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Dankwoord

"Dit deel schrijf je typisch het laatst’, wordt er steeds gezegd. Dit terwijl het een
van de belangrijkste delen is, vooraan in het boek staat en vaak het eerste (en ook
het enige) deel is dat jullie lezen. Begrijp dan ook dat dit contradictorisch stukje
tekst perfect past als opener van een doctoraat: het diploma dat bewijst dat je zelf-
standig onderzoek kan doen maar dat geen mens op zijn eentje kan behalen.

De stap naar een doctoraat kwam eerder onverwacht. Na enkele teleurstellende
sollicitaties in mijn laatste masterjaar begon de twijfel wat toe te slaan. Is dit het
nu? Ik had mij bijna laten strikken door de beloftes van de HR-dienst van een
consultancy bedrijf in het Zaventemse. Mijn eerste dankwoord moet dan ook naar
mijn vader gaan, die mij overtuigde dat er andere dingen zijn in het leven dan in
eerste versnelling de ring van Brussel te verkennen. Veel van de ideeén in dit boek
zijn tot stand gekomen in de kleine 15000 km fietsgependel die ik ondertussen heb
afgewerkt en een goede vijf jaar later ben ik meer dan tevreden dat ik dat contract
niet getekend heb en ben ik trots en dankbaar dat ik dit dankwoord kan schrijven.

Alles begon toen ik op een verdwaalde namiddag professor Laermans aansprak
na de les. ’Professor, ik heb een vraag.’” - *Over dit laatste hoofdstuk?’-’Neen, ik
overweeg te doctoreren, kan dat bij jullie?” Laat ons over dit voorval enkel ont-
houden dat ik Eric in al de jaren nadien nooit meer zo verbaasd heb gezien en ik
je heel erg dankbaar ben dat ondanks mijn kort-door-de-bocht-vraag je me het e-
mailadres van Tom heb bezorgd en ik zo enkele maanden later aan dit boek begon.

Martine en Marlies, bedankt omdat jullie op mijn eerste werkdag zo vroeg op
het werk waren en mij vriendelijk ontvangen hebben. Die dagen was ik vaak nog
rond of voor 8 uur op het werk, iets wat de nieuwere garde misschien moeilijk kan
geloven. De eerste maanden op de ’techno-en-sumo’ bureau waren steeds gevuld
met plezier en bizarre avondactiviteiten, met als hoogtepunt het dragen van een
grote pot tomatensaus rond middernacht van Elizabeth doorheen Ledeberg naar de
Zuiderpoort. Bedankt voor het heerlijke eten, het plezier en de vele gesprekken
in de gang: Fré, Ivo, Bram, Mathieu, Minh, Domenico, Marlies, Eric, Elizabeth,
Simon, Sean, Krishnan, Selva.

Na een paar maanden werd er beslist om de “bioinformatica-bureau’ op te rich-
ten. Het was de start van ons kluizenaarsbestaan op de Zuiderpoort, waar de koffie
een verdieping en een gebouw verder te vinden was. Bedankt hier ook voor de



ii

leuke sfeer doorheen de jaren, de leuke maar eerder zeldzame conferentie samen
en de vriendschap. Bedankt Prashant (Mr. Sunshine), Carolina, Ine, Jimmy, Dries,
Yan, Jan, Mahdi, Pieter, Leen, Kathleen, Sergio, Giles, Assia, Dieter, Oil, Cle-
mens. Yan, thanks for having me as your neighbor for all those years, I know it
must have been hard. Jan, bedankt voor al je eerlijkheid. Lieven, bedankt voor
de occasionele pint doorheen de jaren en de vele goede raad, vaak verpakt met de
nodige dosis zelfspot. Ine, sorry voor al die keren dat ik uw bureau binnenwan-
delde en domme vragen stelde. Mahdi, my dear friend, you are a true ’zan zazil’,
never change. Pieter, bedankt voor zowel de serieuze als minder serieuze babbels
die er vaak voor zorgden dat ik te laat thuis was. Dries, volgende week is het aan
u hé! Tk gun het u van harte. Dieter, we zien elkaar te weinig en dat is echt een un-
derstatement, bedankt om bij de schaakclub te introduceren en de vele filosofische
gesprekken de voorbije jaren. Leen, je verdient een meer dan extra bedankje voor
je onmisbare steun doorheen de jaren en om mijn vele gezaag en flauwe humor te
tolereren.

Ongeveer halverwege dit boek kwam ook het Dambi-research team aan het VIB
tot stand. Alhoewel mijn contributies aan het labo met de jaren enkel afnamen wa-
ren de vrijdagnamiddagmeetings erg interessant en zijn de samenwerkingen met
en via het VIB essentieel geweest voor dit werk. Bedankt Pieter, Isaac, Joris, Ro-
brecht, Sofie, Sarah, Sophie, Wouter, Liesbet, Arne, Paco en Yvan.

Af en toe werd er in een enthousiaste bui ook nog eens aan sport gedaan na de
uren. Mens sana in corpere sano. Aan de badmintonners: Arun, Mahdi, Leen,
Giles, Annelies en Dries bedankt om mij te doen beseffen dat ik goed ben in bad-
minton. Aan de badmintonners Sofie en Bram, bedankt om mij te doen beseffen
dat ik er niets van kan. Aan het Lachgas-voetbalteam, bedankt voor al de keren dat
we niet met 15-2 verloren zijn. Aan de lopers, bedankt om mij te overtuigen dat
mijn knie ooit wel eens ging ophouden met protesteren en mij verder te pushen.
Aan mijn tennisladies Lien, Liesbeth en Eugenie en trainer Guido, na een zware
week was eens goed op een bal slaan vaak de ideale start om aan het weekend te
beginnen.

Aan de occasionele quizteamleden wiens cultuurkennis perfect complementair is
met mijn "embarassing to know’-kennis. Bedankt Eric, Cedric en Dimitri voor ons
gloriemoment op de EOS-quiz en bedankt ook Mario en Bart voor onze deelna-
mes aan de VTK-Quiz. Verder werd er zo heel af en toe eens een IBCN of IBCN+
of IDLab quiz georganiseerd. Bedankt aan iedereen die doorheen de jaren heeft
meegeholpen en bedankt voor de lunchmeetings met al de nodige humor. Met een
speciale vermelding voor de core-leden doorheen de jaren Sofie, Marlies, Jelle,
Leen, Giles en Eric. Op naar een geslaagde volgende editie volgende week.

Aan mijn collega’s van het Reslab die de machine learning labo’s en/of de NIPS-
conferentie en de bijhorende vliegtuigvertragingen een pak aangenamer maakten,
bedankt: Sander, Aaron, Philemon, Ira, Jeroen, Pieter-Jan, Michiel.
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Laten we eerlijk zijn, zonder een sterk A-team en de adminstratieve staff die we
hebben, zouden we hulpeloos verloren zijn. Het werk dat onze finances, het secre-
tariaat en het A-team verzet om alles te laten draaien verdient een uitzonderlijke
bedanking. Martine, bedankt in het bijzonder voor het occasionele gesprek over
de (klein)kinderen of over zaken rond ’gezond verstand’.

’Af en toe’ werd er ook nog eens aan projectwerk gedaan de laatste jaren. Dirk,
niet alleen bedankt om mij dit werk te bezorgen maar ook voor onze samenwerking
en jouw raad de laatste jaren. Ik heb zelden iemand zo kalm weten te zijn onder
de druk van deadlines en projectproblemen, ik probeer het nog te leren. Aan de
andere personen die veel en soms last-minute werk doen om samen met mij de pro-
jecten in een goede baan te leiden: bedankt Femke voor onze thesisstudenten, de
’LoS’-studies samen, het gedeelde leed tijdens de imec-overgang en je aansteke-
lijk enthousiasme over mijn dochter. Bedankt ook, andere-maar-even-belangrijke
Femke voor je continue en recht-door-zee aanmoedigingen om mijn doctoraat af
te werken. Bedankt ook Johan, Filip en Gilles voor onze samenwerking rond de
data van het UZ. Bedankt Chris, Nasrin, Leen en Jelle voor onze NILM samen-
werking. Bedankt o.a. TomVS voor al het werk rond slaap-apneu. Diego, voor
het werk rond de actieve ventilatie. Roberto, ’grazie mille’, voor alle overige pro-
jecten, echt bedankt, zonder jouw inzet was dit doctoraat enkele maanden later af
geraakt.

Aan mijn nieuwe SUMO-bureau vol enthousiaste ’jongeren’ in ons sprankelend
nieuw iGent gebouw. De sfeer en kruisbestuiving in het SUMO-lab piekt. Het is
aangenaam om te kunnen lachen met onze groeipijnen. Ik hoop oprecht dat jullie
allen binnen enkele jaren hier vooraan staan te prediken en ik hoop hierbij te kun-
nen helpen. Bedankt Diego, Nicolas, Ivo, Kyle, Leen, Arun, Yinghao, Joachim,
Ivo en Roberto. Joachim, bedankt voor mijn meest efficiénte samenwerking in een
papiersubmissie ooit en ik zal je missen als je bureau de komende maanden steeds
leger zal worden. Ook al heb ik het gevoel dat we niet zo eenvoudig van je zul-
len afraken en dat is maar goed ook. Elias, Thijs, Thomas, Lucas, Matthias, Bert,
Sander, Aza, Anna, Stijn en Andy jullie passen niet echt in een of andere bureau
of voorgaande opsomming maar horen wel thuis in dit dankwoord voor jullie hulp
of de occasionele babbel tijdens de lunch, net zoals de vele collegae die ik onge-
twijfeld vergeten ben hier op te sommen.

Aan mijn burgievriendjes die even gek waren als mij om ook aan een doctoraat te
beginnen en mij als halve-burgie hebben aanvaard de voorbije jaren. We spreken
niet zoveel af, maar het is het altijd gezellig en het delen van de thesispijntjes heb-
ben er zeker voor gezorgd dat dit boek uiteindelijk vorm kreeg. Dus ook bedankt
mede-doctors: Karel, Maarten, Annelies, Jonathan, David en Sofie. Maarten, ik
mis onze namiddagkoffie of in jouw geval choco meer dan je denkt en kijk van
harte uit naar het moment wanneer je ons rijtje PhDs zal vervolledigen.
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To my dearest Canadian friend, Pat Berger, thanks for all laughs we had throug-
hout the years. Although an ocean separates us, you’re the big brother I never had.

Aan mijn allerbeste vrienden uit het Zottegemse en omstreken: Kevin, Ann-Sofie,
Frik, Niels, Saskia, Wouter, Koen en Sim. Na lang denken vraag ik mij nog steeds
af waarom ik jullie zou moeten bedanken na alle kwalijke opmerkingen over mijn
belastingvrije profiteursbestaan. Goede vrienden zijn echter zeldzaam en dit doc-
toraat heeft er vaak voor gezorgd dat ik niet eens een pint kon meepakken. Bij
deze dus toch bedankt.

Aan de leden van mijn doctoraatsjury, bedankt om mijn werk zo in detail te willen
doornemen, voor jullie opmerkingen in de leesverslagen en onze discussie tijdens
de interne verdediging. Er kruipt heel veel tijd in en ik weet dat het voor zo’n
zaken vaak de vrije tijd is die sneuvelt. Ik apprecieer het echt. Aan mijn promo-
toren Tom en Yvan ben ik uiteraard veel dank verschuldigd. Yvan, het was niet
altijd eenvoudig de laatste jaren om mij te begeleiden aangezien ik maar zelden
tijd vond om af te reizen naar het VIB of vorderingen te maken aan mijn doctoraat
door ander projectwerk. Bedankt voor de vele keren dat je mij met het nodige
geduld op gang hebt gezet in de beginjaren en omdat je ondanks het opzetten van
je eigen groep toch steeds tijd vond voor mij. Het was steeds aangenaam om met
je samen te werken. Tom, bedankt voor je vele vertrouwen in mij sinds het prille
begin. Mijn onderwerp sloot minder aan bij de rest van de groep, dus het was alles
behalve makkelijk voor jou om de koers samen uit te zetten maar toch is het tot
een goed einde gekomen. Bedankt ook voor de zelfstandigheid die je me steeds
gaf in de lesopdrachten, ik heb er steeds ten volle van genoten. Toen vorig jaar de
start van Siggy iets moeilijker was dan verwacht ben ik overspoeld geweest door
oprecht medeleven, steun en begrip van velen op het werk, niet het minst vanwege
jou. Bedankt.

Aan mijn familie en schoonfamilie ben ik ook veel dank verschuldigd voor de
steun de voorbije jaren. In het bijzonder aan mijn ouders ben ik te veel dank
verschuldigd om hier te kunnen neerschrijven of om ooit te kunnen teruggeven.
Vergeef het me dan ook dat ik het hier kort hou en onthoud van dit hele boek
misschien enkel dat jullie mijn grootste inspiratie zijn en zullen blijven. Liefste
mama, ik maak veel te weinig tijd voor jou en dat ondanks al jouw tijd die je mij
hebt geschonken. Liefste papa, als er een iemand is wiens goed advies zelfs mijn
koppigheid doet wankelen is het die van jou, weet dat ik het meer waardeer dan ik
soms laat blijken.

Mijn allerliefste Do’tje, toen ik jou leerde kennen had ik geen idee dat in dit kleine,
nogal bedeesde meisje zo’n sterke vrouw zou schuilen. In die enkele jaren zijn er
niet enkel een paar doctoraten afgewerkt maar is er ook nog eens een huisje, tuintje
en kindje bij gekomen. Ik weet niet waar je de energie en tijd soms vandaan haalt
maar zonder jou te leren kennen zou ik nog niet de helft zijn van wie ik nu ben.
Bedankt voor alles dat je doet, voor alles wie je bent en om mij na al die jaren



nog steeds niet beu te zijn. Ik hoop dat we na enkele momenten van tegenslag de
voorbije jaren, die pagina’s tezamen met onze boeken kunnen omslaan en opnieuw
leren genieten van alles.

Als laatste is er nog een klein meisje met de allerbeste mama in de wereld die
niet kan ontbreken in dit boek. Siggy, mijn lieve dochter, ik heb al meer van jou
geleerd dan jij van mij ooit zal leren. Jouw dapperheid, vrolijkheid en eerlijkheid
zijn wijsheden die niet in een boek kunnen neergeschreven worden. Papa ziet je
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rank which these edges received in the E-SVM prediction. True
positive links are indicated as green squares. Although the AU-
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and VICE VEISA. . . . . . ..o

Boxplots showing the ability to predict the correct direction-
ality of a true positive link. For all predictions we counted the
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opposite link b — a, proportional to the total number of links in the
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Samenvatting
— Summary in Dutch —

’Data is het nieuwe goud’, is een recent en sterk geloof dat momenteel zowel in de
industrie als in de academische wereld heerst. Traditioneel wordt het omzetten van
data in bruikbare informatie of kennis als een strikt menselijke taak beschouwd. De
opkomst van computers heeft er onmiskenbaar voor gezorgd dat grotere hoeveel-
heden en vooral ook complexere data kan verwerkt worden. Het is echter zo dat
computers in dit proces nog steeds de rol opnemen van een stuk gereedschap in de
handen van een intelligente gebruiker. Die dient zeer nauwlettend stap voor stap
instructies te geven aan de machine om tot een bepaald eindresultaat te komen.
Deze rollenverdeling beperkt ten zeerste de mogelijkheden om bepaalde proble-
men op te lossen in situaties waar het opstellen van een dergelijke stappenplan niet
mogelijk is. Zo is het duidelijk dat vele taken die een zekere vorm van intelligentie
vergen, zoals bijvoorbeeld autorijden, ons niet aangeleerd werden in de vorm van
een set van instructies maar door het aanbieden van voorbeeldsituaties en oefening.
Bij uitbreiding, indien we willen meer kennis uit data halen of deze gebruiken om
complexere taken uit te voeren, dient er een zekere vorm van (artificiéle) intelli-
gentie toegevoegd te worden aan de machine of computer. Machinaal leren is een
vakgebied dat onderzoekt hoe we machines of computers kunnen aanleren om be-
paalde taken uit te voeren aan de hand van data en voorbeelden zonder dat we deze
expliciet hoeven te programmeren. Recente doorbraken en succesverhalen in ma-
chinaal leren hebben voor een positieve terugkoppeling gezorgd waarbij meer data
wordt verzameld en opgeslagen zonder een specifiek doel voor ogen te hebben.
Deze data wordt pas nadien met behulp van algoritmes automatisch geanalyseerd
op potentieel waardevolle inzichten. In deze scriptie gebruiken we machinaal leren
om meer kennis te verwerven over de interactie tussen biologische entiteiten die
aanwezig zijn in de cel.

Leven op aarde bestaat uit een immens complexe samenhang van verschillende
sterk connecteerde systemen. Om verdere inzichten te verwerven in biologische
processen is het vaak niet mogelijk om bepaalde bouwblokken geisoleerd van hun
omgeving te bestuderen maar zijn een meer globale modellering en aanpak nodig
die zoveel mogelijk context in rekening brengt. Elke cel van een levend organisme
functioneert op basis van de informatie die bevat zit in een genoom dat beschre-
ven staat in DNA. Bepaalde regionen in het DNA, die we genen noemen, dienen
als basis in een proces dat uiteindelijk leidt tot de productie van eiwitten die ver-
antwoordelijk zijn voor uitvoeren van het gros van de taken in een organisme.
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Aangezien elke cel hetzelfde DNA bevat zijn veranderingen in genexpressie de
drijvende kracht die ervoor zorgt dat cellen zich differenti€ren en kunnen reage-
ren op externe factoren. Een van de belangrijkste systemen die cellen gebruiken
om genexpressie aan te passen noemen we transcriptionele regulatie. In dit proces
regelen specifieke eiwitten, genaamd transcriptiefactoren, de hoeveelheden afge-
schreven DNA via aan-of juist athechting op de promotoren van de juiste genen
op het juiste moment. Binnen de biochemie werden bepaalde laboratoriumtech-
nieken ontwikkeld die de expressie van quasi alle actieve genen tegelijk kunnen
meten op een bepaald moment in de tijd. Deze momentopnames zijn uitgegroeid
tot een cruciale informatiebron binnen de systeemsbiologie en worden in de prak-
tijk uitgevoerd door technologieén zoals microarrays of RNA-Seq. De overgrote
meerderheid van dit soort genexpressiemetingen wordt gebruikt in vergelijkende
studies met een specifiek doel voor ogen waarbij de relatieve veranderingen in
expressie onderzocht worden in verschillende condities of op verschillende tijd-
stippen. De huidige transitie van hoe met data wordt omgegaan kan ook toegepast
worden in het kader van genexpressiemetingen. Zo is het aannemelijk dat collec-
ties van zulke momentopnames meer dan alleen het antwoord verbergen dan op
de originele vraag waarvoor het experiment is opgesteld. Meer concreet zijn al-
goritmes beschreven die collecties van genexpressiemetingen als invoer nemen en
trachten regulerende effecten tussen genen te ontdekken. Vaak wordt het resultaat
van dit soort methodes in de vorm van netwerken gevisualiseerd. Dit soort type
methodes moeten kunnen omgaan met het uitdagende kader dat het aantal metin-
gen beperkt is ten opzichte van het aantal genen dat gemeten wordt. Deze scriptie
zal technieken uit machinaal leren onderzoeken om dergelijke kennis in de vorm
van netwerken uit genexpressiemetingen te extraheren.

In een eerste deel van deze scriptie stellen we een algemene structuur voor ge-
bruik makende van technieken uit machinaal leren om netwerken van genregulatie
op te stellen. In dit soort type netwerken heeft een bepaald gen A een uitgaande
connectie naar een ander gen B, indien A een regulerend effect heeft op het af-
schrijven van gen B. Onze voorgestelde structuur is een veralgemening van het
succesvolle GENIE3 algoritme dat voorstelt om het netwerkinferentieprobleem
op te splitsen in verschillende regressiemodellen. In elk regressiemodel worden
de expressiewaarden van ieder gen om beurt voorspeld aan de hand van de ex-
pressiewaarden van alle andere potenti€le regulatoren. Deze regressieproblemen
worden gemodelleerd met behulp van ensembles bestaande uit beslissingsbomen
en voor elke predictor wordt ingeschat hoeveel deze bijdraagt aan het regressiemo-
del. Deze inschatting wordt nadien beschouwd als indicatie dat er een regulerend
effect bestaat tussen dit gen en het gen dat werd gemodelleerd. We veralgemenen
GENIE3 door een bemonsteringstechniek voor te stellen die elk algoritme dat een
dergelijke inschatting van zijn voorspellende variabelen kan maken, transformeert
naar een ensemblemethode. We tonen aan dat ensemblemethodes de sleutel tot
succes zijn in het netwerkinferentieprobleem. Bijkomend stellen we ook voor om
de voorspellingen van meerdere zulke algoritmen samen te nemen om tot een meer
accurate voorspelling te bekomen.

In een tweede luik stellen we een nieuw algoritme, Netter, voor. Netter is
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een naverwerkingsalgoritme dat voorspellingen van netwerkinferentiealgoritmen
verder verfijnt door gebruik te maken van graphlets en verscheidene andere eigen-
schappen die netwerken kunnen beschrijven. Veelvoorkomende strategieén die
netwerkinferentiealgoritmen hanteren zijn enerzijds het gebruik maken van paars-
gewijze metrieken tussen genen en anderzijds het opsplitsen van het probleem in
onafthankelijke regressieproblemen. Beide methoden laten na het algoritme de spe-
cifieke doelstelling mee te geven om een globaal netwerk op te stellen, waardoor
de voorspelling vaak een biologisch onrealistische structuur aanneemt. Netter is
een flexibel algoritme dat kan gebruikt worden tezamen met elke methode die een
rangschikking van potentiéle genregulatorische verbanden kan opstellen. Boven-
dien kan Netter zowel generieke eigenschappen gebruiken, als eenvoudig aange-
past worden om specifieke domeinkennis te includeren. We verfijnen de voorspel-
lingen van zes verschillende netwerkinferentiemethodes op basis van drie eenvou-
dige netwerkeigenschappen en tonen aan dat Netter in staat is om de voorspel-
lingen te verbeteren op zowel kunstmatig gegenereerde data als op referentiedata.
Tenslotte tonen we ook aan dat Netter robuust is ten opzichte van de parameter-
instellingen, beter presteert dan andere naverwekingsalgoritmen en als bijkomend
voordeel heeft dat het ook op voorspellingen kan toegepast worden die niet geba-
seerd zijn op paarsgewijze metrieken.

