

Datagedreven prestatiemonitoring, foutdetectie en dynamische dashboards
voor offshorewindmolenparken

Data-Driven Performance Monitoring, Fault Detection and Dynamic Dashboards
for Offshore Wind Farms

Olivier Janssens

Promotoren: prof. dr. ir. S. Van Hoecke, prof. dr. ir. M. Loccufier
Proefschrift ingediend tot het behalen van de graad van
Doctor in de industriële wetenschappen: elektronica-ICT

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-94-6355-019-2
NUR 984
Wettelijk depot: D/2017/10.500/54

Examination Board

prof. dr. ir. Patrick De Baets (Chairman)
Faculty of Engineering and Architecture
Department of Electrical Energy, Metals, Mechanical Constructions and Systems.
Ghent University

prof. dr. ing. Kurt Stockman (Secretary)
Faculty of Engineering and Architecture
Department of Electrical Energy, Metals, Mechanical Constructions and Systems.
Ghent University

prof. dr. ir. Christof Devriendt
Faculty of Applied Sciences
Department of Mechanical Engineering
Vrije Universiteit Brussel

dr. ir. David Verstraeten
Yazzoom

prof. dr. ir. Aleksandra Pizurica
Faculty of Engineering and Architecture
Department of Telecommunications and information processing
Ghent University

prof. dr. ir. Tom Dhaene
Faculty of Engineering and Architecture
Department of Information technology
Ghent University-imec

dr. ir. Femke Ongenae
Faculty of Engineering and Architecture
Department of Information technology
Ghent University-imec

prof. dr. ir. Sofie Van Hoecke
Faculty of Engineering and Architecture
Department of Electronics and Information Systems
Ghent University-imec

prof. dr. ir. Mia Loccufier
Faculty of Engineering and Architecture
Department of Electrical Energy, Metals, Mechanical Constructions and Systems.
Ghent University

Acknowledgments

It is the hottest fire that forms the sternest steel.
Pierce Brown, Red Rising

A journey of a thousand miles begins with a single step; I took that step a little
over 4 years ago. The person who guided me during this journey was Prof. Sofie
Van Hoecke, a dedicated and hardworking but also patient researcher, educator
and mentor. She is a rare person who is available almost around the clock for valu-
able advice. Because of her, I had the opportunity to work on several interesting
projects and even guide students myself. I am very grateful to have had her as
my promoter, and I wouldn’t have wanted it any other way. After two years of re-
search, my research topic changed direction and we required the help of someone
with vast knowledge in mechanical engineering. Luckily, Prof. Mia Loccufier was
available to become my second promoter. Mia possesses unwavering calmness
and never ending curiosity backed by decades of experience. This combination
of traits results in a very friendly person who is uncommonly good at arguing (as
in “to give the reasons for your opinion, idea or belief”). Whenever I had long
discussions or arguments with Mia, this joke came to mind: “Arguing with an en-
gineer is a lot like wrestling in the mud with a piggy, after a couple of hours you
realize he likes it.” By having in-depth discussions about the research, plans of
action sprung to life, and the research thrived. I am very thankful to Mia for acting
as my promoter, and I can’t imagine having succeeded without Mia’s help.

Besides my promoters, many other people gave valuable feedback and advice.
I would like to thank the members of my examination board: Prof. Patrick De
Baets, Prof. Kurt Stockman, Prof. Christof Devriendt, Dr. David Verstraeten,
Prof. Aleksandra Pizurica, Prof. Tom Dhaene and Dr. Femke Ongenae. Addi-
tionally, I had a great environment with great colleagues, ranging from my office
colleagues consisting of Azarakhsh, Baptist, Florian, Fréderic, Jasper and Mi Jung,
to the colleagues at the lunch table: Gerald, Glenn, Johan, Kristof, Laura, Martin,
Niels, Steven, Tom, Ruben. I also cannot forget to thank the people with whom I
talked sporadically, such as Bram, Benjamin, Dieter, Erik, Johan Beke, Ronny and
Wesley. These people provided food for thought or appreciated distractions. Ap-
preciated distractions were also provided by friends and family: Bart, Charlotte,
David, John, Mathieu, Patricia, Silke and Tessa, for which I am grateful. Not in-
cluded in this list are my parents, who especially deserve to be acknowledged for

iv ACKNOWLEDGMENTS

more than just the years of my PhD research. Thank you for everything!
Finally, I would like to thank Steve, my husband; you’re the bee’s knees. I

look forward to celebrating our cotton anniversary and, in the future, all the other
anniversaries as well.

June 2017
Olivier Janssens

Table of Contents

Examination Board i

Acknowledgments iii

Samenvatting xv

Summary xix

1 Introduction 1
1.1 Situating the importance . 1
1.2 Operations and Maintenance . 2
1.3 Machine-level: performance monitoring 4
1.4 Component-level: fault detection 4
1.5 Fleet-level: dynamic dashboards 6
1.6 Main research contributions and outline 7
1.7 Publications . 8

1.7.1 International journal publications 8
1.7.2 Submitted international journal publications 9
1.7.3 Book chapters . 9
1.7.4 International conference publications 9

2 Machine level: Data-driven multi-sensor performance monitoring 13
2.1 Introduction . 14
2.2 Related literature . 15

2.2.1 Physics-based machine-level performance monitoring . . 15
2.2.2 Data-driven machine-level performance monitoring 17

2.3 Data-driven performance modeling 19
2.4 Data sets . 25

2.4.1 Synthetic data . 25
2.4.2 Real world data sets . 27
2.4.3 Testing procedure . 27

2.5 Univariate performance modeling 28
2.5.1 Results for the synthetic data set 28
2.5.2 Results for the real world data set 30

vi TABLE OF CONTENTS

2.6 Multivariate power curve modeling 32
2.6.1 Feature importance . 33
2.6.2 Partial dependence . 35
2.6.3 Generated power versus the predicted power 39

2.7 Discussion: data-driven versus physics-based 40
2.8 Conclusion . 41

3 Component level: Fault detection using feature engineering 43
3.1 Introduction . 44
3.2 Related literature . 48

3.2.1 Vibration-based fault detection 48
3.2.2 Infrared thermal imaging based fault detection 48
3.2.3 Multi-sensor systems . 50

3.3 Set-up . 50
3.4 Data-set . 55
3.5 Methodology: vibration-based fault detection 56

3.5.1 Pipeline one . 57
3.5.1.1 Preprocessing 57
3.5.1.2 Feature extraction 59
3.5.1.3 Classification method 66

3.5.2 Pipeline two . 66
3.5.2.1 Feature extraction 66
3.5.2.2 Classification method 68

3.6 Methodology: infrared thermal image-based fault detection 68
3.6.1 Pipeline one . 68

3.6.1.1 Preprocessing 68
3.6.1.2 Feature extraction 70
3.6.1.3 Classification method 77

3.6.2 Pipeline two . 77
3.6.2.1 Preprocessing 77
3.6.2.2 Feature extraction 77
3.6.2.3 Classification method 81

3.7 Methodology: Multi-sensor fault detection 81
3.8 Results . 82

3.8.0.4 Results: data set one 84
3.8.0.5 Results: data set two 86

3.9 Discussion . 91
3.9.1 Generalizability . 91
3.9.2 Choice of classifier . 91
3.9.3 Majority voting . 92

3.10 Conclusion . 92

TABLE OF CONTENTS vii

4 Component level: Fault detection using feature learning 95
4.1 Introduction . 96
4.2 Background . 98

4.2.1 Deep learning . 98
4.2.2 Convolutional neural networks 100
4.2.3 Transfer learning . 102

4.3 Related literature . 106
4.4 Methodology . 106

4.4.1 Architecture . 106
4.4.2 Vibration-based fault detection 107
4.4.3 Infrared thermal video based fault detection 109
4.4.4 Multi-sensor approach 112

4.5 Results . 114
4.5.1 Results data set one . 114
4.5.2 Results data set two . 117
4.5.3 Insights into infrared thermal data 121
4.5.4 Imbalance detection . 125

4.6 Discussion . 131
4.7 Conclusion . 131

5 Fleet level: Dynamic dashboard 133
5.1 Introduction . 134

5.1.1 Related work: Internet-of-Things 137
5.1.2 Related work: Dynamic visualization systems 138

5.2 Methodology . 138
5.2.1 Sensor data services . 140
5.2.2 Virtual sensors . 142
5.2.3 Visualization services . 142
5.2.4 Broker component . 143

5.3 Internal Design Details . 146
5.3.1 Proposed reasoning algorithm for sensor data retrieval . . 146
5.3.2 Reasoning algorithm: virtual sensors 148
5.3.3 Reasoning algorithm: anomaly detection 152
5.3.4 Anomaly detection in the dynamic dashboard 152

5.4 Implementation . 154
5.4.1 Resulting dynamic dashboard 154
5.4.2 Fault detection . 154
5.4.3 Evaluation . 157

5.5 Conclusion . 157

6 Conclusion and future work 159
6.1 Summary . 159
6.2 Future work . 162

viii TABLE OF CONTENTS

A Preliminaries on machine learning 165
A.1 Notation . 165
A.2 Machine learning . 165
A.3 Model creation . 167

A.3.1 Hyperparameters . 167
A.3.2 Training and testing . 167
A.3.3 Cross validation . 167
A.3.4 Overfitting and underfitting 168
A.3.5 Grid-search . 168

A.4 Regression . 168
A.4.1 K-nearest neighbors regression (KNN) 168
A.4.2 Regression trees (CART) 169
A.4.3 Random forest (RF) regression 170
A.4.4 Extremely randomized trees (ERT) 171
A.4.5 Gradient boosted regression trees 172

A.5 Classification . 173
A.5.1 Classification trees (CART) 173
A.5.2 Neural networks (NN) 173
A.5.3 Logistic regression . 175

A.6 Evaluation metrics . 175
A.6.1 Regression . 176
A.6.2 Classification . 176

B Performance monitoring hyperparameters 179

C Infrared thermal imaging for oil level prediction 185
C.1 Introduction . 185
C.2 Data and set-up . 186
C.3 Methodology: Feature engineering 188

C.3.1 Image registration . 188
C.3.2 Region of interest extraction 189
C.3.3 Feature extraction . 190
C.3.4 Machine learning . 190

C.4 Methodology: feature learning 193
C.5 Results . 193

C.5.1 Evaluation . 193
C.5.2 Performance results . 194
C.5.3 Feature-learning insights 194

C.6 Conclusion . 195

D Imbalance displacement 197

E M20 properties 201

References 205

List of Acronyms

A

API Application Programming Interface
AU Area Under

C

CFD Computational Fluid Dynamics
CM Condition Monitoring

B

BPFO Ball Pass Frequency Of The Outer Raceway

D

DL Deep Learning
DE Differential Evolution
DFT Discrete Fourier Transform

E

EWEA European Wind Energy Association

x LIST OF ACRONYMS

ERT Extremely Randomized Trees
EILB Extremely Inadequately Lubricated Bearing
EV Explained Variance

G

GC Gini Coefficient

H

HP Hard Particles
hdb historical database
HB Healthy Bearing

I

IM Imbalance
IoT Internet of Things
IRT Infrared Thermal
IR Infrared
IRCS Infrared Cumulative Sum

K

kb knowledge base
KNN K-Nearest Neighbors

L

LOE Line Of Equality

M

LIST OF ACRONYMS xi

M20 Moment Of Light
MILB Mildly Inadequately Lubricated Bearing
MOB Method Of Bins
MVC Model View Controller

N

NN Neural Network

O

O&M Operations and Maintenance
ORF Outer Raceway Fault

P

PCA Principal Component Analysis
PL Parameter Logistics

R

REB Rolling Element Bearing
ReLU Rectified Linear Unit
RDF Resource Description Framework
RF Random Forest
RFC Random Forest Classifier
RMS Root Mean Square
ROI Region Of Interest
RPM Rotations Per Minute
RoR Ruby on Rails

S

SCADA Supervisory Control And Data Acquisition

xii LIST OF ACRONYMS

SD Standard Deviation
SGBRT Stochastic Gradient Boosted Regression Trees
SPC Statistical Process Control
SVM Support Vector Machine

U

URI Uniform Resource Identifier

V

VIB Vibration

Samenvatting

Tegen 2020 heeft de Europese Unie zich geëngageerd gebruik te maken van 20 %
hernieuwbare energie. Deze doelstelling kan alleen maar gehaald worden als de
individuele lidstaten hun capaciteit aan hernieuwbare energie uitbreiden door mid-
del van bv. windenergie. Windenergie is namelijk een onuitputbare energiebron
die zowel on- als off-shore geoogst kan worden, met een verwaarloosbare im-
pact op het milieu. Landen zoals Groot-Brittannië, Nederland en België hebben
het voordeel gebruik te kunnen maken van kustwateren voor het installeren van
offshorewindturbines om zo gemakkelijker deze doelstelling te kunnen halen aan-
gezien offshorewindturbineparken meer energie dan de onshorewindturbineparken
produceren.

Vandaag de dag is de kost voor het oogsten van offshore windenergie nog aan-
zienlijk hoog. Dit komt voornamelijk door de exploitatie- en onderhoudskosten
van deze offshore windturbines die dubbel zo hoog zijn als die van onshore wind-
turbines. Om deze kosten te drukken, is er nood aan efficiënter onderhoud en een
omschakeling van correctief naar predictief onderhoud. Predictief onderhoud ver-
eist het continu inschatten van de gezondheidsstatus van de windturbine en zijn
componenten door gebruik te maken van online/continue condition monitoring.

Continue condition monitoring van windturbines vormt echter een complexe
taak, waarbij een grote kennis vereist is van machinebouw en elektrotechniek. Om
de drempel naar continue monitoring te verlagen, worden datagedreven technieken
voorgesteld in dit proefschrift die gebruik maken van de sensordata opgemeten in
de windturbines en beperkte expertkennis. In dit proefschrift worden datagedreven
technieken ontwikkeld voor het monitoren op drie niveaus: het windmolenpark, de
individuele windturbine, en op niveau van de componenten in een turbine.

Hoofdstuk twee bespreekt datagedreven prestatiemonitoring van volledige wind-
turbines. De gezondheidstoestand van een windturbine is direct gerelateerd met de
energieproductie. Om problemen met de windturbine te kunnen vaststellen, moe-
ten afwijkingen in deze energieproductie kunnen worden gedetecteerd. Dit wordt
gedaan door een model te creëren gebruikmakende van machinaal leren en wind-
turbine data gecapteerd tijdens normale operationele condities. Vervolgens kan
het model worden gebruikt om de energieproductie te voorspellen en die waarde
te vergelijken met de feitelijke energieproductie om afwijkingen te detecteren.

Bestaande technieken maken enkel gebruik van de windsnelheden om de ener-
gieproductie te voorspellen waardoor de resultaten niet optimaal zijn. Om deze

xvi NEDERLANDSE SAMENVATTING

voorspellingsresultaten te verbeteren, wordt in dit hoofdstuk naast de windsnelheid
eveneens de windrichting, draairichting van de turbine, de hoek van de wieken en
de rotatiesnelheid van de wieken als input parameters gebruikt. Dit laat toe de fout
op de voorspelling met 27.66 % te verminderen. Daarnaast wordt aangetoond dat
deze datagedreven technieken inzicht geven in de verschillende significante vari-
abelen en bijhorende interactie om de energieproductie te voorspellen. Dankzij
de verbeteringen van deze voorspellingstechnieken, kunnen de afwijkingen van de
energieproductie van de windturbines beter gedetecteerd worden.

