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This thesis consists of 6 chapters. The first two chapters are reviews which are meant to 

introduce into the airways. Then, questions of my experimental works and hypothesis are 

followed. Finally, I mentioned three papers which have been published as original papers. 
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SUMMARY 

Multiple distinct viruses and bacteria have been detected in the airways. Recently, it has been 

confirmed that the microbiome of allergic individuals differ from those of healthy subjects, showing 

a close relationship with the type 2 response in airway disease. Chronic rhinosinusitis with nasal 

polyps (CRSwNP) is a chronic inflammatory upper airway disease. A smaller population of Chinese 

CRSwNP patients, but 85% of European CRSwNP patients show a Th2-biased and eosinophilic 

inflammation. An increase in colonization with Staphylococcus aureus (S. aureus) and the presence 

of S. aureus enterotoxin-specific IgE antibodies have been demonstrated in the mucosa of CRSwNP 

subjects in comparison with control or chronic rhinosinusitis without nasal polyp (CRSsNP) patients. 

Moreover, a high prevalence of viruses such as human rhinovirus (HRV), human respiratory 

syncytial virus (HRSV), influenza virus (IFV), and herpes simplex virus is also observed in 

CRSwNP mucosa. However, it is unknown to which extent viruses and bacteria directly impact on 

the Th2 response in CRSwNP.  

CRSwNP is also characterized by a deficit in fork head box P3 (Foxp3)+ T regulatory (Treg) cells 

in European and Chinese patients. Therefore, restoring Treg cell efficiency may be a useful strategy 

to inhibit Th2 responses in CRSwNP. In this thesis, we established human nasal ex vivo infection 

models to study the inflammatory response after infection, and we aimed to confirm the hypothesis 

that microbes affect the Th2 response in CRSwNP. Furthermore, we investigated ways to inhibit 

Th2 responses in CRSwNP tissue by reinforcing the suppressive function of Treg cells.  

In the first model, we have demonstrated that S. aureus infection increased IL-33, Thymic stromal 

lymphopoietin (TSLP), IL-5, and IL-13 expressions in CRSwNP tissue accompanied by elevated 

expressions of the TSLP and IL-33 receptors, which were predominantly expressed on CD3+ T cells. 

Healthy inferior turbinate (IT) tissue did release TSLP after S. aureus infection, but not type 2 

cytokines. Compared to S. aureus, Staphylococcus epidermidis did not induce any IL-33, TSLP and 

type 2 cytokine release in neither CRSwNP nor healthy IT tissues. Increased levels of IL-33 and 

TSLP were also induced by S. aureus in BEAS-2B bronchial epithelial cells, associated with an 

activation of nuclear factor-κappaB (NF-κB) pathways. Blocking toll-like receptor (TLR) 2 using a 

specific antagonist CU-CPT22 reduced the effect of S. aureus infection on release of TSLP and IL-
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33 and the activity of NF-κB signaling in BEAS-2B cells, pointing to the role of TLR2 in this 

activation.  

In the thesis we also have demonstrated that CRSwNP tissue showed a significant deficit in IFN-

γ and IL-17 release within 24 to 72h after herpes simplex virus 1(HSV1) infection, while releasing 

significantly more pro-inflammatory cytokines including IL-1β and TNF-α during the same time 

frame. These findings were associated with significantly higher viral invasion scores at 48 and 72h 

in CRSwNP mucosa compared to those for IT. There was a significantly higher spontaneous release 

of IL-5 at 24h and 48h in CRSwNP vs. IT, but this was independent from HSV1 infection. These 

observations support the hypothesis that CRSwNP tissue provides an inadequate defense against 

virus infection when compared to healthy tissue, which may contribute to more and longer 

symptoms upon acute infection, but also to the persistence of inflammation in CRSwNP tissue. In 

CRSwNP tissue, we have observed that suppressor of cytokine signaling 3 (SOCS3) gene and 

protein expression was up-regulated in inflammatory cells, whereas Foxp3 gene and protein 

expression was down-regulated. For the first time we showed that nasal mucosal Treg cells co-

express both proteins. Switching off the expression of SOCS3 in human airway mucosa resulted in 

Foxp3 up-regulation, whereas inducing it in a cancer cell line PANC-1 led to Foxp3 down-

regulation. We also found that phosphorylation of signal transducer and activator of transcription 3 

(STAT3) was decreased in inflamed mucosa, and we hypothesized that SOCS3 may be responsible; 

indeed, phosphorylation of STAT3 increased upon silencing SOCS3 expression in inflamed mucosa 

and decreased upon SOCS3 plasmid transfection in PANC-1 cells. Finally, the expression of the 

Th2 cytokine IL-5 decreased in CRSwNP tissue upon silencing SOCS3 expression using siRNA 

transfection, indicating that this intervention is functional; increased Foxp3 expression in CRSwNP 

tissue inhibited the Th2 response. 

In summary, we have demonstrated that S. aureus contributes to the Th2 response via the 

epithelial cell derived cytokines TSLP and IL-33 in CRSwNP tissue. CRSwNP tissue shows a 

significant deficit in the defense against viruses such as HSV1 and HRV, and against S. aureus 

infection when compared to healthy tissue, which may contribute to the persistence of inflammation 

in CRSwNP tissue. Silencing SOCS3 expression inhibits IL-5 cytokine expression in CRSwNP 
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tissue via an up-regulation of Foxp3 expression, which may represent an innovative therapeutic 

strategy in Th2-biased CRSwNP disease. 
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SAMENVATTING  

Verschillende virussen en bacteriën werden gedetecteerd in de luchtwegen. Recent onderzoek heeft 

bevestigd dat het microbioom van allergische individuen verschilt met dat van gezonde individuen, 

wat aantoont dat er een nauwe relatie bestaat met een type 2 (Th2) immuunrespons in 

luchtwegaandoeningen. Chronische rhinosinusitis met neuspoliepen (CRSwNP) is een chronische 

ontstekingsziekte van de bovenste luchtwegen. Een kleiner deel van de Chinese CRSwNP patiënten, 

maar 85% van de Europese CRSwNP patiënten hebben een Th2 gemedieerde en eosinofiele 

inflammatie. In CRSwNP patiënten werd een verhoogde kolonisatie met Staphylococcus aureus (S. 

aureus) en een verhoogde aanwezigheid van specifieke antibodies tegen S. aureus enterotoxine 

waargenomen, vergeleken met gezonde individuen en patiënten met chronische rhinosinusitis 

zonder poliepen. Daarenboven werd in het mucosa van CRSwNP patiënten een hoge prevalentie 

van virussen zoals het humane rhinovirus (HRV), humane respiratory syncytial virus (HRSV), 

influenza virus (IFV) en herpes simplex virus waargenomen. Nochtans is het onbekend in welke 

mate virussen en bacteriën een directe impact hebben op de Th2 respons in CRSwNP. 

CRSwNP wordt ook gekarakteriseerd door een defect in fork head box P3 (Foxp3)+ T regulatory 

(Treg) cells in Europese en Chinese patiënten. Daarom zou het herstel van de efficiëntie van deze 

Treg cellen een bruikbare strategie kunnen zijn om de Th2 respons in CRSwNP patiënten te 

inhiberen. In deze thesis werd een humaan nasaal ex vivo infectie model ontwikkeld om de 

inflammatoire respons na infectie te bestuderen en met het doel de hypothese te bevestigen dat 

micro-organismen de Th2 respons kunnen beïnvloeden in CRSwNP.  Daarenboven werden er 

manieren gezocht om de Th2 respons in CRSwNP weefsel te inhiberen via het versterken van de 

suppressieve functie van de Treg cellen. 

In het eerste model, hebben we aangetoond dat S. aureus infectie zorgt voor een verhoging van IL-

33, thymic stromal lymphopoeitin (TSLP), IL-5 en IL-13 expressie in CRSwNP weefsel. Dit effect 

ging gepaard met een verhoogde expressie van de TSLP en IL-33 receptoren die voornamelijk op 

CD3+ T cellen tot expressie kwamen. Inferiour turbinate weefsel van gezonde individuen (IT) 

toonde een vrijstelling van TSLP na S. aureus infectie, maar niet van type 2 cytokines. Vergeleken 

met S. aureus, zorgde Staphylococcus epidermidis niet voor de inductie van IL-33, TSLP en type 2 
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cytokines in CRSwNP of gezond IT weefsel. In BEAS-2B werden eveneens verhoogde levels van 

IL-33 en TSLP geïnduceerd na infectie met S. aureus. Dit was geassocieerd met een activatie van 

de nuclear factor-kappaB (Nf-kB) pathway. Het blokkeren van toll-like receptor (TLR) 2 met de 

specifieke antagonist CU-CPT22, verminderde het effect van S. aureus infectie op de vrijstelling 

van TSLP en IL-33 en de activiteit van NFkB signaling in BEAS-2B cellen. Dit wijst op een rol van 

TLR2 in deze activatie. 

In de thesis werd ook aangetoond dat CRSwNP weefsel een significant defect in de vrijstelling van 

IFN-γ en IL-17 vertoont 24 tot 72 uur na herpes simplex virus infectie, terwijl significant meer pro-

inflammatoire cytokines waaronder IL-1β en TNF-α werden vrijgesteld in ditzelfde tijdsframe. 

Deze bevindingen waren geassocieerd met significant hogere virale invasie scores na 48 en 72 uur 

in CRSwNP mucosa, vergeleken met deze van de IT. Er was een significant hogere spontane 

vrijgave van IL-5 na 24 en 48 in CRSwNP versus IT, maar dit was onafhankelijk van HSV1 infectie. 

Deze observaties ondersteunen de hypothese dat CRSwNP weefsel voor een inadequate verdediging 

zorgt tegen virus infectie wanneer met die vergelijkt met gezond weefsel. Dit kan bijdragen tot meer 

een langere symptomen bij acute infectie maar ook tot de persistentie van de inflammatie in 

CRSwNP weefsel. Een op regulatie van suppressor of cytokine signalling 3 (SOCS3) genexpressie 

en proteïne expressie in inflammatoire cellen van CRSwNP weefsel werd geobserveerd, terwijl 

Foxp3 gen- en eiwit expressie een down regulatie vertoonden. Wij toonden voor de eerste keer aan 

dat nasale mucosale Treg cellen beide proteïnen tot expressie brengen. Het uitschakelen van de 

expressie van SOCS3 in humane luchtwegmucosa resulteerde in een op regulatie van Foxp3, terwijl 

het induceren in de kanker cel lijn PANC-1 leidt tot Foxp3 down regulatie. De fosforylatie van 

signal transducer and activator of transcription 3 (STAT3) was verminderd in ontstoken mucosa en 

we stelden als hypothese dat SOCS3 hiervoor verantwoordelijk zou kunnen zijn. Inderdaad, de 

fosforylatie van STAT3 was verhoogd na silencing van SOCS3 expressie in ontstoken mucosa en 

verminderd na SOCS3 plasmide transfectie in PANC-1 cellen. De expressie van het Th2 cytokine 

IL-5 was verminderd in CRSwNP weefsel na silencing van SOCS3 expressie door midden van 

siRNA transfectie. Dit toont aan dat deze interventie functioneel was: verhoogde Foxp3 expressie 

in CRSwNP weefsel inhibeerde de Th2 respons. 
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Samengevat, hebben we aangetoond dat S. aureus bijdraagt aan de Th2 respons door middel van de 

epitheliale cel geproduceerde cytokines TSLP en IL33 in CRSwNP weefsel. CRSWNP weefsel 

toont een significant gebrek in de defensie tegen virussen zoals HSV1 en HRV, en tegen S. aureus 

infectie vergeleken met gezond weefsel, wat kan bijdragen aan de persistentie van de inflammatie 

in CRSwNP weefsel. Het silencen van SOCS3 expressie inhibeert de expressie van het IL-5 

cytokine in CRSwNP weefsel via een op regulatie van Foxp3 expressie, wat een mogelijk 

innovatieve therapeutische strategie voorstelt voor de behandeling van Th2 gemedieerde CRSwNP. 
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Viruses and bacteria in Th2 biased allergic airway disease 

Feng Lan, Nan Zhang, Elien Gevaert, Luo Zhang, Claus Bachert 

 

Abstract: 

Allergic airway diseases are typically characterized by a type 2-biased inflammation. Multiple 

distinct viruses and bacteria have been detected in the airways. Recently, it has been confirmed that 

the microbiome of allergic individuals differs from those of healthy subjects, showing a close 

relationship with the type 2 response in allergic airway disease. In this paper, we summarize recent 

findings on the prevalence of viruses and bacteria in type 2-biased airway diseases and on 

mechanisms employed by viruses and bacteria in propagating type 2 responses. The understanding 

of the microbial composition and post-infectious immune programming is critical for the 

reconstruction of the normal microflora and immune status in allergic airway diseases.  
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Introduction 

The role of environmental and gastrointestinal pathogens in allergic airway inflammatory pathology 

(whether protective or provocative) has been widely studied. The hygiene hypothesis proposes that 

a low prevalence of childhood asthma is associated with exposure of infants to a microbe-rich 

environment1,2. A low diversity of the gut microbiome in early infancy precedes asthma at school 

age3. However, the Copenhagen Prospective Studies on Asthma in Childhood recently suggested 

that individual susceptibility and inflammatory consequences after infection, rather than the specific 

microbial trigger, are associated with school-age asthma development4. Therefore, understanding 

the microbial composition and post-infectious immune programming in type 2-biased airway 

diseases are important for therapeutic interventions in the future. Allergic asthma, allergic rhinitis 

and chronic rhinosinusitis with nasal polyps (CRSwNP) are typical airway disorders that are 

characterized by a type 2-biased inflammation. In this review, we summarize the prevalence of 

viruses and bacteria in type 2-biased airway diseases, on the mechanisms employed by viruses and 

bacteria in propagating type 2 responses and the impact of T helper 2 (Th2) cytokines on the defense 

against infections.  

The prevalence of viruses in the airways 

Viral infections starting from the nasopharynx in early life are reportedly associated with an 

increased risk of developing asthma later in life (Table1). Viral infections that affect allergic upper 

airway diseases can also lead to acute asthma exacerbations in the lower airways5. To clarify the 

prevalence of viral communities in the development of asthma, nasopharyngeal samples were 

obtained from infants at scheduled visits at 2, 6, and 12 months of age, or within 48h after onset of 

an acute respiratory infection (ARI) during the first year of life in the extension of the Childhood 

Asthma Study6. The most common viruses found in the nasopharynx of healthy children during ARI 

were human rhinovirus (HRV) (40%) and human respiratory syncytial virus (HRSV) (11%)6. 

Among those viruses, HRV-C rather than the other HRV subtypes or HRSV, which was detected in 

nasopharynx of healthy children during ARI accompanied by wheezing symptoms, was positively 

associated with later chronic wheezing among all children and particularly for those who were 

atopic by 2 years6. In a recent study, HRSV and HRV induced lower respiratory tract infections in 
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412 pediatric patients up to the age of 3 years were associated with the development of wheezing 

and exacerbations7. In addition, pediatric patients with HRV induced wheezing were more likely to 

develop subsequent recurrent wheezing and asthma during the following 3 years7. Both HRV and 

HRSV are well known risk factors for subsequent wheezing or asthma development in infancy, but 

they also have specific susceptibilities according to their age. HRV infection carries a markedly 

higher risk for persistent wheezing in younger infancy (under 2 years of age)8, while HRSV 

infections are related to the development of asthma in children at school age9. 

Table 1. The prevalence of viruses in airways. 

HRV: human rhinovirus; HRSV: human respiratory syncytial virus; IFV: influenza viruses; VNT: virus 

neutralization test; RT-PCR: reverse transcription polymerase chain reaction; 16S rRNA: 16S ribosomal 

RNA, m: month; y: year. 

In hospitalized children aged between 3 to 16 years, HRV and HRSV were the most frequent 

viruses in nasopharynx secretion during asthma exacerbations10. Similarly, a Japanese group also 

demonstrated that HRSV was related to wheezing episodes and was more frequent in patients with 

Characteristic of subjects Sample source Identification 

techniques 

The common viruses Ref. 

Healthy infants (<12m)  

during acute respiratory 

infection 

nasopharynx 

secretion 

RT-PCR;  HRV (40%); 

HRSV (11%);  

6-7 

Asthmatic children (3-16y)  

during asthma exacerbation 

nasopharynx 

secretion 

RT-PCR;   

VNT;     

HRV (30.3%);              

HRSV (40.9%);              

IFV (15.9%);               

HSV-1 (56.8%); 

10-13 

Asthmatic adults during 

asthma exacerbation 

nasopharynx  

secretion 

RT-PCR; HRV-A,B,C (10.4%)        

HRSV-A (10.4%); 

Metapneumovirus (6.3%); 

14 

Chronic rhinosinusitis  

patients 

nasal tissue or 

epithelial cell 

scraping; 

RT-PCR; Picornavirus (29%);       

HRSV (15%);              

IFV (20%);            

Parainfluenza viruses-3(18 %); 

15-16 

Allergic rhinitis patients nasal swab RT-PCR; HRV (14.1%); 23 
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a history of asthma11. Besides HRSV and HRV, also influenza viruses (IFV) were involved in 

asthma exacerbations in children particularly with atopic sensitizations, but not in non-atopic 

children12. In atopic Turkish children with asthma and allergic rhinitis, significantly higher herpes 

simplex type 1 (HSV-1) IgG seropositivity was detected in the serum than in the matched non-atopic 

group13, suggesting a possible relationship between pediatric allergic airway diseases and HSV-1 

infections. In adults, higher incidences of HRV A/B/C, HRSV A, and metapneumovirus infections 

were observed in nasopharyngeal swabs during asthma exacerbations Corynebacterium 

pneumonia14.  

 The rate of picornavirus, HRSV, IFV, and parainfluenza viruses was significantly increased in 

CRS patients compared with that seen in controls (64% vs. 30%)15. Particularly, HRV was the only 

virus that shared a significant increase in infection rate in both nasal lavage and epithelial cells 

scrapped from nasal inferior turbinate of CRS patients vs. controls. On the contrary, a high rate of 

this virus was also found in epithelial cells scrapped from the nasal middle meatus of Chinese 

CRSwNP patients, but with no significant difference when compared with controls16. Thus, 

sampling from different places of the nose contributes to the different results. Concordantly, a high 

prevalence of HRV was also present in sinus tissues in Brazilian CRS patients, and there was a peak 

of detection during the autumn and winter seasons, when respiratory viruses are far more prevalent17. 

Unfortunately, CRS was not further differentiated in that study. In contrast to Th2-biased 

inflammatory characteristics of CRSwNP, CRSsNP often exhibits a Th1-cell inflammation pattern18. 

Due to their different inflammatory patterns, it is necessary to characterize the prevalence of viruses 

in each subgroup of CRS in the future. 

  Allergic rhinitis is an allergic inflammation of the upper airways, and it is also a known risk factor 

for wheeze and asthma. In general, asthma occurs in 10–40% of patients with allergic rhinitis, 

whereas allergic rhinitis occurs in 20–80% of patients with asthma19,20. Interestingly, both the cross-

sectional survey of Singaporean and the Pollution and Asthma Risk: an Infant Study birth cohort 

studies demonstrated that allergic rhinitis may start as early as in the first 2 years of life21,22. In early 

childhood, HRV was the most frequent virus detected in nasal swab samples of prolonged/recurrent 
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rhinitis23. Interestingly, HRV-positive infants with recurrent rhinitis had a higher rate of wheeze 

compared to HRV-negative infants23.  

Table 2. The prevalence of bacteria in airways. 

RT-PCR: Reverse transcription polymerase chain reaction; 16S rRNA: 16S ribosomal RNA, m: month; 

y: year. 

Subjects Sample Identification 

technique 

Bacterial species Ref. 

Healthy infants (2m)      

without acute respiratory 

infection  

nasopharynx 

secretion 

16S rRNA  

pyrosequencing; 

bacterial culture; 

Staphylococcus (41%); 

Corynebacterium(22%);       

(main bacteria)    

Alloiococcus (14%);       

Moraxella (9%);        

Haemophilus (9%);         

6, 29 

Healthy infants (12m)       

without acute respiratory 

infection  

nasopharynx 

secretion 

16S rRNA  

pyrosequencing;  

Moraxella(41%);  

Alloiococcus(26%);            

(main bacteria)  

Staphylococcus (11%); 

Corynebacterium (12%);   

6, 

Healthy children (24m) nasopharynx 

secretion 

bacterial culture; Streptococcus pneumoniae (72.8%); 

Moraxella catarrhali (78.6%); 

Haemophilus influenzae (57.3%); 

Staphylococcus aureus (3.9%) 

25 

Healthy adults (18-66y) middle meatus  

swab 

16S rRNA 

pyrosequencing; 

RT-PCR; 

Staphylococcus epidermidis (96.4%);                     

Staphylococcus aureus (67.9%); 

Propionibacterium acnes (92.9%);  

34 

Asthmatic patients (>18y) 

during asthma exacerbation 

nasopharynx   

swab 

RT-PCR Streptococcus pneumoniae (18.8%); 

Haemophilus influenzae (12.5%); 

14 

Chronic rhinosinusitis  

without asthma patients  

sinus swab 

(ethmoid region) 

RT-PCR Staphylococcus (19.3%); 

Fusobacterium (9.0%);  

35,36 

Chronic rhinosinusitis with 

asthma patients  

sinus swab  

(ethmoid region)  

RT-PCR Staphylococcus (28.4%);    

Ralstonia (8.2%);       

Acinetobacter (2.3%);                            

35,36 
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Similar to childhood allergic rhinitis, an abundance of respiratory viruses, especially HRV, was 

detected in nasal lavage samples of adult perennial allergic rhinitis patients, but respiratory viral 

infection was independently correlated with symptom scores24.  