Als derde contributie aan dit werk passen we ook onze ontwikkelde algorit-
men toe in de praktijk. Concreet verwerken we een collectie van microarray-
experimenten die gegenereerd zijn de context van een grote internationale samen-
werking die processen in immuuncellen in kaart brengt. Gebruik makend van deze
data stellen we netwerken op voor verschillende celtypes. We bieden deze netwer-
ken aan als hulpbron voor verdere analyses en hebben hiervoor een website ont-
wikkeld die toestaat de voorspelde interacties te visualiseren. Verder analyseren
we twee specifieke delen van de opgestelde netwerken meer in detail. We tonen in
een eerste deel aan dat onze opgestelde netwerken verschillende connecties tussen
genen voorstellen die bekend zijn in de literatuur als betrokken bij de differentiatie
en normale functie van Interleukin-17-producing helper T (TH17) cellen. In een
tweede deel bespreken we genen die een rol spelen in de unfolded protein response
(UPR), een uiterst geconserveerde cascade die geactiveerd wordt bij stresscondi-
ties in het endoplasmatisch reticulum. Recent is aangetoond dat deze cascade ook
een belangrijke functie vervult in immuunreacties van de cel. We tonen aan dat
verscheidene verbanden tussen genen in onze afgeleide netwerken ook beschreven
staan in de wetenschappelijke literatuur. We bespreken de resultaten van additio-
nele experimenten in het labo die zijn opgesteld om nieuwe interacties te valideren
voorspeld door onze netwerken.

In de appendices van dit werk, bespreken we toepassingen van machinaal le-
ren die gebruik maken van data afkomstig van patiénten opgenomen op de dienst
intensieve zorgen van het UZ Gent. In een eerste studie stellen we een nieuwe
methode voor die gebruikt maakt van Random Survival Forests voor om de be-
zettingsgraad van het aantal bedden in de dienst intensieve zorgen te voorspellen.
In een tweede studie, bespreken we het potentieel van long short-term memory
neurale netwerken om eerste signalen van sepsis te voorspellen.






Summary

There is a recent and strong belief in both industry and academia that data is the
new gold. Traditionally, turning data into information or knowledge has been an
exclusively human task. Although computers have substantially increased our ca-
pabilities to handle larger amounts and more complex data, they have always re-
mained the tool in this process, firmly placed in the hands of the intelligent human.
This paradigm severely limits the possibilities to extract information or solve prob-
lems in a setting where it is not clear how a computer should process the data.
Many tasks that we consider to be results of intelligent behavior are not learned by
following a clear set of instructions but by learning from examples. For example,
learning how to drive a car in traffic cannot be learned by reading the instruction
manual but requires practice to provide example situations to learn from. Simi-
larly, if we wish to extract more knowledge from data or use this data to perform
more complex tasks, artificial intelligence needs to become a core part of the ma-
chine or computer. Machine learning investigates how computers or machines can
perform tasks by learning from data without the need to be explicitly programmed.
Recent successes and advances in machine learning have caused a strong reinforc-
ing loop in which more data is being gathered without a specific goal in mind and
is subsequently *mined for gold’. In this dissertation, we apply machine learning
techniques in order to gain knowledge about relations between biological entities
in the cell.

Life is a tremendously complex system consisting of a large number of inter-
connected actors. In order to further understand biological processes, it is often
not possible to pick individual blocks and investigate these in isolation. Instead,
the system should be considered, modeled and researched with as much context as
possible. Inside each cell, DNA acts as a blueprint containing all necessary infor-
mation to construct and maintain the organism. Certain regions of the DNA, called
genes, can be expressed into proteins, which perform the vast number of functions
in the body. As each cell in an organism contains the same DNA, changes in gene
expression are the driving factor in cell differentiation and a key system to respond
to external factors. One of the major mechanisms cells use to influence gene ex-
pression is transcriptional regulation. In this process, certain proteins called tran-
scription factors work in a combinatorial fashion to tune the amount of produced
RNA through various mechanisms.

In biochemistry, wet lab techniques have been developed which can measure
genome-wide the expression of genes at a certain moment in time. These snap-
shots of gene activity have proven to be indispensable tools in systems biology.
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A large fraction of these gene expression measurements, using techniques such as
microarrays or RNA-Seq, have been performed in a context where relative changes
in expression due to certain perturbations, conditions or time aspects are investi-
gated with a specific hypothesis or goal in mind.

Similarly to the paradigm shift described earlier, we can also consider such
collections of genome-wide snapshots as general data, hiding a potential wealth of
knowledge unrelated to the original purpose. In particular, algorithms have been
described that use collections of gene expression snapshots to deduce transcrip-
tional or other regulating effects between genes and present these results in the
form of networks. These algorithms have to work in a an extremely challenging
setting, as the number of genes that are being measured by far exceeds the amount
of data points that are available. This work will discuss the use of machine learn-
ing methods to infer knowledge in the form of networks from gene expression
measurements.

In a first part of this dissertation, we propose a general framework using ma-
chine learning techniques to infer gene regulatory networks. In these networks,
a gene A has an outgoing edge to a gene B, if gene A through its gene products
causes a (direct) effect on the transcription rate of gene B. Our framework gen-
eralizes the successful method GENIE3 which decomposes the network inference
task into separate regression problems. For each gene in the network the expres-
sion values of a particular target gene are predicted using all other genes as possible
predictors. Next, using tree-based ensemble methods, an importance measure for
each predictor gene is calculated with respect to the target gene and a high feature
importance is considered as putative evidence of a regulatory link existing between
both genes. We generalize GENIE3 by proposing a subsampling approach which
allows any feature selection algorithm that produces a feature ranking to be cast
into an ensemble feature importance algorithm. We demonstrate that the ensemble
setting is key to the network inference task, as only ensemble variants achieve top
performance. In addition, we explore the effect of using rankwise averaged pre-
dictions of multiple ensemble algorithms as opposed to only one. We name this
approach NIMEFI (Network Inference using Multiple Ensemble Feature Impor-
tance algorithms) and show that this approach outperforms all individual methods
in general, although on a specific network a single method can perform better.

In a second part of this thesis, we propose a post-processing algorithm for gene
regulatory network predictions, *Netter’, which uses graphlets and several other
graph-invariant properties to transform the network into a more accurate predic-
tion. Common inference strategies of GRN inference algorithms include the cal-
culation of local pairwise measures between genes or the transformation of the
problem into independent regression subproblems to derive connections between
genes. Using such schemes, the algorithm is unaware that the goal is to infer an
actual network topology and the global network structure cannot influence the in-
ference process. Netter is a flexible system which can be applied in unison with any
method producing a ranking from omics data and can be tailored to specific prior
knowledge by expert users or applied in general uses cases. We re-rank predic-
tions of six different state-of-the-art algorithms using three simple network prop-
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erties as optimization criteria and show that Netter can improve the predictions
made on both artificially generated data as well as commonly used benchmark
data. Furthermore, Netter compares favorably to other post-processing algorithms
and is not restricted to correlation-like predictions. Lastly, we demonstrate that the
performance increase is robust for a wide range of parameter settings.

Thirdly, we also apply our gene regulatory network inference algorithms on
a practical use case. More specifically, we collected and processed a large com-
pendium of microarrays gathered in the context of an large international immu-
nological cell project named ImmGem. From this data, we inferred networks for
eight different different celltypes and one network inferred which was derived from
the entire gene expression dataset. We provide these networks to the community,
including a web-interface to quickly browse the inferred connections. We zoom in
on two parts of the networks and analyze them in detail. First, we show that our
inferred networks unravel several known connections between genes in the con-
text of the differentiation and inner working of Interleukin-17-producing helper
T (TH17) cells. In a second use case, we discuss connections associated with
the unfolded protein response, a highly conserved pathway activated by the accu-
mulation of unfolded proteins in the endoplasmic reticulum which aims to restore
normal function. Recently it has been shown that this signaling pathway also plays
a vital role in immunological responses. We show that our networks are able to
identify several known connections by comparing versus literature. In addition, we
perform wet-lab experiments in which we activate the UPR in vitro to potentially
validate novel unknown interactions between genes in this setting.

In the appendices of this work, we also briefly discuss machine learning ap-
plications using data from critically ill patients admitted to the intensive care unit
(ICU) of the Ghent University Hospital. In a first study, we propose a novel method
using Random Survival Forests to predict the occupancy of the ICU over time. In
a second study, we discuss the potential of using long short-term memory neural
networks for the early detection of sepsis.






“Computers are like Old Testament gods;
lots of rules and no mercy.”

— Joseph Campbell

Introduction

This first chapter serves to situate and motivate the conducted research. It will
first introduce the key concepts and context from an historical, societal and non-
technical point of view. Next, it summarizes the main challenges and contributions
of this thesis and the further outline. Finally, an overview of the publications that
were authored during this research period is listed.

1.1 Research context

This thesis is about how to let machines turn data into information and why that is
important.

This might seem like an overly compressed summary of this book. However,
bear with me for a couple of paragraphs before things become technical and stay
this way. Let me first define the concept of information. Information is anything
that answers one or more questions. Without the proper questions, just like an
answer, information cannot exist. Now, what is data? Data is anything which
could be interpreted or transformed to become information. If you are reading
this sentence, you are transforming the sequence of characters on this page, the
data, into information. At this very moment, this information is answering the
question of what you will find in this book. Traditionally, information has always
been considered as one of the most valuable assets in industry and life, yet also
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the most intangible. Data however, as per definition, is useless if no information
can be extracted from it. Consider the following example: the well-guarded secret
recipe of Coca-Cola, empowering the belief that the original drink is superior to
all competitors. This piece of information, even though it might not even exist, has
been vital in promoting the drink and its billion dollar success. On the contrary,
’data’ related to the piece of information, namely the resulting drink, is sold for
cheap in every shop around the world. A way, or in this case, the lack of a way to
go from the data towards the information, is creating a substantial economic value.

More related to this work, about twenty-five years ago the World Wide Web
was created by Tim Berners-Lee and Robert Cailliau. Back then, it was an efficient
information space. In a rapid fashion more websites started to appear, eventually
reaching over a billion different websites in 2014. The World Web Web rapidly
transformed from an information space to a data space. If you do not know which
address to type or where to look, no information can be extracted from the data.
Google started approximately 20 years ago from a small research project of two
students and now became the conglomerate AlphaBet Inc. which reported a rev-
enue of over 90 billion US dollar in 2016. A large part of this success was only
possible due to the very foundations which started this all: a search index turning
data into information and most importantly presented in a simple way. I hope these
examples were able to convince you that information is vital, data is useless and
as a result, extracting information from data means generating value.

1.1.1 Machine learning

Despite this economic potential, traditionally, turning data into information has al-
ways been considered a strictly human task. Since the invention of writing, data
was generated in such a way that humans could transform it, often in a labor in-
tensive fashion. In addition, children and adults have to be taught in schools for
several decades in order to master this process.

With the advent of computers, humans were able to process more and differ-
ent types of data. However the information extraction paradigm did not change.
Humans are merely using the computers, giving explicit instructions what to do.
All information flowing in and out has be tailored to the human brain. Imagine
two powerful reasoning systems, the human brain and a computer, forced to bot-
tleneck in communication by a system which does not come naturally to either
of them. It is no surprise this comes at a huge cost: the existence of problems
which can be solved by humans but cannot be solved by computers. Often we
describe such problems as things that require ’intelligence’. In the last years it
has however become more clear that these limitations are often byproducts of the
linguistic bottleneck of having to program a computer and tell it how to solve the
problem.
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A recent example of a computer program which was created (partially) by cir-
cumventing this bottleneck is AlphaGo [1]. It specializes in playing the board
game Go which was long considered to be safe from computer domination as
the amount of possible options presented to players exceeds the number of vis-
ible atoms in the universe. While (early) chess computers could still win from
humans by efficiently searching and evaluating every option by relying on rapid
calculations, this is much less the case in a game of Go. Lee Sobol, 18-time world
champion, was surprisingly defeated 4-1 in a match in 2016 by AlphaGo. The
computer program generated the knowledge to play by ’learning’ from a database
of 30 million moves made in actual matches of Go between humans players. Next,
it continued to ’learn’ by playing additional matches versus variants of itself. Cre-
ating information (in this case: how to play and win at Go) by explicitly giving data
in the form of examples is called machine learning. Machine learning evolved and
is closely related to artificial intelligence because the machine or computer seem-
ingly intelligently learns to perform the requested task without explicit instruc-
tions. Therefore, the term learning is often used as a substitute for constructing
or modeling. A more traditional definition of machine learning would then be the
field which explores algorithms that can learn from data without the need to be
explicitly programmed.

Let us consider a much more simple problem which machine learning can
solve: programming a computer to turn handwritten digits into the information
they present: the digit [2]. Around 500 million traditional letters and packages are
sent in the U.S.A. on an average day. In a first step, the modal addressee of such
a letter is not identified by a bar code but by a traditional (handwritten) piece of
data called the postal code. Therefore, if we wish to avoid having people reading
millions of postal codes and sorting the letters in the right box at the postal office
every day (which we really should), we need to program a computer how to read
handwritten digits. It turns out this is not an easy task to do.

Have a look at the following picture (Figure 1.1) and ask yourself the question:
how would you describe the digit 1 to an intelligent person who is not familiar
with Arabic digits. A small line going diagonally from the middle to the top right
corner, followed by a longer straight line going from top to bottom? It turns out
that terms like *small” and ’longer’ are complicated concepts in the language which
we speak to computers. In addition, digits might appear slightly rotated on the
letter. Some people might not bother to put the first small line and still it would be
considered a 1, which is not the case if you omit the second line. Furthermore, if
you place the first line in a more horizontal way and the second slightly rotated, the
digit suddenly becomes a 7. To avoid confusion some people like to add an extra
small line crossing the big line in the center, but others do not. This arbitrary and
complicated set of rules to interpret digits seems to contradict with the fact that
we consider it to be a simple task. This contradiction is solved by realizing that in
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reality digits are not taught this way, but instead we would show the person how
every digit looks like and for each example we provide we tell the person: this is a
0, this is a 1, etc. As the person sees more and more examples, he will eventually
know how an average digit looks like, which variations are tolerated and ironically,
create a new variant which we refer to as the person’s handwriting. Similarly,
with machine learning we show the algorithm many pictures of handwritten digits
and add a label representing the digit to each of them. After the learning phase,
the computer program could identify new pictures or generate new examples of
handwritten digits if requested.

0000000080000 CD
P20 Y T - S SV [ A B A B A
Arz2laczplzzz2Jd
3333333313333 3
H¥M Y +Q¢ddH Y44
S5 Fs sy CISss85Ss585y
666 L66LLGEH6CEE
77F%1277 17217777
FLEB 9857888 TETQS
2597993778949 177
Figure 1.1: Examples of handwritten digits in the MNIST dataset. [2]

The true potential of machine learning techniques becomes clear when they are
applied to problems for which no human solution is known or possible. In this set-
ting, they can automatically mine insights from data. Indeed, the same concept of
learning from provided data can equally be applied to problems for which the con-
nections in the data are unknown. Three categories of machine learning techniques
are usually defined. Supervised learning concerns algorithms which can automati-
cally learn to map specific inputs to a desired output label. In case of a continuous
output value, this is called regression modeling. In classification problems, the
labels are categorical. In both settings, the data examples to learn from need to
contain labels. Unsupervised learning are machine learning algorithms which can
find structure and connections in the data in case no labels are available. A well
known example are clustering techniques. Reinforcement learning algorithms aim
to learn a computer program which can interact with the environment to perform
a certain goal by providing rewards or by punishing the program while it explores
solutions.
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1.1.2 The Data Science age

Pioneering machine learning techniques already appeared in the early 50s but es-
pecially during the past five years concepts like machine learning and data science
have seen a rapid gain in interest in both industry and in the academic world. To il-
lustrate, the course machine learning at this faculty was only organized for the first
time in 2010. The Neural Information Processing Systems (NIPS) conference, the
largest machine learning conference in the world, hosted around 1200 people in
the 2012 edition, but close to 6000 attended in 2016. What is causing this sudden
and substantial increase in interest for machine learning and artificial intelligence?

A first and the most important reason is the evolution of the *'machine’ in ma-
chine learning. Traditional algorithms were designed to run as a single core pro-
gram on a traditional computer, but this is no longer the case. For example, high
volume storage clusters are now available giving way to new machine learning
frameworks and algorithms which specialize in extracting information from ex-
tremely large data sets. This gave way to the emergent field of Big Data’ anal-
ysis [3]. Machine learning frameworks such as Mahout [4] specifically extend
technologies such as the Hadoop ecosystem [5] to perform machine learning anal-
ysis on such data. Similarly, the use of Graphics Processing Units (GPUs) have
revolutionized how (deep) neural network architectures can be constructed and
trained. The field Deep Learning [6] is arguably the key factor in the current ma-
chine learning hype. By adding multiple hidden layers to the neural network in a
well chosen way, the neural network can extract and learn discriminative features
from the data to be used later in the classifier. In contrast, traditional techniques
require a feature engineering step in which the domain expert creates this feature
set which the classifier then learns to combine in order to make predictions. Deep
Learning has crushed all records and competition in tasks such as image recogni-
tion during the past years and is considered to be one of the greatest breakthroughs
in machine learning. GPUs specifically designed for scientific computing already
exist and in 2016 Google announced the Tensor Processing Unit, a computational
chip specifically designed for machine learning.

A second reason is the exponential increase of data created and stored in almost
all industries and scientific fields. The existence of privacy ends with the purchase
of a smartphone. Social media interactions and content, GPS locations, every-
thing is monitored and stored. In manufacturing and large industrial undertakings,
machines such as wind turbines are being equipped with cheap sensors that contin-
uously log every vibration, temperature change and other operational parameters.
The Internet of Things [7], in which everyday objects are being equipped with
sensors and connected to the Internet to create a Smart Home, Smart City, etc. is
also creating a growing amount of residential logged data. In medicine, digital
patient records, lab results tests and bed side monitors are digitally stored in local
databases or in global initiatives creating data lakes, often anonymized. In physics,
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particle accelerators such as the famous Large Hadron Collidor built by CERN are
creating vast amounts of data at each collision. In biomedicine and biochemistry,
high throughput experiments try to capture characteristics at a cell and genome-
wide level. In many of the settings described above, the actual decision to log and
store data is taken before it is decided what and how the data should be processed
into information. The world is convinced that data is the new gold.

This bring us to the third reason why data science is booming: perception, me-
dia coverage and in popular phrasing: the bandwagon effect. IBM’s Watson [8]
was one of the first artificial intelligences to generate a lot of attention in the past
years by winning a special episode of the popular show ’Jeopardy!’. Furthermore,
it later came with the statement that IBM would invest a billion dollars in the Wat-
son project. Google acquired DeepMind, a British artificial intelligence company,
only four years after being founded at a price of 500 million dollars. If major play-
ers in the field are giving such strong signals, the rest will follow. This recent boom
comes with a lot of opportunities (the chance to write this book being one of my fa-
vorites) but also comes with major risks. The greatest risk being expertise dilution.
Many companies are interested in the gold rush but often have few knowledge and
experience about what is possible. Therefore, the goals are unrealistically set and
the infrastructure and budgets come pre-allocated before any technical feedback is
acquired. Aggravating the situation, the people executing those projects are often
new and rushed to the field and may not be familiar with the very basics of ma-
chine learning. This situation is dangerous to the core field of machine learning,
as many companies and projects leaders will undoubtedly become disappointed in
this process, quickly turning the positive spiral in a negative one. This situation is
quite comparable to what happened to the field of information theory in the six-
ties and the paper by Claude Shannon: the bandwagon [9], brings up very similar
concerns to those that have been voiced by machine learning experts in the past
years.

Do machine learning and data science deserve the current hype? Yes. The
progress and achievements in the last years certainly warrant the current interest.
However, we should be wary of the consequences and raise the level of criticism
if we wish to continue the current success. The most important concept is to stick
to the basics. Information can only be extracted if it is in your data to begin with.
Setting goals upfront to extract a certain amount or specific information is pointless
in machine learning. Furthermore, frameworks such as TensorFlow or even scikit-
learn which automate and hide many of the complex tasks in machine learning
come with the associated risk that buttons are being pushed without knowing the
underlying meaning. More often than not, the performance of the built model in
terms of accuracy or performance answers less questions than the knowledge you
gained trying to build the model. Predictions are often useless, but being able to
predict is priceless.
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1.1.3 Biology primer

This work will focus on the principles outlined in the previous subsection and
more specifically use machine learning to tackle challenges in the field of systems
biology, bioinformatics and immunology. In the appendices attached to this work,
we also discuss two cases of applying machine learning on healthcare cases. As
they are not part of the core research presented in this work we will however not
discuss them further in this introduction. The remainder of this subsection serves
to briefly introduce the biological concepts and technologies related to this work.

Life is tremendously complex and diverse, yet all living things on Earth have
a genome which is a blueprint that contains all necessary information to construct
and maintain that specific organism. The genome is encoded in DNA and is present
in each cell of the organism. DNA can be considered as a genetic code consisting
of a series of four different bases. These four different bases can be abbreviated
and represented as a string sequence constructed from the characters A (adenine),
T (thymine), C (cytosine) and G (guanine). A gene is defined as a region in the
DNA that is responsible for one or more tasks in the organism and as such can be
considered as a basic hereditary unit. The central dogma of molecular biology [10]
states i.a. that the process in which DNA is converted to functional products is
called gene expression and occurs in two key stages: transcription and translation.
Transcription is the process which creates copies of the DNA in form of messenger
RNA (mRNA). This RNA sequence is then further processed and translated into a
protein. Proteins are macromolecules which perform a vast number of functions
within the organism. As each cell in an organism contains the same genome in the
form of DNA, changes in gene expression (which genes are being transcribed and
at which rate) are the driving factor in cell differentiation and the key system to
respond to external factors.