Prestatiemonitoring geeft enkel informatie weer over de globale staat van de
windturbine. Indien de windturbine de verwachte energieproductie niet haalt, moet
de oorzaak van het probleem worden achterhaald om preventieve onderhoudsacties
te ondernemen. De component die voor de meeste stilstand zorgt bij een windtur-
bine is de versnellingsbak. Binnen de versnellingsbak zijn het dan weer de lagers
die voor de meeste storingen zorgen. Daarom wordt in hoofdstuk drie onderzoek
gedaan naar datagedreven technieken om fouten en schade in lagers te detecte-
ren. Eén van de meest voorkomende oorzaken van lagerschade is ontoereikende
smering. Dit kan zowel te veel als te weinig smering zijn, maar ook vervuilde sme-
ring. Huidige detectietechnieken die werken a.d.h.v. trillingen, hebben moeite om
deze smeringsproblemen te detecteren. Online olieanalyse kan deze smeringspro-
blemen wel detecteren, maar is dan weer een heel dure techniek. Daarom wordt
in hoofdstuk drie onderzoek gedaan naar het potentieel van warmtecameras als
nieuwe sensor. Aangezien smering gerelateerde fouten met meer wrijving en dus
hitte gepaard gaan, lijken warmtecameras de ideale sensor om smering gerela-
teerde problemen mee te detecteren en op te sporen. Foutdetectie op basis van
warmtecameras staat momenteel nog in zijn kinderschoenen. Het monitoren op
offshore windturbines zou bijgevolg te veel ongecontroleerde parameters intro-
duceren om degelijke conclusies te kunnen trekken. Daarom werden de testen
met warmtecameras in dit proefschrift op een gecontroleerde labo-opstelling uit-
gevoerd. Er werden twee grote datasets gecreëerd die zowel warmtebeelden als
trillingen bevatten. De geeı̈ntroduceerde schade en problemen in de opstelling
waren: gezonde lagers, verminderende smering, extreem verminderde smering,
vervuilde smering en schade aan de buitenring van het lager. In plaats van deze
condities apart te beschouwen, werd elk van deze fouten gecreëerd in combinatie
met verschillende gradaties van onbalans van de machine.

In hoofdstuk drie worden vervolgens datagedreven systemen voorgesteld om
deze verschillende combinaties van condities automatisch te detecteren. Het eerste
systeem gebruikt enkel warmtebeelden, het tweede systeem enkel trillingsmetin-
gen en het derde systeem combineert beide sensorische signalen/metingen. Elk
systeem extraheert hierbij vooraf gedefinieerde signaalkarakteristieken, die ont-
worpen zijn geweest aan de hand van feature engineering. De systemen die ge-
bruikmaken van ofwel warmtebeelden ofwel trillingsdata vertonen elk hun sterke
en zwakke kenmerken. Wanneer enkel warmtebeelden worden gebruikt, is het bijv.
moeilijker om schade aan de buitenring van de lager te detecteren, wat dan weer
accurater gedetecteerd wordt door het trillingsgebaseerd systeem. Het systeem op
basis van trillingen heeft het daarentegen moeilijker om smering gerelateerde con-

SUMMARY IN DUTCH xvii

dities te detecteren. Het combineren van deze twee types sensorische data in een
multi-sensor datagedreven systeem, brengt het beste van beiden samen en overtreft
elk van beide single sensor oplossingen op vlak van accuraatheid.

In hoofdstuk drie werden methodes gemaakt om specifieke signaalkarakteris-
tieken uit sensordata te halen voor bepaalde condities en fouten. Deze aanpak
heeft twee nadelen. De eerste is dat als de fout of condition niet (volledig) ge-
kend is, er geen methodes kunnen gemaakt worden. Het tweede nadeel bestaat uit
het feit dat als een nieuwe fout of conditie opeens zou moeten kunnen detecteer-
baar zijn, nieuwe methodes aan het systeem toegevoegd moeten worden. Om deze
problemen op te lossen wordt in hoofdstuk vier feature learning voorgesteld. Het
grote voordeel hiervan is dat heel wat minder vakkennis vereist is waardoor fouten,
waarvoor experten mogelijks nog geen signaalkarakteristieken ontworpen hebben,
toch gedetecteerd kunnen worden. In hoofdstuk vier wordt feature learning gerea-
liseerd door convolutionele neurale netwerken te onderzoeken, creëren en vervol-
gens toe te passen op de datasets uit hoofdstuk drie. Ook hier worden terug twee
systemen onderzocht met enkel warmtebeelden, resp. enkel trillingsdata, alsook
een multi-sensor systeem die zowel warmtebeelden als trillingsdata gebruikt. Op-
nieuw kan het multi-sensorische systeem de condities accurater detecteren. Daar-
enboven detecteert het multi-sensor feature learning systeem de fouten beter dan
wanneer het feature engineering systeem uit hoofdstuk drie wordt toegepast. Naast
een verhoogde accuraatheid, leveren de feature learning systemen ook inzichten in
de data wat bijzonder interessant is in het geval van de thermische beelden aange-
zien er vandaag de dag nog geen volledig fysisch gebaseerde modellen bestaan die
de warmteprocessen accuraat beschrijven.

Wanneer een volledig windturbinepark wordt beschouwd, moeten de model-
len uit de hoofdstukken twee tot vier getuned worden voor elke turbine in het
windmolenpark, en zijn er bijgevolg veel modellen en bijhorende monitoringsdata
nodig. Om in dat geval het overzicht over het volledige windturbinepark te bewa-
ren, wordt in hoofdstuk vijf een dynamisch dashboard voorgesteld. Dynamische
dashboards kunnen automatisch data van sensoren koppelen met visualisatie opties
door gebruik te maken van Semantische Web technologieën en alles als web API
aan te bieden. Door semantische beschrijvingen toe te voegen aan de web APIs,
kan de reasoner in de dashboard engine automatisch sensorische data koppelen
met mogelijke visualisatie opties, en bijgevolg zonder veel moeite worden gevisu-
aliseerd. Aangezien de dashboard engine automatisch alle sensoren en visualisatie
web APIs ontdekt, kunnen nieuwe functionaliteiten met weinig moeite worden toe-
gevoegd aan het dashboard. De enige vereiste is dat de nieuwe sensoren voorzien
worden van een web API en semantische beschrijving. Door ook de datagedreven
modellen als soft sensor toe te voegen in het dashboard, is het eenvoudig om een
overzicht te krijgen van een windturbinepark en de bijhorende online monitoring
services, essentieel voor de ondersteuning van preventief onderhoud.

Dit proefschrift zet belangrijke stappen naar het ondersteunen van preventief
onderhoud van offshore windturbines door aan te tonen dat datagedreven presta-
tiemonitoring en foutdetectie technieken kunnen verbeterd worden en dat dyna-
mische dashboards makkelijk een overzicht van de data kan geven. De hogere

xviii NEDERLANDSE SAMENVATTING

accuraatheid en het vroegtijdiger detecteren van problemen, maken predictief on-
derhoud mogelijk en kan uiteindelijk leiden tot een verlaging van de exploitatie-
en onderhoudskosten van offshore windturbines, wat op zich een verlaging in prijs
van hernieuwbare energie met zich mee kan brengen. Hierdoor wordt het nog inte-
ressanter te investeren in duurzame windenergie en zetten we verder stappen naar
een groenere wereld.

Summary

The European Union has set a 20 % renewable energy target for 2020. To achieve
this goal, individual member states are expanding their renewable energy capacity.
An important energy source to achieve this goal is wind energy. Wind energy is a
constantly replenishing source of energy and harvesting this energy has a negligi-
ble impact on the environment. Countries such as the United Kingdom, the Nether-
lands and Belgium have the advantage of having coastal waters to install offshore
wind turbine farms as offshore wind energy can provide significantly more energy
than onshore wind energy.

To harness the energy in the wind, offshore wind turbines are build and in-
stalled. However, offshore wind energy is currently still expensive, partially due
to the required maintenance. For example, the maintenance costs for an offshore
wind turbine is twice as high compared to the maintenance costs of an onshore
wind turbine. To lower the operation and maintenance costs of offshore wind tur-
bines, more effective maintenance strategies are required. A transition has to be
made from corrective maintenance to predictive maintenance. Predictive mainte-
nance can only be done by continuously estimating the state of the turbine and its
components using a continuous/online condition monitoring system.

Continuous condition monitoring of a wind turbine is a complex task and re-
quires substantial expertise knowledge on condition monitoring, mechanical en-
gineering and electrical engineering. However, currently, not all possible faults
and conditions are completely understood and defined. To overcome this hurdle,
within this dissertation, data-driven techniques are proposed to make a first step to-
wards condition monitoring of complex machines. Data-driven techniques use data
captured from wind turbines in order to monitor their health. As solving a large
complex problem is difficult as a whole, in this dissertation the monitoring task is
split into three parts namely, component-level, machine-level and fleet-level.

In chapter two, the focus lies on performance monitoring of offshore wind
turbines (machine-level). To estimate the overall condition of an offshore wind
turbine, the power output has to be monitored. To do this, machine learning mod-
els are constructed and trained on data from offshore wind turbines during normal
operational conditions. The goal of this phase is to have a model that can pre-
dict the expected behavior of the wind turbine. Subsequently, the predicted output
can be compared to the actual generated output. As currently power prediction
is mainly done by modeling the relationship between the measured wind speed

xx ENGLISH SUMMARY

and the output power, the results are sub-optimal. Within this chapter, not only
the wind speed is considered as input, but also the wind direction, wind turbine
yaw, blade pitch and the rotor’s rotations per minute to predict the output power
of the wind turbine. Six algorithms are compared regarding their predictive per-
formance. We conclude that by using these additional parameters together with
stochastic gradient boosted regressions trees, power production prediction can be
done, reducing the error of the prediction up to 27.66 %. Furthermore, we show
that this data-driven technique enables to extract knowledge from the data, such as
the importance of the variables to predict the output power and the interactions be-
tween the individual variables. In the end, improved power prediction can improve
anomaly detection on the electrical signal of offshore wind turbines.

Performance monitoring only provides information about the overall health of
the wind turbine. However, if the machine is not performing as expected, the cause
of the problem has to be identified to enable a preemptive maintenance action. One
of the components, that has the largest impact on the amount of downtime of a
wind turbine, is the gearbox, and within the gearbox, the bearings are the major
cause of failures. Hence, in chapter three, data-driven fault detection systems are
researched and developed to detect rolling element bearing faults. One of the most
frequently occurring root-causes of bearing failure is lubricant inadequacy. This
can be both under or over lubrication, but also contaminated lubricant. However,
using current state-of-the-art fault detection systems, such as vibration analysis,
these types of faults are difficult to detect. Another option to detect these condi-
tions is to use online oil analysis which requires a very large investment. Hence,
in chapter three a relatively new type of sensory device is used, i.e. infrared ther-
mal camera. Infrared thermal cameras are the ideal sensory device to detect faults
related to lubricant. Sub-optimal lubricant conditions, such as under lubricant will
increase the friction in the bearing resulting in additional heat to be generated
which can be observed by the infrared thermal camera. Infrared thermal imaging-
based fault detection is still in its infancy and applying it on a live offshore wind
turbine, would be too uncontrolled to draw any conclusions. Hence, tests were
done on a lab-scale setup. Within this dissertation, two large data sets containing
both infrared thermal imaging recordings and vibration records were created. The
faults/conditions considered are healthy bearings, under lubrication, extreme under
lubrication, lubricant contamination and outer-raceway faults. Moreover, instead
of considering each condition separately, all conditions are tested during different
gradations of rotor imbalance.

In chapter three, single sensor systems are created to detect these faults. The
first single sensor system solely uses infrared thermal imaging and the second
solely uses vibration measurements. Each system extracts features from the re-
spective data stream and subsequently provides the features to a machine learning
algorithm, which in this case is a random forest classifier. Both single sensor sys-
tems exhibit a specific strength and weakness. The thermal infrared-based system
on hand is less capable to detect outer-raceway faults, on the other hand, it can
detect lubricant related conditions very well. In contrast, the vibration-based sys-
tem performs less well when detecting lubricant related condition, but it performs

ENGLISH SUMMARY xxi

very well for the detection of outer-raceway faults. Hence, in the end, the best of
both systems is combined resulting in a multi-sensor data-driven system which can
outperform both single sensor systems.

To create the systems in chapter three, features had to be engineered for each
specific sensor stream and machine condition. This approach has two downsides.
First, feature extraction methods have to be engineered for every fault and con-
dition. If the fault/condition is not completely understood or known, it is diffi-
cult to create features. Second, if the system suddenly should be able to detect
a new fault/condition, possibly new feature extraction methods will have to be
designed and added to the system. Hence, to remove these disadvantages, in chap-
ter four, the focus is shifted from feature engineering to feature learning. More
specifically, convolutional neural networks are developed and applied to detect the
various condition using the different data streams. We show that these convolu-
tional neural network-based systems –applied on raw data– can outperform the
feature engineering-based systems. Furthermore, these systems enable insights to
be gained into the data. This is especially interesting for the infrared thermal data
as complete and accurate physical models are currently not available. Similar to
chapter three, in chapter four the two single sensor systems are combined in one
(feature learning) multi-sensor system outperforming the single sensor systems,
but also outperforming the feature engineered system. By considering a new type
of sensor and creating a data-driven multi-sensor feature learning system, fault de-
tection can become more accurate and less dependent on expert knowledge hence
reducing the entrance barrier to apply continuous monitoring.

Both chapter two and three enable to monitor detailed aspects of a single tur-
bine. However, when considering an entire wind farm, many models are required
to monitor all wind turbines. In order to get an overview of all the models and gen-
erated data of an entire wind farm, dynamic dashboards are introduced in chapter
five. Dashboards enable users to visualize a plethora of data. A typical static
dashboard requires significant work to build and considerable effort to connect
the different sensor streams to the dashboard. Furthermore, when considering soft
sensors, additional labor is required to make the soft sensor functional. Soft sen-
sors are inferential estimators, generating values based on actual measurements.
In this dissertation the machine learning systems proposed in chapter two, three
and four can be considered as soft/virtual sensors as they process measurements
into predictions.

Dynamic dashboards, opposed to static dashboard, require little manual con-
figuration. Dynamic dashboards can automatically connect sensor streams to vi-
sualization options using semantic web technologies. In this chapter we encap-
sulate sensors as well as a visualization library in web APIs to web-enable them.
Moreover, a semantic description is provided to the web APIs so that the reasoner,
within the dynamic dashboard’s broker, can match the sensor streams to possible
visualization options. By doing so, both real sensor streams as well as virtual sen-
sor streams can be visualized effortlessly. Finally, new sensors and visualization
options can easily be added to the dashboard. They simply have to be encapsu-
lated in a web API and have a semantic description. Hence, dynamic dashboards

xxii ENGLISH SUMMARY

enable a user to easily get an overview of an entire wind farm, which is essential
for predictive maintenance.

In this dissertation, performance monitoring and fault detection for offshore
wind turbines are improved. We show that data-driven techniques combined with
dynamic dashboards lower the entrance barrier to condition monitoring. This will
enable more faults to be detected earlier, enabling predictive maintenance and
hence possibly lowering the operation and maintenance costs of offshore wind
turbines. When the operation and maintenance costs are lowered of offshore wind
turbines, the price of electrical energy generated by offshore wind can drop mak-
ing investments in renewable (wind) energy even more attractive. By doing so, we
continue to progress towards a greener world.

Chapter 1

Introduction

In this chapter, an introduction is provided where the importance of the research,
presented in this dissertation, is highlighted. Subsequently, an overview of the
research is presented together with the contributions in each chapter.

1.1 Situating the importance of renewable
energy and offshore wind turbines

On a global scale, mankind heavily relies on non-renewable energy sources such
as natural gas and fossil fuel. These resources are finite and will eventually dwin-
dle, becoming too expensive or too environmentally damaging to extract. Even
nuclear energy, which is still under debate if it can be considered renewable or
nonrenewable, is damaging for the environment.

In contrast, renewable energy sources have a limited impact on the environment
and are constantly replenished. Examples of renewable energy sources are solar,
wind, biomass, geothermal, hydrogen, waves and hydropower. The significance of
renewable energy has increased and will keep increasing over the coming decades
as the European Union has set a 20 % renewable energy target for 2020 [6]. Due to
the climate in Europe, one of the major renewable energy sources is wind energy.
Hence, with Europe’s 2020 goal in mind, the European Wind Energy Association
(EWEA) proposed three possible growth scenarios for wind energy towards 2020.
The three scenarios project that there will be an increase in installed wind turbine
capacity of 41 %; 64 %; or 84.9 % respectively, compared to 2013 [6].