The prevalence of bacteria in the airways 

Bacterial community composition is a strong determinant of general health and disease, as well as 

a potential modulator of inflammatory processes contributing to airway diseases. Here bacteria 

which affect airway diseases are listed in Table 2. In infants, the nasopharynx microbiome is 

qualitatively dominated by six common genera: Haemophilus, Streptococcus, Moraxella (those 

three genera are common in ARI), Staphylococcus, Alloiococcus and Corynebacterium (more 

common in healthy samples)6, which is consistent with previous studies in children25,26 and in 

adults27. Similarly, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, 

Streptococcus pyogenes and Staphylococcus aureus (S. aureus) were also observed in nasopharynx 

swabs of Asian infants28. However, the Asian infants had a higher colonization of S. aureus (88.9–

100.0%) than in other studies at the first year of life, and 50% of S. aureus was methicillin-resistant 

S. aureus28. Nevertheless, the composition of microbial communities seems unstable over time. 

Early colonization typically involved Staphylococcus or Corynebacterium, which later was replaced 

by Moraxella or Alloiococcus in healthy infants, indicating that the composition of microbiome 

undergoes dynamic changes6. Whether the early microbiome dynamic change is related with later 

allergic airway diseases, requires more research. Clearly neonatal colonization with Haemophilus 

influenzae, Moraxella catarrhalis and Streptococcus pneumoniae had a strong correlation with 

subsequent recurrent wheeze and childhood asthma6,29,30. Evidence was also available that S. aureus 

acted as a risk factor for asthma development in children and young adults, but not in older adults31-

33. It is an evident that bacterial organisms act as important contributors to asthma exacerbations. A 

study of the bacterial composition of the nasopharynx in adult asthmatic patients indicated that 

Streptococcus pneumoniae infection was also associated with asthma exacerbations in clinical 

practice14.  

 In CRS, inflammation development takes place in the middle meatus. A high prevalence of 

Staphylococcus epidermidis (96.4%), S. aureus (67.9%), and Propionibacterium acnes (92.9%) was 
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found in middle meatus specimens of healthy adults34. Similarly to healthy adults, bacteria such as 

Pseudomonas, Staphylococcus, and Streptococcus were numerically dominant in sinus tissues of 

CRS patients35. Interestingly, a higher abundance of Staphylococcus, Acinetobacter, Pseudomonas 

aeruginosa, and Ralstonia species, and a lower level of Prevotella, Fusobacterium and 

Campylobacter species were detected in CRS patients with concomitant asthma than in CRS 

patients without asthma35,36. Additionally, patients with abundant expression of Corynebacterium 

at the time of endoscopic surgery had an optimal outcome, while patients with high S. aureus had a 

suboptimal outcome35. Coherently, an increase of nasal S. aureus carriage and the presence of S. 

aureus enterotoxin-specific IgE antibodies have been described in the mucosa of CRSwNP subjects 

and perennial allergic rhinitis patients33,37, and this is even higher in CRSwNP patients with asthma 

comorbidity and aspirin sensitivity. The further analysis on antibiotics resistance bacteria in allergic 

rhinitis highlighted that an increase of methicillin assistant staphylococcus aureus burden provides 

an insight into the difficulty of eradicating the bacterium38.  

Viruses and type 2 responses in allergic airway diseases 

HRV, as one of the most common viruses in human airways, is associated with the development 

and exacerbation of allergic asthma. Epithelial cell derived cytokines such as IL-33, thymic stromal 

lymphopoietin (TSLP) and IL-25 are critical in propagating a type 2 immune response by affecting 

Th2 cells, type 2 innate lymphoid (ILC2) cells and dendritic cells39. HRV infections induce mucosal 

IL-33 production in vivo, which can further initiate type 2 cytokine release from Th2 cells or ILC2 

cells40. HRV-induced IL-25 amplified type 2 responses via activation of IL-25 receptors on murine 

Th2 cell, ILC2s and basophils41. Elevated levels of TSLP in allergic asthma subjects positively 

correlated with the severity of asthma42, but so far there is no direct evidence showing the effect of 

HRV infection on TSLP production. In a recent study, CD11b+ exudative macrophages bearing M2 

macrophage markers have been identified as a new source for IL-13 production in a OVA asthma 

mouse model after HRV infection43. 

  Respiratory syncytial virus (RSV), a member of the paramyxoviridae family, is also associated 

with type 2 responses in allergic airway diseases. An increased level of IL-13 was observed in the 

lungs of BALB/c mice, mediated by IL-33 and TSLP production after intranasal RSV incubation44, 



21 

 

45. Furthermore, the interactions between a glycosyltransferase lunatic fringe and Notch ligands 4- 

Notch were reportedly responsible for the augmented Th2 inflammation in mouse during RSV 

asthma exacerbations46. Thus, IL-33, TSLP and Notch signaling might be the possible therapeutic 

target in RSV-induced Th2 responses. In addition to the classical Th2 cells and ST2L+ cells, a novel 

human subset of IL-6Rαhigh effector memory CD8+ T cells was identified to exclusively release IL-

5 and IL-13 after HRSV infection47. IL-6Rαhigh effector memory CD8+ T cells were detected in high 

numbers in the peripheral blood of asthma subjects47, suggesting a role of the cells in promoting 

Th2 responses in asthma (Figure 1).  

 

 

 

 

 

 

 

 

Figure 1: The role of viruses induces type-2 immune response in airways. Human airway epithelial 

cells produce IL-33, IL-25 in response to human rhinovirus (HRV)41-42. IL-33 and IL-25 subsequently 

drive IL-13 (yellow balls) and IL-5 (green balls) productions via binding to their receptors ST2L and IL-

25R respectively on Th2 cells, type 2 innate immune cells (ILC2s) and basophils42. Human respiratory 

syncytial virus (HRSV) also can induce type-2 cytokine release in airways from IL-6Rαhigh effector 

memory CD8+T cells48.  

 

  Similarly, IFV may induce the release of IL-33 from Natural killer T cells and alveolar 

macrophages in mice, leading to a robust IL-5 release from ILC2 cells48. Not only viruses but also 

viral nucleotide analogues can contribute to IL-13 expression by triggering mast cells in mice49. 

Taken together, the effect of viruses including HRV, RSV and IFV on type 2 responses are well 

established in the lower airways, but their role in upper airways awaits further investigation. 
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Bacteria and type 2 responses in allergic airway diseases 

Airway bacteria such as Moraxella, Corynebacterium pneumonia, Streptococcus pneumoniea and 

S. aureus are associated with the development and exacerbations of asthma, but the underlying 

molecular mechanisms have not yet been unveiled. Endonasal instillation of ovalbumin (OVA) plus 

staphylococcal enterotoxin B (SEB) induced a murine pulmonary inflammation, which is 

characterized by an increase in the number of eosinophils and the production of Th2 cytokines50. It 

has been reported that exposure of mouse splenocytes and peritoneal macrophages to CpG 

oligodeoxynucleotides from Streptococcus thermophilus enhanced IL-33 expression51, which may 

further initiate Th2 responses. However, not all bacteria exhibit the ability to enhance Th2 response; 

Haemophilus influenzae infection synergized with OVA mouse model of asthma elevates Th17 

responses, not Th2 responses52.  

 

 

 

 

 

 

 

 

Figure 2: The role of bacteria induces type-2 immune respones in airways. After binding to toll-like 

receptor 2 (TLR2), Staphylococcus aureus (S. aureus) induces type 2 cytokines productions via thymic 

stromal lymphopoietin (TSLP) and IL-33 release from human airway epithelial cells (data not published). 

The staphylococcal enterotoxin B (SEB) induces type 2 cytokine releases by affecting the differentiation 

of T helper (Th) 2 cells and IL-6Rαhigh CD8+cells48. 

In upper airways, our group has proved that SEB induces considerable release of Th2-

associated cytokines including IL-4, IL-5 and IL-13 and also enhances eosinophilic inflammation 

in human nasal tissues53-56 (Figure 2). Without the effect of the enterotoxin, CRSwNP tissue 

exposure to S. aureus alone led to IL-5 expression via TLSP and IL-33 productions (data not 
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published). Even though IL-6Rαhigh effector memory CD8+T cells are involved in virus-induced 

Th2 response, they also trigger IL-5 and IL-13 expressions in response to the bacterial superantigens 

SEB and TSST-147. In mouse, an adhesion molecule of S. aureus “iron-regulated surface 

determinant A’’ mediated IL-4 secretion from splenocytes57. In summary, the effect of bacteria on 

Th2 response especially in upper airways implicates an important role of bacteria in allergic airway 

diseases.  

Type 2 cytokines upon viral and bacterial infection  

In allergic airway diseases, IL-4 is critical for Th2 cell differentiation and causes a switch to IgE 

production by differentiating B cells58. IL-5 is associated with eosinophil development and 

activation59. IL-13 regulates IgE isotype switching in B cells, as well as activating mast cells, 

eosinophils, and neutrophils60,61. As mentioned above, microbial infection can induce type 2 

cytokine releases. Simultaneously, type 2 cytokines also can exaggerate inflammation in response 

to respiratory infection. IL-4 and IL-13 pre-treated human airway epithelial cells promoted higher 

expression of pro-inflammatory chemokines such as IL-8, CXCL9, CXCL10, CXCL11 in response 

to polyriboinosinic: polyribocytidylic acid stimulation62. IL-13 enhanced goblet cell differentiation 

63, and the induction of mucous metaplasia inhibited ciliogenesis and ciliary beat frequency, thereby 

changing the apical membrane structure which increased susceptibility of human airway epithelium 

to HRV16 infection63, 64. HRV16 infection in turn resulted in further dysfunction of ciliary clearance 

and hyper-secretion of mucus, aggravating the inflammation in airways65. Additionally, IL-4 and 

IL-13 increased HRV16 replication by reducing the interferon producing capacity of human 

bronchial epithelial cell line66. Thus, type 2 cytokines increase susceptibility to viral infection in 

airways via changing the epithelial structure and the production of interferons. 

In the upper airway, a disruption of the tight junctions such as occludin and zona occludens-1, 

and an irregular expression pattern were observed in the IL-4–stimulated primary nasal epithelial 

cells67. Zona occludens-1 expression became discontinuous in human nasal epithelial cells exposed 

to the S. aureus conditioned media68, however, there is no direct evidence showing a correlation 

between the reduced tight junctions and higher susceptibility to bacterial infection. Indeed, IL-13, 

not IL-4, markedly down-regulated antimicrobial protein psoriasin expressions in human nasal 
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epithelial cells69, which resulted in an increase in susceptibility to bacterial infection. In contrast, 

IL-4 and IL-13 exposure to human bronchial epithelial cells during mucociliary differentiation 

contributed to the antimicrobial defense against Pseudomonas aeruginosa infection via induction 

of antimicrobial peptide human beta defensin-270. Therefore, the multifaceted role of Th2 cytokines 

has been shown in anti-microbial protein production.  

 

 

Figure 3: Targets to block type 2 immune responses in airways with viral and bacterial infections. 
Microorganisms, epithelial cell derived cytokines such as TSLP and IL-33, type 2 cytokines such as IL-

4, IL-5, IL-13 and their receptors are targets to inhibit type 2 biased immune response in airways 79-82. 

TLR2: toll-like receptor, siRNA: small interfering RNA, TSLP: thymic stromal lymphopoietin, TSLPR: 

TSLP receptor; ST2L: IL-33 receptor; ILC2: type 2 innate immune cells; IgE: immunoglobulin E; 

GATA3 DNAzyme: GATA binding protein 3 deoxyribozymes. 

 

Ways to block type 2 responses in allergic airway disease 

As mentioned above, there is a link between infection and type 2 response. Type 2 cytokines and 

their binding receptors, mechanisms of inducing type 2 cytokines during infection and 

microorganisms become potential targets to block human type 2 responses allergic airway diseases 

(Figure 3). Intra-nasally pretreated anti-IL-4 and anti-RSV siRNAs reduced eosinophils in broncho-

alveolar lavage fluid of a mouse model of asthma during asthma exacerbations71. It provides 
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promising “silencing” techniques such as siRNA and DNAzyme against viruses or bacteria to be 

used in human model to diminish type 2 allergic immune responses. Likewise, non-cytotoxic 

anthraquinone derivatives ameliorated IL-4 and IL-13 expressions through de-phosphorylation 

AKT in an OVA-asthmatic mouse model with RV exacerbations72. Anti-IL-25 antibody had a 

similar inhibitory effect on Th2 inflammation induced by murine pneumonia viruses, but it also 

promoted a Th17 response73. Based on the findings in a mouse model, monoclonal blocking 

antibodies against type 2 cytokines are used in asthmatic patients in clinic trails. Targeting IL-13 

(lebrikizumab) or both IL-4 and IL-13 signaling have demonstrated therapeutic benefits for treating 

moderate-to-severe asthma patients with increased eosinophils or periostin74,75. Additionally, 

neutralization of IL-5 by mepolizumab is a promising intervention for patients with severe 

eosinophilic asthma76, 77. Furthermore, blocking a subunit of IL-4 receptor by dupilumab can also 

efficiently inhibit both IL-4 and IL-13 signaling in patients with persistent, moderate-severe asthma 

78. Omalizumab, a humanized monoclonal antibody to block interaction between IgE and high 

affinity IgE receptor (FcεRI), can significantly improve the lung functions and markedly advance 

asthma control of severe asthma patients79. FcεRI activation is also associated with reciprocal down-

regulation of typeⅠinterferon production during viral asthma exacerbations80. Thus, omalizumab 

blocks the type 2 response in allergic asthma and consequently enhances viral clearance by restoring 

type I interferon production. The expression and the production of Th2 cytokines is also controlled 

by the transcription factor human GATA binding protein 3 (GATA3) which is relevant for the 

differentiation of Th2 lymphocytes. Applied in a human asthma model, GATA3 specific-

deoxyribozymes (DNAzyme), a DNA molecule docks the GATA3 RNA expression, led to the 

reduction of Th2 response81. In the upper airways, the monoclonal antibodies mepolizumab, 

reslizumab, omalizumab and dupilumab have been subjected to proof-of-concept studies. Those 

therapeutic approaches efficiently suppress Th2 immune responses and also may counteract the 

consequences related to it in terms of deficits in mucosal defense mechanisms82. MiR-143, with a 

direct inhibitory role on IL-13 receptor α1 chain expression, suppresses IL-13-induced 

inflammatory cytokine and mucus production in nasal epithelial cell from allergic rhinitis patients83. 

Besides the use of monoclonal antibodies against Th2 cytokines and their receptors, interferon-
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β produced a strong and consistent abrogation of Th2 cytokine production from human periphery 

blood mononuclear cells in the presence of HRV infection84. MiR-143 with a direct inhibitory role 

on IL-13 receptor α1 chain (IL13Rα1) expression, suppressed IL-13-induced inflammatory cytokine 

and mucus production in nasal epithelial cell from AR patients83. Specific immunotherapy for 3 

months also can inhibit Th2 response in allergic rhinitis patients by modulating T cell 

immunoglobulin mucin domain molecule 4 (TIM4)/TIM1 interaction on dendritic cells85.  

The interaction between virus and bacteria 

Most of the investigations focused on the effect of virus alone or bacterium alone in allergic airway 

diseases, whereas little is known about viral and bacterial co-infection. In the clinic, virus and 

bacteria co-infections increased the readmission risk of asthmatic patients86, and a high frequency 

of co-infections was observed in asthma exacerbation patients14. In mouse model, preceding virus 

infection may enhance the bacterial adherence such as galectins for pneumococcal adhesion87, and 

depress the recruitment of neutrophils and natural killer cells which play an important role in the 

bacterial clearance88,89. Conversely, exposure of influenzae to primary human epithelial cells 

significantly enhanced the binding of HRV16, probably through up-regulation of intercellular 

adhesion molecule and toll-like receptor -3 expression90. Our recent study also showed that herpes 

simplex virus type 1 infection facilitates invasion of S. aureus into the nasal mucosa and CRSwNP 

tissue91. In humans with acute respiratory illnesses, however, children with HRSV and Mycoplasma 

pneumonia co-infection had more severe airway inflammation than those with HRSV infection 

alone92, bacteria (influenzae, catarrhalis and pneumoniae) are more likely to be detected 

among virus-negative specimens compared to virus-positive burden93. Similarly, mice with pre-

symptomatic influenza infection are less susceptible to secondary methicillin-resistant S. aureus 

infection94, due to the persistence of IL-13 signaling that was advantageous for resolving 

methicillin-resistant S. aureus infection. These observations suggest a profound deference of host 

defense upon different pathogen species infection. Further investigations addressing potential 

interactions between specific viruses and bacteria in allergic airway diseases are therefore warranted.  
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Perspectives  

In this paper, we have summarized the evidence for viruses and bacteria to initiate or maintain type 

2 responses in the airways. Those infectious agents are commonly associated with Th1 and Th17 

responses. We here stress that apart from allergens, specific germs and viruses also may play a 

critical role in the induction of type 2 immune responses. We assume that not one single event will 

be enough to initiate and certainly not to maintain Th2 inflammation, but rather that multiple hits 

are necessary over time, involving microbes, allergens and environmental factors (Figure 4).  

 

 
Figure 4 Multiple hits may initiate or maintain Th2 biased immune response in airways. Low 

numbers of viruses and /or bacteria may persistently exert pressure as colonizers, biofilm formers or 

intra-mucosal intruders. And high number of microbes may hit the airway mucosa during an acute 

infection exacerbation and result in plenty of Th2 cytokine release. The balance among Th1, Th2, and 

Th17 responses, the status of airway mucosa and the some environment are also involved in Th2 biased 

immune response initiation or maintenance in airways. HRV: human rhinovirus, HRSV: human 

respiratory syncytial virus, S. aureus: staphylococcus aureus, Th: T helper.  

 

The impact of such events probably depends on the quantity of viruses and/or bacteria and the time 

course, e.g. high numbers of microbes may hit the airway mucosa during an infection, and low 

numbers may persistently exert pressure as colonizers, biofilm formers or intra-mucosal intruders. 

Furthermore, the immune status of the airway mucosa will make a difference, with a Th1/Th17 

biased mucosa being more resistant to Th2 pressure than an already Th2-biased inflammatory status. 

As we have discussed, these different Th milieus may co-exist, and thus the balance among Th1, 

Th2, and Th17 responses may determine the course and speed of disease development. Finally, a 

Th2 response may establish itself within the mucosa, which leads to further negative effects; a Th2 
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bias indices an insufficiency to defend the mucosa against viral and bacterial infections. For example, 

our group has demonstrated that S. aureus can induce type 2 cytokine release in CRSwNP tissue, 

but not in healthy control mucosa (publication submitted).    

Some literatures indicated that there is no difference of the prevalence rate of viruses and bacteria 

between allergic airway diseases and controls. The following limitations have to be taken into 

account: Although culture-independent techniques have the ability to detect more microbes than 

culture techniques, culture-dependent methods so far remain a better approach for microbiome 

isolation. In this review, only a cited paper from Michael Inouye’s6 group has carried out additional 

culture dependent approach in parallel to reduce the possibility of false findings. Some another 

factors such as samples from different part of airways, the influence of medication especially the 

use of antibiotics, an acute respiratory infection occurred in the intervening period between 

sampling, and sampling from different seasons also affect results. Therefore, standardized 

microbiome identifications are very necessary to gain useful data.  

In children, the most common viruses found in respiratory tracts are HRV and HRSV during 

acute infections, which are associated with a high risk for subsequent wheezing and asthma 

exacerbation. Thus, HRSV or HRV vaccination has been recommended in high-risk children for 

prevention of childhood asthma. However, bacteria such as Haemophilus and Staphylococcus were 

abundant after applying the seven-valent pneumococcal conjugate vaccine, targeting Streptococcus 

pneumoniae serotypes25. Thus, the subsequent bacterial composition when implementing viral 

vaccines needs careful monitoring.  

In the absence of effective anti-viral therapies, targeting pathogenic bacteria for manipulating the 

microbiome by antibiotics may be an alternative approach. In contrast, several epidemiological 

studies reported that antibiotic consumption in the first year of life was associated with a risk of 

asthma in later life6, 95. Due to the “common mucosal response” concept which means alterations in 

immune function of the respiratory tract are linked to the immunomodulatory activity of the gut 

microbiome, oral administration of probiotics was used for treating allergic airway diseases by 

changing the gut microbiome3. Some investigations have shown that oral administration of 

probiotics and prebiotics may benefit allergic rhinitis patients96-98. Moreover, the local nasal 
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administration of Lactococcus lactis NZ9000 can affect local and systemic immune responses 

against Streptococcus pneumoniea99. Probiotics seem a potentially therapeutic approach for allergic 

airway diseases, but there are still many controversial issues to be solved. The meta-analysis by 

Elazab et al. has demonstrated that early probiotic administration does decrease atopic sensitization, 

but it does not reduce the risk of developing asthma100. The differences in study design and the 

usage of different probiotic strains or combinations can lead to completely different results. 

Adequately controlled experiments with standardized criteria using specific strains, dosages and 

timing are anticipated to provide more insight.  
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Regulatory T cell in allergic airway diseases 

Feng Lan, Nan Zhang, Elien Gevaert, Luo Zhang, Claus Bachert 

 

Abstract: 

Allergic airway diseases are characterized by a skewed T helper 2 (Th2) response and decreased 

numbers of regulatory T (Treg) cells. Treg cells potentially suppress deleterious activities of effector 

T cells and maintain a state of tolerance against antigens in airway mucosa. Therefore, 

understanding the role of Treg cells in allergic airway diseases is crucial for therapeutic 

interventions. This paper briefly reviews the naturally occurring Treg (nTreg) cells and different 

phenotypes of induced Treg (iTreg) cells in allergic airway diseases. Recent findings on their 

identification, generation, migration, and suppressive function as well as their modulation in airway 

diseases are also discussed.  
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Introduction 

The airway mucosa is constantly exposed to airborne allergens and exogenous particles. The 

immune system analyzes and appropriately responds to these exposures, forming a state of immune 

tolerance. Regulatory T (Treg) cells play a crucial role in tolerance induction in airway mucosa. A 

deficiency or dysfunction of Treg cells may cause allergic airway inflammatory diseases with 

exacerbated effector T cell proliferation and cytokine production against foreign pathogens. 

