chamber system with index-set S which is connected if and only if
I" is connected. Moreover, it is thin if and only if every vertex of I’
has exactly two neighbors and thick if and only if every vertex of T’
has at least three neighbors. The chamber system Ar depends on
the choice of V4 and Vs, but if I" is connected, it is unique up to a
relabeling of the index-set.

Conversely, let A be a chamber system of rank two and let T'a
denote the graph whose vertices are the panels of A, and where two
panels are joined by an edge if and only if they have a non-empty
intersection. Then I'a is a bipartite graph (since two panels can have
non-empty intersection only if they have different types) all of whose
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vertices have at least two neighbors. If we restrict our attention to
connected bipartite graphs and connected chambers of rank two, this
construction is the inverse of the construction above.

Definition 1.4.23. If J C S and R is a J-residue of a chamber
system A, then each chamber of R is contained in at least one edge

of every color in J and hence J is the index-set of R and the rank of
R is |J|. We call J the type of R.

Next we define isomorphisms between chamber systems.

Definition 1.4.24. Two chamber systems A and A’ with index-sets
S and S” will be called isomorphic if there exist bijections o from S
to §" and ¢ from Ch(A) to Ch(A’) such that

S . . a(s)

x ~ gy if and only if ¢p(x) ~" ¢(y)

for all z,y € A and all s € S. If ¢, 0 is such a pair of bijections, we
will say that ¢ is a o-isomorphism from A to A’. By isomorphism
we mean a o-isomorphism for some o. An isomorphism is special (or
type-preserving) if S = S’ and the corresponding map o from S to S
is the identity map.

Since isomorphisms map galleries to galleries of the same length,
they preserve the distance between chambers, that is, they are isome-
tries with respect to the discrete distance.

Definition 1.4.25. When A = A’ an isomorphism is called an auto-
morphism. In this case a special isomorphism is also called a special
automorphism.

In this thesis we will just be concerned with special automor-
phisms. Therefore when we refer to automorphisms of a chamber
system (or of a building later on), we are implicitly assuming that o
in the Definition is the identity map.

We denote by Aut(A) the group of special automorphisms of A,
sometimes also called the group of type-preserving automorphisms of

A.

Observe that the permutation topology defined in Section [1.3.2]
for groups of automorphisms of graphs in general is defined also in
the type-preserving case, in a similar way.
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Next we present a chamber system Ay whose chambers are ele-
ments of a Coxeter group with Coxeter diagram . This is an impor-
tant construction since apartments in any building will be isomorphic
to Ay, constructed from the Coxeter group of respective type.

Definition 1.4.26. Let X be a Coxeter diagram with vertex-set S
and let (W, .S) be the Coxeter system of type 3 with set of generators
S = {si}ier. We can define a thin chamber system with index-set S
whose chambers are elements of W by setting

x 2y for s € S if and only if 271y = s.

Since s # 1, & ~ y implies that # # y. As also s2 =1 for all s € S,
the relation ~ is symmetric and since s; # sj whenever i # j, the
color of an edge is well defined. We denote this chamber system by
Ay,. Thus S is both the vertex-set of ¥ and the set of colors of Ay.
A Cozxeter chamber system of type X is a chamber system A with
index-set S such that there exists a special isomorphism from A to
Ay. Thus Ay is the unique Coxeter chamber system of type X up to
a special isomorphism.

The Coxeter chamber system Ay is just the Cayley graph of the
group W with respect to the generating set S = {s; | i € I} with
edges labeled by the corresponding generator. We emphasize that
Ay is a thin chamber system, i.e., each chamber is {s;}-adjacent to
exactly one chamber for each ¢ € I.

Proposition 1.4.27 ([Wei09, Proposition 2.5]). Let 3 be a Coxeter
diagram with vertez-set S and let (W, S) be the corresponding Cozeter
system. Let Ay, be the corresponding Cozeter chamber system. Then
for all ¢ € Ch(Ayx) and for all reduced words w € Mg, there is a
unique gallery of type w in Ay, which begins at c.

Observation 1.4.28. Left multiplication by an arbitrary element
of W is an automorphism of Ay. Since Ay is connected and each
chamber is s-adjacent to just one chamber for each s € S, the identity
is the only automorphism of Ay, which fixes a chamber. It follows
that the map which sends g € W to “left multiplication by ¢” is an
isomorphism from W to Aut(Ayx). We will, in general, identify W
with its image in Aut(Ay) under this isomorphism.
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1.4.3 Buildings

Buildings were defined by Jacques Tits as a way to understand simple
algebraic groups over an arbitrary field. He proved that to every such
group one can associate a simplicial complex, called a spherical build-
ing, in which the group acts by isometries. The group imposes several
regularity conditions on the complex and by taking those conditions
as axioms for simplicial complexes, Tits arrived to the definition of a
building.

That definition relies on a set of special simplicial subcomplexes,
called apartments (see Definition [1.4.38)). We will present the origi-
nal definition of Tits in the end of the section for general historical
purposes (cf. Definition but we will use in this thesis a later
(equivalent) definition of a building also introduced by Tits in [Tit81]
considering the concept of chamber systems. For the remaining of
the section we mostly follow [Wei09] and [Ron09].

Definition 1.4.29. Let X be a Coxeter diagram with vertex-set S
and let (W, S) be the Coxeter system of type ¥. A building of type ¥
is a pair (A, d), where

1. A is a chamber system whose index-set is .S, and

2. § is a function 0 : Ch(A) x Ch(A) — W such that for each
reduced word w in the free monoid Mg (reduced with respect
to ) and for each pair of chambers ¢;,co € Ch(A), we have

0(c1,c2) = sy < there is a gallery in A of type w from ¢; to ca.

We call the group W the Weyl group and the map § the Weyl-distance
function. We will sometimes refer to 3 as the Coxeter diagram of
(A,0). When the Coxeter system (W, S) and the Weyl distance func-
tion & are clear from the context we will only refer to a building as

A.

Remark 1.4.30. The Weyl-distance function is a map with the fol-
lowing properties:

1. Given a minimal gallery v = (co, ..., c) of type w € Mg, then
d(co, k) is the element of W represented by w.
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2. Let ¢ and cg be chambers. The function v — {type of v} gives
a one-to-one correspondence between minimal galleries from ¢
to ¢ and reduced decompositions of d(c1, c2) € W in the monoid
Mg. For a proof of this fact we refer to [ABOS].

3. We note that d(c1, c2) should not be confused with the distance
dist(c1, c2) from ¢; to c2 in the sense of Definition Since

the empty word is reduced, §(c1,c2) = 1 if and only if ¢; = ca.

Next we state some properties of buildings, that come as conse-
quences of the definition.

Proposition 1.4.31 ([Ron09, Prosition 3.1]). Let (A,d) be a build-
ing. Then the following hold

1. ¢ is surjective and A is connected.
2. 8(c1,ca) = 8(ca, 1)t for all chambers c1,ca € Ch(A).
3. 6(c1,co) = s if and only if ¢1 X co.

4. If w € Mg is reduced then a gallery of type w from ¢y to co is
uUnLqUe.

Proof. For the proof of the first 3 statements we refer to [Wei09,

Chapter 7] and for the proof of the last property we point to the
afore-mentioned proposition in [Ron09). O

We now present a set of examples of buildings.
Example 1.4.32. Let X be a Coxeter diagram, let (W, S) denote the
corresponding Coxeter system, let A = Ay, denote the corresponding
Coxeter chamber system (see Definition [1.4.26)) and let

Sw : Ch(Ax) x Ch(Ag) — W be given by dw(c1,c2) = ¢ *ea,

for all ¢q,co chambers in A. By Proposition we have that
(A, 0w ) is a building of type X.
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Example 1.4.33. Let (W, S) be a Coxeter system
where S = {s} and W = Zs. A building A of type
(W, S) is a complete graph A with distance function
d(c1,c2) = s if ¢1 # co and d(c1, ) = 1 if ¢ = co.
An example is illustrated in the figure on the right.
We call such a building a rank 1 building.

Example 1.4.34. In this example we will show that a rank-2 build-
ing is a generalized m-gon, for some m, and vice versa, that is, any
generalized m-gon is a rank-2 building. A detailed proof of this re-
sult can be found in [Ron09, Proposition 3.2]. In this example we
illustrate how we can regard such an object from the two points of
view.

Let m > 2 or m = oo. A generalized m-gon is a connected
bipartite graph of diameter m and girth 2m, in which each vertex is
incident to at least two edges (recall the definition of diameter and
girth in Definition .

Consider a building A of rank 2 and the respective Coxeter group
W generated by two elements s and ¢. The reduced words in W are
the alternating sequences sts... of length < mg and they give rise to
different group elements with the exception of the case when we have
equality between sts... and tst..., i.e., when both these words have
mg letters (and in particular mg; is finite). Then it follows that A
has diameter and girth as required for an m-gon and each vertex is
contained in at least two edges.

Conversely, let I' be a generalized m-gon. Then each vertex of
I" has at least two neighbors. Since I' is connected and bipartite we
can get a chamber system Ar as in Example Let (W, S) be a
Coxeter system generated by two elements s and ¢ such that |st| = m.
Then the words p(s,t) and p(t, s), as defined in are the only
words in Mg of length m which are reduced, and any other reduced
word of length smaller than m is homotopic only to itself. Thus we
can define 0 : Ap x Apr — W by §(z,y) = w if dist(x,y) < n, where
w is the type of the only minimal gallery between = and y (which are
edges of I') in Arp, and §(z,y) = p(s,t) if dist(z,y) = n. Then (Ar, )
is a building of type (W, S).

We remark that a generalized co-gon is a tree without end points.

— 49 —



1.4. COXETER GROUPS AND BUILDINGS

Hence the Coxeter group associated to this rank 2 building is the
infinite dihedral group, generated by s and t with mg = oc.

Next we present some properties of subbuildings and isometries
between buildings.

Theorem 1.4.35 ([Ron09, Theorem 3.5]). Let J C S and let R be
an J-residue of A. Then R is a building of type (Wy,J), the Cozeter
system defined in Lemmal|1.4.7.

Definition 1.4.36. Let (A1, d1) and (Ag, d2) be two buildings of the
same type (and thus having the same index-set and the same Weyl
group). A map 7 from a subset X C A; to Ag will be called an
isometry from X to As if

do(m(c1),m(e2)) = d1(c1,c2), for all ¢1, ¢ € X.

Proposition 1.4.37 ([Wei09, Proposition 8.2]). Let (A1,d1) and
(Ag, 02) be two buildings of the same type ¥ and let ™ be a map from
A1 to Ay. Then 7 is an isometry from A1 to Ag if and only if 7 is
a special isomorphism from Ay to w(Ay).

With the definition of isometry and with the last proposition, we
can define apartments in a building.

Definition 1.4.38. Let (A, ) be a building of type ¥. An apartment
of A is a subgraph of A whose chamber and edge-sets are the images of
the chamber and edge-sets of the building Ay, (as in Example
under an isometry from Ay, to A.

By Proposition [[.4.37] an isometry 7 from Ay to a building of
type 2 is a special isomorphism from Ay to the image of 7. Therefore
apartments of a building of type ¥ are Coxeter chamber systems of

type X (see Definition |1.4.26])).

Next we provide some examples of apartments in buildings. As
observed before, Example(1.4.32]is the construction of a thin building,
so in this case the building and the apartment coincide.

Example 1.4.39. 1. If A is a rank 1 building, whose respective
Coxeter group is generated by an element s, then an apartment
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in A consists of two chambers connected by an edge labelled s,
as in Figure [I.7]

—o

S

Figure 1.7: A rank-1 apartment.

2. An apartment in a tree without end points, as in Example[1.4.34]
considering m = oo, is an infinite ray of chambers connected
by edges labelled by the generators of the respective Coxeter
group. Denoting such generators by s and ¢, an apartment is
depicted in the Figure

Figure 1.8: An apartment in a tree without end points.

3. We can consider a rank-3 spherical building A of type Sym(4),
by regarding the symmetric group as a Coxeter group with set
of generators

Sym(4) = ((12), (23), (34) |(12)? = (23)> = (34)2 = 1
((12)(23))* = ((23)(34)) = 1
((12)(34))* = 1)

Then an apartment of A is depicted in Figure [1.9] which corre-
sponds to the Cayley graph of Sym(4) with respect to the set
of generators considered.

4. Consider the Coxeter group
W = (s,t,r | P =t=r’= (3t)3 = (37")3 = (tr)3 =1).

An apartment A of a building of type W is isomorphic to a tes-
sellation of the Euclidean plane by equilateral triangles, consid-
ering the barycentric subdivision of the hexagons obtained from
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Figure 1.9: Apartment of type Sym(4).

VAVANRWAVAN

NANNANAN/N

ONINANNNN
\VAVERRVAV/

Figure 1.10: An apartment of type As.

the Cayley graph of W, as partially depicted in Figure [I.10]
Each chamber in A is a triangle (maximal dimension simplices)
and two chambers are in the same panel if they share an edge.
A building A of type W is also called a Ag-building. (Observe
that to get this tessellation we are implicitly considering the
geometric realization of the building, as it will be explained in

Section |1.4.4]).

A building whose apartments are isomorphic to tessellations of
a Euclidean space is called a Fuclidean building.

After this first set of examples, we will state some properties of
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apartments, in particular, that they are combinatorial convex sets.

Proposition 1.4.40 ([Wei09, Corollary 8.6]). Every two chambers
of a building are contained in a common apartment.

Definition 1.4.41. A set of chambers C of A is called combinatorially
convex if for every pair ¢,¢ € C, every minimal gallery from ¢ to ¢
is entirely contained in C.

Proposition 1.4.42 ([Wei09, Corollary 8.9]). Apartments in a build-
ing are combinatorially conver.

Now we will define a stronger version of transitivity on groups of
automorphisms of a building.

Definition 1.4.43. Let A be a building and let G be a group of
automorphisms of A. We say that G acts strongly transitively on A
if G is transitive on the set of pairs (A, ¢) consisting of an apartment
A and a chamber ¢ € Ch(A).

An equivalent way of defining strong transitivity is to require G
to be chamber transitive and Stabg(c) to be transitive on the set of
apartments containing c.

Remark 1.4.44. This is an empty remark. I promised my non-
mathematician friends that I would include in my thesis something
that would make them open the book further then page xiv. So they
will try to find this remark.

Next we define a wall in an apartment of a building. It is enough
to define it in Ay, since we already know that all apartments are
isomorphic to Ay;.

Definition 1.4.45. We identify W with its image under the isomor-
phism from W to Aut(Ay), as described in Observation [1.4.28

1. A reflection is a non-trivial element of W which stabilizes edges
(panels) of Ay;. As pointed out in Observation only the
identity fixes a chamber of Ay. Therefore, if r is a reflection
and {c1, ca} is an edge of Ay, stabilized by r, then r interchanges
c1 and cg, the order of r is 2 and 7 is uniquely determined by
{c1,¢2}. In fact, for each edge {c1, ca}, there exists an ¢ € I such
that cg = ¢1s; and thus there exists a reflection that stabilizes
{c1, c2}, namely, the product clsicl_l (observe that ¢1,co € W).
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2. Let Ref(W) denote the set of reflections in W, which, by the
previous paragraph, coincides with the set {wsw™! | w € W,s €

S}.

3. The set of edges fixed by a reflection r will be called the wall
of r and denoted by M(r).

4. Let r be a reflection. We will say that a gallery v = (co, ..., ck)
crosses the wall M(r) at the panel {¢;_1,¢;} for some i €
{1,...,k} if the panel {¢;_1,¢;} is contained in M (r). We will
say that v crosses M(r) m times if m is the number of indices
i €{1,...,k} such that v crosses M(r) at {c;—1,¢;}.

Next we present two results concerning walls.

Lemma 1.4.46 ([Wei09, Lemma 3.8]). A minimal gallery cannot
cross a wall more than once.

The next Lemma is a consequence of Proposition 1.56 of [ABOS].

Lemma 1.4.47. Let A be a building and let ¢c1 and co be two cham-
bers in Ay. Any two minimal galleries between ¢y and ca cross the
same set of walls M(r), for a reflection r € Ref(W).

The Weyl distance between two chambers ¢; and ¢z in a building,
which is an edge-colored graph colored with the generators of the
Coxeter group, gives us a type and hence paths between ¢y and co
corresponding to the distinct reduced representations of (¢, ¢2).

However, for instance, in inductive arguments, we will only be in-
terested on the length of such galleries and not in their type. There-
fore we define a gallery distance between chambers in a building as in
[TW11] and spheres and balls around a fixed chamber, with respect
to this distance.

Definition 1.4.48. Let A be a building and let ¢1,c2 € Ch(A). The
gallery distance between the chambers ¢; and ¢y is defined as

dw (c1,e2) = 1(d(e1, c2)),

that is, the length of a minimal gallery between the chambers ¢; and
Co.
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For a fixed chamber ¢y € Ch(A) we define the spheres at a fixed
gallery distance from cg as

S(cp,n) = {c € Ch(A) | dw(co,c) = n},
and the balls as
B(co,n) = {c € Ch(A) | dw(co,c) < n}.

We finish this section with the original definition of a building
given by Tits which was formulated in terms of simplicial complexes.
Here the chambers are the maximal dimensional simplices and they
really mean “rooms”. The inversion of the dimensions makes us con-
sider the definition of a Coxeter complex.

Definition 1.4.49 (JABOS, Definition 3.1]). Let (W, .S) be a Coxeter
system. A standard coset of W is a coset of the form wWj; with
w € W and Wy = (J), for some subset J C S.

The poset (W, S) of standard cosets ordered by reverse inclusion
is called the Coxeter complex associated to (W,S). We have that
B < Ain X(W,S) if and only if A C B as subsets of W. In that case
we say that B is a face of A.

Coxeter complexes consist of chambers divided by walls and there-
fore they are referred to as apartments. The axioms in the next defi-
nition prescribe the rules to glue the apartments together in order to
get a building.

Definition 1.4.50 ([ABOS8, Definition 4.1]). A building is a simplicial
complex A which can be described as the union of subcomplexes,
called apartments satisfying the following axioms.

1. Each apartment A is a Coxeter complex.

2. For any two simplices A, B € A, there is an apartment A con-
taining both of them.

3. If A; and A5 are two apartments containing A and B then there
is an isomorphism Ay — A fixing A and B pointwise, that is,
fixing each vertex of A and B.
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A map fixes a simplex A pointwise if it fixes every vertex of A.
We can see a building A defined above as a chamber system by
considering each chamber as a point and by adjacency in the chambers
as
A X B if and only if AN B is a panel of type s;.

The Weyl distance function is then considered by looking at the dis-

tance between two chambers in a common apartment. By Property

3. the distance is independent of the choice of the apartment.
Henceforth, when we refer to buildings, we will keep in mind Def-

inition [[.4.29
1.4.4 Geometric realizations of buildings

Any building of type (W, S) has a geometric realization as a CAT(0)-
space. This means that, given a building A of type (W,S5), there
exists a CAT(0)-space X and a canonical injection Aut(A) — Is(X).

When suitable for our purposes, we will identify the elements in
Aut(A) with their image in Is(X), that is, we will see g € Aut(A) as
acting on the geometric realization X. In this section we describe the
construction for the standard (Davis) geometric realization, following
the notation in [Dav9g].

Definition 1.4.51. A mirror structure over an arbitrary set .S on a
space Y is a family of subsets (Y;) of Y indexed by S. The subsets Y
are called mirrors. A space with a mirror structure is called a mirror
spacemirror space.

Given a mirror structure on Y, a subspace Z C Y inherits a mirror
structure by setting Z; =Y; N Z.

Next we define subsets of mirrors and subsets of S that will play
an important role in the definition of realizations of buildings.

Definition 1.4.52. Let Y be a mirror space over S. For each non-
empty subset T' C S we define

Y7 = NgerYs and Y7 = UgerYs.

We have that Yy =Y and Y? = . Given a subset C of ¥ or a point
x €Y we define

S(C)={seS|CCYs}and S(z)={se S|xeYs}
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Now we proceed to the definition of the Davis chamber of a Cox-
eter system.

Definition 1.4.53. Let (W, S) be a Coxeter system.

1. Denote the poset of spherical subsets of S partially ordered by
inclusion by S(W,S) or S if the Coxeter system is understood,
where a spherical set is introduced in Definition

2. For any T' C S, let S>7 be the poset of spherical subsets of S
which contain T'.

3. Let K = |S| be the geometrical realization of the poset S. (Re-
call that the geometric realization of a poset has as n-simplices
the chains in S of cardinality n + 1).

For each s € S, put Ks = |S>44| and for each T' C S let
KT = ‘SZT"

We say that the complex K with this mirror structure is the
Davis chamber of (W, S).

It follows from the Davis chamber being a realization of a poset
that it is a flag complex.

We can also visualize the Davis chamber as the cone of a barycen-
tric subdivision of a poset. We make it more precise in the following
definition.

Definition 1.4.54. Let (W, S) be a Coxeter system. The nerve of
(W, S), denoted by L(W,S), is the poset of non-empty elements of
S. It is an abstract simplicial complex whose simplices are spherical
subsets of S.

The Davis chamber K can also be defined as the cone of the
barycentric subdivision L(W,S)" of L(W,S). For s € S, we define
K to be the star of s in L(W,S) and for z € K, consider the set
S(x)={seS|ze K}

These two definitions of the Davis chamber are equivalent. The
empty set in the first definition corresponds to the cone point in the
second.
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Standard geometric realization of a building

Definition 1.4.55. Let A be a building of type (W, S) and let Y be
a mirror space over S.

1. We define an equivalence relation ~ on A X Y by
(¢,x) ~ (d,y) if and only if z = y and d(c,d) € S(x).

The Y -realization of A is then U(AY) = (A xY)/ ~. We
identify s-mirrors of two chambers when those two chambers
are s-adjacent.

2. The realization of a chamber ¢ € Ch(A) inside a realization
U(A,Y) is the image of (¢,Y) and the realization of a residue
R is the union of the realizations of the chambers contained in
R.

3. Two panels Ps; and Py in A are adjacent if they are contained
in a spherical residue of type {s,t} and the set of distances
between chambers in Py and P is a coset of Wiy in Wy, 4.

We extend these adjacencies to equivalence classes and we define
a wall in A as an equivalence class of panels. By the realization
of a wall we just mean the union of the mirrors corresponding
to the panels in the wall.

We now define the standard realization of a building, using the
Davis chamber.

Definition 1.4.56. Let A be a building of type (W,S) with Davis
chamber K.

1. X =U(A,K) is called the standard realization of A.

2. If A = Ay is the thin building of type (W, .S) then the standard
realization of Ay is called the Dawvis complex and we have, for
(w,z), (W, 2') € W x K, that (w,z) ~ (w',2') if and only if
z=a" and wltw' € Wy(y).

Theorem 1.4.57 ([Dav98, Theorem 11.1]). The standard realization
of any building is a complete CAT(0)-space.
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We now present an example of how to construct the Davis cham-
ber and the Davis complex of a building.

Example 1.4.58. Consider the Coxeter system (W, S) given by the
following presentation and whose Coxeter diagram is depicted in the
figure in the right.

S92 50
W =(S={s1,80,5}| ss=s3=s3=1 3 53
(8182 3 = 1> 5o
S1

We will construct the Davis chamber and the Coxeter complex
of this Coxeter system by following Definition [1.4.54. The nerve of
(W, S) and its barycentric subdivision are depicted in the next figure.

LW, S) LW, S)
S92 S92
{s1,82} e 7 {s1, 52} o
S1 S1

The Davis chamber K of (W, S) is the cone of the barycentric
subdivision L(W, S)":

S3

One can see the mirrors as in Definition denoted by K,
and K,,. We now construct the Davis complex of (W, S) by using
the equivalence relation of Definition and we obtain the Davis
complex for (W, S) as partially shown in the following figure.
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Each chamber is a copy of the Davis chamber K, and we la-
beled some chambers so it is clear how one can construct the Coxeter
chamber system (or the Cayley graph) of (W, S). Each hexagon cor-
responds to a residue of type {s1,s2} and in the hexagon in the left
we highlight the mirrors of type s; and sa.

1.5 Universal groups for regular trees

In this section we focus on groups of automorphisms of locally finite
trees, in particular, in a class of groups of automorphisms of regular
trees.

In 2000, Burger and Mozes in [BM00a] defined the universal groups,
which are defined by prescribing the local action around every vertex
of the tree with a finite permutation group. These groups are exam-
ples of compactly generated totally disconnected and locally compact
groups which are non-discrete under mild conditions on the local ac-
tion.

Furthermore, they proved, given a permutation group F' < Sym(q)
with g being the degree of the regular tree, that the universal groups
are the largest vertex-transitive closed subgroups of the automor-
phism group of the tree whose local action in the vertices is permuta-
tionally isomorphic to F. Therefore they form a large class of groups
of automorphisms of regular trees.
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Tits in [Tit70] established a criterion for simplicity of groups
acting on trees, known as Tits’s independence property (see Defi-
nition and he showed that the group generated by pointwise
edge-stabilizers in the automorphism group of a tree is either trivial
or simple. Tits called this criterion Property P. By definition, the
universal groups satisfy Tits’s independence property, so they have,
under some condition on the local action, an index-2 simple subgroup.
Therefore studying universal groups for regular trees has become a
source to find simple compactly generated locally compact totally
disconnected groups.

The work of Burger and Mozes is the main motivation in this
thesis to study right-angled buildings and to generalize the idea of
prescribing a local action in the panels of a right-angled building as
we will describe in Chapter [4l Moreover the concept of prescribing
a local action in other regular objects (in particular CAT(0)-spaces
with some regularity) will be used in Chapter |§| to define universal
groups for polygonal complexes.

We will start this section with some considerations on groups
acting on trees. Right after we will state Tits’s independence property
and then present the concepts necessary to define universal groups for
regular trees. The section ends with references to several results that
show how group theoretical conditions on the local action can be used
to derive global topological properties of the universal group.

1.5.1 Groups acting on trees

Let T be a tree and let Aut(7") denote the full automorphism group
of T.

Definition 1.5.1. Let g € Aut(7T"). We call the automorphism g:
1. elliptic if it fixes a vertex v € VT

2. an inversion if it inverts an edge e = {v1, v2}, that is, if gv; = vo
and gvg = v1.

3. hyperbolic if does not fix any vertex of the tree and it does
not invert any edge of the tree, i.e., it is neither elliptic nor an
involution. In this case the vertices with minimal displacement
by ¢ form a bi-infinite line graph A(g), called the azis of g.
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The previous definition actually characterizes all types of auto-
morphisms of a tree, as showed in the next result.

Theorem 1.5.2 ([Tit70, Proposition 3.2]). Let g € Aut(T'). Then g
is an inversion, an elliptic element or a hyperbolic element.

1.5.2 Tits’s independence property

Let T and Aut(T) as before. Let Aut(T)" be the group generated
by pointwise stabilizers of edges of T' in Aut(7). Observe that we
are considering both groups Aut(7) and Aut(T)* equipped with the
permutation topology, as defined in [1.3.8

Definition 1.5.3. Let G < Aut(7') and let C be a (finite or infinite)
chain of T', that is, a path in the tree. Let F' = Fixg(C) be the
pointwise stabilizer of C' in G.

For each v € VT, we denote by 7(v) the vertex of C closest to v.
The vertex-sets 7~ 1(c), for ¢ € VO, are all invariant under F. We
let F |,r—1(c) denote the permutation group obtained by restricting the
action of F to 7~1(c). Then there is a natural homomorphism

@ F — H Flﬂ.fl(c).
ceVC

The group G satisfies Tits’s independence property if and only if ¢ is
an isomorphism.

1 Vo 5 U3 (o) L,
C

Figure 1.13: Tits’s independence property.

— 55 —



1. PRELIMINARIES

The essence of Tits’s independence property is that the fixator of
a chain F' acts on each branch of T" at C independently of how it acts
on the other branches, as illustrated in Figure [1.13]

Tits used this property to prove simplicity of groups of automor-
phisms of a tree.

Theorem 1.5.4 ([Tit70, Theorem 4.5]). Let G < Aut(T') and let G+
be the subgroup of G generated by pointwise edge-stabilizers. Assume
that G does mot stabilize a proper subtree and that G does not fix
an end of T. If G satisfies Tits’s independence property then GT is
simple or trivial.

In the case of closed subgroups of Aut(7), it is enough to look
at edges instead on arbitrary chains, that is, it is only necessary to
check if the pointwise stabilizer of an edge can be decomposed into 2
independent subgroups.

Proposition 1.5.5 ([Ama03, Lemmal0]). Let G < Aut(T') be a
closed subgroup. Then G satisfies Tits’s independence property if and
only if for every edge e € ET, the pointwise stabilizer Fixg(e) can be
decomposed as

Fixg(e) = Fixg(Th) Fixa(13),

where T1 and Ty are the two rooted half-trees emanating from e, i.e.,
ET is the disjoint union of T1, e and T5.

1.5.3 The universal group U(F)

Now we will define the universal group for a regular tree with respect
to a finite permutation group. We remark that Burger and Mozes
(see [BM0Oa]) considered regular trees with oriented edges and in
this dissertation we will consider the unoriented case. Fix ¢ € N and
let T' = Tj be the g-regular tree.

Definition 1.5.6. A legal coloring of T is a map

h:ET —{1,...,q},

such that the map hg(,) : St(v) — {1,..., ¢} is a bijection, for every
v € VT. Recall that St(v) is the set of edges incident to v, as defined

in Equation (1.2.1).
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Lemma 1.5.7 ([LMZ94]). For any two legal colorings h1 and ha
and two vertices v1 and vy of T, there exists a unique automorphism
g € Aut(T) such that vo = gv1 and hg = hy o g.

The universal groups for regular trees are defined with respect
to a finite permutation group F' acting on the set of colors {1,...,q}
and they consist of the automorphisms of the tree such that, for every
vertex v € VT, the permutation of the colors induced from St(v) to
St(gv) is an element of F. We make this precise in the following
definition.

Definition 1.5.8 ([BM00a, Section 3.2]). Let h be a legal coloring
of T and let F' < Sym(q). The universal group U(F') with respect to
F is defined as

UMF) = { g € Aut(T) | hlsi(gu) © g © (hlssw)) ™" € F for all v € VT}.

The first thing that we observe is that we can actually drop the
upper index h in U" (F) as a direct consequence of Lemma m

Corollary 1.5.9. Let hy and ho be legal colorings of T and let F' <
Sym(q). Then the universal groups UM (F) and U"2(F) are conjugate
in Aut(T).

From now on, we will fix a legal coloring h and for a group F <
Sym(q) we will denote the respective universal group by U(F).

Example 1.5.10. 1. If F = Sym(q) then the group U(F) is the
whole group Aut(7T).

2. If F = id then U(F) is isomorphic to the free product of ¢ copies
of Co, where ¢ is the degree of the regular tree. The cyclic group
of order 2 comes from the automorphisms which invert edges.
More details on this case can be found in [Ama03].

Next we show that the local action of these groups is actually
permutationally isomorphic to the finite group F'.

Definition 1.5.11. Let G < Aut(T') and fix v € VT. Recall the
notation for the stabilizer G, = {g € G | gv = v}. The local action

of G on v is the permutation group formed by restricting the action
of Gy to St(v).
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Lemma 1.5.12. The local action of U(F) on v is permutationally
isomorphic to F', for allve VT.

We prove a similar lemma later in Chapter 4| (see Lemma
for universal groups acting on right-angled buildings. The proof can
naturally be adapted for trees, since those are an instance of right-
angled buildings.

We state now a set of properties of the universal groups that can
be found on [BM00a]. For detailed proofs of those properties we refer
to [GGTI6].