1.1.3.1 Gene expression measurements

Systems biology is a scientific field which tries to gain understanding of complex
biological systems by building computational models which can explain the be-
havior of such systems. The key concept in systems biology is that the whole is
bigger than the sum of its parts and therefore that complex systems should not be
approached in a reductionist way of thinking. Instead, processes should be consid-
ered with as much context as possible in multi-level models at a high resolution.
In this setting, high throughput techniques which provide data and insights at a
genome-wide scale are vital information sources. A prime example are gene ex-
pression measurements which provide a snapshot of the ’activity’ of each gene in a
cell at a certain moment in time. With the activity of a gene, we mean a qualitative
measure of how many copies of a certain gene (mRNA) are being being transcribed
and therefore are present in the cell. Two key technologies exist which can pro-
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vide such data: microarrays and RNA-Seq. A microarray contains a large num-
ber of spots which each contain many copies of a certain DNA-sequence called
probes. Probes are specifically chosen to be complementary with known parts of
the mRNA of a gene. The microarray is spread with extracted mRNA combined
with fluorescent tags and is allowed to bind with the probeset. After some time,
the unbound remaining mRNA is washed away and each spot is scanned with a
laser. The luminance of a certain spot is directly related to amount of mRNA
with fluorescent tags that was bound to that specific probe and therefore to the
number of copies of the corresponding gene which were present in the sample.
RNA-Seq is a more recent technique which is replacing microarray technology as
the standard in most labs around the world. RNA-Seq is based on next-generaton
sequencing techniques and holds several advantages over microarrays. First, there
is no need to design specific probes up front, which means RNA-Seq can be used
to detect unknown sequences and be used in species with no reference genome.
Second, this lack of the need of probes also eliminates any noise generated from
incomplete or unwanted bindings between a certain mRNA. Lastly, RNA-Seq pro-
vides a more quantitative measure, the number of reads. Despite these advantages,
microarrays technology is still being used side-to-side to RNA-Seq because it is
relatively cheap and often suffices to answer the scientific or medical question that
is being investigated. In this work, we will focus on analyzing data created by
microarray technology. The main reasons for this are the existence of benchmark
data and large repositories of microarrays data related to a specific use case we
discuss. However, all methods described can also be applied to RNA-Seq data.

1.1.3.2 Network representations

In popular media, genes are often linked one-to-one to a certain disease or trait (for
example, the gene responsible for diabetes or hair color). In reality however, the
large majority of genes work in unison with a set of other genes to realize a certain
function. These interactions come in the form of different types: protein-protein,
transcriptional (protein-DNA), signaling (phosphorylation), etc. and can be struc-
tured in complex networks, cascades and pathways. Network representations serve
as ideal and flexible abstractions of relations between biological entities. For the
human user, networks have proven to be ideal representation methods to structure
and visualize large amounts of data. From an algorithmic point of view, networks
can be further analyzed and described using concepts from network theory such as
connectivity, closeness, etc. Networks can also serve as a whole as input for fur-
ther inference algorithms. For the above mentioned reasons, networks are chosen
to be the end-point of the data to information process in this work.

With this, we have created the context and motivation of all words present in
the title of this work and will now continue to discuss the challenges and contribu-
tions related to this dissertation.
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1.1.4 Challenges

All information is contained in the DNA and flows in a forward and complex
way until eventually certain phenotypes such a trait (e.g., hair colour) or a disease
(e.g., cancer) can be observed. However, in reality we are most often concerned
in solving the (partially) inverse problem: e.g. given a certain cancer, what is the
cause, at which level does it occur and how can be prevent or treat? Following
this inverse flow of information means diving in a giant haystack of interacting
systems operating at different levels, continuously changing in time and acting
in a non-deterministic way. Traditional wet-lab experiments such as qPCR or a
western blot are vital techniques but can only be used in a setting in which one
already knows what should be measured or investigated and cannot answer the
question of where to look. In contrast, high-throughput techniques such as flow
cytometry experiments or gene expression measurements offer information at a
higher level but come with various downsides. One of the major drawbacks is
that these type of technologies produce such vast amounts of data that they no
longer can be interpreted by the human brain. The design of statistical methods
and specific algorithms which can extract as much information as possible from
this data is the key challenge that computational systems biology is solving and
also the main challenge in this dissertation.

More specifically, one of the long standing challenges in computational sys-
tems biology is how gene regulatory interactions can be derived from snapshots of
gene expression measurements in the form of networks. Many of such algorithms
have been proposed which strike different balances between the level of detail they
wish to infer and the size of the system that is under consideration. A classification
can be made in two categories of algorithms. The first type aim to emulate a natural
system with respect to its dynamical activity. Here, the components have biolog-
ical interpretations and the conclusions are drawn from the generative nature of
the model. The second category of methods approaches the problem model-free
and aims to draw conclusions about biochemical interactions between genes or
gene products without requiring plausible biological mechanisms. A typical ap-
proach of such methods is to calculate pair-wise measures between each pair of
genes that represent co-variation. Several measures have been suggested including
Pearson correlation, mutual information [11-15] or more recently (feature) im-
portance scores derived from training machine learning models [16—-18]. Several
challenges exist, which explains why this domain has spawned such a plethora of
different methods over time.

A first series of challenges are directly related to properties of the data. Mi-
croarray data is noisy, the number of samples is limited due to the cost to perform
a single experiment and only offers insights at a gene transcriptional level although
many other mechanisms (e.g. phosphorylation, miRNA, etc.) exist to achieve gene
regulation. The number of potential regulatory interactions also by far exceeds the
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available measurements. Therefore, if one wishes to tackle the problem using ma-
chine learning, one has to operate in an extreme imbalance between the number of
features available and the number of data samples. Furthermore it is not clear how
one can distinguish between regulatory effects that are direct or indirect (e.g. the
expression of gene A influences the expression of gene C through a gene B) unless
specific time-series or knockout-data is available. In practice, many popular meth-
ods propose heuristics to automatically lower the number of indirect interactions
present in the network.

A second series of challenges is related directly to the development of the al-
gorithms and the integration with other data sources. For example, often prior
knowledge is available in the form of already known interactions or in more ab-
stract forms such as known topological properties of the network. It is not clear
how such versatile properties can directly be included in the prediction process
without losing general applicability. Related, other experimental data can be avail-
able, e.g. ChIP-seq experiments that offer insights on DNA binding sites. Chal-
lenges there include how and at which stage of the prediction such information can
be included to make predictions more accurate.

A third series of challenges revolves around the problem of how the perfor-
mance of gene regulatory network inference methods can be evaluated in general
and on a specific application. For the first question two options exist: the use of
synthetic data or the use of real benchmark data in comparative studies. The latter
suffers from the fact that no complete ground truth is available to compare. There-
fore, the evaluation of the network can be biased towards areas of the network
which are well studied and known. The former suffers from the fact that synthetic
data is an abstraction of reality and that the method becomes tuned to the specific
simulator which generated the data. Large scale evaluations in the form of blinded
competitions have taken place which have produced key insights about the perfor-
mance of methods and how better results can be obtained. However, they do not
answer the first question of what the quality of prediction of a method will be if is
it applied on a specific data set or how it should be evaluated. Comparison with
literature can give insights on the quality of the prediction but is challenging to
perform automatically and unbiased.

The most important challenge however remains how one can use such meth-
ods in practice to generate real scientific value. Gene regulatory network inference
methods are per definition hypothesis generating tools and do not offer any value
if they are not accompanied by a second step which can confirm these hypotheses.
Most often the second step comes in the form of more traditional "low-throughput’
wet-lab experiments using knock-out organisms or specific inhibitors which can
provide detailed evidence of interactions. There are several scenarios in which
these two steps can come together. In first scenario, the algorithm developer also
performs the wet-lab validation step and has the necessary infrastructure, exper-
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tise, funds and knowledge to both perform the experiments and interpret the re-
sults. This is a very rare situation which does not occur often in practice. In
a second scenario, the algorithm developer is able to introduce his method to the
non-computational community, convince labs that it is a useful technique and most
challenging make it so that the algorithm can be applied in a user-friendly way
without requiring specific knowledge. In a third scenario, a specific lab has a mix
of both computational developers and wet-lab scientists. In this setting, the chal-
lenge is find an appropriate use-case in which the technique can be of value and to
find a common language to speak in order to set-up the experiment and interpret
the results.

1.2 Thesis contributions and outline

The three chapters that follow this introduction present research in the context that
has been presented and address one or more challenges in the field that were listed.

Chapter two presents a novel framework which uses machine learning tech-
niques to infer gene regulatory networks from gene expression data. It addresses
the first series of challenges related to how we can develop methods that can deal
with specific properties of the data. To be more specific, we generalize a successful
method, named GENIE3 [16], by proposing a subsampling approach which allows
any feature selection algorithm that produces a feature ranking to be cast into an
ensemble feature importance algorithm. We demonstrate that the ensemble setting
is key to the network inference task. In addition, we explore the effect of us-
ing rankwise averaged predictions of multiple ensemble algorithms as opposed to
only one. We name this approach NIMEFI (Network Inference using Multiple En-
semble Feature Importance algorithms) and show that this approach outperforms
all individual methods in general.

Chapter three presents a post-processing algorithm for gene regulatory net-
work predictions, Netter, which uses graphlets and several other graph-invariant
properties to transform the network into a more accurate prediction. It addresses
the second series of challenges related to how prior knowledge can be integrated
in the prediction task. Netter is a flexible system which can be applied in uni-
son with any inference method. We re-rank predictions of six different algorithms
using three simple network properties as optimization criteria and show that Net-
ter can improve the predictions made on both artificially generated data as well
as commonly used benchmark data. Furthermore, we show that Netter compares
favorably to other post-processing algorithms.

Chapter four addresses challenges presented in the last two categories. In this
section we apply our gene regulatory network inference algorithms on a practi-
cal use case. More specifically, we collected and processed a large compendium
of microarrays gathered in the context of a large international immunological cell
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project named ImmGem [19]. We provide these networks to the community, in-
cluding a web-interface to quickly browse the inferred connections. In one of two
use cases we present, we discuss results of wet-lab experiments which were per-
formed in the context of the inferred networks.

Chapter five concludes this thesis.

Finally, in the appendices of this work we present machine learning applica-
tions using data from critically ill patients admitted to the intensive care unit (ICU)
of the Ghent University Hospital.

This dissertation is composed of a number of publications that were real-
ized within the scope of this PhD. The remainder of this introduction provides
an overview of the papers which were published during this research period.

1.3 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.3.1 Al publications (listed in the Science Citation Index)

1. Joeri Ruyssinck, Huynh-Thu Van Anh, Pierre Geurts, Tom Dhaene,
Piet Demeester and Yvan Saeys. NIMEFI: gene regulatory network infer-
ence using multiple ensemble feature importance algorithms. Published in
PLOS One, 9(3), 2014.

2. Joeri Ruyssinck, Piet Demeester, Tom Dhaene and Yvan Saeys. Netter: re-
ranking gene network inference predictions using structural network prop-
erties. Published in BMC Bioinformatics, 1-8,2016.

3. Joeri Ruyssinck*, Joachim van der Herten* , Rein Houthooft, Femke Onge-
nae , Ivo Couckuyt , Bram Gadeyne, Kirsten Colpaert , Johan Decruyenaere,
Filip De Turck and Tom Dhaene Random survival forests for predicting the
bed occupancy in the intensive care unit. Published in Computational and
Mathematical Methods in Medicine, (*Contributed equally) 17(76),2016.

4. Leen De Baets*, Joeri Ruyssinck*, Johan Decruyenaere, Filip De Turck,
Femke Ongenae and Tom Dhaene. Early detection of sepsis through the
prediction of positive blood cultures using long short-term memory neural
networks. Submitted to Artificial Intelligence in Medicine, (*Contributed
equally)

5. Joeri Ruyssinck, Lana Vandersarren, Jeroen Creytens , Karl Vergote, So-
phie Janssens , Tom Dhaene and Yvan Saeys. Large-scale network inference
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of the Immunological Genome Project gene expression data with applica-
tions in the unfolded protein response. Submitted to PLOS Computational
Biology,

6. Rein Houthooft, Joeri Ruyssinck, Joachim van der Herten, Sean Stijven,
Ivo Couckuyt, Bram Gadeyne, Femke Ongenae, Kirsten Colpaert, Johan De-
cruyenaere, Tom Dhaene and Filip De Turck. Predictive modelling of survi-
val and length of stay in critically ill patients using sequential organ failure
scores. Published in Artificial Intelligence in Medicine, 63(3). p.191-207,
2015

7. Leen De Baets, Joeri Ruyssinck , Chris Develder, Tom Dhaene and
Dirk Deschrijver. On the Bayesian optimization and robustness of event-
detection methods in NILM. Accepted in Energy and Buildings, 2017

8. Leen De Baets, Joeri Ruyssinck, Chris Develder, Tom Dhaene and Dirk De-
schrijver. Appliance classification using VI trajectories and convolutional
neural networks. Submitted to Electronics Letters,

9. Nasrin Sadeghianpourhamami, Joeri Ruyssinck , Dirk Deschrijver,
Tom Dhaene and Chris Develder. Comprehensive feature selection for ap-
pliance classification in NILM. Submitted to Energy and Buildings,

1.3.2 Contributions to international conferences

1. Joeri Ruyssinck, Huynh-Thu Van Anh, Pierre Geurts, Tom Dhaene,
Piet Demeester and Yvan Saeys. Inferring gene regulatory networks us-
ing ensembles of feature selection techniques Program of the sixth interna-
tional workshop on machine learning in systems biology (MLSB), 2012.
(talk+poster)

2. Joeri Ruyssinck, Huynh-Thu Van Anh, Pierre Geurts, Tom Dhaene,
Piet Demeester and Yvan Saeys. Inferring gene regulatory network topolo-
gies using ensembles of feature selection techniques Proceedings of the 21st
Belgian-Dutch conference on machine learning, 2012. (talk)

3. Joeri Ruyssinck, Tom Dhaene and Yvan Saeys. A re-ranking algorithm for
gene regulatory network predictions using graphlets and graph-invariant
properties Intelligent Systems for Molecular Biology, 21st Annual interna-
tional conference, Abstracts, 2013. (poster)

4. Joeri Ruyssinck, Tom Dhaene, Femke Ongenae, Filip De Turck,
Kirsten Colpaert and Johan Decruyenaere. Predicting the Intensive Care
Unit Bed Occupancy with Survival Random Forests NIPS Workshop on Ma-
chine Learning for Clinical Data Analysis, 2014. (poster)
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10.

Robrecht Cannoodt, Joeri Ruyssinck, Katleen De Preter, Tom Dhaene and
Yvan Saeys. Network inference by integrating biclustering and feature se-
lection BeNeLux Bioinformatics Conference, 2013. (talk+poster)

Sofie Van Gassen, Joeri Ruyssinck,Yvan Saeys and Tom Dhaene. Stable
feature selection techniques for microarray data., BeNeLux Bioinformatics
Conference, 2013, (talk)

Leen De Baets, Joeri Ruyssinck, Dirk Deschrijver and Tom Dhaene. Event
detection in NILM using Cepstrum smoothing. 3rd International Workshop
on Non-Intrusive Load Monitoring, 2014, (best poster award)

Leen De Baets, Joeri Ruyssinck, Dirk Deschrijver and Tom Dhaene. Cep-
strum analysis applied on event detection in NILM. 25th Belgian-Dutch
Conference on Machine Learning, 2016, (poster)

Thomas Peiffer, Joeri Ruyssinck, Johan Decruyenaere, Filip De Turck,
Femke Ongenae and Tom Dhaene. Early detection of positive blood cultures
using recurrent neural networks on time series data. 25th Belgian-Dutch
Conference on Machine Learning, 2016, (poster)

Leen De Baets, Joeri Ruyssinck, Thomas Peiffer, Johan Decruyenaere,
Filip De Turck, Femke Ongenae and Tom Dhaene. Positive blood culture
detection in time series data using a BiLSTM network. NIPS Workshop on
Machine Learning for Clinical Data Analysis, 2016. (poster)



INTRODUCTION 15

References

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of Go with deep neural networks and tree search. Na-
ture, 529(7587):484—489, 2016.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998.

[3] V. Marx. Biology: The big challenges of big data. Nature, 498(7453):255—
260, 2013.

[4] Apache Software Foundation. Apache Mahout:: Scalable machine-learning
and data-mining library [online]. Available from: http://mahout.apache.org
[cited 2017-03-12].

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed
file system. In Mass storage systems and technologies (MSST), 2010 IEEE
26th symposium on, pages 1-10. IEEE, 2010.

[6] Y.LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436—
444, 2015.

[7] L. Atzori, A. lera, and G. Morabito. The internet of things: A survey. Com-
puter networks, 54(15):2787-2805, 2010.

[8] D. A. Ferrucci. Introduction to this is watson. IBM Journal of Research and
Development, 56(3.4):1-1, 2012.

[9] C. E. Shannon. The Bandwagon. IEEE Transactions Information Theory,
2:3, 1956.

[10] F. Crick et al. Central dogma of molecular biology. Nature, 227(5258):561—
563, 1970.

[11] A.J. Butte and I. S. Kohane. Mutual information relevance networks: func-

tional genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput, 5, 2000.

[12] R. de Matos Simoes and F. Emmert-Streib. Bagging statistical network in-
ference from large-scale gene expression data. PLoS ONE, 7, 2012.

[13] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, and
R. D. Favera. ARACNE: An Algorithm for the Reconstruction of Gene Reg-
ulatory Networks in a Mammalian Cellular Context. BMC Bioinforma, 7,
2006.


http://mahout.apache.org

16 CHAPTER 1

[14] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, and
G. Cottarel. Large-Scale Mapping and Validation of Escherichia coli Tran-
scriptional Regulation from a Compendium of Expression Profiles. PLoS
Biol, 5, 2007.

[15] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi. Information-theoretic
inference of large transcriptional regulatory networks. EURASIP journal on
bioinformatics and systems biology, 2007(1):1-9, 2007.

[16] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring Reg-
ulatory Networks from Expression Data Using Tree-Based Methods. PLoS
ONE, 5, 2010.

[17] J. Ruyssinck, V. A. Huynh-Thu, P. Geurts, T. Dhaene, P. Demeester, and
Y. Saeys. Nimefi: Gene regulatory network inference using multiple ensemble
feature importance algorithms. PLoS ONE, 9, 2014.

[18] A. C. Haury, F. Mordelet, P. Vera-Licona, and J. P. Vert. TIGRESS: Trustful
Inference of Gene REgulation using Stability Selection. BMC Syst Biol, 6,
2012.

[19] T.S. Heng, M. W. Painter, K. Elpek, V. Lukacs-Kornek, N. Mauermann, S. J.
Turley, D. Koller, F. S. Kim, A. J. Wagers, N. Asinovski, et al. The Im-
munological Genome Project: networks of gene expression in immune cells.
Nature immunology, 9(10):1091-1094, 2008.



“He uses statistics as a drunken man uses
lamp posts; for support rather than illumi-
nation.”

— Andrew Lang

NIMEFI: Gene Regulatory Network
Inference using Multiple Ensemble
Feature Importance Algorithms

In this chapter, we propose an algorithm to infer gene regulatory networks from
a compendium of gene expression measurements. NIMEFI (Gene Regulatory Net-
work Inference using Multiple Ensemble Feature Importance Algorithms) discov-
ers connections between genes in the network on a large-scale by transforming
the network inference task into independent regression problems. Two genes in
the network are considered to be connected by an edge if the expression measures
of one gene are informative to predict the expression values of the other gene.
NIMEFI will form the basis of all further research described in this book.
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Abstract

One of the long-standing open challenges in computational systems biology is the
topology inference of gene regulatory networks from high-throughput omics data.
Recently, two community-wide efforts, DREAM4 and DREAMS, have been estab-
lished to benchmark network inference techniques using gene expression measure-
ments. In these challenges the overall top performer was the GENIE3 algorithm.
This method decomposes the network inference task into separate regression prob-
lems for each gene in the network in which the expression values of a particular
target gene are predicted using all other genes as possible predictors. Next, using
tree-based ensemble methods, an importance measure for each predictor gene is
calculated with respect to the target gene and a high feature importance is consid-
ered as putative evidence of a regulatory link existing between both genes. The
contribution of this work is twofold. First, we generalize the regression decom-
position strategy of GENIE3 to other feature importance methods. We compare
the performance of support vector regression, the elastic net, random forest regres-
sion, symbolic regression and their ensemble variants in this setting to the original
GENIE3 algorithm. To create the ensemble variants, we propose a subsampling
approach which allows us to cast any feature selection algorithm that produces a
feature ranking into an ensemble feature importance algorithm. We demonstrate
that the ensemble setting is key to the network inference task, as only ensemble
variants achieve top performance. As second contribution, we explore the effect
of using rankwise averaged predictions of multiple ensemble algorithms as op-
posed to only one. We name this approach NIMEFI (Network Inference using
Multiple Ensemble Feature Importance algorithms) and show that this approach
outperforms all individual methods in general, although on a specific network a
single method can perform better. An implementation of NIMEFI has been made
publicly available.

2.1 Introduction

Transcriptional regulation is a key mechanism for cells to accomplish changes in
gene expression levels. As a consequence, deciphering the structure of the gene
regulatory network (GRN) is crucial to gain insights in biological processes of
interest or the pathology of a cell. The availability of large collections of gene
expression compendia offer the potential to infer the network topology in high-
throughput and on a large-scale. As a consequence, many computational tools to
infer GRNs from expression data have been developed and are being used in prac-
tical use cases [1]. However, inferring the GRN from expression data is a severely
underdetermined problem, as the number of possible interactions largely exceeds
the number of available measurements. Coping with this underdetermination has
turned out to be a very difficult problem and has led to the development of an over-
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whelming number of algorithms which use different strategies to overcome this
inherent difficulty. Not only do these algorithms differ in the success they have
to elucidate the network, they strike a balance between complexity and scalability
and their predictions can be highly complementary [2, 3].