Allergic airway diseases discussed in this study are chronic rhinosinusitis (CRS), allergic rhinitis 

(AR) and allergic asthma. CRS, representing an inflammation of the nose and paranasal cavities, is 

further divided into two subgroups: CRS with nasal polyps (CRSwNP) and CRS without nasal 

polyps (CRSsNP). European CRSwNP, AR and allergic asthma are characterized by a skewed T 

helper 2 (Th2) response, elevated IgE concentrations and decreased number of Treg cells1-3. The 

reinforcement suppressive function of Treg cells is therefore regarded as a plausible strategy to 

modulate Th2 immune response. However, adoptive transfer of naturally occurring Treg (nTreg) 

cells in a mouse model of asthma did not provide satisfactory results4. The two main reasons could 

be: i) difficulty in obtaining sufficient numbers of Treg cells for therapeutic interventions since Treg 

cells constitute 1%–2% of CD4+T cells, ii) alteration in the phenotypes and functional characteristics 

of nTreg cells caused by repetitive T cell receptor (TCR) stimulation 5. In addition, the inflammatory 

environment with pro-inflammatory cytokines such as IL-6 and TNF-α could also convert nTreg 

cells into Th17 cells6,7. Although nTreg cells and induced Treg (iTreg) cells share a similar function 

in both prevention and treating allergic response in an ovalbumin (OVA) induced mouse model of 

asthma8, iTreg cells have superior functional characteristics including resistance to Th17 conversion 

and anti-apoptosis9. Therefore, adoptive transfer of iTreg cells may be a promising therapeutic 

approach in allergic airway diseases. The hypothesis, however, awaits more investigations to be 

confirmed. In this review, we will focus on recent findings on identification, generation, migration, 

and suppressive function modulation of nTregs and different types of iTregs such as 

CD4+CD25+Foxp3+iTreg cells, Type 1 regulatory T (Tr1) cells, Foxp3+ invariant Natural Killer T 

(iNKT) cells, and Foxp3+ gammadelta (γδ) T cells, which are closely associated with airway 
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inflammatory diseases. The biomarkers for different Treg cells identification are listed in the Table 

1.  

Table 1. The phenotypes of regulatory T cells in airway disease. 

nTreg, natural occurring regulatory T cell; iTreg, induced regulatory T cell; γδ, gammadelta; Tr 1, 

Type 1 regulatory T cell; Foxp3, fork head box p3, CTLA, cytotoxic T lymphocyte-associated 

antigen-4; GITR, glucocorticoid-induced tumor necrosis factor receptor; TCR, T cell receptor LAG-

3, lymphocyte activation gene3; ICOS, Inducible T cell co-stimulator; PD1, programmed cell death-

1. 

Naturally occurring regulatory T cells  

Cell type Cell markers Origins Ref. 

nTreg cell CD4+, CD25+, CD127low, 

Foxp3high, CD6- GITR, 

CTLA-4 (activated nTreg) 

Thymus; 

Foxp3−CD25+nTreg cell precursor 

18-20, 

23-24 

CD4+CD25+Foxp3

+ iTreg cell 

CD4+, CD25+, CD127low, 

Foxp3high, 

Periphery; 

CD4+CD25-T cells  

 

18-22 

Tr1 cell IL-10+, Foxp3-, 

ICOS+, PD-1+, CD49b+, 

LAG-3+, CD226+ 

Periphery; 

conventional or naïve or CD4+T cell 

(human);  

CD4+CD62L−Foxp3− cell; (human 

and mouse) 

59-63 

Foxp3+ iNKT cell CD25+, Foxp3+, CD1d+, 

invariable TCR, CTLA4- or 

GITR- 

Periphery;  

iNKT cells include in: 

CD1d+Vα14Jα18 with Vβ8, or Vβ7 

or Vβ2 cell (mouse);  

CD1d+Vα24Jα18Vβ11 cell (human); 

74-75, 

81 

Foxp3+ γδ T cells TCRγδ+, CD25+, Foxp3+ Periphery;                 

human central memory γδ T 

cells(CD27+CD45RA−);      

mouse splenocytes;   

93-94 
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Regulatory T cells are generally divided into nTreg cells and iTreg cells. nTreg cells mature in the 

thymus under the influence of interactions between TCR and autoantigens; while iTreg cells are 

generated from their precursors in the periphery of secondary lymphoid organs or mucosa tissues. 

The generation of nTreg cells in thymus requires two steps: TCR/CD28 and RelB-dependent 

medullary thymic epithelial cells control Foxp3−CD25+nTreg cell precursors generation; IL-2 

signaling subsequently induces the generation of Foxp3+CD25+nTreg cells from the 

Foxp3−CD25+nTreg cells10-13. IL-2 is dispensable for nTreg cells development in thymus14, whereas 

it is indispensable for nTreg cell peripheral survival 11. The proliferation of nTreg cells in periphery 

is associated with an increased TCR-mediated signaling or CD28 co-stimulation15-17.  

To identify nTreg cells, biomarkers CD4+, CD25+, CD127low and Foxp3high are required. A high 

expression of Helios, neuropilin-1(Nrp1), programmed cell death-1(PD-1) and Swap70 on nTreg 

cells is also used to distinguish nTreg cells from iTreg cells18-20. However, conflicting data shed 

doubt on their specific roles21,22. Recently, human nTreg cells were reportedly characterized by low 

CD6 expression 23. Moreover, the active form of nTreg cells selectively expresses markers such as 

glucocorticoid-induced tumor necrosis factor receptor (GITR) and cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4)24. 

nTreg cells are generated in the thymus, mediating their suppressive function in lymphoid organs 

and peripheral inflammatory sites25. Therefore, knowing its migration from thymus to secondary 

lymphoid organs and further to periphery in vivo helps us understand the underlying mechanisms 

of nTreg-mediated suppression. nTreg cells are primed by interacting with antigens in draining 

lymph nodes, and then the active nTreg cells concomitantly control the proliferation of responder T 

cells26. Although mouse nTreg cells express both chemokine receptor (CCR)4 and CCR727, the 

migration of nTreg cells to lymph nodes to interact with antigens largely depends on CCR7 not 

CCR428. Thus, without priming in lymph nodes, an increase of CCR7-/- nTreg cells in lung tissue of 

mouse inefficiently suppresses Th2 and Th17 responses induced by house dust mite (HDM)29. In 

periphery, CCR4 and CCR7 were involved in the migration of mouse nTreg cells at different stages 

of airway allergic response. CCR7 mediated Treg cells migration to the lymph nodes is essential 

during an allergen sensitization phase, whereas CCR4-dependent Treg cell homing to lungs or even 
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to broncho-alveolar lavage fluid is required to suppress a recall response to an inhaled allergen and 

consecutive allergic pulmonary inflammation30, 31. Consistent with mouse studies, human subjects 

with asthma had an increase in CCR4 expression in nTreg cell of lungs after the segmental allergen 

challenge30. In nasal tissue, the number of nTreg cells trafficking towards nasal airway mucosa 

decreased in CRSwNP subjects in comparison with controls due to the reduced chemotactic 

response of nTreg cells to CCL132. Hereby, modulation of chemokine receptor expression on nTreg 

cells or chemotactic response of nTreg cells may restore the deficiency or dysfunction of nTreg cells 

in airway allergic diseases.  

CD4+CD25+Foxp3+ induced regulatory cells 

Surface markers of CD4+CD25+Foxp3+iTreg cells are similar to nTreg cells. Distinguishing 

CD4+CD25+Foxp3+iTreg cell from nTreg cell or other T cell subtypes has been widely hampered 

due to lack of specific markers. However, Helios, Nrp1, PD-1 and Swap70 described above are still 

useful for CD4+CD25+Foxp3+iTreg cell identification. 

In a TCR-transgenic mouse model, CD4+CD25+Foxp3+iTreg cells were generated in the absence 

of nTreg cells, implicating that the generation of iTreg cells may be independent of nTreg cells in 

vivo33. Both mouse and human CD4+CD25-T cells were converted into CD4+CD25+Foxp3+iTreg 

cells by triggering TCR in the presence of transforming growth factor beta (TGF-β) or in 

combination with IL-234, 35. 1, 25-Dihyroxyvitamin D3 binding to the vitamin D response elements 

in the Foxp3 conserved non-coding sequence region, also can induce Foxp3 expression in human 

CD4+CD25-T cells36. Additionally, mouse lung tissue resident macrophages contributed to the 

conversion of CD4+T cells into CD4+CD25+Foxp3+iTreg cells in a TGF-β and retinoic acid 

dependent manner37. The induction of Foxp3 is critical for CD4+CD25+Foxp3+iTreg cell 

generations. Therefore, a better understanding of Foxp3 regulation is useful for obtaining more 

iTreg cells in periphery. Foxp3 hypermethylation was associated with pediatric asthma 

exacerbations or asthma development in response to air pollutant exposures38,39. Reportedly, DNA 

hypermethylation inhibitors boosted Foxp3 expression and increased the expansion of 

CD4+CD25+Foxp3+iTreg cells to alleviate airway inflammation in the OVA-sensitized mice40. 

Recently, our group demonstrated that suppressor of cytokine signaling 3 (SOCS3) indirectly 
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regulates Foxp3 expression in human CRSwNP tissues41, which may also contribute to the induction 

of Foxp3+iTreg cells in allergic upper airway diseases. In comparison to nTreg cells, 

CD4+CD25+Foxp3+iTreg cells efficiently decreased Th2 asthmatic inflammation and reduced 

specific IgE levels in the airways42, 43, which confirms that CD4+CD25+Foxp3+iTreg cells could be 

a possible therapeutic approach for airway allergic inflammatory diseases.  

iTreg cells are induced in periphery or ex vivo, however understanding their migration to 

peripheral inflammatory sites is also important for  immune homeostasis. Defective trafficking 

properties of CD4+CD25+Foxp3+iTreg cells have been found in mucosal of the OVA-induced 

persistent hyper-responsiveness (AHR) model. Intranasal transfer of aeroallergen loaded airway 

mucosal dendritic cells from naïve rats into AHR susceptible rats during prolonged aerosol 

challenge markedly boosted subsequent iTreg cells accumulation in the airway mucosa44. In other 

words, changing the properties of antigen presenting cells will attract more 

CD4+CD25+Foxp3+iTreg cells to peripheral inflammatory sites. This may be relevant to 

immunotherapy for allergic disease by up-regulating the expansion of specific Treg populations via 

repeated mucosal exposure to allergens.  

Different from nTreg cell, CD4+CD25+Foxp3+iTreg cells exhibit non-Ag-specific bystander 

activity in vitro. Both nTreg cells and iTreg cells suppress responder T cells and antigen presenting 

cells (APCs) via two ways: cell-cell contact or soluble inhibitory cytokines. Active nTreg cells kill 

CD4+ and CD8+ T cells and other cell types in a perforin-dependent, Fas-FasL-independent 

manner45,46. After activation, nTreg cells are less dependent on co-stimulatory signals in comparison 

to responder T cells. Thus, the blockage of B7/CD28 and CD40/CD40L signals alters the balance 

between responder T cells and nTreg cells, which is in favor of nTreg cells activities in the OVA 

induced mouse model of asthma47,48. Both the responder T cells and APCs can be the targets of Treg 

cells, but the mechanisms of Treg cells on the responder T cells are different from those on dendritic 

cells (DCs). The interactions of CTLA-4 on nTreg cells with CD80/CD86 on DCs are an important 

pathway by which nTreg cells could mediate their suppressive function on DCs in vitro49. IL-10 

produced from Ag-specific iTreg cells, not CTLA-4, plays a critical role in down-regulation of 

CD80/CD86 on DCs in CTLA-4 deficient mice50. More recently, the adhesion molecule lymphocyte 
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activation gene-3(LAG-3) was also reportedly involved in the suppressive activity on nTreg cells 

by binding to MHC class II on DCs and interfering with the maturation and immune stimulatory 

capacity of DCs51. Surprisingly, no appreciable difference in ability to suppress T cell proliferation 

in vivo between wild type nTreg cells and LAG-3-/- nTreg cells has been described52. LAG-3-/-T cells 

show a relatively persistent ability to be suppressed, which means effector T cells with LAG-3 

expression are more susceptible to suppression52. Apart from cell-cell contact, inhibitory cytokines 

IL-10, TGF-β, adenosine and IL-35 are associated with the suppressive function of nTreg cells and 

iTreg cells53-55. IL-10 and adenosine showed their suppressive properties by influencing the 

maturation and co-stimulatory molecule expression of DCs53, 54; TGF-β maintains Foxp3 expression 

in Treg cells 56. In allergic airways of mice, nTreg cells exhibit a more effective suppressive function 

towards Th1 than Th2 responses via cAMP57. IL-35 produced by mouse nTreg cells was responsible 

for suppressing IL-17 dependent AHR58 .  

Type 1 regulatory T cells 

Tr1 cells are an inducible regulatory T cell population in human CRSwNP tissue and mouse lung 

tissue, characterized by the abundant production of IL-10 and absence of Foxp3 expression59, 60. 

Inducible T cell co-stimulator (ICOS), PD-1, CD49b, LAG-3 and CD226 are expressed on Tr1 cells, 

although, none of them can be regarded as a specific marker61,62. At present, the co-expression of 

CD49b, CD226 and LAG-3 are used for human and mouse Tr1 cell purification and isolation63. 

Human Tr1 cells are induced from naive CD4+T cells or conventional CD4+T cell precursors 

triggered by IL-27 and IL-10 respectively64, 65. CD3 and CD46 stimulation in the presence of IL-2 

contributes to human Tr1 cells conversions from CD4+T cells66. However, poor proliferation of Tr1 

cells was observed owing to a high rate of cell death67. Nasal administration of CD3 antibodies 

induced Tr1 cells from CD4+CD25- T cells depending on IL-27 secreted by upper airway resident 

DCs68. In addition, a component of extracellular matrix, hyaluronan, promoted Tr1 cell generations 

from human or mouse conventional CD4+CD62L−Foxp3− T cell precursors69. nTreg cells are also a 

candidate for Tr1 cell inductions upon the stimulation of CD46 and TNF-α70, implicating that the 

local environment is important for the plasticity of nTreg cells. In AR patients, the number of Tr1 
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cells and not nTreg cells were decreased in peripheral blood71. Thus, Tr1 cell induction in local 

nasal tissue could be an attractive target in inhibiting the allergic inflammatory response in AR. 

The suppressive function of Tr1 cells is mainly mediated by inhibitory cytokines, specifically IL-

10 and TGF-β72. However, neutralizing antibodies against IL-10R and TGF-β cannot completely 

diminish Tr1 cell suppressive functions72. Reportedly, human Tr1 cells specifically lyse APCs via 

granzyme B and perforin, which confirms that cell-cell contact is also involved in the suppressive 

activity of Tr1 cells73. 

Foxp3+ invariant Natural Killer T cells 

iNKT cells are unique CD1d-restricted innate-like T cells, which shares the properties of both T 

cells and natural killer cells. Type 1 iNKT cells have been better described than type 2 iNKT cells 

owing to their invariable TCRs (Vα14Jα18 α-chains paired with a limited number of β-chains Vβ8, 

Vβ7, Vβ2 in mice, Vα24Jα18 α-chains paired with Vβ11 chain in  humans)74, 75. Activated iNKT 

cells in the mice models of asthma or peripheral blood from asthmatic patients are capable of 

producing Th1, Th2, or Th17 cytokines76-80. When Foxp3 is induced, Foxp3+iNKT cells obtain 

immunosuppressive properties, with the expression of CD25 but not necessarily CTLA4 or GITR81. 

Thus, combined markers (CD25+, Foxp3+, CD1d+ and invariable TCRs) can be used for human and 

mouse Foxp3+iNKT cell identification.  

Human Foxp3+iNKT cells were induced from CD25+CD1d+iNKT cells in the presence of TGF-

β plus rapamycin81. In contrast to an earlier study, it was found that IL-10 plus rapamycin rather 

than TGF-b induced Foxp3 expression in freshly isolated peripheral blood Vα24+Vβ11+iNKT cells 

82. However, Foxp3+iNKT cells which are generated from different ways show the same suppressive 

activity. Recently, it was also reported that the selected human iNKT cell clones (CD4+, double 

negative) acquired a dramatic increase of Foxp3 expression upon anti-CD3 stimulation; the 

induction of Foxp3 was also observed in a CD4+ iNKT cell clone upon PMA-ionomycin 

treatments83.  

Although, Foxp3+iNKT cells inhibit the proliferation of conventional CD4+ cells in a cell-cell 

contact manner, the mechanisms mediating the suppressive function is still unclear81. Foxp3+iNKT 



46 

 

cells are excluded from lymph nodes and preferentially migrate to peripheral tissues in association 

with the expression of CD103 cells84. However, further investigations are still required to detail the 

migration of Foxp3+iNKT cells. 

Foxp3+ gammadelta T cells  

γδT cells, with γδ TCR expression, directly recognize conserved non-peptide antigens and lipids 

independent of MHC/peptide complexes, which is different from classical αβ T cells. According to 

the usage of Vδ-chain, γδT cells can be mainly divided into 2 subsets Vδ1 and Vδ2; the different 

TCR arrangement directly affects their eventual principle tissue of residence. In humans, Vδ1 cells 

with Vγ1 or Vγ4 are mainly located in lung and nasal mucosa85, 86; Vδ2 cells with Vγ9 account for 

50–95% of circulating γδ T cells in the peripheral blood87. In mice, Vγ1 and Vγ4 are present in the 

lymphoid tissues and Vγ1, Vγ4, and Vγ6 are present in the lungs88. The surface markers CD45RA 

and CD27 further classify Vδ2+ or Vδ1+ cells into naive (CD45RA+CD27+), central memory 

(CD45RA-CD27+), effector memory (CD45RA-CD27-), and effector (CD45RA+CD27-) statuses89. 

Untill now, the role of γδT cells in allergic airway diseases remains ambiguous. Mouse Vγ1+δ1 T 

cells promoted airway inflammation or AHR by enhancing the systemic IgE response. In contrast, 

Vγ4+δ1 T cells alleviated AHR, the Th2 airway allergic response and eosinophilic infiltrations in 

OVA sensitized mice90,91. Increased γδT cells were found in the peripheral blood of moderate/severe 

house dust mite positive AR patients, which was positively correlated with IL-17 secretions92. 

Surprisingly, inflammatory γδT cells obtain a suppressive function when Foxp3 is induced, and 

different phenotypes of Foxp3+γδT cell have different surface markers. Human Foxp3+Vδ2 T cells 

express CD25+ CD27+ CD45RA+93, while human Foxp3+Vδ1 T cells exhibit CD25+ CD27+ 

CD45RA- expression94. Similar to human Foxp3+γδT cell, TCRγδ and CD25 are also used for mouse 

Foxp3+γδT cell isolation95. Recently, a novel mouse regulatory γδ T cell CD39+γδ T cell, with the 

expression of CD25, CD27, CD39 and CD122 but not Foxp3, has been identified 

both in vitro and in vivo96. Taken together, TCRγδ, CD25 and Foxp3 are used for human and mouse 

Foxp3+γδ T cell identification. 

  Casetti et al. 93 reported that the induction of Foxp3+Vγ9Vδ2 T cells from human central memory 

γδ T cells (CD27+CD45RA−) in the presence of Ag stimulation and cytokines (TGF-β1, IL-15) had 
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an anti-proliferative effect on CD4+ T cells. Quite surprisingly, freshly isolated Vδ2γδ T cells 

without Foxp3 expression also can suppress the activity of responder CD4+CD25−αβ T cell via the 

interactions between CD86 on Vδ2 T cells and CTLA-4 on αβ T cells97. Therefore, it seems that 

Vγ9Vδ2 T cells with or without Foxp3 expression have suppressive functions. However, whether 

they have their suppressive function in vivo or allergic airway diseases awaits further investigations. 

In mice, γδTCR and TGF-β stimulation induced Foxp3+γδT cell from mouse splenocytes95.  

The inducible Foxp3+Vδ1 Tregs showed a potent anti-proliferative effect on CD4+ T cells via 

cell-cell contact, although, cytokine-dependent mechanism might also play a role in suppressive 

functions 93. The question whether Foxp3+Vδ1 γδ regulatory T cells are capable of mediating 

suppressive functions to CD4+γδ T cells is yet to be answered. 

The effect of allergic airways treatments on Treg cells 

Treg cells are very important for Th2 response alleviation in allergic airway diseases. At the same 

time, clinical therapy may also affect the role and the number of Treg cells in allergic disease. In 

the treatment of allergic airway disease, corticosteroids provide temporary suppression of 

inflammatory cytokines and immune cells. Pre-incubation of human nTreg cells with fluticasone 

propionate increased the subsequent suppressive actions of nTreg cells in allergen-stimulated 

CD4+CD25-T cells by an IL-10-dependent mechanism98. Allergen-SIT has been used as a 

desensitizing therapy for allergic diseases. HDM-specific immunotherapy (SIT) can induce specific 

Tr1 cells that abolish HDM-induced proliferation of Th1 and Th2 cells, as well as their cytokine 

production99. Beside Tr1 cells, CD4+CD25+Foxp3+iTreg cells generated by Allergen-SIT also 

contribute to the suppression of airway eosinophilia in OVA-mouse model of asthma upon OVA 

challenge100.  

Conclusions 

Most of the current information relating to the role of Treg cells in allergic airway diseases focuses 

on asthma. Allergic asthma is mainly characterized by a Th2-biased response, thus the findings of 

Treg cells in asthma may also have important implications for understanding their role in other Th2 

biased diseases, such as AR and CRSwNP. However, with an increasing emphasis on the 
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distribution and contribution of Treg cell subtypes in allergic diseases, extensive research from 

asthma to upper airway allergic disease or from animal models to human samples is required in the 

near future.  

Innate T cells such as iNKT cells and γδ T cells are located in the airway mucosa101. T Activated 

iNKT cells in peripheral blood from asthmatic patients are capable of producing Th1, Th2, or Th17 

cytokines76-80. Increased γδT cells were found in the peripheral blood of moderate/severe house dust 

mite positive allergic rhinitis patients, which was positively correlated with IL-17 secretions92. 

Therefore, attempts to restrict the activities of iNKT cells or γδT cells in allergic airway disease by 

converting them into Foxp3+iNKT cells or Foxp3+γδT cells will be beneficial for treating allergic 

airway diseases.  