Currently, in Belgium there is an installed wind energy capacity of 2229 MW
of which 712 MW is installed offshore and 1517 MW is installed onshore. Wind
energy accounts for 6.7 % of the national electric production [7]. By 2020, the
total land-based installed capacity should double to 3000 MW, and an additional
2271 MW is planned offshore, for a possible total of 5983 MW. This will help

2 INTRODUCTION

achieve the target of 13 % of renewable energy for Belgium [7].
In Belgium, the installed onshore capacity should double in the coming years,

but the installed capacity offshore, should triple. According to the World Energy
Council, offshore wind is generally 8 m/s higher at European coastal waters com-
pared to those onshore [8]. Hence, offshore wind energy will play a major role to
achieve Belgium’s target. The increase in installed offshore capacity is also no-
ticeably rising in whole Europe as can be seen in Figure 1.1. This increase is also
noticeable financially, as the total investments in offshore wind in 2015 were more
than 18bn Euro, which is a record year in terms of total committed funds [9]. As
can be seen, offshore wind energy is important and will become more important in
the future.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Annual 4 51 170 276 90 90 93 318 374 577 883 874 1165 1567 1446 3018

Cumulative 36 87 257 533 623 713 806 1124 1498 2075 2958 3832 4997 6564 8010 11028

0

2000

4000

6000

8000

10000

12000

0

500

1000

1500

2000

2500

3000

3500

C
u

m
u

la
ti

v
e

 (
M

W
)

A
n

n
u

a
l

(M
W

)

Figure 1.1: Installed capacity of offshore wind turbines in Europe [8].

1.2 Operations and Maintenance
Currently, the cost of offshore wind energy is still high as Figure 1.2 indicates.
Generally, this is due to the operations and maintenance (O&M) costs which ac-
count for up to 25 % of the levelised costs of energy [10]1. When comparing the

1The per-kilowatthour cost of building and operating a wind turbine over an assumed financial life
and duty cycle. Key inputs to calculating LCOE include capital costs, fixed and variable operations and

INTRODUCTION 3

O&M costs between offshore and onshore wind turbines, in Figure 1.2, it can be
seen that offshore O&M costs are twice as expensive. Offshore turbines are more
difficult to access and require specialized vessels resulting in a prolonged down-
time.

There are several maintenance strategies when it comes to wind turbines and
machines in general. The first is corrective maintenance where maintenance is
only carried out when a problem occurred and subsequently has been detected.
This type of maintenance results in the highest costs due to the long downtime
and the sudden need for maintenance. The second type of maintenance is preven-
tive maintenance which requires maintenance to be done periodically to prevent
failure. This type of maintenance can be less expensive as it is possible to group
maintenance actions and prevent failure of critical components hence reducing the
downtime. Finally, there is predictive maintenance which requires an online condi-
tion monitoring systems that continuously estimates the condition of the machine
and possibly components. Due to such a condition monitoring system, mainte-
nance can be scheduled more efficiently and effectively reducing the overall O&M
costs.

Figure 1.2: Levelised cost of electricity of major generation technologies in Europe [11].

However, due to the complexity of wind turbines in itself and the according
wind farms, predictive maintenance is a challenging task. First steps towards con-
dition monitoring and predictive maintenance are made within this dissertation at
three major levels: machine-level (1.3), component-level (1.4) and fleet-level (1.5).

maintenance (O&M) costs, financing costs, and an assumed utilization rate

4 INTRODUCTION

1.3 Machine-level: performance monitoring
In order to monitor the overall health of a wind turbine without requiring signifi-
cant knowledge on the inner workings of a wind turbine, performance monitoring
is done. Performance monitoring allows to quickly assess if a turbine is perform-
ing as it should and hence is a good first method to detect possible suboptimal
conditions before considering the conditions of all the components. Only when
sub-optimal performance is detected, the individual components have to be con-
sidered to found out what the cause of under-performance is (see Chapter 3 and 4).

To apply performance monitoring on wind turbines, the power production of
the wind turbine has to be monitored for unexpected deviations. In practice, this
can be done by comparing the expected output power to the actual produced output
power. To determine what output power is expected, often only the wind speed
is considered. However, in this dissertation multiple variables are considered to
determine the expected output power. The research is conducted using data from
three actual offshore wind turbines which are located in the North sea of the coast
of Belgium.

1.4 Component-level: fault detection
A wind turbine’s blades are connected to a hub. The blades themselves can rotate
(pitch) due to bearings. As wind passes, the blades spin around making the hub
and subsequently the main shaft rotate. To support the rotation, a main bearing is
placed after the hub and another bearing near the gearbox. The gearbox converts
the low-speed rotation of the main shaft in high speed rotation fast enough to drive
the generator efficiently. This entire drive train sits in the wind turbine’s nacelle
which is turned into the wind using a yaw motor. Furthermore, the drive train also
contains a braking system to shut down the turbine in certain circumstances.

For wind turbines, drive trains and more specifically gearboxes are the main
cause of the most down time [12]. A gearbox comprises two major components:
gears and bearings. Most often, the bearings are the cause of the failure. Bearing
failures are most often (80 %) caused by improper lubrication. Improper lubrica-
tion can consist of lubrication starvation, wrong lubricant and lubrication contam-
ination. Other bearing faults are due to inadequate bearing selection (10 %), im-
proper mounting (5 %), indirect failures (4 %) and manufacturing errors (1 %) [13].
Lubrication inadequacy leads to fault escalation, which eventually results in faults
that are detectable using existing fault detection tools. Detecting lubricant inade-
quacy can help prevent fault escalation and hence is important to achieve preven-
tive maintenance. Therefore, in this dissertation the focus is on conditions and
faults related to the lubricant bearings.

Most often when the underlying physics of faults are completely understood,

INTRODUCTION 5

GB GB B

BR

Main shaft

High-speed shaft

H

N

Figure 1.3: Wind turbine drive train. H = Hub; N = Nacelle; B = Bearing; BR = Brake;
G = Generator; GB = Gearbox.

features from measurements can be engineered which are indicative of the respec-
tive faults or conditions. For bearings and also gear faults, most often vibration
measurements are used [14]. Vibration measurements and the resulting physics-
based features, are very useful to detect faults related to improper mounting or
actual damages to bearing raceways [14]. However, localization of a fault is dif-
ficult due to the fact that vibrations propagate through the machine. Furthermore,
vibration measurements are less suitable to detect lubricant related conditions.

Due to friction or churning of the lubricant in bearings, temperature distribu-
tions change. Hence, infrared thermal (IRT) imaging can help to identify bearing
conditions and possibly locate them. Extracting useful features from IRT data
based on physical models is difficult as modeling the thermodynamics of a bear-
ing is challenging due to the complexity. One can for example resort to resistance
methods or finite element analysis. Resistance methods require little computation
time, however they lack accuracy. Finite element methods improve the accuracy,
but are computationally cumbersome [15]. Hence, to use these methods to find
appropriate features that will be observable using IRT imaging is difficult. In gen-
eral, it can be stated that physics-based thermodynamic models are a powerful
basis for fault detection, however, they require considerable knowledge, may lack
the required accuracy or are possibly computationally burdensome.

Alternatively or additionally, data-driven approaches can be used. Data-driven
approaches are designed to capture phenomena in the measurements without the
requirement of having significant knowledge of the underlying physical interac-
tions. Hence, these can possibly be applied to data for which current knowledge
regarding fault detection is not complete and can therefore possibly help to under-
stand the underlying physics. As is demonstrated in this dissertation on a lab-scale
set-up, data-driven approaches have the potential to result in very well performing

6 INTRODUCTION

systems that are also very fast.
In order to detect conditions and faults, features are mainly engineered by ex-

perts for specific conditions. Additional to, or as alternative to features derived
from physical models, summary statistics such as the mean, standard deviation and
kurtosis, –which are data-driven– are an option. However, even when adding sum-
mary statistics, feature engineering remains limited to the knowledge of the prac-
titioner(s), which might result in suboptimal systems if the conditions and faults
are not completely understood. Hence, in this dissertation also feature learning,
additional to feature engineering, is researched for both vibration measurements
and IRT data. Feature learning methods learn to create and extract features au-
tonomously to be able to optimally distinguish between conditions. Such systems
have been known to outperform systems that use engineered features [3].

When considering one modality at time, e.g. vibrations [16] or infrared imag-
ing data [17], limited conditions and faults can be detected as certain conditions
do not manifest themselves in certain modalities. Hence, multi-sensor systems are
required. In this dissertation, IRT data and vibration measurements are combined
to create a multi-sensor system. Both feature engineering and feature learning are
investigated for this goal. In order to research these component-level approaches, a
lab-scale set-up is used instead of a wind turbine’s drivetrain. By using a lab-scale
set-up, more controlled experiments can be done.

1.5 Fleet-level: dynamic dashboards
When the performance of a wind turbine and the conditions of its components
can be monitored, a next step is to efficiently and effectively schedule mainte-
nance actions. However, due to the fact that wind turbines are complex machines
and contain many components, many signals have to be monitored. Even though
data-driven based approaches help to monitor individual turbines and components,
when considering an entire fleet, monitoring is still a daunting task because of
the shear volume of the data that has to be inspected. To deal with the scale and
complexity of an entire wind farm, intelligent dynamic dashboards are required.

Intelligent dynamic dashboards are researched and developed in this disserta-
tion that not only can visualize raw real-time sensor data but also able to incorpo-
rate the extracted knowledge from both the performance monitoring systems and
the component-level fault/condition detection systems. The core idea behind such
a dashboard is to efficiently display data in such a way that it can enhance a user’s
insights into the data. To achieve this task, Semantic Web technologies are used
to let the dashboard automatically combine sensors or knowledge extracted from
raw data with visualizations. By intelligently combining the data and the visual-
izations, a user can monitor fleets more effectively and efficiently. Furthermore,
data from new turbines or components can easily be added to the dashboard.

INTRODUCTION 7

1.6 Main research contributions and outline

Within this dissertation, first steps are taken towards data-driven condition moni-
toring and preventive maintenance.

First, in Chapter 2, performance monitoring is improved using data-driven ap-
proaches. We illustrate that univariate performance monitoring can be improved by
26.1 % compared to the state-of-the-art approach using stochastic gradient boosted
regression trees, which is a non-parametric data-driven machine learning method.
Next, we show that by using additional input variables, performance monitoring
can further improve (by 27.66 % compared to our univariate approach) as the mod-
els are capable of capturing the complex phenomena in the data.

Chapter 3 focuses on the detection of faults and conditions. Among the faults
and conditions considered are lubrication inadequacy conditions, which are very
difficult to detect using state-of-the-art approaches. The chapter starts with a fea-
sibility study of the performance and usability of infrared thermal imaging for
fault/condition detection in rotating machinery. In order to achieve this, two new
features are proposed regarding the infrared thermal imaging domain. It is shown
that it is indeed feasible to do automated fault and condition detection using in-
frared thermal imaging, as the proposed system can detect up to 88.25 % of the
occurrences of the possible conditions and faults. Next, a vibration-based fault
detection system is developed using existing expert features. This is done for two
reasons. The first is to be able to compare the results to the infrared thermal imag-
ing system, and the second is to create a multi-sensor system. The multi-sensor
system combines two types of sensor data, i.e. infrared thermal imaging data and
vibration measurements. It is shown that this multi-sensor system removes the
weaknesses of the respective approaches and can detect conditions/faults which
were previously hard to detect using state-of-the-art approaches (100 % detection
rate).

Instead of designing the features for the modalities manually, Chapter 4 shows
that features can effectively be learned from the data using convolutional neural
networks. Convolutional neural networks are researched and designed in order
to apply them on vibration measurements and infrared thermal imaging. Fur-
thermore, in this chapter, it is illustrated that transfer learning for infrared ther-
mal imaging-based fault detection can be done using convolution neural networks
trained on natural images. Similar to Chapter 3, research is done into a multi-
sensor system which outperforms single-sensor systems by 1.66 % compared to
the infrared thermal imaging-based system and by 38.33 % compared to the vibration-
based system. In the end, we also illustrate that from these convolution neural
networks insights into the underlying physics can be extracted which can possi-
bly help extend the knowledge about machine faults and how they occur in future
research.

8 INTRODUCTION

In Chapter 5, a dynamic dashboard is presented which can be used to monitor
the vast number of signals originating from a wind farm. The dynamic dashboard
can not only intelligently visualize raw sensor data, but also visualize the extracted
knowledge from performance monitoring systems and fault/condition detection
systems. The proposed dashboard engine uses Semantic Web technology to auto-
matically connect sensor data to visualization widgets.

In Chapter 6, the dissertation is concluded with a brief discussion of the results
and interesting future work.

Additional to the main chapters, four appendices are included in this disserta-
tion. The first appendix, i.e. Appendix A, provides an overview of basic machine
learning concepts and techniques required to understand this dissertation. This
appendix can be consulted if the reader is not familiar with machine learning.

Appendix B, provides an overview of the impact of the different hyperparam-
eter values for the machine learning models discussed in Chapter 2.

In Appendix C, an additional application is discussed on which infrared ther-
mal imaging-based condition detection is applied. The systems proposed in Chap-
ter 3 and 4, are evaluated for their general applicability on this additional applica-
tion. It is shown that the methodologies proposed in these two chapters transfer
well to a new use case.

In order to prove that imbalance gradations should be detectable using a ther-
mal infrared camera, in Appendix D, the observable displacement by the camera
is calculated for each imbalance gradation starting from the actual induced imbal-
ance in the set-up.

Finally, in Appendix E, the properties of the new features proposed in Chap-
ter 3 are proven and discussed.

1.7 Publications
The research results obtained during this PhD research were published in scientific
journals and presented at international conferences. The following list provides an
overview of the publications during this PhD research.

1.7.1 International journal publications
1. Olivier Janssens, Rik Van de Walle, Mia Loccufier and Sofie Van Hoecke.

“Deep Learning for Infrared Thermal Image Based Machine Health Moni-
toring”. IEEE Transactions on Mechatronics. Accepted for publication.

2. Olivier Janssens, Mia Loccufier, Rik Van de Walle, and Sofie Van Hoecke.
“Data-Driven Imbalance and Hard Particle Detection in Rotating Machinery
Using Infrared Thermal Imaging”. Infrared Physics & Technology, 82: 28–
39, 2017.

INTRODUCTION 9

3. Olivier Janssens, Nymfa Noppe, Christof Devriendt, Rik Van de Walle,
and Sofie Van Hoecke. “Data-driven multivariate power curve modeling of
offshore wind turbines”. Engineering Applications of Artificial Intelligence,
55:331–338, 2016.

4. Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia
Loccufier, Steven Verstockt, Rik Van de Walle, and Sofie Van Hoecke. “Con-
volutional neural network based fault detection for rotating machinery”.
Journal of Sound and Vibration, 377:331–345, 2016.

5. Olivier Janssens, Raiko Schulz, Viktor Slavkovikj, Kurt Stockman, Mia
Loccufier, Rik Van de Walle, and Sofie Van Hoecke. “Thermal image based
fault diagnosis for rotating machinery”. Infrared Physics & Technology,
73:78–87, 2015.

1.7.2 Submitted international journal publications
1. Olivier Janssens, Mia Loccufier, Rik Van de Walle, and Sofie Van Hoecke.

“ViTIS: Vibration and Thermal Imaging Based Multi-Sensor Fault Detec-
tion for Rotating Machinery”. ISA Transactions. Under review.

2. Olivier Janssens, Mia Loccufier and Sofie Van Hoecke, “Dynamic Dash-
boards for Multi-Sensor Machine Monitoring Using Semantic Web Tech-
nologies”. Semantic Web Journal. Under review.

3. Djairho Geuens, Olivier Janssens and Sofie Van Hoecke, “Non-intrusive
Emotion Recognition using Computer Peripheral Input Analysis”. IEEE
Transactions on Affective Computing. Under review.

1.7.3 Book chapters
1. Olivier Janssens, Rik Van de Walle and Sofie Van Hoecke. “A learning

based approach for real-time emotion classification of tweets”. in Applica-
tions of social media and social network analysis, Lecture Notes in Social
Networks, pages 125–142, 2015.