Algorithms that focus on inferring the topology of large GRNSs typically calcu-
late pair-wise measures between genes. Early methods used Pearsons correlation
coefficient [4], but failed to identify non-linear relationships between genes. To
capture these more complex dependencies, information theoretic measures have
been proposed. In particular many models infer networks using the mutual in-
formation between a pair of genes as a measure [5]. These methods generally
suffer from predicting many false positive links due to indirect effects and conse-
quently various refinements have been proposed. CLR [6] corrects the predictions
based on the specific background distribution of all mutual information scores.
The ARACNE algorithm [7] uses the Data Processing Inequality on every triplet of
genes to filter out indirect effects. MRNET [8] builds on the maximum relevance,
minimum redundancy concept [9] using an iterative feature selection scheme. Fi-
nally, C3NET [10] and its ensemble extension BC3NET [11] try to avoid inferring
indirect effects by only predicting a link between two genes if the mutual infor-
mation between genes is at least maximal for one of the genes with respect to all
other. More recently, the ANOVerence [12] algorithm proposed the 72 score as
an alternative measure to evaluate dependencies between genes. The 7 score is
a non-parametric and non-linear correlation coefficient derived using ANOVA. Fi-
nally, the TIGRESS [13] method solves the network inference problem by using a
feature selection technique (LARS) combined with stability selection.

Various comparative studies have been performed which evaluate network in-
ference algorithms [3, 14—16]. Due to the large variety of algorithms, these studies
typically focus on a small subset of techniques and aim to derive interesting prop-
erties. Large scale evaluations of techniques have been performed in the context
of the DREAM (Dialogue for Reverse Engineering Assessments and Methods)
challenges [17]. DREAM aims to stimulate research in the field and provide re-
searchers with benchmark datasets to validate their work. Community-wide net-
work inference challenges where participants were invited to run their algorithms
on blinded datasets have been organized. These challenges are the most compre-
hensive assessments of GRN inference algorithms. In both the DREAM4 in si-
lico 100 multifactorial challenge and the latest DREAMS network inference chal-
lenge [18-20] the overall top performer was the GENIE3 algorithm [21]. This
method approaches the network inference problem by decomposing it into a sep-
arate regression problem for each possible target gene. Next, using a tree-based
ensemble method, an importance measure for each predictor is calculated and a
high feature importance is used as an indication that a link is present between the
predictor and the target gene in the GRN.



20 CHAPTER 2

Motivated by the success of GENIE3 and other ensemble methods based on
feature importance, such as TIGRESS, we wish to explore the potential of several
other ensemble feature importance techniques in the regression decomposition set-
ting. We present a general framework which casts any feature selection algorithm
into an ensemble setting by taking random subsamples of varying size of both the
experiments and the potential regulatory genes. Furthermore, given the known
complementary of GRN inference methods [17], we explore if it is beneficial to
combine the predictions of several ensemble feature importance scoring algorithms
as opposed to using a single one. Summarizing, we name this approach NIMEFI
(Network Inference using Multiple Ensembles of Feature Importance algorithms)
and compare the performance of this new method to several recently proposed
state-of-the-art techniques.

2.2 Materials and Methods

2.2.1 Problem statement, evaluation and data sources

In this chapter we focus on the inference of the directed topology of large gene reg-
ulatory networks using gene expression data. Self-regulating interactions are not
taken into consideration. As input data, we assume a compendium containing sev-
eral gene expression measurements obtained from one or more experiments. We
make no further assumptions about whether the data was compiled using gene-
knockouts, multifactorial pertubations, steady-state measurements or any other
experimental settings, nor do we take any time-related information into account.
Although the directionality of a regulatory link is hard to infer without extract-
ing specific information in interventional or time-series data, we opt for a directed
topology setting throughout this chapter as this was the setting of the DREAM
challenges and it allows for a fair comparison to other algorithms. Furthermore, it
has been shown that the GENIE3 algorithm is able to predict directionality using
the same data handling strategy [21]. Lastly, we allow for an optional limitative
list of known regulatory genes as input data, in which case no outgoing links from
other genes are allowed as predictions.

As such, let us define a learning sample (LS) from which to infer the GRN as
a matrix of S rows by G columns, in which each row can be interpreted as the
expression values of all G genes in one of the S available samples.

11 Ti12 - T1,G

T21 L22 -0 L2,G . .
LS = . . . . ,Ts,g : the expression of gene g in sample s

Ts1 XS2 -t XSG
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The desired output of the algorithm is then defined as a (fully connected) di-
rected graph in which each node corresponds to a single gene and an edge between
a certain node 7 and another node j indicates that gene ¢ regulates the expression
of gene j. For each possible edge in the network a score is given which represents
the confidence that this is a true regulating link.

A recurrent problem among GRN inference methods is selecting a suitable cut-
off value to transform the obtained ranking into an actual network structure. Some
methods (e.g. [10, 11]) try to automatically select a network instead of a ranking
while others leave the decision to the end-user. In this work, we do not automat-
ically select a threshold value and instead will focus on the ranking. We believe
that it is beneficial to the end-user to explore the network at various threshold
levels. Some parts of the network can have a weaker signal in the gene expres-
sion set, but still be relevant to the user. As we focus on evaluating the ranking
as opposed to a network, we will adopt the widely used DREAMS procedure to
score network predictions. In this procedure, all edges are sorted by decreasing
confidence score and only the top 100,000 predictions are retained. Next, only
considering the ranks, both the Area Under the Receiver Operating Characteris-
tic curve (AUROC) and Area Under the Precision-Recall curve (AUPR) are cal-
culated with respect to a known gold standard. We will evaluate all algorithms
using five gene expression sets provided by the DREAM4 in silico 100 multi-
factorial challenge (DREAM4) and two gene expression sets from the DREAMS
network inference challenge (DREAMS). Furthermore, we created several artifi-
cial gene expression datasets using both the SynTReN [22] (SYNTREN-100) and
GeneNetWeaver (GNW-100,GNW-200) [18, 23] simulators. Table 2.1 provides an
overview of the various datasets.

The DREAM4 dataset consists of five artificial networks, each of size 100
(100 genes described by 100 experiments). These datasets were created for the
DREAM4 in silico 100 multifactorial challenge and aim to mimic samples from
multifactorial perturbation data, which is defined as static steady-state expression
profiles achieved by slightly perturbing all gene expression values at the same
time. In addition, two more datasets were used from the DREAMS5 network infer-
ence challenge. The first is an artificial dataset consisting of 1643 genes, including
a known list of 195 potential regulatory genes. No genes, other than these in-
cluded in the list are regulatory genes in the gold standard used for validation. The
topology of the in-silico network is based on known GRNs of model organisms.
The compendium consists of various experimental settings. The second DREAMS
dataset describes a large real expression compendium of E. coli. This dataset con-
tains a known list of 334 potential regulatory genes, and consists of measurements
of 4511 genes obtained in various experimental conditions. To further test our
findings, we created two network topologies of 100 nodes using an underlying E.
coli network, one using SynTReN and one using GNW. For both underlying net-
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Name # Networks # Compendia # Samples # Genes # Regulatory genes Type
DREAMA4 5 5 100 100 100 Artificial
DREAMS artificial 1 1 805 1643 195 Artificial

DREAMS E. coli 1 1 805 4511 334 Real
SynTRreN-100 1 20 100 100 100 Artificial
GNW-100 1 20 100 100 100 Artificial
GNW-200 1 15 200 200 200 Artificial

Table 2.1: Characteristics of the different datasets used for evaluation.
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works, 20 artificial expression compendia of 100 samples each were created using
default settings. Lastly, using GNW and the same settings, we created fifteen dif-
ferent network topologies consisting of 200 nodes, for each network a dataset of
200 samples was simulated, again using default settings.

2.2.2 Ensemble feature selection techniques

Feature selection is an important preprocessing step in many machine learning
applications, where it is often used to find the smallest subset of features that max-
imally increases the performance of the model. Other benefits of applying feature
selection include the ability to build simpler and faster models using only a subset
of all features, as well as gaining a better understanding of the processes described
by the data, by focusing on a selected subset of features [24, 25]. Three types
of feature selection techniques can be distinguished. Filter methods operate di-
rectly on the dataset, and provide a feature weighting, ranking or subset as output.
These methods have the advantage of being fast and independent of the model,
but at the cost of inferior results. Wrapper methods perform a search in the space
of feature subsets, guided by the outcome of the model. They often report better
results than filter methods, but at the price of an increased computational cost. Fi-
nally, embedded methods use internal information of the model to perform feature
selection (e.g. use of the weight vector in linear models). They often provide a
good trade-off between performance and computational cost. Recently, the con-
cept of ensemble feature selection (EFS) was introduced in various problems. Just
like ensemble models for classification and regression, EFS performs feature se-
lection by combining different feature selection algorithms, usually obtained by
bootstrapping, and then aggregates their results as the final output. EFS often re-
sults in better performance and more stable feature rankings than a single feature
selection technique [26-28].

2.2.3 Generalizing GENIE3

GENIE3 decomposes the network inference problem between g genes as g sepa-
rate regression problems. Each regression problem aims to predict the expression
values of a particular target gene using the other genes as input genes. Using fea-
ture selection in this regression context then amounts to finding the other genes
that are most indicative in modeling the expression values of the target gene, thus
providing evidence of important regulators of the target gene. GENIE3 provides
a ranking of the regulators of the target gene by deriving a weight for each regu-
lator based on an ensemble of tree-based regression models, such as random fo-
rests [29]. Conceptually however, any kind of feature selection technique could
be used to provide this ranking. The general principle of such a feature selection
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based approach to network inference is depicted in Figure 2.1 and can be summa-
rized as follows:

1. Fort=1to G

(a) Build a regression model predicting the vector of expression values of
the target gene t : LS; = (x14,...,%s,) using the learning sample
matrix without the target gene values: LS_;. Each column represent-
ing a possible predictor.

(b) Use a feature selection technique FS to compute a feature importance
(FI) value for each predictor column (gene) g in LS_; : FI; 4.

2. Aggregate the G individual regression problems to get a global ranking of
all possible regulatory links in the network.

The feature selection technique used here is thus supposed to be able to com-
pute a feature importance value for each input gene (feature) of the regression
problem associated to gene ¢. In principle, any feature selection technique that is
able to deal with a continuous output and returns some kind of feature importance
measure or score can be used in this framework.

Instead of using a single feature selection algorithm to compute the impor-
tance values we could also use an ensemble of M feature selection algorithms
EFS =FS1,FS,, ..., Fy tocalculate the importance values. The GENIE3 ap-
proach in the random forest setting is just a special case of such a more general
ensemble setting, combining the bagging procedure to generate different regres-
sion tree models with random sampling of the variables within each regression
tree node.

In general, any appropriate feature selection technique in this regression con-
text can be easily cast into the EFS setting by generating M subsamples of the
original learning sample LS, e.g. using regular subsampling or subsampling with
replacement (bootstrap sampling). More specifically, we used the following ap-
proach to transform any FS algorithm which can produce a ranking to create an
EFS method that produces FI scores for a regression subproblem with target gene
t (Figure 2.1) :

1. Fori=1to [

(a) Take a subsample without replacement of size x of the samples (rows)
of LS_; and the target vector LS;; where x is a uniformly randomly
generated integer number between X, and X,,45-

(b) Further reduce the matrix and target vector in size by taking a sub-
sample of size y without replacement of the possible genes (columns);
where y is a uniformly randomly generated integer number between
Yoinin and Yo az.
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(c) Rank the features in the reduced predictor matrix by their ability to
predict the reduced target vector using a FS technique of choice.

(d) Assign a score of "1’ to the top Z features of the ranking and a score
of ’0’ to all other

2. Sum the scores across all iterations and use these sums as the final FI scores
for each predictor in the regression subproblem.

In the above algorithm the parameters Z, Yin, Yimaz, Xmins Xmaz are typi-
cally set to default values of 5, 20%, 80% of the number of predictors and 20%,
80% of the number of experiments respectively. I is set to allow convergence. We
explore and discuss the effect of these parameters on the algorithm performance in
the results section. However, the general idea is to create subsamples of varying
sizes, effectively searching for both global connections between genes as well as
effects which can only be seen in a small number of experiments. By also sam-
pling the predictors in each iteration, we avoid the problem of dominant genes
masking possible secondary interactions. For computational reasons we imposed
a maximum value of 200 on the upper bounds.

2.2.4 Calculating feature importance values using different ma-
chine learning techniques

In our experiments, the following machine learning algorithms in the regression
context were used to calculate feature importance values. Two linear methods: lin-
ear support vector regression (SVR) and regularized regression using the elastic net
(EL) as well as their respective ensemble versions (E-SVR, E-EL). We also used
symbolic regression (SR), an inherently ensemble, non-linear method. For each of
these methods we briefly describe how the feature rankings were calculated. For
comparison reasons we also added an ensemble random forest regression (E-RFR)
variant, differing from GENIE3 only due to the use of the subsampling scheme
described earlier instead of a single regression for each target gene. In all of our
experiments we used GENIE3 in random forest mode with the number of trees
(T) set to 1000 and the number of randomly selected genes at each node of the
tree (K) setto g — 1.

Support vector regression: from the Lagrange multipliers « , the support vectors
x; and the training labels y; one can calculate the weight vector w in case of a
linear kernel as:

N
w = E QY Tq
i=1

The absolute value of the weight w; of the weight vector w corresponding to a
certain feature j can be used to assess feature importance, as it is clear that small
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Figure 2.1: Overview of the EFS approach to the network inference task. The problem
is split into independent regression subproblems for each gene in the network. Next feature
importance (FI) scores are calculated in each subproblem for all possible regulatory genes
with respect to the target gene using an ensemble feature selection (EFS) method. These FI
scores are then assigned as the weight of an edge in the network from the regulatory gene
to the target gene. Finally, all weights are aggregated across the subproblems, creating a
global confidence ranking of edges. We cast any feature selection (FS) method which can
provide a ranking into an EFS method by taking random samples of varying size of both the
experiments and the possible predictor genes and assigning a score of 1 to the top features
in the ranking.
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values will have less impact on the predicted value [24]. We rank features in a
single step as opposed to using the recursive feature elimination scheme of [30]
for computational reasons. All experiments were conducted using the libsvm [31]
package for R, using epsilon regression and a linear kernel function. The cost
of constraint violation parameter C was set to the default value of 1, all other
parameters were also set to their respective default values.

Elastic net: the absolute values of the coefficients of the predictors after a fit with
a regularized linear model using the elastic net penalty function [32] are used as
a measure for feature importance. The elastic net offers a compromise between
ridge regression and the LASSO. The mixing coefficient, « [0, 1], determines the
tradeoff between the L1-norm and L2-norm regularization. If « is set to 1.0, it
corresponds to the LASSO penalty, 0.0 corresponds to the ridge penalty. The A
parameter is defined as the regularization parameter and was determined by cross-
validation. Experiments were conducted using the glmnet package for R [33] with
a set to 0.3. We explored several other settings for the o parameter. Setting
a to 1.0 had a negative effect on the performance, because less than Z features
received a non-zero score in the regression subproblem. We did not notice any
major performance differences between other settings of a.

Symbolic regression: this method aims to capture the input-output relation with
an algebraic expression found through a genetic programming approach. In each
iteration of the algorithm a large set of formulae, the population, is explored and
regenerated using modifications such as crossover and mutation operations. We
used pareto-aware symbolic regression [34] which utilizes multiple objectives to
assess models. In our case, a Pareto-front is used which strikes a balance between
the complexity of a formula and the goodness of fit. Next we determine a feature
importance score for each score by a presence-based measure [35]. As irrelevant
variables will cause extra complexity without lowering the error measure of the
mode, these variables are discouraged to be included in the population. As such,
the final population after a modeling run will likely only contain the most relevant
variables. We use the percentage of the population in which a feature is present
as the feature importance score. Other feature scoring approaches were also ex-
plored, but achieved similar or worse results. Experiments were conducted using
the proprietary DataModeler software using four independent evolutions.

2.2.5 Comparisons with TIGRESS

We included the results of TIGRESS in all our performance comparisons. The
performance scores of TIGRESS for the DREAMS dataset were taken from the
DREAMS challenge results. All other performance metrics were obtained by run-
ning TIGRESS using the GenePattern platform (dream.broadinstitute.org) with de-
fault parameter settings and 1000 iterations.
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2.2.6 Merging multiple feature importance algorithms

To explore the known complementarity of GRN inference methods, we create new
predictions by combining the predictions of several algorithms. In particular, we
focus on the combination of several FI scoring algorithms as opposed to only us-
ing a single algorithm, an approach which we named NIMEFI. In order to create
combined predictions, we aggregate using Borda count, which in this setting is
equal to averaging rankwise across predictions to obtain a newly predicted rank
for each possible regulatory interaction. We do not impose a prior cut-off value
to the individual prediction rankings of the methods before merging. Other ag-
gregation strategies such as minimum rank or median rank were explored but were
omitted from this chapter as the results were either similar or worse than averaging
rankwise.

2.3 Results

2.3.1 Performance comparison on the DREAM4 size 100 in si-
lico multifactorial dataset

Table 2.2 lists the performance of several algorithms on the DREAM4 multifac-
torial dataset. For comparison reasons, we include the scores of the TIGRESS
algorithm. A first observation is that the ensemble setting seems to be key to the
network inference problem. Both the single-step versions of the ELand SVR are
unable to compete with the other algorithms. However, when casting these algo-
rithms into the ensemble setting, their performance increases drastically reaching
similar scores than those of GENIE3 and TIGRESS. The performance of Symbolic
Regression is also similar to all the EFS-methods. Both Symbolic Regression and
GENIE3 can be classified as inherently ensemble feature importance scoring al-
gorithms. A second observation which can be made is that GENIE3 outperforms
E-RFR, although in both algorithms random forest regression is used. GENIE3
calculates the feature importance based on the variance reduction due to splitting
on a feature [36]. Our results indicate this measure outperforms the counting mea-
sure implemented in the subsampling scheme. We believe this is partially because
the variance reduction measure allows for a more objective comparison between
different regression problems, allowing for a better aggregation towards a global
ranking across the different regression subproblems. A final observation which can
be made is the seemingly overall better performance of the averaged predictions
of multiple ensemble feature importance algorithms as opposed to predictions of
a single one. All combined predictions show an increase in AUROC score, while
retaining a similar score for AUPR. In the last column the standard deviation of
the performance scores over five runs is shown. The standard deviation is close
to O for all algorithms. Both EL and SVR are deterministic, the other algorithms
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introduce randomness but output stable results due to their ensemble nature.

Table 2.2: Performance comparison of several algorithms on the DREAM4 in silico mul-
tifactorial dataset. EL= Elastic Net, E-EL = Ensemble Elastic Net, SVR= Support Vector
Regression, E-SVR= Ensemble Support Vector Regression, SR= Symbolic Regression, E-
RFR= Ensemble Random Forest Regression, G= GENIE3). '+’ indicates rankwise averag-
ing of several methods. ALL= GENIE3+E-SVR+E-EL. Ensemble variants, indicated with
'E-’, were created using the subsampling scheme with default settings.

Method-Eval Netl Net2 Net3 Net4 Net5 | Avg.
EL-AUROC 0.63 0.62 0.65 0.68 0.65 | 0.64
EL-AUPR 0.13 0.11 0.19 0.18 0.18 | 0.15
E-EL-AUROC 0.74 0.67 074 076 0.75 | 0.73
E-EL-AUPR 0.16 0.15 0.23 0.21 0.21 | 0.19
SVR-AUROC 0.58 0.60 0.62 0.61 0.58 | 0.57
SVR-AUPR 0.02 0.04 0.04 0.04 0.03 | 0.03
E-SVR-AUROC 0.74 0.78 080 0.80 0.81 | 0.78
E-SRV-AUPR 0.13 0.16 0.20 0.19 0.19 | 0.17
SR-AUROC 071 0.69 072 0.7 0.74 | 0.72
SR-AUPR 0.16 0.13 0.25 0.19 0.24 | 0.19
E-RFR-AUROC 0.73 0.70 074 077 0.77 | 0.74
E-RFR-AUPR 0.15 0.15 0.22 0.20 0.20 | 0.18
G-AUROC 0.74 069 076 080 0.77 | 0.75
G-AUPR 0.17 0.15 0.26 0.24 0.23 | 0.20
TIGRESS-AUROC | 0.75 0.70 0.76 0.77 0.75 | 0.76
TIGRESS-AUPR 0.16 0.16 0.26 0.23 0.23 | 0.20
G+E-SVR-AUROC | 0.76 0.75 0.79 0.82 0.81 | 0.79
G+E-SVR-AUPR 0.16 0.16 0.25 0.23 0.24 | 0.20
ALL-AUROC 0.76 0.73 0.78 0.81 0.80 | 0.78
ALL-AUPR 0.16 0.16 0.25 0.23 0.24 | 0.20

2.3.2 Performance evaluation on the DREAMS5 dataset

Table 2.3 shows the performance on the DREAMS datasets. We included the re-
sults of ANOverence, ranked second best overall in the DREAMS challenge, with
the best performance on the E. coli network. However, as opposed to GENIE3 and
TIGRESS, ANOVerence does include meta-information of the microarray chips
to guide the network inference process. GENIE3 performs well on the artificial
dataset, outscoring all individual methods. Note that in the original DREAMS
challenge results, GENIE3 reached a lower overall score because a different pa-
rameter setting was used for the number of input variables that are randomly chose
at each node. The ensemble versions of EL and SVR are able to perform slightly
better than ANOverence but are outperformed by TIGRESS with regard to the
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Table 2.3: Performance comparison of several algorithms on the DREAMS dataset. E-EL
= Ensemble Elastic Net, E-SVR= Ensemble Support Vector Regression,G=GENIE3, '+’
indicates rankwise averaging of several methods

Method Artificial E. coli
AUROC AUPR AUROC AUPR

E-SVM 0.79 0.24 0.61 0.12
E-EL 0.78 0.28 0.63 0.11
G 0.81 0.38 0.62 0.10
G+E-SVR 0.83 0.35 0.63 0.11
G+E-SVR+E-EL 0.82 0.32 0.63 0.11
TIGRESS 0.78 0.30 0.60 0.07
ANOVerence 0.78 0.25 0.67 0.12

AUPR score. The combinations GENIE3+E-SVR and GENIE3+E-SVR+E-EL
are very competitive, reaching a higher AUROC score than GENIE3 but perform
worse with regard to the AUPR score. Both methods however clearly outperform
TIGRESS and ANOverence on this particular dataset. On the biological E. coli
dataset the individual methods, E-SVM, E-EL and GENIE3, show a similar per-
formance. The combination predictions have a slightly higher score overall, but the
difference is minimal compared to the individual methods. ANOVerence reaches
the overall best score, making effective use of the available meta-information of
the microarray chips.