Over the last 5–10 years, the role of nTreg cells and CD4+CD25+Foxp3+iTreg cells in airways 

has been studied extensively. Certainly, understanding the appropriate markers to identify nTreg 

cells and iTreg cells is essential to study their frequency and function. However, research 

demonstrated the role of Treg cells in the airways without distinguishing their subtypes, especially 

of nTreg cells and CD4+CD25+Foxp3+iTreg cells. Thus, it is important to define the different 

subtypes of Treg cells and further investigate their ability to modulate inflammation in allergic 

airway diseases. As mentioned above, Tr1 cells, Foxp3+iNKT cells and Foxp3+γδT cells do suppress 

allergic responses (Figure1). Generation of human Treg cells and enhancing their functions in the

 

Figure 1. Different subtypes of regulatory T cell (Treg) in allergic airway disease. Allergic airway 

disease is caused by inappropriate Th2-driven immune responses to viruses, bacteria, and allergen in the 
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environment. nTregs are generated in thymus thereafter , they migrate from thymus to periphery lymph 

node or from periphery lymph node to human airway tissue which is mediated by different chemokine 

receptors (CCRs). The interactions between nTreg cells and DCs could mediate their suppressive 

function on dendritic cells (DCs), at the same time nTreg cells can be activated after interactions. In turn, 

active nTreg cells suppress T effector (Teff) cells via two ways cell-cell contact and soluble inhibitory 

cytokine release such as TGF-β, IL-10, IL-35. Induced regulatory T (iTreg) cells, generated from 

CD4+CD25- T cell in periphery, obtain suppressive function similar as nTreg cells. Another three iTreg 

cells such as type 1 regulatory T (Tr1) cell, Foxp3+ invariant Natural Killer T (iNKT) cells, 

Foxp3+gammadelta(γδ)T cells can also be induced in human airway tissues. They do show a potent anti-

proliferative effect on CD4+ T cells, however, the mechanisms are partially unveiled. 

 

airways may be an attractive concept. In parallel, a defective migration also leads to the deficiency 

and dysfunction of nTreg cells; thus, enhancing the migration of nTregs or iTregs by increasing the 

chemotactic response may be a possible strategy for allergic airway disease treatment. Of 

importance, the environment of Treg cells has influence on peripheral Treg cells maintenance. Thus, 

comprehensive treatment, considering iTreg cell generation and their suppressive function and 

enhancement of migration to restore Treg cell efficiency in allergic airway disease should be useful 

to modulate allergic responses in the future.  
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The definition, diagnosis of CRS. Chronic rhinosinusitis (CRS) is a heterogeneous group of 

diseases of the nose and the paranasal sinuses that lasts for three months or longer. According to the 

European position paper on rhinosinusitis and nasal polyps1, symptoms of CRS may include the 

following: nasal obstruction, nasal secretion and/or post-nasal drip, headaches and/or facial pains, a 

reduction of smelling for more than 12 weeks during the last year while at least one of the first two 

mentioned symptoms should be observed. The clinical diagnosis of CRS is currently based on 

symptoms and duration of symptoms, clinical examinations, nasal endoscopy and CT-scan. With 

reference to the endoscopic findings, the difference is made between the clinical phenotypes of CRS 

without nasal polyps (CRSsNP) and CRS with nasal polyp (CRSwNP)1. Histologically, CRSsNP is 

characterized by fibrosis of the mucosa and the basal membrane, while CRSwNP is characterized 

by an important edema with deposition of albumin and the development of pseudocysts. The clinical 

pattern of symptoms is overlapping in patients with CRSsNP and CRSwNP. The differentiation of 

the inflammatory subtypes based on T helper (Th) cells allows a more differentiated classification 

according to pathomechanical principles into so-called endotypes within the clinical phenotypes 

which can finally be used to define innovative therapeutic approaches. 

Epidemiology of CRS. Recently, the Global Allergy and Asthma Network of Excellence2 published 

a first multicenter prevalence study on chronic rhinosinusitis based on 56,000 questionnaires by 19 

centers in 12 European countries. A random sample was also submitted to clinical examination by 

a specialist in order to confirm the diagnosis. The investigation came to the conclusion that the 

prevalence of CRS in Europe amounts to 10.9%, between 6.9 and 27.1% in different European cities 

3. In the USA, the prevalence of CRS is slightly higher 4. Among all CRS patients in the USA, about 

20–33% suffer from CRSwNP, 60–65% suffer from CRSsNP, and 8–12% from allergic fungal 

sinusitis4. CRS was more common in smokers than non-smokers3. Co-morbidities such as asthma 

and aspirin hypersensitivity are frequent in nasal polyposis.  

Therapeutic options. Medical treatment consisting of nasal corticosteroids and antibiotics is the 

first step in treatment. Topical intranasal corticosteroids have shown to be safe and effective in 

reducing polyp size5. There anti-inflammatory effect is localized and their systemic absorption has 

been shown to be negligible, however, efficacy is limited. The use of systemic corticosteroids has 
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been widely used in treatment of CRSwNP, however systemic side effects limit its usefulness. 

Adverse effects of corticosteroid use include diabetes, peptic ulcer disease, hypertension, and 

osteoporosis. Nowadays, functional endoscopic sinus surgery has become the standard procedure to 

restore sinus ventilation and drainage by opening the key areas while preserving sinus mucosa, 

according to the European position paper on rhinosinusitis and nasal polyps1. However, recurrence 

after surgery is frequent, and other solutions are urgently need. Immunoglobulin E (IgE) antibodies 

directed against staphylococcal superantigens and other staphylococcal proteins as well as against 

inhalant allergens have been found in the nasal tissues of CRSwNP patients; Th2 cytokines are also 

highly expressed in this subgroup of patients. In addition, IgE antibodies directed against 

staphylococcal superantigens have been found in the nasal tissues of CRSwNP patients6. Recently, 

humanized antibodies such as omalizumab (anti-IgE), reslizumab and mepolizumab (anti-IL-5), as 

well as dupilumab (anti-IL-4/13) open new perspectives, and these are currently evaluated in clinical 

studies7-9. Th2 associated mediators and IgE antibodies are targets for these humanized antibodies 

in CRSwNP.   

Innate lymphoid cells in CRS. A progress in the field of immunology is that a novel family of 

CD45 expressing haematopoietic effector cells has been identified. These cells have important 

effector and regulation functions in the innate immune defense and remodeling of tissue but lack 

rearranged antigen specific surface receptors of adaptive immune cells and are therefore called 

innate lymphoid cells (ILCs)10. ILCs are classified into three categories based on the characteristic 

patterns of the cytokines they produce and the transcription factors that are necessary for their 

development and function analogous to the T helper cells: Group 1 ILCs (ILC1) produce interferon 

γ and are dependent on the transcription factor T-box expressed in T cells (T-bet), while group 2 

ILCs (ILC2) can produce Th2 cytokines such as IL-5 and IL-13 and need the transcription factor 

GATA binding protein 3 (GATA3). Group 3 ILCs (ILC3) also comprise lymphatic tissue inducing 

cells. ILC3s can produce IL-17 and/or IL-22 and require RAR-related orphan receptor gamma 

(RORγt) as transcription factor10. In this regard, ILCs are very similar to T helper cells, however, 

they are part of the innate immune defense and according to the current knowledge, they likely form 

the link between epithelium and T cell compartment11. Chemoattractant receptor homologous 
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molecule expressed on Th2 cells (CRTH2) and ST2L (IL-33 receptor) positive ILC2s have been 

detected in healthy human lungs; however, it is currently unclear which functions ILC2s have in 

humans in comparison to Th2 effector cells (that both produce IL-5 and IL-13) in the context of 

pulmonary hemostasis. Also, CRTH2+ILC2s have been identified in CRSwNP tissue12. TSLP, an 

ILC2 activators produced by epithelial cells, was increased in epithelial cells in patients with severe 

asthma13 or CRSwNP14. Only little is known about the function of other ILC subgroups in the 

airways. 

T helper cell pattern of CRS. CRSsNP appears as an only moderate, mainly neutrophil Th1 or 

Th17 polarized inflammation; CRSwNP is characterized by a moderate to high eosinophilic Th2 

polarized inflammation besides a neutrophil component, at least in Caucasians15. Presumably, the 

reduced TGF-β expression in the CRSwNP tissue contributes to a deficit of Tregs16. The relative 

deficit of Tregs could be the reason for the inability to suppress the eosinophilic inflammation in 

CRSwNP patients. In Caucasians, more than 80% of the polyps express a Th2 profile with clear 

expression of interleukin-5 protein and consecutive tissue eosinophilia whereas this profile is found 

in less than 20% of all central Chinese CRSwNP patients. Instead, there are Th17 cells that induce 

a mainly neutrophil inflammation reaction17.  

Microbiome and CRS. The nasopharynx is regarded as a considerable reservoir for bacteria in our 

body. With the advent of the field of molecular biology, culture independent methods have been 

developed in order to examine microorganisms based on their genetic patterns. As a consequence 

of this, a more complex flora was discovered in the upper airways than had previously been 

suspected. The rate of picornavirus, human respiratory syncytial virus, influenza virus, and 

parainfluenza viruses was significantly increased in CRS patients compared with that seen in the 

controls18. Frequently occurring germs of bacterial infections of CRS patients with asthma are germs 

like Staphylococcus aureus, Hemophilus influenza, Pseudomonas aeruginosa, and Moraxella 

catharralis19. Today it is well known that the nasal mucosa is always, at any time in life, colonized 

with hundreds of different bacteria that – as far as their presence is balanced – guarantee a healthy 

condition. However, the disturbed balance of the microbiome in Th1, Th2, and Th17 biased 

responses may determine the course and speed of disease development. Of interest, knowing the 
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role of microbes present in nasal tissue on the balance may help us understand the pathomechanical 

principles of CRS.  

  The aims of the studies described in this thesis are to investigate the role of S. aureus and herpes 

simplex virus 1(HSV1) in Th2 biased CRSwNP disease. For this purpose, we took advantage of our 

nasal ex vivo infection model. We exposed the CRSwNP tissue with S. aureus and HSV1, and then 

evaluated the post-infection immune response. Furthermore, the ways to restore the balance and 

inhibit the Th2 response in CRSwNP tissue was investigated.  

 

Specific aims of this thesis are: 

1) To investigate the role of S. aureus in the induction of the Th2 response in CRSwNP tissue. We 

exposed human nasal tissue cubes to S. aureus for 2h, and then placed tissue cube at air-liquid 

conditions. We aimed to unravel whether S. aureus without enterotoxin secretion can induce Th2 

cytokines and the mechanisms involved in this process. Therefore, we measured Th2 cytokines and 

epithelial cell derived cytokines at mRNA level and protein level (Chapter 3).  

2) To study whether HSV1 also affect Th2 cytokine release in CRSwNP disease. Human nasal tissue 

cubes were infected by viruses HSV1 for 1h, and then placed at air-liquid conditions. We measured 

Th1, Th2, and Th17 associated cytokines in supernatants of human nasal the ex vivo HSV1 infection 

model. We also used virus titers and immunofluorescence staining to compare the difference of 

HSV1 invasion in CRSwNP tissue and health tissue (Chapter 4) 

3) To explore the ways to inhibit the Th2 response in CRSwNP tissue. We switched off the 

expression of SOCS3 in human airway mucosa, and over-expressed SOCS3 in PANC-1 cell to 

monitor the increased expression of Foxp3. In addition, we also evaluated Th2 cytokine expressions 

after Foxp3 was up-regulated in CRSwNP tissue (Chapter 5). 
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CHAPTER 3 

 

STAPHYLOCOCCUS AUREUS INDUCES TYPE 2 CYTOKINES VIA 

TSLP AND IL-33 RELEASE IN HUMAN AIRWAY MUCOSA 
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Staphyloccoccus aureus induces type 2 cytokines via TSLP and IL-33 release in human 

airway mucosa 

Feng Lan, Nan Zhang, Gabriele Holtappels, Natalie De Ruyck, Olga Krysko, Koen Van 

Crombruggen, Harald Braun, Sebastian L. Johnston, Nikos G Papadopoulos, Claus Bachert, 

Abstract： 

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by a T helper 

cell (Th)2-skewed upper airway inflammation. Mucosal Staphylococcus aureus (S. aureus) 

colonization is found in the majority of CRSwNP patients. S. aureus may induce type 2 cytokine 

release via superantigens. Additionally, we speculated that S. aureus without the ability to secrete 

enterotoxins may release epithelial cell-derived cytokines critical in propagating a type 2 immune 

response.  

Methods: Thymic stromal lymphopoietin (TSLP) and IL-33 and consecutive type 2 cytokines were 

assessed in a human mucosal tissue model upon S. aureus infection.  

Results: S. aureus infection upregulated active forms of IL-33 and TSLP, and IL-5 and IL-13 

expression in CRSwNP tissue, accompanied by elevated expressions of TSLP and IL-33 receptors, 

which were predominantly expressed on CD3+ T cells. Healthy inferior turbinate (IT) tissue after S. 

aureus infection released TSLP, but not IL-5, and Staphylococcus epidermidis did not induce any 

epithelial cell-derived cytokine release in CRSwNP or healthy IT tissue. Increased levels of IL-33 

and TSLP were also induced by S. aureus in BEAS-2B epithelial cells, accompanied by an 

activation of nuclear factor-κappaB (NF-κB) pathways. Blocking toll like receptor 2 (TLR2) using 

a specific antagonist CU-CPT22 significantly reduced the release of TSLP and IL-33 and the 

activity of NF-κB signal in BEAS-2B cells with S. aureus infection.  

Conclusions: We here demonstrate for the first time that S. aureus can directly induce epithelial 

cell-derived cytokine release via binding to TLR2, consecutively propagating type 2 cytokine 

expression in CRSwNP tissue. 
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Introduction 

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory condition in the 

upper airways which is often accompanied by co-morbid asthma. A smaller population of Chinese 

CRSwNP patients, but 85% of European CRSwNP patients show T helper cell (Th) 2-biased and 

eosinophilic inflammation1-5. An increase in colonization with Staphylococcus aureus (S. aureus) 

and the presence of S. aureus enterotoxin-specific Immunoglobulin E (IgE) antibodies have been 

demonstrated in the mucosa of CRSwNP subjects in comparison with control or chronic 

rhinosinusitis without nasal polyps (CRSsNP) patients6, 7, being even higher in CRSwNP patients 

with asthma comorbidity and aspirin sensitivity. Critically, staphylococcal enterotoxin B (SEB) of 

S. aureus induces considerable release of pro-inflammatory and Th2-associated cytokines including 

IL-4, IL-5 and IL-13 and also enhances eosinophilic inflammation in human nasal and in mouse 

bronchial tissue8-11. However, a link between S. aureus biofilms and skewing of the Th2 response 

has also been demonstrated independent from enterotoxin activities12. Thus S. aureus may impact 

on Th2 responses not only via enterotoxins; those pathomechanisms await discovery. 

Epithelial cells act as the first physical defense barrier. Cytokines derived from epithelial cells 

such as IL-33 and thymic stromal lymphopoietin (TSLP), potentially released by various viral and 

bacterial stimuli, are critical in orchestrating innate immune responses, specifically a Th2 immune 

response. IL-33 has been implicated in asthma, and pretreatment of a mouse model of asthma with 

anti-IL-33 antibodies result in a decrease of serum IgE, eosinophils and concentrations of IL-4, IL-

5 and IL-13 in broncho-alveolar lavage fluid. Similar to IL-33, TSLP also can affect Th2-type 

airway inflammation by trigging dendritic cells13. Recently, Nagarkar et al. have successfully shown 

that truncated TSLP with biological activity is increased in CRSwNP, enhancing IL-5 production 

from mast cells14. Besides the classical Th2 cells, a new group of innate lymphoid cells (ILC2s) also 

can produce type 2 cytokines including IL-5, IL-9 and IL-13 in response to IL-25 and IL-3315. These 

evidences identify a close relationship between epithelial cell derived cytokines and type 2 skewed 

airway diseases. 

Importantly, TSLP can be induced by rhinovirus or double stranded RNA as a surrogate for viral 

RNA in human airway epithelial cells16. IL-33 was related to virus-induced asthma exacerbation 
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severity and rhinovirus-induced IL-33 was able to strongly induce type 2 cytokines in human T cells 

and ILC2s17. Even though increased levels of IL-33 are shown in an atopic dermatitis mouse model 

after SEB exposure18, and SEB reportedly disrupts epithelial integrity through cytotoxic effects and 

reduces epithelial tight junction expression, increasing cellular permeability in rat intestinal 

mucosa19. However, the role of S. aureus inducing type 2 immune responses independent of 

enterotoxins in human chronic airway disease via epithelial cell derived cytokines has not been 

elucidated. 

S. aureus colonization is frequently found in Th2-biased inflammation in CRSwNP patients with 

asthma comorbidity4. Making use of formerly described human nasal tissue models20, we here 

developed a human mucosal tissue S. aureus infection model to investigate the possible role of S. 

aureus in a Th2 response in chronic upper airway disease. We specifically analyzed epithelial cell 

derived cytokine release in CRSwNP tissue induced by a S. aureus strain unable to secrete classical 

enterotoxins such as SEB, and studied the subsequent type 2 cytokines expression.  

Methods 

Patients Nasal tissues were obtained from 20 CRSwNP patients and 21 control patients at the 

department of Oto-Rhino-Laryngology, Ghent University Hospital. None of the patients had taken 

oral or nasal corticosteroids for four weeks and antibiotics for two weeks before surgery. The 

diagnosis of CRSwNP was made according to the European Position Paper on Rhinosinusitis and 

Nasal polyps (EPOS) 2007 guidelines21. The inferior turbinates of patients with septal deviation  
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were used as controls. The clinical data of all the patients are shown in Table 1. Informed consent 

was obtained from all patients before sample collection. The ethics committees of the Ghent 

University Hospital approved the study.  

Table 1 Clinical data of included patients. 

AERD, Aspirin-exacerbated respiratory disease;  

 

S. aureus and S. epidermidis stocks GFP labeled S. aureus RN6390, containing the plasmid 

pALC1743, a pSK236-derived shuttle plasmid carrying an active S. aureus promoter (RNAIII 

promoter), was chosen as infection strain in this study. In particular, this strain does not produce S. 

aureus enterotoxins which had been confirmed by a lack of enterotoxin detection. Enterotoxins A, 

B, C, D were tested using SET-RPLA kit in Trypticase Soy medium (BD Belgium) after S. aureus 

overnight culture at 37°C, while toxic shock syndrome toxin 1 was assayed using (TST-RPLA KT) 

(both from Oxoid, Hampshire, UK). To investigate the specific role of S. aureus, Staphylococcus 

epidermidis (S. epidermidis) (ATCC 14990) was also used in infection model. A concentration of 

bacteria 20×106 CFU/well was prepared and used according to previous experiments20. 

Human airway infection model CRSwNP tissue or control tissue were cut into small cubes 

approximately 25 mm2 in size and washed three times by TCM with antibiotics (50 IU/mL penicillin) 

(Invitrogen, Belgium) and 50 µg/mL streptomycin (Invitrogen). Then tissue cubes were placed on 

 Chronic rhinosinusitis with nasal 

polyps (CRSwNP) subjects   

Control subjects  

No. of subjects 20 21 

Age, median (range) 47.8(30-65) 31.2 (15-58) 

Gender female/male 9/11 10/11 

Atopy 7/20 3/21 

Asthma 13/20 0/21 

AERD 5/20 0/21 
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a triangle metal mesh in a 6-well plate at air liquid interface conditions at 37°C in humidified air 

with 5% CO2 over-night. After 2h of S. aureus or S. epidermidis infection, all tissue cubes were 

transferred on triangle metal mesh again in a 6-well plate for another 24h or 48h incubation. The 

tissue cubes in tissue culture medium alone were taken as control group. Human bronchial epithelial 

cell line BEAS-2B cells (5x104 cells/well) were placed in a 24-well plate at 37°C in 5% CO2 

overnight. When reaching 70%-80% confluence, BEAS-2B cells were stimulated by S. aureus or S. 

epidermidis for 15min at different concentrations from 106 to 102cfu/ml, and were washed 2 times 

by PBS for another 10h or 24h incubation. A concentration of bacteria of 106 cfu/ml and the 10h 

incubation time were suitable for further epithelial derived cytokine pathway investigations in terms 

of induction of cell death, TSLP and IL-33 cytokine release. To block TSLP and IL-33 releases 

from BEAS-2B cell after S. aureus infection, cells were pretreated with the novel Toll like receptor 

(TLR)2 antagonist CUCPT22 (Tocris Bioscience, Ellisville, MO) for 1h, followed by S. aureus 

infection. Experiments were repeated four times. The supernatant and the protein of cells were 

collected for further study. 

Stimulation of nasal single cell suspension Single cell suspensions of human CRSwNP mucosa 

were prepared as described22. 5x106 human nasal single cells per well were stimulated with 

recombinant human (rh) TSLP, rhIL-33 and both cytokines together (R&D, Minneapolis) with 

different doses for 24h. Finally, recombinant TSLP and IL-33 were used at a concentration of 

100ng/ml for the induction of IL-5 release. After 24h incubation, cytokines were measured in the 

supernatants of single cell suspensions.  

qRT-PCR After extraction of total RNA by using the RNeasy kit (QIAGEN GmbH, Hilden, 

Germany), 5 ng cDNA was synthesized by using the iScript Advanced cDNA-synthesis Kit (BioRad 

laboratories, CA, USA). The target product was detected by Sso Advanced SYBR Green Super mix 

(BioRad) on the LightCycler 480 Instrument II (Roche Applied Science, Penzberg, Germany) using 

the primer sequences as shown in Table 2. To normalize for transcription and amplification 

variations among the samples, two housekeeping genes were used: Succinate Dehydrogenase 

Complex and elongation factor 1. The relative quantities expressed were calculated with the 

commercially available qBasePlus software (BioRad)23.  
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Table 2 The primers sequence used for qRT-PCR. 

Cytokine measurements Cytokine measurements were performed in BEAS-2B cells as well as in 

supernatants or tissue homogenates of tissue from human airway infection model. Tissue 

homogenates were prepared as described earlier24. IL-4, IL-5, and IL-13 measurements were 

assayed by using Luminex xMAP suspension array technology in a Bio-Plex 200 system (BioRad, 

MI). Kits for total TSLP and IL-33 measurement were purchased from R&D Company. All cytokine 

measurements were expressed as pg/ml. Cytokine measurement in supernatants of tissue from 

human mucosal tissue S. aureus infection model was calibrated by tissue cube weight. 

