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Abstract—This paper presents a study of the efficacy of differ-
ent optimization strategies for location tracking on an Android
App that is run on a smartphone. The basic algorithm determines
the most probable path of the user within a WiFi network
by comparing raw RSSI measurements at each location with
values in a fingerprint database. The investigated optimization
strategies include: accounting for previous locations, increasing
the number of WiFi scans per location, applying an advanced
averaging technique, exploiting accelerometer data, shifting the
frequency band from 2.4 to 5 GHz, and changing the position
of the smartphone with respect to the body. It is shown that
especially the accelerometer data allow enhancing the location
estimation significantly. By combining different techniques, an
average accuracy better than 2 m can be achieved.

Index Terms—Location, location tracking, localisation, track-
ing, Android, Viterbi, accelerometer, sensor fusion, WiFi, RSSI,
body, Android, App, wireless network, indoor, indoor environ-
ment, optimization.

I. I NTRODUCTION

Indoor localization and tracking systems have gained a huge
interest, thanks to the many domains in which they can be
applied, e.g., in industrial and office environments, in the
healthcare or cultural sector,... One possible application is the
guidance of people towards their destination in a building,e.g.,
in a hospital. Such ’indoor GPS’ can be deployed in many
different ways: using Ultra-Wide-Band (UWB) time-of-arrival
(ToA)-based localisation [1], Angle-of-Arrival (AoA)-based
localisation [2], Received Signal Strength Indicator (RSSI)-
based localisation [3], or, when not relying on radio-frequency
(RF) signals, using Visible Light Positioning (VLP)-based
localisation [4]. Due to the less stringent tracking accuracy
demands for common indoor navigation applications, RSSI-
based localisation systems are often being deployed, given
their relatively low deployment cost and the compatibility
with WiFi-enabled off-the-shelf devices, such as smartphones
or tablets. Moreover, these allow an easy development of
localization Apps that show the user’s location and guide
him or her to the desired destination via a graphical user
interface. Currently, quite some research is being performed
on the improvement of location tracking accuracy in RSSI-
based systems. This paper aims to test and assess several of
these approaches and quantify their impact: (i) applying path
building (adding semantic data such as history of previous

predictions in combination with a maximal speed and with
the physical environment), (ii) processing multiple scansat
one location using filtering techniques, (iii) accounting for the
user’s maximal speed in a dynamic way using a step counter,
(iv) switching the frequency band from 2.4 to 5 GHz, and (v)
changing the position of the mobile device with respect to the
user’s body.
In Section II, the main functionality of the App is briefly
discussed. Section III presents the localisation algorithm with
the different optimization strategies and Section IV describes
the test environment and equipment. Section V discusses the
results of the tests, and Section VI summarizes the main
findings of this paper.

II. M AIN FUNCTIONALITY OF THE APP

The mobile application, using Android API 19 (KitKat),
has been programmed to be fully responsive and extends an
already existing application [5] which was based on a network
planning tool [6]. This allows scaling on every device whilst
keeping crucial information always visible. The App makes
use of Android Managers, built-in packages that allow users
to interact with the hardware of the device. Two important
examples are the WiFiManager and SensorManager packages.
The WiFiManager class allows performing a scan of the
available WiFi access points (APs). The result is a list of AP
names combined with their RSSI values. The SensorManager
class is used to retrieve accelerometer data.
As will be discussed later, the main functionality of the App
consists of estimating and visualising the user’s locationon
the map of a ground floor. This is done via an algorithm
that compares the measured RSSI values of all APs with
RSSI values that are stored in a fingerprinting database. This
database can be constructed either automatically, via the use
of path loss prediction algorithms [7], or manually, through
a fingerprinting procedure with the device at each location
in the building. This procedure can be executed relatively
fast, thanks to the smartphone’s touchpad functionality which
allows indicating the measurement location by a simple screen
tap. Fingerprinting data can also be stored locally in an XML
file. Other features of the App are related to usability and
include multi-touch zooming, horizontal and vertical scrolling,
or taking screenshots. Fig. 1 shows a screenshot of the



graphical user interface of the location tracking App, with
indication of the estimated current location (red dot on the
far left).