1.7.4 International conference publications
1. Gilles Vandewiele, Pieter Colpaert, Joachim Van Herwegen, Olivier Janssens,

Ruben Verborgh, Erik Mannens, Femke Ongenae, and Filip De Turck. “Pre-
dicting train occupancies based on query logs and external data sources”. in
Proc. of the 26th International World Wide Web Conference: 7th Interna-
tional Workshop on Location and the Web, 2017.

10 INTRODUCTION

2. Gilles Vandewiele, Kiani Lannoye, Olivier Janssens, Femke Ongenae, Filip
De Turck, and Sofie Van Hoecke. “A genetic algorithm for interpretable
model extraction from decision tree ensembles”. in Proc. of The Pacific-
Asia Conference on Knowledge Discovery and Data Mining: Biologically
Inspired Techniques for Data Mining, 2017.

3. Olivier Janssens, Mathieu Rennuy, Steven Devos, Mia Loccufier, Rik Van
de Walle, and Sofie Van Hoecke. “Towards intelligent lubrication control:
Infrared thermal imaging for oil level prediction in bearings”. In Proc. IEEE
Conference on Control Applications, pages 1330–1335, 2016.

4. Gilles Vandewiele, Olivier Janssens, Femke Ongenae, Filip De Turck, and
Sofie Van Hoecke. “GENESIM: genetic extraction of a single, interpretable
model”. NIPS 2016: Workshop on Interpretable Machine Learning in Com-
plex Systems, 2016.

5. Ahmed Aldahdooh, Enrico Masala, Olivier Janssens, Glenn Van Wallen-
dael, and Marcus Barkowsky. “Comparing simple video quality measures
for loss-impaired video sequences on a large-scale database”. in Proc. Eighth
International Conference on Quality of Multimedia Experience, pages 1–6,
2016.

6. Sofie Van Hoecke, Koen Samyn, Gaetan Deglorie, Olivier Janssens, Peter
Lambert, and Rik Van de Walle. “Enabling control of 3D visuals, scenar-
ios and non-linear gameplay in serious game development through model-
driven authoring”. in Lecture Notes of the Institute for Computer Sciences
Social Informatics and Telecommunications Engineering, pages 103–110,
2016.

7. Olivier Janssens, Lothar Verledens, Raiko Schulz, Veerle Ongenae, Kurt
Stockman, Mia Loccufier, Rik Van de Walle and Sofie Van Hoecke. “In-
frared and vibration based bearing fault detection using neural networks”.
in Proc. 13th International Workshop on Advanced Infrared Technology
and Applications, pages 220–223, 2015.

8. Sofie Van Hoecke, Olivier Janssens, Raiko Schulz, Kurt Stockman, Mia
Loccufier, and Rik Van de Walle. “Towards thermal imaging based condi-
tion monitoring in offshore wind turbines”. in Proc. of 13th International
Workshop on Advanced Infrared Technology and Applications, pages 291–
295, 2015.

9. Sofie Van Hoecke, Cynric Huys, Olivier Janssens, Ruben Verborgh, and
Rik Van de Walle. “Dynamic monitoring dashboards through composition
of web and visualisation services”. in 2nd EAI International Conference

INTRODUCTION 11

on Software Defined Wireless Networks and Cognitive Technologies for IoT,
pages 1–10, 2015.

10. Olivier Janssens, Steven Verstockt, Erik Mannens, Sofie Van Hoecke, and
Rik Van de Walle. “Influence of weak labels for emotion recognition of
tweets”. in Proc. Mining Intelligence and Knowledge Exploration, pages
108–118, 2014.

11. Olivier Janssens, Koen Samyn, Rik Van de Walle, and Sofie Van Hoecke.
“Educational virtual game scenario generation for serious games”. in Proc.
Serious Games and Applications for Health, pages 1-8, 2014.

12. Steven Verstockt, Viktor Slavkovikj, Pieterjan De Potter, Olivier Janssens,
Jurgen Slowack, and Rik Van de Walle. “Automatic geographic enrichment
by multi-modal bike sensing”. in Communications in Computer and Infor-
mation Science. In Communications in Computer and Information Science,
456, pages 369–384, 2014.

13. Olivier Janssens, Maarten Slembrouck, Steven Verstockt, Sofie Van Hoecke,
and Rik Van de Walle. “Real-time emotion classification of tweets”. in Proc.
IEEE/ACM International conference on advances in social networks analy-
sis and mining, pages 1430–1431, 2013.

14. Olivier Janssens, Jonas De Vylder, Jan Aelterman, Steven Verstockt, Wil-
fried Philips, Dominique Van Der Straeten, Sofie Van Hoecke, and Rik Van
de Walle. “Leaf segmentation and parallel phenotyping for the analysis of
gene networks in plants”. in Proc. 21st European signal processing confer-
ence, 2013.

15. Steven Verstockt, Viktor Slavkovikj, Olivier Janssens, Pieterjan De Potter,
Jurgen Slowack, and Rik Van de Walle. “Web-based enrichment of bike
sensor data for automatic geoannotation”. in Proc. GEOCROWD, 2013.

16. Steven Verstockt, Olivier Janssens, Sofie Van Hoecke ,and Rik Van de
Walle. “Spatio-temporal video retrieval by animated sketching”. in Proc.
International Conference om Computer Vision Theory and Applications,
pages 723–728, 2013.

17. Olivier Janssens, Steven Verstockt, Pieterjan De Potter, Piet Verhoeve, and
Rik Van de Walle. “Ki-Touch: a Kinect-based virtual touchscreen”. in
Proc. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems: Workshop on Color-Depth Camera Fusion in Robotics, 2012.

Chapter 2

Machine level: Data-driven
multi-sensor performance

monitoring

Chapter highlights

This chapter focuses on improving performance monitoring of offshore
wind turbines. We show that univariate power prediction can be improved
up to 26.1 % compared to the state-of-the-art by applying stochastic gradi-
ent boosted regression trees. Moreover, we further improve this power
prediction approach by incorporating additional input variables into the
model, resulting in an additional improvement of 27.66 %.

14 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

2.1 Introduction

A wind turbine is engineered with the purpose of generating electrical energy us-
ing the energy in the wind. Hence, a wind turbine’s most important property is
its efficiency, i.e. how well it converts wind energy into electrical energy. This
efficiency is formulated as a power curve that shows the relationship between the
wind speed and the generated power. The follow up of a wind turbine’s power
curve is referred to as performance monitoring.

Performance monitoring requires three steps. The first is the acquisition of
data from a wind turbine. The data consists of physical properties such as the
wind speed and power output. Second, using this data, a power curve, i.e. model,
is built which is used to predict the output power of the wind turbine. Third,
the predictions given by the model are compared to the actual generated power
output. When the wind turbine is healthy, the predicted values should be similar
or nearly similar to the actual measurements. Hence, an operational limit can be
placed on the difference between the predicted output and actual power output. If
the operational limits are crossed, there is unexpected behavior, i.e. an anomaly,
which can be further investigated.

To create such a power curve model, two approaches are possible, namely
physics-based approaches, which stem from the underlying physics, and data-
driven approaches, which only use collected measurement data. Within this chap-
ter the focus lies on data-driven models that are designed to predict a wind turbine’s
output power as these data-driven methods are very powerful, do not require con-
siderable expertise knowledge on wind turbine dynamics and they can provide very
good results quickly.

In the next section (2.2), related literature is discussed. First, information is
provided how physics-based models are created and used, and why they are less
preferable compared to data-driven methods. Next, data-driven approaches are
discussed together with the state-of-the-art approaches. Based on the review of the
related literature two opportunities are identified. The first is that performance of
state-of-the-art approaches only using wind speed as input variable have limited
performance and hence have room for improvement. The second opportunity lies
in using more than one variable as input. The contributions in this chapter therefore
consist of improved data-driven univariate power prediction approaches as well as
data-driven multivariate power prediction approaches. The multivariate approach
uses wind direction, turbine yaw, blade pitch and rotations per minute of the rotor
on top of the wind speed as variables. The proposed approaches are discussed in
Section 2.3 and are first evaluated on a synthetic data set. Next, the approaches are
evaluated on a data set collected from three actual offshore wind turbines which
are located in the North Sea of the coast of Belgium. A description of the data
sets is given in Section 2.4. Sections 2.5 and 2.6 present the achieved results

CHAPTER 2 15

and illustrate that by using data-driven techniques insights into the data can be
acquired by looking at how important the input variables are for the model to
accurately predict the output power. Finally a discussion is given in Section 2.7
and a conclusion in Section 2.8.

2.2 Related literature
In this section background information together with related literature is provided
on both physics-based approaches for performance monitoring and data-driven ap-
proaches

2.2.1 Physics-basedmachine-level performancemonitor-
ing

A “physics-based model” is defined as a set of mathematical functions wherein the
relationship between various parameters is modeled explicitly by a domain expert.

The basis of a power curve model is the relationship between the wind speed
and generated power, as can be seen in Equation 2.1, wherein A denotes the area
the wind turbine’s blades cover, v the wind speed, ρ the air density and Cp the
rotor efficiency, which indicates how much of the energy in the wind is converted
into electrical energy.

Pw =
1

2
ρAv3Cp (2.1)

It was determined that the rotor’s efficiency could maximally be 59.3 % [18].
This is known as Betz’ Law. However, in reality less power is extracted from
the wind as a wind turbine is not operational at all wind speeds. At very low wind
speeds insufficient torque is exerted by the wind on the turbine blades to make them
rotate. When the wind speeds are greater than the cut-in speed the turbine will start
to rotate and generate electrical power. This power generation will be according
to Equation 2.1. However, at high wind speeds, the output power will reach the
limit of the electrical generator. This limit is called the rated output power and
is reached at the rated output speed. When wind speeds higher than the rated
output speed occur, the wind turbine’s controller will limit the power generation,
for example by changing the angles of the blades, resulting in a constant level of
output power. If the wind speed increases further, the wind turbine can suffer from
damage. To prevent damage, a braking system is activated by the controller to
bring the rotor to a standstill. The braking is activated at the cut-out speed. In
Figure 2.1 a power curve is shown including the terms mentioned above.

State-of-the-art physical models are often designed to extend the model de-
scribed in Equation 2.1. Extentions are made by creating additional subsystem

16 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

0 5 10 15 20 25

Wind speed

0

5

10

15

20

25

30

G
en

er
at

ed
po

w
er

Cut-in

Rated output power

Rated output speed
Cut-out speed

Figure 2.1: Example of a wind turbine power curve. The minimum speed at which a wind
turbine produces power is known as the cut-in speed. The rated output power is the
maximum output power and the cut-out speed is the maximum operational speed.

models to take energy losses into account due to sub-components’ efficiency and
external influences. For each of these losses, separate models need to be designed
by domain experts. For example, a model for the rotor, generator, speed controller,
pitch angle controller, protection system and electrical transmission can be cre-
ated [19–22]. External influences, such as turbulent air and shading effects also
have an influence on the wind turbine’s performance. Attempts have been made
to take these effects into account for power prediction [23–25]. However, these
approaches are still very much sub-optimal as it is, for example, difficult to predict
the power produced when considering a row of wind turbines [26].

Another physics-based approach is the usage of computational fluid dynamics
(CFD). CFD can be used to model wake effects in a wind farm [27, 28]. These
models are most often used to study the wake effects, but when using operational
data they can also be used to predict the power output of individual turbines which
result in better performing models than when using analytical models as described
above [29]. CFD also has been used to model wind turbines that suffer from icing,
i.e. ice that forms on the blades, for which the results can be used to develop a
possible ice detection system [30]. Limited studies have also been carried out to
simulate certain faults such as damaged blades in wind turbines [31] and can then
possibly be used to detect damaged blades of real wind turbines, which however,
has not been done yet.

CHAPTER 2 17

Physics-based approaches are white-box approaches as they enable an oper-
ator/practitioner to better understand how the performance of a wind turbine is
influenced as these approaches explicitly model the interaction between the dif-
ferent variables. However, they can require considerable expert knowledge, and
for CFD-based approaches, considerable computational power is required to be
practically applicable.

2.2.2 Data-driven machine-level performance monitoring

A “data-driven model” is defined as a model wherein the relationships between
the various parameters are not explicitly modeled by a domain expert, but rather
constructed from the data using statistics or machine learning. As these models
are not inherently interpretable, they are often called black-box approaches.

Monitoring the performance of a machine or process by only considering data
has been done for a long time using statistical process control (SPC) [33]. SPC
is done by defining what the normal operational conditions of a machine are and
subsequently define control limits for its signals. Such a technique is easy to im-
plement, and hence is often a first step in the performance monitoring process. By
monitoring the variability of signals, a good estimate of how the machine is per-
forming can be acquired. When labeled data is missing, i.e. data annotated with
the machine’s condition, SPC is the only approach that can be taken for data-driven
performance monitoring as it does not require labeled data. If labeled data is avail-
able, a classification approach can be used enabling fault diagnosis. However, as
many possible faults can occur, lots of annotated data should be available to detect
the specific condition, which is often not feasible.

The concept of statistical process control is closely related to anomaly detec-
tion because data points outside the control limits are considered to be anomalies.
However, generally speaking, statistical process control is done on one signal at a
time (univariate) such as the generated power, hence it is impossible to take multi-
variate phenomena into account. To solve this problem, dimensionality reduction
techniques can be used such as Principal Component Analysis (PCA) [34]. PCA is
an unsupervised technique that reduces the dimensionality of many correlated sig-
nals. PCA is used to construct subspaces with a lower dimensionality than the orig-
inal data. This is done offline and using data from normal operational conditions.
When performing online monitoring the data is projected into these subspaces and
using test statistics, such as the squared prediction error or T 2 statistic, abnormal
operation conditions can be detected [35]. Many variations of this approach have
been proposed. However, one of the main drawbacks of these approaches is that
non-linear phenomena cannot be captured, such as in a power curve, as these are
techniques that are based on linear combinations of the input variables.

18 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

Another anomaly detection approach is the regression-based approach. Re-
gression is used to predict a continuous output. In the performance monitoring
case, several input parameters are used and a value that is indicative of the ma-
chine’s performance is predicted such as the generated power. As with the dimen-
sionality reduction approach, only data from normal operational conditions is used
to train the model. Subsequently, the model can be used to predict what the output
value should be, given the input parameters. This predicted value can be compared
to the actual measured value. Using anomaly detection techniques or SPC rules,
one can then detect if the actual value deviates too much from the predicted value.
The advantage of such an approach is that it can deal with multivariate problems
and non-linearity if an appropriate algorithm is chosen.

In recent years, data-driven (regression-based) modeling methods have gained
attention for performance monitoring of wind turbines. Often the research effort
focuses on improving univariate modeling (i.e. model the relationship between
the wind speed and the generated power). For example, Kusiak et al. [36] compare
two parametric models with five non-parametric models on separate data sets. The
two parametric models used are both logistic curves with four parameters control-
ling the shape of the curve which describes the relation between the wind speed
and power output. These four-parameter logistic curves are either optimized using
maximum likelihood or the method least-squares. The non-parametric models are
a multi-layer perceptron, a random forest, a M5P decision tree, a boosting tree and
a K-nearest neighbors (KNN) regression model. Of the non-parametric models,
the KNN model achieves the best results. From the parametric models, the four
parametric logistic curve optimized with least squares performs the best.

A recently published comprehensive review on power curve modeling by Ly-
dia et al. [37] also presents a comparative literature study on parametric and non-
parametric methods. Methods reviewed are, among others, linearized segmented
model, polynomial curve fitting, both four and five parameter logistic curves fitted
using several different optimization algorithms, neural networks (NN) and fuzzy
methods. When comparing the two reviews it can be concluded that by fitting a
five-parameter logistic (5PL) curve using differential evolution (DE) the best re-
sults are achieved. This was shown using synthetically generated data set and also
a data set containing data from onshore wind turbines [38].