Immunofluorescence staining The CRSwNP tissue from infection model was embedded using 

frozen tissue medium (Klinipath, Duiven, the Netherlands). Sections were incubated with IL-33 

antibody from R&D (7.5µg/ml) to evaluate the expression of IL-33 in CRSwNP tissue with 

infection. Additionally, to determine the location of the TSLP receptor (TSLPR) and IL-33 receptor 

Targets Forward (5’-3’) Reverse (5’-3’) Amplicon 

size (bp) 

Accession 

number 

IL-33 TGAATCAGGTGAC

GGTGTTGATGG 

TGAAGGACAAAGAAGGCC

TGGTC 

150 NM_033439.3 

TSLP ACTTGCCAACAGG

TAAGAGGA AGC 

AGGCTTGTTCCACAGTAAG

TGCTC 

77 NM_033035.4 

IL-25 AGTCCTGTAGGGC

CAGTGAAGATG 

CCGGTTCAAGTCTCTGTCC

AACTC 

86 NM_022789.3 

IL-5 AACTCTGCTGATA

GCCAATGAGAC 

ACTCTCCAGTGTGCCTATT

CCC 

106 NM_000879.2 

IL-4 ACAGCCTCACAGA

GCAGAAGAC 

TCTCATGGTGGCTGTAGAA

CTGC 

138  NM_000589.3 

IL-13 CAACATCACCCAG

AACCAGAAGGC 

AGGTTGATGCTCCATACCA

TGCTG 

63 NM_002188.2 
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long form ST2 receptor (ST2L), double staining was performed on cryosections by incubation with 

7.5µg/ml TSLPR antibody (R&D) and CD3 monoclonal antibody (clone F7.2.38; 1:50; DAKO, 

Trappes, France), or 7.5µg/ml ST2L (R&D) antibody and CD3 for 2h at room temperature. At the 

end of this incubation, the sections were mounted with glycerin-DABCO (Janssen Chemica, Beerse, 

Belgium). Images were obtained using a Leica TCS SPE laser scanning spectral confocal system 

linked to a DM B fluorescence microscope (Leica Microsystems). Leica confocal software was used 

for image acquisition. 

Western blotting  

Total protein was extracted from CRSwNP tissue and BEAS-2B cells after S. aureus infection using 

the RAPI buffer (Invitrogen) with cocktail proteinase inhibitor (Roche). The following antibodies 

were used for western blotting: anti-P50 (1:700), anti-phospho-P50 (Tyr705) (1:700), anti-P65 

(1:800), anti-phospho-P65 (Tyr694) (1:600), anti-IL-33 (0.2µg/ml), anti-TSLP (0.1µg/ml), anti-

TSLPR (1µg/ml) and anti-ST2L (0.1 µg/ml). All antibodies were from Cell Signaling Technology 

(Cambridge, UK) except anti-P50, anti-phospho-P50, anti-TSLPR, anti-ST2L antibody, and HRP-

conjugated secondary antibody (1:6000). Anti-P50, anti-phospho-P50, HRP-conjugated secondary 

antibodies were from Santa Cruz (Santa Cruz, CA); anti-IL-33, anti-TSLP, anti-TSLPR and anti-

ST2L antibodies were from R&D. IL-33 and TSLP were detected using Tris-Tricine gel, while the 

other proteins described in the manuscript were measured using Tris-glycine gel. The relative band 

densities of the target protein to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Invitrogen, 

Belgium) were estimated by Lab image Analysis Software (Bio-Rad, CA). 

Flow cytometry CRSwNP tissue cubes with S. aureus infection 24h (n=3 in quadruplicate) were 

collected for single cell suspensions as described above. To measure the expression of TSLPR, the 

single cells were stained with anti-CD3-Vioblue anti-TSLPR-APC antibodies for 30 min. The IL-

33 receptor ST2L is internalized after binding to IL-33, reducing IL-33-induced cytokine release25. 

Thus, following 30min anti-CD3-Vioblue incubation, single cells from S. aureus infection model 

were intracellularly stained by anti-ST2L-PE (R&D) after fixation and permeabilization. Data was 

acquired on a BD FACS Canto II using FACS Diva software (BD Bioscience) and FlowJo software 

(Tree Star Inc., Ashland, OR) for analysis. 
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Statistical analyses The data were analyzed using graphpad prism software (GraphPad Software, 

san Diego, CA). Statistical analysis was performed by using the Wilcoxon test for paired 

comparisons. Data comparison within different groups was performed using the Kruskal-Wallis test. 

A p value < .05 was considered statistically significant. 

Results 

Active forms of TSLP and IL-33 were induced in CRSwNP tissue in the presence of S. aureus, 

but not S. epidermidis. Two human transcript variants of TSLP were described; RT-PCR analysis 

demonstrated that the mRNA level of lfTSLP, an active form of TSLP, increased in CRSwNP tissue 

and healthy control tissue 24h after S. aureus infection; in contrast, the expression of sfTSLP, 

possessing antibacterial property, decreased in CRSwNP and healthy control tissue 24h and 48h 

after S. aureus infection (Figure 1A). The level of TSLP protein was significantly higher in the 

supernatants of CRSwNP and healthy control tissue after 48h exposure to S. aureus than that in the 

supernatants of unexposed tissue (Figure 1B). IL-33 mRNA in CRSwNP and healthy control tissue 

did not significantly increase due to S. aureus incubation (Figure 1A). However, IL-33 protein was 

increased in CRSwNP tissue homogenates, but not in control tissue, 24h after S. aureus infection 

(Figure 1B). The ELISA measurements of TSLP and IL-33 did not distinguish different variants. 

Therefore, full length IL-33, processed IL-33 (active form) and long-form TSLP were studied after 

separation in Tris-Tricine gel in the CRSwNP tissue after S. aureus exposure (Figure1C). 

Recombinant, N terminally truncated human IL-33 proteins, human lfTSLP and sfTSLP were used 

as controls. Understanding the location of IL-33 in S. aureus infected tissue also helps to evaluate 

its functional status; therefore IL-33 immunofluorescence staining was performed. A high amount 

of IL-33 was observed in the extracellular space between epithelial cells of CRSwNP after S. aureus 

stimulation for 24h (Figure 1D).  
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Figure 1. Epithelial cell derived cytokines TSLP and IL-33 were induced in CRSwNP tissue in the 

presence of S. aureus. (A)Gene expressions of long form TSLP (lfTSLP), short form TSLP (sfTSLP) 

and IL-33 in CRSwNP (n=7) and healthy inferior turbinate (IT) tissues (n=8) with staphylococcus aureus 

(S. aureus) infection for 24h or 48h. Tissue cubes in tissue culture medium (TCM) were taken as controls 

(*P<.05). (B) The protein level of TSLP and IL-33 CRSwNP and IT tissues with S. aureus infection for 

24h or 48h (*P<.05). (C) Full-length IL-33, active IL-33, long form TSLP and short form TSLP were 

identify by Tris-Tricine gel. (D) IL-33 was observed in the extracellular space of epithelial cells in 

CRSwNP tissue with S. aureus infection for 24h. Low expression of IL-33 was found in control 

conditions without any infection. (All slides viewed at 630x magnifications; pink fluorescence 

demonstrates the presence of IL-33 and green fluorescence the presence of S. aureus (SA) in the nasal 

mucosa; isotype control staining for IL-33 was completely negative (not presented here)). 

S. epidermidis, the same staphylococcus genus of S. aureus, was used in the human mucosal 

tissue infection model as a control to demonstrate specificity of the effect of S. aureus on epithelial 

cell-derived cytokine release. S. epidermidis did not induce TSLP nor IL-33 proteins in both the 

CRSwNP tissues (Figure 2A). A low basal epithelial expression of IL-33 without any release could 

be found in CRSwNP tissue after 24h S. epidermidis infection (Figure 2B), suggesting that 

specifically S. aureus infection, but not S. epidermidis induced IL-33 release in CRSwNP tissue.  



74 

 

 

Figure 2. The expression of epithelial cell derived cytokines in CRSwNP tissue after Staphylococcus 

epidermidis (S. epidermidis) infection. (A) Protein levels of TSLP and IL-33 were measured in 

CRSwNP tissue with S. epidermidis infection 24 or 48h (n=3). (B) The immunofluorsence staining of 

IL-33 expression in CRSwNP tissue with S. epidermidis infection for 24h. Tissue cubes with tissue 

culture medium (TCM) were taken as controls. (All pictures viewed at 630x magnifications. Blue 

fluorescence indicates the nuclear of cell, and pink fluorescence stands for the location of IL-33.)  

CD3+TSLPR+ and CD3+ST2L+ cells increased in CRSwNP tissue after S. aureus infection. To 

further unveil TSLP and IL-33 signaling pathways in the human airway infection model, expression 

and localization of TSLPR and ST2L upon S. aureus exposure were evaluated by 

immunofluorescence staining, western blot and flow cytometry. Increased levels of TSLPR and 

ST2L were observed in the epithelial layer of CRSwNP mucosa after 24h (Figure 3A-B). The 

majority of TSLPR and ST2L was expressed on CD3+ T cells in the epithelial and sub-epithelial 

layers. In line with the staining results, the expression of TSLPR and ST2L proteins were 

significantly up-regulated 48h after S. aureus infection in comparison with non-infected mucosal 

tissue using western blot assay (Figure 3C-D). Additionally, the number of CD3+ST2L+ and 

CD3+TSLPR+ cells in tissue increased in response to S. aureus exposure (Figure 3E). ST2L and 
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TSLPR were expressed on CD3- T cells, whereas the number of CD3-ST2L+and CD3-TSLPR+ cells 

increased marginally only after S. aureus infection (Figure 3F).   

 

Figure 3. TSLPR and ST2L positive T cells increased in CRSwNP tissue after S. aureus infection. 

(A-B) Immunofluorescence staining pictures of TSLP receptor (TSLPR)+CD3+cells (white arrow) and 

IL-33 receptor (ST2L)+CD3+ cells (white arrow) in CRSwNP tissue with Staphylococcus aureus (S. 

aureus) infection for 24h. CRSwNP tissue cubes with tissue culture medium (TCM) were taken as 

controls (All slides viewed at 630x magnification; yellow fluorescence demonstrated the presence of 

receptors and red fluorescence stood for the presence of CD3+ cell in the nasal mucosa; isotype control 

staining for TSLPR and ST2L was completely negative (not presented here)). (C) Western blot pictures 

of TSLPR and ST2L in CRSwNP tissue with S. aureus infection for 24h. (D) Quantification for TSLPR 

and ST2L proteins in CRSwNP tissues with S. aureus (SA) infection (*P<.05). (E) The expressions of 

TSLPR+CD3+ and ST2L+CD3+ cells were identified in CRSwNP tissue with S. aureus infection (n=3). 

(F) The expressions of TSLPR+CD3- and ST2L+CD3- cells were identified in CRSwNP tissue with S. 

aureus infection (n=3).  

A Th2 response is induced in CRSwNP tissue, but not in healthy control tissue, in the presence 

of S. aureus. To determine the contribution of TSLP and IL-33 to type 2 cytokine release in the 
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human airway infection model, IL-4, IL-5, IL-13 were measured. IL-5 and IL-13 mRNA expression 

and IL-5 protein release were up-regulated in CRSwNP tissue 48h after S. aureus infection, but not 

in control tissue (Figure 4A). Human nasal single cell suspensions of CRSwNP patients were 

stimulated with rhTSLP and rhIL-33, both individually and together. IL-5 can be induced from 

single cell suspensions in the presence of rhTSLP or rhIL-33 alone (Figure 4B). Analysis of IL-5 

expression in single cell suspensions after combined rhTSLP and rhIL-33 stimulation demonstrated 

a further significant increase over rhTSLP alone and rhIL-33 alone (Figure 4B).  

 

 

 

 

 

 

Figure 4. Th2 response is induced in CRSwNP tissue in the presence of S. aureus. (A) The expression 

of IL-4, IL-5 and IL-13 in CRSwNP and healthy inferior turbinate (IT) tissues with Staphylococcus 

aureus (S. aureus) infection for 24h or 48h. Tissue cubes with tissue culture medium (TCM) were taken 

as controls (*P<.05). (B) IL-5 cytokine increased in single cell suspensions with rhTSLP and rhIL-33 

stimulation for 24h (*P <.05). 

S. aureus induced release of IL-33 and TSLP partially via Toll-like receptor 2. To further 

confirm what had been observed in the human mucosal tissue infection model, epithelial BEAS-2B 

cells were infected with S. aureus. In BEAS-2B cells, we confirmed that S. aureus induced TSLP 

and IL-33 release in a dose-dependent fashion (Figure 5A). The relevant NF-κB signaling pathways 

were investigated to analyze epithelial cell derived cytokine production mechanisms in BEAS-2B 

cells. Activation of the NF-κB pathway in epithelial cells was evident from an increase in 

phosphorylation of P50 and P65 at early time points in BEAS-2B cell after S. aureus exposure 

(Figure 5A). In contrast, no induction of TSLP or IL-33 expression (data not shown) or up-
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regulation of the NF-κB in BEAS-2B cells was observed after S. epidermidis infection (data not 

shown). The result demonstrated that the novel TLR2 antagonist CUCPT22 inhibited the 

phosphorylation of P50 and P65 in BEAS-2B cell 10h after S. aureus infection. Consequently, the 

downstream IL-33 and TSLP expressions decreased in BEAS-2B cells in a dose-dependent manner 

(Figure 5B). 

 

Figure 5. Expression of TSLP and IL-33 in supernatants of the bronchial epithelial cell line BEAS-

2B after S. aureus infection; possible induction pathway. (A) a, TSLP and IL-33 expression in 

supernatants of bronchial epithelial cell line BEAS-2B cells after exposure to different concentrations of 

Staphylococcus aureus (S. aureus) for 10h. b, Correlation of time-dependent increase in P50 and P65 

phosphorylation in BEAS-2B cells with S. aureus infection. SA means S. aureus (*P <.05) (B) Novel 

toll like receptor 2 (TLR2) antagonist CU-CPT22 partially inhibited the phosphorylation of P50 and P65 

and their downstream of IL-33 and TSLP expression in BEAS-2B cells 10h after S. aureus infection. (*P 

<.05) 

 

Discussion 

We demonstrate for the first time that S. aureus can directly induce the release of the active forms 

of epithelial cell-derived cytokines TSLP and IL-33 from human nasal tissue, accompanied by the 

up-regulation of CD3+TSLPR+ and CD3+ST2L+ cells, IL-5 and IL-13 mRNA expression and IL-5 

protein release in CRSwNP, but not in control tissue. NF-κB signaling is involved in the production 

of TSLP and IL-33 after binding of S. aureus to TLR2; S. epidermidis infection did not induce any 

cytokines.   
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  The tissue explants here serve as a bridge between cell culture and in vivo environment. In this 

study, we infected nasal tissue explants, instead of cell lines or primary cells, with S. aureus to 

efficiently reflect the in-vivo situation in the nose after infection. We also focused on the role of S. 

aureus itself, not the extractions from S. aureus or toxins produced by S. aureus, in Th2 biased 

upper airways disease. As demonstrated earlier, enterotoxins are known to work as superantigens 

and induce high amounts of Th2 cytokines and induce IgE formation in CRSwNP tissue26; CD4+ T 

cells from BALB/c mouse with subcutaneous footpad S. aureus infection produce a high amount of 

Th2 cytokines like IL-4 and IL-1327. In this study, we successfully demonstrated that a S. aureus 

strain without enterotoxin secretion can directly induce IL-5 and IL-13 in CRSwNP tissue, but not 

IL-4, via the epithelial cytokines IL-33 and TSLP. Our data also unveiled that type 2 cytokines can 

only be induced by S. aureus, not by S. epidermidis in CRSwNP tissue. The downstream activities 

of epithelial cell derived cytokines are well studied, whereas the factors that affect epithelial cell-

derived cytokine release are only partially known. Rhinovirus exposure appears to trigger TSLP 

expression in the lung of mice with allergic airway inflammation28. Mouse epithelial cells MLE-15 

and human alveolar epithelial cells A549 infected with influenza virus result in IL-33 release29. 

TSLP is produced by murine dendritic cells in response to certain microbial pathogen products such 

as lipopolysaccharide, flagellin, FLS-1 and pam3csk430. S. aureus membrane and diacylated 

lipopeptides can induce TSLP release in human keratinocytes31. Heat inactivated S. aureus infection 

increases IL-33 in human and murine epidermal keratinocytes and murine dermal macrophages32. 

However, there was no understanding of the relationship between S. aureus germs and epithelial 

cell-derived cytokines or Th2 responses in human. We formerly demonstrated that staphylococcal 

enterotoxins can induce Th2 cytokines, but also Th1 and Th17 related cytokines, in nasal healthy 

and CRSwNP tissue26. Here we show that enterotoxin non-producing S. aureus can induce both 

TSLP and IL-33 release in human CRSwNP tissue and human bronchial epithelial cells. Even 

though the predominant form of TSLP remains controversial in humans, two different TSLP forms 

have been described: lfTSLP is understood as the functional human TSLP33; whereas human sfTSLP 

exhibits a marked antibacterial activity in skin and salivary glands34. We demonstrate that lfTSLP 

increased at mRNA and protein level in CRSwNP tissue with S. aureus infection with the potential 

to propagate Th2 immune responses; while sfTSLP decreased in CRSwNP with S. aureus infection, 
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further decreasing the mucosal defense. IL-33 is a chromatin-associated nuclear cytokine from the 

IL-1 family that functions as an ‘‘alarmin’’. It has been shown to be constitutively expressed in the 

nuclei of epithelial cells35 and to be released into the extracellular space after cell necrosis36 to elicit 

innate immune responses. Recently, it has been reported that the biological activity of full-length 

IL-33 is increased by neutrophil elastase and cathepsin G37,38. Based on our immunofluorescence 

staining, a high amount of IL-33 was observed in the extracellular space between epithelial cells, 

which was in accordance with increased CRSwNP tissue homogenate protein levels of IL-33 after 

S. aureus infection for 24h. In contrast, IL-33 preferentially was located in the nuclei of nasal basal 

cells in CRSwNP tissue without stimulation, or after S. epidermidis exposure, not impacting on the 

mucosal immune response. Additionally, full-length IL-33 and processed IL-33 were observed in 

CRSwNP tissue with S. aureus infection, indicating that induced IL-33 in the nasal infection model 

is functional. 

Besides the release of TSLP and IL-33, S. aureus infection also can increase the expression of 

their receptors. The increased TSLPR and ST2L receptors were mainly expressed on CD3+ T cells 

in CRSwNP tissue, reinforcing the signals. Thus, CD3+T cells here are likely to contribute to the 

IL-5 production after infection. This does not exclude the contribution of ILC2 cell and mast cell, 

even though the number of CD3-TSLPR+ and CD3-ST2L+ increased only marginally after infection. 

Interestingly, a consequent IL-5 protein release was propagated in CRSwNP tissue, but not in 

control tissue, upon infection; this could be related to the typical Th2 bias in CRSwNP with 

increased numbers of activated Th2 cells present. Furthermore, defense mechanisms against S. 

aureus may be impaired in CRSwNP, with a high rate of alternatively activated macrophages in 

CRSwNP vs. healthy mucosa, not suited to phagocytize and kill S. aureus efficiently39. This 

consecutively may lead to a continuous stimulation of the mucosal tissue in CRSwNP patients by S. 

aureus contributing to the persistence of inflammation.  

It remains to be studied whether S. aureus can amplify preexisting type 2 airway inflammation 

only, or initiate it. Furthermore, the role of IL-25 in this situation needs further focus; S. aureus 

exposure induced IL-25 protein in BEAS-2B cells (data not shown), but not in the mucosal tissue 

models.  
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  In summary, we here highlight for the first time that S. aureus, but not S. epidermidis, induces 

the release of type 2 cytokines in CRSwNP tissue via epithelial derived cytokines TSLP and IL-33. 

TLR2 and NF-κB signal are involved in the production of TSLP and IL-33 after S. aureus exposure. 

With the known high colonization of CRSwNP tissue by S. aureus, this likely contributes to the 

initiation or persistence of the Th2-biased inflammation in this disease. 
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CHAPTER 4 

 

TH2 BIASED UPPER AIRWAY INFLAMMTION IS ASSOCIATED WITH AN IMPARIED 

RESPONSE TO VIRUAL INFECTION WITH HERPES SIMPLEX VIRUS 1 
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Abstract 

Background: We aimed to elucidate possible differences in antiviral defense in chronic 

rhinosinusitis with nasal polyps (CRSwNP) mucosal tissue compared to healthy mucosal tissue 

(HMT) upon herpes simplex virus 1 (HSV1) exposure.  

Material and methods: HMT and CRSwNP samples were infected with HSV1. We visualized the 

virus location by immunofluorescence and monitored invasion by a score. The mediators Interferon 

(IFN)-α, IFN-β, IFN-λ, IFN-γ, Interleukin (IL)-6, IL-1β, Tumor necrosis factor (TNF)-α, IL-17, IL-

5, IL-10 were measured in culture supernatants at baseline and at 24h, 48h and 72h after virus 

incubation.  

Results: CRSwNP mucosal tissue showed a significant deficit in IFN-γ and IL-17 release within 24 

to 72h after infection in comparison to HMT, at the same time releasing significantly more pro-

inflammatory cytokines including IL-1β and TNF. These findings were associated with 

significantly higher viral invasion scores at 48 and 72h in CRSwNP mucosa compared to those for 

the HMT. 

Conclusions: We demonstrate for the first time in a human ex-vivo mucosal model that the 

inadequate response of CRSwNP may be associated with a deeper intrusion of viruses into the 

mucosal tissue, and may contribute to more and longer symptoms upon acute infection, but also to 

the persistence of inflammation in CRSwNP tissue. 
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Introduction: 

Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a preferentially eosinophilic type of 

inflammation of the upper airways, characterized by the overproduction of IL-5, eosinophil-cationic 

protein (ECP) and immunoglobulin (Ig)E; CRSwNP also is frequently associated with comorbid 

asthma1. Viral infections are known as the most frequent cause of acute rhinitis and may cause 

asthma exacerbations in children and adults, with human rhinoviruses being identified as the most 

prominent, but not exclusive agent2-4. Although natural and experimental rhinovirus infections have 

been studied extensively with respect to clinical manifestation and pathophysiological responses in 

healthy subjects5, 6, little is known about viral infections in patients with chronic inflammatory 

disease of the nose and sinuses such as CRSwNP.  

Herpes simplex virus 1 (HSV1) infections are highly prevalent in humans. HSV1 is characterized 

by a comparatively high global sero-prevalence with rates of infection between 65% and 90% 

worldwide7-9. Although people infected with HSV often develop labial or genital lesions, the 

majority are either undiagnosed or display no physical symptoms; individuals with no symptoms 

are described as asymptomatic or as having subclinical herpes. Findings from a recent study have 

shown that 8% (2/23) of human nasal polyps may be infected with HSV1 at a given moment in time; 

although this seems a low incidence, it underlines the possible role of HSV1 in upper airway 

disease10. Furthermore, HSV infection is a risk factor for nasal carriage of Staphylococcus aureus 

(S. aureus) in human immunodeficiency virus -infected patients11. For herpes virus infection in 

animals, the nasal mucosa is considered the primary site of replication12.  