2.3.3 Performance evaluation on the SyNTreN and GeneNet-
Weaver datasets

The previous experiments were performed on benchmark data and the sample size
was insufficient to determine if the NIMEFI approach outperformed the individual
ensemble methods. In order to further explore if there is a significant difference in
performance, we performed additional experiments on synthetic generated data of
which the results can be seen in Figure 2.2. The boxplots show the AUROC and
AUPR scores on three artificial datasets as described in the previous section. For
these datasets we show the results of E-EL, E-SVR and GENIE3 and all possible
combinations of these three methods. Again for comparison reasons, the results
of TIGRESS are shown. We omitted the Symbolic Regression algorithm from
the comparison as the computational complexity of this algorithm greatly exceeds
all others, resulting in quickly deteriorating performance as the expression matrix
size increases. The results for E-RFR were also omitted from the figure in favor of
GENIE3 due to a consistent better performance of the latter method.

Again, as on the DREAM4 dataset, the ensemble versions of EL and SVR seem
to be very competitive with GENIE3 without an overall winner between these three
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algorithms surfacing over all datasets. Interestingly, is the performance increase
by rankwise combining predictions as seen in GENIE3+E-SVR and GENIE3+E-
SVR+E-EL (ALL). Especially the combined prediction of GENIE3+E-SVR seems
most promising. Indeed comparing GENIE3 to GENIE3+E-SVR we notice a sig-
nificant improvement in AUROC score in all three datasets (Mann-Withney U-
test, GENIE and GENIE3+E-SVR, sample size 20 for GNW-100 and SYN 100,
sample size 15 for GNW-200, p-values: 2.491e75, 0.02108, 0.03294), while the
AUPR values are not significantly different (Mann-Withney U-test, same settings,
p-values: 0.0910, 0.2766, 0.8381).

Combined with the results of the previous section, this suggests that overall it is
beneficial to use multiple ensembles feature selection techniques, as they provide
better and more consistent performance among different datasets.

2.3.4 Influence of the parameter settings of the subsampling
scheme

In the previous results, the parameters Z, Yiin, Yimazs Xmins Xmaz Were always
set to their respective default values of 5, 20%, 80%, 20% and 80%. The parameter
I was set to 10000 to allow for complete convergence. In this section, we explore
various different settings for these parameters. We show average AUROC scores
using the E-SVR variant on the DREAM4 in silico multifactorial dataset. The
AUPR scores show similar behavior.

Table 2.4 shows the effect of only varying the Z parameter, which controls how
many predictors receive a score of '1° in a single feature ranking of a subsample
regression problem. The results indicate that for low values of Z, the performance
is stable but consistently degrades towards higher values for Z. This result can
intuitively be explained by the fact that for higher values of Z the algorithm loses
discriminative power between the top ranked genes as all genes in the top Z of the
feature ranking will receive the same score of 1. One could also try to determine
Z in an automated way using the feature importance scores in a single subsample
regression problem. We explored this option by using an algorithm based on a
Grubbs test for outliers to determine the optimal number of predictors, however
this lead to a significant decrease in performance across all datasets. We believe
determining a cut-off value is a non-trivial problem in this context, as the distri-
bution of the feature importance scores varies significantly across the regression
subproblems. This is further complicated by the fact that some feature importance
scores, e.g. the absolute value of the SVM feature weight vector, are hard to in-
terpret outside of an ordinal context. Concluding, we advise a value of 5 for the
7 parameter for all datasets, as it is in the stable region. Furthermore, from a bi-
ological perspective, it is unrealistic to e.g set Z = 20 as this would imply that a
gene is directly regulated by at least 20 other genes present in the subsample of



NIMEFI 33

predictors.

Table 2.4: Influence of the subsampling scheme parameter Z on the E-SVR AUROC score
using the DREAM4 dataset. Default setting indicated in boldface. Difference in AUROC
score compared to the default setting is shown.

7 rank threshold
2 5 10 25 50
0.00 | 0.79 | -0.02 | -0.04 | -0.08

Next, we investigate the effect of the parameters X,,,;, and X, 4., which con-
trol the size of the subsample of the experiments in the algorithm. Table 2.5 lists
the performance for varying values. We notice that the performance suffers if only
small subsamples (< 50%) are included throughout the iterations. This is the case
if X4z 18 set too low, especially in combination with a low X,,,;,,. If the X4,
parameter is set to 80% or 100% we notice a stable region in which the X,,;,
parameter has little effect on the performance. If both parameters are set to 100%,
resulting in only subsampling the predictors in each iteration, a small performance
drop can be seen. From a computational perspective, smaller subsamples are pre-
ferred as the regression subproblem is faster to solve. Taking both observations
into account, we suggest a default value of 80% for X, and a default value of
20% for X min.

Table 2.5: Influence of the subsampling scheme parameters X min and Xmaa on the E-SVR
AUROC score using the DREAM4 dataset.Default setting indicated in boldface. Difference
in AUROC score compared to the default setting is shown.

Xma.'r
Xin 5 20 50 80 100
5 -0.12 | -0.12 | -0.07 | -0.01 | -0.01

20 / -0.11 | -0.05 | 0.79 | -0.01
50 / / -0.01 | 0.00 | -0.01
80 / / / -0.01 | -0.01
100 / / / / -0.02

Furthermore, the effect of the parameters Y,,,;, and Y4, on the performance
is shown in Table 2.6. These parameters control the size of the subsample of
the possible predictors in each regression subproblem. The results indicate that
the performance decreases with higher values for Y,,,;, (> 50%), especially in
combination with higher Y,,,, values. We believe the algorithms benefits from
smaller predictor subsamples as it allows for alternative features to be picked up
as important predictors in the regression subproblem, which would otherwise be
missed because another (dominant) gene was used in the prediction model. Again
from a computational perspective, smaller values for Y,,,;,, and Y}, are preferred
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as it decreases the complexity of the regression subproblem. As such, we also
advice for default values of 20% for Y,,,;,, and a default value of 80% for Y,

Table 2.6: Influence of the subsampling scheme parameters Ypmin and Ymaq on the E-SVR
AUROC score using the DREAM4 dataset. Default setting indicated in boldface. Difference
in AUROC score compared to the default setting is shown.

Ymaa:
Yiin | 20 50 80 100
5 -0.01 | 0.00 | 0.00 | -0.02
20 0.00 | 0.00 | 0.79 | -0.02
50 / 0.00 | -0.02 | -0.05
80 / / -0.07 | -0.10
100 / / / -0.13

Lastly, we explore the effect of the number of iterations on the stability of the
algorithm. Figure 2.3 shows eight boxplots over ten runs for different number of
total iterations. As desired, the performance variance between runs decreases as
the number of subsamples is increased, reaching an almost completely stable result
at values above 1500 iterations.

2.3.5 Additional comparisons between methods

We explored if there are other differences in the predictions of the investigated
methods besides the performance. First, we analyzed if there were any biases in
the node degree distribution of the inferred networks. We transformed the network
predictions into an undirected setting by retaining the first edge in the ranking be-
tween each possible pair of nodes and removing the other. Next, networks were
created from the undirected rankings by imposing several cut-off values. Figure
2.4 shows the node degree distribution of all algorithms on four networks selected
from the different datasets. Here a cut-off value close to the number of links in
the underlying gold standard network was chosen (450 for GNW-200, 150 for all
others). The figure indicates that the different methods can have a dissimilar node
degree distribution on a certain network, however we found no clear bias associ-
ated with an algorithm across all network predictions. We notice that although the
performance of two algorithms can be similar, the individual predictions seem to
vary. Figure 2.5 illustrates this behavior further. In this figure we selected two
predictions (GENIE3 and E-SVR) which had a similar performance score on a
network in the GNW-100 dataset. Both algorithms had an AUROC score of 0.70
and an AUPR score of 0.08. We plotted the 500 top edges of the GENIE3 rank-
ing versus the position they received in the E-SVR ranking and vice versa. True
positive links are shown in green. For both plots, several links appearing at the top
of the ranking for one prediction, are ranked at the very bottom of the other. This
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Figure 2.3: Boxplots of AUROC scores over ten runs with respect to the number of
iterations. The boxplots show the AUROC score over ten runs of the E-SVR algorithm
on the first network of the DREAM4 dataset. The variance decreases as the number of
subsamples is increased, reaching a stable result at about 1500 iterations.
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observation and the varying node degree distribution seem to hint that the predic-
tions of the algorithms can show a different behavior, however it is non-trivial to
quantify this difference.

#Nodes #Nodes
Dream 4
l M
MWJMJ L all/
1 2 3 4 [59] [>10] 1 2 3 4 [591 [>10]
#Nodes Node Degree , #Nodes Node Degree
30 Syntren-100
25
20
15
10
5
- I o
1 2 3 4 [59] [>10] 1 2 3 4 [59] [>10]
Node Degree Node Degree

E-EL ME-SVM MGENIE3 WE-EL+GENIE3 ME-SVM+E-EL [E-SVM+GENIE3 " ALL

Figure 2.4: Node degree distribution of four network predictions selected across the
different datasets. Networks predictions were interpreted in an undirected setting. The
networks were created from the rankings by imposing a cut-off value close to the number
of true links in the corresponding gold network. Although the figure indicates that the node
degree distribution can vary for the different algorithm predictions, there is no consistent
pattern across the expression sets.

Finally, we investigated the ability of the algorithms to predict the correct di-
rectionality of the link as in [21]. First, we removed all bi-directional links from
the gold standard networks. Next, we counted the number of times a gold link
a — b was ranked before the opposite link b — a, proportional to the total num-
ber of gold standard links. We performed this analysis for all networks in the
DREAM4, GNW-100, SYNTREN-100 and GNW-200 datasets. We omitted the
two networks of the DREAMS dataset as a list of regulatory genes was available.
Figure 2.6 shows a boxplot of the directionality scores for all algorithms on the
remaining 60 networks. A first observation is that the E-SVR and GENIE3 algo-
rithm predict directionality better than the E-EL algorithm. The plot also indicates
that combining multiple ensemble feature importance algorithms is beneficial to
the directionality prediction in the case of GENIE3+E-SVR (Wilcoxon rank sum
test with continuity correction: GENIE3 and GENIE3+E-SVR, sample size 60,
p-value= 9.302¢7).
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Figure 2.5: Comparison of the given rank at the edge level of two algorithm predic-
tions. In the figure on the left we plot the rank of the top 500 most confident links of the
GENIES3 prediction versus the rank which these edges received in the E-SVM prediction.
True positive links are indicated as green squares. Although the AUROC and AUPR scores
of both methods are almost identical for this network, several top predicted edges by GE-
NIE3, including true positives, appear much further down the ranking of E-SVM and vice
versa.

2.3.6 Computational aspects

The ensemble subsampling approach used in NIMEFI results in modeling a re-
gression problem (of sample size S by G features), N times, and using a feature
selection algorithm of choice in each iteration to obtain a feature ranking. If an
embedded feature selection technique is used, as was the case with the elastic net
and support vector regression techniques, the cost breaks down to solving the .S by
G regression problem N times, which is entirely dependent on the machine learn-
ing technique and implementation which is used. As such, if for example S < G,
as is the case with gene expression compendia, using support vector regression in
dual representation becomes computationally interesting. Furthermore, each iter-
ation of the algorithm is independent and each target gene can also be solved in
parallel. Due to these properties, running NIMEFI as a backfill job on a cluster
becomes very interesting as the individual work packages can be tuned to almost
every time slot.

In our work, we did not focus on optimizing the running time of the specific
algorithms as we made use of general available libraries to compare a wide array
of methods. However to give an indication of the relative running times, Table 2.7
gives an overview of the running times of some of the algorithms. These measure-
ments were conducted using an Intel i3 CPU M350 clocked at 2.27GHz, 8.00 GB
of RAM memory and a 64-bit operating system. For the theoretical computational
complexity, we refer to the specific software packages as listed in the Materials
and Methods section.
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Figure 2.6: Boxplots showing the ability to predict the correct directionality of a true
positive link. For all predictions we counted the number of times a gold standard link
a — b was ranked before the opposite link b — a, proportional to the total number of
links in the gold network. We performed this analysis for all networks in the DREAM4,
GNW-100, SYNTREN-100 and GNW-200 datasets. The boxplots show the results for all
algorithms. The GENIE3+E-SVR is significantly better at predicting the correct direction
compared to GENIE3 (Wilcoxon rank sum test with continuity correction: GENIE3 and
GENIE3+E-SVR, sample size 60, p-value= 9.302675).

Table 2.7: Comparison of indicative running times of E-SVR, E-EL and GENIE3. Run time
in seconds for a single complete iteration or subsample of the algorithm considering all
genes.

Method | Running time DREAM4 | Running time DREAMS
GENIE3 4.7TET02 4.01E705
E-SVR 3.10ET° 4.92E 102

E-EL 1.39E+2 8.46E 02
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2.4 Discussion

In this article we generalized the GENIE3 algorithm for GRN inference to other
feature importance scoring algorithms in the same regression context. We pre-
sented a subsampling approach which allows any feature selection algorithm that
can produce a ranking to be cast into an ensemble feature importance scoring al-
gorithm. Using this scheme, we have analyzed the performance of several FS al-
gorithms using the DREAM4 multifactorial and DREAMS5 benchmarks, as well as
several other artificially simulated datasets created using the SynTReN and Gene-
NetWeaver tools. We show that using this approach, several algorithms achieve
equally good performance than GENIE3, demonstrating that an ensemble setting
is key to achieve state-of-the-art-performance on the network inference task.

In the DREAMS challenge an ensemble of different network inference meth-
ods outperformed the single methods, establishing the *wisdom of the crowds-
approach’ to the gene regulatory network inference problem. Motivated by these
conclusions, we explored the method of using a rankwise combination of several
ensemble feature importance scoring algorithms to the network inference task as
opposed to a single one, an approach which we named NIMEFI.

On the DREAM4 dataset, the performance of the combined predictions out-
scores the single predictions, resulting in an overall score better than TIGRESS
and the original GENIE3 algorithm. Using the artificially created datasets these
finding were confirmed. Although no clear winner could be found among the dif-
ferent EFS algorithms, their combined predictions achieved a significantly higher
AUROC score on all three datasets.

The results on the DREAMS dataset were inconclusive. On the artificial dataset
GENIE3 outperforms all other single algorithms but the NIMEFI combinations
achieve a slightly better AUROC score at the cost of a slightly lower AUPR. On
the biological dataset, all three individual methods perform similar and the NI-
MEFI combinations achieve a minimal performance gain.

Comparing the different methods further, we have shown examples in which
the performance of the individual ensemble methods can be very similar although
the predicted networks are different with respect to the node degree distribution or
the predicted individual edges. Moreover, we have also investigated the ability of
the methods to predict the correct directionality of the link.

We also explored the impact of the parameters of the proposed subsampling
approach on the performance. We suggested and motivated default values and
have shown that within reasonable and intuitive ranges, the performance is stable
with regard to these settings.

Concluding, our findings indicate that the use of NIMEFI as opposed to us-
ing a single ensemble feature importance can further increase performance on
the network inference task, reaching state-of-the-art performance on the DREAM
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datasets as well as on several artificial datasets. Combining the good performance
with the computational attractive parallelization nature of NIMEFI, we believe our
approach is an interesting alternative to other GRN methods. An implementation
of our method is available for download at http://bioinformatics.intec.ugent.be/.
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“There is a single light of science, and to
brighten it anywhere is to brighten it every-
where.”

— Isaac Asimov

Netter: re-ranking gene network
inference predictions using structural
network properties

In this next chapter, we propose a method named Netter to further refine predic-
tions made by a network inference algorithm by using structural properties of gene
regulatory networks. The large majority of proposed inference algorithms do not
take into account that gene regulatory networks have several network characteris-
tics which define them and are not random graphs. Netter can be used as a second
step after applying any network inference of choice and proves to be a valuable
addition to further boost the accuracy of such predictions.
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Abstract

Many algorithms have been developed to infer the topology of gene regulatory
networks from gene expression data. These methods typically produce a rank-
ing of links between genes with associated confidence scores, after which a certain
threshold is chosen to produce the inferred topology. However, the structural prop-
erties of the predicted network do not resemble those typical for a gene regulatory
network, as most algorithms only take into account connections found in the data
and do not include known graph properties in their inference process. This lowers
the prediction accuracy of these methods, limiting their usability in practice. We
propose a post-processing algorithm which is applicable to any confidence rank-
ing of regulatory interactions obtained from a network inference method which
can use, inter alia, graphlets and several graph-invariant properties to re-rank the
links into a more accurate prediction. To demonstrate the potential of our ap-
proach, we re-rank predictions of six different state-of-the-art algorithms using
three simple network properties as optimization criteria and show that Netter can
improve the predictions made on both artificially generated data as well as the
DREAM4 and DREAMS benchmarks. Additionally, the DREAMS E.coli. com-
munity prediction inferred from real expression data is further improved. Further-
more, Netter compares favorably to other post-processing algorithms and is not
restricted to correlation-like predictions. Lastly, we demonstrate that the perfor-
mance increase is robust for a wide range of parameter settings. Netter is available
at http://bioinformatics.intec.ugent.be. Concluding, we believe that Netter is an
interesting second step in the network inference process to further increase the
quality of prediction. It is a flexible system which can be applied in unison with
any method producing a ranking from omics data and can be tailored to specific
prior knowledge by expert users or applied in general uses cases.

3.1 Introduction

Network representations are widely used and vital in many areas of science and
engineering. They serve both as an endpoint for users to structure, visualize and
handle large amounts of data and as a starting point for various algorithms that
use networks for automated hypothesis generation. In systems biology, one of the
long-standing challenges is the reverse engineering of the cell’s transcriptome in
the form of gene regulatory networks (GRNs). This has proven to be a daunting
task, as the number of genes in the network vastly exceeds the number of avail-
able measurements. As a result, many computational methods have been devel-
oped [1-3] which try to overcome this challenge using various strategies. These
methods differ not only in their accuracy to infer the network but also strike a dif-
ferent balance between scalability and complexity [4, 5]. In a recent community-
wide effort, a large blind assessment of unsupervised inference methods using
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microarray gene expression data was conducted [6]. This study concluded that no
single inference method performs best across all data sets but that in contrast, the
integration of several techniques to form an ensemble ’community’ prediction led
to a robust and top performance. In a collaborative effort between the DREAM
organizers, the GenePattern team [7] and individual contributors, a web service
GP-DREAM was set up to run and combine current state-of-the-art methods. To
date, five methods are offered: ANOVerence [8], CLR [9], GENIE3 [10], the In-
ferelator [11] and TIGRESS [12].

Common inference strategies of GRN inference algorithms include the cal-
culation of local pairwise measures between genes or the transformation of the
problem into independent regression subproblems to derive connections between
genes. It is clear that using these schemes, the algorithm is unaware that the goal
is to infer an actual network topology. Therefore, the global network structure
cannot influence the inference process. For example, relevance networks [13] are
created by calculating the mutual information between each possible gene interac-
tion pair. A high mutual information score between a gene pair is then considered
as putative evidence of a regulatory interaction. It is well known that this technique
predicts a large number of false positive interactions due to indirect effects. Two
widely-used methods, CLR [9] and ARACNE [14] acknowledge this weakness
and implement strategies to mitigate this problem by incorporating a more global
network context. ARACNE uses the Data Processing Inequality on every triplet
of genes to filter out the weakest connection. CLR builds a background model for
each pair of interacting genes and will transform the mutual information score to
its likelihood within the network context. WGCNA [15] also incorporates a global
network context in the network reconstruction step of the algorithm. Pairwise cor-
relations are raised to the optimal power to maximally fit a scale-free topology
property of the constructed network. In a more general context, Network Decon-
volution [16] was proposed as a post-processing technique to infer direct effects
from an observed correlation matrix containing both direct and indirect effects.
Similarly, a post-processing method named Silencer [17] uses a matrix transfor-
mation to turn the correlation matrix into a highly discriminative ’silenced’ ma-
trix, which enhances only the terms associated with direct causal links. However,
in general and as to date, almost none of the state-of-the-art algorithms make use of
general or specific structural knowledge of gene regulatory networks to guide the
inference progress. In contrast, such structural properties of GRN and biological
networks in general have been studied extensively in literature [18, 19], introduc-
ing concepts such as modularity, hub-nodes and scale-free biological networks.
The topology of a specific GRN is highly dependent on the experimental condi-
tions and the type of cell [20] although general topological properties have been
reported. It has been described that both prokaryotic and eukaryotic transcription
networks exhibit an approximately scale-free out-degree distribution, while the in-
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degree distribution follows a restricted exponential function [21]. Furthermore,
the concept of relatively isolated sets of co-expressed genes under specific con-
ditions, called modules, has been introduced, as discussed in [22]. Topological
analyses of GRN have also revealed the existence of network motifs [23], recur-
rent subgraphs in the larger network which appear more frequent than would be
expected in randomized networks. The existence of such network motifs and their
frequency of occurrence inevitably has an impact on the global network structure.
Finally, prior knowledge about the topology of the specific GRN of the cell at hand
can be available, in the simplest scenario in the form of already known regulatory
links extracted from literature. We believe that the current non-inclusion of such
known structural properties in the inference process leads to predictions that do not
achieve their full potential. Furthermore, they are often characterized by different
graph-invariant measures than networks found in literature. Although it is hard
to completely transform these predictions into more realistic networks, it is clear
that the inclusion of structural knowledge is desirable and will be beneficial to the
prediction accuracy. However, including such complex and diverse topological in-
formation directly in the inference process of existing algorithms is non-trivial and
offers little room for modifiability.