Lemma 1.5.13. Let F' < Sym(q) and consider the universal group
U(F). Then the following hold:

1. U(F) is a closed subgroup of Aut(T).
2. U(F) is vertex-transitive.
(F)

3. U(F) is compactly generated.

4. U(F) is edge-transitive if and only if F' is a transitive subgroup
of Sym(q).

5. U(F) is discrete in Aut(T") if and only if F is free in its action
on{l,...,q}.

The previous lemma shows the importance of the universal groups
as topological groups since if F' is not free then U(F') is a non-discrete
compactly generated totally disconnected locally compact group.

Next we present a lemma that justifies the name of these groups,
i.e., we present a universality condition.

Proposition 1.5.14 ([BM00al, Proposition 3.2.2]). Let F' < Sym(q)
be a transitive group. Let H < Aut(T') be a vertex-transitive group
whose local action on every vertex of T is permutationally isomorphic
to F.

Then there is a legal coloring h of T such that H < U"(F).

Another very important characteristic of these groups is that they
satisfy Tits’s independence property defined in Section [1.5.2] and so
they have rather large simple subgroups.
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Proposition 1.5.15 ([BM00al, Proposition 3.2.1]). Let U(F)" be the
group generated by pointwise stabilizers of edges in U(F).

1. The group U(F)" is simple or trivial.

2. The group U(F)" is of finite index in U(F) if and only if F
s transitive and generated by point stabilizers. In this case,

Ut =U(F)NAw(T)" and it has index 2 in U(F).

Burger and Mozes state this result without proof. For a proof of
this proposition we refer to [GGT16].

1.5.4 Vertex stabilizers in U(F)

Burger and Mozes in [BM00al, Section 3.2] also describe the structure
of maximal compact open subgroups of the universal group when the
local action is prescribed by a transitive permutation group.

Let F' < Sym(q) be a transitive group and consider the universal
group U(F). Fix vy € VT. We will describe the structure of the max-
imal compact open subgroup U(F),,. Since it is a compact totally
disconnected group, U(F),, is a profinite group ([Sha72, Theorem
2]). Therefore the description will be done through a projective limit
of finite groups. Consider the sets

A={l,...,q}and B={2,...,q -1}

and let I} denote the stabilizer of the element 1 in F. Recall that
the choice of the element 1 is irrelevant since as F' is transitive, all
the point stabilizers are conjugate. Moreover, we consider the group
F as acting on the set B. Consider the sets

A, =Ax B" L.

We now define bijections b, between the n-spheres S(vg, n) around vg
and the sets A,,. We will use the legal coloring A in the definition of
U(F), as follows:

by : S(vg, 1) — A is defined by b1 (v) = h({vg, v}),

. 1.5.1
b1 : S(Uo, n—+ 1) — Apy1 is st mp0obpy1 = by o ppya, ( )

where m, : An11 = A, X B — A, is the projection map on the first
n coordinates and p,, : S(vg,n) — S(vg,n — 1) maps v € S(vg,n) to
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the unique vertex in S(vg,n — 1) that is adjacent to v (recall that we
are working with trees).

In this way, if v € S(vg,n) is identified with (a1,...,an—1,a,) €
A,, through b,, then (a1,...,a,—1) € Ap_1 corresponds to the unique
vertex in S(vp,n—1) that is connected to v. Further, for each element
ant1 € B, the vertex v/ € S(vg,n + 1) mapped through b,1 to
(aty...,Gn_1,an,an+1) is connected to v.

We now define inductively F'(n) as follows:

F(1) = F < Sym(A;),

F(n4+1) = F(n)x F* < Sym(A,41) (1.5.2)

where the wreath products F'(n) are considered with their imprimitive
action on A,, as described in Section [1.1.1] (observe that F(n + 1) =
F( ) X Fun(An,Fl) = F( ) 2F1).

The groups F(n) will grasp the action of U(F'),, on S(vg,n) as
we show in the next lemma.
Lemma 1.5.16 ([BM00a, Section 3.2]). Let F' be a transitive per-
mutation group acting on {1,...,q} and let U(F) be the respective
universal group. Fix a vertex vy of the q-reqular tree.

Then the stabilizer U(F)y, is isomorphic (as a topological group)
to the inverse limit of wreath products limn F(n), where the groups

F(n) are defined in Equation (1.5.2).
In particular the induced action of U(F'),, on the set of vertices
at distance n from v is permutationally isomorphic to F(n).

Proof. The bijection b, as in Equation (|1.5.1)) induces a surjective
homomorphism

©n : U(F)y, — F(n) defined by g — b, o gob,t,
with kernel
ker o, = {g € U(F)uy | glswo,n) = 1d} = {9 € U(F)uy | 9lB(wo,n) = 1d}-

Considering p,, : F(n) — F(n — 1) the natural projection, we have
hence that the map ¢ = (¢n)nen : U(F)y, — Hm F(n) is an isomor-
phism of topological groups, where

lim F(n) = {(fa)5 1€HF )| pnfn = fu_1 for all n € N}.
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Then it means that, for all n € N, the induced action of U(F),, on
S(vp, n), namely U(F),,/(ker ¢,), is isomorphic to F(n). O

1.5.5 Local to global structure of U(F)

A lot of progress has been made in investigating the universal groups
through their local structure. It is very interesting that in several
cases one can deduce topological properties in the universal group
by assuming group theoretical conditions on the finite group that
prescribes the local action.

In this section we present a medley of results that illustrate the
local to global arguments in the study of universal groups for regular
trees.

We start by considering the case when the finite permutation
group F'is 2-transitive, which was investigated in [BM00Oa].

Proposition 1.5.17 ([BM00a, Proposition 3.3.1]). Let F be a 2-
transitive permutation group on the set {1,...,q} and such that Fy is
simple and non-abelian. Let H < Aut(T') be a closed vertex-transitive
group whose local action on every vertexr is permutationally isomor-
phic to F. Letv e VT.
Then Fixg(S(v,1))/Fixg(S(v,2)) = F{, where a € {0,1,q}.

Moreover,

a €{0,1} & H is discrete.

a=q< H=U(F).

Caprace and De Medts in |[CDI11] considered the case where the
prescribed local action is primitive. Recall that U(F)" denotes the
subgroup of U (F') generated by the pointwise stabilizers of edges. By
Lemma if I is transitive and generated by point stabilizers
then U(F)" has index 2 in U(F).

Proposition 1.5.18 (|[CD11, Proposition 4.1]). Assume that F
Sym(q) is transitive and generated by point stabilizers. Let H
U(F)*. Then the following hold.

I IA

1. F is primitive if and only if every proper open subgroup of H
18 compact.
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2. Suppose that F is imprimitive, with mazximal blocks of imprim-
itwity with size k. Assume moreover that F acts regularly in
each of such blocks. Let Ny (Fixg(e)) = {h € H | h(Fixg(e)) =
(Fixg(e))h} be the normalizer in H of Fixg(e).

Then for every e € ET, the quotient Ny (Fixg(e))/ Fixg(e) is
virtually free, that is, it has a finite-index subgroup which is
free.

Furthermore, if k > 3 then H has open subgroups which are not
compact.

The next result, which is stated in [Ama03, Proposition 59] and
whose simpler proof is recently presented in [BMI17], concerns topo-
logical properties of a vertex-stabilizer in the universal group assum-
ing some conditions in the point stabilizers of the finite group F. We
recall first the necessary definitions to state the proposition.

Definition 1.5.19. Let G be a group. The commutator subgroup of
G, normally denoted by G’, is the group generated by the commuta-
tors of its elements, i.e., the subgroup generated by [g, h] = ghg~th™1,
for every g,h € G.

The group G is called perfect if G = G'.

Definition 1.5.20. A topological group G is called topologically
finitely generated if it has a dense finitely generated subgroup, that is,
if G has a finitely generated subgroup H whose closure is the whole

G.

Proposition 1.5.21 ([Ama03, Proposition 59]). Let F' < Sym(q)
be a transitive permutation group on {1,...,q} and assume that the
stabilizer Fy is non-trivial. Let v € VT.

The U(F), is topologically finitely generated if and only if Fy is
perfect and equal to its normalizer.
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CHAPTER

Right-angled buildings

This chapter is devoted to the study of right-angled buildings, which
are the main geometric objects of this thesis.

We start by presenting the definition of a right-angled Coxeter
group and then we show how the relations between the generators
behave nicely, allowing us to have some control over the reduced
representations of group elements. With that at hand, we will define
a partial order on the letters of reduced representations of group
elements and we prove some properties of the partial order using the
relations of the associated Coxeter group. This tool will be useful
later on in Chapter [5| to describe compact open subgroups of the
automorphism group of a right-angled building through generalized
wreath products.

We also define the concept of firm words in right-angled Coxeter
groups (see Deﬁnition and connect them with the partial order
previously defined. This concept will be used often in Chapter

In Section we arrive to right-angled buildings. After the defi-
nition and first examples, we will present properties related with the
distance between residues in the building. Then we will focus on the
concept of a tree-wall (see Definition and we will define the
tree-wall tree (Definition [2.2.37). This tree will provide us with a
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distance between tree-walls of the same type which will be used very
often for inductive arguments.

We finish this chapter by defining distinct types of colorings in
the chambers of semi-regular right-angled buildings. These colorings
will be useful not only to define the universal group for a right-angled
building in the next chapter, but also to describe a right-angled build-
ing in a standard (and “directed”) way in Section This directed
description will be done through a standard parametrization of the
chambers of the building.

2.1 Right-angled Coxeter groups

We now present the definition of right-angled Coxeter groups and
henceforth we will assume that we are always in the right-angled
case, unless otherwise stated.

Definition 2.1.1. A Coxeter group W is called right-angled if the
entries of the Coxeter matrix are 1, 2 and oco. In other words, if the
group W can be presented as

W = ({si}ier | (sisj)™d), with m;; € {2,00} for all ¢ # j
and my; = 1 for all 4 € 1.

In this case, we call the Coxeter diagram ¥ of W a right-angled Cox-
eter diagram.

Since one grasps better a definition with examples, we present
some right-angled Coxeter groups.

Example 2.1.2. The rank 2 right-angled Coxeter groups are
1. W = (s,t | s> =2 = (st)2 = 1), which is
finite, and

2. W = (s,t| s> =2 = 1), which is an infinite
Coxeter group.

In both cases these groups will give rise, respectively, to general-
ized di-gons and trees (cf. Example [1.4.34) and the Coxeter diagram
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associated to these groups is as showed in the figure, with m = 2 and
m = 00, respectively.

Normally, if m = 2 then we present the Coxeter diagram as a
disconnected graph with two vertices. If m = oo then the right-
angled buildings associated to W will be trees without end-points.

Example 2.1.3. Let us present now two examples of rank 3 right-
angled Coxeter groups which are generated by 3 elements s,¢ and ¢,
with respective Coxeter diagrams depicted on the right of the group
presentation.

S
Wi =(s,t,q| s> =t2=¢>=(sq)* = (tq)* = 1) oo[ . q
t
SOO
Wa={s,t,q|s2= 2= g = (tq)2 = 1) oo]\ q
t

Example 2.1.4. The next example of a right-angled Coxeter group
will give rise to buildings which are infinite direct product of trees.

5 q
Lo (sq)? = (s7)? = (tq)* = (tr)* = 1)

As last example we consider the group

82 «—X e 53
2 2 2 2 \.
Wy = (s1,82,83,84 [s] =85 =53 =57=1 00

(8182)2 = (8183) = (8384) = 1> S1 00

2.1.1 A poset of reduced words

Next we move towards the definition of a partial order on the letters of
a reduced representation of an element of the Coxeter group. We start
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with some considerations about elementary operations and reduced
words in right-angled Coxeter groups.

The elementary operations from Definition[I.4.11]become easier to
describe in the right-angled case since the generators either commute
or are not related (the cases m = 2 or m = oo, respectively).

Definition 2.1.5. Let (W, .S) be a right-angled Coxeter system with
Coxeter diagram 3 and set of generators S = {s; | i € I}. We define
a Y-elementary operation as an operation of the following two types:

(1) Delete a subword of the form ss, with s € S.

(2) Replace a subword st by ts if m;s = 2.

A word in the free monoid Mg is then reduced if it cannot be shortened
by a sequence of ¥-elementary operations.

Moreover, by Lemma two reduced words represent the
same element of W if and only if one can be obtained from the other
by a sequence of elementary operations of type (2).

In particular, we observe that if w; is a reduced word with respect
to X and wy is a word obtained from w; by applying one X-elementary
operation of type (2), then ws is also a reduced word and w; and wy
represent the same element of W. Furthermore, the words wy and wo
only differ in two consecutive letters that have been switched, let us
say,

W1 =81 8Si+1 S and wg = §1 - Si418; " Sy,
with [s;s;41] =2 in X. (2.1.1)

If 0 € Sym(¥¢) then we denote by o.w; the word obtained by permut-
ing the letters in w; according to the permutation o, that is,

0.W1 = S5(1) """ Sa(r)So(r+1) " " Sa()-
Hence, if wy and wy are as in Equation (2.1.1) and 0 = (i i+ 1) €
Sym(¥), then o.wq = ws.

Definition 2.1.6. Let w = s1---sp be a reduced word in Mg with
respect to a right-angled Coxeter diagram . Let o = (i i + 1) be
a transposition in Sym(¢), with i € {1,...,£ —1}. We call o a w-
elementary transposition if s; and s;11 commute in W.
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In this way, we can associate an elementary transposition to each
Y-elementary operation of type (2). Using Lemma we obtain
that two reduced words w; and ws represent the same element of W
if and only if

wy = (op - -+ 01).w1, where each o; is a

(0j—1 - - 01).wi-elementary transposition,

i.e., if wy is obtained from w; by a sequence of elementary transposi-
tions.

Definition 2.1.7. If w is a reduced word of length ¢ with respect to
>, then we define

Rep(w) = {o € Sym(¢) | 0 = 0y, - - - 01, where each o; is a

(0j—1---01).w-elementary transposition}.

The set Rep(w) is formed by the permutations of ¢ letters which
give rise to reduced representations of w, according to the relations
in the right-angled Coxeter diagram 3.

Observation 2.1.8. Let w = s1---5;---5;---5, be a reduced word
in Mg with respect to a right-angled Coxeter diagram 3.

1. Let 0 € Rep(w) such that o can be written as a product of ele-
mentary transpositions oy, - - - o1. Then for each k € {1,...,n},
the word (oy - - - 01).w is also a reduced representation of w.

2. Assume that oy is a w-elementary transposition switching two
generators s; and s; and o3 is a o1.w-elementary transposition
switching two generators s, and s such that {7, j}n{¢, j'} = 0.
Then o9 is also a w-elementary transposition.

Now we define a partial order <,, on the letters of a reduced word
w in Mg with respect to 2.

Definition 2.1.9. Let w = s1 - - - s¢ be a reduced word of length ¢ in
Mg with respect to X. Let I, = {1,...,¢}. We define a new partial
order “<,,” on I, as follows:

i <y J <= o(i) > o(j) for all 0 € Rep(w).
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Note that i <,, j implies that i > j. As a mnemonic, one can
regard i <, j as “i < j7, that is, the generator s; comes always after
the generator s; regardless of the reduced representation of w.

We remark a couple of basic but enlightening consequences of the
definition of this partial order.

Observation 2.1.10. Let w = s1---5;---5;--- s be areduced word
in Mg with respect to a right-angled Coxeter diagram X..

1. If |sjsi] = 0o in X, then j <y, 1.

2. If j A i then by (), it follows that |s;s;| = 2 and, moreover,
for each k € {i+1,...,j—1}, either |s;s;| = 2 or |sjsi| =2 (or
both).

3. If |s;sj| = oo then j <, ¢ but the converse is not true.

Suppose thereis i < k < j such that |s;s,| = oo and |ss;| = oco.
Then j <, i, independently of whether |s;s;| = 2 or not.

4. However, let s; and sj;q1 be consecutive letters in w. Then
|sjsjy1] =2 if and only if j +1 4, J.

The next lemma describes some conditions on the existence and
structure of distinct reduced representations of elements in right-
angled Coxeter groups.

Lemma 2.1.11. Let (W, S) be a right-angled Coxeter system with
Cozeter diagram . Let w = wis;---s;wa be a reduced word in Mg
with respect to Y. If j A, @ then there exist two reduced representa-
tions of w of the form

wl...sisj...w2 and wl...SjSi...w2’

i.e., one can exchange the positions of s; and s; using only elementary
operations on the generators in the set {s;, Siy1,...,Sj—1,5;}, without
changing the prefiz wy, and the suffix wa, and still obtain the same
element of W.

Proof. We will prove the result by induction on the number N of
letters between s; and s;. If N = 0 then w = wys;sjwz, and the

result follows from Observation 2.1.10.
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Assume by induction hypothesis that if n < N then the result
holds. Consider w = ws; - - - sjwy with N + 1 letters between s; and
s; in w, and let o € Rep(w) such that o(j) < o (7).

If |s;si+1| = 2 then (i i + 1) € Rep(w) and

w = (’L 1+ 1).w = W18i+18i " SjW2

is a reduced representation of w with N letters between s; and s;.
Moreover the permutation (i i+1)o € Rep(w) satisfies the conditions
of the lemma. Thus the result follows from the induction hypothesis.

Assume now that |s;8;41| = 00. By Observation we have
|si+15j] = 2. Furthermore from Observation we obtain that
o(i) < o(i + 1). Hence by assumption o(j) < o(i + 1) and we can
apply the induction hypothesis to the generators s;;1 and s; since
the number of letters between them is less than or equal to V. Thus
we obtain that

w' = W185 " Si41S5 W2 and w* = W185 " SjSi41 W2

are reduced representations of w.

Let 7 € Rep(w) such that 7w = w*. The number of letters
between s; and s; in w* is less than or equal to n. Therefore we can
apply the induction hypothesis to w* with o771 € Rep(w*) and we
obtain that

wl...sisj...w2 and wl...sjsi.../LUQ

are two reduced representations of w* and hence of w. O

2.1.2 Firm words in right-angled Coxeter groups

In this section we define firm reduced words in Coxeter groups (see
Definition . The characterization of being firm will be done
by means of the combinatorics of the right-angled Coxeter group and
through the poset of reduced words described in Definition[2.1.9] This
concept will be of relevance since, for a fixed chamber v, it will allow
us to prove that the fixator of any ball in a right-angled building
around v acts on the building with a bounded fixed-point set (see

Proposition [3.2.6]).
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Definition 2.1.12. Let w be a reduced word in Mg with respect to
3.

1. We say that w is firm if w = s1---sg is such that for all ¢ €
{1,...,k — 1}, we have

81”.51'”'8]{}7481”'5]{}82"

2. Let F'#(w) be the largest k such that w can be transformed by
elementary operations into a word in the form

81+ Sktkat - -ty, with s1--- s, firm.

Moreover, let F'(w) be the set of such elements s.

Observe, using the notation above, that if s}, € F'(w)\{sx} then
s, is an element of the set {tx41,...,%}.

Observation 2.1.13. Let w = s1:-- Sgtp41 - - t¢ be a reduced word
such that s - - - s, is firm and F#(w) = k. Then the following hold.

1. |sgtil =2in 3, for alli € {k+1,...,(}.

Indeed, take j minimal such that |st;| = co. Using elementary
operations to swap t; to the left in w as much as possible, we
obtain that
w”\“sl"'sktll"'t;,tj"'

is a word with sq---sgt} - ,t; firm, which is a contradiction
to the maximality of k.

2. Let r € S. If I(wr) > I(w) then F#(wr) > F#(w). In particu-
lar, if F7(w) = F#(wr) then we have that F(w) C F(wr).

We now connect the definition of firm reduced words with the
partial order that we have on such words. This will be a useful tool
to identify which letters of the word appear in a firm subword.

Definition 2.1.14. Let w = s1---s, be a reduced word in Mg
and consider the poset (I, ~<y) as in Definition 2.1.9] For any
i€ {l,...,n}, we define

IL,(i)={je{l,....,n}\{i} | i <w j }.

In words, I,,() is the set of indices j such that s; comes at the left
of s; in any reduced representation of the element w € W.
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We combine Definitions [2.1.12] and [2.1.14] in the following obser-

vation, in order to help to grasp the meaning of these concepts, which
are defined making use of technical notation.

Observation 2.1.15. Let w = s1---s, be a reduced word in Mg
with respect to X.

1. As <, is a partial order, for each ¢ € {1,...,n}, we can perform

elementary operations on w so that
W~ Sy e S, Sity - by, with gy € I,(2) and jp < jpy1-
Then the word sj, ---sj, ,s; is firm.
In particular, if I,,(i) = () then we can rewrite w as s;w;.
. If |s;si41| = 2 for some i then i & I,,(i + 1). This means that

if we can rewrite w as sj, -+ -8, Sit1w1 with s;, -+ 85, | Sit1
firm then ¢ & {j1,...,Jk—1}-

. Consider r € S such that I(w) < l(wr). Then, for any i €
{1,...,n}, we have I, (i) = I,-(7).

. Let r € S such that l(w) < I(wr). If \szr| = oo for some
i € {1,...,n} then [,(i) = Iwr(z) wr(n + 1) (the letter r
corresponds to the index n + 1).

In general, if j <, ¢ then I,,(i) C L,(j).

. Consider F#(w) as in Definition

Then F7#(w) = max;c (i, n} [Lw(i)] + 1.

Therefore F#(w) = |I,,(i)| + 1 if and only if s; € F(w).
Hence F(w) = {s; | |I,(i)| + 1 = F#(w)}.

. If s € F(w), then we can apply elementary operations on w to
rewrite it as wisg. This is the same conclusion as in Observa-

tion [2.1.13|(1) using the poset (L, <w)-

Remark 2.1.16. If the Coxeter system (W, S) is spherical then we
have that F#(w) = 1 for all reduced words w in Mg with respect
to 2. Indeed, if W is finite then, as each pair of distinct generators
commute, we have that I, (i) = () for any reduced word and any letter
s; on it.
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Definition 2.1.17. Let w = s1--- s, be a reduced word in Mg with
respect to X. We define R(w) C S to be the set of elements s € S
such that

|rsi| <2 for all s; € F(w).

We remark also that by definition F'(w) C R(w).
Observe that if I(wr) > I(w) for some r € R(w) with F#(wr) =
F#(w), then r € R(wr).

Remark 2.1.18. Let r € S with [(w) < [(wr). We observe that the
condition r € R(w) is not sufficient for the equality F'(w) = F(wr).
Suppose that

W~ Sy Sp_1Sktgy1 - - - te with s1 -+ s firm and F#(w) =k.

If |rt;] =2 for all i € {k+1,...,¢} and |rsg| = oo then r € F(wr)
but r ¢ F(w).

However, if we assume that F#(wr) = F#(w) then we can con-

clude further conditions regarding the connection between the sets
F(w), R(w), F(wr) and R(wr).

Lemma 2.1.19. Let w be a reduced word in Mg with respect to X.
Let r € S be such that l(w) < l(wr). Assume that F7#(wr) = F7(w).
Then the following hold:

1. r € R(w);
2. If r & F(wr) then R(wr) = R(w);
3. If r € F(wr) then R(wr) = R(w)\{r' € R(w) | |rr'| = oo};

4. In particular, R(wr) C R(w) and if ' € R(w) with |rr'| < 2
then v’ € R(wr).

Proof. Let us prove Statement 1. Assume that r ¢ R(w). Then,
using elementary transformations, we can write w as

81 Sklg1 - ter,

with s1 - - s, firm and such that |sxr| = co. Swapping r as much as
possible to the left in wr we obtain a rewriting of this word as

/ /
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and the word sy - -« st} - -7 is firm. Hence F#(wr) > k.
We observe now that if F'#(w) = F#(wr) then we have

F(w) C F(wr) C F(w)U{r}.

If r ¢ F(wr) then F(w) = F(wr) and therefore R(w) = R(wr). If
r € F(wr) then F(wr) = F(w)U{r} so R(wr) is constructed from
R(w) by removing the elements that don’t commute with . Hence
Statements 2 and 3 are proved.

Statement 4 follows from Statements 2 and 3. O]

Remark 2.1.20. The converse of Lemma [2.1.19(1) is not true. Con-
sider, as a counter-example, the right-angled Coxeter group

W = <’l“1, ...y T5 | (7“1’!”3)2 = (7”17“4)2 = (?”17"5)2 = (7"27“4)2 =1

(rars)® = (rars)® = 1),

with Coxeter diagram depicted in the following figure.

Consider the word w = r9ri7r4rs. We have F#(w) = 2 and
F(’U)) = {7'1,7’5}.

Then I(w) < l(wrg) and r3 € R(w). However wrs ~ roryrsrirs
and ror4r3 is firm. Hence r3 € R(w) but F#(w) < F#(wr3).

In the next definition we set up notation that will be used very
often henceforth.

Definition 2.1.21. A sequence of letters r1,79,... € S such that
I(ry--ri) <l(ry---riripr) for all ¢ will be called a reduced increasing
sequence in S.

Lemma 2.1.22. Let a = r1,79,... be a reduced increasing sequence
in S. Assume that each subsequence of o of the form

(Tauraw . ) with ’TaiTaHl’ = 00 fO’f’ all ©

has k < b elements. Then there is f(b) depending only on b (and on
the Cozeter system (W,S)), such that o has n < f(b) elements.
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Proof. We will prove this result by induction on |S|. If |S| = 1 then
it is obvious. If |S| = 2 then either (W, S) is spherical and each such
sequence has length at most 2 or (W, .S) is an infinite dihedral group
generated by two elements r and t. In the latter case, the reduced
increasing sequences in S are of the form r,, = r if a; is even and
re; = t if a; is odd (or vice versa). Hence the result also follows
because f(b) = b in this case.

Suppose now that |S| > 3. If (W, S) is a spherical Coxeter group
then it is obvious since there are no infinite such sequences. Assume
then that there is s € S such that s doesn’t commute with some other
generator in S\{s}.

Observe that since we are considering an increasing sequence « of
reduced words, in between any two s’s there is ¢; such that |st;| = co.
Consider the subsequence of « given by

(S,tl,s,tQ, .o )

This subsequence has < b elements by assumption and between any
two generators s in this subsequence we only use letters in S\{s}.
Therefore the result follows by induction hypothesis. O

Lemma 2.1.23. Let w be a reduced word in Mg with respect to X.
There is f(w) € N, depending only on w, such that, for every reduced
increasing sequence ri,7o, ... in S, we have

F#(wr - ST (w)) > F#(w).

Proof. Assume that there is a reduced increasing sequence a = r1, 79, . . .
in S such that:

(*) F#(wry - --1;) = F#(w) for all 4.

Define wy = w, w; = w;—_1r; and denote R; = R(w;) and I; = I, ().
Let b = F#(w) — 1. By assumption (*), for each i, |I;| < b.
Moreover, by Lemma we have that

a) each r; € R;_q;
b) Ry 2 Ry 2 ---;
C) Rz’—l g Ri if ‘Iz| = b;
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d) if i < j with |ryrj| = oo then I; C I;.

If there is ¢ such that R; is a spherical set (see Definition
then all the elements r; of o with £ > ¢ are in a spherical subset.
Therefore the sequence « is finite since it is a reduced increasing
sequence.

Assume that for all 7, the set R; is non-spherical. If there is a
sequence (rg,,Tqa,,-..) of elements r;, with a; < a;4+; and such that
|Ta;Ta; 1| = oo then, as I, C Iy, and 0 < [I;| < b for all j, such
a sequence has k < b+ 1 elements. Hence by Lemma [2.1.22] that
sequence o must have n < f(b) elements, with f(b) only depending
on b.

Moreover, the first pair of non-commuting elements 74,74, is
found after at most |Ry = R(w)| indices. Then

1. either we increase this subsequence by finding another element
Tas With |re,7e,| = 00, after at most |R(w)| — 1 indices,

2. or there is no such element 7,,. In that case |rire,| = 2 for
all £ > ay. Consider then set P = {s € S | |srq,| = 2} and
let P, = Rq, N P. Then r; € P, for all ¢ > ay. Observe
that P,, C Rg as rq, € Ro but rq, € P,,. If P, is a spherical
set then we are done using the same reasoning for when R; is
spherical.

If P,, is a non-spherical set then we look for a new pair of non-
commuting elements 73, , 13, , which we find after at most |P,,| <
|R(w)| indices, and we try to increase this new subsequence.

Therefore

f) < (IR(w)] + (|R(w)| = 1) +--- + (|[R(w)| — i) +

1)

(IR(w)| — (i + 1)) x b,

2)

where i € {0,...,|R(w)| — 2} denotes the number of times that we
have to decrease the set R(w) until we find a non-spherical set con-
taining the reduced increasing sequence (74,,7q,,-..) We are looking
for.
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The first pair rq,, 74, is found after at most |R(w)| —i indices and
each of the (at most b) next elements is found after |R(w)| — (i + 1)
indices after the previous one, as described in part 2) of the equation.
The sum in part 1) has a maximum of |R(w)|—1 factors, all bounded
by |R(w)|. Moreover (|R(w)|—(i+1)) < |R(w)|— 1. Hence it follows
that

f(0) < (IR(w)] = 1) x (|R(w)] + b).
Therefore each reduced increasing sequence of « satisfying Condi-
tion (*) is finite of length at most f(b). Thus, for any sequence « of
length f(w) = f(b)+ 1 in the conditions of the Lemma, we have that
F#(wrl---rf(w)) >F#(w). O

Lemma 2.1.24. Assume that the Coxeter system (W,S) is non-
spherical. Then for all n > 1 there is d(n) depending only on n, such
that F#(w) > n for all reduced words w in Mg with l(w) > d(n).

Proof. We prove the lemma by induction on n. If n = 1 then as
(W, S) is non-spherical, there exists a pair of non-commuting ele-
ments. Therefore, if w = s1--- 5|5 is a reduced word of length [S]
then there are ¢ < j such that |s;s;| = co. Therefore we have that

0 < Iy(i) < Lu(j) < F#(w) — 1,

which implies that F#(w) > 2 > 1. Thus if n = 1 then d(n) = |S|.

Assume by induction hypothesis that if n < N then there ex-
ists a d(n) satisfying the conditions of the lemma. Then all the
reduced words w of length d(N) have F#(w) > N. If w is one of
those words, then by Lemma there is a constant f(w) such
that F#(w) < F#(wry -7 4(y)), for all reduced increasing sequence
r1,T2,... of elements.

The set of reduced words of length d(N) is finite because W is
finitely generated. Therefore we can consider

f(N) = el f(w).

Thus for every reduced word w of length d(N) + f(INV) it follows that
F#(w) > F#(w;) > N,

for some w; € W(d(N)). Hence F#(w) > N + 1 for each w €
W(d(N) + f(N)). Therefore d(N + 1) = d(N) + f(N) exists and
depends only on V. d
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2.2 Right-angled buildings

In this section we will present the definition and first examples of
right-angled buildings and then we deduce properties of their residues,
walls and wings. The section proceeds with the definition of a tree-
wall tree and with some remarks on the particular case of semi-regular
right-angled buildings.

From now on, we will always assume the following notation. Let
(W, S) be a right-angled Coxeter system with set of generators S =
{si}ier and with Coxeter diagram X.

Definition 2.2.1. A right-angled building A is a building of type X,
where 3 is a right-angled Coxeter diagram.

We present right away a couple of examples of right-angled build-
ings using the examples of Coxeter groups in previous section as the
groups prescribing the type.

Example 2.2.2. As mentioned before, a tree without end points is
a building. Since the Coxeter group associated to it is the infinite
dihedral group (cf. Example is a right-angled Coxeter group,
a tree is a right-angled building.

We observe that if we want to regard a tree as a chamber system,
the graphic representation is slightly different, since the pictures we
normally see from trees correspond to the geometric realization of a
tree. In the geometric realization, the chambers are the edges of the
tree and the panels correspond to stars of vertices. To visualize a tree
as a chamber system, one has to draw the line graph of the geometric
realization, as show in the following pictures.