III. L OCALISATION ALGORITHM AND OPTIMIZATION

STRATEGIES

In the basic algorithm, the current location is estimated by
only considering the most recent RSSI measurements from
a set of APs. Based on the collected RSSI data, the most
likely location is determined based on a calculation of sumsof
mean-square errors (sum of MSEs): i.e., the location of which
the predicted RSSIs yield the lowest sum of MSEs compared
to the measured RSSIs, is the most probable location. The
predicted RSSIs are retrieved from the fingerprinting database.
A full description of this algorithm can be found in [8].

A. Optimization strategies

1) Using path building: The basic algorithm is history-
unaware, meaning that it does not account for previous loca-
tions. A path building approach exploits physical environment
characteristics and a motion model as constraints to determine
the most likely path (i.e., sequence of locations) instead of
only the most likely instantaneous position. These two con-
straints ensure that no walls are crossed by the path (physical
environment) and that no unrealistically large distances are
traveled within a given time frame (motion model). The last
position of the most likely path is then assumed to be the
most likely current location [8]. The path calculations arenot
restarted every time a new measurement is received but the
paths from a previous iteration serve as input for the current
iteration along with the new measurements.

2) Averaging out multiple WiFi scans:As WiFi RSSI
signals at a certain location often show large variations (due
to the equipment, the body of the user carrying the mobile
device [9], changes in the environment...), it can be expected
that localisation accuracy will be severely impacted when
the number of RSSI samples per AP per time instant is
low. Therefore, it will be investigated to what extent the
prediction accuracy is affected when the amount of collected
RSSI scans at each location (and from each AP) is varied
between 1 and 5 and the average value over the number of
RSSI scans is used for further processing. Note that while
path building uses information from previous locations (i.e.,
sample(s) from previous locations at previous time instants)
to construct a path, this approach only uses information at the
current location (i.e., multiple samples at current location at
current time instant). Both approaches can be combined in this
paper: path building will be deployed on top of the averaging
approach.

3) Advanced averaging:Here, a more advanced averaging
approach will be used, accounting for the reliability of the
samples. To estimate the output RSSI values, all values corre-
sponding to a certain location and time instant are being used
in the calculation. In this approach, the following formulahas
been used to estimate the output RSSI value (instead of just
averaging the scanned RSSI values):

RSSIpredi = α · RSSIi + (1− α) · RSSIpredi−1 , (1)

whereRSSIpredi is the output RSSI value after processing
i scans at the considered location,RSSIi is the raw i’th
sample or scan. i runs from 1 to the number of available
RSSI samples/scans andRSSIpred1 = RSSI1. The valueα
assigns more or less weight to the current scan, based on the
estimated reliability of the sample. As reliability indicator, the
RSSI difference between two subsequent samples is taken. A
sudden large difference then indicates an unreliable sample
and reduces the weight of the most recent sample (smaller
α value). Table I shows the relationship between the RSSI
difference and theα value. Note that this filter is separately
applied to RSSI signals obtained from each of the APs.

TABLE I: Relationship between RSSI difference between two
subsequent samples (∆RSSI [dB] = RSSIi − RSSIi−1) andα
value in eq. (1)

∆RSSI 0-5 6-10 11-15 16-25 26-50 51-75 76-100
α 1 0.75 0.70 0.60 0.35 0.10 0.05

4) Sensor fusion - using accelerometer data:All contem-
porary smartphones and tablets have an in-built accelerometer.
The data obtained from it, can be used for localisation pur-
poses, as it measures the acceleration of the device with respect
to the gravity vector. Common approaches are deriving the
velocity vector at each instant, detecting whether or not a user
is moving, or deriving the number of steps taken by the user
carrying the mobile device. In this paper, there will be focussed
on the latter approach. Android has dedicated interfaces for
step counting. In this paper, the number of steps will be
combined with a fixed step length of 0.75 m (as observed
from the test person) to estimate the user’s maximal speed as
used in the motion model of the path building approach. This
allows accounting for a dynamically varying user velocity.

5) Switching frequency band:Generally, the 2.4 GHz band
is used for WiFi-based localisation, due to the better compat-
ibility with most devices and the larger range of the access
points. Thanks to the high density of wireless nodes in the
testbed (see Section IV) and the 5 GHz-compatibility of both
the testbed and the smartphone, it will be investigated if there
is a difference in localisation accuracy when the 5 GHz band
is used.

