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Abstract—This paper presents a study of the efficacy of differ- predictions in combination with a maximal speed and with
ent optimization strategies for location tr_acking on an Andr'oid the physical environment), (i) processing multiple scams
App that is run on a smartphone. The basic algorithm determines one location using filtering techniques, (iii) accountiing the

the most probable path of the user within a WiFi network , imal di d . . ¢ t
by comparing raw RSSI measurements at each location with USEr'S maximal speed in a dynamic way using a step counter,

values in a fingerprint database. The investigated optimization (V) switching the frequency band from 2.4 to 5 GHz, and (v)
strategies include: accounting for previous locations, increasing changing the position of the mobile device with respect to th
the number of WiFi scans per location, applying an advanced yser’s body.

averaging technique, exploiting accelerometer data, shifting the |, Section II, the main functionality of the App is briefly

Feauency band rom 2.4 10 9 GHz, and chanding (e POSKON iscussed. Section I presents the localsation algurit
especially the accelerometer data allow enhancing the location the different optimization strategies and Section IV diessr
estimation significantly. By combining different techniques, an the test environment and equipment. Section V discusses the
average accuracy better than 2 m can be achieved. results of the tests, and Section VI summarizes the main

Index Terms—Location, location tracking, localisation, track-  findings of this paper.
ing, Android, Viterbi, accelerometer, sensor fusion, WiFi, RSSI,
body, Android, App, wireless network, indoor, indoor environ-
ment, optimization. Il. MAIN FUNCTIONALITY OF THE APP

The mobile application, using Android API 19 (KitKat),
has been programmed to be fully responsive and extends an
already existing application [5] which was based on a ndtwor

Indoor localization and tracking systems have gained a huglanning tool [6]. This allows scaling on every device whils
interest, thanks to the many domains in which they can Beeping crucial information always visible. The App makes
applied, e.g., in industrial and office environments, in these of Android Managers, built-in packages that allow users
healthcare or cultural sector,... One possible applinatidhe to interact with the hardware of the device. Two important
guidance of people towards their destination in a building,, examples are the WiFiManager and SensorManager packages.
in a hospital. Such 'indoor GPS’ can be deployed in manfhe WiFiManager class allows performing a scan of the
different ways: using Ultra-Wide-Band (UWB) time-of-amlv available WiFi access points (APs). The result is a list of AP
(ToA)-based localisation [1], Angle-of-Arrival (AoA)-ls@d names combined with their RSSI values. The SensorManager
localisation [2], Received Signal Strength Indicator (RSS class is used to retrieve accelerometer data.
based localisation [3], or, when not relying on radio-freqcy As will be discussed later, the main functionality of the App
(RF) signals, using Visible Light Positioning (VLP)-basedonsists of estimating and visualising the user’s locaton
localisation [4]. Due to the less stringent tracking accurathe map of a ground floor. This is done via an algorithm
demands for common indoor navigation applications, RSShat compares the measured RSSI values of all APs with
based localisation systems are often being deployed, giMeBSI values that are stored in a fingerprinting database. Thi
their relatively low deployment cost and the compatibilitylatabase can be constructed either automatically, viagbe u
with WiFi-enabled off-the-shelf devices, such as smanti@so of path loss prediction algorithms [7], or manually, thrboug
or tablets. Moreover, these allow an easy development affingerprinting procedure with the device at each location
localization Apps that show the user's location and guida the building. This procedure can be executed relatively
him or her to the desired destination via a graphical ustast, thanks to the smartphone’s touchpad functionalitictwh
interface. Currently, quite some research is being peddrmallows indicating the measurement location by a simpleestre
on the improvement of location tracking accuracy in RSStap. Fingerprinting data can also be stored locally in an XML
based systems. This paper aims to test and assess severfileofOther features of the App are related to usability and
these approaches and quantify their impact: (i) applyintdy panclude multi-touch zooming, horizontal and vertical dting,
building (adding semantic data such as history of previows taking screenshots. Fig. 1 shows a screenshot of the

I. INTRODUCTION



graphical user interface of the location tracking App, with
indication of the estimated current location (red dot on the

red red
far left). RSSIP™ = a-RSSL + (1-—a)-RSSIYY, (D)
WhereRSSI?red is the output RSSI value after processing
IIl. L OCALISATION ALGORITHM AND OPTIMIZATION i scans at the considered locatioRSSI; is the raw i'th
STRATEGIES sample or scan. i runs from 1 to the number of available

