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Abstract

Single cells can be characterized in terms of
their phenotypic properties using flow cytom-
etry. However, up to our knowledge there has
not yet been a thorough survey concerning
the classification of bacterial species based on
flow cytometric data. This paper aims to per-
form a thorough investigation concerning the
identification of bacterial communities of var-
ious complexities in species richness. We do
this by creating so-called in silico communi-
ties, communities created by aggregating the
data coming from individual cultures; more-
over we show that it is possible to use in sil-
ico communities to identify in vitro created
communities as well, proving the biological
relevance and usability of bacterial in silico
communities.

1. Introduction

Flow cytometry (FCM) characterizes the phenotypic
properties of single-cells in terms of scatter signals
and fluorescence intensity (Müller & Nebe-von Caron,
2010), which results in a multiparametric description
of each cell. As FCM is capable of measuring thou-
sands of cells per second, it is an interesting applica-
tion for the analysis of microbial species (Diaz et al.,
2010; Koch et al., 2013).
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Our research focuses on two issues; first, we explore to
which extent single-cell predictions can be made when
analyzing bacterial FCM data. To do this we create
in silico communities, communities constructed by ag-
gregating FCM data coming from measuring species
separately, after which we perform two supervised ma-
chine learning methods in order to classify single cells.
Two earlier reports exist using using this approach,
however, these reports only considering a binary set-
ting with few bacterial species at their disposal (Davey
et al., 1999; Rajwa et al., 2008). We extend this re-
search to a multiclass setting as well, evaluating 150
different in silico communities up to twenty classes.

Second, we show that in silico communities can be
used to classify individual cells in their in vitro coun-
terpart communities. This result offers a new approach
of setting up controllable synthetic microbial commu-
nities, and as these communities consist typically out
of a few species only, they can be identified in a su-
pervised way. Therefore they can form the bridge be-
tween on the one hand real in vivo ecological systems
and on the other hand theoretical models simulating
them (De Roy et al., 2014).

2. Learning in silico communities

We have measured 20 individual bacterial cultures
through FCM. This dataset offers us the advantage
that we can create a vast amount of in silico commu-
nities, varying both in species richness S and relative
abundances.

First we evaluated to what extent it is possible to make
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Figure 1. Mean accuracy using LDA and a Random Forest
classifier for 150 different in silico communities for increas-
ing S; the dataset consists out of 5000 cells per species, of
which 30% were held-out as a test set; figure taken from
(Rubbens et al., ).

single-cell predictions. To do so we made 150 differ-
ent in silico communities for increasing species rich-
ness S (except for S = 19 and S = 20, for which the
maximum number of in silico communities is 20 and
1 respectively). The species have been randomly cho-
sen for every community, but evenly sampled (5.000
cells). By creating training and test sets (70% and
30% of the data respectively), we calculated the ac-
curacy of a classifier on the test set for every in silico
community. For now we used Linear Discrimant Anal-
ysis (LDA) and a Random Forest classifier alongside
all possible features at our disposal (which are eight
fluorescence features and four scatter features). Next,
we calculated the mean accuracy for every S, for which
the results are shown in Fig. 1. We see that for low S
single-cell predictions are possible up to high accura-
cies using ‘off-the-shelf’ classifiers.

It is yet to prove whether one can use an in silico
community to identify single cells coming from an in
vitro community, i.e., can we use an in silico commu-
nity which is in a sense an artificial dataset to ana-
lyze a ‘real-world’ in vitro community? To test this,
we created a so-called abundance gradient for S = 2,
meaning that we created various in vitro communities
consisting out of two species in varying abundances,
going from 1% to 99% (and vice versa for the op-
posite community). We first measured the bacterial
cultures separately, in order to create an in silico com-
munity to train a classifier. Using this classifier we
predicted the species of all individual cells in the in
vitro communities constituting the abundance gradi-
ent. From this, we calculated the predicted relative
abundances for every in vitro community. An exam-
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Figure 2. Predicted and target abundance gradients ex-
pressed in diversity D1, for an abundance gradient con-
sisting out of S. Oneidensis and M. Luteus.

ple of this study is shown in Fig. 2, where we created
and predicted the abundance gradient for communi-
ties consisting out of Shewanella Oneidensis and Mi-
crococcus Luteus. The abundances are expressed in
terms of diversity by means of the first Hill number
D1 = exp(−

∑S
i=1 pi ln pi), where pi denotes the rela-

tive abundance of species i (Hill, 1973). We see that
we are able to retrieve the abundance gradient with
adequate precision. Moreover, this approach offers us
the possibility to further quantify the performance of
an in silico community by calculating for example the
root mean squared error.

3. Conclusion

Single-cell predictions are possible using FCM applied
to bacterial species. For low species richness we are
able to already achieve acceptable to high perfor-
mances. More importantly, we have shown that in
silico communities can identify corresponding in vitro
communities. That means that we can use in silico
communities as a relevant representation of synthetic
bacterial communities. This result can be used both
for experimental studies using low-complexity commu-
nities and for studies concerning bacterial flow cyto-
metric data analysis.
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