6) Position of the mobile device with respect to the body:
As the human body approaches the smartphone, the radiation
pattern of the smartphone’s antenna will be altered, resulting in
unpredictable RSSI values. This effect was already quantified
for small body-worn nodes in [9], and will here be tested for
two positions of the smartphone relative to the body: close to
the body (normal usage) and away from the body (stretched
arms).

IV. T EST EQUIPMENT

The experiments are conducted on a wireless testbed, lo-
cated on the third floor of an office building in Ghent, covering



Fig. 1: Screenshot of the graphical user interface of the location tracking App with indication of estimated current location
(red dot).

over 1500m2 (17 m by 90 m, see Figure 2). The building
floor is designed with light layered drywalls (orange walls in
Figure 2) around a concrete core (grey walls in Figure 2). The
testbed network consists of 48 fixed nodes at a height of 2.5 m
(purple dots in Figure 2). In this work, the fixed testbed nodes
operate in transmit node and all intelligence is available in the
Android App (receiver). This allows a quick deployment of the
App in other environments, as the App just scans the RSSI of
the APs within its range. The smartphone that is used for all
tests is a OnePlus 2 device with 4 GB RAM and Quad-core
1.82 GHz Cortex-A57 processor.
Three test trajectories were chosen, one of which is displayed
in red in Figure 2. For each of the tested configurations, all
three test paths were travelled five times and resulting errors
were averaged. The ground truth, i.e., the correct locations
for comparison, is built by indicating the correct location
on the map, each time a checkpoint (marked by squares in
Figure 2) is passed. It should be noted that when the number
of deployed fixed nodes is reduced, the resulting accuracy will
also decrease [8].

V. RESULTS

A first set of results is obtained from the reference configu-
ration at 2.4 GHz, in which the amount of scans per location is
set to 1, the maximal user speed is 2 m/s, and the 10 strongest
APs are considered. On average over the three test paths, an
average localisation error of 5.3 m is obtained (see Table II,
line ’number of scans = 1’, column ’Reference, Averaging’).
In the following, the different optimization strategies will be
considered and their effects will be quantified.

TABLE II: Average localisation error [m] for the reference
algorithm and for the path building algorithm, as a function
of the number of collected scans per measurement location,
with regular averaging of the scans and using an advanced
averaging

Localisation error [m] Reference Path building
number of scans Averaging Advanced Averaging Advanced

1 5.3 5.3 5.0 5.0
2 4.8 4.5 4.6 4.3
3 4.6 4.1 4.4 3.9
4 4.1 3.9 3.8 3.7
5 3.7 3.6 3.5 3.5

A. Using path building

When path building is applied, meaning that the maximal
velocity of the user is limited at (here) 2 m/s and paths through
walls are forbidden, the localisation error decreases to 5.0 m,
a slight improvement over the reference configuration (see
Table II, line ’number of scans = 1’, column ’Path building,
Averaging’).

B. Averaging out multiple WiFi scans vs. 1 scan

Table II shows the average localisation error when averaging
out multiple WiFi scans per location (columns ’Averaging’). It
shows that using multiple scans is an efficient way to reduce
the localisation error: from 5.3 m to 3.7 m for the reference
algorithm and from 5.0 m to 3.5 m for the path building
algorithm. It is confirmed that the benefit of path building with
respect to the reference algorithm is limited here (improvement
of 0.2 to 0.3 m).



Fig. 2: Test environment (90 m x 17 m) with indication of fixed testbed nodes (purple dots) and one of the three test trajectories
(checkpoints are red squares, the green square indicates the first checkpoint).

Fig. 3: Time required to perform WiFi scans in the 2.4 GHz
and 5 GHz frequency band.

A limitation to increasing the number of WiFi scans, is the
time required to perform these scans. Fig. 3 shows the time
that is required to perform a number of passive scans for the
two frequency bands that are considered here. Scanning the
5 GHz band takes longer than the 2.4 GHz band, since it
contains more channels. For 10 scans at 2.4 GHz, up to 4.5 s
are needed, and even up to 10 s at 5 GHz. It should be noted
that for real-time location tracking, this time duration needs
to be limited to a few seconds. An faster alternative is to
have the App perform an active scan on the correct frequency
channel, but unfortunately, this functionality is banned in the
most recent Android APIs.