In the basic algorithm, the current location is estimated B§SSI samples/scans ariiSSI*™* = RSSI;. The value«
only considering the most recent RSSI measurements fr@ssigns more or less weight to the current scan, based on the
a set of APs. Based on the collected RSSI data, the mestimated reliability of the sample. As reliability indioa the
likely location is determined based on a calculation of sofns RSSI difference between two subsequent samples is taken. A
mean-square errors (sum of MSESs): i.e., the location of whisudden large difference then indicates an unreliable sampl
the predicted RSSIs yield the lowest sum of MSEs comparaedd reduces the weight of the most recent sample (smaller
to the measured RSSls, is the most probable location. Thevalue). Table | shows the relationship between the RSSI
predicted RSSiIs are retrieved from the fingerprinting dagab difference and thev value. Note that this filter is separately
A full description of this algorithm can be found in [8]. applied to RSSI signals obtained from each of the APs.

A. Optimization strategies TABLE I: Relationship between RSSI difference between two
1) Using path building: The basic algorithm is history- subsequent sampleafgss; [dB] = RSSI; — RSSI;_;) and«
unaware, meaning that it does not account for previous localue in eq. (1)
tions. A p_ath building approach exploits physic_al envir@nm Anss |05 [ 610 [ 11-15 | 1625 | 26-50 | 51-75 | 76-100
characteristics and a motion model as constraints to determ o 1075 070] 060| 0.35]| 010 0.05
the most likely path (i.e., sequence of locations) instehd o
only the most likely instantaneous position. These two con-4) Sensor fusion - using accelerometer dagsl contem-
straints ensure that no walls are crossed by the path (@tysisorary smartphones and tablets have an in-built acceldesme
environment) and that no unrealistically large distances arhe data obtained from it, can be used for localisation pur-
traveled within a given time frame (motion model). The lagioses, as it measures the acceleration of the device wjthees
position of the most likely path is then assumed to be the the gravity vector. Common approaches are deriving the
most likely current location [8]. The path calculations am velocity vector at each instant, detecting whether or natex u
restarted every time a new measurement is received but ifienoving, or deriving the number of steps taken by the user
paths from a previous iteration serve as input for the ctirregarrying the mobile device. In this paper, there will be fesed
iteration along with the new measurements. on the latter approach. Android has dedicated interfaces fo
2) Averaging out multiple WiFi scansAs WiFi RSSI step counting. In this paper, the number of steps will be
signals at a certain location often show large variationge (dcombined with a fixed step length of 0.75 m (as observed
to the equipment, the body of the user carrying the mobifgom the test person) to estimate the user's maximal speed as
device [9], changes in the environment...), it can be exqubctused in the motion model of the path building approach. This
that localisation accuracy will be severely impacted whedllows accounting for a dynamically varying user velocity.
the number of RSSI samples per AP per time instant is5) Switching frequency bandSenerally, the 2.4 GHz band
low. Therefore, it will be investigated to what extent thés used for WiFi-based localisation, due to the better campa
prediction accuracy is affected when the amount of coltbctébility with most devices and the larger range of the access
RSSI scans at each location (and from each AP) is varipdints. Thanks to the high density of wireless nodes in the
between 1 and 5 and the average value over the numbenetbed (see Section IV) and the 5 GHz-compatibility of both
RSSI scans is used for further processing. Note that whilee testbed and the smartphone, it will be investigatedeifeth
path building uses information from previous locationg.(i. is a difference in localisation accuracy when the 5 GHz band
sample(s) from previous locations at previous time insjants used.
to construct a path, this approach only uses informatiohet t 6) Position of the mobile device with respect to the body:
current location (i.e., multiple samples at current lomatat As the human body approaches the smartphone, the radiation
current time instant). Both approaches can be combinedsn thattern of the smartphone’s antenna will be altered, riggyii
paper: path building will be deployed on top of the averagingnpredictable RSSI values. This effect was already quedtifi
approach. for small body-worn nodes in [9], and will here be tested for
3) Advanced averagingHere, a more advanced averagingwo positions of the smartphone relative to the body: close t

approach will be used, accounting for the reliability of theéhe body (normal usage) and away from the body (stretched
samples. To estimate the output RSSI values, all valueg-corsirms).