It was recently shown that other possible combinations of parameters, which
are measured and stored by the supervisory control and data acquisition (SCADA)
system, can be used for performance monitoring of a wind turbine. In [39] the
rotor curve (mapping between rotor speed and wind speed) and blade pitch curve
(mapping between the turbine’s pitch and wind speed) are used for more precise
anomaly detection. In the work of Schlechtingen et al. [40, 41] more than just

CHAPTER 2 19

the wind speed is used as input of data-driven models (multivariate modeling).
Methods such as cluster center fuzzy logic, NN, KNN and adaptive neuro-fuzzy in-
terference system models are compared for performance monitoring [40, 41]. The
results indicate that when augmenting the wind-speed based models by using the
ambient temperature and wind direction as additional inputs, the variance in the
generated power is better accounted for. Because of this, better prediction results
are achieved and more accurate anomaly detection is possible.

The related literature and specifically the review by Lydia et al. [37] indicate
that considerable research has been done regarding univariate power curve mod-
eling. However, as illustrated in [40], multivariate power curve modeling can im-
prove performance monitoring. There are several scenarios one can think of where
additional parameters will be useful. For example, the anemometer might measure
high wind speeds, which in a simple model will result in high output power. How-
ever, the turbine is in fact generating no energy because of too high wind speeds
(larger than the cut-out speed). Using a simple model this would be flagged as an
anomaly. However, by incorporating the rotation speed of the rotor into the model,
the model will be able to handle this scenario and still predict well. Hence, the
event will not be flagged as an anomaly.

In the next section information about different machine learning algorithms is
provided which we compare for their prediction efficacy regarding performance
monitoring. The goal is to see if the state-of-the-art approach can be surpassed.

2.3 Data-driven performance modeling
Within this section, six approaches for performance modeling are employed which
are selected based on the related literature.

Five parameter logistic curve fitted by differential evolution (5PL-DE):
The first approach is the state-of-the-art approach discussed in Section 2.2.2. This
approach is a parametric approach as it fits a five parameter logistic curve to wind
speed and power production data using the differential evolution optimization al-
gorithm [37, 38]. This approach only allows univariate modeling and not multi-
variate modeling, i.e. only the wind speed can be used as input variable of the
model.

In optimization procedures for parametric models, the parameters of an explicit
mathematical function are tuned, resulting in a function that fits the data as well as
possible. For the power curve, several functions have been proposed and fitted to
wind speed and power data, such as the logistic curve with 1, .., 5 parameters. As
Figure 2.1 illustrates, it is clear that a power curve is not symmetric. Therefore, a

20 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

five parametric logistic function is the most suitable choice since it is an asymmet-
ric s shaped curve. The functional form of the 5PL can be seen in Equation 2.2,
where θ = (a, b, c, d, g), for which the range of parameters is restricted to: c > 0

and g > 0 and x is the input parameter, i.e. wind speed. The parameters and their
related effects are listed in Table 2.1. The effects of varying the parameters of a
5PL function can be seen in Figure 2.2.

f(x,θ) = d+
(a− d)

(1 + (xc)
b)g

(2.2)

Parameters Usage

a Horizontal lower asymptote
b Steepness of the curve

c
Point on the curve where the
curvature changes direction

d Horizontal upper asymptote
g Controls the asymmetry

Table 2.1: Description of the parameters in the five-parameter logistic curve [42].

The objective function, optimized to fit the 5PL can be seen in Equation 2.3..
k is the amount of samples in the data set, y is the measured power, and θ is the
set of parameters which need to be estimated.

θ̂ = argmin
θ

k∑
i=1

[f(xi,θ)− yi]2 (2.3)

In order to find the best values for the 5 parameters of the logistic function,
differential evolution (DE) is used to optimize Equation 2.3. Differential evolution
tests and changes various values for a,b,c,d and g in an efficient and effective man-
ner with the goal of making the logistic curve match the data as well as possible.
Similar to Lydia et al. [37], we use the DE/best/1/bin scheme consisting of the
following steps:

• Step 1. Create population: The population is a set of individuals (an in-
dividual is a vector which represents a set of parameters for Equation 2.2).
The population, described by Equation 2.4 is a nxm matrix, where n is the
amount of parameters per individual and m is the number of individuals in
the population. The number of individuals is a parameters which has to be
set by the practitioner. It should be noted that if this number is too large,
the algorithm will take a long time to finish. If this number is too small, the
algorithm will not be able to fit the curve well to the data.

CHAPTER 2 21

0 2 4 6 8 10
x

0

1

2

3

4

y

Increase a

(a)

0 2 4 6 8 10
x

0

1

2

3

4

y

Increase b

(b)

0 2 4 6 8 10
x

0

1

2

3

4

y

Increase c

(c)

0 2 4 6 8 10
x

0

1

2

3

4

5

6

7

8

y

Increase d

(d)

0 2 4 6 8 10
x

0

1

2

3

4

y

Increase g

(e)

Figure 2.2: Effects of varying the a, b, c, d and g parameters, respectively of a 5PL
function.

22 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

Θ = [θ1,θ2, ...,θj , ...,θm] (2.4)

With θj as in Equation 2.5.

θj = [θ1j , θ2j , ..., θnj]
T (2.5)

Note that n is equal to 5 for the 5PL.

• Step 2. Evaluate the population: In this step each individual in the pop-
ulation is evaluated according to the objective function described in Equa-
tion 2.6, wherein xi represents the wind speed, and k the number of samples
in the training set. The best individual from the population Θ is the one for
which the value of the objective function is the smallest. This individual is
then defined as θbest.

g(θj) =

k∑
i=1

[f(xi,θj)− yi)]2 (2.6)

• Step 3. Mutation: A set of donor vectors V, i.e a nxm matrix is created in
this step according to Equation 2.7.

vj = θbest + γ(θI − θII) (2.7)

Where vj is the j − th donor vector. θI and θII are two mutually exclusive
vectors chosen from the population at random. This difference is scaled by
the scalar γ, which lies in the interval [0.4,1].

• Step 4. Crossover: Trial vectors (U) are generated based on the donor vec-
tors and the population. The crossover is applied to each pair of individuals
θj and its donor vector vj , this results in a trial vector as described in Equa-
tion 2.8.

uij =

{
vij if β ≤ ε or j = jrand;

θij otherwise;
(2.8)

In this equation, β is a random number in the range of [0,1], ε is the crossover
rate and is set manually, jrand is a random number in the range of [1,m]. If
the cross-over rate is set to a large number, more elements of the donor
vectors will end up in the trial vectors.

CHAPTER 2 23

• Step 5. Selection: Members for the new generation are created according
to Equation 2.9.

θj =

{
uj if g(uj) ≤ g(θj);
θj otherwise;

(2.9)

• Step 6. Termination: A fixed number (i.e. generations) of iterations is
run through starting from step 2. In the end, the individual resulting in the
smallest error given by the objective function is the optimum parameter set.

The hyperparameters (see Section A.3.1), such as the crossover rate, number
of generation and the size of the population are optimized using grid-search (see
Section A.3.5).

K-nearest neighbors regression (KNN):
The second approach is K-nearest neighbors regression, a non-parametric instance
based regression algorithm [1], as it is the best non-parametric method regarding
power curve modeling described in [36]. Furthermore, KNN can be used for both
univariate modeling as multivariate modeling. Instead of learning the underlying
pattern of the data, the algorithm will compare new samples to instances which are
saved in the training phase. For more information on KNN we refer the reader to
Section A.4.1 in the preliminaries chapter.

Method of bins (MOB):
The third approach is the method of bins, which is included because it is the stan-
dard approach set by the International Electrotechnical Commission [43] to model
a power curve. The goal of this method is to create a power curve which can be
compared to the manufacturer’s power curve to see if the installed turbine is work-
ing as expected. The MOB is a method which only allows univariate modeling and
not multivariate modeling. This means that only the wind speed can be used as in-
put variable. The determination of a power curve is done by applying the MOB on
the normalized data set. Every bin has to span 0.5 m/s for which the mean of the
normalized wind speed and power output have to be calculated. Based on these
bins and corresponding mean values it is then possible to predict the power output
given the wind speed.

Random forest regression (RF):
As fourth approach, random forest regression is employed since it is an ensemble
method, which are known to outperform individual models [44]. Random forests
are easy to use and have few hyperparameters that have to be tuned. More infor-
mation on random forest regression can be found in Section A.4.3.

24 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

Extremely randomized trees (ERT)
The fifth approach entails a variation on random forest regression called extremely
randomized trees regression which is known to outperform random forests [45].
Compared to random forests it sometimes reduces the variance even more [45].
More information on extremely randomized trees can be seen in Section A.4.4.

Stochastic gradient boosted regression trees (SGBRT):
The last method is stochastic gradient boosted regression trees which is also an
ensemble method based on regression trees which performs very well [46].

In the RF and ERT methods, the individual regression trees are independent
of each other and can therefore be constructed at the same time, i.e. in parallel.
Alternatively, in the SGBRT method the individual trees are built in a forward
stage-wise procedure. The algorithm starts off by learning a single regression tree
model on the training set. Gradient boosting improves this initial model by sequen-
tially constructing additional models that are trained on the error of the previous
model. More information about gradient boosted regression trees is provided in
Section A.4.5.

A RF consists of many complex models, i.e. deep regression trees, which have
high variance and low bias, resulting in an ensemble model with an unchanged
bias but low variance. Bias measures how far off in general a model’s predictions
are from the correct value. Conversely, boosting uses small models which have
low variance (i.e. underfitted), but high bias. By combining these models in this
stage-wise procedure the bias is reduced, resulting in a well performing ensem-
ble method. An example of the bias-variance trade-off for RFs and SGBRTs can
be seen in Figure 2.3. In this figure a function is approximated by a RF (Fig-
ure 2.3a) and by SGBRT (Figure 2.3b). The red lines indicate the predictions of
the individual trees and the dashed line the respective predictions of the ensemble
models. As can be seen for the RF, individual models are complex and have a high
variance. Nevertheless, when they are averaged, the variance is reduced (i.e. the
black, dashed line’s fluctuations are more narrow). For SGBRT, it can be seen that
the individual trees are simple and have a high bias and low variance as they do
not follow the function to approximate and do not fluctuate a lot. However, the
final ensemble model has a low bias and a relatively low variance and therefore
approximates the function well.

These tree based approaches are not only chosen because they are known to
perform very well, but also because they can provide insights into the data. In
machine learning, input features are almost never equally important, often only a
few features will substantially influence the output. Using tree-based approaches
the relative importance of features can be calculated. Calculating the importance
of the features is done as follows: when traversing a tree, top to bottom, at every
node the error reduction by that node is computed. This error reduction is subse-

CHAPTER 2 25

quently multiplied by the amount of samples that are routed to the node. For every
feature these quantities are added together and then normalized, giving the feature
importance.

2.4 Data sets
Data from actual wind turbines is difficult to acquire. This is due to the fact that
from the data knowledge can be gained about the wind turbine by reverse engi-
neering. Hence, intellectual property can be stolen. This is why Lydia et al. [38]
compared different modeling methods on both actual and synthetic data so that
the results from the synthetic data can serve as a reference for other researchers.
Therefore, the six algorithms described above are evaluated on a synthetic data set
generated according to the procedure described in [38]. Unfortunately, this syn-
thetically generated data set only contains two parameters, i.e. the wind speed and
the generated power. Hence, to evaluate the algorithms for multivariate modeling,
a data set was created containing data from three actual offshore wind turbines.

2.4.1 Synthetic data
A synthetic data set is created using Equation 2.10, where the output power is
denoted as pa, the wind speed as v, the rated power as pr, the cut-in speed by vc,
the rated speed by vr and the cut-out speed by vs. c is referred to as the power
curve coefficient and is calculated according to Equation 2.11 where ρ is the air
density, R the radius of the rotor determining its swept area, and cp is the rotor
efficiency coefficient. As in [38], these parameters are set as follows: c = 0.03906
kg/m, pr = 20 kW, vc = 2 m/s, vr = 8 m/s, vs = 18 m/s and σ, the standard deviation
for the added noise, is set to 0.5 kW.

pa(v, σ) =

0, v < vc, v > vs

cv3 +N(0, σ2) vc ≤ v ≤ vr
pr vr ≤ v ≤ vs

(2.10)

c =
1

2
cpρπR

2 (2.11)

From article [38], it can not be deduced what the range of input wind speeds
was, or if the inputs were generated in a specific way. In order to get a series of
realistic wind speeds, the method described in [47] is used in this research to gen-
erate wind speeds. This method uses a one-step Markov chain model, introducing
dependency between the wind speed at time step t and t− 1 . The wind speeds are

26 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

0 2 4 6 8 10
x

6

4

2

0

2

4

6

8

y

Ground truth
Individual trees
Predicted
Data

(a)

0 2 4 6 8 10
x

6

4

2

0

2

4

6

8

y

Ground truth
Individual trees
Predicted
Data

(b)

Figure 2.3: In (a) the predictions of individual regression trees of a random forest are
plotted together with the mean value. In (b), the individual simple regression trees are

plotted together with the eventual prediction.

CHAPTER 2 27

generated in the range of [0,vs]. Our generated data set is made available online
for future comparisons1.

2.4.2 Real world data sets
The real data used in this research come from three wind turbines located in the
North Sea, 46 km off the Belgian Coast. The three data sets were gathered –using
the SCADA system– in the same time period and are regarded as only contain-
ing normal operational conditions. Each data set contains three months worth of
data. More specifically, for each one of the three wind turbines 13248 10-minute
average values of the rotations per minute (RPM) of the rotor, wind direction, the
wind turbine’s yaw, the pitch of the blades, generated power and wind speed were
collected. The wind speed is normalized following the IEC standard [43]. The nor-
malization procedure uses the absolute air temperature and air pressure, therefore
it can be stated that these parameters are indirectly accounted for in the models.
As only SCADA data is used, no additional sensors have to be installed in the
turbine, which makes performance monitoring an easy to use step in the condition
monitoring process.

Each data set is split into a training set and test set of respectively 10800 and
2448 measurements. Data preprocessing is kept to a minimum so that only entries
with missing values are removed and only measurements in the operational range
of the wind turbine are kept i.e., [3 m/s; 25 m/s]. Additionally, for training and
testing purposes, the individual variables are scaled between 0 and 1, but for error
measurement calculations, they are rescaled back to their original ranges. This is
done because training and testing on rescaled data improves the results slightly. It
should be noted that this scaling is required for algorithms such as KNN regression.

2.4.3 Testing procedure
Since every modeling technique has several hyperparameters which needs to be de-
termined, such as the number of trees in the random forest method or the learning
rate in the SGBRT method, a grid-search procedure using 10-fold cross-validation
on the training set is used. 10-fold cross-validation divides the original training
set in ten subsets. One subset is used as validation set and the nine other sub-
sets are combined and used to train the model with the specific hyperparameters.
This is done ten times to make sure that every subset is used once for validation.
It is very important to note that the test set is not used to determine the optimal
hyperparameters to ensure generalization.

Afterwards, the optimal hyperparameters are used in the algorithms during the
training phase while utilizing the entire training set in order to create the models.

1https://data.mendeley.com/datasets/gst3cdfnn5/1

https://data.mendeley.com/datasets/gst3cdfnn5/1

28 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

Afterwards, the models are tested on the test set. In order to judge the performance,
two metrics are calculated: mean absolute error (MAE) and the root mean squared
error (RMSE).

2.5 Univariate performance modeling
The state-of-the-art results for performance monitoring, as described in the litera-
ture review (Section 2.2.2), are achieved using an univariate method, i.e. solely the
wind speed is used to predict the generated power. Therefore, within this section,
the six algorithms only use the wind speed as input. First, a test is conducted using
the synthetic data set and then using the data set from the actual offshore wind
turbines.

2.5.1 Results for the synthetic data set
Lydia et al. [38] tested their methods using 1008 synthetically generated values.
In order to make the comparison, in this research all six models are trained and
tested on different sizes of data sets. The initial data set size is set to 500 values
and step-wise incremented by 50 values until the data set consists of 2000 values.
For the six models the MAE and RMSE are calculated and presented in Figure 2.4.