Instead in this work, we propose and validate a post-processing approach that
aims to be easily modifiable and extendable. The resulting algorithm, named Net-
ter, uses as input any ranking of regulatory links sorted by decreasing confidence
obtained by a network inference algorithm of choice. It then re-ranks the links
based on graph-invariant properties, effectively penalizing regulatory links which
are less likely to be true in the inferred network structure and boosting others. It
is not the goal of this work to put forth structural properties of GRN, instead we
wish to offer a flexible system in which the end user can decide which structural
properties are to be included or emphasized. Expert users can easily design and
include novel structural properties and consequently tune Netter to a specific use
case. However, to validate our approach, we also introduce and motivate three
simple structural properties and default settings which can be used in a more gen-
eral setting in which specific knowledge of the GRN is unavailable. Using these
proposed structural properties and settings, we demonstrate that Netter improves
the predictions of six state-of-the-art inference methods on a wide array of syn-
thetic and real gene expression datasets including the DREAM4 and DREAMS
benchmarks. Netter also slightly improves the DREAMS community prediction
of the E.coli. network inferred from real expression data. We compare and discuss
the performance of Netter with other techniques that aim to incorporate the global
network or post-process GRN predictions. Next, we further investigate and discuss
the characteristics of improvement of Netter. Lastly, we show that the performance
gain of Netter is robust with regard to its parameter settings and the exact definition
of its structural properties.
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3.2 Materials and Methods

Figure 3.1 shows an overview of the Netter algorithm. In the following subsec-
tions, we first formalize the problem statement and elaborate on the different steps
of the algorithm. Next, we introduce three different structural properties which
will be used to re-rank the input networks. Finally, we discuss the different net-
work inference methods that will be used to create the input networks and briefly
discuss the computational aspects of Netter. In the process of formalizing the prob-
lem, we will introduce a parameter for every design decision. In practice however,
many of these parameters do not substantially influence the outcome of Netter and
do not need tuning as we will further discuss in the Results and Discussion section.

original confidence current ranking / propos_ed ngw
ranking of links to be re-ranked (b) ranking / Nett_er
overview
randomly
move links output final
™} L] ( [ L J ranking
a) G maintain pr—y
... .- data sources — previous ranking reneat
- SpCar
select top - optimisation
x links N —_— several
network inference cost Y accept new times
SIS A ranking
................. (parallel)
calculate cost function —
-
total divergence cost (e) total structural cost — em—
function of a ranking e inction of a ranking -——
i —
3 (loriginal_rank(link) - new._rank(link)1)? = Y fa’f“ki’:‘;""‘s c7 e
£
total structural _~ structural . first 2n links
@ i cost ~* cost ‘—v..-& of ranking (©) N ¢ s average
structural penalty functions Inetwork) 92 rankwise
s B . §
. N T first (x-n) links
[ ‘s : “ R w& i final
'b R B G 9oum)-1 output
graphlet graph invariant o - ranking
distribution properties weighted determine subnetwork ~ creation of Pro—=s

average structural cost function Subnetworks

Figure 3.1: Overview of the re-ranking approach of Netter. A ranking of regulatory links
sorted by decreasing confidence is assumed. This prediction can be obtained by an inference
method of choice using any data source. In a first step, the top x links of the ranking are
extracted. Netter will assign these links a new position, whereas the other links maintain
their original ranks. The extracted ranking is awarded a cost and using simulated annealing
the cost function is minimized several times, obtaining re-ranked lists in the progress which
are then averaged to obtain the final output ranking. The cost function strikes a balance
between modifying the original ranking to have better structural properties while remaining
true to the original ranking.

3.2.1 Input, problem definition and output

Most GRN inference methods return an absolute ranking of all possible edges,
sorted by decreasing confidence that this link is a true regulatory interaction. This
ranking is then later transformed into a network representation by selecting a
threshold determined by the algorithm or end-user. Netter uses as input such an ab-
solute ranking of potential gene regulatory links. This ranking can be incomplete,
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however no regulatory links will be added as Netter is strictly a re-ranking ap-
proach. No further assumptions are made about which algorithms or data sources
were used. Although we focus here on unsupervised network inference methods
which use microarray expression data to infer network topologies, Netter is gen-
erally applicable to any method producing a ranking from omics data. In practice,
it only makes sense to re-rank the top of the ranking noting that networks consist-
ing of 100 genes already produce a complete ranking of 9900 potential regulatory
links (excluding self-regulatory interactions). Therefore, in the first step of the
algorithm (Figure 3.1, a), the top = most confident links of the prediction are ex-
tracted, where x is a user-chosen value. The algorithm will work on these links
only, assigning them a new rank, whereas the remaining links maintain their orig-
inal ranks and cannot influence the decision process.

3.2.2 Formulation as an optimization problem

Using the extracted top x links, an optimization procedure is started which is per-
formed several times and can be executed in parallel (Figure 3.1, b). Each opti-
mization procedure outputs a new ranking, after which the final ranking of Netter
is obtained by averaging rank-wise over all output rankings (Figure 3.1, c). Av-
eraging over multiple output rankings is a crucial step in Netter. It guarantees
robustness and performance gain as the total cost function which is optimized is
non-convex with many local optima. We will further discuss this in the Results and
Discussion section. A single optimization procedure tries to find a ranking [ € L,
the set of all possible rankings, which minimizes a total cost function f assigning
a positive value to any ranking in L.

: ; . +
IlIélilf(l),Wlthf :L—-R

This total cost function is defined as the weighted sum of two cost functions s and
A with the same (co)domain as f:

f) =s() + a.A(l)

Here « is a global balance factor, s is a structural cost function giving a score to
aranking based on structural properties and A is a divergence function quantifying
how much a ranking is different from the original ranking. Intuitively, f strikes a
balance between modifying the original ranking to have better structural properties
while remaining true to the original ranking (Figure 3.1, d).

3.2.3 Simulated annealing optimization

This optimization problem is then solved by following a simulated annealing ap-
proach to the problem. In a single step of the optimization process, we create a
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new ranking !’ by randomly moving ~ links up or down the ranking by 6 posi-
tions. ~y is sampled uniform from [1,T] in each step, while 6 is sampled uniform
for each link from [—©,+0]. ©, I being user-set integer values. In practice,
this way the optimization process will explore both minor as substantial changes
to the ranking. The newly generated ranking [’ is accepted as the new ranking if
f(I") < f(1) or with a probability of e~(/()=/W)/T otherwise, with T being the
current temperature of the annealing process, as proposed by [24]. We use a tradi-
tional exponential cooling schedule in which the temperature is repeatedly lowered
by a constant factor p after each iteration. To avoid manual tuning of the annealing
parameters for each network, Netter will automatically adjust the parameters and
restart if the acceptance ratio of bad mutations during a starting window (e.g. the
first 10% iterations) is not within user-defined limits.

3.2.4 Assigning a structural cost function and a divergence cost
function to a ranking

In Netter, the structural cost function s assigns a score to a ranking ! based on
topological properties. We adopt the following procedure (Figure 3.1, e) to trans-
form a ranking into network representations of which structural properties can be
calculated. In a first step, a subnetwork g;, containing n links, is created by using
the top n links of the ranking. Next, a subnetwork g- is created, containing the
first 2n links of the ranking. This process is repeated until a subnetwork gz /n)—1]
is created, containing all but the last n links of the ranking. Summarizing, subnet-
works g1, g2, - -5 Gis g[(x/n)—1) Of increasing size are created from the ranking /,
consisting of n, 2n, ..., i.n, z-n links respectively. We can then calculate a score
for each of these subnetworks by using a structural property function Sgz;,c¢ Which
depends on some structural properties. s is then defined as the weighted sum of
the structural scores of the individual subnetworks g; created from the ranking .

S(l) = Z T3 Sstruct (gz)

The coefficients 7;, each associated with a subnetwork, are set to decrease
according to the network size. Smaller subnetworks, corresponding to the top
of the ranking are in this way more influential in the total structural cost of the
ranking. Intuitively, this way the optimization procedure will make the top of the
ranking correspond more to structurally realistic networks by moving links to the
top of the ranking which structurally improve the network and move down others
which seem odd to be present. As the size of the search space of possible rankings
allows for an almost infinite number of rankings which effectively minimize the
structural cost function close to its lowest possible value, the divergence function
A needs to be included in the total cost function f. This function thus acts as a
regularization term and is defined as:



52 CHAPTER 3

A(l) = Z(|0riginal,rank(link) — new,rcmk:(link)|2)
link

3.2.4.1 Structural property functions

The structural property function s is defined as the weighted sum of individual
structural penalty functions S+ Which each have a user defined weighting co-
efficient. The number of structural properties which one could associate with a
typical GRN are plenty and are much subject to debate. Furthermore, some struc-
tural properties are highly dependent on the cell at hand or the experimental con-
ditions. Therefore, Netter is designed to allow for the easy inclusion and exclusion
of new or existing structural properties. Expert users or researchers which have
prior knowledge can tune Netter to specific use cases. For example, a custom pen-
alty could be defined which penalizes the non-inclusion of known interactions. It
is not the main focus of this work to develop or suggest (complex) structural pen-
alty functions. However, to validate our re-ranking approach, we introduce several
general structural properties based on graph-invariant properties and graphlets. In
this article, we restrict these functions to be a simple v-shaped mapping of a certain
structural property of the network y to a cost value, although Netter can include
any function that maps a network to a positive value. The v-shaped function is
defined as follows:

Sstruct(y) = Hay + b”

Here, the parameters a and b can be specific for each of the sg4y4c¢. In the results
section we discuss how changes in the relative weighing coefficients and the exact
shape of the individual structural penalty functions (by varying a and b) influence
the performance of Netter.

3.2.4.2 Graphlet-based structural penalty

Graphlets have been introduced as small connected non-isomorphic induced sub-
graphs of a larger network [25]. They differ from the concept of network motifs by
the fact that an induced subgraph needs to contain all the edges between its nodes
which are present in the parent network. Since the original study, several other
graphlet-based network properties have been derived and successfully applied in
various applications [26]. If we focus on 4-node graphlets, it is clear that hub-
like structures in the network will promote the occurrence of G4 (see Figure 3.2)
graphlets. We postulate that the relative frequency of G4 graphlets as compared
to all other 4-node graphlets could be used as an optimization criterion to create
networks which are more modular. The need for increased modularity can be mo-
tivated by the fact that in the inferred networks, the network topology resembles
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a full-mesh structure as opposed to a scale-free, modular topology that is gener-
ally associated with a GRN. To be precise, we created a graphlet-based penalty
function which defines y as the relative percentage of G4 graphlets compared to
all other 4-node graphlets. Next, a and b are set in the v-shaped cost function such
that a lower cost corresponds to networks with a high relative percentage of G4
graphlets. Including this penalty does not eliminate the possibility of other valid
biological structures to appear in the network (e.g. feed forward loops), as strong
signals will always be retained due to the divergence cost penalty or other included
penalties. This penalty will merely discourage the occurence of weak signals con-
nected to stronger signals (links that appear at the top of the original ranking)
that would result in less modular networks. In practice, penalties based on other
graphlets can (and are encouraged) to be included in Netter to further refine the
desired network shape. One can also include penalties based on subgraph counts
in a directed network context (i.e. network motifs). However, for demonstration
purposes, we will only include the G4-graphlet relative frequency as optimization
criterion as we believe it is the most simple and intuitive criteria. In the Results
section, we discuss the default mapping (a and b) and the stability of this penalty.

g%-é'})%cf& 3-node graphlets ) 4-node graphlc:,:s )} )
nI ;I 3 . .;I 8 W ”@
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Figure 3.2: All 3-node and 4-node connected network graphlets. Figure adapted from
[26].

3.2.4.3 Regulatory gene limiting penalty

In the case a list of known regulatory genes is not available, as in the DREAM4
benchmark, predictions tend to favor the presence of outgoing links originating
from almost every node in the inferred network. This is due to indirect effects,
if for example a gene A regulates both genes B and C in the same process, most
algorithms will also predict a regulatory link between B and C. Furthermore, in the
absence of interventional or time-series data, the direction of a regulatory link is
hard to predict resulting in a large number of bi-directional links as both directed
edges will usually be close to each other in the ranking. In reality, it is improbable
that every gene in the network has an outgoing link in the network, as this would
suggest that the gene has a regulatory function. Although the graphlet-based struc-
tural penalty partially addresses these problems, a simple regulatory gene limiting
penalty was created which defines y as the number of nodes in the network with
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at least one outgoing link relative to the total number of genes in the network.
Parameters a and b were set such that a high cost was associated with networks
containing a high percentual number of nodes that have outgoing links.

3.2.4.4 Anti-dominating penalty

In some cases after re-ranking, we noticed that a regulatory gene and its target
genes would completely dominate the top of the prediction list, leaving no room
for other modules. This behavior is unwanted, as one wants to discover different
areas of the network. This penalty counters this problem by penalizing a percentual
large number of links originating from the same gene in the network. The anti-
dominating penalty defines y as the ratio between the maximum number of links
originating from a same gene in the network and the total number of links in the
network.

3.2.5 Computational aspects of Netter

The large search space of possible rankings results in the necessity of performing
many steps to minimize the optimization function. Therefore, it is critical that a
single step is performed as efficient as possible. Two computationally expensive
processes can be distinguished in a single iteration. First, the new candidate rank-
ing I’ created from [, needs to be transformed into new subnetworks g;. Second,
structural penalties need to be calculated using the newly created subnetworks of
which some, e.g. the graphlet count, can be computationally expensive. Executing
both processes from scratch would result in an unacceptable runtime. However,
because the new ranking !’ is similar to the current ranking / an incremental ap-
proach to the problem can be used. Therefore, Netter uses an incremental update
scheme to keep track of the subnetworks and can efficiently revert back in case the
new ranking is rejected. All penalty functions, including the graphlet enumerator
have been defined and developed to work in an incremental way and new structural
penalties should also be implemented in this setting. Each optimization procedure
in Netter is ’embarrassingly parallel’. Therefore, Netter will assign new optimiza-
tion runs to each idle, available core. To give an estimate of the execution time of
Netter: a typical set-up as described further including 100 independent optimiza-
tion runs, took 5 single core hours on a Intel i3 CPU M350 clocked at 2.27 GHz,
8.00 GB of RAM and a 64-bit OS. However, the running time is highly depen-
dent on the parameter settings and the list of included penalties. Furthermore, the
number of independent runs (=100) is conservative and can be further lowered if
computing power is an issue. We discuss this in more detail in the Results and
Discussion subsection.
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3.2.6 Selected network inference methods

In order to test Netter we performed a large number of experiments using a variety
of network inference methods. We selected six network inference methods in total
with varying complexity and performance. In addition, in case of the DREAMS
networks, the community prediction networks as created and published in [27]
were added. Of the six selected network inference methods, three are based on
mutual information scores: CLR [9], ARACNE [14] and BC3NET [28]. Three
other methods use machine learning techniques to infer the network GENIE3 [10],
NIMEFI [29] and TIGRESS [12].

3.2.7 Selected data sets and evaluation measures

Netter’s performance was evaluated using the five expression datasets from the
DREAMA4 in silico 100 multifactorial [27, 30, 31] challenge and the two expres-
sion compendia from the DREAMS5 network inference challenge [6]. Furthermore,
to avoid overfitting specific structural properties of these benchmarks, we created
an additional 25 networks of different dimensions and associated expression com-
pendia using two different synthetic gene expression data generators SynTRen [32]
and GeneNetWeaver [30, 33]. Table 3.1 provides an overview of the dimensions
and properties of the datasets. Using all of these datasets, we inferred the network
topology using the algorithms described in the next subsection. Next, we chose a
cutoff value = and re-ranked the resulting prediction using Netter. As evaluation
measure, we consider both the Area Under the Receiver Operating Characteristic
curve (AUROC) and the Area under the Precision-Recall (AUPR) curve, only tak-
ing into account the true edges present in the first « predicted links of the original
ranking. Gold edges which are not present in this original ranking are removed
from the gold standard prior to calculating the scores. This allows for a fair com-
parison between the original ranking and the re-ranked list as Netter is strictly
a re-ranking algorithm and cannot add any edges outside the selected = edges.
Furthermore, it allows a more clear comparison between networks of different di-
mensions. As a result, the AUROC and AUPR scores in this article depend on
the original predicted ranking and cannot be compared between different methods.
For some of the additional tests, a reduced dataset of 15 networks was used in-
stead of the full dataset to ease the computational demands. This networks in this
dataset were randomly selected from the full dataset and contain only GENIE3
predictions. For each test, we will clearly indicate if the full or reduced dataset
was used.
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Table 3.1: Overview of the datasets used in the performance tests.

Name Networks Reg.genes Genes Samples Type
DREAM4 5 100 100 100 Artif.
DREAMS artif. 1 195 1643 805 Artif.
DREAMS E. coli. 1 334 4511 805 Real
SynTRreN-100 5 100 100 100 Artif.
SynTRreN-150 5 150 150 150 Artif.
GNW-200 15 200 200 200 Artif.

3.3 Results

To interpret the performance results of Netter, it is important to note that from
a theoretical point of view, a post-processing approach can never improve every
network prediction it is applied on. If this would be the case, repeatedly applying
this algorithm on the outcome of a previous re-ranking would eventually result in
the perfect ranking. An analogy can be found in lossless compression, where one
also tries to find general properties to obtain a good compression ratio for a large
set of probable items sampled from the population. In the specific case of Netter,
each consecutive re-ranking will result in less information of the original predic-
tion being used to guide the re-ranking process and therefore should be avoided.
Furthermore, for a specific network it is hard to explain why a loss in prediction
accuracy occurred. A possible reason is that the initial prediction was of insuffi-
cient quality to guide to optimization process in the right direction. It is known that
these network inference algorithms achieve low accuracy and that algorithms can
produce different rankings even with those obtaining similar performance metric
scores [6, 29]. Further on in this section, we will briefly discuss the performance
gain of Netter with regard to the initial prediction accuracy. Also in the follow-
ing subsections, we present the results of performance tests, compare Netter to
other similar technique, discuss the effect of successive applications of Netter and
comprehensively investigate the influence of the various parameters settings and
choice of the structural cost function definitions.

3.3.1 Performance tests

We ran Netter on all networks and all method predictions using the following set-
tings. The cutoff value = was set to the first 750 links or the number of non-zero
links in the case less edges received a non-zero score. The mutation parameters
© and I" were set to 70 links and 50 positions respectively. The subnetwork size
parameter n was set to 25 and the associated coefficients 7; were set to 0.5, for
i = [1...number of subnetworks]. The annealing scheme allowed an acceptance
ratio of bad mutations of approximately 10% after the first 3000 of 30000 iter-
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ations. The optimization process was performed 100 times for each prediction
before averaging and all penalty functions discussed in the previous section were
included. The relative weighing parameter was set to 25 for the graphlet penalty,
2 for the gene regulatory penalty and 75 for the anti-dominating penalty, o was set
to 107°. The influence of the individual penalty cost function shape, the relative
weighing coefficients and other parameters on the performance is discussed in the
next section. Each re-ranking experiment was repeated three times and, due to the
ensemble approach of Netter, the rankings were almost identical.

Figure 3.3 shows the change in AUPR and AUROC compared to the original
ranking after applying Netter on all datasets except DREAMS, each dot resem-
bles a re-ranked network. The results show that Netter substantially increases the
prediction accuracy in the majority of cases across all algorithms. For the AU-
ROC scores, the boxplot bars remain well above the baseline of 0.0, with only a
few re-rankings resulting in a decrease in performance. Looking at the AUPR,
the increase in performance is more pronounced compared to the AUROC change,
with some re-rankings achieving an increase in AUPR of more than 0.25, which in
some cases nets to a relative increase of more than 100% compared to the original
ranking. To give a more intuitive view on the accuracy gain, we take a closer look
at a network (GNW-network 2) on which a substantial improvement was achieved.
Figure 3.4 shows a network comparison view between the original GENIE3 rank-
ing and the re-ranked list in which the first 75 links are plotted. The true posi-
tive links are shown as black solid lines, whereas grey curved lines indicate false
positives. The resulting networks have 31 out of 75 of their predicted links in
common. In the original, there were 36 true positive links, while the re-ranked
prediction contains 69. Of the 36 true positives in the original prediction, 28 are
still in the re-ranked network while 41 of the 44 new links entering the network
are true positives. Further analysis shows that especially the top of the ranking is
improved (Figure 3.5). Indeed, for this example the first false positive is encoun-
tered at position 50 for the re-ranked list and at position 1 for the original. The
fact that the improvement occurs at the top of the ranking is a desirable feature
in practice. Focusing on DREAMS, Table 3.2 shows an overview of the AUPR
of GENIE3, NIMEFI, TIGRESS and the community network. We did not re-rank
the predictions of the mutual information methods, as these methods were outper-
formed by the former in the DREAMS challenge. The table shows that the original
AUPR score on the artificial network is already quite high and Netter is unable to
further improve the prediction. However, on the E. coli. network inferred using
real expression data, Netter substantially improves the predictions of GENIE3 and
NIMEFI while the TIGRESS performance decreases. Netter is also able to slightly
improve the community network as produced by the DREAMS challenge.
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Table 3.2: AUPR before and after re-ranking predictions of the DREAMS5 dataset.