sponding to a certain location and time instant are beind use

in the calculation. In this approach, the following forminas IV. TEST EQUIPMENT

been used to estimate the output RSSI value (instead of jusThe experiments are conducted on a wireless testbed, lo-
averaging the scanned RSSI values): cated on the third floor of an office building in Ghent, covgrin
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Fig. 1. Screenshot of the graphical user interface of thatloo tracking App with indication of estimated currentation
(red dot).

over 1500m? (17 m by 90 m, see Figure 2). The buildingTAB'-_E II: Average Iocalisatiop error [m].for the referenge
floor is designed with light layered drywalls (orange watls jalgorithm and for the path building algorithm, as a functhn
Figure 2) around a concrete core (grey walls in Figure 2). Tl‘i’é the number of cqllected scans per measgrement location,
testbed network consists of 48 fixed nodes at a height of 2.5'}{h regular averaging of the scans and using an advanced
(purple dots in Figure 2). In this work, the fixed testbed rdé&Veraging

operate in transmit node and all intelligence is availablthe [Tocalisation error [m] Reference Path building

Android App (receiver). This allows a quick deployment o th| number of scans | Averaging | Advanced | Averaging | Advanced
App in other environments, as the App just scans the RSSI|of % i'g ig i'g i'g
the APs within its range. The smartphone that is used for att 3 76 71 a4 39
tests is a OnePlus 2 device with 4 GB RAM and Quad-core 4 41 3.9 338 3.7
1.82 GHz Cortex-A57 processor. S 3.7 3.6 3.5 3.5

Three test trajectories were chosen, one of which is digplay
in red in Figure 2. For each of the tested configurations, a|l _ -

three test paths were travelled five times and resultingerr?' Using path building

were averaged. The ground truth, i.e., the correct location When path building is applied, meaning that the maximal
for comparison, is built by indicating the correct locatiorvelocity of the user is limited at (here) 2 m/s and paths tgrou
on the map, each time a checkpoint (marked by squareswalls are forbidden, the localisation error decreases @and.
Figure 2) is passed. It should be noted that when the numigeslight improvement over the reference configuration (see
of deployed fixed nodes is reduced, the resulting accuraty wiable 11, line 'number of scans = 1', column 'Path building,
also decrease [8]. Averaging’).

V. RESULTS B. Averaging out multiple WiFi scans vs. 1 scan

A first set of results is obtained from the reference configu- Table Il shows the average localisation error when avegagin
ration at 2.4 GHz, in which the amount of scans per location @ait multiple WiFi scans per location (columns 'Averagindt)
set to 1, the maximal user speed is 2 m/s, and the 10 strongasiws that using multiple scans is an efficient way to reduce
APs are considered. On average over the three test pathsthenlocalisation error: from 5.3 m to 3.7 m for the reference
average localisation error of 5.3 m is obtained (see Table dlgorithm and from 5.0 m to 3.5 m for the path building
line 'number of scans = 1’, column 'Reference, Averaging’algorithm. It is confirmed that the benefit of path buildingtwi
In the following, the different optimization strategieslWbe respect to the reference algorithm is limited here (impnoeet
considered and their effects will be quantified. of 0.2 to 0.3 m).



o/® o © o e © ® @ ® © 6 o o @}
09 St —— g

® 0.0 0-S8 ' -0 9. 0. 0—|

) 90m ?

Fig. 2: Test environment (90 m x 17 m) with indication of fixedtbed nodes (purple dots) and one of the three test tregsto
(checkpoints are red squares, the green square indicadsghcheckpoint).

of 0.1 to 0.3 m compared to the reference algorithm). Figure 4
shows the ground truth (black path) with the reconstructed
paths obtained by regular averaging (green) and by applying
the advanced averaging (red). It shows that advanced angrag
indeed slightly outperforms regular averaging.