In [38], the scores for MAE and RMSE for the 5PL optimized by DE are
respectively 0.4874 and 0.6408. The MAE and RMSE achieved here for 5PL
optimized by DE for 1000 data points is 0.4573 and 0.6252. These values are
similar to those reported in [38], hence these results confirm that the implemented
method works correctly.

The graphs illustrate that by adding more data, most of the error rates get lower
until a certain point. Generally, when compared with other methods, the 5PL fitted
by DE will achieve relatively worse results. The best result in the end is achieved
by the KNN method (MAE: 0.1783; RMSE: 0.3435). Nevertheless, the SGBRT
method surpasses the KNN’s results briefly when 1650 data points are used (MAE:
0.1641; RMSE: 0.3257).

CHAPTER 2 29

600 800 1000 1200 1400 1600 1800 2000
Amount of measurements

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
AE

5PL-DE KNN RF ERT SGBRT MOB

(a) MAE of the different models on the synthetic data set.

600 800 1000 1200 1400 1600 1800 2000
Amount of measurements

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RM
SE

5PL-DE KNN RF ERT SGBRT MOB

(b) RMSE of the different models on the synthetic data set.

Figure 2.4: Six models evaluated on different sizes of the synthetic data set.

30 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

2.5.2 Results for the real world data set
Regarding the real world data set, the MAE and RMSE for the univariate power
curve modeling can respectively be seen in Figure 2.5a and 2.5b. The results are
presented in a stacked bar diagram such that the overall results of the algorithm,
regardless of the wind turbine, can be observed as well as the results of the algo-
rithms for the individual turbines.

The results indicate the following:

• The non-parametric data-driven models, i.e. RF, ERT, SGBRT, KNN and
MOB perform very similarly. The average MAE for these models is 239.69
with a standard deviation of 8.85. This low standard deviation indicates that
the MAE of these five models is very similar.

• Contrary to what M. Lydia concludes [38], the 5PL curve optimized by DE
performs noticeably worse. Compared to the average MAE of the other
models, the 5PL’s MAE is 55.81 larger. Considering that the standard devi-
ation of the MAEs of the other models is 8.85, it can also be concluded that
the 5PL performs significantly worse. This is possibly due to the fact that
this approach is limited by its explicit parametric design.

• When considering the MAE for the individual wind turbines, it can be seen
that for turbine one and three, KNN provides the best results (88.82 and
80.94 respectively) and for turbine two, SGBRT (62.02).

• The RMSE indicates that for turbine three the KNN method provides the
best results (140.00) and for turbine one and two the SGBRT method (150.98
and 99.97 respectively). The results achieved by KNN are to be expected as
the literature review in Section 2.2.2 indicates that KNN is an algorithm that
performs well on this task. Nevertheless, as this is still a fairly easy task,
other methods such as SGBRT are able to achieve similar or better results.

The hyperparameters for the models for the different experiments are listed in
Table 2.2. From this table, it can be seen that the values of hyperparameters can
be very diverse such as the number of trees. However, as is discussed in the next
section, from experiments it can be determined that the number of trees has a small
impact on the results.

As this section demonstrates, improvements compared to the state-of-the-art,
i.e. 5PL optimized using DE, are possible. On average, the RF, ERT, SGBRT,
KNN and MOB achieve an improvement of 18.89 % (σ = 2.99 %) compared to
the 5PL approach when considering the MAE. When considering the RMSE, this
improvement is 5.91 % (σ = 1.79 %).

Nevertheless, the experiments also illustrate that limited improvement can be
achieved if only information from one variable (the wind speed) is incorporated

CHAPTER 2 31

89.38
99.01

89.97 88.82 94.98
104.55

62.74

63.74

62.02 63.08

69.14

84.64

81.41

85.27

81.45 80.94

86.54

104.32

 -

 50.00

 100.00

 150.00

 200.00

 250.00

 300.00

RF ERT SGBRT KNN MOB 5PL - DE

MAE Turbine 1 MAE Turbine 2 MAE Turbine 3

(a)

151.84 154.76 150.98 151.10 157.82 156.83

100.39 101.05 99.97 100.31
106.68 112.56

140.37 142.66
140.67 140.00

144.71
152.20

 -

 50.00

 100.00

 150.00

 200.00

 250.00

 300.00

 350.00

 400.00

 450.00

RF ERT SGBRT KNN MOB 5PL - DE

RMSE Turbine 1 RMSE Turbine 2 RMSE Turbine 3

(b)

Figure 2.5: Stacked bar charts of the (a) MAE and (b) RMSE of the predictions for the
power output of the three wind turbines by different univariate approaches. Shaded bars

indicate the best score for a turbine.

32 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

Algorithm Parameters Value turbine 1 Value turbine 2 Value turbine 3

5PL-DE

Differencing scaling factor 1 1 1
Crossover rate 0.5 0.5 0.5
Population size 50 50 50
Generations 100 100 100

KNN K 200 100 100
RF Number of trees 100 300 10
ERT Number of trees 400 10 10

SGBRT

Loss Least squares least absolute deviation Least squares
Learning rate 0.01 0.01 0.1
Number of trees 500 800 100
Subsample ratio 0.3 0.1 0.1

Table 2.2: Hyperparameters for the univariate data-driven performance models for the
three offshore wind turbines.

in the models to predict the generated power. In the next section additional vari-
ables, which possibly encapsulate additional useful information, are provided to
the algorithms.

2.6 Multivariate power curve modeling
The results, when the wind speed, yaw, pitch, RPM and wind direction are incor-
porated into the models can be seen in Figure 2.6a and 2.6b. It should be noted that
as the MOB and the 5PL-DE do not work with more than one input variable, they
are not added to the comparison. From these results the following observations
can be made:

• When incorporating these additional variables into the model, the average
MAE is reduced by 14.61 % and the average RMSE by 12.65 %.

• Regarding the MAE, SGBRT gives the best results across all turbines (65.08;
58.92 and 70.54 respectively for turbine one, two, three)

• For the RMSE, SGBRT gives the smallest error for turbine one (103.26).
ERT provides the best results for turbine two and three (89.51 and 115.57).

• The tree-based methods provide the best results and KNN performs much
worse. The average MAE for the tree-based methods across the three tur-
bines is 200.53 (σ = 5.20), while the KNN for the three turbines together is
248.91. This is a difference of 48.38. Considering that the standard devia-
tion of the MAE of the tree-based methods is 5.20, it can be concluded that
KNN performs significantly worse.

• When five input parameters are used by the KNN method it even performs
worse in comparison to when only the wind speed is used as input. The MAE

CHAPTER 2 33

increases by 6.90 % when the KNN approach uses the 5 input variables
compared to when it only uses the wind speed as input. This is expected as
it was also observed in the work of Schlechtingen et al. [40]. They remark
that by increasing the dimensionality of the feature space, the amount of
neighborsK should decrease to achieve a good score. As a consequence the
model becomes more sensitive to outliers.

The hyperparameters for the models for the different experiments are listed in
Table 2.3. The impact of changing the different hyperparameters for the gradient
boosted regression trees model can be seen in Figures B.1; B.2; B.3 and B.4 for
the number of trees, the subsample ratio, the learning rate and the maximum depth
respectively. Optimizing the hyperpameters results in limited improvements. It
should be noted that if the learning rate is very small, the predictions are much
worse, however, this can be mitigated by increasing the number of trees. Finally,
the maximum depth has a larger impact, but in general it seems that the depth has to
be at least 3. For the random forest model and for the extremely randomized trees
model, the impact of modifying the number of trees can be seen in Figure B.5 and
Figure B.6 respectively. From these figures, it can be concluded that optimizing
the number of trees has a limited impact on the results.

Algorithm Parameters Value turbine 1 Value turbine 2 Value turbine 3

KNN K 5 5 5
RF Number of trees 300 300 400
ERT Number of trees 500 50 300

SGBRT

Loss Least squares Least absolute deviation Least squares
Learning rate 0.05 0.01 0.01
Number of trees 300 1000 1000
Subsample ratio 0.3 0.5 0.8

Table 2.3: Hyper-parameters for the multivariate data-driven performance models for the
three offshore wind turbines.

2.6.1 Feature importance
Multivariate approaches have more than one input feature. However, the features
are not equally important to predict the output power. As stated in Section 2.3, by
using tree-based methods, importance of a feature can be calculated. Figure 2.7
presents the importance of the features to the SGBRT model. The results indicate
that the performance of the SGBRT model depends on how much influence the
additional features have on the generated power. The difference in MAE between
the univariate case (Figure 2.5a) and multivariate case (Figure 2.6a) regarding the
SGBRT model for turbine one, two and three is 24.89; 3.1 and 10.91. Per turbine,
this is an improvement of 27.66 %; 5.00 % and 13.39 % respectively. When this

34 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

71.98 73.67
65.08

83.76

59.11 59.00
58.92

77.40

72.15 71.15

70.54

87.75

 -

 50.00

 100.00

 150.00

 200.00

 250.00

 300.00

RF ERT SGBRT KNN

MAE Turbine 1 MAE Turbine 2 MAE Turbine 3

(a)

114.93 118.83
103.26

152.10

89.90 89.51

90.43

143.08

122.16 115.57

117.88

142.79

 -

 50.00

 100.00

 150.00

 200.00

 250.00

 300.00

 350.00

 400.00

 450.00

RF ERT SGBRT KNN

RMSE - Turbine 1 RMSE Turbine 2 RMSE Turbine 3

(b)

Figure 2.6: Stacked bar charts of the (a) MAE and (b) RMSE of the predictions for the
power output of three wind turbines by multivariate approaches. Shaded bars indicate the

best score for a turbine.

CHAPTER 2 35

improvement is compared to the feature importance scores in Figure 2.7 a logi-
cal trend can be observed. A model, for which the wind speed is very important,
achieves little improvement. Vice versa, when the other parameters are very im-
portant to the model, there is a greater improvement. For turbine one, the wind
speed is of 40.07% importance according to the SGBRT model. This model has
a large improvement of 27.66 %. For turbine three, the wind speed is of 53.65 %
importance according to the SGBRT model. This model has a good improvement
of 13.39 %. Finally, for turbine two the wind speed is of 62.28 % importance
according to the SGBRT model. This model has a modest improvement of 5 %.

Regardless of the univariate or multivariate input, the models for turbine two
receive the best and hence lowest MAE and RMSE. Additionally, the improvement
achieved by using more variables as input, is small for this turbine. These facts in-
dicate that turbine two is less influenced by environmental and operational aspects
during the measured time period compared to turbines one and three, since most
of the information is considered to be present in the wind speed. Fortunately, if
the environmental and operational aspects influence the performance of the turbine
more, the multivariate models are able to capture this as the other models improve
considerably when more variables are used. This also reaffirms the fact that by
using data-driven, non-parametric approaches a model can learn how to use addi-
tional information without explicitly modeling the physical relationship between
the parameters.

2.6.2 Partial dependence

A common method to understand the relationship between a feature and a predic-
tion is to calculate and visualize partial dependence [48]. This is done by observing
how changes in the input affect the prediction. Partial dependence for one feature
is calculated following Equation 2.12. N is the number of samples in the data set,
pred is the already trained prediction model (i.e. SGBRT) that takes a sample (xi)
as input. In this sum, the j-th feature is fixed and set to v. The original input data
is kept fixed. Only the value of one of the features is varied and predicted to inves-
tigate the influence of said feature on the output. An example of this procedure can
be seen in Table 2.4. In the table there are five input variables (i.e. the wind speed,
wind direction, yaw, pitch and RPM) and the output power which is predicted by
the trained model (i.e. predicted output power). In this example we want to know
what the influence is of the RPM on the predicted output power. Hence, the RPM
of all samples is set to a fixed value. Subsequently, the output power is predicted.
Afterwards, the predictions are averaged. This means that, in the example, we
now know what the average output power will be if the RPM is set to 5, while
marginalizing the other features. Next, the RPM is set to another value for every
sample to see the new value’s effect on the output. This procedure is done for a

36 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

40.07%

62.28%

53.65%

16.89%

6.96%

17.22%

17.40%

15.69%

6.78%

14.81%

4.89%
14.20%

10.84% 10.19% 8.15%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Turbine 1 Turbine 2 Turbine 3

Pitch

Wind direction

RPM

Yaw

Wind speed

Figure 2.7: The importance of the different variables for the different turbines according to
SGBRT.

wind speed (m/s) wind direction(◦) Yaw (◦) Pitch(◦) RPM Predicted output power (W)

5 10 5 20 5 500
6 11 6 21 5 510
5 11 7 20 5 505
4 12 7 19 5 490
3 11 8 18 5 480
4 10 7 19 5 485
5 9 8 20 5 470
6 8 6 21 5 465

Table 2.4: Example how the partial dependence is calculated.

range of RPM values to get a full view of the effect of the RPM on the prediction.

pdpf (v) =
1

N

N∑
i

pred(xi) with xif = v (2.12)

From the feature importance we observed that the RPM and the wind speed are
important to the model to predict the output power. Hence, the partial dependence
of the prediction on the RPM and wind speed is calculated. The partial dependence
plot is given in Figure 2.8. In this plot it can be seen that there is a strong interaction
between the RPM and the wind speed. When the wind speed rises, the output
power will also rise (partial dependence). However, the RPM will magnify this

CHAPTER 2 37

effect. For example, when the RPM increases when the wind speed is already
at its maximum, the power output will still rise. As can be seen, the model has
learned the non-linear interaction between the RPM, wind speed and the output
power without requiring it to be modeled explicitly.

The interaction mentioned above can be seen in the data as Figure 2.8a illus-
trates. A small range of the wind speed is plotted versus the RPM and the measured
output power. In this plot it can be observed that when the wind speed is maximal,
the increase in RPM will result in an increase in the output power. The interaction
that can be observed in the data in this scatter plot can also be seen in the par-
tial dependence plot. Hence, it can be concluded that the data-driven model has
learned the phenomena in the data.

Another phenomenon can be seen when looking at the partial dependence on
the pitch and the wind speed (Figure 2.9). In this figure it can be seen that the
wind speed is a good indicator for the output power as long as the pitch is above
0. When the pitch is lower than 0, the output power will be reduced, especially if
the wind speed is high. This is a result of the wind turbine’s pitch control system.
This system will adjust the blade pitch into negative angles when there is a strong
wind to keep the rotation speed within limits.

Similar partial dependency plots can be made for the yaw and the wind direc-
tion. However, these do not show any clear interpretable interaction, as there is no
wind direction that influences the power prediction differently than the other wind
directions. Hence, they are not included here.

38 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

Wind speed (m/s)

2 4 6 8 10 12 14 16 18
RPM

8
10

12
14

16

Partial dependence

500

0

500

1000

1500

2000

(a)

Wind Speed (m/s)3.0 3.2 3.4 3.6 3.8 4.0RPM

0
2

4
6

8
10

Output power (kW
)

0

50

100

(b)

Figure 2.8: Partial dependence plot (a) of the RPM and wind speed. Scatter plot (b) of the
RPM, wind speed and measured output power, illustrating the interaction of these

variables.

CHAPTER 2 39

Figure 2.9: Partial dependence plot of the pitch and wind speed illustrating the interaction
of these variables. The figure show the 3D surface of the partial dependency, but also a

contour plot to highlight the effect of the pitch. Here too, the partial dependence means the
effect on the output power.

2.6.3 Generated power versus the predicted power
The general improvement by multivariate power curve modeling is also visible
when plotting the actual generated power versus the predicted power Figure 2.10.
These plots show that for the multivariate case the points are closer to the y = x

line, where the generated power is equal to the predicted power, compared to the
univariate case.

40 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

(a)

(b)

Figure 2.10: Scatter plots of the actual power output versus the predicted output power by
the SGBRT model when only using the wind speed as input variable (a) and using five

input variables (b).

2.7 Discussion: data-driven versus physics-based

In this section we reflect on the trade-off between data-driven and physics-based
approaches.