(a) Geometric realization of a tree  (b) A tree as a chamber system
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Example 2.2.3. In this example we illustrate buildings that arise
from the right-angled Coxeter groups in Example We will
present partial pictures of an apartment in the building (i.e., a thin
right-angled building) of those types by impossibility of drawing the
thick cases.

1. A building of type
Wi = (s,t,q| s> =t* = ¢° = (sq)” = (tq)* = 1)

will give rise to a thin building which is the direct product of 2
trees. A partial representation of the Coxeter chamber system
associated to such a right-angled Coxeter group is

S t S t

2. The group
Wo = (s,t,q| s* = t* = ¢* = (tg)* = 1),

which has only one commutation relation between two distinct
generators, gives rise to a completely distinct type of buildings.
A thin building of type W5 is partially represented in the next
figure.
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Example 2.2.4. Consider the Coxeter group

from Example A building A associated to W3 is an infinite
direct product of trees. The figure partially represents the Coxeter
chamber system associated to Wj.

S t S

q q q q
S t S

T A T T
S t S

q q q q
S t S

An apartment of A is isomorphic to a tessellation of the Euclidean
plane by squares. Therefore A is also an example of a Euclidean

building as in Example 1.4.39.

Example 2.2.5. Let p and g be integers such that p > 5 and ¢ > 2.
Consider the Coxeter group

W =(S={s1,...80} | (5)% = (sisip1)> = L for all i € {1,...,p}),

with cycling indexing, meaning that (sp31)2 = 1. Bourdon’s buildings
Ip 4, defined in [Bou97], are buildings of type (W, S) whose panels all
have size ¢. The Bourdon’s building I5 5 is depicted in Figure
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. ana i-"
g

l.’.'p‘qp ”'
‘ -
' e

Figure 2.7: Bourdon’s building I5 o.

It is the simplest example of a hyperbolic building, i.e., a build-
ing whose apartments are isomorphic to tessellations of a hyperbolic
space. Bourdon’s buildings are Fuchsian buildings which are hyper-
bolic buildings of dimension 2.

2.2.1 Minimal galleries in right-angled buildings

We will now present two results that can be used in right-angled
buildings to modify minimal galleries using the commutation relations
of the Coxeter group. We will refer to these results as the “Closing
Squares Lemmas” (see also Figure [2.8 below).

Lemma 2.2.6 (Closing Squares 1). Let ¢o be a fized chamber in a
right-angled building A. Let c¢1,ca € S(co,n) and c3 € S(co,n + 1)
such that
t s
cp~cg and co~cy
for some s #t. Then |st| =2 in X and there exists ¢y € S(co,n — 1)

such that
s t
c1~cy and c9~ cy.

Proof. Let wy and wy be reduced representations of d(cg,c1) and
d(co, c2), respectively. Then wit and wes are two reduced representa-
tions of d(cp, c3) and thus wit = was in W. Hence |st| = 2. Further-
more, [(wys) < l(w;1) and thus [(w1s) = n—1. Let ¢4 be the chamber
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in S(cp, n—1) that is s-adjacent to ¢;. Then wyst = wits = wess = wy
in W. Therefore ¢4 L co. ]

Lemma 2.2.7 (Closing Squares 2). Let ¢y be a fixzed chamber in a
right-angled building A. Let c1,co € S(co,n) and ¢35 € S(co,n — 1)
such that
S t
cp~cy and co ~c3

for some s #t. Then |st| =2 in X and there exists ¢y € S(co,n — 1)
such that

t s
c1~cg and c3~cy.

Proof. Let wy and wy be reduced representations of 0(cg,c1) and
d(co,c2). As c1 and ¢y are s-adjacent and are both in S(cp,n), we
know that wy = wy = 81+ 8,15 in W. Let v1 € S(cg,n — 1) be the
chamber s-adjacent to ¢; (and cz) at Weyl distance s - 5,1 from
CQ.

Applying Lemma to v1 and c3 we obtain vy € S(co,n — 2)
such that

t S
vy ~ v and wv9 ~ C3.

Furthermore |st| = 2 in ¥. Since there is a minimal gallery of type
ts between ve and c;, there must be one of type st. Hence there is a
chamber ¢4 € S(cg,n — 1) that is t-adjacent to ¢; and s-adjacent to
v9. Since v9 is s-adjacent to cs and to ¢4, we conclude that cs and ¢y
are s-adjacent. O

n—1

® Co

(a) Lemma m (b) Lemma m

Figure 2.8: Closing squares Lemmas.

~ 81 —



2. RIGHT-ANGLED BUILDINGS

As a consequence of the closing squares lemmas, we are able to
transform minimal galleries into “concave” minimal galleries. Recall
the gallery distance, denoted by dy, which was presented in Defini-
tion [[.4.48]

Lemma 2.2.8. Let ¢; and ¢y be two chambers in A. There exists a
minimal gallery v = (vo,...,ve) in A between ¢y = vy and ca = vy
such that there are numbers 0 < j < k < ¢ satisfying the following:

1. dW(CO, Uz’) < dW(CO7Uz'—1) vy = €1 Vg = C3
ied{l,....j5}; g
foralli€{1,....j} A
2. dw(CO, Ui) = dw(CO,Uifl) J’/UkH
forallie{j+1,...,k}; o0

3. dw(CO,Ui) > dw(CO,’UZ'_l) :
forallie{k+1,... 0} ®co

Proof. Let (v, ...,ve) be a minimal gallery from ¢; to ¢o in A. We
will essentially prove the result by closing squares whenever possible.

Let h(y) := Zf:o dw (co,v;) be the “total height” of the gallery
with respect to c¢y. Observe that the gallery «y is of the required form
if and only if it does not contain length 2 subgalleries of any of the
following form (see also Figure [2.10):

(a) (w1, 2, x3) with dyw (co, z1) = n, dw(co, 22) = n+1, dw(co, 23) =
n;

(b) (21,22, x3) with dyw (co, 1) = n, dw(co, 22) = n+1, dw(co, 23) =
n—+1;

(¢) (x1,x2,x3) with dyw (co, z1) = n+1, dw(co, z2) = n+1, dw(co, x3) =
n.

Indeed, the exclusion of galleries of type (a) and (b) says that once
we start going up, we have to continue going up, and the exclusion
of galleries of type (a) and (c) says that once we stop going down, we
can never go down again.

We will now show that if v contains a length 2 subgallery of any of
the forms above, then we can replace v by another minimal gallery ~/
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T . T3

.CO

(a) case (b) case (c) case

Figure 2.10: The forbidden cases in a “concave” gallery.

from ¢; to ¢y for which h(y") < h(v). Since the height of the gallery
h(7) is a natural number, this process has to stop eventually, and we
will be left with a minimal gallery of the required form.

If we have a subgallery of type (a), then we can apply Lemmam
to replace zo by some chamber z/, with dyy (o, 25) = n—1. If we have
a subgallery of type (b) or type (c), then we can apply Lemma [2.2.7]
to replace xg by some chamber x}, with dyy (co, z5) = n. In all cases,
we have replaced one chamber in v by a chamber which is closer to cg,
and hence we have indeed decreased the value of h(7), as claimed. [

Corollary 2.2.9. Let ¢y be a fized chamber in A. If ¢1,co € B(cp,n),
then there exists a minimal gallery from ¢y to co inside B(cg,n).

Proof. This follows directly from Lemma by transforming a min-
imal gallery into a “concave” minimal gallery. O

2.2.2 Projections and parallel residues

Let X be a right-angled Coxeter diagram with vertex-set S and let
(W, S) be the Coxeter system of type ¥ with set of generators S =
(8i)icr- Let A be a right-angled building of type X.

Definition 2.2.10. Let ¢ be a chamber in A and R be a residue
in A. The projection of ¢ on R is the unique chamber in R that is
closest to ¢ and it is denoted by projx(c).

The next fact is usually called the gate property and can be found,
for instance, in [ABOS8, Proposition 3.105].

Proposition 2.2.11 (Gate property). Let ¢ be a chamber in A and R
be a residue in A. For any chamber ¢’ in R, there is a minimal gallery
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from ¢ to ¢ passing through projr(c), and such that the subgallery
from projg(c) to ¢ is contained in R.

Next we present applications of the projection map that will be
useful for us later on. The first shows how the projections to panels
(residues of rank 1) are related to the structure of the Coxeter diagram
of the building.

Lemma 2.2.12. Let ¢y be a fized chamber of A and let s € S. Let
c1 € S(cg,m) and ¢ € B(cg,n+ 1)\ Ch(Psy,). If projp, . (c)=c2 €
S(co,n+ 1) then ca is t-adjacent to some c3 € S(co,n) with t # s and
st=1ts in W.

Proof. By Lemma we can take a concave minimal gallery be-
tween ¢ and cg. Consider w = s7---sy to be the corresponding re-
duced representation of §(c, c2). Let x be the chamber sy-adjacent to
co that is at Weyl distance sj -+ - sy—1 from c. We have dy(co, c2) >
dw (co, x), because we took a concave gallery.

We know that s, # s because projp, , (c) = c2. Thus l[(w) < l(ws).
If x € S(cp,n) then the result follows from Lemma with c3 =z
since we obtain that |sgs| = 2 in W. If v; € S(co,n + 1) then the
desired adjacency follows from Lemma [2.2.7] O

The next result will allow us to extend a permutation of an s-
panel to an automorphism of the whole building in a useful way, i.e.,
in a way that we have control over a specific set of chambers of the
building.

Proposition 2.2.13 (|[Capl4, Proposition 4.2]). Let A be a semi-
reqular right-angled building of type 3. Let s € S and P be an s-
panel. Given any permutation § € Sym(Ch(P)) there is 6 € Aut(A)
stabilizing P satisfying the following two conditions:
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1. §|Ch(73) =g;
2. gﬁxes all chambers of A whose projection to P is fixed by 6.

Our last application of the projection map gives a consequence
of combinatorial convexity (¢f. Definition [1.4.41)), in terms of the
projection map.

Proposition 2.2.14 ([Capl4] Section 2]). If a set of chambers C is
combinatorially convex then for every ¢ € C and every residue R of
A with Ch(R) NC # 0 we have projg(c) € C.

Proof. Let ¢; € Ch(R)NC and ¢ € C. We know that there is a minimal
gallery from c to ¢; passing through projz (¢). As C is combinatorially
convex the result follows. O

Assuming commutation between two generators, one can also ob-
tain similar results to the Closing Squares Lemmas [2.2.6] and [2.2.7]
that allow us to close squares “up”.

Lemma 2.2.15. Let ¢y be a fized chamber in a right-angled building
A. Let ¢y and cy be chambers in S(co,n).

1. Assume that there exists c3 € S(co,n — 1) such that ¢c; ~ c3 and

e ey for some s # t with |st| = 2.
Then there exists ¢y € S(co,n+1) such that ¢ L cq and co 2 cy.

2. Suppose that there is c3 € S(co,n + 1) such that c; R ey and
co & c3 for some s # t with |st] = 2.

Then there exists ¢y € S(co,n+1) such that ¢ L cq and cs ~ cy.

Proof. We prove the first statement and the second follows a similar
reasoning. Let ¢4 = projptﬁ (c2). We have that ¢4 # c¢; because
d(ca,c1) ~ st ~ ts. Hence 6(ca,cq) ~ tst ~ t and by definition ¢4 is
s-adjacent to c;. O

One can get a graphical visualization of Lemma by inter-
changing the dotted edges with the full edges in Figure taking
in account that the commutation relation between the generators is
part of the initial assumptions in this lemma.
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We end this subsection by defining the concept of parallel residues
and by collecting some facts from |[Capl4] Section 2] about this no-
tion. The definition of parallelism, when considered in residues of a
right-angled building is an equivalence relation. Restricting to the
case of panels, this equivalence relation will allow us to define tree-
walls in the next section.

Definition 2.2.16. If R{ and Rs are two residues, then

projg, (R2) = {projg, (c) | ¢ € Ch(R2)}

is the set of chambers of a residue contained in R;. This is again a
residue (cf. [Cap14} Section 2|) and the rank of projz, (R2) is bounded
above by the ranks of both R; and Rs.

The residues Ry and Rg are called parallel if projr, (Rz2) = R1
and projg,(R1) = Re.

In particular, if P; and P are two parallel panels, then the cham-
ber sets of P; and Ps are mutually in bijection under the respective
projection maps (cf. [Capl4l, Section 2]).

The next lemma relates residues whose types commute.

Lemma 2.2.17 ([Capl4, Lemma 2.2]). Let Ji,J2 C S be two disjoint
subsets with [J1,Jo] = 1. Let ¢ € Ch(A). Then

Ch(RJ1UJ27C) = Ch(RJl,C) X Ch(RJQ,C)a

where R j,uJ,,c s the J1 U Ja-residue of c.
Moreover, for i € {1,2}, the canonical projection map

Ch(RJlujQ,c) — Ch(RJi7C)

coincides with the restriction of projg , to Ch(Rj,usy.c). In partic-
ular, any two J;-residues contained in 'R U7, are parallel.

Lemma 2.2.18 ([Capl4, Lemma 2.5]). Let P; and P2 be panels in
A. If there are two chambers of Pa having distinct projections on Py,
then Py and Py are parallel.

Definition 2.2.19. Let J C 5. We define the set
Jt={te S\ J|ts=stforallse.J}
If J = {s} then we denote the set J- by s*.
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Proposition 2.2.20 ([Capl4, Proposition 2.8]). Let A be a right-
angled building of type (W, S).

1. Any two parallel residues have the same type.

2. Let J C S. Given a residue R of type J, a residue R’ is parallel
to R if and only if R’ is of type J, and R and R’ are both
contained in a common residue of type J U J+.

Proposition 2.2.21 ([Capl4, Corollary 2.9]). Let A be a right-angled
building. Parallelism of residues of A is an equivalence relation.

Observe that two parallel panels have the same number of cham-
bers. Therefore, to each equivalence class of parallel panels, we can
associate a number ¢, which is the number of chambers of a panel in
that equivalence class.

2.2.3 Tree-walls and wings

We want to describe the equivalence classes of parallelism of panels
in right-angled buildings. It turns out that these classes are the so
called tree-walls, initially defined in [Bou97] for Fuchsian buildings
and taken over in [TWII]. The motivation for the name comes from
the fact that the intersection of a tree-wall with an apartment of the
building is actually a wall in that apartment.

Each panel P separates the building into combinatorially convex
components, which will be called wings as in [Cap14]. Moreover, this
partition can be described using only the tree-wall of the same type
containing the panel P.

At the end of this section, we will construct trees out of tree-walls
of the same type and we will use those trees to define a distance be-
tween tree-walls in the building. We keep the notation of the previous
sections.

Definition 2.2.22. Let s € S. An s-tree-wall in A is an equivalence
class of parallel s-panels of A.

Using Proposition [2.2.20)(2) we know exactly how to describe the
tree-walls in a right-angled building.
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Corollary 2.2.23. Let A be a right-angled building of type (W, S)
and let s € S. Then two s-panels Py and Py belong to the same s-
tree-wall if and only if they are both contained in a common residue
of type s U s™.

In other words, the s-tree-walls are the sets of s-panels contained
in a residue of type s U s*. Thomas and Wortman in [TW1I] prove
that the possibilities for tree-walls can actually be described.

Corollary 2.2.24 ([TWII, Corollary 3]|). Let s € S and let T be

an s-tree-wall of A. Then only one of the following possibilities can
occur:

1. T is reduced to a panel if and only if (s is trivial.

2. T is finite but not reduced to a panel if and only if (s) is finite
but non-trivial.

3. T is infinite if and only if (s*) is infinite.
Next we present some illustrative examples of Corollary [2.2.24]

Example 2.2.25. 1. Assume that A is a tree without end points,
whose associated Coxeter group is generated by s and ¢t. The
s-tree-walls are the s-panels of A and the i¢-tree-walls are the
t-panels of A.

2. Let Wi = (s,t,q | s> =t? =r% = (tq)? = 1) as in Example|2.1.3]
and let A be a right-angled building of type W.
e The s-tree-walls are the sets of s-panels of A.

e The t-tree-walls are the sets of t-panels in a common residue
of type {t,q} in A.
e The ¢-tree-walls are the sets of g-panels in a common
residue of type {t, ¢} in A.
3. As last example, consider the group
Wy = (s1,82,83,84] s1=s5=s3=57=1
(5152)% = (5183)% = (s384)% = 1).

as in Example and let A be a right-angled building of type
Wy.
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e The si-tree-walls are the sets of si-panels in a common
residue of type {s1, s2,s3} in A.

e The so-tree-walls are the sets of so-panels in a common
residue of type {s1,s2} in A.

e The s3-tree-walls are the sets of sz-panels in a common
residue of type {s1, s3,s4} in A.

e The s4-tree-walls are the sets of s4-panels in a common
residue of type {s1,s3,s4} in A.

By some slight abuse of notation, we will write Ch(7) for the set
of all chambers contained in some s-panel belonging to the s-tree-wall
T, and we will refer to these chambers as the chambers of T.

Corollary 2.2.26. Let T be an s-tree-wall in A, let P be an s-panel

in T, and let R be the residue of type s U s~ containing P. Then
Ch(T) = Ch(R).

By Corollary [2.2.26] it makes sense to define projections on tree-
walls.

Definition 2.2.27. Let s € S, let 7 be an s-tree-wall of A, and
let ¢ € Ch(A). We define the projection of ¢ on T as projr(c) =
projz (c), where R is the residue of type sUs™ containing the s-panels

of T.

Lemma 2.2.28. Let s € S, let T be an s-tree-wall of A, let ¢ €
Ch(A) and let ¢ € Ch(T). Let wy and wy be reduced representations
of (¢, projr(c)) and d(projr(c),c), respectively. Then wiws is a
reduced representation of d(c,c’).

Proof. This follows immediately w1
from the gate property (Proposi- ¢

tion |2.2.11J). O

Let T be an s-tree-wall and let g7 be the number of chambers
in an s-panel of 7. Then T yields a partition of the building into
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g7 combinatorially convex components which are called wings. We
present the definition of wings in a building and state some results
that connect wings, projections and tree-walls.

Definition 2.2.29. Let ¢ € Ch(A) and s € S. Then the set of
chambers
X,(e) = {z € Ch(A) | projp, .(x) = c}

is called the s-wing of c.

We note that we consider wings with respect to panels only since
it is sufficient for our purposes. However, this concept can be gener-
alized to residues of any type (see [Capld]).

Notice that if P is any s-panel, then the set of s-wings of each
of the ¢, different chambers of P forms a partition of Ch(A) into ¢
subsets. Moreover, these subsets are combinatorially convex, as the
next proposition states.

Proposition 2.2.30 ([Capl4, Proposition 3.2]). In a right-angled
building, wings are combinatorially convexz.

The next lemma, which we will only state for panels, presents
a connection between wings and projections to different panels in a
common tree-wall.

Lemma 2.2.31 ([Capl4, Lemma 3.1]). Let s € S and T be an s-tree-
wall. Let Py and Po be s-panels of T and let ¢y € P1 and co € Po.
Then Xs(c1) = Xs(c2) if and only if ca = projp,(c1), i.e., if and only
Zf c1 € XS(C2).

In particular, projection between parallel s-panels induces an equiv-
alence relation on Ch(7), as the next proposition states.

Proposition 2.2.32. Let P1, P2 and Ps be s-panels in a common
s-tree-wall of A. Let c1 € Py, ca = projp,(c1) and c3 = projp,(c1).
Then projp,(c2) = c3.

Proof. By Lemma [2.2.31} c2 = projp,(c1) implies X(c1) = Xs(c2),
and c3 = projp,(c1) implies Xs(c1) = Xgs(c3). Hence Xi(c2) =
Xs(c3), and therefore projp, (c2) = c3. d
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The next proposition presents relations between wings of different
types in right-angled buildings.

Proposition 2.2.33 ([Capl4, Lemma 3.4]). Let s,t € S and c1,cq €
Ch(A). Suppose that ¢1 € Xi(c2) and ca & Xs(c1) and, moreover,
s=t ormg =oc0. Then Xs(c1) C Xi(c2).

By Lemma [2.2.31] it makes sense to define a partition of Ch(A)

into s-wings with respect to an s-tree-wall.

Definition 2.2.34. Let s € S and T be an s-tree-wall. Let P be an
arbitrary s-panel of 7. Then P induces a partition

{Xs(e) [ce P}

of Ch(A) into g7 subsets, where g7 is the number of chambers in P,
which we call the partition of Ch(A) into s-wings with respect to T .
By Lemma [2.2.31] this partition is independent of the choice of P in
T.

We will now study the interaction between different s-tree-walls.

Definition 2.2.35. Let s € S and let 77 and 73 be two s-tree-walls
in A. We define the set

projz, (72) = {projz (c) | c € T2}.

The next proposition states some technical properties of projec-
tions to tree-walls and shows how one can frame distinct tree-walls of
the building in the partition by the wings with respect to a specific
tree-wall.

Proposition 2.2.36. Let s € S and let Ty and T3 be distinct s-tree-
walls. Let ca € projy,(T1) and c1 = projy (c2). Let w be a reduced
representation of 6(c1,c2). Then the following hold.

1. Ift € S with |ts| < 2 then I(tw) = l(wt) = l(w) + 1.

2. ca = projr, (c1).
8. Ch(Ty) C XS(CQ)'

4. If & € proj7-2(7'1) then prOsz,c2 (ch) = ca.
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Proof. 1. Let t € S such that |ts| < 2, that is, t = s or |ts| = 2.
Let ¢ be a chamber t-adjacent to ¢; (and hence ¢ € Ch(Ty)).
Since ¢; = projr; (c2), we can apply the gate property (Propo-
sition to find a minimal gallery from ¢ to cp passing
through c1, of type tw. In particular, [(w) < I(tw).

As ¢ € projr,(T1), there is a chamber d; € 71 such that
projr, (di) = c2. Let wy be a reduced representation of §(dy, c1).
By the gate property again, wiw is a reduced representation of
0(d1,c2). Let da be a chamber t-adjacent to ¢y (and therefore
in Ch(72)). The gate property with respect to projr, (di) = c2
now implies that I(wjwt) > [(wjw) and hence l(wt) > l(w) as
well.

2. By the gate property, w can be written as wjwe where ws is a
reduced representation of the subgallery from projr,(c1) to co
inside 73. Hence [ts| < 2 for all ¢ € wy. By Statement 1 we get
Il(w2) = 0 and thus c = proj(c1).

3. Let ¢ € Ch(71) and let w; € W be a reduced representation of
0(¢,c1). By Lemma the word wjw is a reduced repre-
sentation of d(c, c2). Statement 1 now gives, [(wjw) < l(wijws)
and which implies that projp,  (c) = c2.

4. By Statement 3, Ch(71) C X(c2) and Ch(71) C X(ch). Since
the s-wings with respect to 73 form a partition of Ch(A) (see
Definition [2.2.34), this implies Xs(c2) = Xs(c,), and hence

projp, . (ch) = c2 by Lemma [2.2.31 ]

2.2.4 The tree-wall tree

We finish this section by defining tree-wall trees and a distance be-
tween tree-walls of the same type.

Let (W, S) be a right-angled Coxeter system with set of generators
S = {s;}icr and Coxeter diagram 3. Let A be a right-angled building
of type (W, 5).

Definition 2.2.37. Let s € S. Let V; be the set of all s-tree-walls of
A and let V5 be the set of all residues of type S\{s} of A. Consider the
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bipartite graph I's with vertex-set V;LIV5, where an s-tree-wall T € V;
is adjacent to a residue R € V5 in 'y if and only if Ch(7)NCh(R) # 0.
The graph I'y will be called the tree-wall tree of type s.

Notice that each s-tree-wall 7 in I'y has precisely g7 neighbors,

corresponding to each of the residues of type S\ {s} lying in a distinct
part of the partition of Ch(A) induced by the s-wings with respect

to T (see Definition [2.2.34]).

Moreover, if there is a minimal path

Ti—Ri——Ra—TTs

in the graph I'y; and we consider two chambers ¢; € Ch(77) NCh(Rq)
and c; € Ch(72) N Ch(Rz2), then by defintion c; € projs,(71) and
c1 € projr, (T2). Therefore Proposition [2.2.36| implies that Ch(72) C
Xs(c1) and Ch(Th) C Xs(c2).
Proposition 2.2.38. Let s € S. The tree-wall tree I's is a tree.
Proof. By definition, the graph I'y is connected as A is connected.

Therefore it is enough to show that there are no cycles in I's. If there
were a non-trivial cycle in I'y, say

Ti-Ri-T——Rn—Ti,

then the chambers of 75 would be contained in two distinct s-wings
with respect to 71, namely the ones corresponding to R and R,
which is a contradiction. We conclude then that I's is a tree. O

Remark 2.2.39. Observe that if A is a spherical building, that is,
if its Coxeter group associated is finite, then every s-tree-wall tree is
reduced to a vertex, for every s € S.

This tree is constructed using the data from the building. There-
fore it provides us with a natural distance that will allow us to produce
inductive arguments on the right-angled building using the distance
between the tree-walls.

Definition 2.2.40. Let s € S and let 77 and 73 be two s-tree-walls.
We define the s-tree-wall distance, denoted by distryy, as

1
distrw (71, T2) = 3 dist(71, T2)r, ,

where dist(77, 72)r, denotes the discrete distance in the tree-wall tree
I's of type s.
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2.3 Colorings in semi-regular right-angled build-
ings

In this section we will define different types of colorings of the cham-
bers of semi-regular right-angled buildings. This class of buildings
is the class where we will define the universal group and we are in-
terested in such regularity mainly because semi-regular right-angled
buildings are unique up to isomorphism. Moreover, its automorphism
group is simple. The colorings on the chambers will be necessary to
define the universal group later in Chapter

Definition 2.3.1. Let A be a right-angled building of type (W, .S).
Then A is called semi-reqular if the s-panels of A all have the same
number of chambers, for every s € S.

If A is semi-regular and ¢gs denote the cardinality of the s-panels
of A, then the building is said to have prescribed thickness (gs)ses in
its panels.

Theorem 2.3.2 ([HP03, Proposition 1.2]). Let (W,S) be a right-
angled Cozeter group and (qs)ses be a family of cardinal numbers
with gs > 2. There exists a right-angled building of type (W, S) such
that for every s € S, each s-panel has size qs. This building is unique,
up to isomorphism.

This was proved for the right-angled Fuchsian case in [Bou97].
According to Haglund and Paulin [HP03] this result was proved by
M. Globus and was also known by M. Davis, T. Januszkiewicz and
J. Swiatkowski.

Theorem 2.3.3 (Theorem 1.1 in |[Capld]). Let A be a thick semi-
reqular building of right-angled type (W, S). Assume that (W, S) is ir-
reducible and non-spherical. Then the group Aut(A) of type-preserving

automorphisms of A is abstractly simple and acts strongly transitively
on A.

Remark 2.3.4. If A is a semi-regular right-angled building then the
tree-wall trees associated to A will be regular in the type of vertices
associated to the tree-walls. In other words, if each s-panel of A has

¢s chambers, then the vertices of V; (see Definition [2.2.37)) all have
gs neighbors.
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After initial considerations on semi-regular right-angled buildings,
we focus on colorings of the chambers of these objects. We will use
the following notation throughout the section.

Let (W, S) be aright-angled Coxeter system with Coxeter diagram
Y with vertex-set S and set of generators S = {s;}icr. Let (¢s)ses
be a set of cardinal numbers with ¢g; > 2 for all s € S. Let A be the
unique right-angled building of type (W, S) with parameters (¢s)ses,
as showed in Theorem For each s € S, let Y5 be a set of
cardinality gs. We will refer to Y; as the set of s-colors.

Definition 2.3.5. Let s € S. A map hg: Ch(A) — Y is called an
s-coloring A if

(C) for every s-panel P there is a bijection between the colors in Y
and the chambers in P.

2.3.1 Legal colorings

To define the universal group in the next chapter, we will need a set of
s-colorings, one for each generators of the Coxeter group. Moreover,
we have to assure that these colorings are consistent with each other,
in the sense that chambers in a common s-panel have the same t-color
for t # s.

For that we define in this section legal s-colorings and we prove
that a set of legal s-colorings is unique, up to building automorphism.

Definition 2.3.6. Let s € S. An s-coloring hys: Ch(A) — Y is
called a legal s-coloring if it satisfies

(L) for every S\ {s}-residue R and for all ¢, cy € Ch(R),
hs(Cl) = hS(CQ).

In particular, if P, is a t-panel then for every s € S\ {t} one can
consider the s-color of the panel P;, denoted by hs(P;), since all the
chambers in P; have the same s-color. Similarly, if 7 is a t-tree-wall
with |st| = oo in X, then by Corollary hs(c1) = hs(cg) for all
c1,c2 € Ch(T), and hence the color hs(T) is well-defined.

Proposition 2.3.7. Let ¢g € Ch(A) and let (hl)secs and (h?)scs be
two sets of legal colorings of A. Then there exists ¢ € Ch(A) such
that hl(c) = h2(co) for all s € S.
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Proof. We will prove the result recursively. For each s € S, let P; .,
be the s-panel that contains ¢g. By the definition of a legal coloring,
we know that there exists ¢; € Ps ¢, such that hl(e;) = h2(co). More-
over, hi(c1) = hi(co) for all t # s. Repeating this procedure for each
s € S we find a chamber ¢ such that hl(c) = h%(cp) for all s € S. [

Next we show that we can use automorphisms of the building to
map one set of legal colorings to another.

Proposition 2.3.8. Let (hl)ses and (h%)ses be two sets of legal col-
orings of A. Let cg,ch € Ch(A) be such that hl(ch) = h2(cy) for
all s € S. Then there exists g € Aut(A) such that g(co) = ¢ and
h?=hlog, foralls€S.

Proof. Consider the set
Gn = {g € Aut(A) | ¢y = g(co) and hioglg(cyn) = h2lB(eom)» Vs € S}

We will recursively construct a sequence of elements g; (i € N) such
that for every ¢ € N, we have g; € GG, and if j € N is larger than 1,
then g; and g; agree on the ball B(cy, 7).

Since Aut(A) is chamber-transitive, the set Gy is non-empty and
we can pick a gg € Gg at random.

Let us assume that we already have constructed automorphisms
g; for every i < n with the right properties. In particular g, (co) = ¢,
and hl o g,(c) = h2(c) for all ¢ € B(cg,n). Therefore without loss of
generality we can assume that ¢{, = ¢y and that

hl(c) = h2(c) for all s € S and for all ¢ € B(cg,n). (2.3.1)

We will construct an element ¢,,4+1 of G,1 by modifying g,, (which
now acts trivially on B(cg,n)) step by step along S(cp,n + 1).

Let v € S(cp,n) and fix some s € S. Let 65 be a permutation of
the chambers of Ps,, such that hZ(c) = hl(fsc) for all ¢ € Pg,. By
Proposition m 0 extends to an automorphism 0 such that 0
stabilizes Ps, and fixes all the chambers of A whose projection on
Ps.» is fixed by 0.

We claim that 0, fixes B(co,n+1)\ Ch(Ps,). Consider a chamber
¢ € B(cg,n + 1) \ Ch(Ps ), and let c¢o = projp,  (c). If ca € B(co, n),

then d is fixed by 6, and this already implies that ¢y is fixed by évs
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Suppose now that co € S(cg,n+1). By Lemma [2.2.12| there exists
c3 € S(cp,n) such that ¢y is t-adjacent to c3 with ¢ # s (and ts = st
in W). The definition of a legal coloring together with (2.3.1)) now
implies

hi(c2) = hi(cs) = hi(cs) = h(ca), (2.3.2)

so #s must fix co. Hence the automorphism é; fixes c also in this case.