Net. GENIE3 NIMEFI TIGRESS Community
Orig. New | Orig. New | Orig. New | Orig. New
Artif. 094 09 | 081 0.82 | 092 090 | 091 0.88
E.coli. | 0.15 0.21 | 0.18 0.21 | 020 0.16 | 0.13 0.15

Change in AUROC score
s
Change in AUPR score
o
o

e
>

T

ARACNE BC3NET ~ CLR GENIE3 ~ NIMEFI  TIGRESS ARACNE BC3NET ~ CLR GENIE3  NIMEFI  TIGRESS
Network inference method Network inference method

Figure 3.3: Change in AUROC and AUPR scores after applying Netter. Change in
AUROC and AUPR scores after applying Netter on all datasets except DREAM-5 which are
shown in Table 3.2. The different bars represent the network inference algorithm used to
create the initial network. Each dot on the figure is a different re-ranked network and is
the result of a single Netter re-ranking procedure consisting of 100 averaged independent
optimization runs.
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Figure 3.4: Network comparison view of a GENIE3 prediction before and after the re-
ranking procedure of Netter. The first 75 links of each ranking are plotted. True positive
links are shown as black solid lines, whereas grey curved lines indicated false positives.
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Figure 3.5: The difference in the number of true links discovered at various thresholds
for a re-ranking. At every possible threshold of the ranking, the number of true positive
links discovered by the original ranking is subtracted from the number of true positive links
discovered by the re-ranked network. The network is the same as the one plotted in Figure
3.4.
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3.3.2 Comparing Netter to similar techniques

In this subsection, we will compare Netter with other post-processing approaches
for GRN inference predictions and other algorithms that incorporate global net-
work information in their inference process. We are not aware of any other meth-
ods that use structural properties of the output network to guide the inference pre-
diction on a large scale. However, as discussed in the introduction, both CLR and
ARACNE can be considered as extensions of relevance networks which correct
the mutual information (MI) scores using a more global network context. Network
Deconvolution and the Silencer on the other hand are post-processing techniques
that attempt to separate direct causal effects from indirect effects and have been
applied for GRN inference. As mentioned in the introduction, WGCNA raises
a pairwise correlation matrix to a certain power to maximally fit the scale-free
topology measure. Although, the idea is similar to Netter, both methods cannot
be compared directly. WCGNA only changes the edge weight values but does not
change the ranking of edges. As baseline for our comparison, we infer networks
by calculating MI scores for each pair of genes. Next, we also infer the networks
using ARACNE and CLR. For each network, we post-process these three predic-
tions using Netter, Network Deconvolution and the Silencer. This results in twelve
different predictions for each network. We use the same full dataset as in the per-
formance tests. Again we use the AUROC and AUPR scores as evaluation metrics,
however we do not adopt the pre-processing procedure described in the ’Selected
data sets and evaluation measures’ subsection, as we are interested in comparing
between methods as opposed to relative gains in this test.

Figure 3.6 shows the change in evaluation metric compared to the MI predic-
tion. Each dot resembles a final network prediction. In total 11 boxplots are shown,
two include ARACNE and CLR predictions without further post-processing. The
remaining nine are post-processed networks of the mutual information, ARACNE
and CLR predictions using Netter, the Silencer or Network Deconvolution. The
figure shows that the ARACNE method has a higher AUPR score compared to
the MI network but at the cost of a decreased AUROC score. This is caused by
ARACNE setting a large number of interactions to 0, a more aggressive approach
than most other algorithms. CLR both has higher AUROC and AUPR scores than
the original MI prediction. These performance gains are to be expected, as both
algorithms are widely adopted and have been successfully applied to various use
cases. Among the post-processing algorithms, Netter is the clearly the most suc-
cessful one. Applying Netter results in a substantial improvement for the AUPR
score of the ARACNE and CLR predictions as also shown in the previous subsec-
tions and a small improvement in AUPR score for the MI network. The smaller
gain for the MI network can be explained by the lower accuracy of the initial pre-
diction, as we will further discuss in the following subsection. Netter does not
seem to influence the AUROC score of the MI, ARACNE or CLR predictions.
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This is because Netter is a conservative approach, only re-ranking the first = (in
casu 750), allowing no new links to enter the prediction. Applying Network De-
convolution results in a decrease in AUROC and AUPR in all but a few cases for
the MI prediction. It has no effect on the ARACNE predictions and lowers the
prediction accuracy of CLR in general. The Silencer is able to correct the loss in
AUROC score originating from ARACNE but does not have a positive effect in all
other cases. The performance of the Silencer has been subject to controversy [34].
Concluding, we believe that Netter compares favorably to other post-processing
approaches. Furthermore it has the advantage that it is not limited to correlation-
like measures but can be applied to rankings or ranking ensembles of different
algorithms.

3.3.3 Characteristics of improvement with regard to the initial
prediction accuracy

Figure 3.7 shows the results of the performance tests in a different way. We
grouped the 180 re-rankings into 6 equally sized bins using the accuracy of the
initial prediction as binning criteria. The y-axis shows the relative gain in AUPR
compared to the original prediction (e.g. an original AUPR score of 0.20 which is
increased to 0.40 by applying Netter would be plotted at a y-value of 100%). For
each bin, the means of the boxplot are well above the baseline of 0 and in less than
30% of the cases the performance is lowered. Furthermore, higher gains (up to
150%) are achieved as opposed to less accurate re-rankings (maximum at -50%).
The potency of Netter to improve predictions is at its lowest for predictions which
are the least accurate to start with. This makes sense, as Netter relies on the accu-
racy of the initial prediction to guide its re-ranking process in the right direction.
We see a general trend that applying Netter becomes increasingly interesting up
to a certain level if the initial accuracy of the prediction is higher. The majority
of predictions with the highest initial accuracy have a lower mean improvement,
although some of the most accurate initial predictions can still be substantially
improved by applying Netter.

3.3.4 Successive applications of Netter

Netter can also be applied on the outcome of a previous Netter re-ranking. Figure
3.8 shows the evolution of the AUPR score of chaining Netter on the reduced test
dataset of 15 GENIE3 predictions. A second re-ranking procedure has a mixed
effect on the performance, with about as many networks improving in accuracy
as predictions becoming less accurate. Further successive applications of Netter
result in an accuracy loss in the general case although many networks continue
to show an improvement compared to original ranking after 5 re-rankings. The
obtained accuracy is comparable to running Netter with increasingly less stringent
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groups of 30 networks. In general, Netter’s potential to improve the prediction is higher
when the initial prediction is more accurate.
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Figure 3.8: Evolution of the performance during consecutive applications of Netter.
Netter is consecutively applied using default setting and penalty functions on the reduced
test dataset. The performance increase or decrease compared to the original prediction is
plotted after each re-ranking.
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regularization penalty (divergence cost function) as the influence of the original
ranking is decreased with every re-ranking.

3.3.5 Parameter and structure cost function stability analysis

The large number of parameters which can be set in Netter raises the questions
of how one can tune these parameters and how influential these parameters are on
the prediction accuracy. Furthermore, one needs to be sure that a small change
in the definition of the structural functions does not lead to a large change in the
re-ranking accuracy. To address the first question, Netter is equipped with a logger
system which can track among others the prediction accuracy, the total cost func-
tion, the individual penalty functions and the accept/revert ratio of the simulated
annealing process at desired intervals. To address the second question, first the
performance tests used a large and diverse dataset: including benchmark data and
networks of different dimensions, created by two different simulators to decrease
the change of obtaining inflated figures by chance. Secondly, we have performed
parameter sweeps by changing the value of one parameter and keeping the other
constant. Thirdly, we substituted the default structural cost function mapping for
each penalty with three times sixteen other simple structural cost functions with
different slopes and intersects by varying a and b. Table 3.3 lists the default pa-
rameter settings and explores different values for the structural penalty functions,
the balance factor «, the subnetwork size parameter n and associated coefficients
m;. The tables shows the average AUPR over all 15 networks. We discuss the pa-
rameter settings and the results of the stability tests in the following subsections.

Table 3.3: Stability tests of o, n, m; and the relative weights of the structural penalties. The
average AUPR score on a subset of 15 GENIE3 predictions is shown and compared to the
score using default settings. Parameters not listed were set to default values. (Def. Default
Settings, g4=graphlet, r=regulatory, a=anti-dominating)

Def.n=25,m,=0.51 | (50,0.51)) (75,0.51) (50,0.251)) (50,3i)
0.41 041 041 0.41 0.42
Def.a=10"" a=10"2 oa=10"% a=100% a=10"°
0.41 0.37 0.40 0.41 0.42
Def.g4=2.0 g4=0.0 g¢g4=1.0 ¢4=5.0 ¢4=10.0
0.41 0.39 0.41 0.41 0.41
Def.r=25.0 7=0.0 r=1.0 r=15.0 g=35.0
0.41 0.36 0.38 0.41 0.41
Def.a=25.0 a=0.0 a=50.0 a=75.0 a=100.0
0.41 0.40 0.41 0.41 0.41
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3.3.5.1 Influence of the number of optimization runs on the convergence of
Netter

Netter runs a number of independent optimization runs before averaging and pro-
ducing the final output ranking. We have shown that using this ensemble method,
the output of Netter is robust if the same settings are used. We further explore the
stability of Netter with regard to a variable number of independent optimization
runs. Figure 3.9 shows 10 runs of Netter using 10, 40, 70 and 100 independent
runs before averaging on the E.coli. DREAMS network. All other networks show
similar behaviour. It shows that the mean performance gain increases if more
optimization runs are performed. The variance between the final re-ranking also
decreases with an increasing number of optimization runs. However, the mean
performance difference between 10 runs and 100 runs is only 0.01, while the dif-
ference with the original ranking evalation is 0.08. Therefore, if computing power
is a bottleneck and many networks need to be re-ranked, a reduced number of
optimization runs can be used without a large loss in accuracy.

0.24 o

: : ]

AUPR

022

021+

0_runs 0
Amount of independent optimization runs

Figure 3.9: Influence of the number of optimization runs on the convergence of Netter.
Netter is run ten times with a varying number of independent optimization runs (10, 40, 70,
100). Each dot represents the AUPR of the re-ranked prediction.

3.3.5.2 Influence of the subnetwork size n and coefficients 7;

When calculating the structural cost function, the ranking is divided into subnet-
works of increasing size. The size is determined by the parameter n and the impact
on the total structural cost function of a single subnetwork g; is determined by the
associated coefficient 7;. Increasing the subnetwork size will decrease the com-
putation time, as there are fewer subnetworks of which the structural properties
need to be tracked. On the other hand, a larger subnetwork size leads to less struc-
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tural differentiation options for the different links, possibly resulting in a lower
accuracy. Table 3.3 shows the results for varying n and ;. The performance is
stable with regard to the coefficient choice for m; and the subnetwork size n over
a wide range of values. Concluding, we recommend to set n to a small value (e.g.
25 or 1/30 of z) to ease the computational demands but to allow for maximum
differentiation, however the choice of n and ; is not crucial with regard to the
performance.

3.3.5.3 Influence of varying the global balance factor «

Probably the most important parameter in the re-ranking algorithm is the parameter
« which determines the trade-off between the divergence cost and structural cost
of a ranking. If this parameter is set too high, the algorithm will not allow any
changes to be made to the original ranking. Whereas if the parameter is set too low,
the re-ranking process will not use the original ranking to guide the optimization
process. We vary this parameter by setting the values 10~¢, with i = 2...6. The
results are shown in Table 3.3. For high values of o, the network will only allow
small changes to the network, resulting in accuracy which is between the accuracy
of the original prediction and the maximum accuracy which can be achieved after
re-ranking. Interestingly, the accuracy seems to be stable for the values i = 4...6.
We believe this is due to the ensemble approach in which we average over several
optimization processes.

3.3.5.4 Influence of varying the relative weight of a individual structure pen-
alty function

The impact of the individual penalty functions on the total structural cost func-
tion can be adjusted by changing the associated weights of each penalty function.
These weights are typically set by running the algorithm several times with some
initial settings and by tracking the individual penalty scores using the logging sys-
tem. The influence of these parameters is shown in Table 3.3. For all three penalty
functions, a performance loss can be seen if the penalty influence is set to zero
and as such is not included in the structural cost function. The weight of all three
penalties is shown to be robust for a wide range of values, meaning that a small
change in this weight does not result in a big effect on the outcome. As a rule
of thumb, we suggest that the weights are set using the logger system to values
such that all penalties which the user designed and included more or less equally
contribute to the decrease in the overall penalty function. This way, the weights of
the individual penalty functions seem to have little effect on the accuracy increase
of the re-ranking process.
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3.3.5.5 Influence of the individual structure cost penalty mappings

In order to test the robustness, we replaced the default v-shaped function (f(y) =
|lay + b||) of each structural penalty in a 4 by 4 grid search. b was set such that
the function had zero cost at different values for the structural property y and
for each setting of b, four different slopes were selected by varying a. For the
graphlet based and the gene limiting penalty, the decrease in average AUPR over
the 15 networks was at most 0.02 and corresponded to the setting in which the
penalty function was moved furthest from the original intersect. We therefore
conclude that these penalties are stable over a wide range of possible mapping
definitions. The anti-dominate penalty showed a slightly faster decrease in AUPR
if the intersection with the x-axis was moved further to the right. In the extreme
case the performance dropped to 0.38 from 0.41. The performance loss is slightly
more pronounced because unlike the latter penalties the penalty cost associated
with y-values left of the intersect have no meaning, as it does not make sense to
discourage rankings which explore different regions of the network. Concluding,
the exact shape of all three structural penalty functions is robust and only decreases
slowly if the function is moved closer to the inverse function.

3.3.6 Further exploration of the impact of the structural pen-
alty function definition

In addition to the tests in the previous subsection in which we varied the shape
and the relative performance of the structural penalty functions, we believe it also
important to investigate how Netter behaves in extreme settings. The goal is to both
establish some baselines for the performance metrics and to help gain intuition
about the presented performance and stability results. In a first test, we excluded
all structural penalties and the divergence cost function and again re-ranked the
reduced subset of 15 networks. The simulated annealing scheme was altered to
accept every proposed ranking. This results in randomly shuffling the ranking for
a set number of iterations before averaging the obtained rankings. Table 3.4 shows
the AUPR results for 300, 3000 and the default value of 30000 iterations averaged
over the standard value of 100 independent optimization runs. This experiment
was repeated 10 times and the standard deviation between runs is shown between
brackets. The table shows that the performance drops as the number of iterations
increases. This is expected, as the initial prediction is more confident about the top
of the ranking which would as a result contain more true positive links. Randomly
shuffling the ranking would eventually lead to a uniform distribution of the true
positive links, resulting in a worse AUPR score and an AUROC score of 0.5. Due
to the ensemble nature of Netter, the standard deviation of the performance loss
between the final obtained rankings remains small, although the obtained ranking
diverges more than in the latter case.
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Table 3.4: AUPR results of re-ranking without penalty functions for a set number of it-
erations. Average values over 10 runs are shown on the reduced test dataset. Standard
deviation is listed between brackets.

Initial | Default re-rank. 300 iter. 3000 iter. 30000 iter.
0.34 0.41 0.34 (£0.01) 0.31(£0.02) 0.21 (%0.02)

In a second test, we modify the structural penalties such that they attempt to
optimize the inverse function. For the regulatory gene limiting penalty and the
graphlet-based penalty this is achieved by changing the v-shaped function inter-
cept to 1 — b. The optimization process will then attempt to lower the number of
G4 graphlets and increase the numbers of nodes with outgoing edges. We excluded
the anti-dominating penalty from these experiments, as the inverse of this function
is not well defined. Table 3.5 lists the average AUPR score over the subset of 15
networks.Even in the extreme case in which one uses two inverted functions which
are clearly not typical for a gene regulatory network, the accuracy of the prediction
remains higher than the randomly shuffled network. This is due to the divergence
cost function which attempts to keep the new ranking as close as possible to the
original. In case only one inverted function is used, the performance loss is less
pronounced, suggesting that other structural properties can counter the effects of
ill-chosen penalty functions to some extent. Overall we believe that the perfor-
mance gain is promising if well-motivated structural properties are used and the
performance gain is robust to the exact transformation of the structural property
into a penalty function.

Table 3.5: AUPR results of re-ranking with the inverse of the default structural properties.

Initial | Default re-rank. | Inv. graphlet Inv. regulatory Both inv.
0.34 0.41 0.32 0.30 0.26

3.4 Discussion

In this work we presented Netter, a novel post-processing algorithm for gene regu-
latory network predictions. Our algorithm re-ranks a sorted list of predicted regu-
latory interactions using known structural properties of the network. The algorithm
works by defining an optimization problem in which we minimize a weighted sum
of desired structural properties and a regularization term penalizing divergence
from the original prediction. This optimization problem is solved several times
using simulated annealing, after which the obtained networks are aggregated us-
ing average rank to obtain the final output. We offer a flexible system in which
desired structural properties can be developed and included. Expert users can tune
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the system to include specific prior knowledge but we show that by using three
suggested more general penalty functions we can obtain a large accuracy gain on
benchmark and artificial data. Using these settings Netter outperforms other post-
processing methods such as the Silencer and Network Deconvolution. Although
our method is heavily parametrized, we have shown that the performance increase
is robust for a wide range of values and structural cost penalty functions. Further-
more, especially the top of the ranking is improved by Netter, making our method
appealing for practical use. Finally, we have shown that Netter can further im-
prove the DREAMS community prediction of the E.coli. network inferred from
real expression data.



NETTER 71

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

V. Narendra, N. I. Lytkin, C. F. Aliferis, and A. Statnikov. A comprehen-
sive assessment of methods for de-novo reverse-engineering of genome-scale
regulatory networks. Genomics, 97(1):7-18, January 2011.

N. Soranzo, G. Bianconi, and C. Altafini. Comparing association network
algorithms for reverse engineering of large-scale gene regulatory networks:
synthetic versus real data. Bioinformatics, 23(13):1640-1647, July 2007.

H. Hache, H. Lehrach, and R. Herwig. Reverse engineering of gene regula-
tory networks: a comparative study. EURASIP J. Bioinformatics Syst. Biol.,
2009:8:1-8:12, January 2009.

R. De Smet and K. Marchal. Advantages and limitations of current network
inference methods. Nat. Rev. Micro., 8(10):717-729, October 2010.

T. Michoel, R. De Smet, A. Joshi, Y. Van de Peer, and K. Marchal. Compara-
tive analysis of module-based versus direct methods for reverse-engineering
transcriptional regulatory networks. BMC Systems Biology, 3(1):49, 2009.

D. Marbach, J. Costello, R. Kuffner, N. Vega, R. Prill, D. Camacho, K. Al-
lison, The DREAMS Consortium, M. Kellis, J. Collins, and G. Stolovitzky.
Wisdom of crowds for robust gene network inference. Nat Meth, 9(8):796—
804, August 2012.

M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, and J. P. Mesirov.
GenePattern 2.0. Nat. Genet., 38(5):500-501, May 2006.

R. Kiiffner, T. Petri, P. Tavakkolkhah, L. Windhager, and R. Zimmer. In-
ferring gene regulatory networks by ANOVA. Bioinformatics, 28(10):1376—
1382, May 2012.

J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel,
S. Kasif, J. J. Collins, and T. S. Gardner. Large-Scale Mapping and Valida-
tion of Escherichia coli Transcriptional Regulation from a Compendium of
Expression Profiles. PLoS Biol, 5(1):e8, January 2007.

V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring Reg-
ulatory Networks from Expression Data Using Tree-Based Methods. PLoS
ONE, 5(9):e12776, 2010.

R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and
V. Thorsson. The Inferelator: an algorithm for learning parsimonious reg-

ulatory networks from systems-biology data sets de novo. Genome Biology,
7(5):R36, 2006.



72 CHAPTER 3

[12] A.-C. Haury, F. Mordelet, P. Vera-Licona, and J.-P. Vert. TIGRESS: Trustful
Inference of Gene REgulation using Stability Selection. BMC Syst. Biol.,
6(1):145,2012.

[13] A. Butte and I. Kohane. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. In Pacific Sympo-
sium on Biocomputing, pages 418-442, 2000.

[14] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D.
Favera, and A. Califano. ARACNE: An Algorithm for the Reconstruction of

Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioin-
formatics, 7(Suppl 1):S7-S7, March 2006.

[15] P. Langfelder and S. Horvath. WGCNA: an R package for weighted correla-
tion network analysis. BMC Bioinformatics, 9:559, 2008.

[16] S. Feizi, D. Marbach, M. Médard, and M. Kellis. Network deconvolution
as a general method to distinguish direct dependencies in networks. Nat.
Biotechnol., 31(8):726—733, July 2013.

[17] B. Barzel and A.-L. Barabasi. Network link prediction by global silencing of
indirect correlations. Nat. Biotechnol., 31(8):720-725, July 2013.

[18] A.-L. Barabasi and Z. N. Oltvai. Network biology: understanding the cell’s
functional organization. Nat. Rev. Genet., 5(2):101-113, February 2004.

[19] M. G. Grigorov. Global properties of biological networks. Drug Discovery
Today, 10(5):365-372, 2005.

[20] N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann, and
M. Gerstein. Genomic analysis of regulatory network dynamics reveals large
topological changes. Nature, 431(7006):308-312, September 2004.

[21] R. Albert. Scale-free networks in cell biology. Journal of Cell Science,
118:4947-4957, November 2005.

[22] T. Schlitt and A. Brazma. Current approaches to gene regulatory network
modelling. BMC Bioinformatics, 8(Suppl 6):S9, 2007.

[23] U. Alon. Network motifs: theory and experimental approaches. Nat. Rev.
Genet., 8(6):450-461, 2007.

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671-680, May 1983.

[25] N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: scale-free or
geometric? Bioinformatics, 20(18):3508-3515, December 2004.



NETTER 73

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

N. Przulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2):e177-183, January 2007.

D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and
G. Stolovitzky. Revealing strengths and weaknesses of methods for gene
network inference. Proceedings of the National Academy of Sciences,
107(14):6286-6291, April 2010.

R. de Matos Simoes and F. Emmert-Streib. Bagging statistical network in-
ference from large-scale gene expression data. PLoS ONE, 7(3):e33624,
January 2012.