It was recently shown that the response to viral infections (rhinovirus) is also impaired in 

asthmatics vs. healthy controls, with a deficit in the mucosal production and release of interferons 

in response to the viral challenge, which may impair the mucosal defense and allow the virus to 

replicate at a high rate13. The mucosa in asthmatics is characterized by a Th2 bias, similar to the 

situation in CRSwNP. In the current study we therefore aimed to study the cytokine response related 

to a viral agent, HSV1, in our CRSwNP whole mucosal tissue model compared to control samples 

to elucidate possible differences in antiviral defense.   

http://en.wikipedia.org/wiki/Subclinical_infection
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Materials and methods 

Nasal mucosa tissue 

Inferior turbinate healthy mucosal tissue (HMT) was obtained from 7 non-allergic patients (average 

age 36 years (range: 23-52)) scheduled for turbinate surgery due to septal deviations or turbinate 

hypertrophy without asthma and other diseases. Nasal polyp tissues were obtained from 7 patients 

with CRSwNP (average age 48.5 years (range: 17.4-68.8)) by endoscopic sinus surgery at the 

department of Oto-Rhino-Laryngology, Ghent University Hospital. The diagnosis of sinus disease 

was based on history, clinical examination, nasal endoscopy, and CT scanning of the sinuses 

according to the European Position Paper on Rhinosinusitis and Nasal Polyps14. The atopic status 

of patients was evaluated by skin prick tests with the European standard panel of 14 inhalant 

allergens. Negative and positive controls (10mg/mL histamine solution) were included with each 

skin prick tests. One CRSwNP patient had a positive skin prick test, two patients reported mild 

asthma, and one patient reported aspirin intolerance.   

The ethics committee of the Ghent University Hospital approved the study, Belgium registration 

number B670201317380; all patients were asked to refrain from oral corticosteroids or antibiotics 

4 weeks and topical corticosteroids 2 weeks preoperatively and gave their written informed consent.  

Measurement of cytokine and IgE levels in tissue homogenates 

Freshly obtained tissue specimens were homogenized, as previously described15, and assayed for 

IL-5, IFN-γ and IL-17, by using commercially available Quantikine ELISA kits (R&D Systems, 

Minneapolis, MN, USA) following the instructions of the manufacture. IgE and ECP were measured 

by using the UNICAP system (Pharmacia, Uppsala, Sweden).  

HSV1 stocks 

HSV1 (ATCC, VR-733, strain F) was purchased from the American Type Culture Collection 

(ATCC; Rockville, MD, USA) and propagated to large quantities by infection of African green 

monkey kidney (Vero) cells (ATCC CCL-81; Rockville, MD, USA). The virus strains were 

passaged twice and diluted in serum-free medium (50% RPMI medium 1640 (Invitrogen, Merelbeke, 

East Flanders, Belgium) and Dulbecco's Modified Eagle Medium (Invitrogen, Belgium), 50IU/mL 

penicillin (Invitrogen, Belgium) and 50µg/mL streptomycin (Invitrogen, Belgium) to a final 

concentration of 107 TCID50 (50% tissue culture infectious dose of a virus)/ml. Tissue culture 
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medium (TCM, contains equal amounts of RPMI medium 1640 (Invitrogen, Merelbeke, East 

Flanders, Belgium) and Dulbecco's Modified Eagle Medium (Invitrogen, Belgium)) were used for 

all subsequent experiments involving infection of nasal turbinate tissue ex-vivo.  

Culture and infection of healthy nasal turbinate and nasal polyp explants with HSV1 (Figure 

1) 

Nasal turbinate and nasal polyp tissue obtained from each patient following surgery was 

immediately washed three times with serum-free medium supplemented with antibiotics (50IU/mL 

penicillin (Invitrogen, Belgium) and 50µg/mL streptomycin (Invitrogen, Belgium) and cultured 

according to the following protocol. The washed tissue explant was cut into smaller cubes 

approximately 25mm2 in size. Nasal tissue cubes of each turbinate or nasal polyp explants were 

used for further investigation, divided into two equal groups of two cubes each (Group 1 (A,B 

wells)= HSV1 infection group; Group 2 (A, B wells)= control, non-infection group, Group 1B and 

Group 2B cubes were divided into 2 parts before any treatment ). Each cube was placed with the 

epithelial surface upwards on sterile fine-meshed gauze in a 6-well tissue-culture plate (Falcon, BD 

Biosciences, Erembodegem, East Flanders, Belgium) and 3 ml serum-free medium supplemented 

with antibiotics was added to each well to create an air-liquid interface. All tissue cubes were 

conditioned as explant cultures by incubation for 24h at 37 °C in 5% CO2 in air atmosphere, and 

then transferred to a 24-well tissue-culture plate (Falcon, BD Biosciences, Belgium). Groups 1 

tissue cubes were inoculated with 1.0 mL inoculum containing 107 TCID50 of HSV1, and 1.0mL of 

serum-free tissue culture medium (TCM) was added to the tissue cubes in Groups 2 as mock-

condition, all tissue cubes were incubated for 1h at 37 °C in 5% CO2 in air atmosphere. All tissue 

cubes were washed three times, transferred onto sterile fine-meshed gauze and incubated in a 6-well 

tissue-culture plate for either 24h or 48h under air-liquid interface culture conditions as before. At 

the end of each incubation period, the culture supernatants from Group 1A and Group 2A were 

collected, and tissue cube parts from Group 1B and Group 2B were collected, weighted  and snap-

frozen respectively at 24h or 48h time point, store at -80 °C for further evaluation. In order to 

investigate the spontaneous release, the tissue cubes which underwent 48h culture were transferred 

to a 6-well tissue-culture plate with fresh tissue culture medium for a final 24h incubation period 

(in total 72h tissue incubation) on fine-meshed gauze at an air-liquid interface. At the end of the 
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culture, the culture supernatant were collected and the tissue cubes were weighed and snap-frozen 

in liquid nitrogen and stored at -80 °C until further assessment. In the process of developing this 

model, we used uninfected vero cell lysates, heat inactivated HSV1 and tissue culture medium 

(TCM) as controls vs HSV1; as the controls showed the same morphology and cytokine response 

patterns, here we only used TCM as control. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Study flow. Culture and infection of nasal turbinate healthy mucosa tissue and nasal polyp 

explants with HSV1: Nasal tissue cubes were divided into two equal groups of two cubes each (Group 1 

= HSV1 infection group; Group 2 = control, non-infection group). Group 1 tissue cubes were inoculated 

with HSV1, and serum-free medium was added to the tissue cubes in Group 2 as mock-condition. 

 

Immunofluorescence staining for evaluation of HSV1 invasion  

As previously reported16, 17, 10 serial cryosections (5um per section) of each tissue cube were 

incubated for 1h at 37°C in the presence of mouse anti-HSV1-gD antibodies (Santa Cruz, 

Heidelberg, Baden-Wurttemberg, Germany) (100mg/mL, 1:100 in 10% NGS) or mouse IgG2 as an 

isotype specific negative control antibody (Dako, Glostrup, Region Hovedstaden, Denmark). 

Following three washings with PBS, the sections were incubated for a further 1h at 37°C in the 

presence of goat anti-mouse-Texas Red antibodies (Molecular Probes, Invitrogen, Belgium) (2 

mg/mL, 1:50 in 10% NGS).  

  Immunofluorescence-stained slides were evaluated for viral invasion by viewing at 630 
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magnifications using a fluorescence microscope (Axioplan 2, Carl Zeiss, Gottingen, Lower Saxony, 

Germany). All stained slides were evaluated by two independent observers, who were blinded to 

the tissue-treatment protocol and assessed the entire epithelium in each section by viewing up to 8–

10 adjacent fields. HSV1 invasion in each field was graded on a 5-point scale (0= epithelium not 

infected, 1 = epithelium superficially infected, 2= basal cells infected, 3 = basement membrane and 

HSV1 co-localization, HSV1 do not penetrate the basement membrane, 4 = HSV1 penetrated the 

basement membrane into the lamina propria). The mean of total scores in the ten sections on each 

slide was used as the final invasion score for each explant. 

 

Inflammatory cytokines were measured by ELISA in tissue culture supernatants 

Inflammatory mediators IFN-γ, IL-6, IL-1β, TNF-α, IL-17, IL-5, IL-10 were measured in culture 

supernatants at baseline and at 24h, 48h and 72h after virus incubation by means of commercially 

available Quantikine ELISA kits (R&D Systems, Minneapolis, MN, USA). IFN-β (Invitrogen), 

IFN-α (Invitrogen), and IFN-λ (R&D systems, USA) release was measured in culture supernatants 

at baseline and at 24h, 48h and 72h after virus incubation, by using ELISA, according to the 

manufacturer’s instructions.  

 

Statistical analysis 

Data were expressed as median and interquartile ranges (IQR). The Kruskal–Wallis test was used 

to assess the significance of intergroup variability; the Wilcoxon test was used for paired 

comparisons, and the Mann–Whitney U 2-tailed test was used to assess significance for between-

group comparisons. P values < 0.05 were considered to be statistically significant. 

 

RESULTS 

Patient characteristics, cytokines and IgE levels in tissue homogenates   

The two groups of patients were comparable in terms of clinical characteristics, allergic status and 

comorbid disease. At baseline, tissues from CRSwNPs showed significantly higher total IgE, ECP 

and IL-5 concentrations vs inferior turbinate tissues from control samples (p<0.05). IL-17 was 
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 below detection limit in both groups, whereas IFN-γ could be detected in 3 control tissues (Table 

1). 

 

Table 1. Cytokines and IgE levels in tissue homogenates. 

 

BDL: below detection limit 

   

HSV1 replicates and invades in the nasal mucosal tissue after 24, 48 and 72 hours cultivation 

Infection of the nasal inferior turbinate mucosal tissue explants with HSV1 led to focal infection of 

outer epithelial cells within 24h (Figure 2A) with distribution up to the basement membrane and 

damage of epithelial structural integrity after 48 h (Figure 2B). Incubation of the tissue for 72h 

(Figure 2C) following inoculation with HSV1 led to infection of basal epithelial cells, followed by 

the loss of epithelium and subsequent invasion of HSV1 into the lamina propria. In contrast, HSV1 

infected the whole epithelium of nasal polyp tissue within 24h (Figure 2D), already causing 

epithelial damage after 48h (Figure 2E), and causing significant damage to the epithelium and 

invasion into the lamina propria through the basement membrane after 72h (Figure 2F). 

Tissue Detection limit 

after sample 

handling dilution 

 

Inferior turbinate 

healthy mucosal 

tissue (HMT)  

n=7, median 

(IQR) 

P value Chronic Rhinosinusitis 

with nasal polyps 

(CRSwNP) 

n=7, median (IQR) 

Total IgE 

(kUA/L) 

1.9 16.6 (9,24-42.3) 0.003 205.3 (56.4-244.2) 

ECP 

(ug/ml) 

11.0 357.5 (98-504.3) 0.015 13609.7(5236.3-20570) 

IL-5 (pg/ml) 7.0 BDL 0.007 263.7 (39.4-510.4) 

IFNγ (pg/ml) 42.9 42.9 (42.9-77.2) n.s BDL 

IL-17(pg/ml) 7.0 BDL n.s 7 (7-17.6) 
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  The depth of mucosal invasion for HSV1 in nasal polyp tissue was similar to turbinate mucosa at 

24h, but the invasion scores at 48 and 72h were significantly higher than those for the turbinate 

mucosa (p<0.05) (Figure 2G), indicating that more viruses infected deeper mucosal layers.  

Immunofluorescence staining for untreated cryosections was also performed by using anti-HSV1-

gD monoclonal antibodies. Neither in those cryosections nor in TCM treated HMT and CRSwNP 

tissues, HSV1 was detectable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Immunofluorescence-stained sections of inferior turbinate healthy mucosa tissue (HMT) 

and nasal polyp tissue samples (CRSwNP) after HSV1 infection. (A-C) HMT tissue was infected by 

HSV1 and incubated for 24h, 48h, 72h. (D-F) CRSwNP tissue was infected by HSV1 and incubated for 

24h, 48h, 72h. Isotype: mouse IgG2 antibody on the sections of the tissue samples after 24h HSV1 

infection. Red is the positive HSV1 signal. Invasion score of HMT and CRSwNP tissue samples by 

HSV1. Results are presented as mean scores + SEM for HMT from 7 patients and CRSwNP from 7 

patients. *P<0.01.  

 

Inflammatory mediator release after HSV-1 infection HSV1 induced a significant release of IL-

6 after 48h and 72h in both HMT and CRSwNP tissues, without significant difference between 

groups. However, in CRSwNP samples, we could demonstrate a significant release of IL-1β at 48h 

(p=0.031), whereas no IL-1β was released in HMT before 72h post inoculation (Figure 3A); the 
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concentration of IL-1β in the supernatants was significantly higher in CRSwNP compared to HMT 

at 72h (p=0.01). In line with these findings, the release of TNFα was significantly increased after 

48h (p=0.031) and 72h (p=0.031) in CRSwNP only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Inflammatory mediator release after HSV-1 infection. Inflammatory mediators IL-6, IL-1β, 

TNF-α, IFN-α, IFN-β, IFN-γ, IFN-λ, IL-5 and IL-10 were measured in infection model. Data were 

expressed as median and interquartile ranges (IQR) for HMT from 7 patients and CRSwNP from 7 

patients. * P value<0.05. TCM: tissue culture medium, indicating the uninfected culture.  

  IFN-α could be detected in 4 out of 7 HMT samples after HSV1 incubation at 24 and 48h, but not 
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in any CRSwNP samples; however, this difference did not reach significance. IFN-β was found in 

the supernatants of 3 HMT and 4 CRSwNP samples at 72h incubation. IFN-λ was not detectable at 

any of the time points in any of the samples. However, there was a significant increase of IFN-γ 

release in HMT samples at 48 (p=0.031) and 72h (p=0.016), but no induction of IFN-γ in CRSwNP 

tissue upon HSV1 infection (Figure 3B). 

  There were also significant differences in terms of T cell cytokine release in the response of 

CRSwNP and HMT to HSV1 infection (Figure 3C). The expression of IL-17 was only up-regulated 

in HMT tissues after 48 and 72h, but not in CRSwNP tissues. There was a significantly higher 

spontaneous release of IL-5 at 24 (p=0.037) and 48h (p=0.025) in CRSwNP vs. HMT, but this was 

independent from the impact of HSV infection. A significantly increased release of IL-10 was 

observed in CRSwNP vs. HMT at 48 (p=0.004) and 72h (p=0.004), which was further increased 

significantly by HSV1 infection at 72h (p=0.031). No increase in IL-10 was observed in HMT 

samples.  

Discussion 

This study shows for the first time a major difference in the response of healthy mucosa vs. mucosal 

tissue derived from chronic rhinosinusitis with nasal polyps (CRSwNP) in response to viral 

exposure, in this case HSV1. CRSwNP mucosal tissue shows a significant deficit in IFN-γ and IL-

17 release within 24 to 72h after infection in comparison to healthy mucosa, while at the same time 

releasing significantly higher levels of the pro-inflammatory cytokines IL-1β and TNF-α. These 

findings were associated with significantly higher viral invasion scores at 48 and 72h in CRSwNP 

mucosa compared to those for the healthy mucosa, indicating that CRSwNP nasal tissue provides 

less antiviral activity and at the same time releases disease progressing factors, allowing HSV1 to 

easier penetrate and spread through CRSwNP tissues, although the viral replication was similar 

between tissues.  

  Mucosal environments in disease are characterized by a distinct set of cytokine profiles, which 

impact on the extracellular matrix including the basement membrane, the type of inflammation 

(neutrophil/eosinophil), the innate and adaptive immune responses to microorganisms, and finally 

the potential to resolve ongoing inflammation18. Mucosal inflammation in nasal polyps mainly is 

orchestrated by Th2 cytokines, characterized by an increased eosinophilic inflammation and 
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formation of IgE antibodies. This endotype is associated with co-morbid asthma15 as well as 

recurrence of disease in Caucasian patients19. All 7 CRSwNP samples in this study were classified 

as IL-5 positive, with high IgE and ECP concentrations, and 2 out of 7 nasal polyp patients had mild 

asthma. This biochemical and clinical presentation contrasts to the healthy mucosa and asthma 

status of the control patients. The specific immune profile in Th2-biased CRSwNP has also been 

associated with defects in innate or adaptive immunity, such as the alternative activation of 

macrophages, the suppression of T regulatory activity20,21, or the epithelial barrier tight junction 

molecule expression22, 23. 

  IFNs are critical for innate and adaptive immunity against viral, some bacterial and protozoal 

infections24. Type I IFNs (IFN-α and IFN-β) can be produced by all nucleated cells as the first line 

of host antiviral defense25. Type II IFN (IFN-γ), affects activities of macrophages, NK cells, 

dendritic cells (DC), and T cells by enhancing antigen presentation, cell trafficking, and cell 

differentiation and expression profiles, conveying antiviral signals from the innate to the adaptive 

immune response in order to fully activate host antiviral immunity26. Recently identified type III 

IFNs (IFN-λ1, IFN-λ2 and IFN-λ3) can induce antiviral activity in a variety of target cells that 

express the IFN-λ receptor27. Aberrant IFN expressions are associated with a number of 

inflammatory and autoimmune diseases. An inadequate response to HRV infection has been 

recently described in severe asthma, suggesting that the innate anti-viral response to viruses, here 

HRVs, may be impaired in those patients28.  

  The significant release of IFN-γ in healthy mucosal tissue (HMT) samples at 48 and 72h is 

considered a normal response to a viral infection, whereas the lack of induction of IFN-γ release 

upon HSV1 infection in CRSwNP tissues may result in a deficit to limit viral replication. Our 

previous findings demonstrated that HSV1 has an increased invasive ability into nasal polyp tissue 

accompanied by more serious damage of epithelium compared with nasal turbinate mucosa16, 17. 

Also Type I and III IFNs have been shown to play an important role in combating HSV-1 infection, 

and studies have shown that the magnitude and swiftness of IFN-α/β induction correlates with the 

relative resistance of C57BL/6 mice to HSV-1 infection29. In this present study, IFN-α could be 

detected in 4 out of 7 HMT samples after HSV1 incubation at 24 and 48h, but not in any CRSwNP 

samples. IFN-β was found in the supernatants of 3 HMT and 4 CRSwNP samples at 72h incubation. 

http://en.wikipedia.org/wiki/Autoimmune
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These findings were rather inconsistent and did not reach significance, but may point to a broader 

defect in IFN response in CRSwNP tissue.  

  IL-17 and related components of Th17 immune function are increasingly identified as 

contributors to the pathogenesis of many infections, including respiratory infections caused by 

viruses. IL-17 facilitates the recruitment of neutrophils to the airways, and contributes to the 

clearance of the virus. In our human nasal mucosa model, normal healthy controls responded with 

a significant increase in IL-17 release upon HSV1 infection, whereas CRSwNP tissue also lacked 

this adequate immune response with possible consequences; unfortunately, the recruitment of 

neutrophils cannot further be investigated in this model.  

  Structural cells such as epithelial cells form part of the first line of defense and play a key role in 

the initiation of the immune responses including the release of IL-1 family members early on during 

the development of the inflammatory cascade. Secretion of IL-1β is an important outcome of the 

inflammasome activation, involving NF-κB activation and the expression of pro-inflammatory 

cytokines29. In the present study, we could demonstrate a significant release of IL-1β and TNF-α in 

CRSwNP tissue, whereas no IL-1β was released in HMT before 72h post inoculation. This suggests 

that viral infection induces a more vivid inflammatory response in CRSwNP than in healthy control 

HMT. This observation is supported by a study reporting increased levels of the pro-inflammatory 

mediator IL-1β and one of its antagonists, IL-1 receptor antagonist (IL-1ra), in nasal lavage of 

asthmatic, but not non-asthmatic patients during experimental rhinovirus infection30. Wang et al 

showed no difference in IL-6 and IL-8 release in healthy mucosa vs. nasal polyp tissue after HRV 

infection in-vitro31; in agreement with their findings, we also found no difference for IL-6 (IL-8 was 

not measured here), but well for other cytokines, prominently for type 2 IFN, IL-17, IL-1β and 

TNF. 

  Herpes simplex virus (HSV)-specific T cells are essential for viral clearance. However, T cells 

do not prevent HSV during latent infection or reactivation. A recent study using PBMCs has shown 

that HSV-infected T cells stimulated through the TCR selectively synthesized IL-10, a cytokine that 

suppresses cellular immunity and favors viral replication32. This finding further was supported by 

studies in mice showing that the immunoregulatory cytokine IL-10 is a key host factor in inducing 

and maintaining T cell exhaustion, facilitating viral persistence33,34. In fact, 9% of human nasal 
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polyps were infected with HSV110, and persistent infections may contribute to this number. This 

hypothesis requires further research, focusing on IL-10 is a key player in the establishment and 

perpetuation of viral persistence. 

  As it is unethical to remove healthy ethmoidal mucosa from a non-diseased person, and it is 

seldom indicated to remove parts of the middle turbinate from healthy subjects; inferior turbinates 

have been used as controls for decades. We have shown in the past that inferior turbinates do show 

the same changes in terms of adaptive and innate immune reactions as the sinus mucosa in CRSsNP 

and CRSwNP35. In that sense we may expect that healthy inferior turbinates do represent healthy 

sinus mucosa. We assume that the structural changes from nasal polyps to normal sinus mucosa are 

much greater than the differences from ethmoidal to turbinate mucosa. However, we have to admit 

the fact that the tissue is isolated and the model therefore is not suitable for studies on cell migration.   

  In conclusion, we demonstrate here for the first time in a human ex-vivo mucosal model that the 

response upon viral infection by HSV1 of tissues derived from nasal polyps of chronic rhinosinusitis 

(CRSwNP) patients vs. inferior turbinate of healthy subjects differs considerably. CRSwNP shows 

a significant deficit in IFN-γ and IL-17 response, but in contrast releases significantly higher 

amounts of the pro-inflammatory cytokines IL-1β and TNF-α, and IL-10. This inadequate response 

is associated with a deeper intrusion of the virus upon acute infection, but also may lead to a different 

acute inflammatory response in CRSwNP tissue. 
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CHAPTER 5 

ENHANCEMENT of FOXP3 IN HUMAN AIRWAY REGULATORY T CELLS INHIBITS TH2 

RESPONSE BY REGULATING THE SUPPRESSOR PROTEIN SOCS3 IN CRSwNP. 
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Abstract:  

Background: In persistent upper airway inflammation, the number of fork head box P3 (Foxp3)+ T 

regulatory (Treg) cells is reduced but the regulation of Foxp3 expression in Tregs is poorly 

understood. 