We have thus constructed, for each s € S, an automorphism 65 €
Aut(A), with the property that all elements of B(co,n + 1) that are
moved by 6 are contained in S(cg,n+1) NPs,. We now vary s, and
we consider the element

0, =[] 0- € Aut(A)

seS

where the product is taken in an arbitrary order (observe that the
sets S(cp,n + 1) N Ps, are disjoint for any two distinct s). Even
though the element 6, might depend on the chosen order, its action
on B(cp,n + 1) does not because the sets of chambers of B(cp,n + 1)
moved by the elements é; are disjoint, for distinct s.

Now we have an automorphism 6,,, for each chamber v € S(cg, n),
fixing the chambers in B(co,n + 1) \ S(v,1). Next, we want to vary
v along S(cp,n). We claim that if vy, v2 € S(cg,n) then 6,, and 6,,
restricted to B(cp,n + 1) have disjoint support.

The only case that remains to be checked is when S(vy,1) and
S(v2,1) have a chamber ¢ € S(cp,n + 1) in common, as depicted in

Figure 2.12]

Figure 2.12: St(v1) N St(vy) # 0.

We want to show that in this case both 6, and 6,, fix c. By
Lemma there are s # t in W (with st = ts) such that ¢ < v
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and ¢ < vs. By the definition of a legal coloring together with (2.3.1))
above, we have

hi(c) = hy (v1) = hi(v1) = b (c). (2.3.3)

Therefore 0,,(c) = é;;t(c) must fix ¢. Similarly hl(c) = h2(c), and
so 0y, fixes c. This proves our claim, and hence 6,, and 0, restricted
to B(cg,n + 1) have disjoint support for any two chambers v; and vy
in S(cp,n).

We can now consider the product

gri= [ b= J] TI 0vs€Aut(a),

vES(co,n) vE€S(co,n) sES

where the product is again taken in an arbitrary order. By the
previous paragraph, the action of g,41 on B(cyp,n + 1) is indepen-
dent of the chosen order, and the sets of chambers of B(cg,n + 1)

moved by distinct elements 6, s are disjoint. Since every 0, ; has the
property that h2(c) = h;(é;(c)) for all ¢ € Ps,, we conclude that
h2(c) = hl(gns1(c)) for all ¢ € S(cg, n+1), and therefore g, 11 € Gry1.

So we have extended the g € G, to an element g,41 in Gy
agreeing with g, on the ball B(co,n). The sequence go, g1, ... ob-
tained by repeating this procedure hence converges to an element
g € Aut(A) (with respect to the permutation topology). From the
construction and the definition of the sets G;, the automorphism g
has the desired properties. ]

2.3.2 Weak legal colorings

We consider now a weaker version of the legal colorings of Defini-
tion The goal will be to prove later that these two types of
colorings play a similar role in the definition of the universal group.
Hence we will be able to use the stronger version when needed and
the weaker version to make constructions of colorings. We keep the
notation from the previous section.

Definition 2.3.9. Let s € S. An s-coloring hy is called a weak legal
s-coloring if the following holds:
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(W) if P; and P, are two s-panels in a common s-tree-wall then for
all ¢ € Py, we have hy(c) = hs(projp,(c)).

A legal coloring is in particular a weak legal coloring. Conversely,
the restriction of a weak legal coloring to a tree-wall is a legal coloring.

Lemma 2.3.10. Let s € S. A weak legal s-coloring restricted to an
s-tree-wall T is a legal coloring of Ch(T).

Proof. 1f ¢1,co € Ch(T) are two t-adjacent chambers with ¢ € S\ {s}
then ¢; and ¢ lie in distinct parallel s-panels of 7 and moreover
plrojpw1 (c2) = 1. Hence hg(c1) = hs(ea). O

Next we define equivalent colorings up to a permutation of the
set of colors and we prove a result that already slightly uncovers the
connection between weak legal colorings and legal colorings.

Definition 2.3.11. Let s € S and let G < Sym(Y5). Two s-colorings
hl and h? are said to be G-equivalent if for every s-panel P there is
g € G such that hl|p = go h2|p.

Proposition 2.3.12. Let s € S and G < Sym(Ys) be a transitive
permutation group. Then every weak legal s-coloring is G-equivalent
to some legal s-coloring.

Proof. Let hg be a weak legal coloring of A. We want to show that
there is a legal coloring h’ that is G-equivalent to h.

Let ¢ be a fixed chamber of A. We will define h’ recursively
using the s-tree-wall distance (see Definition . Let To = Ts.co-
For each chamber ¢ € Ch(7y), we define

h(c) = hs(c) = idg o hs(c).

By Lemma the restriction of h% to Ch(7p) is a legal coloring.

Assume that we have defined i’ for all chambers of every s-tree-
wall of A at tree-wall distance < n from Ty. Let 73 be an s-tree-wall
at tree-wall distance n + 1 from 73. By Proposition there is
a unique s-tree-wall 77 at tree-wall distance 1 from 75 that is at
tree-wall distance n from 75. By our recursion assumption, A% is
already defined for all chambers of 71. Pick some ¢z € projz, (71) (cf.
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Definition [2.2.35)), and let ¢; = projp (c2). Fix a g € G such that
g o hs(co) = hi(cy) (which exists by transitivity) and define

h(c) = g o hy(c), for all ¢ € Ch(T3).

That is, we set h(ca) = h%(c1) and carry out the same permutation
of the s-colors on each s-panel of 75.
We claim that

h(c) = ht (projr (c)) for all ¢ € projr, (T7). (2.3.4)

So let ¢y € projr, (71) and ¢| = proj () as in Figure m

T2

Ti

s-tree-wall distance n

To

Figure 2.13: The tree-walls 71 and 7s.

By Proposition [2.2.36([2) we conclude that c; = proj(c1) and
¢y = projy,(c}). Hence we apply Statement 4 of the same proposition

to conclude that projp, , (c5) = d and that projp, , (c}) = c1. Since
hs is a weak legal coloring, we have hs(c2) = hs(c}), and hence by
construction hé(co) = h%(ch). Moreover, since we already know that
R% is a legal coloring on 77, we also have hi(c;) = hi(c|). Since
hi(c2) = hi(cy) and g is fixed in each tree-wall, we conclude that
R(cy) = Rh(c)), proving the claim (2.3.4).

With this procedure, we recursively define the map hf; for all the
chambers of A. Since h was defined in each panel of A just by
permuting the colors of hg, it follows that hﬁ is a coloring of the
chambers of A.

It remains to show that A’ is a legal coloring, i.e, that it satisfies
(L) from Definition So let ¢; and ¢ be chambers in a residue R
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of type S\ {s}. We have to show that h%(c;) = h’(c2). Since residues
are combinatorially convex, the minimal galleries from ¢y to ¢o do not
contain s-adjacent chambers. In particular, projp, ., (c2) = c1. Let
T1 and T3 be the s-tree-walls of ¢; and co, respectively. If 77 coincides
with 73 then we know that hs(c1) = hs(c2) and thus

hi(c1) = g o hg(er) = g o hy(ea) = hi(ca),

where g € G° was the permutation element used to define hﬁ in
Ti="Ts.

Suppose now that 71 # T3. Then 771 and T3 are both adjacent to
the vertex in the s-tree-wall tree I'y that corresponds to the residue
R. Thus distrw (71, T2) = 1. Assume without loss of generality that
n = distpw (To, T1) = distrw (7o, T2) — 1, where Ty is the s-tree-wall
containing the base chamber ¢g. Then 77 is the unique s-tree-wall at
tree-wall distance n from 7; that is at tree-wall distance 1 from 7.
Therefore h% has been defined on 73 using the coloring in 7.

Let ¢y = projr; (c1), and let ¢j = projp, (¢3). By the gate property
(Proposition , there is a minimal gallery from c¢; to ¢s through
¢} and c,, and the subgalleries from ¢; to ¢} and from ¢, to co are
completely contained in 77 and 73, respectively. These subgalleries
do not contain s-adjacent chambers because ¢; and cy are contained
in R of type S\ {s}. Hence hi(c1) = hi(c}) and hi(cy) = h’(ca).
Finally, by Equation (2.34), we also have hf(c}) = h%(c}). Therefore
hi(c1) = h(c2). We conclude that h% is a legal coloring, and by
construction it is G-equivalent to hg. O

2.3.3 Directed legal colorings

Now we define a particular set of weak legal colorings. As before, let
Y (for each s € S) be the set of s-colors. We additionally assume
that each Y contains a distinguished element 14, or 1 for short if no
confusion can arise.

The key point of directed colorings is to get a set of colorings such
that in every s-panel P, the chamber of P closest to a fixed chamber
has s-color 1. This will be particularly useful for studying chamber
stabilizers in groups of automorphisms of the building.

First we show that we can always modify weak legal colorings in
order that in every panel the closest chamber to a fixed chamber has
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color 1. That is, we can always impose some sort of direction in a
weak legal coloring, using a transitive permutation group acting on
the set of colors.

Proposition 2.3.13. Let s € S and let ¢y € Ch(A) be a fized cham-
ber. Let hs be a weak legal s-coloring of A and G < Sym(Ys) be a
transitive permutation group.

Then there exists a weak legal s-coloring fs of A which is G-
equivalent to hs, such that fs(projp(co)) = 15 for every s-panel P.

Proof. For each s-tree-wall T, we fix an element gy € G such that

gT(hs (pTOjT(Co))) = 1.

Notice that such an element exists because we assume that G is tran-
sitive. We now define a coloring fs: Ch(A) — Ys by

fs(c) == g7s,c(hs(c)) for all ¢ € Ch(A),

where 7 . is the unique s-tree-wall containing c. Let P be an arbi-
trary s-panel and let ¢ = projp(co); we claim that fs(c) = 1. Indeed,
let T be the s-tree-wall containing P, and let ¢; = projs(cp). Then
projp, . (¢) = c1, so hs(c) = hs(c1), and hence

fs(c) = g7 (hs(c)) = g7 (hs(c1)) = 1.

Next, we claim that f; is a weak legal s-coloring. Indeed, fix some
s-tree-wall 7; then by definition, g7 induces the same permutation
on each s-panel of 7. Since hs is a weak legal s-coloring, it satisfies
property (W) from Definition for each s-tree-wall T, and hence
the same holds for f;. Thus we conclude that also f, is a weak legal
s-coloring. O

Definition 2.3.14. Let s € S. A weak legal s-coloring as in Propo-
sition is called a directed legal s-coloring of A with respect to
Co.

In other words, if f, is a weak legal s-coloring and ¢y € Ch(A) then
fs is called a directed legal s-coloring with respect to ¢g if for every
chamber ¢ € Ch(A) at Weyl distance w from ¢y with I(w) < l(ws),
we have fs(c) = 1.
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Observation 2.3.15. By definition, one can construct a weak legal
coloring on any right-angled building A. Therefore Proposition
implies that, given a chamber ¢ in A, there exists a directed legal
coloring of A with respect to c.

We also remark that if {f!}scs and {f?}scs are two sets of di-
rected legal colorings of A with respect to a fixed chamber ¢y then
fi(co) = 1 for all s € S and i € {1,2}. Moreover cgy is the only
chamber whose colors are all 1. Therefore we can conclude that
sets of directed legal colorings with respect to the same chamber are
also unique up to building automorphism. This is stated in the next
lemma.

Lemma 2.3.16. Let {fl}scs and {f?}scs be two sets of directed
legal colorings of A with respect to a fized chamber cy. Then there
exists g € Stabpyy(a)(co) such that f2=flogforallsesS.

Proof. The construction of the automorphism g follows the same rea-
soning as in Proposition Indeed, Equations and
also hold when we consider weak legal colorings since the chambers
co and c¢3, and ¢ and v1, are in the same s-tree-wall, respectively for
each equation. O

2.4 Directed semi-regular right-angled build-
ings

We finish this chapter by giving a description of the chambers of a
semi-regular right-angled building in a standard way using the de-
scription of the (directed) colorings provided in the previous section.

Since a right-angled building with prescribed thickness in the pan-
els is unique up to isomorphism, as proved in [HP03], we will describe
such a building by means of reduced words in the Coxeter group and
the sets of colors, providing us with a concrete model for the objects
we work with.

Throughout the section we will retain the same notation, that is,
let (W,S) be a right-angled Coxeter system with set of generators
S = {s;}ier and Coxeter diagram Y. For each s € S, let Y; be a set
with cardinality ¢s (with g5 > 2) with a distinguished element 1.
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Definition 2.4.1. We define an edge-colored graph Ap as follows.
The vertex-set of Ap, denoted by Ch(Ap), is

Sl o .. Sn

al ... an
(where we allow n to be zero, yielding the empty matrix), modulo
the equivalence relation defined by

81 .. Sn Sa e S;‘L
~ / /
al “ e an al DY an

if there exists an element o € Rep(sy---sp) (see Definition [2.1.7)
such that

81+ 8y is a reduced word in Mg w.r.t. X,
and o; € Yy, \ {1} for each i € {1,...,n}

So(1) """ So(n) = sy --+s) and Qg (j) = a;, for all j € {1,...n},

i.e., 8] - is obtained from s; - - - sy, by performing elementary op-
erations of type (2) (¢f. Definition and the colors associated
to the generators after performing the elementary operations are the
same. (We are denoting the vertex-set of Ap by Ch(Ap) because we
will prove later that Ap is a right-angled building. We will already
call the elements of Ch(Ap) chambers.)

We will now define adjacency in this graph. Let ¢ = ( 21 e Zn)

Lo ap
be an arbitrary chamber. Then the neighbors of ¢ are:
1. all chambers of the form ¢ =  °F % L) Iy this
ar Oy
case, we declare ¢ and ¢’ to be s,11-adjacent.
2. all chambers of the form ¢/ = ( ° "~~~ 1 87 , where o,
al “ e an_l n

takes any value in Yy, \ {1, @, }. In this case, we say that ¢ and
c are s,-adjacent.

81 ... Sn_l
al PR anfl
declare ¢ and ¢ to be s,-adjacent.

3. the unique chamber ¢ = < > In this case, we

Observe that the chambers of Ap are equivalence classes. There-
fore the definition of adjacency above is unambiguous.
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Proposition 2.4.2. The edge-colored graph Ap is a chamber system
with index-set S and with prescribed thickness (qs)scs in the panels.
Let s € S and let P be an s-panel of Ap. Then the chambers of P
are of the form

(o mo{( o 2 Jeerm ),

Proof. 1t is clear from the definition of s-adjacency that the relation
“s-adjacent or equal” is an equivalence relation on the set of chambers
of Ap. Hence Ap is a chamber system. The equivalence classes of
this relation are precisely the s-panels, which are therefore of the
required form. Clearly, each s-panel has cardinality |Ys| = g¢s. O

Now we want to define colorings on the chamber system Ap.

Definition 2.4.3. Let Ap be as in Definition[2.4.] and let s € S. We
define a map Fs: Ch(Ap) — Y; as follows. Let ¢ = (21 2n>

L ap
be a chamber of Ap.

1. If i(s1---sps) > l(s1 -+ Spn), then Fy(c) := 1.

2. If I(s1---sps) < l(s1---sp), there exists a ¢ € Rep(s1---sp)
such that s,(,) = s, i.e.,

811" 8n = Sg(1) " So(n—1)S In W.

Then

FS(C) = F, <SU(1) ce 80’(”)) = Qo(n) c {27 R qs}

Qo(1) "7 Po(n)

We call F; the standard s-coloring of Ap.

Our next goal is to prove that given a semi-regular right-angled
building A with a set of directed legal colorings with respect to a
fixed chamber, one can construct a color-preserving isomorphism to
Ap equipped with its standard colorings. In particular, it implies
that a pair consisting of a semi-regular right-angled building and a
set of directed legal colorings is unique up to isomorphism.
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Proposition 2.4.4. Let A be a right-angled building of type (W, S)
with parameters (qs)ses, and let (fs)ses be a set of directed colorings
of A with respect to a fixzed chamber co € Ch(A). Let Ap be the
corresponding chamber system as in Definition and let (Fy)ses
be its standard s-colorings as in Definition [2.4.3]

Then there is an isomorphism 1: A — Ap such that fs(c) =
Fs(¢(c)) for all s € S and all ¢ € Ch(A). In particular, Ap is a
right-angled building of type (W, S), with prescribed thickness (qs)ses-

Proof. We start by setting 1(cp) = () € Ch(Ap). Let ¢ € Ch(A)
be an arbitrary chamber. Let w = s1---s, be a reduced word in
Mg representing d(co,c) and let v = (co, c1,...,cn) be the minimal
gallery of type s1 - - - s, connecting the chambers ¢y and ¢,, = ¢. Then

we define
w0 [ )]

We claim that v is well-defined, i.e. that it is independent of
the choice of the reduced representation of w. Let w’ be another
reduced representation of d(co,c). We know that there is an element
o € Rep(w) such that o.w = w’ and, moreover, that o can be written
as a product of elementary transpositions ¢ = oy, - - - o1 such that, for
alli e {1,...,n}, oy is a (04_1 - - - 01).w-elementary transposition.

Let i € {1,...,n}. Consider the reduced words

w1 = (0j—1---01).w and wy = 0j.w;.

These two words only differ in two generators r; and 7,11 which
are switched by o;. Let v1 = (zo,...,2n) and v2 = (Yo,---,Yn)
be the minimal galleries between ¢y = z9g = yg and ¢ = z,, = y,
corresponding to the word w; and we respectively, as in Figure |[2.14

We now prove that the colors f, (vx) and f;, (v, () agree for all
k € {0,...,n}. Note that the galleries v; and 7, only differ in the
chamber z;, and that o; is a transposition switching j and j + 1.
Therefore we only need to check the cases k = j and k = j + 1. We
have

Tj Ti+1 d _ i+l o Tj _
Tj—1~Tj ~ Tjyl and Tj—1 = Yj—1 ~ Yj ~ Yj+1l = Tj+1-
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Ty =Yn =0C
gi! 72

Tjt1 = Yj+1
€ Yj

Tj-1=Yj-1)

¢ To=1Yo=Co

Figure 2.14: The galleries v, and ~s.

As (fs)ses is a set of direct colorings with respect to ¢y we infer that
f’/‘j ($]) = fT]' (yj-i-l) = ij (yai(j)) and

f?“j+1 (Cl?j+1) = ij+1 (yj) = fT]'+1 (yai(j—l-l))a

which implies that the colors indeed agree. From this we deduce that

w1 w2

(fmm) frn<xn>)”(fn<y1> frn<yn>>’

which allows us to conclude that

( S1 Sn )N( Sol Son >

fsi(er) - fs(en) fsor (1) o fson(cn))”

where (¢, ..., c},) is the minimal gallery between ¢ and ¢ correspond-

ing to w’. This proves that v is independent of the choice of the

reduced representation of w and, in particular, that it is well defined.
We claim that v is color-preserving, i.e., that fs(c) = Fs(¢(c))

for all s € S and all for ¢ € Ch(A). Let ¢ be a chamber of A at Weyl

distance w from ¢y, and let s1---s, be a reduced word in Mg with

respect to X representing the element w. By construction of @ and

definition of Fy,, we have fs, (c) = Fj, (¢(c)).
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Let s € S\ {sn}. If {(s1---sp) < I(s1---5ns), then by definition
of a directed coloring and of Fis we have fs(c) =1 and Fs(¢(c)) = 1.
If i(s1---sp) > l(s1---sps), then we could have picked a reduced
representation s - - - s, of w where s,, = s, which reduces the problem
to the case handled in the previous paragraph.

Next, we show that v is a bijection. It is clear from the definition
that v is surjective. It remains to prove that it is injective. Let
1,2 € Ch(A) be distinct chambers. If ¢; and ¢y are at distinct Weyl
distances from ¢y then by definition ¥ (c1) # ¥(c2).

Assume in the other case that s - - - s, is a reduced representation
of the Weyl distance from ¢y to both ¢; and cs.

Sttt Sipl { Snc it

<
[y

Il

<
N

Q®----r----

Figure 2.15: The chambers ¢; and cs.

For k € {1,...,n} and for j € {1, 2}, let vf be the unique chamber
in A at Weyl distance s - - - s; from ¢g and at Weyl distance s, - - - Sk11
from c;j, as in Figure “ Let ¢ be the minimal number in {1 n}
such that v! # vi. Then vi™' = v~ !, which means that v} and v
are in the same i-panel of A. So fs, (v) # fs,(vy). This implies,
by definition of the map v, that ¥ (c1) # ¥(c2). Therefore ¢ is a
bijection.

Finally, we show that % is a homomorphism. If ¢; and cy are
s-adjacent chambers in A, for s € S, then by Proposition two
distinct cases can happen:

1. either ¢y is at Weyl distance sy - - - s, from ¢y and ¢ is at Weyl
distance si - - - s, s from ¢y, or vice-versa. Then by definition of
1 and point 1 of the definition of adjacency in Ap, the chamber
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¥(cy) is s-adjacent to ¥(ca).

2. or ¢1 and cg are both at Weyl distance s;---s,s from ¢y and
fs(c1) # fs(c2). Again we conclude that 1 (c1) is s-adjacent to
¥ (cg), this time by the second point of the definition of adja-
cency in Ap.

This shows that ¢ is an isomorphism from A to Ap respecting the set
of colorings (fs)ses, and completes the proof of the proposition. [J

Definition 2.4.5. We call the building Ap the directed right-angled
building of type (W, S) with prescribed thickness (gs)ses-

We will denote directed right-angled buildings by A dropping the
D when it is clear from the context.

Remark 2.4.6. The directed legal coloring Fj is not a legal s-coloring
unless s commutes with all elements of S (in which case every weak
legal s-coloring is a legal s-coloring by Lemma |2.3.10)).

To conclude this section (and the chapter), we construct auto-
morphisms of a right-angled building that interchange the chambers
in an s-tree-wall according to a prescribed permutation of the set Y.
We will regard a right-angled building in a directed way in order to
make use of the matrix description of its chambers.

Proposition 2.4.7. Let A be the directed right-angled building with
respect to a chamber cg of type (W, S) with prescribed thickness (¢, )res-
Let s € S and fix an s-tree-wall T in A. Let g be a permutation of

Yo\ {1}.
Consider the following map gy on the set of chambers of A. Let
¢ be a chamber represented by the matriz

81 ... Sn

al .. an :
If there is an i € {1,...,n} such that s; = s and the chambers repre-
sented by

(81 Si_l) and (Sl 8i> are in T, (2.4.1)
al .. a'i—l al ... aZ
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then g maps c to the chamber represented by

<81 CeSsicl S Sig1 o 3n> (2.4.2)

ap o OG- 9@y Oy o Qg

If there is no such i, then g1 fizes c.
Then the map g7 constructed in this way is an automorphism of
A. Moreover, if g,h are two permutations of Ys \ {1}, then we have

grhr = (9h)T.

Proof. Notice that there can be at most one index 7 with s; = s for
which holds, since s7---s, is a reduced word and 7 is an
s-tree-wall. Indeed, two chambers in 7 are at Weyl distance w =
r1---r¢ from each other, with r; € st for all j € {1,...,t}.

We start by showing that g7 is well defined, i.e., that our de-
scription of g7 is independent of the representation of the chamber c.
Assume that ¢ is represented as in the statement of the proposition.
It suffices to look at equivalence by a single elementary transposition.
Assume then that there is a j € {1,...,n — 1} such that s; and s;4;
commute. The only non-trivial cases are when condition is
satisfied and either j =i or j =4 — 1. Assume that j = ¢ (the other
case can then be handled analogously); so s; = s commutes with $;41.

Note that the chambers represented by

(51 TS 5i+1> and <51 S Si-1 Sitd 5i>
(0 N € 7 N 7 | (05 I @ s @ 7 A R 7)
are still contained in Ch(7) by Corollary [2.2.23] Hence the image

under g7 of ¢ using its representation obtained by applying the ele-
mentary transposition is therefore represented by

St ot Si-1 S+l Si Si42 S
)
ar o Q-1 g4l g Qg2 c o Qg

which is an equivalent representation of the image gyc as in Equa-
tion . This proves that the map g7 is indeed well defined.

In order to show that g7 is a homomorphism of A, we have to
show that ¢-panels are mapped to t-panels, for all ¢ € S. However,
this is now immediately clear from the description of a ¢-panel in

Proposition [2.4.2]
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Finally observe that each gr is invertible, with inverse (¢~ !)7,
which implies that g7 is an automorphism of A. The last statement
is also clear by the way that the map was defined. O

Definition 2.4.8. Let s € S and let 7 be a tree-wall of A. An
element g7 € Aut(A) as defined in Proposition is called a tree-
wall automorphism.

The tree-wall automorphisms will generate very useful subgroups
of the universal group of a right-angled building whose support is
contained in a single wing with respect a tree-wall. We will discuss

these subgroups in the next chapter (see the notion of tree-wall group
in Definition [4.2.4)).
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CHAPTER

Automorphism group of a
right-angled building

In this chapter we study the group Aut(A) of type-preserving au-
tomorphisms of a thick semi-regular right-angled building. We look
at open subgroups of the automorphism group and show that any
proper open subgroup is contained with finite index in the stabilizer
in Aut(A) of a proper residue, if we consider the building to be locally
finite.

In the non-compact open case we will make use of groups that
resemble root groups, defined in Section [3.3] and we show that an
open subgroup of Aut(A) contains sufficiently many of those groups.

When the open subgroup is compact we will show that compact-
ness is equivalent to being locally X-elliptic on the action of the
Davis realization X of the building (see the definition of the Davis
realization in Section . This result can be deduced in the lo-
cally finite case from the fact that any non-compact open subgroup
of Aut(A) must have a hyperbolic element (Lemma[3.4.9) but we will
show it in general by proving that the fixator in Aut(A) of any ball in
A acts on the building with a bounded fixed-point set (see Proposi-
tion. That result is of independent interest and the proof really
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highlights the beauty of the geometry of a right-angled building with
all the squares associated to the respective commuting generators of
the Coxeter group.

3.1 Sets of chambers closed under squares

We will start by describing a procedure in a right-angled building,
called closing squares, and we define the square closure of a set of
chambers. Then we describe the square closure of a ball in the build-
ing.

We will use the following notation throughout the section. Let
(W, S) be a right-angled Coxeter system with Coxeter diagram X.
Let (gs)ses be a set of cardinal numbers with ¢; > 3. Consider
the thick semi-regular right-angled building A of type (W, S) and
cardinality (gs) on its s-panels, for every s € S, which is unique by

Theorem [2.3.2]
Definition 3.1.1. Let n € N and let v be a fixed chamber of A.
1. For any w € W, let
L(w)={seS|l(ws) <l(w)}, (3.1.1)

that is, the set of generators which added to a reduced repre-
sentation for w do not form a new reduced word. Let W(n)
denote the set of elements w € W of length n. Define

Wi(n) ={w e W(n) [ |L(w)| =1},
Wa(n) ={w e W(n) | [L(w)| = 2}.
2. We will create a partition of the sphere S(v,n) by defining, for
each i € {1,2},
Ai(n) ={c € S(v,n) | dé(v,c) € W;(n)}. (3.1.2)
as in Figure 3.1

3. Let ¢ € S(v,k) for some kK > n. We say that ¢ is of type
Ag with respect to B(v,n) if for each d € S(v,n) such that
dw (v, c) = k —n and for each minimal gallery « between d and
¢, all the chambers in « are in Ag(n + 1), for i € {1,... k}.
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v v
(a) ¢; € Ai(n): for all t # s, (b) ¢; € Az(n): for some ¢ # s,
1(6(00, Cl)t) > l(é(co, Cl)) l(d(Co,Ci)t) < 1(5(60, Cz))

Figure 3.1: Partition of S(v,n).

4. We define the set Ao with respect to B(v,n), sometimes denoted
by As(B(v,n)), to be the set of all chambers of type Ay with
respect to B(v,n).

We observe that if two chambers ¢; and ¢z in S(v, n) are s-adjacent
for some s € S, then there is a unique chamber ¢ in their s-panel that
is in S(v,n — 1). Therefore d(v,c1) = d(v,c)s = §(v, c2) and hence
c1 and cg are in the same part A;(n). Thus A;(n) and As(n) are
mutually disconnected parts of S(v,n).

Definition 3.1.2. 1. We say that a subset T' C W is closed under
squares if the following holds:

if ws; and ws; are in T' for some w € T with |s;s;| = 2,
si # s and l(ws;) = l(ws;) = l(w) + 1 then ws;s; =
ws;s; is an element of 7.

2. Let v be a fixed chamber of A. We say that a set of chambers

% C Ch(A) is closed under squares with respect to v if for any
n € N the following holds:

if for any two distinct chambers ¢, co € € N S(v,n) such that
there exist c¢3 € € NS(v,n — 1) with c3 2 ey and e 2 co for
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some |s;s;| = 2 Wlth S; # 8§ then the chamber ¢4 € S(v,n + 1)

such that 04 2 ¢1 and ¢4 ~ ¢y is also in the set €.

In particular, if & is closed under squares with respect to v,
then the set of Weyl distances {d(v,c) | ¢ € €} C W is closed
under squares.

3. Let v € Ch(A). For a subset ¥ C Ch(A), we define the square
closure ¢ of ¢ with respect to v to be the smallest subset of
Ch(A) closed under squares with respect to v such that € C .

Lemma 3.1.3. The set B(v,n)U As(B(v,n)) is closed under squares
with respect to v.

Proof. Let € denote B(v,n)UAs(B(v,n)). Let ¢; and ¢z be chambers
in ¢ at Weyl distance ws; and ws; from v, respectively, such that
|sisj| = 2 and l(ws;) = [(ws;) = [(w) + 1. Let c3 be the chamber at
Weyl distance ws;s; from v that is sj-adjacent to ¢; and s;-adjacent
to co. We want to prove that cg is an element of the set €. If
l(wsis;) < n then it is clear that c3 € ¢ as B(v,n) C €. Assume
that [(ws;s;) > n.

Let d be a chamber in S(v,n) at minimal distance from cz (with
respect to the other chambers in S(v,n)) and take v = (vo,...,vg)
to be a minimal gallery between d and c3 as in Figure [3.2] It is clear
that c¢3 € As(l(w) + 2) for some m € N. Now we have to prove that
each v; € As(¢) for some /.

If vi—1 € {c1,c2} then the result follows because c1,co € € and
(vo,...,vE—1) is a minimal gallery between d and ¢; (or ¢3). Assume
that vp_q is distinct from ¢q and ¢ and is s;_1-adjacent to c¢3. Then
using closing squares (Lemma, we obtain that |sjsi_1| = 2 and
there is a chamber 67 .1 € S(v,l[(w)) that closes a square, that is, such

that ci_l ) vk—1 and c,i_l *>' ¢1. Analogously, there is a chamber
ci . € S(v,l(w)) such that ¢i |, &~ vy and c}_, *iC' ¢y Hence
Vg—1 € Ag(l(wsi)).

Continuing this argument inductively (see Figure , we con-
clude that all the chambers in « are in As(¢) for some ¢. Hence
c3 € Ay with respect to B(v,n). Thus ¢ = B(v,n) U A3(B(v,n)) is
closed under squares with respect to v. O
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U1

Figure 3.2: Proof of Lemma

Lemma 3.1.4. Let v € Ch(A) and n € N. The square closure of the
ball B(v,n) with respect to v is B(v,n) U Az(B(v,n)).

Proof. Let € denote B(v,n) U As(B(v,n)). The set ¥ is closed under
squares by Lemma |3.1.3

Let €’ be a set of chambers closed under squares that contains
B(v,n). We have to prove that € C ¢”.