C. Applying advanced averaging vs. regular averaging

Table II shows the average localisation error when ap-
plying an advanced averaging technique on multiple WiFi
scans (columns ’Advanced’). It shows that not only inputting
multiple scans to the filter is beneficial, but also that applying
the advanced averaging yields better results than regular aver-
aging (improvement up to 0.5 m, for path building algorithm
combined with 3 scans per location). It is again confirmed that
there is a small benefit when using path building (improvement

of 0.1 to 0.3 m compared to the reference algorithm). Figure 4
shows the ground truth (black path) with the reconstructed
paths obtained by regular averaging (green) and by applying
the advanced averaging (red). It shows that advanced averaging
indeed slightly outperforms regular averaging.

D. Sensor fusion - using accelerometer data vs. fixed speed

When using the accelerometer data to derive the actual
speed of the person, a more accurate grid of next possible
locations can be built. Unlike the fixed maximal speed of
2 m/s used before, this maximal speed (and the corresponding
maximal movement per time unit) is now dynamic. Table III
shows that a significant improvement is obtained using the
accelerometer-derived maximal speed: up to 37% (from 3.5 m
to 2.2 m) for 5 scans. Again, the advanced averaging technique
performs slightly better than the regular averaging approach,
but gains are limited to 0.1 m.

TABLE III: Average localisation error [m] for the path building
algorithm, for a fixed maximal speed (’fixed’) and for a
dynamically determined maximal speed using accelerometer
data (sensor fusion, ’dynamic’) as a function of the number
of collected scans per location, for regular averaging and for
advanced averaging

Localisation error [m] Fixed Dynamic
number of scans Averaging Advanced Averaging Advanced

1 5.0 5.0 2.8 2.8
2 4.6 4.3 2.7 2.6
3 4.4 3.9 2.5 2.4
4 3.8 3.7 2.5 2.4
5 3.5 3.5 2.2 2.2

E. 5 GHz frequency band vs. 2.4 GHz band

Table IV shows the localisation error for the 2.4 GHz and
5 GHz band, with advanced averaging, using path building and
an accelerometer-based speed detection. The table shows that
there is a small advantage in using the 5 GHz band. However,
Fig. 3 shows that it takes longer to scan the 5 GHz band,
which impacts the real-time tracking capabilities.

F. Position of the mobile device with respect to the body

Traveling the three test paths showed that holding the
smartphone away from the body leads to lower localisation



Fig. 4: Comparison of the reconstructed paths when averaging the RSSI scans (green) vs. applying advanced averaging (red).
The black path is the ground truth.

TABLE IV: Average localisation error [m] for the path build-
ing algorithm with a dynamically determined maximal speed
and advanced averaging, as a function of the number of
collected scans per location, for the 2.4 GHz and 5 GHz
frequency band

Localisation error [m] number of scans
frequency band 1 2 3 4 5

2.4 GHz 2.8 2.6 2.4 2.4 2.2
5 GHz 2.7 2.5 2.2 2.2 1.9

errors than holding it close to the body: the errors close to the
body equal 3.4 m (horizontally) or 2.96 m (vertically), while
errors away from the body equal 2.3 m (horizontally) or 2.1 m
(vertically). The tests were performed at 5 GHz, using path
building, advanced averaging, a dynamic speed detection, and
using 5 scans per location. This shows that body compensation
algorithms [9] can indeed be useful. A vertical position of the
phone performs slightly better than the horizontal position, due
to the position of the antenna inside the device (near the top
side).

VI. CONCLUSIONS

In this paper, different optimization strategies for a location
tracking App are investigated and quantified when used on an
Android smartphone. A basic RSSI approach yields average
prediction errors just above 5 m over a set of three test
trajectories in an office building. Application of path building
approaches reduces this error to less than 5 meter. Using
5 RSSI samples per location and processing them with an
advanced averaging technique further reduces the average
prediction error to 3.5 m. The largest improvement (-37%, to
2.2 m) is obtained by adding a step counter to the algorithm
for limiting the maximal speed of the user. Finally, another
improvement is obtained when the access point network is
configured to operate at 5 GHz instead of at 2.4 GHz.
Combining all optimal settings mentioned above yields an
average error of 1.9 m. In the future, the strategies will be
tested in other environments and a comparison of the current
WiFi-approach will be made with a Bluetooth Low Energy
(BLE)-based approach. The location tracking algorithm will be

extended with a navigation feature by converting the map to a
graph and applying Dijkstra’s algorithm between the predicted
location and the destination location.
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