Objective: We investigated the interaction between SOCS3 and Foxp3 expression in the airway 

mucosa.  

Methods: Expression of SOCS3 and Foxp3 was measured in CRSwNP tissue and control tissue. 

Co-expression of SOCS3 and Foxp3 was evaluated in PBMC and in CRSwNP tissue. We also 

switched off and overexpressed SOCS3 in CRSwNP tissues and in PNAC-1 cell lines and examined 

the effect on Foxp3 expression.  

Results: SOCS3 gene and protein expression was up-regulated in inflammatory cells in airway 

mucosa, whereas Foxp3 gene and protein expression was down-regulated. Mucosal Treg cells co-

expressed both proteins. Switching off the expression of SOCS3 in human airway mucosa resulted 

in Foxp3 up-regulation, whereas inducing it in PANC-1 cells led to Foxp3 down-regulation. We 

also found that phosphorylation of STAT3 was decreased in inflamed mucosa, and we hypothesized 

that SOCS3 was responsible. Phosphorylation of STAT3 increased upon silencing SOCS3 

expression in inflamed mucosa and decreased upon SOCS3 plasmid transfection in PANC-1 cells.  

Conclusions: We demonstrate for the first time that SOCS3 and Foxp3 are co-expressed in Treg 

cells in human nasal mucosa, and that SOCS3 negatively regulates Foxp3 expression in human 

airway mucosa, possibly by phosphorylation of STAT3. Hence, SOCS3 could be a potential target 

for restoring Foxp3 expression in Treg cells in persistent mucosal inflammation. 

Introduction  

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory condition in the 

upper airways that is often accompanied by co-morbid asthma. Two different inflammatory patterns 
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have been described in CRSwNP: either a T helper cell (Th)2 bias or a mixed Th1 and Th17 cell 

preponderance. Both patterns are accompanied by a deficit in fork head box P3 (Foxp3)+ T 

regulatory (Treg) cells in European and Chinese patients1-4. 

 Foxp3+ Tregs play a critical role in immune regulation by maintaining peripheral self-tolerance, 

thereby preventing chronic inflammatory and autoimmune disease 5. A loss-of-function mutation in 

the Foxp3 gene in mouse and human models is associated with immunodysregulation, 

polyendocrinopathy, enteropathy, and X-linked syndrome5. Overexpression of Foxp3 in Th cells 

imparts on them a suppressive phenotype6. However, regulation of Foxp3 expression in Tregs is 

still poorly understood. The role of suppressor of cytokine signaling3 (SOCS3) protein in the 

development and function of Tregs remains controversial. SOCS3 expression in antigen presenting 

cells (APCs) indirectly suppresses the development of Tregs7. On the other hand, Foxp3 might 

interact with SOCS3 by binding to the promoter or to other regulatory sites8. SOCS3 mediates the 

suppression of Tregs proliferation and the suppression of Foxp3 and CTLA-4 by reducing IL-2 

levels 9. The inactivation of SOCS3 in CD4+ cells prevents development of the symptoms associated 

with asthma, such as airway eosinophilia in mouse models10. 

  The SOCS family of proteins is at present composed of eight members characterized by the 

presence of a Src homology 2 domain and a C-terminal conserved domain called the SOCS box11. 

SOCS proteins negatively modulate the activation of signal transducer and activator of transcription 

(STAT) in the Janus Kinase (JAK)-STAT signaling pathway, which mediates the cytokine negative 

feedback plural loops11. The binding of cytokines such as IL-6, IL-2, IL-23, IL-4, INF-γ and GH to 

their specific receptors stimulates the cross-phosphorylation of STATs to induce SOCS genes. The 

SOCS proteins in turn bind to a cytokine-receptor complex, degrade the complex by SOCS-box, 

and interact with JAK enzyme through their SH2 region. This results in decrease of phosphorylated 

STATs (pSTATs)11,12. SOCS3 protein acts mainly on the phosphorylation of STAT3 and STAT513. 

  In mouse models, SOCS3 protein is a major regulator of the IL-23–mediated Th17 response14. 

SOCS3 has an important role in balancing Th1/Th2 towards Th2-type not Th1 differentiation15. 

High levels of SOCS3 in mouse T cells were also shown to cause Th2 skewing and allergic 

responses15. 
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  We analyzed whether SOCS3 is involved in the regulation of Foxp3 expression in human nasal 

mucosal tissue of CRSwNP patients and studied the mechanisms of this interaction. We used human 

nasal mucosa as a model to investigate the regulatory role of SOCS3 in the deficit of Foxp3+ Treg 

cells. 

Methods: 

  Patients. Nasal tissue was obtained from 71 CRSwNP patients and 12 control patients at the 

Department of Oto-Rhino-Laryngology of the West China Hospital of Sichuan University, Chengdu, 

China. None of the patients had taken oral corticosteroids for at least two months and topical 

medication for at least four weeks before surgery. The diagnosis of nasal polyps was made according 

to European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS) 2007 guidelines16. The 

inferior turbinates of patients with septal deviation were used as controls. Prior to surgery, the 

rhinosinusitis symptoms were evaluated by a physician on a 4-points scale of 0-3 (0=no symptom, 

1=mild symptom, 2=moderate symptom, 3=severe symptom) and polyps were graded by size and 

extent in both left and right nasal fossa, according to the Davos classification (0 to 4 per side). The 

clinic data of all the patients were shown in Table E1 in the Online Repository. The study was 

approved by the local Ethics Committee on Humans.  

Table E1. Patients characteristics and symptom scores 

  Controls CRSwNP 

Number of patients 12 71 

Age( years, range) 29.75(17-60) 38.2(17-66) 

Female/male 3f/9m 35f/36m 

Asthma in history 0/12 7/71 

Aspirin intolerance (history) 0/12 0/71 

Duration of symptoms (years, range) n.a. 8.0(0.5-28) 

Bilateral CT score (Lund-Mackay) n.a. 16.08(11-24) 

Bilateral polyp score (Davos) 0 4.16(2-6) 

Total symptom score 0.9(0-4) 4.7(2-10) 

Nasal congestion 0.8(0-3) 2.1(0-3) 

Sneezing 0 0.6(0-3) 

Rhinorrhea 0.2(0-1) 1.2(0-3) 

Loss of smell 0 0.8(0-3) 
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Experimentation of the West China Hospital, Sichuan University. Informed consent was obtained 

from all patients and healthy donors before sample collection.  

Immunohistochemistry and immunocytochemistry. The nasal tissues were fixed in 10% neutral 

buffered formalin and processed to paraffin. Sections of 4–5 μm were incubated overnight at 4°C 

with primary antibody against SOCS3 (1:100) (Cell Signaling Technology, Beverly, MA). The 

secondary antibody was anti-goat (Zhongshanjingqiao, Beijing, China). Positive cells were 

visualized with the diaminobenzidine chromogenic reaction. Quantitative analysis of the 

histological sections was performed by two independent observers who counted a total of 300 cells 

in 10 fields per tissue section from 12 controls and 12 CRSwNP patients. Additionally, the sorted 

Treg cells from PBMC of 3 healthy donors were fixed and incubated with anti-SOCS3 antibody 

(1:100). As control, the specimens were incubated with isotype antibody IgG. 

qRT-PCR. This was used to estimate the mRNA levels of SOCS3, Foxp3, STAT3 and STAT5A/B 

in 71 CRSwNP patients and 12 control patients. After extraction of total RNA by using RNeasy kit 

following the manufacturer’s instructions (QIAGEN GmbH, Hilden, Germany), cDNA was 

synthesized starting with 40 ng total RNA by using the Prime Script RT Reagent Kit (Takara, Dalian, 

China). Total RNA was quantified with RT-PCR by the iCycler iQ Real-Time PCR Detection 

System (BioRad, CA) using the following primer sequences: SOCS3 (5’-ATG GTC ACC CAC 

AGC AAG TT-3’; 5’-ACT GAG CAG CAG GTT CG C-3’), Foxp3 ( 5’-GAA ACA GCA CAT 

TCC CAG AGT TC-3’;  5’-ATG GCC CAG CGG ATG AG-3’), STAT3 ( 5’-GCA CAT TCA 

TGC TAA GAT TCA G-3’; 5’-TGA TGC TTT GTG TAT GGT TCC-3’), STAT5A (5’-CCA CAG 

ATG AAG CAA GTG GTC-3’; 5’-ATC GAG TAC ATG CTC ATG GTT C-3’), STAT5B ( 5’-

GAT GCC TTT TAC CAC CAG AGA C-3’; 5’-AGT AGC AGA CTC GCA GGG AAC T-3’). 

PCR amplification consisted of 40 cycles of denaturation at 95°C for 15 sec and annealing and 

extension cycles at 60°C for 45 sec each. The target product was detected by SYBR Premix Ex Taq 

II kit (Takara, Dalian, China). To normalize for transcription and amplification variations among 

the samples, three housekeeping genes were used: β-actin, hydroxymethylbilane synthase, and 

elongation factor 1. The relative quantities expressed were assessed by the Gene Expression Macro 

Version 1.1 software (BioRad Laboratories Inc). 
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Western blotting. Protein was extracted with the Protein Extraction Reagent (KaiJi, Shanghai, 

China) from the nasal tissue of 35 CRSwNP patients and 12 control patients. Protein concentration 

was measured by Bicinchoninic Acid Assay kit (KaiJi, Shanghai, China). The following antibodies 

were used for western blotting: anti-SOCS3 (1:700), anti-STAT3 (1:800), anti-p-Tyr-STAT3 

(Tyr705) (1:700), anti-STAT5 (1:600), and anti-p-Tyr-STAT5 (Tyr694) (1:600). All the above-

mentioned antibodies were purchased from Cell Signaling Technology. Anti-Foxp3 antibody (1 

μg/ml) was purchased from Abcam (Cambridge, United Kingdom). The HRP-conjugated secondary 

antibody (1:10000) was from Santa Cruz (Santa Cruz, CA). The relative band densities of the target 

protein to β-actin (Boaosen, Beijin, China) were estimated by Bio-Rad Quantity One Analysis 

Software (Bio-Rad, CA).  

Cell isolation. Primary mononuclear cells were isolated from the blood of 3 healthy donors by 

Ficoll-Hypaque density gradient centrifugation according to the standard protocol. Cells were plated 

at 2x106 cells/well in a 24-well plate and cultured at 37°C in 5% CO2 for 5 days in 1ml RPMI1640 

culture medium (Sigma, St. Louis, MO) alone or with recombination human IL-2 (10 ng/ml) and 

recombinant human IL-15 (10ng/ml) (Miltenyi Biotec, Bergisch Gladbach, Germany).  

Single cell suspension and flow cytometry. Single cell suspensions of human nasal mucosa were 

prepared as described 17. To analyze the co-expression of Foxp3 and SOCS3 proteins in Tregs, the 

cultured cells and single cells of CRSwNP tissue (n=3) were collected and incubated with anti-CD3-

PE-Cy, anti-CD4-PerCP-Cy5.5 and anti-CD25-FITC antibodies for 30 min. After fixation and 

permeabilization, the cells were stained intracellularly with anti-Foxp3-PE and a 1:100 rabbit anti 

human SOCS3 (Abcam, Cambridge, UK) for 30 min followed by goat anti-rabbit APC secondary 

antibody (Invitrogen, Merelbeke, Belgium) for 20 min. PBMCs from healthy donors were stained 

with anti-CD4-FITC, anti-CD25-PerCP-Cy5-5 (BD Biosciences, Erembodegem, Belgium) and 

anti-Foxp3-PE antibody (BD Biosciences) and Treg cells were sorted using standard protocols and 

a FACS Aria instrument (BD, Biosciences). 

RNAi experiments. Three SOCS3-specific siRNAs (siG0933161433, siG0933161455 and 

siG0933161508) and a negative control siRNA (siN058151221487) were synthesized (RiBo Bio, 

Shanghai, China) and the target sequence was validated (5’-GAC CCA GTC TGG GAC CAA G-

3’). The following sequences were used: SOCS3 sense, GAC CCA GUC UGG GAC CAA G dTdT; 
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SOCS3 anti-sense CUU GGU CCC AGA CUG GGU C TdTd. The transfection efficacy of siRNA 

in nasal polyp tissue was estimated by using siR-Ribo™ Transfection Control (siN05815122148) 

(RiBo Bio, Shanghai, China). The result is shown in Figure E1. More detailed information about 

transfection efficiency has been provided in the Methods E1 of the Online Repository. Nasal polyp 

tissue (n=5) was washed with PBS containing 100 IU/ml penicillin and 100 μg/ml streptomycin 

three times and sliced into cubes. The 80 mg of tissue cubes were placed into each well of a six-

well plate containing 1.3 ml of RPMI 1640 medium and transfected with SOCS3-specific siRNA 

(40nM) or negative control siRNA (40nM) using 5 μl of the lipofectamine 2000 transfection reagent 

(Invitrogen, Carlsbad, CA) according to the standard protocol. After 4h of incubation, fetal serum 

(10% final concentration) (Hyclone, Logan, UT) was added to each well to terminate transfection 

and tissues were incubated at 37°C in humidified air with 5% CO2 for 48h. The tissue cubes were 

collected for RT-PCR and western blot. 

 

Figure E1: Transfection efficiency of siRNA in nasal polyp tissue fragments. The blue fluorescence 

represents the nuclei of cells, the green dots fluorescein-labeled siRNA transfection control. (A, B) 

Fluorescence images of nasal polyp tissue fragments without fluorescein-labeled siRNA. (C, D) 

Fluorescence images of CRSwNP tissue fragments with fluorescein-labeled siRNA. The merged version 

of green and blue fluorescence indicates the siRNA intracellular location (white arrows). Magnification: 

100× (A, C) and 400× (B, D). 
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Transient expression of SOCS3 in PANC-1 cells. Human pancreatic carcinoma epithelial-like 

cells (PANC-1), a cancer cell line with strong gene expression of Foxp318, was used for transient 

expression of SOCS3. pEF-FLAG-I/m vector and pEF-FLAG-I/m SOCS3 plasmid (2μg) were 

separately transfected into 5×106 PANC-1 cells by using lipofectamine 2000 transfection reagent. 

Total RNA and proteins were extracted from transfected PANC-1 cells after 48 h of incubation. 

These experiments were repeated three times.           

Statistics. A one-way ANOVA test, Mann-Whitney test and T test were performed using SPSS 12.0 

(SPSS, Inc, Chicago). A p value < .05 was considered statistically significant. 

Results: 

SOCS3 expression is increased in patients with CRSwNP. Immunohistochemical analysis 

showed that CRSwNP patients had significantly stronger expression of SOCS3 than controls 

(Figure 1). In CRSwNP tissue, SOCS3 protein was preferentially expressed in inflammatory cells, 

epithelium and submucosal glandular epithelium. Quantitative analysis of the histological sections 

performed by two independent observers showed a significant increase in SOCS3+ cells in nasal  

 

Figure 1 SOCS3 expression in CRSwNP tissues. Representative images of SOCS3 

immunohistochemistry in CRSwNP tissues (n=12) and controls (n=12). (A, C) SOCS3-positive cells 

(arrows) in controls. (B, D) SOCS3-positive stained cells (arrows) in CRSwNP. Magnification: 100× (A, 

B) and 400× (C, D). 
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polyp tissue, in which 33.3 ±9.06% of the cells were positively stained, as compared to only 6.67 

±3.58% controls (P<.0001). The levels of SOCS3 gene expression were higher in CRSwNP, and 

this was confirmed by western blot (Figure 2A, C). Importantly, the expression of Foxp3 protein 

in CRSwNP was significantly increased (Figure 2 B, D). 

 

 

Figure 2 The expressions of SOCS3 and FOXP3 in CRSwNP. (A) RT-PCR showing SOCS3 

expression in CRSwNP (n=71) and controls (n=12). (B) Western blotting pictures for SOCS3 and 

FOXP3 proteins in CRSwNP (n=35) and controls (n=12). (C) Quantification for SOCS3 protein in 

CRSwNP tissues. (D) Quantification for Foxp3 protein in CRSwNP tissues (*P<.05, **p<.01). 

 

 

Foxp3-positive Tregs express SOCS3 protein. In non-stimulated conditions, 86% of 

CD4+CD25+Foxp3+ Tregs in human peripheral blood expressed SOCS3 (Figure 3A-b). In PBMCs 

treated with 10 ng/ml of IL-2 and IL-15 for 5 days (Figure 3A-c), 96% of CD4+CD25+Foxp3+ Tregs 

co-expressed SOCS3. Therefore, most CD4+CD25+Foxp3+ cells co-expressed SOCS3 in both 

stimulated and non-stimulated conditions. In addition, CD4+CD25+Foxp3+ cells were sorted from 

PBMCs of three healthy donors and stained with anti-SOCS3 antibody. The result confirmed the 
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co-expression of these proteins in 96% of Tregs (Figure3B). In human nasal mucosal tissue of 

CRSwNP patients, 45.1% of CD3+CD4+CD25+cells were SOCS3+Foxp3+ (Figure 3C).  

 
Figure 3 The expression of SOCS3 and FOXP3 proteins in Treg cells. PBMCs of healthy donors 

gated on living CD3+CD4+CD25+Foxp3+ cells cultured in RPMI: (A-a) is the isotype control. (A-b) Non-

stimulated. (A-c) Stimulated with IL-2 and IL-15. (n=3) (B) CD4+CD25+Foxp3+cells sorted from 

PBMCs of healthy donors and stained with anti-SOCS3 antibodies. (n=3) (C) The single cells of 

CRSwNP tissue gated on living CD3+CD4+CD25+Foxp3+SOCS3+cells. (n=3) 

 

Modulation of SOCS3 levels and Foxp3 expression. As immunohistochemical analysis showed 

high levels of SOCS3 in epithelium, glandular epithelium, and inflammatory cells in CRSwNP 
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tissue, human nasal mucosal tissues were used in silencing experiments. Three different SOCS3-

specific siRNAs were designed to block the function of SOCS3 protein. The siRNA construct that 

knocked down SOCS3 protein most efficiently was selected. Blocking SOCS3 gene expression by 

siRNA decreased SOCS3 gene expression by 60% (Figure 4A). Analysis of Foxp3 gene expression 

after blocking SOCS3 expression demonstrated a three-fold increase in the same samples of 

CRSwNP tissue (Figure 4A). The RNA expression results were confirmed by western blot analysis: 

Foxp3 protein expression increased significantly upon silencing SOCS3 in CRSwNP tissue (Figure 

4 B, C).   

   The levels of SOCS3 mRNA and protein were increased in PANC-1 cells upon transfection with 

the SOCS3-encoding plasmid (Figure 4D-F), while Foxp3 protein expression was attenuated by up 

to 80%, as evident from measuring the relative expression levels by western blotting (Figure 4E). 

Taken together, our data demonstrate that SOCS3 negatively modulates Foxp3 expression.  

 

Figure 4 SOCS3 regulates FOXP3 expression in CRSwNP tissues. (A-C) SOCS3 and Foxp3 

expression in CRSwNP (n=5) upon addition of lipofectamine 2000 (lipo), transfection with negative 

control of siRNA (nc), or with SOCS3-specific siRNA (siRNA). (D-F) SOCS3 and Foxp3 expressions 

in PANC-1 cells upon addition of lipo, transfection with pEF-FLAG-I/m vector (vector) or pEF-FLAG-

I/m SOCS3 plasmid (plasmid) (n=3) (*P<.05, **p<.01). 
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SOCS3 regulation of Foxp3 might depend on the presence of pSTAT3. To further study the 

regulation of Foxp3 expression by SOCS3, the expression of STAT3 and STAT5A/B genes were 

investigated in the nasal tissue. STAT3, STAT5B and STAT5A gene expression were not different 

between CRSwNP and control tissue (data not shown). However, SOCS3 might attenuate the 

phosphorylation of STATs (pSTATs), which are the activated forms of STATs in the JAK-STAT 

pathway. We demonstrate that pSTAT3 was significantly down-regulated in nasal mucosa of 

CRSwNP patients in comparison with controls (Figure 5 A, B). The levels of STAT5 and pSTAT5 

proteins were undetectable in western blots. As shown in Figures 5 C and D, the relative expression 

of pSTAT3 was up-regulated by 65% after silencing SOCS3 protein expression in nasal mucosal 

tissue. In contrast, the relative expression of pSTAT3 was decreased by 75% when SOCS3 was 

overexpressed from a plasmid (Figure 5 E, F).  

 

Figure 5 The role of pSTAT3 in regulation of FOXP3. (A-B) pSTAT3 expression in nasal tissue. (C-

D) pSTAT3 expression in CRSwNP (n=5) upon addition of lipofectamine 2000 (lipo), transfection with 

negative control of siRNA (nc), or SOCS3-specific siRNA (siRNA). (E-F) pSTAT3 expression in 

PANC-1 cells upon addition of lipo, transfection with pEF-FLAG-I/m vector (vector), or pEF-FLAG-

I/m SOCS3 plasmid (plasmid) (n=3) (*P<.05, **p<.01). 
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Discussion: 

Chronic rhinosinusitis with nasal polyp is characterized by a Th2-skewed eosinophilic inflammation 

in European patients and by a Th17-biased inflammatory profile in Asian patients. However, 

regardless of the inflammatory profile, significantly weaker Foxp3 mRNA expression and 

significantly stronger T-bet and GATA-3 mRNA expression was observed in both groups of 

patients3. The mechanisms of altered T cell plasticity in CRSwNP are not yet clear. We propose that 

SOCS3 protein is an important regulator of Foxp3 in CRSwNP. We have demonstrated increased 

levels of SOCS3 protein in CRSwNP compared to controls. The expression of SOCS3 protein was 

mostly observed in inflammatory cells, epithelium, and glandular epithelium in the submucosa. 