We will show that

S(v, k)N A2(B(v,n)) € S(v, k)N for all k > n. (3.1.3)
If £k =n + 1 then it follows by definition of closing squares. Assume
by induction hypothesis that Equation ([3.1.3)) holds for every N such
that n+1 < N <k.
Let ¢ € S(v,k+ 1) N A2(B(v,n)). Let ¢1,c2 € S(v, k) such that

s1 52
c1 ~ cand ¢y ~ c.
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By Lemma we have that |s1s2| = 2 and there is d € S(v, k — 1)
such that
d?2 ¢y and d 2 co.

For i € {1, 2}, for any minimal gallery v = (vy, ..., vx) of length k be-
tween ¢; and a chamber in S(v, n), we have that (¢,v) = (¢, v1,...,vk)
is a minimal gallery of length k£ 4 1 between ¢ and S(v,n). Hence all
the chambers in « are in Ay(¢) for some ¢ because ¢ € Az(B(v,n)).
Thus ¢; and ¢z are in A3(B(v,n)) N'S(v, k). Therefore, using the
induction hypothesis, ci,co € ¢’. With a similar reasoning we obtain
that d € €’. As €’ is closed under squares, we obtain that ¢ € €.
Therefore B(v,n) U A2(B(v,n)) is the square closure of B(v,n) with
respect to v. ]

3.2 The action of the fixator of a ball in A

In this section we study the action of the fixator K in Aut(A) of a
ball B(v,n) of radius n around a chamber v. The final goal will be to
prove that the fixed point set AX is bounded for any n € N.

We will prove that A coincides with the square closure of the
ball with respect to v and we will have a closer look at this square
closure using firm words in right-angled Coxeter groups, as defined
in Section to show that this set indeed is bounded.

We start by making a remark on the local action of Aut(A) on
panels of the building.

Remark 3.2.1. Let s € S and let P be an s-panel. We define
the local action of Aut(A) on P to be the induced action Aut(A)|p
of the group Stabauya)(P) on the panel P, which is isomorphic to
Stabaug(a) (P)/ Fixaue(a)(P).

For any s-panel P we have that Aut(A)|p = Sym(gs). Since
gs > 3 this induced action is 2-transitive and therefore is generated
by any two point stabilizers in Sym(gs), which are distinct because
Sym(gs) is primitive.

Theorem 3.2.2. Let v be a fized chamber of A and n € N. Consider
the pointwise stabilizer K = Fixaua)(B(v,n)) in Aut(A) of the ball
B(v,n).
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Then the fized-point set AX is the square closure of B(v,n) with
respect to v, i.e., the set B(v,n) U A2(B(v,n)).

Proof. By definition B(v,n) € AK. We will prove that As(B(v,n)) C
AK and that any chamber in (Ch(A)\B(v,n))NAK is in A3(B(v,n)).

Let ¢ € Ch(A)\B(v,n) and let N = dist(c, B(v,n)). We will show
both inclusions by induction on N.

Suppose first that ¢ is of type As. If d = 1 then ¢ ~ ¢; and ¢ = ¢y
with ¢1,co € S(v,n). We know that K fixes ¢; and co. If there were
another chamber ¢ s1-adjacent to ¢; and se-adjacent to co then ¢ and
¢ would be both si- and ss-adjacent, which is impossible. Therefore
¢ is the only chamber sj-adjacent to ¢; and se-adjacent to co. As K
fixes ¢1 and co, it implies that K must fix c.

Assume by induction hypothesis that if N < & then it holds that
if ¢ is of type As then K fixes ¢. Let ¢ be a chamber of type Ao at
distance k + 1 from B(v,n). By definition of square closure, we have
¢ 2 ¢ and ¢ 2 ¢y with |s1s2] = 2 and ¢1,c2 € Az(k). By induction
hypothesis, the group K fixes ¢; and ¢o. Thus K fixes the chamber
¢, using an analogous argument as in the case N = 1.

We prove now the other inclusion, also by induction on N. As-
sume that ¢ is not of type As. In this case we show that there is
g € K such that gc # ¢. Suppose N = 1. Let ¢ € Aj(n+ 1) and let
e be the unique chamber in S(v,n) such that e & ¢. We claim that
B(v,n) C Xs(e).

Suppose that there exists d € B(v,n) such that projp_(d) =¢ €
S(v,n + 1). Then, by Lemma there is t € S\{s} such that
Its| = 2 and d’ € S(v,n) such ¢ £ d € S(v,n). Using Lemma
we find d” € S(v,n) such that ¢ £ d” which is a contradiction to the
fact that c is not of type Ay. Hence B(v,n) C X,(e).

Take g € Aut(A)|p,, fixing the chamber of e and mapping c
to a chamber ¢ € Ch(P)\{e,c} and extend it to an element g €
Aut(A) fixing X(e) by Proposition Then g € K and g does
not fix the chamber ¢. Observe that here we use the fact that A
is thick and that the induced action Aut(A)|p, . is permutationally
isomorphic to Sym(gs) by Remark Moreover, for a € Y, the
group Stabgym g,y (@) only fixes . Therefore, if N = 1 then the result
holds.

- 119 —



3. AUTOMORPHISM GROUP OF A RIGHT-ANGLED BUILDING

Consider now a chamber ¢ € S(v,n + N + 1) not of type As with
respect to B(v,n). Then two cases can occur.

1. c€ Aj(n+ N +1). In this case we use a similar argument as
above because B(v,n) C X;(e), where e is the unique chamber
in S(v,n 4+ N) adjacent to c.

2. ¢ € Az2(n + N + 1) but there exists a minimal gallery v =
(vo, ..., Vk+1) between ¢ = vy and a chamber e = vi11 € S(v,n)
such that v; € A;(i) for some i € {1,...,k}.

Let j € {1,...,k} such that v; € A;(j) with j minimal. Ob-
serve that the gallery (vi,...,vj,...,vk4+1) is a minimal gallery
of length k between v; and e. Therefore v; € S(v,n + N) is
not of type Ay with respect to B(v,n). Hence, by the induc-
tion hypothesis, there is g € K such that gv; # v1. Moreover,
dist(gv1,v) = n+ N and v; is the only chamber in the s-panel
P of ¢ in S(v,n+ N) (assuming v; ~ ¢). So P is not stabilized
by g. Thus g € K does not fix c.

This finishes the proof that (Ch(A)\B(v,n)) N AK C Ay(B(v,n)).
Therefore the fixed-point set A® coincides with B(v, n)U Az(B(v,n)).
O

Next we will analyze the set A(B(v,n)) with the goal of proving
that, with respect to any ball, this set is bounded. As a consequence,
denoting K = Fixput(a)(B(v,n)), we obtain that AX is bounded for
any n € N.

We start by clarifying the connection between firm reduced words,
introduced in Definition [2.1.12] and the study of the set Ay with
respect to a ball around a fixed chamber.

Lemma 3.2.3. Let v be a fixed chamber in A. Let s1---sg be a
reduced word in the monoid Mg with respect to X.

The chambers at Weyl distance s1---sp from v are in the set
A1(k) if and only if s1 - - si is firm.

Proof. Let ¢ be a chamber at Weyl distance s; - - - s; from v.

If s1 - - s is firm then the only chamber in S(v, k—1) adjacent to ¢
is the chamber at Weyl distance s; - - - sp_1 from v that is si-adjacent
to c. Hence ¢ € Ay (k).
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Conversely, if ¢ € Ay(k) then there exist r;,7; € S with |ryr;| = 2
and such that

/ /
Sl"‘SkNw’l”iTijT‘jTi.

This description implies that sq - - - s is not firm. O

We recall the concept of F'#(w) in Definition [2.1.12} as the size
of a largest firm prefix of w.

Lemma 3.2.4. Let v € Ch(A) be a fized chamber. If c € Az(B(v,n))
then we have that F7(§(v,c)) < n.

Proof. Let ¢ € Ch(A)\B(v,n) such that F#(§(v,c)) > n. Assume
that §(v, c) can be written as

S1++8p - Sklgy1 - -te, With 15, -+ s firm.

Let d € S(v,n) be the chamber at Weyl distance s; ---s, from v
that is at distance t;---tr 18- Spae1 from c. Moreover let d' be
the chamber at Weyl distance sy --- s, - s, from v that is at Weyl
distance tpty_q - - tpy1 from c.

Then d’ is a chamber in a minimal gallery between d and ¢, with
d € S(v,n) at minimal distance to ¢ among the chambers in S(v,n).
As d' € Ai(k) by Lemma [3.2.3] we obtain that ¢ & Ay(B(v,n)). O

Proposition 3.2.5. The set Ag with respect to B(v,n) is bounded
for any n € N.

Proof. Let n € N and v be a fixed chamber of A. By Lemma
there is d(n) such that F'#(w) > n for all reduced words w of length
d(n). Therefore, using Lemma we then obtain that chambers
at distance d(n) from v are not in As(B(v,n)). Hence Ay(B(v,n)) C
B(v,d(n)). O

The next Proposition, and the goal of the section, now follows
directly from Theorem [3.2.2] and Proposition [3.2.5

Proposition 3.2.6. Let v be a fized chamber of A and n € N. Let
K = Fixpuya)(B(v,n)). Then the fized-point set A s bounded.
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3.3 Root wing groups

In this section we define groups that resemble root groups, using the
partition of the chambers of a right-angled building by wings. If we
consider an apartment A in the building, then the partition of the
chambers of A according to the wings corresponds to half-spaces, i.e.,
roots.

The root wing groups will fix pointwise walls of a fundamental
apartment. In the next section we will prove that a non-compact open
subgroup of the automorphism group contains sufficiently many root
wing groups and that will be the key to prove that such a subgroup
is contained in the stabilizer of a residue.

After the definition of a root wing group we prove, for a ball
B(co,n) around a fixed chamber ¢, that the root wing groups corre-
sponding to roots far enough away from B(cp, n) are contained in the
fixator of B(cg,n) in the automorphism group.

Moreover, using the fact that Aut(A) acts strongly transitively on
the chambers of A, and hence Stab s (a)(co) acts transitively on the
set of apartments of A containing cg, we can also relate the fixator
of a ball with root wing groups by first considering roots in another
apartment than the fundamental one.

Fix a chamber ¢y € Ch(A) and an apartment Ay containing cg
(which can be considered as the fundamental chamber and the fun-
damental apartment). Let ® denote the set of roots of Ag. For any
other apartment A containing ¢y we will denote its set of roots by
Dy.

Definition 3.3.1. For a € ® of type s, let ¢ € a whose s-panel P is
in da. We define the root wing group U, as

Ua =Us(c) = {g € Aut(A) | gd = d for all d € X;(c)}.

Let ¢’ be the unique chamber in Ch(P)\{c} that lies in the apartment
Ag. We define U_,, = Us(c).

Observe that U, (and U_,) does not depend of the choice of
the chamber ¢ as panels in the wall Ja are parallel. Therefore the
partition determined by the s-wings of these panels is the same.

Next we present a property similar to FPRS property introduced
in [CROY| for the setting of right-angled buildings. It is the analogous
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statement of Lemma 3.8 in [CM13], but in the right-angled case we
can determine the constant.

Lemma 3.3.2. For every root o € ® with dist(co, ) > 1 the group
U_q is contained in K, = Fixpye(a)(B(co,7)).

Proof. Let a be a root at distance r+ 1 from ¢y and let s be the type
of the panels in the wall da. Let ¢ = proj,(co) and let ¢ be the other
chamber in P, s N Ap. Then ¢ € S(co,r) since dist(co,c) =7 + 1.

We claim that for every d € B(cp,r) we have projp,  (d) = ¢
Assume that there is d € B(cg,r) such that projp__(d) = #£ .
Without loss of generality, take d € S(co, ). Then, using closing
squares (Lemma [2.2.6), we find e € S(co,r — 1) such that

e and e £ d with |st] = 2.

However, in this case, the s-panel P’ of e is parallel to P, s and thus it
belongs to the s-tree-wall of P, ;. Hence there exists e’ € P'NAg such
that ¢ € a and we have dist(cg, ¢’) < dist(co, ¢), which contradicts
the fact that dist(c, ) = r+1. Thus B(cp, ) C X4(¢') which implies
that U_,, = Us(¢/) is contained in K. O

The next set of results relate the apartment Ag with the other
apartments containing the chamber c¢g. The proofs rely on the con-
stant of Lemma [3.3.2] and follow exactly the same reasoning as in the
proofs of Lemmas 3.9 and 3.10, respectively, in [CM13], so we present
them without proof.

Lemma 3.3.3. Let g € Aut(A) and let A € As., containing the
chamber d = gco. Let b € Stabp,e(a)(co) such that A = bAg, and let
a = bag be a root of A with ag € P.

If dist(d, —a)) > r then bU,,b~! C gK,g~'.

Proof. Analogous to the proof of [CM13| Lemma 3.9)]. O

The next lemma will be very useful in Section when we de-
scribe hyperbolic isometries through reflections along essential walls.
We first define those.

Definition 3.3.4. Let w € W.
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1. A root a € ® is called w-essential if either w"a C a or w™"a C
a, for some n € N.

2. A wall is called w-essential if it bounds a w-essential root. We
denote by E'ss(w) the set of w-essential walls. Fss(w) is empty
if w is of finite order.

Lemma 3.3.5. Let A € A>., and let b € Stabpyya)(co) such that
A = bAgy. Also, let « = bag (with ag € ®) be a w-essential root for
some w € Stabayg(a)(A)/ Fixaue(a)(A). Let g € Stabayga)(A) be a
representative of w.

Then there exists n € Z such that for € € {+, —} we have Uy, C
b—lgenKTg—enb'

Proof. Similar to the arguments used in [CM13, Lemma 3.10]. O

3.4 Open subgroups of Aut(A)

We now focus on open subgroups of the automorphism group of A.
The main result of this section is that any proper open subgroup of
the automorphism group of a locally finite thick semi-regular right-
angled building A is contained with finite index in the stabilizer in
Aut(A) of a proper residue of A.

We will split the proof in the cases where the open subgroup is
compact and non-compact. Before we reach the main result of the
section, which is Theorem [3.4.19] we study these two cases separately.

3.4.1 The compact case

Using the work developed in Section we can prove that an open
subgroup of Aut(A) which is locally X-elliptic on the Davis realiza-
tion X of the building must be compact.

Definition 3.4.1. A group acting continuously on a space X is called
locally X -elliptic if every compactly generated subgroup of Aut(A)
fixes a point in X.

Lemma 3.4.2. Let A be a thick irreducible semi-regular right-angled
building, not necessarily locally finite. Let H be an open subgroup of

- 124 —



3.4. OPEN SUBGROUPS OF AUT(A)

Aut(A) and let X denote the Davis realization of A. If H is locally
X -elliptic then H is contained with finite index in the stabilizer of a
spherical residue of A and so it is compact.

Proof. If H is locally X-elliptic then H has a global fixed point on X
or H fixes an end of X (see [CL10]). Assume first that H has a global
fixed point on X. Then by definition, the group H is contained in
the stabilizer of a spherical residue, which is a compact subgroup of
Aut(A). As H is open, the containment is with finite index.

Now assume that H fixes an end of X. As H is open, we have
Fixaut(a)(B(v,n)) € H for some v € Ch(A) and some n € N. More-
over, for each h € H, the group Hj = (h, Fixpue(a)(B(v,n))) is open
and compactly generated. Therefore Hj, has a global fixed point, that
is, XHn £ (), for each h because H is locally X-elliptic by assumption.

Hence H = UH}y with Hp open and compactly generated and
we can take this union to be countable because we are dealing with
second-countable groups. We want to prove that NXHr = (). Observe
that, for each h € H, we have X C XFXauu(a)Bv:n),

The fixed-point set X FXaut) B@m) is hounded for any v € Ch(A)
and n € N by Proposition The countable intersection of com-
pact bounded sets is non-empty. Therefore H has a global fixed point
in its action on X, for which we already proved the claim in the pre-
vious paragraph. Hence H is compact in both cases. O

Corollary 3.4.3. For open subgroups of the automorphism group
of a thick irreducible semi-regular right-angled building, compactness
and local X -ellipticity on the Davis realization of the building are
equivalent.

Proof. Observe that if H is a compact open subgroup of Aut(A) then
it is contained in the stabilizer of a spherical residue of A, which is
a maximal compact open subgroup of Aut(A). Hence, by definition,
H fixes a point in X, meaning that it is X-locally elliptic. O

3.4.2 The non-compact case

Let A be a thick, semi-regular, irreducible, locally finite right-angled
building. Consider an open subgroup H of Aut(A). Assume that H
is non-compact.
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The goal of this section is to prove that H is contained in the
stabilizer of a residue of the building.

We fix a fundamental chamber ¢y and an apartment Ay containing
co which will be regarded as the fundamental apartment and can be
identified with W as a Coxeter chamber system. We denote by ¢
the set of roots of Ag. Given a root o € ®, let r, = ry, denote the
unique reflection of W setwise stabilizing the panels in da and recall
the definition of the root wing group U, in [3.3.1]

Remark 3.4.4. Consider a € {1,...,qs}. For any g € Stabgyyq,)(a)
we can consider the respective permutation g, of the chambers of P
which fixes a chamber ¢, (we can consider a coloring in A to see this
better). By Lemma we can extend g, to an element g, fixing
Xs(cq) and therefore g, € Us(c,).

Therefore Us(ca)|p = Stabgym(q,)(a). Moreover, for any two dis-
tinct elements a,b € {1,...¢s} we have (Us(c,), Us(cp))|p = Sym(gs),
which is also isomorphic to Aut(A)|p by Remark

Let a € ®. Using the remark above, we can choose an element
Na € Stabayga)(Ao) N (Us U U—y) which is mapped onto 7, under
the quotient map

Stabaug(a)(Ao) — Stabaye(a)(Ao)/ Fixaue(a)(Ao) = W.

Let J C S be minimal amongst the subsets L C S such that there
is g € Aut(A) such that HNg~! Stabaug(a)(RL,e)g has finite index
in H.

For such a g, we set H; = gHg™ ' N Stabaut(a)(RJe). Thus Hy
stabilizes R, and it is an open subgroup of Aut(A) contained in
gHg™! with finite index. Moreover, since H is non-compact, so is
H;.

The idea will be to prove that H; contains a hyperbolic element
ha, for which the chamber ¢y belongs to the set of chambers at min-
imal displacement. Moreover, we can find the element h,, in the
stabilizer in H; of an apartment A; containing c¢g. Thus we can iden-
tify it with an element h4, of W and consider its parabolic closure
(see Definition . The key point will be to prove that the type
of Pc(hy,) is J which will be achieved in Lemma
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We will at the same time conclude that H; acts transitively on
the chambers of R ., and this will allow us to conclude that any
open subgroup of Aut(A) containing H; as a finite index subgroup
is contained in the stabilizer of Ry ., with J’ a spherical subset of
J+ (Lemma .

This strategy is analogous to the construction of the proof of
[CM13l Lemma 3.19]. As the arguments are of geometric nature,
we will adapt them to our setting. The root groups associated with
the Kac-Moody group in that paper can be replaced by the root wing
groups defined in the previous section and in our setting we have that
Aut(A) is strongly transitive on its action on A (|[Capl4], Proposition
6.1]). When a proof goes through exactly as a result in [CM13] we
will point a precise reference and only present the main ideas behind
the proof and the adaptation to our setting.

We start by showing that we are choosing a good set J to start
with.

Definition 3.4.5. A subset T' C S is called essential if each irre-
ducible component of 7" is non-spherical (see the notion of spherical
set in Definition |1.4.8)).

Lemma 3.4.6 ([CMI3| Lemma 3.4]). The set J is essential.

Let A>., be the set of apartments of A containing c¢o. For A €
Asc, we denote Ny = Staby, (A) and N4 = N4/ Fixg, (A), which we
identify with a subgroup of W. For h € Ny, let h denote its image
in Ny <W.

Lemma 3.4.7 (JCM13, Lemma 3.5]). For all A € As.,, there exists
h € Ny such that

Pc(h) = {ro | a is an h-essential root of ®)
and is of finite index in Pc(Ny).

Proof. Recall the concept of essential root in Definition [3.3.1] This
result is a consequence of the work in [CM13] done for general Coxeter
groups, namely Corollary 2.17 and Lemma 2.7. O

Lemma 3.4.8 ([CMI13| Lemma 3.6]). Let (gn)nen be an infinite se-
quence of elements of Hy. Then there is an apartment A € As., a
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subsequence (gy(n))nen and elements z, € Hy, with n € N, such that
for all n € N we have

1. hnzzalznGNA,

2. dist(co, 2nR) = dist(co, gy(n)R) for every residue R containing
co and

3. |dist(co, hnco) — dist(co, gynyco)| < dist(co, znco)-

Proof. Since Hj is open, it has a subgroup K = Fixaua)(B(co,7)).
The group K has finite index in Stabaya)(co) because A is locally
finite. On the other hand, as Aut(A) is strongly transitive, the group
Stabaue(a)(co) is transitive on As>.,. Hence K has finite orbits in
A>¢,. The proof now follows exactly in the same lines as in the proof
of [CM13| Lemma 3.6]. O

Lemma 3.4.9 ([CMI3| Lemma 3.7]). There exists an apartment
A € As., such that the Orbz'tiNA.co 18 unbounded. In particular,
the parabolic closure in W of N 4 is non-spherical.

Proof. Since Hj is non-compact, the orbit Hi.cy is unbounded in A.
For n € N we can then chose g, € Hy such that dist(cg, gnco) > n. By
Lemma we can find an apartment A € A>., and a unbounded
sequence of elements h, € Ny4 such that dist(co, hnco) is arbitrary
large along n. Then Pc(N4) is non-spherical as desired. O

Remark 3.4.10. Observe that Lemmas [3.4.9] and show that
any non-compact open subgroup of the automorphism group of A
contains a hyperbolic element. This also proves, in the locally finite
case, that non-compact open subgroups of Aut(A) are not locally
X-elliptic in their action on the Davis realization of the building.

Let A; € A>, be an apartment such that the product of the
non-spherical irreducible components of Pc(N4,) is non-empty and
maximal with respect to this property. Such an apartment exists by
Lemma Choose h4, € N4, as in Lemma In particular
ha, is a hyperbolic element of Hj.

Up to conjugating Hy by Stabayia) (R ), We can assume with-

out loss of generality that Pc(hy,) is a standard parabolic subgroup

- 128 —



3.4. OPEN SUBGROUPS OF AUT(A)

that is non-spherical and has essential type I (# (). Moreover,
the type I is maximal in the following sense: if A € A>., is such
that Pc(N4) contains a parabolic subgroup of essential type I4 with
I C1I4then I=14.

For T'C S, let

O = {a € @ | there exists v € Wy and s € T such that o = vas}
and LT = (U, | o € ),

where U, is the root wing group introduced in Definition Ob-
serve that Lt = (U, | a € ®) and if U, C L for some o € ® then
U_o C LT

The goal is now to prove that H; contains L}r because we will
prove in Lemma that this fact is equivalent to H; being tran-
sitive on the chambers of R .

We will need the results in Section [3.3| regarding fixators of balls
and root wing groups. Since Hj is open we fix, for the remaining of
the section, r € N such that Fixy,¢a)(B(co,7)) C Hi.

Lemma 3.4.11. Let T C S be essential and let A € A>.,. The the
following are equivalent:

1. Hi contains L;;

2. Hjy is transitive on Reyr;

3. Ny is transitive on Re, 7 N A;

4. N4 contains the standard parabolic subgroup Wr of W.

Proof. The equivalence between statements 3. and 4. is clear.

To prove that 1. implies 2. (and that 1. implies 3. in an analo-
gous way) we observe that if ¢; and co are s-adjacent chambers in
Rre, for some s € S, then there are |,y € Pse N Ap such that
Us(ch), Us(ch) € L;'

Then we consider a permutation of Ch(Ps,) fixing ¢j and map-
ping c; to ¢ and we can extend it by Lemma to an element of
Us(c)) C Hy (see Remark [3.4.4).

In the case, without loss of generality, that (c1,c2) = (¢}, ),
since A is thick, we know that there exists ¢z € Ps¢, \{c1,c2}. We
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consider then g1 € Ug(¢] = ¢1) such that ¢1(c1,c3) = (c1,¢2) and
g2 € Us(cdy, = ¢2) such that ga(ca,c3) = (c2,¢1). Thus glgz_lcl =y
and 91951 € Us(cl)Us(CQ) C H;.

The proofs 2 = 1 and 4 = 2 follow the strategy of [CM13, Lemma
3.11]. The idea is to prove that for o € ®p and € € {+, —}, the group
Ucq is contained in H; (or in a conjugate of Hy in the second proof).
The first key ingredient is the fact that Aut(A) is strongly transitive
and therefore Staby(a)(co) acts transitively on the set of apartments
containing ¢p. Hence we can consider g € Stabp,¢(a)(co) such that
gAp = A and work with standard parabolic subgroups. Moreover, by
Lemma there is n € Z such that U, is, in H; by transitivity
of Hy in the proof of 2 = 1, or inside a conjugate of Hy in the proof
that 4 = 2. O

The reasoning of the proof of the next statement is analogous to
the one in [CM13, Lemma 3.12]. We write it down for completeness.

Lemma 3.4.12. Let A € A>.,. There exists 4 C S such that Ny
contains a parabolic subgroup Pr, of W of type 14 as a finite index
subgroup.

Proof. We choose h € N4 as in Lemma By construction Pe(h)
is generated by the reflections r, with o a h-essential root of A.

Let o be one of those roots. We want to prove that r, € Nj.
Let b € Stabpye(a)(co) such that o = bag with ap € @, by strong
transitivity of Aut(A). In particular bAy = A.

Using Lemmawe obtain, for e € {+, —} that U., C b~ Hib.
In particular the element ng, € (Uy, UU—_q,) C bH1b. We have that
Tap 1S the image in W of ng,. Moreover r, = broéob_1 so we obtain
that r, € N4 which implies that Pc(h) € N4. Since Pc(h) has finite
index in Pc(N4) we conclude that Pc(h) is the desired parabolic
subgroup of W. O

For each A € A>.,, we fix such an I4 C S which, without loss of
generality, we assume essential. We also consider the corresponding
parabolic subgroup P, contained in N4. Note then that Py " has
finite index in Pc(Ng4,) by Lemma where A; is the apartment
fixed after Lemma Therefore I = I4,.
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The next task in the process of showing that H; contains Lj is
to prove that J = I, which is achieved by the following sequence of
steps, each of which follows from the previous ones and which are
analogues of results in [CM13]. Some of the proofs follow a similar
reasoning as in the afore-mentioned paper. Therefore we present only
the main keys steps and point to a precise reference in the paper.

Lemma 3.4.13. Let A € A>., and retain the notation as before.
Then the following hold.

1. Hi contains L?.

2. I, C 1.

3. N4 contains Wi as a subgroup of finite index.
4. I=J

Proof. 1. Statement 1 follows from the fact that I = I4, and P; =
Wr. So we just use the equivalence provided by Lemma [3.4.11]

2. To prove Statement 2 we use the same strategy as in [CMI3]
Lemma 3.14]. We consider R = Ry, NA and Ry an I 4-residue
in A on which N4 acts transitively and that is at minimal dis-
tance from R; amongst such residues. Using Lemma we
know that N4 is transitive on R; as well. The idea of the proof
is to consider a residue of type I U T4 in A where Ny (or Ny)
acts transitively, which implies, by the maximality of I, that
I,C 1.

3. We know by Statement 1 and Lemma that W C Ny.
Furthermore, by Lemma the group N4 also contains
a finite index parabolic subgroup P, = wWj,w™!, for some
w € W. By Statement 2, we know that 4 C I so we obtain that
Wi, € N,. Hence P = Wi, ﬂwWIAw_l is a parabolic subgroup
with finite index in W7, . Since I4 was chosen essential, we have
P = Wi, by [ABO8, Proposition 2.43], because P has finite

index in W7y, .

Therefore Wy, C wWIAwfl. As the chain W, C wT/VIAuF1 -
w2Wy Aw_2 C --- stabilizes we conclude that W;, = P, has
finite index in N4. Thus W; has finite index in Ny4.
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4. To prove the last statement we use the reasoning of [CMI3|
Lemma 3.16] and we explain here the main lines of the proof.
We denote by Z the set of I-residues of A containing a chamber
in the orbit Hy.co and we denote R = Ry ¢.

The first step is to show that the distance from ¢ to the residues
of # is bounded and hence Z is finite. This is achieved by as-
suming the contrary and applying Lemma and Statement
3.

As the set Z is finite and stabilized by Hjp, the kernel Hs of
the induced action of H; on Z is a finite index subgroup of H;
stabilizing an I-residue.

Up to conjugating by an element of Hj, we can assume that
Hjy < Stabayug(a)(Ri1,e) and so Hp has finite index in Hy (and
hence also in H). Thus the intersection H1 N Stabaua)(Rr1,¢o)
is open and contains Hy. Hence it has finite index in H; (and
in H). This implies that [ = J by the minimality of .J.

O

As a consequence of the previous lemma, and using Lemma [3.4.11
we obtain the following.

Lemma 3.4.14. H; acts transitively on the chambers of R j,-

The next lemma is the first of the main goals of this section,
and puts together all the construction of the sets I and J. We
prove that gHg ' is contained in the stabilizer of a residue that has
Stabaut(a)(Rue) as finite index subgroup.

Lemma 3.4.15. Every subgroup of Aut(A) containing Hy as a sub-
group of finite index is contained in a stabilizer Stabyy(a)(RyuJ o)
with J' a spherical subset of J+.

Proof. To prove this result we can follow the arguments in [CM13],
Lemma 3.19]. We highlight the main steps for the proof. Let O be a
subgroup of Aut(A) containing H; as finite index subgroup.

The group H; stabilizes the J-residue R = R ., and acts transi-
tively on its chambers by Lemma and Corollary Let #

be the set of J-residues of A containing a chamber in the orbit O.cy.
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The set Z# is finite because O contains H; as a subgroup of finite
index. The proof will be structured by the following set of claims.

Claim 1. For any R' € % there is a constant M such that R is
contained in an M -neighborhood of R'. Since % is finite, we can
assume that the constant is independent from R'.

This claim is proved in the same lines as in the mentioned lemma
in [CM13].

Let J' € S\J be minimal such that the right-angled building
R = Ry, J' ¢ contains the union of the residues in . This means
that O < Stabp,¢a)(RjuJr,e,) With J' minimal for this property.

Claim 2. J' C J*.
The idea is to show that O stabilizes Ry, by using Claim 1.
Claim 3. J' is spherical.

By Claim 2, the building R splits into a direct product of buildings
R =Ry X R ¢y We get then a homomorphism O — Aut(R ) X
Aut(Ry ). Since H; stabilizes R ., and has finite index in O, the
image of O in Aut(Rj ,) has finite orbits in R ., because A is
locally finite.

Then by the Bruhat-Tits Fixed Point Theorem we have that O
fixes a point in the geometric realization of R ., and thus stabilizes
a spherical residue of Ry ... By minimality of J’, we obtain that O
must stabilize R s ., and thus J’ is spherical. ]

Since A is irreducible we observe that J U .J' = S, for a subset
J' C Jt if and only if J = S.

Next we want to prove that the group H; has finite index in
Stabaug(a)(Re) in order to obtain that H has finite index in a
conjugate of Stabauya)(RyusL,e,). We start by proving a general
result, suggested by Pierre-Emmanuel Caprace, for locally compact
groups acting on connected locally finite graphs.

Lemma 3.4.16. Let G be a locally compact group of automorphisms
of a connected locally finite graph I'. Assume that G acts on T’
with finitely many orbits of vertices and with compact open vertex-
stabilizers.
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Then any open subgroup H < G acting on I' with finitely many
orbits of vertices has finite index in G.