10,

D. Sensor fusion - using accelerometer data vs. fixed speed

When using the accelerometer data to derive the actual
speed of the person, a more accurate grid of next possible
locations can be built. Unlike the fixed maximal speed of
2 m/s used before, this maximal speed (and the corresponding
maximal movement per time unit) is now dynamic. Table I

time duration [s]
w

il e — YT Ty shows that a significant improvement is obtained using the
L - . 5GHz | accelerometer-derived maximal speed: up to 37% (from 3.5 m
1 2 3 4 5 8 7 8 g9 10 to 2.2 m) for 5 scans. Again, the advanced averaging teckniqu

number of scans [ performs slightly better than the regular averaging apgipa

Fig. 3: Time required to perform WiFi scans in the 2.4 GHRUt gains are limited to 0.1 m.

and 5 GHz frequency band. TABLE llI: Average localisation error [m] for the path buitty

algorithm, for a fixed maximal speedfifed) and for a
dynamically determined maximal speed using accelerometer
ata (sensor fusiondynami¢) as a function of the number

F collected scans per location, for regular averaging amd f
(\e/anced averaging

A limitation to increasing the number of WiFi scans, is th
time required to perform these scans. Fig. 3 shows the tim
that is required to perform a number of passive scans for tﬂ
two frequency bands that are considered here. Scanning ?h

5 GHz band takes longer than the 2.4 GHz band, since| itocalisation error [m] _Fixed Dynamic

contains more channels. For 10 scans at 2.4 GHz, up to 4,5-gNumber of scans 5 A"eragg‘% Ad"ancseg A"eragg‘% Ad"anczeg
are needed, and even up to 10 s at 5 GHz. It should be noted > 76 23 5= 56
that for real-time location tracking, this time durationeds 3 4.4 39 25 2.4
to be limited to a few seconds. An faster alternative is to 4 3.8 3.7 2.5 2.4
have the App perform an active scan on the correct frequeney > 35 35 2.2 2:2

channel, but unfortunately, this functionality is bannadhe
most recent Android APIs. E. 5 GHz frequency band vs. 2.4 GHz band

Table IV shows the localisation error for the 2.4 GHz and
5 GHz band, with advanced averaging, using path building and
Table 1l shows the average localisation error when apn accelerometer-based speed detection. The table shatvs th
plying an advanced averaging technique on multiple Wilere is a small advantage in using the 5 GHz band. However,
scans (columns 'Advanced’). It shows that not only inp@itinFig. 3 shows that it takes longer to scan the 5 GHz band,
multiple scans to the filter is beneficial, but also that amgly which impacts the real-time tracking capabilities.
the advanced averaging yields better results than regudar a N ) ) )
aging (improvement up to 0.5 m, for path building algorithn'f- Position of the mobile device with respect to the body
combined with 3 scans per location). It is again confirmed tha Traveling the three test paths showed that holding the
there is a small benefit when using path building (improvemesmartphone away from the body leads to lower localisation

C. Applying advanced averaging vs. regular averaging
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Fig. 4. Comparison of the reconstructed paths when avegat@ RSSI scans (green) vs. applying advanced averagidy (re
The black path is the ground truth.

TABLE IV: Average localisation error [m] for the path build- gytended with a navigation feature by converting the map to a

ing algorithm with a dynamically determined maximal speegraph and applying Dijkstra’s algorithm between the predic
and advanced averaging, as a function of the number \gfation and the destination location.

collected scans per location, for the 2.4 GHz and 5 GHz
frequency band

Localisation error [m] number of scans REFERENCES
frequency band 1 2 3 4 5
24GHz || 28| 26| 24 24 22 [1] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Wi“Ranging
SGHz || 27 | 25| 22| 22| 1.9 with ultrawide bandwidth signals in multipath environméeht8roceed-

ings of the IEEEvol. 97, no. 2, pp. 404-426, 2009.
[2] E. Elnahrawy, J. Austen-Francisco, and R. P. Martin, didy angle of
arrival modality to basic rss location management technitjiredyireless

errors than holding it close to the body: the errors closééo t
body equal 3.4 m (horizontally) or 2.96 m (vertically), whil
errors away from the body equal 2.3 m (horizontally) or 2.1
(vertically). The tests were performed at 5 GHz, using path
building, advanced averaging, a dynamic speed detectiah, a
using 5 scans per location. This shows that body compelmsatm
algorithms [9] can indeed be useful. A vertical position lod t
phone performs slightly better than the horizontal positaue

to the position of the antenna inside the device (near the t@b
side).

VI. CONCLUSIONS

In this paper, different optimization strategies for a lhma 2
tracking App are investigated and quantified when used on an
Android smartphone. A basic RSSI approach yields aver f
prediction errors just above 5 m over a set of three tes
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