It is shown that data-driven approaches can improve predicting the output
power of wind turbines. These data-driven approaches have several advantages.
First, as illustrated in this chapter, data-driven methods have the advantage of be-
ing able to capture the phenomena in the data. Second, data-driven techniques

CHAPTER 2 41

are easy to apply, resulting in an approach that can be implemented in a short
amount of time. Third, the techniques applied in this chapter do not require a lot
of computational resources. For example, the experiments were run on a standard
laptop with an Intel-core i5 processor which has a clock speed of 1.7 Ghz 8 GB of
RAM memory. To train the different methods on the data, less than 0.5 seconds
is required per method. Fourth, data-driven performance monitoring, as presented
in this chapter, only requires data form the supervisory control and data acquisi-
tion system, which is a standard component in offshore wind turbines. Hence, no
additional sensors have to be installed, keeping the cost low. Additionally, lim-
ited expert or domain knowledge is required. Finally, it should also be noted that
data-driven methods will create models adapted to the turbine from which the data
originated. This means that such a model will only perform optimally for that
turbine. Hence, should a model be used for another turbine, it will perform less
well.

Physics-based approaches heavily rely on expertise knowledge. Furthermore,
models are often created for a certain type of turbine instead of per installed tur-
bine. This is because turbine dependent phenomena, such as degradation, turbu-
lent air at the turbine’s location, shading effects or icing are not yet incorporated
in physical models, are imprecise and unreliable, or are difficult to incorporate.
Even if phenomena such as wake effects are modeled using computational fluid
dynamics and operational data, considerable computational power and expertise is
required [29]. Because of these disadvantages, physics-based approaches are more
difficult to use in practice and slower to implement. Physics-based approaches
do have a major advantage and that is that they are white-box systems, mean-
ing that they are human interpretable, which is not the case for data-driven meth-
ods. Powerful data-driven methods are often black-box systems, which are not
human interpretable. However, some techniques, such as those used in this chap-
ter, can provide some insights into the data, but these are rather limited compared
to physics-based approaches.

Both data-driven as well as physics-based approaches have their respective
advantages and disadvantages. Hence, for future research, it would be interesting
to investigate how to combine them. For example, additional domain expertise
could be used to further improve the data-driven approaches and make them more
interpretable.

2.8 Conclusion
In this chapter performance monitoring for offshore wind turbines is improved.
We optimize and compare existing machine learning models that have not been
used within this context before to achieve this.

First, power curve modeling was done on a synthetic data set generated ac-

42 MACHINE LEVEL: DATA-DRIVEN MULTI-SENSOR PERFORMANCE MONITORING

cording to the procedure described in [38] and adjusted with the method proposed
in [47]. The resulting synthetic data set used in this research, is made available
online. The results we achieved using this data set indicate that non-parametric
data-driven methods outperform the state-of-the-art approach.

Second, we modeled the power curve of three offshore wind turbines using
six algorithms providing only the wind speed as input. The results indicate that
the state-of-the-art approach is not able to outperform the non-parametric meth-
ods on our data sets. These results confirm to the first opportunity highlighted in
section 2.1 that univariate power curve modeling can be improved by using non-
parametric data-driven methods.

Third, when only using one input variable, a limited amount of information
is made available to the chosen algorithms. Hence, experiments were done using
multiple input variables which are readily available from the SCADA system. Five
variables are used as input i.e. wind speed, rotations per minute of the rotor, yaw,
wind direction and pitch. Our experiments show that by providing these additional
variables to the models, an overall improvement can be seen for our data sets,
except for the k-nearest neighbors model. The largest improvement is achieved
using the data from turbine one, resulting in an improvement of 27.66% compared
to the univariate solution. This confirms to the second opportunity identified in
section 2.1 that data-driven power prediction can be improved by incorporating
multiple variables in the model.

The results in this chapter show that data-driven approaches work very well,
but are however limited interpretable. Nevertheless, they can be constructed in a
short amount of time using data that is readily available through the SCADA sys-
tems of turbines. The data-driven models will capture the phenomena in the data
if present and therefore performance monitoring can be improved.

The work presented in this chapter is published in Engineering Applications of
Artificial Intelligence:

• Olivier Janssens, Nymfa Noppe, Christof Devriendt, Rik Van de Walle, Sofie
Van Hoecke, Data-driven Multivariate Power Curve Modeling of Offshore
Wind Turbines, vol. 55, pp. 331-338, 2016

Chapter 3

Component level: Multi-sensor fault
detection using feature engineering

Chapter highlights

0.00 0.02 0.04 0.06 0.08 0.10

Time (seconds)

40

20

0

20

40

A
m

pl
itu

de
 (g

)

Vibration signal

Infrared thermal video

Feature extraction

Feature extraction

- Gini Coefficient
- M20
- Standard deviation

- Rotation frequency
- BPFO
- RMS
- Kurtosis
- Crest

Classification

Random forests

Data set

- Outer-raceway fault
- Reduced lubrication
- Extremely reduced lubrication
- Healthy bearing
- Lubricant contamination
- Imbalance

In this chapter, we focus on detecting conditions/faults related to bearings
using feature engineering. We consider faults such as lubrication inad-
equacies, which are currently difficult to detect. Therefore, a feasibility
study is done on data-driven fault detection using infrared thermal imag-
ing. We show that up to 88.25 % of the fault occurrences can be detected
using our approach. To achieve this, two new image processing features
are introduced to the field of infrared thermal imaging. For comparison,
we also construct a vibration-based system. In the end, both systems are
combined creating a novel multi-sensor fault detection system. We show
that this system surpasses the performance of the individual systems.

44 CHAPTER 3

3.1 Introduction

As discussed in Chapter 2, performance monitoring is a good technique to esti-
mate the overall health of a wind turbine without having to know all the details of
the machine. Performance monitoring helps to enable preventive maintenance be-
cause when under-performance is detected maintenance can be scheduled before a
wind turbine breaks down. However, it will not enable an operator to pinpoint the
exact problem in the machine and there is no guarantee that the maintenance cost
will be reduced. To make maintenance labor more efficient, details such as the
component, type of fault, severity, and location need to be known. For example,
performance monitoring will show that a wind turbine is performing sub-optimal,
however, if such a condition monitoring system could detect that a bearing in the
gearbox suffers from damage, and what type of fault is present, the urgency can
be estimated more precisely and the correct maintenance preparations and time
scheduling can be done before going to the offshore wind turbine.

As has been mentioned in the Chapter 1, the components that are prone to
failure in a wind turbine are bearings. Hence, in this chapter the focus lies on
condition/fault detection related to rolling element bearings (REB). To monitor in-
dividual components of a machine, such as bearings, additional sensors have to be
installed (in, on or near the machine). Sensors/data used for bearing fault detection
are for example ultrasound, proximity probes, thermocouples and accelerometers.
Accelerometers, which measure vibrations, can be used to detect a large part of
the impending bearing failures [49]. Generally, the time between the detection of
a potential fault and functional failure for vibration analysis is considered to be
long, in the range of weeks to months. Vibration analysis has therefore been the
method of choice when it comes to fault detection for rotating machinery, gears,
and bearings in general.

Vibration-based fault detection for individual components is mainly done using
mature, well-understood model-driven techniques [50]. Based on the geometry of
rolling element bearings, it is possible to calculate, and therefore determine, cer-
tain vibration frequencies that are useful to identify faults using signal processing
techniques [14]. Similarly, based on the physical properties of a rotating machine,
certain characteristics linked to conditions can be calculated and hence be iden-
tified using signal processing. For example, a rotating machine can suffer from
imbalance. Imbalance is caused by the fact that a rotating body (e.g. rotor) has an
unbalanced rotating mass. During rotation, excess centrifugal force is exerted by
the heavier side of the rotor, resulting in a small displacement. The acceleration
related to the displacement occurs at the rate of the rotational speed. Hence, in the
frequency spectrum of an acceleration signal –measured by an accelerometer– a
high amplitude can be observed at the rotational frequency of the machine. Sim-
ilarly, damages to the bearing’s raceway will cause a peak at the bearing’s fault

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 45

frequencies [14, 51].
Besides indicative frequencies, certain time-based statistical features have been

identified for bearing fault detection. Such an approach can be considered data-
driven feature engineering, as no knowledge of the underlying physics is used to
create the features. Examples of useful statistics are for example kurtosis and crest
factor [52, 53]. Also, the root-mean-square (RMS), another time-based feature,
has been shown to be indicative of the amount of separation between the rolling
elements and the raceways due to the lubricant in a linear bearing [54].

However, vibration analysis has its limits. Contrary to raceway damages, the
detection of lubricant starvation remains difficult because a lubrication related fault
will not manifest itself as a new cyclic frequency [55]. Today, state-of-the-art tech-
niques for predictive health monitoring of rolling element bearings do not work
for monitoring lubrication related conditions such as over-lubrication or under-
lubrication [53].

Another type of lubrication inadequacy is hard particle contamination. These
particles can consist of steel fragments, sand or any other type of residue and
can damage the bearing and reduce the operational lifetime of the machine sig-
nificantly. Hence, most of the largest bearing manufacturers state that lubricant
contamination is the major root cause of bearing failure before they reach their
rated life [56].

To detect the lubricant related problems in offshore wind turbines, regular of-
fline lubricant analysis is done. Nevertheless, this is a very intrusive and hands-on
condition monitoring method as it requires a technician to manually sample the
lubricant, bring it on shore and subsequently analyze it. By analyzing the lubricant
it is possible to categorize the contamination level according to the ISO 4406:99
or ISO 11171, if oil lubricant is used. As lubricant analysis is an offline procedure,
it is possible for a fault to escalate and damage the bearing permanently. Hence,
lubricant analysis can be complemented with an online particle counting sensor
that measures how contaminated the lubricant is in real-time enabling fault esca-
lation prevention. Nevertheless, these sensors can only be installed closed-loop
oil lubrication systems. Also, online particle counting is not possible when grease
lubrication is used. Furthermore, online particle counters are very expensive to in-
stall [49, 57] and cannot be used to detect other types of faults, i.e. raceway faults
or imbalance.

It is also possible to employ temperature-based condition/fault detection using
thermocouple sensors. Thermocouples are relatively cheap compared to other sen-
sors and allow for temperatures to be monitored inside machines. However, using
temperature-based fault detection, there is a much shorter time span between the
detection of a potential fault in a machine and the functional failure [49] as can
be seen in the P-F curve in Figure 3.1a. The time span is often in the range of
hours to days. Hence, temperature-based detection is often only useful after initial

46 CHAPTER 3

fault detection using vibration analysis. However, in recent years infrared thermal
(IRT) imaging has gained noticeable attention as it allows for visual temperature
monitoring and fault localization. Because of the advantage of having spatial in-
formation of the heat in components, IRT imaging has been applied in several
domains for specific tasks such as inspection of cracks, isolation, subsurface mois-
ture, corrosion, gas flow, air flow, and welding processes [58]. Furthermore, by
applying image processing and machine learning, IRT imaging can be used for au-
tonomous/online fault detection. For example, IRT-based fault detection has been
applied for the detection of conditions in rotating machinery such as imbalance,
misalignment, coupling looseness and bearing damages. These faults are often
considered only to be detectable using vibration-based techniques. As, IRT-based
automated fault detection is still rather new and not based on models of the under-
lying physics. Current approaches are purely data driven resulting in non-human
interpretable features.

In this chapter, the feasibility of IRT-based fault/condition detection on com-
ponent level is researched. IRT-based fault detection is still in its infancy, and the
application on rotating machinery is limited. A wind turbine is too complex to be
used in a feasibility study. Therefore, a lab-scale test-setup has been built. The fea-
sibility study is done for several bearing conditions and machine conditions. The
conditions consist, among others, of faults that occur early in the fault escalation
process and which are very expensive to detect, not detectable in real-time or not
detectable at all with current techniques such as vibration analysis. Such condi-
tions are over-lubrication, under-lubrication and contaminated lubrication, which
haven’t been researched before using infrared thermal imaging. Such faults can es-
calate and propagate leading to damages. Thus, being able to detect those, the time
between the detection of a potential fault and the functional failure is increased as
is illustrated in Figure 3.1b.

We illustrate that IRT-based fault/condition detection, using our proposed en-
gineered features, has certain limits and hence, a multi-sensor system is proposed
which uses IRT video and vibration measurements. This system uses simple expert
features from the mature model-based vibration analysis domain, which have been
proven to work well, and data-driven statistical features extracted from the IRT
data. This data is processed and combined and subsequently given to a machine
learning algorithm. The algorithm is therefore capable of providing new knowl-
edge, i.e. the condition of the component to an operator. By providing additional
knowledge on component level, better maintenance actions become possible.

To put the multi-sensor based system’s results into perspective, in this chapter
first a single-sensor vibration-based system is proposed. Subsequently, a single-
sensor IRT-based system is discussed and finally the strengths of the two single-
sensor systems are combined in a multi-sensor system.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 47

Vibration-based
fault detection

Temperature-based
fault detection

E
qu

ip
m

en
t c

on
di

tio
n

Time P1 P2

F

(a)

Vibration-based
fault detection

IRT-based
fault detection

E
qu

ip
m

en
t c

on
di

tio
n

Time
P1

P2

F

(b)

Figure 3.1: Potential failure and functional failure curves, illustrating (a) the time-span
difference between vibration-based and temperature-based fault detection, respectively (b)

vibration-based fault detection and infrared thermal imaging-based fault detection. The
region indicates that using infrared thermal imaging ,the time-span can possibly be

increased if lubricant related faults are present.

48 CHAPTER 3

3.2 Related literature
In this chapter, the focus lies on condition/fault detection for rotating machines.
Hence, in this section first the related literature is discussed regarding vibration-
based fault detection in rotating machinery. Next, a literature overview is given
of infrared thermal imaging based fault detection. Finally, related literature is
discussed regarding multi-sensor approaches.

3.2.1 Vibration-based fault detection
As has been discussed in the introduction, using vibration measurements to detect
the condition of a component in a machine, such as a rolling element bearing, is an
established technique. Based on the physics of the faults and the dynamics of the
system, several properties in the frequency spectrum have been related to specific
conditions and damages. Often, features such as the amplitude at fundamental
frequencies are used to identify certain machine faults. Furthermore, statistical
features have also been used to detect bearing faults [52,53]. To be able to detect a
fault automatically, several machine learning algorithms have been used in the past
such as K-nearest neighbors classifiers, naive Bayes classifiers, decision trees and
multi-layer perceptron classifiers [59–61]. Using these classifiers, several types of
faults can accurately be detected such as inner-raceway faults, outer-raceway faults
and rolling element faults.

However, some faults are more difficult to detect reliably such as lubricant
starvation [55], which can be caused due to grease dry-out. Lubrication has many
functions, such as friction control, wear control, contamination control, temper-
ature control and corrosion control. Lack of lubricant is often the root-cause of
many bearing failures [49]. If lubricant starvation is not detected in time, other ad-
ditional faults may be induced, making it more difficult to identify every individual
fault.

As discussed by Kankar et al. [61] and Monte et al. [62], when several faults
are present in a rotating system at the same time, the detection of the faults is more
difficult. Hence, more advanced detection techniques are required. One of the
possible options is a multi-sensor system.

3.2.2 Infrared thermal imaging based fault detection
Infrared thermal imaging for fault detection in rotating machinery gained notice-
able attention in the last years [63–69]. The focus of previous research has been
on the detection of conditions such as shaft misalignment, bearing looseness, load
imbalance and bearing faults. To detect these conditions, data-driven approaches
have been applied using image processing and machine learning. Such approaches
often follow the same pipeline as is displayed in Figure 3.2. Often, the first step of

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 49

the image processing pipeline entails the extraction of the region of interest (ROI).
This is done manually or via an algorithm such as Otsu thresholding together with
k-means clustering [63] or watershed-based algorithms [64]. The second step can
consist of enhancing the image or ROI [66]. From this (enhanced) ROI, statistical
features are derived such as the standard deviation, mean, skewness, kurtosis, vari-
ance, entropy, energy, central moments, maximum and minimum [63,65,66] of the
components of the discrete wavelet decomposition of the thermal image [67, 68].
In the penultimate step, undiscriminating features are sometimes removed or com-
bined to create better features. Algorithms used for this step include principle
component analysis [64], independent component analysis [65], discriminant anal-
ysis [66] or relief algorithm [67, 68]. The resulting features are subsequently used
to determine the condition of the rotating machine using a classification algorithm.
The classification algorithms which have been employed are support vector ma-
chine [65, 69], relevance vector machine [66], self-organising map [63] and linear
discriminant analysis [67, 68]. Most of these approaches result in a system that
can accurately detect the latent machine condition with an accuracy of 74 % up to
100 % [63–69].