Proof. Let F and Fp be sets of representatives for the G- and H-
orbits of vertices of I', respectively. For each v € Fp, we choose
gv € G such that g,(v) belongs to Fg and we denote w(v) = gy(v).
Then we obtain that

VI = U Hv = U Hg, 'w(v).

veEFy vEFY

Therefore G = U, cr, Hgy L Stabg(w(v)). Recall that by assumption
the group Stabg(w(v)) is compact. Thus the finite union

U 9. " Stabg (w(v))

’UGFH

is compact. So we have found a compact subset of G that maps onto
to the coset space G/H. Thats means that G/H is compact. Since
the group H is open, we obtain that the index of H on G is finite. [

Now we apply the previous lemma to the setting of locally finite
right-angled buildings, seen as chamber systems.

Lemma 3.4.17. The group Hy has finite index in Stabauya) (R )-

Proof. Let I' = R, be the right-angled building (seen as a chamber
system). The group Stabayuya)(Ru,.e,) acts transitively on I' since A
is semi-regular and H; also acts transitively on I' be Lemma
Thus the result follows directly from Lemma [3.4.16 O

Lemma 3.4.18. For every spherical subset J' of J*, the index of
Stabaua)(Rue) on Stabauya)(Riuse) is finite.

Proof. Let G = StabAut(A)(Rjuj/7cO) and H = StabAut(A)(RJ,CO).
We have that G is transitive on Ry o, and H is transitive on R j,,
the latter being a subgraph of the former (seen as chambers sys-
tems). Since J' is spherical, every vertex (chamber) of Ry, is
at bounded distance from a vertex of Rj.,. Moreover, as A is lo-
cally finite, all the balls in Ry ., are finite. Hence H acts on
R jugr e, With finite orbits of vertices. Thus we are in position to ap-
ply Lemma to conclude that Stabayya)(Ru,c,) has finite index
on Stabauga) (Raus ) O
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We are now ready to connect the dots of this section on open sub-
groups of the automorphism group of a locally finite thick irreducible
semi-regular right-angled building.

Theorem 3.4.19. Let A be a thick irreducible semi-regular locally
finite right-angled building. Any proper open subgroup of Aut(A) is
contained with finite index in the stabilizer in Aut(A) of a proper
residue.

Proof. Let H be a proper open subgroup of Aut(A). If H is compact
then it has a global fixed point in the geometric realization of the
building. Hence it is contained in the stabilizer of a spherical residue,
which is a compact group. Since H is open, this containment is with
finite index.

If H is non-compact then it follows from Lemma [3.4.15| since,
by definition of Hy, the group H contains a conjugate of Hi as a
subgroup of finite index. Hence H is contained in a conjugate of
StabAut(A) (Rju(]/700). So we have

L B
gHig™" < H < gStabaya)(Ryuse)g -
Using Lemmas [3.4.17 and [3.4.18 we obtain that

2. 2.

gHig™" fé g Stabauga)(Rie)g " fS g Stabu(a)y(Ryusreo)g "
Thus H is a subgroup of finite index of g Stab(a) (Rugreo)g b

Assume that Ry ¢, is the whole building A. Since Aut(A) is
simple and infinite, the only finite index subgroup of Aut(A) is the
whole group. Indeed, a finite index subgroup G; < Aut(A) yields a
homomorphism ¢ : Aut(A) — Aut(A)\G; whose kernel is non-trivial
and contained in Gj. As ker is a normal subgroup of Aut(A) we
have that ker(p) = Aut(A). Thus H = G in this case, which finishes
the proof of the theorem. O

3.5 Consequences of the main theorem

In this last section we prove two results that are consequences from
Theorem [3.4.19|regarding open subgroups of the automorphism group
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of a right-angled building. The first states that the automorphism
group of a locally finite thick semi-regular right-angled building A
is Noetherian (see Definition and the second regards reduced
envelopes in Aut(A).

Definition 3.5.1. We call a topological group Noetherian if it sat-
isfies the ascending chain condition on open subgroups.

We will prove that the group Aut(A) is Noetherian by making
use of the following characterization of the Noetherian property in
locally compact groups.

Lemma 3.5.2 ([CM13| Lemma 3.22]). Let G be a locally compact
group. Then G is Noetherian if and only if every open subgroup of G
is compactly generated.

Proposition 3.5.3. Let A be a locally finite thick semi-reqular right-
angled building. Then the group Aut(A) is Noetherian.

Proof. Using the previous Lemma, we have to show that any open
subgroup of Aut(A) is compactly generated. By Theorem
every open subgroup of Aut(A) is contained with finite index in the
stabilizer of a residue of A.

Stabilizers of residues are compactly generated since they act
properly and cocompactly on the residue they stabilize. A cocom-
pact subgroup of a group acting cocompactly on a set also acts co-
compactly on that set. Therefore it implies that every open subgroup
of Aut(A) is compactly generated. Hence Aut(A) is Noetherian. [J

Now we focus on reduced envelopes for sets of automorphisms
of A, since this group is a totally disconnected and locally compact

group.

Definition 3.5.4. Two subgroups H; and H» of a group G are called
commensurable if [H; : Hy N Ha] < oo for i € {1,2}.

Definition 3.5.5. Let G be a totally disconnected locally compact
(t.d.l.c.) group. Let X C G. An envelope of X in G is an open
subgroup of G that contains X.

An envelope E of X is called reduced if given any open subgroup
Ey with [X : X N E3] < oo we have [E: EN B3] < oo.

- 136 —



3.5. CONSEQUENCES OF THE MAIN THEOREM

Reduced envelopes for t.d.l.c. groups have been studied by Reid
(see [Reil6] and [Reil5]) and he proved the following.

Theorem 3.5.6 ([Reil6l Theorem B]). Let G be a t.d.l.c. group and
let H be a compactly generated subgroup of G. Then there exists a
reduced envelope for H in G.

The existence of reduced envelopes in the compactly generated
case allow us to conclude the following.

Proposition 3.5.7. Every open subgroup of Aut(A) is commensu-
rable with the reduced envelope of a cyclic subgroup.

Proof. Let H be an open subgroup of Aut(A). Using the notation of
the previous section, consider H; = gHg~! N Stab Aut(A)(Ru,e,) such
that J is minimal amongst the subsets L of S such that there exists
g € Aut(A) such that H Ng~! Stabaut(a)(RL,c)g has finite index in
H.

Let ha, be a hyperbolic element of H; whose minimal displace-
ment function gives rise to the type J, as described right before Re-
mark |3.4.10L By Theorem m the group (g~ 'h4,g) has a reduced
envelope E in Aut(A).

Then [(g7tha,g) : (g7 ha,g) N H] < oo which implies, by defini-
tion of a reduced envelope, that [E : H N E] < oco.

By definition of a reduced envelope, we also obtain that

[gil StabAut(A) (RJyCO)g : gil StabAut(A) ('RJ’CO)Q N E] < 0.

Since H has finite index in g~ Staba () (R, )g by Theorem (3.4.19
it follows that

[g_l StabAut(A) (RJ,CO)g NH: (g_l StabAut(A) (RJch)g NH)NE)|
—[H:HNE] < oo.

Thus H is commensurable with the reduced envelope of a cyclic group.
O
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CHAPTER

Universal group of a
right-angled building

The goal of this chapter is to extend the concept of universal groups
defined for regular trees by Burger and Mozes [BM00a] to the more
general setting of right-angled buildings. This is motivated mainly
by two facts. First, trees are instances of right-angled buildings so it
is interesting to study in which sense those groups would be defined
and have interesting properties in a more general setting. Secondly,
Pierre-Emmanuel Caprace proved that the group of type-
preserving automorphisms of a thick semi-regular right-angled build-
ing is an abstractly simple group. Therefore those automorphism
groups fit in the class of simple totally disconnected locally compact
groups discussed in Section In the locally finite case they are
furthermore compactly generated (see Proposition .

Hence we will define universal groups for semi-regular right-angled
buildings (recall the definition in and we will prove that those
groups also fit in the class of topological groups mentioned above. We
will start by presenting basic topological properties of these groups
in Section and then we will move towards the proof of simplicity
of the universal groups.
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In Section we define a dense subgroup of the universal group
constructed using actions on the tree-walls of the building and we use
this group to prove that we can extend automorphisms of residues to
automorphisms of the whole building. Then in Section [4.4] we present
a property that resembles Tits’s independence property in the setting
of right-angled buildings. Of central importance will be to understand
the action of the universal group on the tree-wall trees introduced in
Definition which is what we investigate in Section [4.5] We
finish the chapter by proving simplicity in Section [£.6] Almost all
the work of this chapter is presented in [DMSS16], with exception of
some properties in Section [4.5] and of Section [4.7]

4.1 The definition

We will use the following notation throughout this chapter, unless
otherwise stated. Let (W, S) be a right-angled Coxeter system with
Coxeter diagram ¥ with index-set S and set of generators S = {s; }icr.
For each s € S, let ¢s be a cardinal number and Y; be a set of size
ds, which we regard as the set of s-colors. Consider the right-angled
building A of type (W, S) with parameters (gs)ses, which is unique
up to isomorphism (see Theorem [2.3.2).

Definition 4.1.1. For each s € 9, let G° < Sym(Y;) be a transitive
permutation group and hs: Ch(A) — Y; be a (weak) legal coloring
of A (recall the definition in Section [2.3). We define the universal
group of A with respect to the groups (G*®)scs as

U=U((G")ses)
= {g € AUt(A) | (h’5|7)s,ge) ©cgo (h5|7>s,c)_1 € GS? fOI' a‘ll s € S?
all s-panels Ps, and for all chambers ¢ € P},

where Ps . is the s-panel containing ¢ € Ch(A).

If the group G* equals Sym(Yy), for all s € S, then U is the
group Aut(A) of all type-preserving automorphisms of the right-
angled building since we are assuming that the groups G* are transi-
tive.
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Remark 4.1.2. The definition of a universal group for a right-angled
building also makes sense when the groups GG° are not transitive. For
instance, if the groups G* are all trivial and A is locally finite, then
U is a lattice in Aut(A) since it acts freely and cocompactly on A.
However, the universal group will be chamber-transitive only in the
case when all groups G* are transitive and we will require chamber-
transitivity quite often.

In the next lemma we justify why in Definition we consider
hs to be a (weak) legal coloring. To be precise, we justify the brackets
on the word “weak”.

Lemma 4.1.3. For each s € S, let (hl)ses and (h?)ses be two G*-
equivalent colorings. Then the universal groups constructed using
(h})ses and (h?)ses coincide.

Proof. Let s € S. Let g € U hi be an element of the universal group
constructed with the coloring hl. Let ¢ € Ch(A) and P be the s-panel
of ¢. By definition we know that hlogo(hl)~!|p € G*. Further, since
hl and h? are G®-equivalent colors we know that hl|P = g1 o h2|p
and h}|Ps gy = g2 0 h2|p, ,, With g1,g92 € G*. Thus

hiogo(hl) Hp=gsohZogo (h2)togl|p € G,

which implies that h2 o g o (h2)~!|p € G*. Hence g is an element
of the universal group U M3 constructed using h2. Exchanging the
colorings in the reasoning, we obtain that the two universal groups
coincide. O

This lemma implies that the definition of the universal group re-
stricting to legal colorings, weak legal colorings or directed legal col-
orings with respect to a fixed chamber all yield the same universal
group because such colorings are G*-equivalent by Proposition
and Observation 2.3.15]

4.2 Basic properties

In this section we gather some basic properties concerning universal
groups for right-angled buildings. We start by looking at the action
of these groups on panels.
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Definition 4.2.1. Let H < Aut(A) and P be a panel of A. We
define the local action of H at the panel P, normally denoted as
H|p, as the permutation group induced by Staby(P) on the panel
P.

This local action is isomorphic to Stabgy (P)/ Fixg (P).

Lemma 4.2.2. Let s € S. The local action of the universal group U
on any s-panel is isomorphic to the transitive group G°®.

Proof. Consider some chamber c. The chambers in the s-panel P :=
Ps . containing c are parametrized by Y; via the coloring. From the
definition of the universal group it is immediate that the local action
on the s-panel is a subgroup of G°.

We will now show that this local action is indeed G®. Let g5 € G*
and let ¢ be the chamber in P with color gs o hs(c). Denote by
(h))res the set of legal colorings obtained from (h,),cs by replacing
the coloring hs by g5 ! ohs and leaving the other colorings unchanged.
Note that h/ is again a legal coloring, as it will still satisfy the defining
property (L) of legal colorings (see Definition . As h,(c) equals
hl.(c) for every r € S, we can apply Proposition to find an
automorphism g € Aut(A) mapping ¢ to ¢.

The automorphism g acts locally as the identity for r-panels where
r € S\ {s}, and as g5 on s-panels. Hence g is an element of the
universal group and it has the desired action on the panel Ps ., whence
the claim. O

Assume that the set of colors Y, contains an element called 1,
and let G be the stabilizer of this element in G°. Recall that as
G* is assumed to be transitive, all its point-stabilizers are conjugate.
Therefore the notation G is to stress that it is the stabilizer of a
point in G%.

Proposition 4.2.3. Let A be the directed right-angled building with
prescribed thickness (¢, )res and base chamber cy (see Deﬁnitionm.
Consider the universal group U with respect to the standard colorings
(fs)ses of A directed with respect to co. Let T be an s-tree-wall of A.

For each g € Gy, let gr be a tree-wall automorphism as in Defi-
nition[2.4.8 Then G1 = {97 | g € G§} is a subgroup of U fizing the
chambers of the s-wing with respect to T containing the chamber cq.
This subgroup acts locally as G§ on each s-panel of the tree-wall T .
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Proof. Let g € G§j and let g7 € Aut(A) be as in Proposition m
We will first prove that g7 is an element of the universal group U.
Let P be a t-panel for some ¢t € S. It is clear that the automorphism
g7 fixes the colorings of the chambers in P unless t = s.

Assume then that ¢ = s. In the case that P is a panel in the
s-tree-wall T, we have fs|s, pogro folp =g € Gj. If P & T, then
this permutation of the colors is the identity in G®. Therefore g € U
as claimed.

Next, we prove that g7 fixes the wing X;(projy(co)). Let

S1 Sn
C =
a1 Qnp,

be a chamber in X(projr(cp)), so that projr(c) = projy(co). If there

is an element ¢ € {1,...,n} such that s; = s and
<s1 3¢_1> and <31 Si) e in T
(07 I @ 7 | Lo SR s 7]
then
. 81 - Si—1 S 81 - Si_1 .
N (I 1 (e Ees

which is a contradiction. Hence there is no such 4, and therefore g1
fixes ¢ by definition.

Using the last statement of Proposition we obtain that the
set G = {g7 | 9 € G} forms a group. By construction, G acts
locally as Gfj on each s-panel of 7. Hence the proposition is proved.

O

Definition 4.2.4. Let s € S and 7 be an s-tree-wall of A. The
group G'7 as in Proposition is called a tree-wall group.

We will prove in the following proposition, among other proper-
ties, that different choices of legal colorings give rise to conjugate
subgroups of Aut(A). This will allow us to justify the omission of
an explicit reference to the colorings in our notation for the universal
groups.
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Proposition 4.2.5 (Properties of U). Let A be a right-angled build-
ing with prescribed thickness (qs)ses. Let U be the universal group

of A with respect to the finite transitive permutation groups {G* <
Sym(Ys)}ses. Then the following hold.

1. The subgroup U < Aut(A) is independent of the choice of the
set of legal colorings up to conjugacy in Aut(A).

2. U is a closed subgroup of Aut(A).
3. U is a chamber-transitive subgroup of Aut(A).

4. U is universal for (G*)ses. That is, if H is a closed chamber-
transitive subgroup of Aut(A) for which the local action in the
s-panels is permutationally isomorphic to the group G*, for all
s € S, then H is conjugate in Aut(A) to a subgroup of U.

5. If A is locally finite, then U is compactly generated.

Proof. 1. Let (hl)ses and (h2)ses be distinct sets of legal color-
ings. We want to show that the universal groups U; and U,
defined using the legal colorings (hl)ses and (h2)ses, respec-
tively, are conjugate in Aut(A). By Proposition we know
that there exists g € Aut(A) such that h?2 = hlog for all s € S.
If uw € Uy then

h2ouo (h?)™t € G® <= hlogouoglo(hl)™teG?,

for all s € S. Hence u9 = gowuo g ' is an element of Uj.

Therefore U; and U, are conjugate in Aut(A).

2. To prove Statement 2, we will show that Aut(A)\ U is open.
Consider u € Aut(A) \ U. By definition, there exists s € S, an
s-panel Ps; and v € P, such that

hs’Ps,uv cuo (h‘3|7>s,v)_1 ¢ GS'

But then the set {v/ € Aut(A) | u'|p,, = ulp,,} is contained
in Aut(A) \ U and it is a coset of the stabilizer of P, ,. Hence
Aut(A) \ U is open by definition of the permutation topology.
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3. Next we show that U is a chamber-transitive group. Since A
is connected, it is enough to prove the result for two adjacent
chambers. Let ¢; and ¢ be two adjacent chambers in the build-
ing A, i.e., there exists an s € S such that ¢; and ¢y are in
the same s-panel P. By Lemma the induced action of
Staby (P) on P is isomorphic to the group G*. Since G is as-
sumed to be transitive, there is an element in G* mapping hs(c1)
to hs(ce). Hence there is an element g € U such that g(c¢1) = co.
Thus U is a chamber-transitive subgroup of Aut(A).

4. Now we prove that the group U is universal. Let H be a closed
chamber-transitive subgroup of Aut(A) for which the local ac-
tion in the s-panels is permutationally isomorphic to the group
G*, for all s € S. We will construct weak legal colorings (hs)ses
such that H is a subgroup of U"s, which denotes the universal
group defined using the set of weak legal colorings (hs)ses-

Let us fix ¢g € Ch(A) and s € S. We choose a bijection
hg: Ps.co — Ys such that
W0 Hlp, ., o () Ip,., = G°.

s

Let To = Ts,,- For each s-panel P in the s-tree-wall Ty we
define

hs(c) = hg(projps’c0 (c)), for every c € P.
With this procedure we have colored with a color from Y; all
the chambers in 7y. Moreover, since the chambers of parallel

panels are in bijection through the projection map, we have
hs o H|p o (hs|p)~! = G* for each panel P of .

Assume by induction hypothesis that the coloring h, is defined
in the s-tree-walls of A at tree-wall distance smaller or equal to

n — 1 from Ty (see Definition [2.2.40)).

Let T be an s-tree-wall at tree-wall distance n from 7y. Fix
¢ € Ch(T). Define a bijection h}: Ps. — Y such that A7 o
H|p, o (h?)~! = G*, and for all chambers v € Ch(T) we define

hs(v) = g (projp, ,(v)).
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In this fashion we color all the chambers of the building with
the colorings (hs)ses. Now we have to prove that hg is indeed
a weak legal coloring, for each s € S. It is clear that hg is a
coloring since it was defined as a bijection in a panel of each
s-tree-wall and parallel panels in 7 are in bijection through the
projection map.

To prove that hg is a weak legal coloring, let P; and Py be
s-panels in a common s-tree-wall 7. Let ¢; € P; and ¢y =
projp,(c1). Let ¢ = projp(c1), where P is the s-panel of T
that was used to define h in the recursive process. Then, by
Proposition projp(cz) = ¢ and hence hys(c1) = hs(c) =
hs(c2). Thus hg satisfies (W) in Definition [2.3.9] and hence it is
a weak legal coloring.

Finally we show that H is a subgroup of U”s. If ¢ € H then
hsogo(hs|p)~! € G* for every s-panel P and every s € S, by the
construction of the weak legal colorings (hs)ses. Therefore H
is a subgroup of U"s. Hence U is the largest vertex-transitive
closed subgroup of Aut(A) which acts locally as the groups

(Gs)ses-

5. To conclude, we prove that U is compactly generated when the
building A is locally finite. Since U is chamber-transitive, its
action on the chambers of A has only one orbit. Let ¢ € Ch(A).
We know that the stabilizer U, is a compact open subgroup of
U by the definition of the permutation topology on U. Let

{c1,...,¢n} be the set of chambers of A adjacent to c¢. For each
ci, there exists an element g; € U such that g;(¢;) = ¢. Let
C=A{g1,...,9n}

Let g € U. We claim that there exists some ¢’ € (C') such that
g'gc = c. This is proved by induction on the discrete distance
from ¢ to ge. If dist(c, gc) = 1 it follows from the definition of
the set C. Assume that the claim holds if dist(c, gc) < n. If
dist(c,gc) = n+ 1, let v = (¢,¢,...,gc) be a minimal gallery
from ¢ to ge. We have dist(c,¢’) = 1 therefore there is g € C
such that g¢ = ¢. As dist(¢/, gc) = n we have dist(gc’, ggc) =
dist(c, ggc) = n. Hence, by induction hypothesis, there exists
g* € (C) such that g*ggc = ¢ and ¢*g € (C). But then ¢g*gg €
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U.. Therefore we conclude that the compact subset U. U C
generates the group U. O

4.3 Extending elements of the universal group

Every residue R of a right-angled building A is on its own a right-
angled building by Theorem In this section we prove that
given a residue R of type J C S and a set of transitive groups
{G" < Sym(qs)}ies, we can extend any automorphism of R acting
locally like G* on its t-panels to an element of the universal group
U({G*®}ses), where G = G for all s € J. In this way we extend ele-
ments of the universal group of a residue R to elements of universal
group of any building containing R.

We start by defining a dense subgroup of the universal group
using its action on tree-walls. We keep the notation of the previous
sections.

Definition 4.3.1. Fix a chamber ¢y € Ch(A) and let s € S.

1. Let B be a connected subset of the building A containing cg
and T be an s-tree-wall of A. If B is not entirely contained in
one wing of T (see Definition [2.2.29)), we say that B crosses T .

2. Let ¢ be the projection of ¢y on an s-tree-wall 7. We call the
Weyl distance d(c, co) the distance between cy and T.

Let us now consider, for a fixed w € W, the collection T'(w, s)
of s-tree-walls at distance w from cg.

Observe that the set T'(w,s) might be empty. For instance if
w ~ w't with |ts| = 2 in the Coxeter diagram then that is the case.
Indeed, let ¢ be a chamber at Weyl distance w from the fixed ¢y and
let ¢/ be the chamber at Weyl distance w’ from ¢y that is at distance ¢
from c. Then ¢ and ¢ are in the same s-tree-wall T and dw (g, ') <
dw (co,c) (the gallery distance). Therefore projr(co) # c¢. Thus in
this case there are no s-tree-walls at distance w from cg.

Lemma 4.3.2. Let ¢y be a fixed chamber. Let T1 and T3 be distinct

s-tree-walls in T'(w, s), for some s € S and w € W. Let Gy, and G,

be the respective tree-wall subgroups of U (see Definition .
Then G7, and G, have disjoint supports.
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Proof. Consider two different tree-walls 7; and 7T in T'(w,s). This
property can be observed in the tree-wall tree I';. Indeed the s-wing
with respect to 77 containing ¢y contains every s-wing with respect
to T2, except the one containing cg. Therefore the supports of the
two respective tree-wall groups are disjoint. O

Remark 4.3.3. The previous lemma considers a semi-regular right-
angled building in a directed description. By Proposition [2.4.4] we
can fix a chamber ¢ € A and, given a set of directed legal colorings,
we can consider an isomorphism from A with that set of colorings
to a directed right-angled building with its set of standard legal col-
orings (cf. Definition . Moreover, by Lemma universal
groups considering directed legal colorings and equivalent legal color-
ings coincide. Therefore, without loss of generality, we will consider
directed right-angled buildings when it suits better our purposes.

Before proceeding to the definition of a dense subgroup of the
universal group, we mention the following technical lemma.

Lemma 4.3.4 ([Capl4] Lemma 5.3]). Let n > 0 be an integer, let
C,W be sets and §: C™ — W be a map. Let G denote the group of all
permutations g € Sym(C') such that 6(gx1,...,g9%,) = 6(x1,...,Ty)
for all (z1,...,z,) € C™. Let moreover (Hs)ses be a collection of
groups indexed by a set S, and for all s € S, let ps: Hy — G be
an injective homomorphism, such that for all s # r, the subgroups
©(Hs) and p(H,) have disjoint supports. Then there is a unique
homomorphism
: H H — G
res

such that ¢ o 1y = s for all s € S, where 152 Hy — [],cq Hy is the
canonical inclusion.

For each tree-wall T € T'(w, s) we have the tree-wall group G of
the universal group U, acting faithfully and locally like Gfj on each
s-panel of T, and fixing the chambers in the wing of T containing cg.

By Lemma we know that these groups have disjoint sup-
ports for any distinct tree-walls in 7'(w,s). Hence we can apply
Lemma and consider the action of the product of the G’s (one
for each tree-wall 7" in T'(w, s)), which we denote by [[rep(, ) GT-
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Lemma 4.3.5. Let A be a semi-reqular right-angled building of type

(W, S) with parameters (qs)ses. Fix a chamber co of A. Let K be a

connected subset of W (as a Coxeter complex) containing the identity.

Let B be the set of chambers ¢ in Ch(A) such that 6(co,c) € K.
Then

H a se S, we K such that B crosses
T the tree-walls in T'(w, s)
TeT(w,s)

is a dense subgroup of Ue,|B.

Proof. Note that the subgroups H’TET(w, 5) G fix the chamber ¢y and
stabilize the set B, so we may consider them to be subgroups of Uy, | .

We first prove the result for finite subsets K by induction on the
size of K. If |[K| = 1 then K = {id} and B = {¢p}, hence U,,|p is
trivial.

Assume now by induction hypothesis that the result holds for
every set K of size n < N. Let K C W be a connected subset of
N + 1 elements containing the identity. Let w € K be such that
K \ {w} is still connected. (This is always possible, for instance by
picking a vertex of valency one in a spanning tree of K). Let

K, =K\ {w} and B; = {c € Ch(A) | d(co,c) € K1}.

Let g € Ug,|p fixing B; and let ¢ € B\ B;. Note that B\ B; consists
exactly of those chambers at Weyl distance w from cg.

As K is connected, we know that there exists a w; € K7 which
is s-adjacent to w for some s € S. Hence c is s-adjacent to some
c1 € B1. Note that g stabilizes the s-panel P of ¢ and c¢;. Let T be
the s-tree-wall containing P, and let wy be its Weyl distance to cg.

If T is already crossed in B; then Bj contains chambers in the
same s-wing of the tree-wall 7 as ¢. So this wing is stabilized, and
as the s-panel containing c is also stabilized, we can conclude that g
fixes the chamber c.

If T was not crossed by Bj then, as g fixes c¢1, it acts on the
s-panel P as an element of Gf) (see Lemma . Repeating this
reasoning for each possible chamber ¢ at Weyl distance w from cq, we
conclude that that g is contained in HTwQ,S G considered as subgroup
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of Ugy|p. By the induction hypothesis, any element g1 € Ue,|p, is in
the desired conditions, and every element h € U, |p can be written
as a product g o g; with g and g1 as before. Hence we conclude that
the statement of the lemma holds for K, and hence for every finite
K.

If the set K is infinite then we can approximate K by a sequence
(K1, Ka,...) of finite connected subsets of K containing the identity,
and such that for every n, there is an IV such that K; agrees with K
on the ball of radius n around the identity in W for every ¢ > N. Let
(B, Ba,...) be the corresponding sets of chambers ¢ € A such that
d(co, ) € K;. The group Uy, |p is then the inverse limit of the finite
groups U, |B,. Moreover, each U, |, is a quotient of U, |p. Since
the statement holds for each of these finite quotients and because we
take the closure, we can conclude that the statement holds for every
K, finite or infinite. O

Now we are in conditions of extending automorphisms of a residue
to automorphisms of the whole building.

Definition 4.3.6. Let J C S and R be a residue of type J in A. We
define

U(R) == {g € Aut(R) | (hs|p, ,.)090(hs|p, )" € G*, forall s € J
and for all chambers ¢ € Ch(R)}.

In particular, U(A) =U.

Lemma 4.3.7. Let R be a J-residue containing co for some J C S.
With the same notation as above, U lcnir) and Ue(R) acting on
Ch(R) are permutationally isomorphic.

Proof. We consider both groups as subgroups of the symmetric group
acting on Ch(R).

We observe that Ch(R) corresponds to the set of chambers at
distance w from ¢y, for some w € Wy, the parabolic subgroup of W
with set of generators J C S. As W is a connected subset of W (as
a Coxeter chamber system), we can apply Lemma and obtain
that UCO(A)\Ch(R) is the closure of its subgroup generated by the
groups HTET(w,s) G7 (regarded as subgroups of Sym(Ch(R)) such
that w € Wy and s € J.
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On the other hand, the residue R is, in its own right, a right-
angled building of type (W, J), to which we may apply the same
Lemma m yielding that U, (R) is the closure of the subgroup
generated by the same HTeT(w,s) G where w € Wy and s € J.

We therefore conclude that Ue,|cn(r) and Ug,(R) have the same
action on Ch(R). O

Lemma 4.3.8. Let R be a J-residue of A. The groups U(A)|cnr)
and U(R) acting on Ch(R) are permutationally isomorphic.

Proof. Tt is clear that U(A)|cyr) € U(R). Let g be an arbitrary
element of U(R) and let ¢y a chamber in R. We want to prove that
there exists a ¢’ in the stabilizer of R in U(A) with the same action
on Ch(R) as g.

Since U(A) is chamber-transitive there exists an h € U(A) such
that h(cp) = g(co). Note that h necessarily stabilizes the residue R
because g does. The automorphism h~' o g fixes the chamber cg,
hence we may apply Lemma and conclude that there exists an
element gy with the same action as h™! o g on Ch(R). This yields
that ¢’ := h o go has the same action on Ch(R) as g, proving the
lemma. O

Another way to state Lemma [4.3.8] and the way that we will
normally refer to this result is stated in the next proposition.

Proposition 4.3.9. Let J C S and R be a residue of type J in A.
Let g € U(R). Then g extends to an element g € U.

Proof. This follows directly from Lemma [£.3.8] O

4.4 Subgroups of U with support on wings

In this section we define subgroups of the universal group with sup-
port on a wing with respect to a tree-wall (¢f. Definition and
we state a property for right-angled buildings that generalizes Tits in-
dependence property for groups acting on trees (see Definition [1.5.3)).
This property will be a key step to prove simplicity of the universal

group.
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We keep the notation from the previous sections. For s € S and
c € Ch(A), let

Vie) = {g € U | g(v) = v for all v & X,(c)},
(4.4.1)
Us(c) ={g €U | g(v) = for all v e X;(c)}.
Both the subgroups Vi(c) and Ug(c) fix the chamber ¢ and stabi-
lizes its s-panel. Since their supports are disjoint, Vs(c) and Us(c)
commute and have trivial intersection. In [Capl4], Section 5] similar
subgroups are defined in the whole group of type-preserving auto-
morphisms of a right-angled building.

The next few results demonstrate the importance of these sub-
groups of the universal group. In particular, the following proposi-
tion generalizes the independence property (see Definition for
groups acting on trees.

Proposition 4.4.1. Let ¢ € Ch(A) and s € S. Let T be the s-tree-
wall of c. Then
Fixg(T) = [ Vi(d).

deps,c

To be precise, Proposition is a slight variation of the inde-
pendence property, since an s-tree-wall in a tree is a single panel and
therefore it corresponds to a star around a vertex in the tree.

We remark that when we consider wings with respect to an s-
tree-wall 7 we can choose one of the s-panels of 7 and consider the
s-wings with respect to that panel. The corresponding partition of
the building in wings is independent of the choice of the panel the
tree-wall.