  Importantly, SOCS3 expression is not limited to T effector cells14,15. Also CD4+CD25+Foxp3+ T 

regulatory cells stained intensely for SOCS3. To our knowledge, this is the first study to demonstrate 

the co-expression of SOCS3 and Foxp3 proteins in Tregs from human nasal mucosal tissue. In 

contrast, Pillemer et al.9 did not find SOCS3 protein expression in mouse Tregs. However, in mice 

lacking SOCS3 expression in T cells, a preferential Th3 and Treg differentiation was observed19,20. 

This T cell polarization bias could be explained by increased production of IL-10 and TGF-β in 

conditions of SOCS3 deficiency. In addition, the impaired expression of SOCS3 in APCs indirectly 

induces the promotion of CD4+CD25+Foxp3+ cells7. In recent experiments, Nguyen et al. showed 

that induction of SOCS3 expression in Tregs by pharmacologic means abrogated a Treg 

proliferative response induced by serum amyloid A and monocytes21. However, the mechanism of 

SOCS3–Foxp3 interaction and its role in Treg development are not completely understood.   

  The role of SOCS3 protein in T cell differentiation and function is well established22, but its role 

in Treg function is just being elucidated. The differentiation and survival of Tregs are regulated by 

Foxp3. The NF-κB family members, CREB/ATF, ETS-1 and FOXO1/3, were shown to facilitate 

Foxp3 transcription and to bind to its promoter and other regulatory elements, as reviewed23. 

Additionally, STAT3 and STAT5 phosphorylation is critical for Foxp3 induction in precursor cells24. 

Phosphorylated STAT3 and STAT5 were also shown to interact with the Foxp3 promoter and to 

modulate Foxp3 gene expression25. SOCS3 protein acts mainly via phosphorylated STAT3 and 

STAT526.  
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  In our RNAi experiments, abolishing SOCS3 expression in the nasal polyp tissue increased the 

levels of Foxp3. In contrast, when overexpression of SOCS3 was achieved by transient transfection, 

Foxp3 levels were down-regulated. These data confirm that in human nasal polyp tissue, SOCS3 

serves as a negative regulator of Foxp3 expression. Intranasal administration of Foxp3 strongly 

prevents the ovalbumin induced allergic airway inflammation in mice27. Moreover, up-regulation 

of Foxp3 by corticosteroids in asthmatic patients restores T regulatory cell function to suppress the 

Th2 response28. We therefore suggest that up-regulation of Foxp3 expression by SOCS3 down-

regulation might present a therapeutic approach in nasal polyps. In addition, we found that the levels 

of phosphorylated STAT3 protein are reduced in CRSwNP. We also confirm that phosphorylation 

of STAT3 increased upon silencing SOCS3 expression in inflamed mucosa and decreased upon 

SOCS3 overexpression from a plasmid transfected in PANC-1 cells. The regulatory role of pSTAT3 

on Foxp3, unlike pSTAT5, is still controversial. pSTAT3 is reported to play a negative role on 

Foxp3 in allergic or graft-versus-host mice models29,30, however, pSTAT3 signaling also can 

promote Foxp3 expression in the same graft-versus-host mice model25. Furthermore, induced Foxp3 

in human Treg cells is pSTAT3 dependent31, which is in accordance with our results in human nasal 

polyp tissue. Consequently, we suggest that phosphorylation of STAT3 might be involved in the 

SOCS3-induced regulation of Foxp3.  

The following limitations have to be taken into account: In this study we used CRSwNP patients 

from China, and there is evidence that Chinese nasal polyps are different from Caucasian polyps, 

so that our findings might not be readily transferable to all patients; however, there is evidence that 

the same down-regulation of Foxp3 applies to both the Chinese and the Caucasian polyps, and we 

also demonstrated that up-regulation of SOCS3 can be demonstrated in Caucasian polyp tissue (data 

not shown). We therefore believe that our data is valid for all nasal polyp patients. Our patients were 

asked to stop taking oral corticosteroids for at least two months and topical medication for at least 

four weeks before surgery; however, we had no possibility of controlling compliance. Also, we 

speculated on a possible therapeutic effect of silencing SOCS3 to increase the activity of Foxp3 

regulatory T cells, which might then lead to a suppression of the inflammatory process, but have 

not yet proven this here; further studies are ongoing. We also noticed that there is a difference in 

percentage of Foxp3 expression in SOCS3 positive cells in nasal polyp tissue vs. PBMC from 



115 

 

healthy donors. It is currently unclear whether this difference is due to the fact that we compare 

peripheral blood to tissue or healthy to diseased patients; further studies are needed to investigate 

this question. 

  In summary, we demonstrate that SOCS3 negatively regulates Foxp3 expression in CRSwNP, 

and this regulation may involve pSTAT3. As down-regulation of SOCS3 leads to an increase in 

Foxp3 expression, this might improve the suppressive capacities of Tregs32. Therefore, SOCS3 

could be a potential target for restoring Foxp3 expression in Treg cells to consecutively suppress 

persistent mucosal inflammation. Thus, SOCS3 siRNA or other promising therapeutic technology 

such as SOCS3 specific DNAzyme, a new class of antisense molecules that combines the specificity 

of DNA base pairing with an inherent RNA-cleaving enzymatic activity33, could possibly be used 

to inhibit SOCS3 expression for therapeutic intervention in nasal polyp disease.  
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Methods E1:  

Nasal polyp tissue was cut thoroughly in tissue culture medium consisting of RPMI 1640 and 

antibiotics (50IU/ml penicillin and 50μg/ml streptomycin). The tissue was passed through a mesh 

to achieve comparable fragment. Tissue fragments (±0.9 mm3) were re-suspended and pre-incubated 

in tissue culture medium for 1 h. 80 mg of tissue fragments were placed into each well of a six-well 

plate containing 1.3 ml of RPMI 1640 medium without antibiotics. Fluorescein -labelled siRNA, 

siR-Ribo™ Transfection Control (40 nM), was transfected into the tissue by using 5 μl of 

lipofectamine 2000 transfection reagent. After 4h of incubation, fetal serum (10% final 

concentration) was added to each well to terminate transfection and tissues were incubated at 37°C 

in humidified air with 5% CO2 for 48h. Tissue fragments with or without fluorescein-labeled siRNA 

were washed for three times by PBS before collection, frozen and prepared for cyrosections. 5μm 

thickness cryosections were fixed in 70% ethanol and dried at room temperature, prior to being 

mounted with DAPI (1:50 dilution). The transfection efficiency was evaluated by the formula: 

transfection efficiency=cells expressing green fluorescence/total accounted cells *100%. Images 

were obtained with two magnifications (100×, 400×) by a fluorescence microscopy (Axioplan 2, 

Carl Zeiss, Gottingen, lower Saxony, Germany). 
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Supplementary experiment which has been done based on the previous findings: 

To further study the inflammatory response changes in CRSwNP tissue after SOCS3 silencing, 

inflammatory cytokines such as TNF-α, IL-5, IL-17, IFN-γ and IL-10 were measured in 

supernatants of CRSwNP tissue with SOCS3 siRNA transfection. All cytokines were assayed using 

Luminex xMAP suspension array technology in a Bio-Plex 200 system (BioRad, MI, USA), and 

the final data was expressed as pg/ml. The protein level of IL-5 decreased in the CRSwNP tissue 

48h after silencing SOCS3 expression. To our Surprised, IL-10 cytokine also decreased after 

silencing SOCS3 expression in CRSwNP tissue. Although SOCS3 is very important for Th17 cell 

generation and IL-23–mediated Th17 response, no significant changes of IL-17 expression were 

observed in CRSwNP tissue with SOCS3 silencing (Figure 6). Thus, we confirm that blocking 

SOCS3 expression restores Foxp3 expression in Treg cells and inhibits Th2 response in persistent 

mucosal inflammation. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Blocking SOCS3 expression inhibits Th2 response in CRSwNP tissue. Cytokine 

expressions in supernatant of CRSwNP tissue with SOCS3siRNA transfection. (*P<.05, **p<.01) 
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Chronic rhinosinusitis (CRS) is an ill-defined umbrella term for sinus diseases. CRS is defined as 

disease of the nose and the paranasal sinuses that lasts for three months or longer before the doctor’s 

interview. The disease affects 15% of the total population in the United States; a recent European 

survey reports a prevalence of 10.8%1. However, CRS is not one disease, but distinct 

pathophysiologies have been described in different CRS subgroups. CRS without nasal polyposis 

(CRSsNP) often displays a Th1 based neutrophilic inflammation, while CRS with nasal polyposis 

(CRSwNP) in Europe is in approximately 80% of all cases dominated by Th2 driven eosinophilic 

inflammatory mechanisms, and may be accompanied by aspirin sensitivity and asthma 2, 3. Recently, 

our group has confirmed that the colonization with Staphylococcus aureus (S. aureus) and the 

presence of S. aureus enterotoxin-specific IgE antibodies significantly increase in the mucosa of 

CRSwNP subjects in comparison with control or CRSsNP patients. This suggests a link between S. 

aureus colonization or infection and a Th2 response. 

S. aureus induces a type 2 response in CRSwNP via epithelial cell derived cytokines 

In Chapter 3, we have focused on the association between S. aureus and the Th2 response in 

CRSwNP tissue. Critically, staphylococcal enterotoxin B (SEB) induces considerable release of pro-

inflammatory and Th2-associated cytokines including IL-4, IL-5 and IL-13 in human nasal and in 

mouse bronchial tissue4, 5. However, the role of S. aureus independent of enterotoxins in inducing 

type 2 immune responses in human chronic airway disease has not been elucidated. Thus, we used 

a S. aureus strain, which does not produce S. aureus enterotoxins in our infection model. Nasal 

epithelial cell lines or primary epithelial cells and certain microbial pathogen surrogates are 

frequently used to understand the post-infection immune response. However, as a bridge between 

simple cell lines and complex in vivo environments, nasal tissue explants are better suitable than 

primary epithelial cells or airway cell lines to investigate the role of microbes in airway diseases. 

These models can efficiently reflect the in vivo situation in the nose during infection. 

In recent years, it has been shown that cytokines derived from epithelial cells such as IL-33 and 

thymic stromal lymphopoietin (TSLP) released by various stimuli, are critical in propagating Th2 

immune responses6, 7. Our human nasal ex vivo infection model suggests that IL-33 and TSLP can 

be induced in CRSwNP tissue in the presence of S. aureus. Although TSLP is also induced in healthy 
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inferior turbinate (IT) tissue after S. aureus infection, a consequent IL-5 protein release is 

propagated in CRSwNP tissue only, not in healthy IT tissue. Therefore, CRSwNP tissue and IT 

tissue show different reactions upon S. aureus infection. Besides the increased IL-33 and TSLP 

expression, the receptors of epithelial cell derived cytokines TSLPR and ST2L were significantly 

up-regulated 48h after S. aureus infection, reinforcing the signal of epithelial cell derived cytokines. 

To analyze the following Th2 response, we measured the mRNA and protein level of IL-4, IL-5 and 

IL-13 cytokines in human nasal ex vivo infection model. We successfully demonstrated that the S. 

aureus strain without enterotoxin secretion can directly induce IL-5 and IL-13 in CRSwNP tissue, 

but did not find IL-4. To evaluate the specific role of S. aureus in IL-5 release, S. epidermidis was 

also included in the models. Our data unveiled that type 2 cytokines can only be induced by S. 

aureus, not by S. epidermidis in CRSwNP tissue. 

As S. aureus could induce TSLP and IL-33 in our human nasal ex vivo infection model, we also 

explored the pathway of cytokine productions induced by S. aureus. We could show that activation 

of the NF-κB pathway was evident from an increase in phosphorylation of P50 and P65 at early 

time points in BEAS-2B cells after S. aureus exposure, accompanied by an increase of IL-33 and 

TSLP release. The novel TLR2 antagonist CU-CPT22 inhibited the phosphorylation of P50 and P65. 

Consequently, the expression of the downstream IL-33 and TSLP decreased in a dose-dependent 

manner. Thus, S. aureus can directly induce epithelial cell-derived cytokine release via binding to 

TLR2 and consecutively propagates type 2 cytokine expressions in CRSwNP tissue (Figure 1).  

 

 

 

 

 

 

Figure 1: Staphylococcus aureus induces Th2 responses via epithelial cell derived cytokines TSLP 

and IL-33 in a nasal ex vivo infection model. 
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C. Bachert first described IgE to S. aureus enterotoxins in CRSwNP and confirmed its role as a 

marker of severe inflammation in the upper and lower airways, supporting the role of S. aureus in 

CRSwNP tissue8. However, the current work for the first time studies direct effects of S. aureus on 

Th2 cytokine induction independent of enterotoxin activity. The defense mechanisms against S. 

aureus may be impaired in CRSwNP, with a high rate of alternatively activated macrophages in 

CRSwNP vs. healthy mucosa, not suited to phagocytize and kill S. aureus efficiently9. Products of 

S. aureus, specifically superantigens, induce Th2 cytokines in CRSwNP and healthy mucosal tissue; 

however, these products need to be in direct contact with the immune cells. Thus, the presence of S. 

aureus within the mucosal tissue of CRSwNP patients may lead to persistent inflammation, but it 

remains unclear whether S. aureus - extra- or intramucosally - actually can initiate type 2 disease. 

In addition, we here elaborate that S. aureus induces Th2 cytokines via epithelial cell derived 

cytokines after binding to the TLR2 receptor. IL-5 release was not totally blocked by TLR2 blockage, 

indicating that another production pathway via which S. aureus induces the epithelial cell derived 

cytokines to propagate Th2 cytokines could be involved and needs to be unraveled. From our 

findings listed above, more efficient therapeutic interventions like specific eradication of S. aureus, 

blocking TLR2 receptor expression, TSLPR and ST2L expression and using specific antibody 

neutralization of TSLP and IL-33 in CRSwNP are perspectives for the further investigations. 

 

Th2 biased upper airway inflammation is associated with an impaired response to viral 

infection with Herpes simplex virus 1   

Viral infections are known as the most frequent cause of acute rhinitis and asthma exacerbations in 

children and adults. A high frequency of human rhinovirus (HRV) was found in epithelial cells 

scraped from the middle nasal meatus of CRSwNP patients; natural and experimental rhinovirus 

infections have been well studied in the lower airways. However, little is known about the effect of 

viral infections in patients with chronic inflammatory disease such as CRSwNP. It is also reported 

that 8% (2/23) of human CRSwNP tissues may be infected with herpes simplex virus 1 (HSV1) at 

a given moment in time10. Moreover, the nasal mucosa is considered the primary site of herpes virus 
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replication. In Chapter 4, nasal tissues were infected with HSV1 for 24, 48 and 72h to study the 

post-infection immune response in CRSwNP tissue. We here demonstrate for the first time that the 

depth of mucosal invasion for HSV1 in CRSwNP tissue at 48 and 72h was significantly higher than 

that in IT mucosa. Simultaneously, CRSwNP mucosal tissue showed a significant deficit in IFN-γ 

and IL-17 release within 24 to 72h after HSV infection compared to healthy mucosa, at the same 

time releasing significantly higher levels of the pro-inflammatory cytokines IL-1β and TNF-α. 

These findings indicate that CRSwNP nasal tissue provides less antiviral activity and at the same 

time releases disease progressing factors, allowing HSV1 to penetrate and spread easier through 

CRSwNP tissues. With the viral infection, also S. aureus has been shown to intrude into the nasal 

mucosa; the virus here works as a “door opener” for a germ which can further stimulate and maintain 

type 2 inflammation11. This might be a crucial mechanism which allows S. aureus to reside 

intramucosally and grants an enormous advantage to this germ. We could confirm that CRSwNP 

mucosal tissue exerts a defective defense ability against HSV 1 in comparison with controls. 

Although a high prevalence of HSV1 is observed in upper airways, HRV is one of the most common 

viruses in human airways and is associated with the development and exacerbation of asthma12. 

HRV infections induce IL-33 production in vivo, which can further initiate type 2 cytokine release 

from Th2 cells or innate lymphoid type 2 (ILC2) cells13. Although HSV1 infections could not induce 

Th2 responses in CRSwNP tissue upon infection, the effect of HRV infections on CRSwNP disease 

and the relationship between HRV infection and Th2 responses clearly merits further investigations. 

 

Enhancement of Foxp3 in human airway regulatory T cells inhibits IL-5 release by regulating 

suppressor of cytokine signalling 3 in CRSwNP 

Two different inflammatory patterns have been described in CRSwNP: a Th2 bias or a mixed Th1 

and Th17 cell preponderance14. Regardless of the inflammatory profile in CRSwNP, a deficit in fork 

head box P3 (Foxp3)+ T regulatory (Treg) cells is observed in European and Chinese patients15. 

However, Foxp3 regulation in Tregs is poorly understood. In Chapter 6, we focused on the 

enhancement of Foxp3 expression in CRSwNP to alter T cell plasticity in CRSwNP.   

We started from an observation in nasal tissue showing that the levels of SOCS3 were 
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significantly higher in CRSwNP compared to controls. Moreover, the increased SOCS3 protein was 

predominantly located in inflammatory cells, epithelium, and glandular epithelium in the submucosa. 

Further immunofluorescence staining demonstrated the co-expression of SOCS3 and Foxp3 

proteins in Tregs from human nasal mucosal tissue. Although the role of SOCS3 protein in T cell 

differentiation and function is well established16, its role in Treg function is just being elucidated. 

In our SOCS3 RNAi experiments, abolishing SOCS3 expression in the nasal polyp tissue increased 

the levels of Foxp3. In addition, when overexpression of SOCS3 was achieved by transient 

transfection, Foxp3 levels were down-regulated. This SOCS3-based regulation may involve 

pSTAT3. The findings confirm our hypothesis that SOCS3 is able to regulate Foxp3 expression in 

CRSwNP, and we speculate on a possible therapeutic effect of silencing SOCS3 to increase the 

activity of Foxp3 regulatory T cells, which might then lead to a suppression of the inflammatory 

process. Thus, we measured Th1, Th2 and Th17 associated cytokines after silencing of SOCS3 in a 

RNAi experiment, and demonstrated that TNF-α, IL-5 and IL-17 decreased in CRSwNP tissue upon 

silencing SOCS3 expression. 

A deficit in Foxp3+ Treg cells is observed in European and Chinese patients15, thus restoration of 

the deficiency of Treg cells is regarded as a plausible strategy to modulate Th2 biased allergic airway 

disease. However, adoptive transfer of Treg cells does not provide satisfactory results as observed 

in an asthmatic mouse model when compared to induced Treg cells. In addition, a better 

understanding of Foxp3 regulation is useful for obtaining more iTreg cells in the periphery. In 

Chapter 6, we have elaborated that silencing SOCS3 increased the activity of Foxp3 regulatory T 

cells which then inhibited Th2 cytokine release in CRSwNP. This provides further perspective in 

the role of SOCS3 siRNA or other promising therapeutic technology targeting at SOCS3 expression 

in therapeutic interventions on the Th2 response in type 2 airway disease.  

General discussion: 

In this thesis, we have demonstrated that the presence of S. aureus in CRSwNP nasal mucosa 

provides the possibility to induce Th2 cytokines via epithelial the cell derived cytokines TSLP and 

IL-33, which may aggravate and maintain type 2 immune responses in CRSwNP tissue. CRSwNP 

furthermore shows a significant deficit in IFN-γ and IL-17 response, but in contrast releases 
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significantly higher amounts of pro-inflammatory cytokines IL-1β and TNF-α compared to healthy 

controls, and IL-10 upon virus HSV1 infection; CRSwNP tissue thus displays a deficit against viral 

infections, which may serve as a door opener for S. aureus and may allow this germ to invade into 

the nasal mucosa. In consequence, products of S. aureus can directly interact with local immune 

cells, with the potential to create a type 2 inflammatory environment with IgE production. The 

presence of IgE antibodies to S. aureus enterotoxins is a hallmark of disease severity not only in 

upper, but also lower airway disease. We here stress that apart from allergens, specific germs and 

viruses also may play a critical role in the induction of type 2 immune responses; those infectious 

agents are commonly associated with Th1 and Th17 responses. We assume that not one single event 

will be sufficient to initiate and certainly not to maintain Th2 inflammation, but rather that multiple 

hits are necessary over time, involving microbes, allergens and environmental factors (Figure 2), 

to create a persistent type 2 bias within the tissue. The impact of such events probably depends on 

the quantity of viruses and/or bacteria and the time course, e.g. high numbers of microbes may hit 

the airway mucosa during an acute infection, and low numbers may persistently exert pressure as 

colonizers, biofilm formers or intramucosal intruders. Furthermore, the immune status of the airway 

mucosa will make a difference, with a Th1/Th17 biased mucosa being more resistant to Th2 

response than an already Th2-biased inflammatory status. As we have discussed, these different T 

helper cell milieus may co-exist, and thus the balance among Th1, Th2, and Th17 responses may 

determine the course and speed of disease development. Finally, a Th2 response may establish itself 

within the mucosa, which leads to further negative effects; a Th2 bias induces an insufficiency to 

defend the mucosa against viral and bacterial infections, which further amplifies the inflammatory 

process.  
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 Figure 2. Multiple hits may initiate or maintain type 2 biased immune responses; SOCS3 offers a 

way to inhibit type 2 immune responses in airways. Low numbers of viruses and /or bacteria may 

persistently exert pressure as colonizers, biofilm formers or intra-mucosal intruders. High number of 

microbes may hit the airway mucosa during an acute infection and result in plenty of type 2 cytokine 

release. The balance among Th1, Th2, and Th17 responses, the status of the airway mucosa and the 

environment are also involved in Th2 biased immune response initiation or maintenance in the airways. 

The disturbed balance among Th1, Th2, and Th17 induced by microbial infections may be restored by 

Treg cells induced by SOCS3 silencing. HRV: human rhinovirus, HRSV: human respiratory syncytial 

virus, S. aureus: Staphylococcus aureus, Th: T help. Treg: regulatory T cell. SOCS3: suppressor of 

cytokine signaling 3. 

 

  Finally, we have elaborated that silencing SOCS3 increased the activity of Foxp3 regulatory T 

cells which then inhibit Th2 cytokine release in CRSwNP tissue. In addition, the further 

investigations to identify the suppressive function of Treg with SOCS3 silencing are also of interest. 

Regulatory T cells potentially suppress deleterious activities of effector T cells and maintain a state 

of tolerance against various stimuli such as bacteria and viruses in airway mucosa. The presence of 

S. aureus can induce Th2 cytokines in CRSwNP tissue. Therefore, we assume that enhancing the 

functions of Treg cell in CRSwNP tissue may be a potential approach to inhibit Th2 immune 

response induced by S. aureus. 
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