J. Ruyssinck, V. A. Huynh-Thu, P. Geurts, T. Dhaene, P. Demeester, and
Y. Saeys. NIMEFI: Gene Regulatory Network Inference using Multiple En-
semble Feature Importance Algorithms. PLoS ONE, 9(3):€92709, 03 2014.

D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating Realistic
In Silico Gene Networks for Performance Assessment of Reverse Engineering
Methods. Journal of Computational Biology, 16(2):229-239, February 2009.

R. J. Prill, D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alexopou-
los, X. Xue, N. D. Clarke, G. Altan-Bonnet, and G. Stolovitzky. Towards a
Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges.
PLoS ONE, 5(2):¢9202, February 2010.

T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma,
A. Verschoren, B. De Moor, and K. Marchal. SynTReN: a generator of syn-
thetic gene expression data for design and analysis of structure learning al-
gorithms. BMC Bioinformatics, 7(1):43, 2006.

T. Schaffter, D. Marbach, and D. Floreano. GeneNetWeaver: In silico bench-
mark generation and performance profiling of network inference methods.
Bioinformatics, 27(16):2263-2270, June 2011.

P. Bastiaens, M. R. Birtwistle, N. Bluthgen, F. J. Bruggeman, K.-H. Cho,
C. Cosentino, A. de la Fuente, J. B. Hoek, A. Kiyatkin, S. Klamt, W. Kolch,
S. Legewie, P. Mendes, T. Naka, T. Santra, E. Sontag, H. V. Westerhoff, and
B. N. Kholodenko. Silence on the relevant literature and errors in implemen-
tation. Nat. Biotech., 33(4):336-339, April 2015.






“They knew many things but had no idea
why. And strangely this made them more,
rather than less, certain that they were
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Large-scale network inference of the
Immunological Genome Project gene
expression data with applications in the
unfolded protein response

In this final chapter, we apply gene regulatory network inference methods in a
practical setting. We derive networks from a large collection of gene expression
measurements and use these networks to find potential new genes involved in the
unfolded protein response, a highly conserved pathway which has recently also
been linked to immune responses. Wet-lab experiments were performed that were
selected using the inferred networks to validate potential new interactions.
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Abstract

The Immunological Genome Project has provided the community with a large
and publicly available collection of gene-expression measurements related to the
mouse immune system. This large collection was generated using strict proto-
cols and includes many cell types which makes it an unique resource and an ideal
candidate to analyze using advanced computational algorithms. Large-scale net-
work inference methods typically focus on extracting high-level biochemical in-
teractions between genes without providing answers on plausible mechanisms and
can therefore be applied on a genome-wide level. Recent approaches using tech-
niques from the machine learning community have shown to drastically improve
the quality of the predicted networks compared to earlier approaches which cal-
culate pair-wise measures of co-variation. In this work, we hypothesize that the
former approaches are currently undervalued and more importantly can be used to
extract interactions from gene expression collections unrelated to the original con-
text in which they were performed. We create nine different expression compendia
by grouping microarrays based on cell type and infer cell-specific networks from
these collections as well as a single network inferred from the entire data. We as-
sess the quality of the networks by discussing two inferred subnetworks in detail.
We show that our networks are able to extract non-trivial known connections in
both processes related to the transcriptional control programs of interleukin-17-
producing helper T-cells and processes related to the unfolded protein response, a
highly conserved pathway activated by the accumulation of unfolded proteins in
the endoplasmic reticulum. Lastly, based on the inferred network, we identify us-
ing qPCR experiments potential downstream targets of a key regulator in the latter
pathway. Our results show that indeed multiple genes suggested by the network
behave as a downstream target. The inferred networks are offered to the commu-
nity as a resource for download and can be consulted in the form of an interactive
web-interface.

4.1 Introduction

The Immunological Genome Project (ImmGen) [1] is a multicenter, collaborative
initiative including immunologists and computational biologists that has built a
comprehensive and publicly available database of gene-expression of the mouse
immune system. The ultimate goal of the ImmGen project is to establish a com-
plete road-map of gene expression and gene regulatory networks in immune cells.
The large number of expression compendia that InmGen has created offers unique
opportunities to apply computational tools and generate novel hypothesis.

During the past decade, the decreasing cost and continuing improvement of
high-throughput gene expression measurement techniques such as microarrays and
RNA-seq have led to a seemingly unstoppable increase in the number of performed
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gene expression experiments. In parallel, there has been a persistent pressure of the
community to make available these raw measurements, accompanying the findings
that are reported in literature. Further standardization efforts, in the form of guide-
lines like MIAMA [2] and the establishment of public gene expression repositories
such as the Gene Expression Omnibus (GEO) [3] and ArrayExpress [4] have set
the stage for massive gene expression recycling [5]. Gene expression recycling
hypotheses that novel insights can be extracted by computational tools that ana-
lyze gene expression compendia which have originally been created in a different
context. Already in 2012, it was reported that some repositories for gene data
would hit a milestone of close to a million assays [6]. At the start of 2016, major
repositories such as GEO and ArrayExpress were close to doubling that figure.
Despite this evolution and clear potential, it remains challenging to aggregate and
efficiently (re-)use this huge amount of available data. Added-value databases
, e.g. [7], focus on extracting and processing primary data to allow users to effi-
ciently answer research driven questions, usually by means of query based systems
and efficient visualizations of the data. The latter frequently comes in the form of
networks, as they are well suited to efficiently display large amounts of entities
and interactions.

In the context of gene expression, the concept of gene regulatory networks
(GRNSs) has been well established. These networks abstract the complex process
of gene expression regulation in networks of genes interconnected if there is a reg-
ulating effect between a certain genes expression products and the expression of
another gene. Inference methods for GRN have been described that try to capture
GRN of different sizes and levels of abstraction [8, 9]. Two approaches exist: the
statistical and the mathematical modeling perspective [10]. Similarly, the terms
model-free and model-based have been used in this context as well as methods
that combine both [11]. The mathematical modeling perspective aims to emulate a
natural system with respect to its dynamical activity. The components have biolog-
ical interpretations and the conclusions are drawn from the generative nature of the
model. Well known examples of these models include Probabilistic Boolean Net-
works [12] or models based on ordinary differential equations [13]. The statistical
approach, in contrast, is model-free and aims to draw conclusions about biochem-
ical interactions between genes or gene products without requiring plausible bio-
logical mechanisms. A typical approach of such methods is to calculate pair-wise
measures between each pair of genes that represent co-variation. Several measures
have been suggested including Pearson correlation, mutual information [14—18] or
more recently (feature) importance scores derived from training machine learning
models [19-21]. In contrast to mathematical modeling methods, these methods are
more scalable and therefore applicable to derive large-scale networks. However, it
is harder to include other biological knowledge, e.g. protein-DNA binding events
or prior structure knowledge, although some methods have been described [22].
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Applying statistical methods to infer large scale GRN can have several applica-
tions. A first application is to use the inferred network(s) as input in a differential
network analysis [23] or as a starting point for gene prioritization and network
driven approaches [24]. However, the most frequent goal of creating GRN is to
create a map of suspected gene interactions which can be used to derive novel
hypotheses and guide further (wet-lab) validation experiments.

A major challenge in inferring large-scale blueprints is the severe mismatch
between the number of possible interactions and genes in the network and the
number of available samples (assays). Gene expression recycling is often the only
way to slightly alleviate this problem and create sufficiently large compendia. Al-
though it is now possible to collect relevant data in public databases for a certain
research goal in mind, the heterogeneity of the data and differing methodologies
for its creation becomes the impeding factor to overcome. One of the exceptions
is the gene expression compendia generated in the context of the ImmGen project
because of the common creation methodology and substantial size. This makes it
an unique candidate to conduct large scale network inference.

In related work, networks of the InmGen data and other immunological data
have been inferred. For example, one of the tools that is offered on the consor-
tium website is the Gene constellation tool, which allows the user to query a gene
of interest and explore co-expressed genes (in sub-sets) of the data. Operating
in a module setting, Ontogenet [25] was developed and applied to the ImmGen
data to construct 81 coarse-grained modules and 334 fine-grained modules which
link candidate regulators to sets of co-expressed genes. Using other immunologi-
cal gene expression data Basso pioneered mutual information network inference
techniques to create immunological networks [26].

However, the use of more recent and powerful computational approaches to
infer networks from specific large datasets has remained largely unexplored in
literature despite the potential gain in knowledge and the clear gain in accuracy
such methods offer compared to traditional approaches. Such methods have been
proven to produce much more accurate networks as compared to techniques based
on Pearson correlation and mutual information but come at the price of a severely
increased computational cost [27]. Therefore, in this work, we have created com-
pendia from the raw gene expression offered by Immgen and inferred networks
for eight different compendia comprising of different cell types and one network
inferred from the entire gene expression dataset. For this, we applied inference
methods based on ensemble feature importance methods [20]. Applications of
more accurate ensemble feature importance methods remain largely unexplored
although they are offered side to side to more traditional established methods on
e.g. the GenePattern analysis platform [28]. We show that applying such methods
to produce networks can offer a unique resource, especially when applied to a large
and high qualitative dataset such as the InmGen expression data. We offer these
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networks to the public as a general resource to browse potential biochemical inter-
actions between genes hidden in the data. In addition, we provide a web-interface
to quickly browse the networks we provide. To demonstrate the potential of our
approach, we zoom in on two inferred subnetworks and compare our findings to
relevant literature.

Lastly, we report on the results of wet-lab experiments which were driven by
this analysis. Links were explored between mechanisms involved in the unfolded
protein response (UPR), a cellular stress related to the endoplasmic reticulum (ER)
which is also involved in inflammatory responses [29, 30]. More specific, it is
known that the inositol-requiring enzyme 1 (IRE1, also known as ERN1) initiates
an atypical splicing of the X-box binding protein 1 (XBP1), resulting in the cre-
ation of the transcriptional activator XBP1s which activates i.a. genes involved in
ER-associated degradation (ERAD). To identify potential downstream targets of
XBP1s suggested by our networks, we induce the UPR in vivo by addition of tuni-
camycine and subsequently block the substrate access to the active site of IRE1 by
inhibition through 448c. The effects of his procedure were measured on an RNA
level by means of qPCR at two time steps and using two different concentrations
of 4u8c.

4.2 Results and Discussion

We discuss two validation cases in which we zoom in on the inferred networks
and qualitatively evaluate the networks based on available literature. In a first
case, we discuss the transcriptional control programs related to interleukin-17-
producing helper T-cells (TH17). In a second case, we discuss parts of the network
that are related to UPR, a collection of reactionary mechanisms activated by ER
stress. Lastly, we present the results of additional gPCR experiments which were
performed in order to further validate potential XBP1s downstream targets which
were suggested by the network.

4.2.1 Networks of transcriptional control related to TH17-cells

T helper cells (Th) play a vital role in the adaptive immune system. Interleukin-
17-producing helper T (TH17) cells are a subset of T helper cells characterized
by their production of the pro-inflammatory cytokine IL17. Pathogenic subsets
of Th17 cells have been associated with a multitude of autoimmune diseases [31]
and clinical data shows that anti-IL-17 approaches are effective for treatment [32].
Significant efforts have been made to elucidate the transcriptional control program
of Th17 cells. Typically, the uniqueness of Th cell lineages is based on signature
sets of cytokines and transcriptional regulators. In the specific case of Th17 cells,
ROR~t (ROCR) serves as a master regulator and works in unison with several key
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transcription factors, including the Signal transducer and activator of transcription
3 (STAT3), the Interferon Regulatory Factor 4 (IRF4) and the Basic Leucine Zipper
ATF-Like Transcription Factor (BATF) to activate initial differentiation. The MAF
BZIP Transcription Factor (MAF) is typically identified as a general repressor in
this process.

Two studies in particular have focused on analyzing the transcriptional net-
work at a high temporal resolution and provide regulatory modules and molecular
network representations [33, 34]. In addition, several lists of genes were compiled
consisting of known and novel regulators that are involved in Th17 transcriptional
processes. Based on these articles, we compared a list of literature curated genes
to relevant subnetworks present in our inferred networks.

We inspect specific inferred subnetworks for the three cell type compendia:
CD4+ T cells, CD8+ T cells and all T cells at two accuracy thresholds (top 6000
links, top 15000 links). We created these subnetworks by extracting the genes
ROCR, STAT3, IRF4, BATF and MAF in the network and all of their directly
connected neighboring genes.

As the selected nodes are known to be transcriptional regulators in CD4+ T
cells, we would expect that for the CD8+ extracted subnetwork fewer genes which
are involved in the control program are present in the network and the master reg-
ulators are more loosely connected. This is indeed the case, in the subnetworks
extracted from the top-15000 networks: both the inferred CD4+ T (135 nodes,304
edges) and the all T-cells (164 nodes,359 edges) network have much higher num-
ber of nodes and edges present than the CD8+ cell (23,77) network. In addition,
in the CD8+ network, the regulators MAF and RORC are not present, indicating
that the algorithm did not predict any links to other genes at this threshold level.
Furthermore, both the CD4+ and all T-cell subnetwork consist of a single compo-
nent, further indicating that the algorithm is predicting close relations between the
selected genes.

Inspecting the networks at a more detailed level, several known interactors in
the network show up. For example: the interleukin-1 receptor-associated kinase
4 (IRAK4), which plays a critical role Th17 cell polarization and the response
to IL-23 [35]; the Inducible T-Cell Costimulator (ICOS) which is necessary for
optimal expansion and function of human Th17 cells [36] and the REL proto-
oncogene (REL) which is known to control RORC activity by binding to specific
promoter sites [37]. In total, for the CD4+ network, 13 known interacting genes
are discovered by the subnetwork and 21 in the all T-cell network of which 7
can be found in both networks. On the contrary, 7 genes are found in the CD8+
network (2 in common with all t-cell network, none with CD4+). Figures 4.1 and
4.2 visualize the T-cell network in which the known interacting genes are marked
as green.

In addition, we show that the known interactions we are able to recover are
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genes ROCR, STAT3, IRF4, BATF and MAF. Known interacting genes in the process
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not trivially present in the data. For this, we consult the Gene Constellation tool
provided in the InmGen Data Browser. The Gene Constellation tool provides for a
chosen gene the most closely correlated genes according to the tool, default the top
35 are shown. For all of the 31 recovered known interacting genes in the inferred
networks, we consulted the Gene Constellation tool and marked if any of five key
regulators: ROCR, STAT3, IRF4, BATF or MAF are present in the constellation. If
so, this would indicate that the interacting gene would have also been found using
a more simple correlation approach and are trivially present in the data. However,
only six times does a master regulator appear in the returned list of a queried gene
(STAT3 appears in the list of Bcl3, Naip2 and Irf8 ; BATF in the list of Ctla4;
RORC in the list of Nfkb1). None of the queried genes list more than one of the
master regulators. Furthermore also consulting the lists of the key regulators, none
of the other master regulators appears in the returned lists.

4.2.2 Networks related to the unfolded protein response

The unfolded protein response (UPR) is a highly conserved pathway activated by
the accumulation of unfolded proteins in the ER and aims to restore normal ER
function. More recently, it has also been shown that the UPR signaling pathway
plays a vital role in inflammatory responses [29, 30]. In mammals, the UPR is co-
ordinated by three mechanisms. In a first sub-process, inositol-requiring enzyme
1 (IRE1, also known as ERN1) initiates an atypical splicing of XBP1, resulting in
the creation of the transcriptional activator XBP1s. XBP1s downstream targets in-
clude i.a. genes involved in ER-associated degradation (ERAD). In a second path-
way the PKR-like ER kinase (PERK) inhibits ribosome assembly, which causes
translational inhibition and allows the cell to temporarily manage ER stress. Some
mRNa escape the translation block, among them the Activating transcription factor
4 (ATF4) which in turn activates the expression factors involved in the amino acid
metabolism, oxidative stress resistance and autophagy, in particular the C/EBP ho-
mologous protein (CHOP, also known as DDIT3) and the growth arrest and DNA
damage-inducible protein (GADD34/PPP1R15A). In a third mechanism, the Acti-
vating transcription factor 6 (ATF6) is transferred to the Golgi compartment where
after processing it produces a p50 fragment which migrates to the nucleus. There
it activates the expression of several genes involved in ERAD and other ER related
processes.

Figure 4.3 shows the subnetwork containing directly connected genes to XBP1
for the subnetwork inferred from the compendia using all cell types. We overlay
this network with a list of 88 genes marked as being involved in the UPR pathway
by Pathcards [38]. Eight of the 24 directly connected genes to XBP1 are associ-
ated to the UPR pathway, among them IRE1/Ernl and Atf6. This clearly indicates
that the inferred network is detecting relevant genes related to UPR pathway as
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being connected to XBP1. Further inspection of the network also reveals several
other genes not marked by Pathcards but which are known to be directly influ-
enced by either XBP1, ATF4 or ATF6, e.g. the Cyclic AMP-responsive element-
binding protein 3-like protein 2 (CREB3L2) [39]. Extracting the subnetwork cen-
tered around ATF4 also picks up several genes which are related to the UPR path-
way. For example, the DnaJ homolog subfamily B member 9 (DNAJB8/ERDJ4)
plays an important role in UPR induced apoptosis [40]. In addition, GADD34
which is activated by ATF4 and restores the translational inhibition initiated by the
PERK/ATF4 pathways [41]. In contrast, none of the discovered genes are detected
by the Gene Constellation tool.
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Figure 4.3: Neighborhood of the network derived from all compendia around the gene
XBP1 Known genes involved in the UPR [38] are marked as green.

4.2.3 mRNA expression changes in the inferred subnetworks
by inducing UPR and inhibiting XBP1 or ATF4

The inferred subnetworks of XBP1 and ATF4 neighboring genes reveal several
known key players in the UPR. To further investigate potential downstream targets
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qPCR in conditions in which the UPR is induced and XBP1s is inhibited. Two concentrations of the inhibitor 4u8c at two time points are shown and
control conditions include non-induced cells and using only the solvant DMSO.
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of XBPls, we analyze the change in mRNA expression level of several selected
neighboring genes in the network by means of qPCR after inducing the UPR and
next inhibiting XBP1s production. We activate the UPR in vitro by administrating
tunicamycin which is an N-linked glycosylation inhibitor known to induce ER
stress. To validate the predicted links to XBP1, the substrate access to the active
site of IRE1 was blocked by 41:8c. gPCR was performed after 4 and 8 hours after
addition of tunicamycin and relative mRNA levels were compared to the solvant,
dimethyl sulfoxide (DMSO) with no UPR inducing agents and a sample with not
DMSO or inhibitors. Several investigated genes indeed behave consistent with
what would be expected from downstream targets of XBP1s. After inducing UPR
their expression increases and after inhibiting XBP1s, the expression levels lower
again. Figure 4.4 shows the expression profile of the genes that behave in a such
matter, as control, XBP1s is also shown. There is a clear such effect for the genes
P4HB, SERPI1, PDIA6, Trex1, MyD88. For the genes Tmed10 and RIN2, the
result is less convincing. All other genes which were included in the experiment
are listed in Figure 4.5. Some clear negative examples show up such as Hiatl1l and
Ralb. Interesting is SLC26A11 which shows a clear inverse response. Inducing the
UPR clearly lowers the expression and after inhibiting XPB1s inverses the process
which might indicate that it is target of the regulated IRE1-dependent decay of
mRNA (RIDD) pathway.

4.3 Materials and Methods

4.3.1 Collection and inference procedure

The ImmGen raw gene expression data consisting of 679 assays was downloaded
from GEO, series GSE1590: Immunological Genome Project data Phase 1. These
679 assays were further divided into eight additional compendia grouped by cell
subtypes: dendritic cells (141 assays), b-cells (75), macrophages and monocytes
(57), natural killer cells (35), vd- T-cells (63), CD4+ T cells (52), CD8+ T cells
(71), T-cells (255-including the previous three categories). Each of the 8§ compen-
dia and a complete compendium consisting of all 679 assays was pre-processed
according to the same procedure. Normalization was performed using RMA [42]
and in the case of a gene name mapping to more than one probeset, the probeset
with the highest mean expression was chosen. Finally, inactive genes were filtered
by only retaining the 12000 genes with the most variance across samples.

Next, for each compendia gene regulatory networks were inferred which we
offer to community as a resource. We focused on methods with a strong bias to-
wards accuracy at the cost of increase computational demands. The top performing
methods in this category are (feature) scores derived from training machine learn-
ing models [27]. Of the potential candidates, we chose NIMEFI [20] a generaliza-
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tion of the well-known GENIE3 algorithm [19]. Briefly, NIMEFI assigns scores
to each possible edge in the complete network by calculating ensemble feature im-
portance scores that are derived by training machine learning regression models on
the gene expression data. As additional input for the algorithm, an extensive list of
genes was compiled with suspected or validated (transcriptional) gene regulating
activity. Only genes present on this list are considered by the algorithm as puta-
tive regulators. NIMEFI was run with default settings and using the SVM-variant
to reduce computational demands.

4.3.2 Network visualization

Networks are ideally suited to structure and visualize large amounts of data. The
network inference procedure results in a complete weighted graph. Each edge
from gene A to B and its corresponding weight represents the confidence of the
algorithm that gene A has a regulatory effect on gene B. In order to visualize the
network, a threshold value is typically chosen and only edges with a weight ex-
ceeding this threshold are retained. Choosing such a threshold value is difficult
and often is it more instructive to visualize the network using different thresholds.
In our web-interface, the networks can easily be plotted at four levels of detail
(1000,2000,4000 and 6000 edges). As a list, the top 20000 most confident links
can be downloaded for each network. The web-interface is constructed using Cy-
toscape.js, a powerful Javascript library, sharing concepts and interoperable with
the stand-alone application Cytoscape 3.0. It offers users a quick and easy way to
browse the inferred networks. First, the user selects the cell type and the number
of edges. Next, several options are available to navigate and analyze the network
including searching for genes, creating new subnetworks, customizing visualiza-
tion and perform a layout. Furthermore, each gene in the network can be clicked
to consult further information in popular databases.
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