Proof of Proposition [f.4.1. We start by showing that [],;cp Vi(d)
is a subgroup of the fixator Fixy (7). Let d € Ps.. Given z € Ch(T),
we deduce from Lemma that Vi(d) fixes all chambers of the
s-panel Py, different from the projection of d to that panel. Hence
Vs(d) fixes Ps,. This proves that Vi(d) is contained in Fixy (7).
As the supports of each of the subgroups Vs(d) are disjoint, we can

apply Lemma and consider [[,cp.  Vi(d) as a subgroup of the
universal group and, in particular, as a subgroup of Fixy (7).
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In order to show the other inclusion, pick an element g € Fixy (7).
Let d be an arbitrary chamber in the s-panel Ps.. Consider the
permutation g4 of Ch(A) defined as

T otherwise.

ga: Ch(A) = Ch(A): z { g(z) if z € X(d),

Proving that ggq is a type-preserving automorphism of A uses the
same arguments of the proof of Proposition 5.2 in [Cap14]. Hence we
refer to that for this part of the proof.

Clearly gq4 fixes the tree-wall T, therefore it preserves projections
to the s-panels in that tree-wall. Hence it also preserves the s-wings
with respect to the s-panel of ¢. Now we have to show that it is an
element of the universal group, i.e., we have to prove that

hioggo (ht‘ptyz)_l €G!, for all t € S and for all 2 € Ch(A).

We observe that any panel P not in the tree-wall 7 is not parallel
to Ps.. Hence by Lemma we conclude that projp_ (P) is a
chamber. Therefore either Ch(P) C X (d) or Ch(P) C Ch(A) \
Xs(d).

Let P be a t-panel for some t € S. If P is in the tree-wall T or
in one of its wings different from X,(d), then P is fixed by g4 so the
permutation hy o gq o (he|p)~! is the identity, therefore it is in G*. If
P € X(d) then gg(x) = g(x) for all v € Ch(P). Thus we obtain that
gq € U because g is also an element of the universal group.

We conclude that gg is an element of Fixy(7) and by construc-
tion it is also an element of Vi(d). Moreover, the tuple (gq)dep,.,
which is an element of [];cp,  Vi(d), coincides with g. Therefore

9 € [aep,, Vs(d). o

In the same spirit we can exhibit the fixator of an s residue

using the groups in Equation and its induced action on the
respective tree-wall. Observe that all the chambers of an s*-residue
have the same s-color by definition of legal colorings (or weak legal
colorings).

Lemma 4.4.2. Let s € S and let Q be an s--residue of A. Let
¢ € Ch(Q) and T be the s-tree-wall containing Q. Then the following
hold.
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1. Fixy(Q) = Vi(e)Us(¢) = Us(c)Vs(¢)-

2. The induced action of Fixy(Q) in the s-panels of T is permu-
tationally isomorphic to Stabsym(qs)(a), where « is the s-color
of the chambers of Q.

Proof. Let us prove Statement 1. It is clear that Us(c) fixes @ so
Us(c) € Fixpye(a)(Q). By definition Vi(c) stabilizes Q. We claim
that V;(c) fixes Q.

Assume that there exist g € Vs(c) and chambers ¢, c2 € Ch(Q)
such that gc; = co. The other chambers in the s-panel of ¢; do not
belong to X,(c) and therefore they must be fixed by ¢g. Hence P,
coincides with Ps ., which implies that ¢; = ¢z since they are in the
same s-wing. Therefore Vy(c) fixes @ which implies the containment
Vo(0)Us(e) C Fixaua)(Q).

Now let g € Fixpuya)(Q) and let ¢ € Ch(Q). Consider the per-
mutation g. of the chambers

g.x if z € Xs(c),
T otherwise.

ge: Ch(A) — Ch(A): z — {

The proof that g. is an element of the universal group is analogous
as the reasoning carried out in Proposition On the other hand,
ge € Fixpua)(Q) and by construction it is also an element of V(c).
Now define u,. as

x ifxz e Xs(e),

te: Ch(A) = Ch(A): 2= { g.x otherwise.

We want to show that also u. is a type-preserving automorphism,
that is, that for x,y € Ch(A) we have 0(z,y) = 6(ucz,ucy). If z,y
are both in X (c) then u, fixes these chambers. If both = and y
are not in Xg(c) then u. acts on these chambers as g, which is a
type-preserving automorphism.

So it remains to show the case where z € X;(c) and y ¢ X;(c).
Let 2’ = projy(z) and ' = projr(y). By Lemma 3.3 in [Capl4] we
have that

S(uex, uex)S(uex’, ucy ) S (uey’, uey)

is a minimal gallery. Observe that u. stabilizes each s-panel of T since
it fixes the chambers in X4(c). Therefore u.y’ < 3y’ and it follows
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that u.y’ € Xs(c) as it is a permutation of the chambers. Hence
projps,(¢') & {y',ucy'} which implies that 6(2',y") = o(a', ucy).
We then obtain that

e, ue ) (e’ ucy' ) o (ucy’, uey)
x,2')0 (:r ucy')0(gy, 9y')
z, )) (@', y")o(y, ')

5(,LLCJ;7 ucy)

o
o
o
i

where the last step is obtained by applying [Capl4, Lemma 3.3] to
d(z,y). Therefore u. is a type-preserving automorphism of A. To
show that u,. is an element on the universal group we observe that if
P is a panel in 7 then the induced action of u. on P is the same as
g since g € Fixpyya)(Q). Otherwise we know, using the reasoning
of proof of the last proposition, that P is completely contained in an
s-wing with respect to 7. If P is a panel in X(c) then P is fixed
and therefore the permutation induced is the identity. If P is not
in X;(c) then u,P = ¢gP which is an element of the universal group.
Thus u. € U and, by construction, it belongs to Us(c).

Therefore the product geu., which is an element of Vi(c)Us(c),
coincides with g. Thus g € Vs(c)Us(c) and the first statement is
proved.

Let us now prove Statement 2. Let P be an s-panel of 7. Let
a be the s-color of ¢ = Ch(Q) N Ch(P). Since Fixy(Q) fixes ¢, its
induced action on P is permutationally isomorphic to a subgroup of
Stabgym(g,)(@)-

Conversely, take g € Stabgyy(g,)(a). It induces a permutation,
also denoted g, of the chambers of Ch(P) fixing the chamber ¢. By
Proposition[£.2.3] we can extend g to a tree-wall automorphism g € U
fixing the s-wing of ¢. Since @ C X;(c), we have that g € Fixy(Q)
and the local action of g on P is the initial element g. Thus the
induced action of Fixy(Q) on P is permutationally isomorphic to
Stabgym(g,)(@)- O

The next technical lemma will be used in the next section to prove
that fixators of tree-walls are contained in any normal subgroup of
the universal group.
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Lemma 4.4.3. Let s € S and let ¢1 and co be two s-adjacent cham-
bers in an s-panel P. Let g € U, and let s1--- s, be a reduced repre-
sentation of 6(ce, gc1). Assume moreover that

(1) there exists an i € {1,...,n} such that |s;s| = 0o, and

(2) projp(gc1) = c2 and plrojps’gc1 (c2) = gc.
Then for each h € [laecnpy\fer e} Vo(d), there exists an element
u € U such that h = [u, g] = ugu='g~'.
Proof. Let Vo = [Taecnp)\fer,co1 Vs(d). We know that Vp is subgroup
of U. For each n > 0 let

Pn=g"(P), f =g"(c1), ¢5 =g"(c2) and V, =g"Vog™".
For each n > 0 the support of the group V,, is contained in the set
UdECh(Pn)\{c{l,cg} Xs(d). Since projp(g.c1) = c2 and projp, . (c2) =
g.c1, given a chamber d € Ch(P,) \ {c}, 5} and m > n we have

d e Xs(c") and " € Xs(d).

Thus Xs(d) C Xs(c*) by [Capl4, Lemma 3.4]. Similarly we have
Xs(c) C Xs(cy) for any ¢ € Ch(Py,) \ {c]", ¢5*}. This implies that the

sets
U X (d) and U X(d)

deCh(Pn)\{c},c5} deCh(Pm)\{c]",ch"}

are disjoint. In other words, this means that, for m > n > 0, the
products V, and V,, have disjoint support. Using Lemma we
know that the direct product V' = [],,~ V» is a subgroup of U. More-

over gVng_l = Vn+1-
Let h € V. For each n € N, let u,, = ¢g"hg™". Then the tuple
u = (Up)p>0 is an element of the product V' < U and so is the

commutator [u,g]. We observe that the commutator [u,g] fixes ¢}
and ¢y for all n > 0.

Furthermore, denoting by ¥, the n-th component of an element
y € V according to the decomposition V' =[], ~, Vi, we obtain that
[u, gln = un(gu=tg™1), for all n > 0. Hence [u, g]o = h and

[u7g]n = Ungu;ilgil = unU;l =L

Therefore [u, g| = h, which proves the lemma. O
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4.5 Action of U on the tree-wall trees

A key point in proving simplicity of the universal group will be to
prove that a normal subgroup of U contains the fixators of tree-walls.
Therefore, having that as a motivation, it is suitable to have a closer
look at the action of the universal group on the tree-wall trees pre-
sented in Definition

That is the goal of this section. We will prove that any normal
subgroup of U induces a translation axis in any tree-wall tree and we
will also present some results regarding the action of open subgroups
of the universal group on these trees.

We recall the notation that we are using. Let (W, S) be a right-
angled Coxeter system and (gs)ses be a set of cardinal numbers. Con-
sider A the unique semi-regular right-angled building of type (W, S)
and prescribed thickness (gs)scs. For each s € S, let G* < Sym(qs)
be a transitive permutation group and let U denote the universal
group with respect to the groups {G*}scs.

Definition 4.5.1. For every s € S, any automorphism of the right-
angled building A also induces an automorphism of the s-tree-wall
tree I's. As the universal group U acts chamber-transitively on A, it
has a natural edge-transitive type-preserving action on this tree I';.

We say that an element g € U is s-hyperbolic, for s € S, if it
induces a hyperbolic action on the s-tree-wall tree I';.

Lemma 4.5.2. If the right-angled building A is irreducible, then the
universal group U acts faithfully on the s-tree-wall tree T's, for all
ses.

Proof. Assume by way of contradiction that some non-trivial group
element g € U acts trivially on 'y for some s € S. This implies
that ¢ stabilizes every s-tree-wall and every residue of type S\ {s}
in the building A. The residues of types s, which are the non-
trivial intersections of these two, are hence also stabilized. As g is
non-trivial, there exist distinct chambers ¢; and ¢y of A such that
gc1 = co. These chambers have to be contained in a common residue
R of type s. Let sq---s, be a reduced word representing the Weyl
distance between c; and cs.
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For each i € {1,...,n}, let v; be a shortest path in the Coxeter
diagram ¥ between s; and an element ¢ € S such that |st| = co. Both
the elements ¢ and the paths exist because we are assuming > to be
connected, i.e., A to be irreducible.

Let v; be such a path of minimal length between s; and ¢ (min-
imized over all possible i € {1,...,n} and elements ¢). Denote
v; = (r1,...,1), with r1 = s; and 7, = t with |ts| = co. We observe
that |r;ri+1] = oo for all 7 by definition of a path in 3. Moreover,
7; € s\ {s1,...,8,} for all i € {2,...k — 1} since v; was chosen as
a shortest path of minimal length. Therefore

W] =Tp_1-°"T981 " SpTo -+ Tp_1 and
Wy = t/]“k__l ce 7981 8pTo Tkj—]_t

are reduced words in Mg with respect to 3.

Pick a chamber d; at Weyl distance ro---r;_1 from ¢y and let
d2 = gdy. Observe that the word w; represents the Weyl distance
from d; to ds. Hence d; and ds are also in the st-residue R and
therefore in the same s-tree-wall 7. Let P; and Py be the t-panels
of di and ds, respectively. These panels are not contained in R as
|ts| = oo. So, if 21 € Ch(Py) \ {d1}, then the s-tree-wall T of z; is
distinct from 7.

Let z3 = gz1. Then x5 € Ch(P2) \ {d2}. Analogously, the s-tree-
wall 75 of o does not coincide with 7. Moreover ws is a reduced
representation of the Weyl distance between x; and x9. This implies
that 7; and 7a are distinct because |r;r;11| = oo for every element
i€42,...,k—1} and 7, = t. As g maps x; to x9, it maps 77 to
T>. We have hence arrived at a contradiction as g should stabilize
T1, since it acts trivially on the s-tree-wall tree I';. Thus we conclude
that the action is faithful. O

Lemma 4.5.3. Assume that A is thick and irreducible. Then every
non-trivial normal subgroup of U contains an s-hyperbolic element,
for every s € S.

Proof. Let s € S and N be a non-trivial normal subgroup of U.
Assume that N does not contain any s-hyperbolic element. By [Tit70,
Proposition 3.4] we know that either N fixes some vertex or it fixes
an end of the tree I'y, as all its elements are elliptic.
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First assume that IV fixes some vertex. This implies, since N is
normal in the type-preserving edge-transitive group U, that N fixes
all vertices of the same type of this vertex. Therefore it fixes every
vertex of the tree I's and hence, by Lemma [4.5.2] it contradicts the
non-triviality of V.

Next assume that IV fixes an end of the tree. Again using nor-
mality and edge-transitivity (and the fact that the tree I's contains
vertices of valency at least three because A is thick), we obtain that
N fixes at least three ends of I';. Since three ends of a tree determine
a unique vertex we get that N has a global fixed point, a possibility
already handled in the previous paragraph.

We conclude then that for every s € S, the normal subgroup N
contains an s-hyperbolic element. O

Next we investigate the action of open subgroups of U on the
tree-wall trees. Since we want a faithful action on the tree-wall trees,
we assume henceforth that the building A is irreducible.

Lemma 4.5.4. Let s € S. Let H < U be an open subgroup with an
s-hyperbolic element h in its action on the s-tree-wall tree I's. Then
Fixp(Q) C H for any s*-residue Q of A corresponding to an edge in
the axis A.

Proof. Let @ be an s*-residue corresponding to an edge e in the axis
A.

Since H is open, there exists, by definition, a finite set C' C Ch(A)
such that the fixator Fixy (C) is contained in H. This finite set of
chambers corresponds to a finite set of vertices (of s-tree-wall type for
instance) in I';. Therefore we can apply enough positive and negative
powers of the hyperbolic element h so that

C1 = h"(C) C X4(c) and Cy = h™"(C) N X(c) = 0.

Then we have that Fixy (C;) = (Fixy (C),h) C H, for i € {1,2}.
Moreover Vs(c) C Fixy (C2) and Us(c) C FixU(C’l) Since we

)
have Fixy(Q) = (Vs(c),Us(c)) by Lemma [4.4.2{|1)), we obtain that
Fixy(Q) C H, as desired. O

Corollary 4.5.5. Fiz s € S. Let H < Aut(A) be an open subgroup.
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1. Fixpuea)(T) € H for all s-tree-walls in an s-axis of an s-
hyperbolic element of H.

2. Fixaupay)(R) € H for all S\{s}-residues in an s-azis of an
s-hyperbolic element of H.

Proof. This follows from Lemma Since any s*-residue @Q cor-
responding to an edge e in an s-axis in I'g, we have that Q C T and
@ C R, where T and R are the s-tree-wall and the S\{s}-residue,
respectively, corresponding to the vertices of e. Then Fixp¢(a) (T) C
Fixaue(a) (@) € H and the same holds for R. O

Now we prove, if the s-local action is primitive and generated by
point stabilizers, that we can conclude further results on the action
of open subgroups of U with s-hyperbolic elements.

We first present a lemma of group theoretical nature.

Lemma 4.5.6. If G < Sym(Y') is primitive and generated by point
stabilizers then, for all a € Y, the stabilizer Stabg(«) only fizes «.
In particular G = (Stabg(a), Stabg(5)), for any o #  in Y.

Proof. Let us define an equivalence relation on Y by a ~ § <
Stabg(a) = Stabg(8). The relation ~ is a congruence relation on
G since if g € G then, for a ~ 8 we have

Staba(ga) = g Staba(a)g ™! = g Staba(8)g " = Staba(g5)

that is, ga ~ gf.

As @ is primitive either the equivalence classes are singletons or
there is only one equivalence class. If there is only one equivalence
class then all the point stabilizers are equal, which is a contradic-
tion to the fact that G is generated by point stabilizers. Therefore
the equivalence classes of ~ are singletons. Hence if Stabg(8) #
Stabg(«) for some «, B € Y, since these stabilizers are conjugate, we
obtain that Stabg(8) = Stabg(«) which implies that o = 8 by the
assumption on ~. Thus Stabg(a) only fixes . O

Lemma 4.5.7. Let s € S and assume that G° is primitive and gen-
erated by point stabilizers. Let H be an open subgroup of U with an
s-hyperbolic element with axis A in the s-tree-wall tree I's. Let T be
an s-tree-wall of A.

- 160 —



4.5. ACTION OF U ON THE TREE-WALL TREES

1. The local action of H on the s-panels of T is permutationally
isomorphic to Sym(qs).

2. Fixy(Q) C H for all s*-residues Q of T.

Proof. Let P be an s-panel of 7. Let e; and es be the two edges in
the star of T (regarded as a vertex in I'y) that are in the axis and
let Q1 and Qs be the corresponding s*-residues of A. We know by
Lemma [4.5.4] that Fixy(Q1) and Fixy(Q2) are contained in H.

Moreover, by Lemma , the induced action of Fixy(Q;) in
Ch(P) is permutationally isomorphic to Stabgs(«;), where «; is the
s-color of all the chambers in @Q;, for i € {1,2}. Furthermore a; # «s.

On the other hand, as by hypothesis G* = (Stabgs («), Stabgs(3)),
for any a # 8 € Y, the induced action of H on Ch(P) contains (up to
permutational isomorphism) (Stabgs(ay), Stabgs (a2)) = G*. There-
fore Statement 1 follows.

Now let Q be an s*-residue of 7. Let P be an s-panel of 7. We
know by the previous statement that the induced action of H on P
is permutationally isomorphic to G®. Let ¢ = Ch(Q) N Ch(P) and let
¢ = Ch(Q') N Ch(P), where @' is an s*-residue of T corresponding
to an edge in the axis. In particular Fixy(Q') € H by Lemma m

As G* is transitive, there exists g € G® such that ghs(c’) = hs(c).
We can extend this permutation g to an element g € H and then we
have that Fixy (Q) = g Fixy(Q')g~t. Therefore Fixy(Q) C H. O

We finish the section by proving that any s-tree-wall can be con-
sidered to be in an s-axis of an element of the universal group.

Lemma 4.5.8. Let s € S and assume that G° is primitive and gen-
erated by point stabilizers. Then every s-tree-wall is contained in the
axis of an s-hyperbolic element of U.

Proof. 1t is clear that U contains s-hyperbolic elements as A is irre-
ducible and U is chamber-transitive. Let h be an s-hyperbolic element
of U with axis A.

Let 7 be an s-tree-wall of A not in A. Let ¢ = proj;(A) and let
P be its s-panel. Observe that A C X(c).

Let g € G*® such that ghs(c) # hs(c). Such an element exists by
Lemma We can extend this permutation of the chambers of P
to an element g € U stabilizing P which does not stabilize A.
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Let Q1 be an st-residue in A such that X,(Q1) N7 = and let
Q2 be the st-residue in the same s-tree-wall such that 7' C X¢(Q2).
Let g2 € Fixy(Q1) not stabilizing Q2. This element exists because
the induced action of Fixy(Q1) on the s-panels of this tree-wall is
permutationally isomorphic to Stabgs(hs(Q1)), which only fix hs(Q1)
by Lemmal[4.5.6, Then g2 also does not stabilize the initial s-tree-wall
T.

Both elements g and g2 are s-elliptic on their action on the s-tree-
wall tree since they stabilize 7 and @)1, respectively. Moreover, their
fixed vertex sets in I'y are disjoint. Therefore gg- is an s-hyperbolic
element of U by [Ser80, Proposition 26] and by construction 7 is in
the s-axis of ggs. O

4.6 Simplicity of the universal group

In this section we prove the simplicity of the universal group provided
that the following two conditions are satisfied.

(IR) The right-angled building is thick, irreducible, semi-regular and
has rank > 2.

(ST) For each s € S, the group G* is transitive and generated by its
point stabilizers.

Remark 4.6.1. We observe that if we make the stronger assumption
that the local action of the universal group is given by 2-transitive
groups, i.e. if each local group G* < Sym(Y;) is assumed to be 2-
transitive, then we can use similar arguments to the ones in [Cap14],
Proposition 6.1] to show that the action of U on Ch(A) is strongly
transitive and to prove simplicity in that manner.

The second condition (ST) is necessary, as is clear from the fol-
lowing proposition.

Proposition 4.6.2. Let U™ be the subgroup of U generated by cham-
ber stabilizers. Then U = U™ if and only if for every s € S the group
G? is transitive and generated by point stabilizers.

Proof. Notice that, in the definition of U, we already assume the
groups G° to be transitive. Assume first that U = U™, Fix an element
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s € S. We will show that G* is generated by its point stabilizers. Let
(G*)* denote the subgroup of G* generated by the point stabilizers

(Ga)aGYs .
For any s-panel P and any g € U, we define

O'(g,P) = hs’g.P ©cgo (h5|77)717 (461)

which is an element of G* by the very definition of the universal group
U. Observe that

(9192, P) = o(g1,92P) o (g2, P) (4.6.2)

for all g1,92 € U.
We first claim that if g € Staby(c) for some chamber ¢ € Ch(A),
then
o(g,P) € (G°)* (4.6.3)

for all s-panels P of A. We will prove this claim by induction on the
distance

dist(c, P) := min{dist(c,d) | d € Ch(P)}.

If dist(c, P) = 0, then g stabilizes P since g fixes c. Hence o(g,P) €
Gl < (G

Assume now that the claim is true whenever dist(c, P) < n and
let P be a panel at distance n 4+ 1 from c¢. Then there exists an
s-panel P; at distance n from c¢ such that there are chambers d €
Ch(P) and d; € Ch(P;) that are t-adjacent for some t # s. Then
hs(d) = hs(dy); denote this value by a € Ys. Similarly, g.d and g.d;
are t-adjacent, hence hs(g.d) = hs(g.di). By (4.6.1), this implies
o(g,P1)(a) = o(g,P)(cx). We conclude that o(g,P) = (g, P1)ga for
some g, € G%,. By our induction hypothesis, o(g,P1) € (G*)*, and
therefore (g, P) € (G*)*, which proves the claim (4.6.3).

Now let g € G* be arbitrary. Choose an arbitrary s-panel P. By
Lemma the action of U|{7>} on P is permutationally isomorphic
to G, so in particular, we can find an element u € U]{p} such that its
local action on P is given by g, that is, g = o(u,P). Since U = U™,
we can write u as a product u., - - - u, , where each u,, fixes a chamber
¢;i. Then g = o(u, P) = o(ue, - - - e, , P). It now follows from
and that g € (G*)*, so G* is indeed generated by its point
stabilizers.
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Conversely, assume that for each s € S, the group G* is generated
by point stabilizers. Let s € S and P be an s-panel. Then, as Ul{py
is permutationally isomorphic to G, if u € U|¢p) for some s-panel P,
then hsouo (hs) Y p = gay *** Ga,,, Where g,, fixes the color ;. Lift
arbitrarily the elements gq,, ..., ga,_, to elements u.,,...,u., , €U,
and then define u., € U such that u = u, - - - u.,. Then each u., fixes
the corresponding chamber ¢; € P of color «;, and hence u € U". As
G* is transitive, U contains elements of U mapping one chamber to
any other s-adjacent chamber. Since this is true for any s € S, the
subgroup U™ is chamber-transitive. As in addition U™ contains the
full chamber stabilizers in U, we conclude that U™ is indeed all of
U. O

Next we prove that fixators of tree-walls are contained in any
normal subgroup of the universal group.

Proposition 4.6.3. Assume that A is thick and of irreducible type.
Let s € S and T be an s-tree-wall. Then any non-trivial normal
subgroup N of U contains Fixy (T).

Proof. Let g € N be an s-hyperbolic element with axis A(g), which
exists by Lemma Let T be an s-tree-wall for which the corre-
sponding vertex of I'; lies on the axis A(g). Let P be an s-panel of
T, P1=g(P)and Ty = g(T) (so P; € T1). We note that 7 and T;
are distinct since g is s-hyperbolic.

Let ¢ = projp(P1) and ¢; = projp, (P) (the projections are unique
chambers since the panels are not parallel). We claim that g(c) # c;.
Assume by way of contradiction that g(¢) = ¢;. Then the residue
R = Rs\{s},c 1s mapped to R1 = Rg\(s},¢,, both corresponding to
vertices of I's. Both of these residues belong to the wings X;(¢) and
Xs(c1) implying that dist(R, R1) (as vertices of ') is strictly smaller
than dist(7,71). This a contradiction to the fact that T € A(g).
Hence g(c) # c1.

Let ¢co = g '¢1. Applying Lemma to ¢ and co combined with
the fact that NV is a normal subgroup of U yields that

11 Vi(d) C N.

deCh(P)\{c,c2}
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As P is thick, we can pick a chamber c3 in P\ {c,c2}. As G* is
transitive, Lemma [4.2.2] implies that there exists a u € U such that
ucg = c¢. We observe that

w0 Vi(es) ou = Vi(ucs) = Vi(c),

hence Vi(¢) € N. Analogously one proves that Vi(cz) € N. We
therefore obtain that

I[I “a@cnw

deCh(P)

and, by Proposition that Fixy(7T) € N.

Since U is chamber-transitive, there exists, for each tree-wall 7,
an element h € U mapping 7 to 7'. Hence h~! o Fixy(T) o h =
Fixy (T') € N. O

Proposition 4.6.4. Let A be a right-angled building satisfying (IR)
and (ST). Let N be a non-trivial normal subgroup of U. Then for
each panel P of A, we have that Fixy(P) # Staby(P).

Proof. Let s € S and P be an s-panel of A. Let g € Gjj be a non-
trivial element. Then ¢ induces a non-trivial permutation of Ch(P)
fixing some ¢y € Ch(P). By Proposition we can find a corre-
sponding tree-wall automorphism g € U stabilizing P, acting locally
as g on P, and fixing the chambers in the s-wing X(cg) (considering
A to be directed with respect to a chamber in the wing X(cp)).
Let t € S be such that |ts| = oo (such an element always exists be-
cause A is irreducible). Let T be the t-tree-wall of ¢g. Then Ch(7) C
Xs(co). Therefore g fixes 7. Since g € Fixy(7T) we have g € N by
Proposition We conclude hence that g € N N Staby(P) and
thus g € Staby (P)\ Fixy (P). O

With the previous proposition at hand we can show that a normal
subgroup of the universal group is transitive on the chambers of the
building. That is achieved in the next two results.

Lemma 4.6.5. Let A be a right-angled building satisfying (IR) and
(ST). Let N be a normal subgroup of U and P be an s-panel from

some s € S. Then Stabyn(P)/ Fixn(P) is permutationally isomorphic
to G*.
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Proof. Let T' denote Staby(P)/Fixy(P). By Proposition we
have that G§ < T, up to permutational isomorphism, where G§ fixes
the color 1 of Y;. Let ¢y € Ch(P) with s-color 1.

Let ¢ € Ch(P)\{co} and ¢g € U such that gc = ¢g. Then ¢’ = g|p
is such that GZ(C) =g'Gsg L.

Let g1 € Gy, o+ Then there is g, € G¢ such that g1 = ¢'gag’ 1.
By Lemma there exists ga € N such that ga|p = g2. Thus
929~ ! € N and ggag~tp = ¢'gog'~' = g1. Therefore Gho =T
Since G* = (G5, Gj) for any o # f3, the results follows.

The next corollary is a direct consequence of the previous lemma.

Corollary 4.6.6. Let A be a right-angled building satisfying (IR)
and (ST). The group U is quasi-primitive in Ch(A). Therefore any
normal subgroup of U acts transitively on the chambers of A.

We are now ready to prove the main result of this section.

Theorem 4.6.7. Let A be a thick semi-reqular right-angled building
of irreducible type (W, S) with prescribed thickness (qs)ses and rank
at least 2. For each s € S, let hy: Ch(A) — Ys be a legal s-coloring
and G* < Sym(Yy) be a transitive group generated by point stabilizers.

Then the universal group U of A with respect to the groups (G*)ses
s simple.

Proof. We first observe that by Proposition U coincides with
U*. We will prove the simplicity by induction on the rank of A.

If A has rank 2 then the simplicity of UT = U follows from [Tit70,
Theorem 4.5] since by definition U is the universal group of a biregular
tree and it has Tits independence property.

Now assume that the rank of A is at least three, and that we
have proven simplicity for lower rank. Let N be a non-trivial normal
subgroup of the universal group U. It suffices to show that N contains
the chamber stabilizer Staby(c) of ¢ in U, for each chamber ¢ €
Ch(A). Let then ¢ € Ch(A). We will show that the stabilizers
Staby(c) and Stabg(c¢) coincide, showing what we want.

Pick a generator s € S such that S\ {s} is irreducible. (Note that
this is always possible, by picking s to be a leaf of a spanning tree
of the unlabeled Coxeter diagram.) Let R be the S\ {s}-residue of
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A containing c. This residue is a right-angled building on its own of
irreducible type and of rank at least two.

Claim 1. N contains the fizator Fixy(R) of R in U.

Let r be an element of S not commuting with s (which is always
possible by the irreducibility of the Coxeter system). The set {r}Ur*
is a subset of S\ {s} and therefore the residue R contains a residue
of type {r}Ur+, which forms an r-tree-wall 7. The normal subgroup
N contains the fixator Fixy(7T) by Proposition hence it also
contains its subgroup Fixy(R).

Claim 2. The stabilizer Stabx(R) maps surjectively onto U(R).

We first observe that the image of N N Staby(R) in U(R) (which
is permutationally isomorphic to Staby(R)/ Fixy(R)) is non-trivial
since Staby(P) C Staby(R) for any panel P in R and Fixy(P) #
Stabx (P) by Proposition [4.6.4]

By induction on the rank we know that U(R) is simple. Since
moreover the natural homomorphism from Stabg(R) to U(R) is sur-
jective by Proposition [£.3.9] it follows that it remains surjective in
restriction to N N Staby (R). We conclude then that Staby(R) maps
surjectively to U(R), by simplicity of U(R), proving Claim

The chamber stabilizers Staby(c) and Staby(c) also stabilize the
residue R, hence we may consider their image in the universal group
U(R). By Claim|[2] the images of Staby (c) and Staby(c) in U(R) are
both equal to the entire group Staby(g)(c). The kernels of the maps
from Staby(c) and Staby(c) to U(R) are the fixators Fixy(R) and
Fixyr(R), respectively, which also coincide by Claim |1 We conclude
that Staby(c) and Staby(c) are equal for all ¢, hence N contains all
chamber stabilizers U, and thus coincides with U by Proposition|4.6.2
proving the simplicity. O

4.7 Open subgroups of the universal group

Let A be a thick irreducible semi-regular right-angled building with
prescribed thickness (¢s)ses. In Chapter 3| we proved that proper
open subgroups of Aut(A) are contained with finite index in stabiliz-
ers of proper residues, considering the locally finite case.
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As observed right after the definition of the universal group, the
whole automorphism group of A can be visualized as a universal
group, where the local s-action is prescribed by the symmetric group
on ¢, elements, for all s € S. In this section we make explicit how
much of the work done in Chapter [3] can be applied for a general
universal group for a right-angled building.

We recall the notation that we are using. Let (W,S) be a irre-
ducible right-angled Coxeter system and (gs)ses be a set of cardinal
numbers. Consider A the unique right-angled building of type (W, 5)
and prescribed thickness (gs)secs. For each s € S, let G* < Sym(gs)
be a transitive permutation group and let U denote the universal
group with respect to the groups {G*}ses.

We start by looking at the fixed-point set of the fixator of a ball
in the universal group. The proof of Proposition [3.2.6, other than
the geometry of the right-angled building, only uses two facts. The
first is that Stabgym(g,)(a) only fixes a. The second is an extension
result corresponding to Proposition [2.2.13

For universal groups, we also have an extension result given by
Proposition namely the tree-wall automorphisms. Moreover,
the condition on the local action can be obtained by weaker require-
ments, as shown in Lemma [4.5.6| Therefore, using the same argu-
ments as in Section we can prove the following.

Proposition 4.7.1. Let A be a thick irreducible semi-regular right-

angled building of type (W, S). For each s € S, let qs be a cardinal

number and G* < Sym(qs) be primitive and generated by point sta-

bilizers. Consider the universal group U for A with respect to the

groups {G*}ses. Let n € N and ¢y be a fized chamber in Ch(A).
Denote K = Fixy(B(co,n)). Then AK is bounded.

Also the work developed in Section [3.4.1| goes through in the set-
ting of universal groups. That yields the following.

Lemma 4.7.2. Retain the notation from Proposition[{.7.1] for A and
U. An open subgroup of U is compact if and only if it is X-locally
elliptic on the Davis realization of the building.

In the locally finite case, to prove that open subgroups of Aut(A)
are contained with finite index in stabilizers of residues, we used, as
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main ingredient, the fact that the action of Aut(A) on A is strongly
transitive. By Remark we can obtain strong transitivity of the
universal group on A if we require the local action to be 2-transitive.
Hence, using the reasoning of the proof of Theorem (and all
the constructions associated) we can conclude:

Proposition 4.7.3. Let A be a locally finite thick irreducible semi-
reqular building of type (W,S). For each s € S, let qs > 3 be a
natural number and let G° < Sym(qs) be a 2-transitive permutation
group. Consider the universal group U for A with respect to the
groups {G*}es.

Then any proper open subgroup of Uis contained with finite index
in the stabilizer in U of a proper residue of A.

In particular, any proper open subgroup of U is commensurable
with the stabilizer in U of a proper residue of A.
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CHAPTER

Compact open subgroups
of the universal group

The universal group of a locally finite semi-regular right-angled build-
ing is a locally compact group. Crucial in understanding such a group
is to investigate its compact open subgroups. This is the aim of this
chapter.

We start by describing the maximal compact open subgroups of
U and then we focus in the structure of chamber stabilizers in the
universal group, which are finite index subgroups of the maximal
compact open subgroups of U (see Proposition [5.1.2).

The interest in the study of such chamber stabilizers is that one
can use distinct group theoretical constructions that, in the case
of right-angled buildings, give rise to permutationally isomorphic
groups. For any chamber ¢, the group Staby(c) is profinite so we
will present in Section [5.2| an explicit description of the projective
limit of finite groups as an iteration of semidirect products. As the
name suggests, this description will provide a way of constructing the
finite groups in a recursive way.

Those finite groups appearing in the projective limit correspond
to the induced action of a chamber stabilizer in balls (or spheres)
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around the chamber and these induced actions also deserve some
investigation, which we will do using different points of view.

We will regard the induced action on an n-sphere as a subdirect
product of the induced actions on w-spheres, for reduced words w of
length n. Then we prove in Section that the induced actions
of chamber stabilizers on w-spheres are permutationally isomorphic
to a generalized wreath product constructed using a partial order on
the letters of w (see Proposition .

In Section we connect these generalized wreath products
with intersections of complete wreath product in imprimitive action
and show that we can also describe the structure of the induced action
on a w-sphere using those intersections.

We finish the chapter by defining a new partial order <, on
the tree-walls of the right-angled building and by describing the in-
duced action on the whole n-sphere directly as a generalized wreath
product with respect to <,,, without looking at w-spheres (cf. Theo-
rem [5-3.13).

In this chapter we will use the description of semi-regular right-
angled buildings as directed objects and we assume that the legal
colorings of the chambers are always directed with respect to a fixed
chamber cy. We recall that such a description is explained in Sec-

tion 241

5.1 Maximal compact open subgroups of U

We start by describing the maximal compact open subgroups of the
universal group for a right-angled building. We will use the following
notation throughout the chapter.

Let (W, S) be a right-angled Coxeter system with Coxeter diagram
Y. Let (gs)ses be a set of natural numbers with g5 > 3 and, for
each s € S, let Yy = {1,...,qs} be the set of colors. Consider the
locally finite thick semi-regular right-angled building A of type (W, S)
with prescribed thickness (¢s)ses. Fix a base chamber ¢y € Ch(A).
For each s € S, let hy: Ch(A) — Y; be a directed legal s-coloring
with respect to ¢p and let G* < Sym(Ys) be a transitive permutation
group. Consider the universal group U of A with respect to the
groups (G*)scg, as in Definition [4.1.1]
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Lemma 5.1.1. Let R be a spherical residue of A. Then the stabilizer
Staby(R) of R in U is compact.

Proof. The result follows the argument of Lemma where it is
proved that each chamber stabilizer is compact. Indeed, since R is a
spherical residue, the set of chambers of R is finite. O

Proposition 5.1.2. The mazimal compact open subgroups of U are
exactly the stabilizers of mazximal spherical residues of A.

Proof. Let H be a compact open subgroup of U. By Lemma it
is sufficient to show that H is contained in the stabilizer of a spherical
residue of A.

Since H is compact, the orbits of H on Ch(A) are finite. In
particular, H acts (type-preservingly) on any s-tree-wall tree with
finite orbits. Therefore, it fixes a vertex in each s-tree-wall tree.
Such a vertex corresponds to a residue R of A, which is, on its own,
a right-angled building. Therefore H C Staby(R).

As the orbits of action of H on Ch(R) are still finite, we can repeat
the above procedure and obtain a residue R’ of smaller rank than R
such that H C Staby(R’). We can continue this procedure until
there are no non-trivial tree-wall trees left, which happens exactly
when the right-angled building is spherical (c¢f. Remark [2.2.39).

We conclude that H is indeed contained in the stabilizer of a
spherical residue. ]

5.2 The structure of a chamber stabilizer

The chamber stabilizers (as well as the maximal compact subgroups
of which they are finite index subgroups) are totally disconnected
compact groups, and are therefore profinite (see [Wil98, Corollary
1.2.4]), i.e., they are a projective limit of finite groups.

As Burger and Mozes did in [BM00a] the goal of this section is
to make this inverse limit explicit, by means of describing the finite
groups taking part in the limit. The commutation relations between
the generators of the Coxeter group W (which in the case of trees are
inexistent) play an important role in this description, as they make
possible more than one reduced representation of an element of W.
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Let Ue, |B(co,n) Pe the induced action of Ue, on the n-ball B(co, n),
that is, the group Ueylg(co,n) = Ueo/ Fixu,, (B(co,n)). (Recall that
B(co,n) is the set of chambers of A at gallery distance smaller than

or equal to n, as in Definition |1.4.48)).

The restriction of the action of U |(ey,nt1) t0 B(co,n) maps
Ueo|B(co,nt1) 10 UcylB(co,n) and this restriction is onto. Moreover we
have

Lemma 5.2.1. Let n € N. Then Ucy|g(co,n) = Ucols(

co,n)*

Proof. It is clear that Fixy, (S(co,n)) C Fixy, (B(co,n)). On the
other hand, since there is a unique path of each type between any
two chambers of A and since we are considering type-preserving au-
tomorphisms only, if an element fixes every element in S(cg,n) then
it has to fix every chamber in B(cg,n). Therefore the two induced
actions coincide. O

Therefore we obtain

Ueo = Wm Ueylp(co,n) = 1m Uco [s(co,n)- (5.2.1)

We will make the extension of the action of Uc,[g(cy,n) to B(co, n+
1) explicit following the strategy described in [Gib14) Section 9], that
is, by splitting each sphere according to the commutator relations of
the generators of the Coxeter group. This partition of the sphere was
already considered in Chapter |3| (see Definition and we quickly
recall it here.

Definition 5.2.2. For any w € W, let
L(w) ={se S |l(ws) <l(w)}. (5.2.2)
Let W(n) denote the set of elements w € W of length n and define

Wi(n) = {w € W(n) | [L(w)| = 1},
Wa(n) = {w € W(n) | |L(w)] = 2}.
Observe that if w € Wi(n), then the last letter of w is indepen-

dent of the choice of the reduced representation for w since otherwise
there would be two generators s; and s; such that l(ws;) < {(w) and
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l(wsj) < l(w). We will write this last letter as 7. Therefore, if
w € Wi(n) then L(w) = {ry}.
We consider a partition of S(cy, n) by defining, for each i € {1, 2},

Ai(n) = {c € S(co,n) | (co,c) € Wi(n)}. (5.2.3)
(a graphical visualization of these sets is presented in Figure .

We observe that if two chambers ¢; and ¢z in the sphere S(cg, n)
are s-adjacent for some element s € S, then there is a unique chamber
¢ in their s-panel that is in S(cg,n — 1). Therefore it follows that
d(co,c1) = 8(co,c)s = d(co, c2) and hence ¢; and ¢y are in the same
part A;(n). Thus A;(n) and Az(n) are mutually disconnected parts
of S(n).

We will extend the action of U, |g(c,,n) to B(co,n + 1) by consid-
ering the extension to Aj(n + 1) and to Ax(n + 1) separately.

Definition 5.2.3. We define the set

C,, = {c€B(co,n) | ¢ X ¢ for some ¢/ € Aj(n+1)

and some s € S}’ (5:2.4)
and for each ¢ € C,, let
S, ={s€S|cX forsomec € Aj(n+1)}. (5.2.5)
Now consider the set of pairs
Zn =A{(c,s)| ceC, and s € S;}, or equivalently, (5.2.6)

={(c,s) € S(co,n) x S| §(co,c)s € Wi(n+1)}.

For each element z = (¢, s) € Z,, let P, be the s-panel containing ¢
and let G, = Gf), where Gf is the stabilizer of the element 1 € Y, in
G*. Observe that hs(c) = 1 because we are considering directed legal
colorings with respect to cg.

The first step in the extension of this action is to extend the action
of Ue, to the set B(co,n) U Aj(n+ 1).

Lemma 5.2.4. Let E := B(cp,n) U A1(n + 1). For each element
z = (¢,s) € Zp, there is a subgroup U, < U, |g acting trivially on
E\ P, and acting as G, on P,. In particular, U, fizes B(co,n).
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Proof. Let z = (¢, s) € Z,, and consider the s-panel P = P,. Notice
that ¢ = projp(cp). Since hy is a directed legal coloring, we know
that hs(c) = 1 and that, for any u € Ug|g(cy,n), also hs(u(c)) = 1
because u is a type-preserving automorphism.
For each g € G{j, we consider the induced automorphism of P
given by
gp = (hs|g73)_1 ogohglp € Aut(P).

By Lemma we know that there exists a tree-wall automorphism
gp € U acting locally as gp on the panel P and fixing the s-wing
Xs(c). In particular, gp € U, because ¢y € Xs(c).

We claim that gp fixes each chamber d € E'\ Ch(P). We start by
showing that projp(d) = c¢. Indeed, if projp(d) = c2 € S(co,n + 1),
then by Lemma[2.2.12] there would exist c3 € S(co,n) such that ¢y is ¢-
adjacent to c3 with st = ts, contradicting the fact that co € Ay(n+1).
Therefore projp(d) = c. It follows that d € X,(c), and hence gp fixes
d, proving our claim. In particular, the restriction of gp to E is
independent of the choice of the extension gp. Let us denote this
element of U, |g by gp|r. Then

U: = {gple | g € Gi}

is a subgroup of Uy, | g isomorphic to G{, fixing every chamber outside
Ch(P) N Ai(n + 1). We also know that it fixes ¢, therefore U, fixes
pointwise B(cg, n). O

Theorem 5.2.5. Let us keep the notation in Definition [5.2.5, The
group UCo‘B(co,n)UAl(n+l) 1s isomorphic to

UCO|B(co,n) X ( H GZ)’

ZGZn

where the action of Ue,|g(cy,n) 01 HzEZn G, is given by permuting the
entries of the direct product according to the action of UCO’B(com,) on
C,, € B(co,n).

Proof. Let E = B(cp,n)UAj(n+1) as in Lemma and consider,
for each z € Z,, the subgroup U, < U,,|g. Then the subgroups U,
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for different z € Z,, all have disjoint support, and hence form a direct
product

D= [] U: < Ugle.
Zezn

Moreover, D fixes B(cp,n) pointwise.

On the other hand, it is clear that each element g € U00|B(c0,n)
can be uniquely extended to an element g € U, |g in such a way
that for each z € Z,, the induced map from P, to P, . preserves the
s-coloring, i.e., it induces the identity of G*. Let

T = {g | g E UC()|B(CO7TL)} S UC()|E)

with g as described above. Then indeed U, | = T x D, and the
conjugation action of 7" on D is given by permuting the entries of

the direct product according to the action of Ue,|g(c,n) On the set
Cp € B(cg,n). O

We observe that the group Ug,lg(co,n) X ([1.cz, G-) resembles a
wreath product as defined in Section Moreover, the group T’
in the proof above plays a similar role as the top group plays in the
complete wreath product.

Next we see what happens in the extension of the action of the
group Ug,|B(co,n) tO the set Aa(n +1).

Proposition 5.2.6. Fach element of UCO’B(C(),H) extends uniquely to
B(co,n) U Aa(n +1). In particular, Ue,|g(con)uasnt1) = Uco|B(comn)-

Proof. Let ¢ € Aa(n + 1) and let w be a reduced representation of
d(co,¢). Since |L(w)| > 2, we can choose s,t € L(w) with s # t.
Consider the chambers ¢; = projp, (co) and ¢ = projp, (co) in
B(cp,n). Observe that ¢ is the unique chamber of As(n + 1) that
is s-adjacent to ¢y and t-adjacent to ¢;. Indeed, if d were another
such chamber, then ¢ and d would be both s-adjacent and t-adjacent,
which is impossible. In particular, for any v € U,,, the restriction
of u to B(cp,n) U Aa(n + 1) is already determined by u restricted to
B(cp,n), and the result follows. O

As the sets Aj(n+ 1) and Az(n + 1) are mutually disconnected,
we can combine the two previous results to obtain an extension of the
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action of Ug|g(co,n) t0 B(co,m + 1) and a description of the groups
UCO ’B(co,n) .

Theorem 5.2.7. For each n, we have

Uco‘B(co,n—&-l) = Uco|B(co,n) X ( H Gz)v (5'2'7)
ZeZn

where the conjugation action of UC0|B(Co,n) on HzeZn G, is given by
permuting the entries of the direct product according to the action of
Ueo|B(co,n) on the set Cp, C B(co,n). Moreover,

Uco = I&H UCO ‘B(co,n)'

Proof. This is now an immediate consequence of Theorem and
Proposition [5.2.6] O

As observed before Proposition the semidirect product oc-

curring in Theorem [5.2.7)is almost a (complete) wreath product. The
only difference is that the groups G, might be distinct for each orbit
of the action of Ug,[g(cy,n) ON Zn-
Remark 5.2.8. In the case of regular trees Ty, all the groups G.
correspond to the same group Gg acting on {2,...,q}. Moreover,
Uco|B(co,1) = G and Az (n) is empty for all n € N. Therefore we get ex-
actly the same description as provided by Burger and Mozes [BM00al
since also |Z,| = [{1,...,q}| x |[{2,...,¢}[""! in this case.

Theorem [5.2.7] gives a procedure to construct the group Uy, recur-
sively, together with its action on the directed right-angled building
A. Indeed, given the group U, = Uglg(c,,n) acting on B(cp,n), we
can define a group U,+1 as in , and endow it with a faithful
action on B(co,n + 1) precisely by extending the action of B(cg,n)
following the description given in the proofs of Theorem [5.2.5 and
Proposition In particular, the group [].. z, G acts trivially
on B(cp,n) and on Ag(n+1), and acts naturally on A;(n+ 1) via the
isomorphisms G, =2 U,, where U, is as in Lemma [5.2.4
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5.3 The structure of the n-sphere stabilizers

We saw in the previous section that we can describe the chamber
stabilizers in the universal group as an inverse limit of its induced
actions on the n-spheres or n-balls around the fixed chamber.

It might be handy however to have a more direct description of
Ucols(co,n)- That is the goal of this part of the thesis. We retain the
notation of the previous sections.

Definition 5.3.1. Let w € W. The w-sphere of A around c¢g is the
set

S(co,w) = {c € Ch(A) | d(co,c) = w},
where 4 is the Weyl distance.

The group Uc|s(cy,n) leaves invariant each w-sphere, with [(w) =
n, because it is a group of type-preserving automorphisms of A.
Hence each of these spheres is a union of orbits for the action of
Ueols(co,n) 00 S(co, ). Therefore, regarding S(co, n) = Uj(y)=nS(co, w),
we have that the group U,, ]S(CO,n) is a subdirect product of the groups
UcolS(co,w) Tunning over all w € W with I(w) = n as in Defini-
tion This subdirect product gives another point of view in
the structure of U,, and shows the interest in studying the groups
UcylS(co,w)- Moreover, it turns out that these groups have a very
interesting structure that can be described only by looking at the
Coxeter diagram of the building and at the commutation relations
between the generators. Therefore one does not have to look at the
building since the description will rely only on the geometry of the
associated Coxeter group.

We will describe the groups Ucy|s ¢, ,w) as generalized wreath prod-
ucts and show, for the partial orders coming from right-angled Cox-
eter groups, that there is a connection between generalized wreath
products and intersections of complete wreath products in imprimi-
tive action.

We finish the section by describing the group U,, |S(Co7n) itself as a
generalized wreath product. For that we will introduce a new partial
order on the tree-walls of the building (see Definition [5.3.9).
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5.3.1 The w-sphere stabilizers as generalized wreath
products

We will prove that U, |s(c,,w) can be realized as a generalized wreath
product as in Section For that we will use the partial order on
reduced words of a right-angled Coxeter system defined in Chapter [2|

Definition 5.3.2. Let w = s1---s,-18, be a reduced word in Mg
and write w = s1---s,—1. Consider the associated partially ordered
set (I, <y) as in Definition 2.1.9] For each i € {1,...,n}, denote
Xi=1{2,...,¢s;}. We define

Xu = {(al,...,an) ‘ «; GXZ}

By the definition of a directed right-angled building (described in
Definition , the chambers in the w-sphere S(cg, w) are indexed
by the elements of X,,. Moreover, every element of U, [s(c, ) induces
an element of UCOIS(CO@) by restricting the elements of X,, to their
first n — 1 coordinates. Let

Dy = {g € Ueyls(co,w) | 9 fixes S(co,w)}.

Notice that D,, depends on the word w in Mg, that is, different
reduced representations wy, ws for a given element of W might have
different associated groups Dy, , Dyy,.

Proposition 5.3.3. Let w = s1---s,-18, be a reduced word in Mg.

1. The group Ucols(%,w) 18 permutationally isomorphic to the gen-
eralized wreath product G = X,,~WR¢cr, Gi with respect to the
partial order <.

2. Under this isomorphism, the subgroup Dy < Ucyls(co,w) cOTTE-
sponds to the subgroup D(n) < G from Definition |1.1.12.

3. If we write W = 81+ sp_1, then Usls(cow) = Ueols(co,@) X Duw-

Proof. We will identify S(cp,w) and X, through the direct descrip-
tion of the chambers, i.e., we will view both Ucls(cw) and G as
subgroups of Sym(X,,), and we will show by induction on n = I(w)
that they are equal. Notice that if n = 1, then these two groups
coincide by definition. Hence we may assume that n > 2.
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Consider wy, ws, ..., w, to be the sequence of elements in W rep-
resented by the words si,s189,...,8182 -8y, respectively, and let
K = {lwy,wi,wa,...,w,} CW. As K is a (finite) connected sub-
set of W containing the identity (regarded as a Coxeter chamber
system), we can apply Lemma and obtain a set of generators
for UCOIS(%U,), with an explicit description as in Propositions
and Each of these generators Gt (acting on X,,) belongs to
the generalized wreath product G because each of their elements in-
duces a permutation of G§ on the s-panels of one s-tree-wall and is
the identity on the other panels. Hence Uco|5(607w) <G@q.

Now consider Iz = {1,...,n — 1} with the partial order <. Let

Xg = {(a1,...,an1) | @ € X;)

and let G = X#-WRicr, G- By the induction hypothesis, we have
G Ucols(co,) 28 subgroups of Sym(Xg).
Observe that {n} is an ideal of I,,. Hence Lemma now
implies that
G = H x D(n), (5.3.1)

where H is a subgroup of G isomorphic to G. Comparing Defini-

tion [1.1.12| and Definition we see that D(n) = D,,, and then

~

Dy < Ugyls(eow)- On the other hand, the embedding of G into G as in
Lemma, corresponds precisely to the embedding of Ue|s(c,,a)
into Ug,[s(cy,w) Obtained by extending each element trivially on the
last coordinate of X,,. Hence H < UCo’S(co,w)' We conclude that
G < Ueyls(co,w) and thus we have equality. The last statement now
follows from (|5.3.1]). O

Remark 5.3.4. When A is a tree, for each reduced word w, the
partial order considered in the set I, is a chain. Therefore, by Re-
mark the generalized wreath products considered in this con-
struction are iterated wreath products in their imprimitive action.
Hence Proposition translates, for the case of trees, to the de-
scription provided by Burger and Mozes in [BMO00a, Section 3.2].
Notice that the chamber ¢y corresponds to an edge of the tree, and
for each of the two reduced words w of length n, the corresponding
w-sphere stabilizer corresponds to the stabilizer of a ball in the tree
around one of the two vertices of that edge.
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This description using generalized wreath products allow us fur-
thermore to compute the order of the groups U, ‘S(CO,U)) and Uq, ]5(007,1).

Definition 5.3.5. Let w = s1---s, be a reduced word in Mg. Let
(I, <w) be the poset as before. We define

dy = H <q8j _1>

Jwn

(where dy, = 1 if there is no j >, n). Notice that if w € Wi(n), then

each element j € {1,...,n — 1} satisfies the condition j >, n, so in
that case, d,, = H;‘:_ll (gs; — 1).

Proposition 5.3.6. Let w = sy ---s, be a reduced word. Then
n
i|d;
‘UCO‘S(co,w)‘ = H ‘GS ‘ )
i=1

where d; = ds,...s; = [ ;. ; (qs; — 1), for each i € {1,...,n}.

Proof. This follows from Proposition [5.3.3] and Proposition us-
ing induction on n. Notice that for each initial subword w; = s1 - - - s;,
the poset <, is a sub-poset of <,,, so that we can indeed express all
d; using <, only. ]

Proposition 5.3.7. For each generator s € S, let
n

weW1(n) =1

Then

|UCO|B(CO7TL)’ = H ‘Gglt(s,n).
seS

Proof. Recall from Definition that
Zn—1=A{(c,s) € S(co,n—1) x S| §(co,c)s € Wi(n)},

and observe that this set can be partitioned as

L1 = |_| (S(co,wrw) X {’I“w}).

weWi(n)
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(Notice that w is the unique initial subword of wr,, of length n — 1).
By the remark in Definition [5.3.5, the sphere S(cg,wr,) contains
precisely d,, chambers. It follows that

[0 =11 I e[l

2€ELn—1 seS w€W1 ) seS
s.t. ry=s

The result now follows from Theorem by induction on n. O

5.3.2 Connection with intersections of complete wreath
products

In this section we prove, for the case of right-angled Coxeter groups
and respective partial orders obtained from it, that some general-
ized wreath products correspond to intersection of complete wreath
products in imprimitive action.

As a consequence we show that the induced action of U, on a
w-sphere, which in the last section was described as a generalized
wreath product, is permutationally isomorphic to an intersection of
complete iterated wreath products.

We start with an example that triggered the interest on this con-
nection.

A first motivating example

Consider the Coxeter group of Example

52 0 , g3
W = (s1,892,83,54 |(51)% = (52)% = (53)% = (54)* =1 I
(s152)% = (s159) = (s35)° = 1) slzoo s

Let {gs, }ie(1,..,4y be a set of finite parameters with g5, > 3 for all
i, and consider A the unique locally finite semi-regular right-angled
building whose s;-panels have size ¢, for all 1.

For each i € {1,...,4}, let G* be a transitive permutation group
acting on {1,...,¢s,} and let hg, be a directed legal coloring with
respect to a fixed chamber ¢y € Ch(A). Consider the universal group
U of A with respect to the local groups G*%:.
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Let w = s1s283s4 and consider the poset (I, <) as described
in Definition Let X; ={2,...,¢s,}, fori € {1,...,4} and let
Xw = {(a1,...,04) | a; € X;}. Then by Proposition the group
UCO’S(CQ,’LU) is permutationally isomorphic to the generalized wreath
product G = X,,~WRjer, G-

Let us have a closer look at the poset (I, <w). We have the
relations

3 <w?2, 4=y 2and 4 <, 3. (5.3.2)

Therefore the poset (I, <) corresponds to the poset (S, <) that
we studied in detail in Example [1.1.11| while introducing generalized
wreath products. Hence, considering

A, = Xi,H,, =G5 and X = X, fori € {1,...,4},  (5.3.3)

we have that Ue,|s(c,,w) 18 permutationally isomorphic to the gener-
alized wreath product G of the afore-mentioned example.

We proved that G was isomorphic to a specific intersection I of it-
erated complete wreath products from Example[I.1.8] We will present
these groups here to make the connection clear, taking in account the
identification of notation as in Equation . The group I was
taken to be the intersection of the groups

G1 =G LGP LGP Gy
Gy =G 1GR21GE G
G3 =GP LGy LGP LGy
Gy =GP 1G G G
Gs =G 1GE1GE Gt

acting on Xw = {1, ey |X1 X X2 X X3 X X4|}
On the other hand, the other reduced representations of w, as an
element of the right-angled Coxeter group W, are

Wo = 51525483, W3 = $25153S54, W4 = 525154853 and Wy — $2835154.

So considering w = w, we have that Ue|s(c,,w) 18 permutationally
isomorphic to the intersection of the iterated complete wreath prod-
ucts corresponding to the distinct reduced representations of the word
w.
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The previous example was not a one time coincidence. In fact,
we can derive a general result.

Let (W, S) be a right-angled Coxeter system and, for each s € S,
let g5 > 3 be a natural number and G®* < Sym(¢s) be a transitive
permutation group. For each reduced word w = s1--- s, in the free
monoid Mg with respect to X, let

Gw:Gglz..ngn

denote the iterated wreath product acting on the set X, of tu-
ples (ai,...,ay), where each «; is an element in {2,...,¢s,}, for
i € {1,...,n}, with its imprimitive action as defined in Section [1.1.1]
We can view the iterated wreath product as a subgroup of Sym(X,,).

For each 0 € Rep(w) (recall this notion in Definition [2.1.7]), we
have

Go.w = Gga(l) Lo Ggg(m-

We can view this as a group acting on the same set X,, (but of course
taking into account that the entries have been permuted by ), so in
particular, it makes sense to consider the intersection

I= ﬂ Gow

o€Rep(w)

as a subgroup of Sym(X,,).

Let A be the locally finite thick semi-regular right-angled build-
ing of type (W, S) with prescribed thickness (¢s)ses. Let U be the
universal group for A with respect to the groups {G*}4c5s.

Proposition 5.3.8. Fiz a chamber co € Ch(A). Let w = s1--- sy, be
a reduced word in Mg. For each o € Rep(w) let

G = GV 1 Goo

be the iterated wreath product in imprimitive action on the set X,, of
tuples (au, ..., an) with a; € X; =4{2,...,qs,}, fori e {1,...,n}.

Then Ueys(co,w) 8 permutationally isomorphic to the intersection
I= mUERep(w)C;cmu-
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Proof. We know by Proposition that Ue|s(co,w) is permutation-
ally isomorphic to G = X,,~WRjez, G- Therefore we will prove that
the groups I and G are isomorphic.

We first observe that for each o € Rep(w), the group G, can be
regarded as acting on the set X,,, taking in account that the entries
have been permuted by o. Hence it makes sense to consider this
intersection I as a subgroup of Sym(X,,).

Moreover, each of the groups G, can be viewed as a generalized
wreath product as follows. Consider the set I, = {1,...,n} with
the chain {o(1) > ¢(2) > --- > o(n)} as a partial order <,. Define
equivalence relations on X,,, for i € I, as

T ~o(i) Y S To(j) = Yo(j) for all o(j) > o(i)

and =,(;) as in Equation (L.1.9). Let E; = {~g;)| 7 € I5} U{~,0)]
i € I,} be the set of those equivalence relations. Then

Ga.w — Xw7WRi€IgG8i

for each x € X, and o(i) € I,

there is go(;) 2 € GS"“) such that
(9Y)o(i) = Go(i)z-Yoli)

for all y € X, with y ~,(;)

=149 € Aut(Xy, Ey)

For all o € Rep(w), the sets I, coincide. Therefore we can con-
sider the partial order < defined by Nycrep(w) <o and the poset
(I5, =), where

i<jeo(i) <,0(j) & o(i) >o(j) for all o € Rep(w). (5.3.4)

An element g € I has to preserve, for all ¢ € I;, the intersection
of the equivalence relations ~, ;) (and of ~,;) for all & € Rep(w).
These equivalence relations are defined using the chain partial orders.
Hence, for i € I, the intersection ~; of the ~,;)’s corresponds, for
z,y € Xy, to

T~y & x; =x; for all i < j,

where < is defined in Equation (5.3.4). Now we just observe that <
coincides with <., and I, = I,. Therefore I C G.
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Conversely, let ¢ € G and ¢ € I, = I,,. For each j € I, with
1 <w Jj, one can define a function

fi : le X oo X Xjk — ng by fi(ajl,... ,Otjk) = iz,

where € X, has the j,-th coordinate o, for every ¢ € {1,... k}
and g¢;, is the element of G such that g acts on x; as giz. An
element y ~; x has also «j, in its j,-th coordinate, so the element
9i o is well defined and independent of the choice of . We define f;
for every element i € I, and we can view g = (f1, fo,..., fn) acting
on X,, has an element of an iterated wreath product. As observed
before, < and <, coincide. Therefore the functions f; are defined in
the same way as the functions of elements in the intersection I. Hence
we can regard g as an element of /. Thus GG and I are permutationally
isomorphic, which proves the proposition. O

5.3.3 The n-sphere stabilizers as generalized wreath
products

The goal now is to realize the induced action of chamber stabilizers in
the universal group on the whole n-spheres also as generalized wreath
products. For that we will need to define a new partial order. We
recall the notation that we are considering.

Let (W, S) be a right-angled Coxeter system with Coxeter diagram
Y. Let (gs)ses be a set of natural numbers with ¢s > 3 and let
Ys = {1,...,¢s} be the set of colors, for each s € S. Consider the
locally finite thick semi-regular right-angled building A of type (W, S)
with prescribed thickness (¢s)scs. Fix a base chamber ¢y € Ch(A).

For each s € S, let hs: Ch(A) — Y be a directed legal s-coloring
with respect to ¢p and let G* < Sym(Ys) be a transitive permutation
group. Consider the universal group U of A with respect to the

groups (G*)ses.
Definition 5.3.9. Let I, be the set of all tree-walls in A that cross
the ball B(cp,n), i.e., the set of tree-walls 7 such that B(cp,n) is not

completely contained in one wing of 7 (as in Definition 4.3.1). We
define a partial order <,, on I, as follows. For 71,75 € I,,,

T3 is contained in the wing of 7; containing ¢y and

Ti=<nT2 & . . . . .
1o 72 71 is contained in a wing of 75 not containing cg.
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Figure 5.2: 71 <, Ta.

Lemma 5.3.10. For each n € N, the relation <, is a partial order
on I,.

Proof. We prove the transitivity of this relation. Let 71,72 and T3
be distinct tree-wa