Figure 3.2: General steps in an image processing/machine learning pipeline.

Several remarks should be noted regarding the related literature:

1. Often the classification algorithms are trained and tested on IRT data of
the same bearing and recording. Therefore, a generalized solution is not
guaranteed, i.e. it cannot be confirmed that the model will work using data
from new bearings.

2. The conditions and faults under investigation are those that can easily be
detected using vibration analysis, which is a robust and widely used fault
detection technique, only illustrating that infrared thermal imaging is a more
expensive but valuable alternative.

3. The detection of different amounts of imbalance is still challenging in com-
bination with other faults [50].

In the approach proposed in this chapter, several test-runs of different bear-
ings are done to create disjunct training and test sets ensuring a more generalized
solution. Furthermore, among the faults and conditions considered are some that
are difficult to identify or hardly detectable using today’s detection techniques.
Finally, multiple conditions and faults are considered simultaneously.

50 CHAPTER 3

3.2.3 Multi-sensor systems
Regarding multi-sensor approaches, little research is available. However, it has
been shown that multi-sensor systems outperform single-sensor based systems [70–
72]. For example, to detect a cracked rotor, rotor rub or coupling misalignment,
improved fault detection can be achieved when vibration data is supplemented by
temperature measurements [70]. The advantage of a multi-sensor approach is rec-
ognized in other disciplines as well, such as fire detection and health-care [71,72].

3.3 Set-up
In order to investigate the feasibility of infrared thermal-based, but also multi-
sensor-based fault/condition detection system, a lab-scale set-up was used to create
two data sets containing different conditions. The conditions in data set one can
be seen in Table 3.1, and those for data set two in Table 3.2. The set-up used to
create the various conditions is a rotating set-up which is depicted in Figure 3.3.
The set-up has a motor which makes a shaft rotate. The shaft is supported by two
rolling element bearings. Only the condition of the bearing that is removed the
furthest from the motor (i.e. right-hand side) is changed in between runs. Hence,
only the housing of the right-hand side bearing is monitored by the infrared thermal
camera. The position of the infrared thermal camera can also be seen in Figure 3.3.
The set-up is located in a darkened room to limit the noise in the thermal images
due to external sources of infrared light. As mentioned in the introduction, also
the vibrations of the set-up are recorded. Two accelerometers are mounted on
this bearing housing to measure the acceleration in the x-direction and y-direction.
Finally, also thermocouples are placed inside the darkened room to measure the
ambient temperature. More details about the set-up, infrared thermal camera1 and
accelerometers can be seen in Table 3.3 and 3.4.

No imbalance Imbalance: 13 g or 17.3 N

Healthy REB (HB) Condition 1 Condition 2
Outer-raceway fault (ORF) Condition 3 Condition 4
Mildly inadequately lubricated bearing Condition 5 Condition 6
Extremely inadequately lubricated bearing Condition 7 Condition 8

Table 3.1: Summary of the 8 conditions in data set 1.

The various conditions are created artificially. To imitate outer-raceway faults
(ORF) in the bearings, three small shallow grooves were added mechanically on
the bearings’ outer-raceway as can be seen in Figure 3.5c. When mounting the

1This camera was bought with the support of Flanders Make

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 51

Condition Bearing Imbalance

1 Healthy bearing Balanced
2 Healthy bearing 4.1 g or 5.5 N
3 Healthy bearing 9.3 g or 12.4 N
4 Healthy bearing 13 g or 17.3 N
5 Outer-raceway fault Balanced
6 Outer-raceway fault 4.1 g or 5.5 N
7 Outer-raceway fault 9.3 g or 12.4 N
8 Outer-raceway fault 13 g or 17.3 N
9 Hard particle contamination Balanced
10 Hard particle contamination 4.1 g or 5.5 N
11 Hard particle contamination 9.3 g or 12.4 N
12 Hard particle contamination 13 g or 17.3 N

Table 3.2: Enumeration of the 12 induced conditions in data set 2. Every condition
consists of a bearing condition –which are healthy bearing (HB), outer-raceway fault

(ORF) or hard particle contamination (HP)– but also an imbalance gradation, which are
balanced, 4.1 g; 9.3 g or 13 g of added weight to the rotating rotor.

Property Value

Accelerometer type IEPA
Accelerometer product type 4534-B
Accelerometer Brand Brüel & Kjaer
Bearing code FAG 22205-E1-K
Bearing type Spherical roller bearing with tapered

bore and adapter sleeve
Housing code SNV052-F-L
Housing type Closed plummer block
Grease Molykote BR 2 plus
Rotation speed 25 Hz or 1500 rotations per minute
Eigenfrequency of the set-up de-
termined using an impact test

17.8 Hz

Vibration sample frequency 51,200 Hz
Motor type Single phase asynchronous induction

motor
Motor power 1.1 kW
Weight mass disk 2.317 kg
Length shaft 68.7 cm
Diameter shaft 2 cm
Weight shaft 2.317 kg
Material shaft & disks Steel

Table 3.3: Set-up details.

52 CHAPTER 3

1 2 3 4 5 3 456

7

8

9

10

11

(a)

(b)

Figure 3.3: (a) Side-view and top-view of the set-up. (b) 3D image of the set-up. The labels
are: 1. servo-motor; 2. coupling; 3. bearing housing; 4. bearing; 5. disk; 6. shaft; 7.

accelerometer 8. thermocouple; 9. metal plate; 10 field of view; 11. IRT camera.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 53

Property Value

Thermal camera FLIR SC655
Capture speed 6.25 frames per second (fps)
Resolution 640 x 480 pixels
Distance: camera - housing 38 cm
Emissivity 0.9
Lens Macro lens
Spectral range 7.5 - 13 µm

Table 3.4: Thermal camera details.

bearings in the housing, the outer-raceway fault was placed at the 10 o’clock po-
sition (i.e. close to the top of the housing at the side which the IRT camera faces)
for data set one and at the 6 o’clock position (i.e. loaded zone) for data set two. In
Figure 3.4, these locations can be seen.

a

b

Figure 3.4: Section view of the bearing housing with the a bearing inside the housing.
Region (a), is where the three shallow grooves were for data set one. Region (b) is the area

the three shallow grooves were for data set two.

Lubricant grease is added to every bearing. The required amount of grease
is 2.5 g and is determined using Equation 3.1, as recommended by the bearing
manufacturer. In Equation 3.1 D is the outer diameter of the bearing and B the
inner diameter [73]. For the used bearings D = 52 mm and B = 18 mm.

m = D ∗B ∗ 0.0027 g (3.1)

Both the healthy bearings (HB) and those with an outer-raceway fault are
placed in a housing which contains a grease reservoir (Figure 3.5d and 3.5b). The

54 CHAPTER 3

(a) (b)

(c) (d)

Figure 3.5: Examples of different bearing conditions and the grease reservoir. (a) Mildly
inadequately lubricated bearing. (b) Healthy Bearing. (c) Outer-raceway fault. (d) Grease

reservoir.

grease reservoir contains 20 g of grease to fill the housing’s cavities to the recom-
mended 60 % [74]. For the bearings with reduced lubricant in data set one, i.e.
mildly inadequately lubricated bearing (MILB) and extremely inadequately lubri-
cated bearing (EILB), no grease reservoir is present. For the MILBs, the grease
on each individual bearing is superficially removed (Figure 3.5a). Similarly, for
the EILBs the grease in the bearings is decreased more. In Figure 3.6, the grease
reduction can be observed. For the hard particle faults in data set two; 0.02 g of
iron particles are mixed in the lubricant of the bearings.

To complete the data sets, all the different bearing conditions are also tested
during imbalance, this is done by adding bolts to the right-hand side rotor at a

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 55

0

0,5

1

1,5

2

2,5

3

EILB MILB HB

A
m

ou
nt

 o
f g

re
as

e
(g

r)

Condition

Figure 3.6: Amount of grease per condition.

radius of 5.4 cm. The weight of the bolts can be seen in Table 3.1 and 3.2.

3.4 Data-set
To construct data sets that are large enough to validate the proposed methods, ev-
ery condition in both data sets is created for five different bearings. By using
multiple bearings, variability is introduced in the data set due to manufacturing,
mounting and grease distribution resulting in better generalized machine learning
models when trained on this data set, contrary to the state-of-the-art. Each bearing
is run for one hour, while the infrared thermal camera records the heating process.
For data set one, in total, 5 bearings · 8 conditions · 1 hour = 40 hours of IRT
data is recorded. For data set two; 5 bearings · 12 conditions · 1 hour = 60 hours
are recorded. It is observed that the bearings’ temperatures usually do not further
increase after a duration of 50 minutes, i.e. they reach steady state [75]. Hence,
only the last 10 minutes of each recorded hour are exported to AVI files for further
processing and analysis. To reduce the size of the video files and maintain optimal
image quality, lossless compression is applied using the H264 standard [76]. The
resulting videos consist of monochrome frames for which the gray values corre-
spond to temperatures in the range of 10 - 60°C for data set one; and 10 - 70°C for
data set two. An example of a colorized image can be seen in Figure 3.7. Addi-

56 CHAPTER 3

tional to the IRT data, vibration data is also logged using the two accelerometers.
To synchronize the two modalities –similar to the infrared thermal data– only the
last 10 minutes of vibration data is kept for further analysis.

10 C

35 C

60 C

Figure 3.7: One frame of an IRT video of a healthy bearing.

In the next section a single-sensor fault/condition detection system is presented
which solely uses vibration data.

3.5 Methodology: single-sensor vibration-based
fault detection

Each measurement is assigned two labels: one for the machine condition and one
for the bearing condition. Hence, we regard the condition detection task as a com-
bination of two classification problems. Every 10-minute vibration recording is
classified by the first classifier according to the amount of imbalance, and by the
second classifier according to the bearing condition. This solution is depicted in
the architectures in Figure 3.8a for data set one and in Figure 3.8b for data set two.
The raw vibration data is used in two pipelines, each with their own respective fea-
ture extraction step, classification model and labels. By using an architecture with
two pipelines, the combination of the two labels generated for each sample give

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 57

the final condition. For example, using the vibration data, pipeline one detects that
the bearing is inadequately lubricated. At the same time, pipeline two detects that
there is imbalance. Hence, by combining the two classification results the final
condition is “Inadequately lubricated bearing during machine imbalance”.

An alternative approach is a single pipeline system. However, a single pipeline
systems has to be able to detect imbalance and the bearing condition at the same
time. This results in more classes to distinguish compared to two separate pipelines
which is a more difficult classification task resulting in worse results. For data
set one there are in fact 8 classes (condition/fault combinations), which are more
classes than the six classes of the two pipeline architectures, i.e. 2 classes (bal-
ance/imbalance) together with 4 classes (MILB, EILB, HB and ORF).

Another alternative consists of using k-1 binary classifiers (k being the amount
of classes in the data set). Every classifier would have to indicate if a certain con-
dition/fault is present or not. This solution has one problem and that is that this
approach would result in class skew (i.e. not uniformly distributed class sam-
ples). This can result in reduced detection results. Hence, we choose to use a
two-pipeline approach.

A high-level overview of how the vibration signals are processed next is given
in Figure 3.9. Note that this procedure is done for every signal per pipeline.

3.5.1 Pipeline one
For data set one, pipeline one has to be able to detect if the bearing is healthy,
inadequately lubricated, extremely inadequately lubricated or contains an outer-
raceway fault. For data set two, pipeline one has to determine if there are hard
particles in the lubricant, if the bearing is healthy or contains an outer-raceway
fault (in the loaded zone). As Figures 3.8a and 3.8b, illustrate, the process start
with preprocessing.

3.5.1.1 Preprocessing

Instead of considering each vibration signal as a single sample, windowing is used
to extract several samples per signal (see Figure 3.9). This means that if the sys-
tem can determine the condition of the machine after processing one window in-
stead of one entire measurement. Furthermore, windowing results in a larger data
set. A window contains one minute of vibration data, and overlaps by 50 % with
its neighbouring window. This means that from every 10-minute vibration data
recording, 19 windows are extracted, each containing 60 seconds · 51200 Hz =

3, 072, 000 samples. As there are two accelerometers mounted on the bearing’s
housing, there are in fact twice as many samples. The window length is experi-
mentally determined, and provides the most optimal results. It should be noted that
the window length, overlap and number of windows do not have a great influence

58 CHAPTER 3

Vibration signals

Preprocessing

Feature extraction

Classification

Preprocessing

Feature extraction

Classification
N

o im
balance

Im
balance:13 g screw

Mildly inadequately lubricated bearing (MILB) Condition 1 Condition 2

Extremely inadequately lubricated bearing (EILB) Condition 3 Condition 4

Healthy bearing (HB) Condition 5 Condition 6

Outer-raceway fault (loaded zone) (ORF) Condition 7 Condition 8

Pipeline 1

Pipeline 2

(a)

Vibration signals

Preprocessing

Feature extraction

Classification

Preprocessing

Feature extraction

Classification

N
o im

balance

Im
balance: 4.1 g screw

Im
balance: 9.3 g screw

Im
balance: 13 g screw

Healthy bearing (HB) Condition 1 Condition 2 Condition 3 Condition 4

Outer-raceway fault (ORF) Condition 5 Condition 6 Condition 7 Condition 8

Hard particle
contamination (HP) Condition 9 Condition 10 Condition 11 Condition 12

Pipeline 1

Pipeline 2

(b)

Figure 3.8: High level architecture of the fault detection system for data set one (a) and
two (b).

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 59

��, ��,…, �� ��, ��,…, �� ��, ��,…, �� ��, ��,…, ��

��, ��,…, �� ��, ��,…, �� ��, ��,…, �� ��, ��,…, ��

���, ���,…, ���
���, ���,…, ���
…

���, ���,…, ���

��
��
…

��

a)

b)

c)

d)

Figure 3.9: From a vibration signal in the time domain (a), overlapping windows are
extracted (b). From each individual window, several features are extracted (c). Every set of

features extracted per window results in a sample in the eventual design matrix (d).

on the classification results. Only the fact that windowing is used, has a significant
impact on the eventual results.

3.5.1.2 Feature extraction

First of all, three statistical features are calculated: RMS, kurtosis, and crest fac-
tor. These features are chosen as they have been proven useful for bearing fault
detection [52, 54]. The RMS, kurtosis and crest factor are calculated according
to Equation 3.2; 3.3 and 3.4 respectively, where x is a vector of N samples in a
window, and µ and σ respectively denote the mean and the standard deviation of
x.

RMS =

√√√√ 1

N

N∑
i

x2i (3.2)

Kurtosis =

∑N
i (xi − µ)4

Nσ4
(3.3)

Crest =
max(|x|)
RMS

(3.4)

60 CHAPTER 3

When a rolling element of a bearing hits a fault in the outer raceway, the natural
frequency of the raceway is excited, resulting in a high frequency burst of energy
which decays and is then excited again as the next rolling element hits the fault.
This high frequency impulse is superimposed on a carrier signal (with a frequency
of 25 Hz for our experiments) which originates from the rotating machine. A
simulated example of this can be seen in Figure 3.10.

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

 (g
)

(a)

20000 10000 0 10000 20000
Frequency (Hz)

0.0

0.1

0.2

0.3

Am
pl

itu
de

 (g
)

(b)

Figure 3.10: Simulated signal of a carrier wave on which high frequency burst are
superimposed. (a) shows the signal and (b) the frequency spectrum of the signal.

To identify a fault, it is necessary to detect the frequency of occurrence of
these bursts in the signal’s frequency spectrum, together with its amplitude. The
frequency at which these bursts occur is called the ball pass frequency of the outer
raceway (BPFO). The BPFO can be calculated using Equation 3.5, where n is the
amount of rolling elements, f the rotation frequency, d the diameter of the rolling
elements,D the diameter of the rolling-element cage and α the contact angle. This
results in a BPFO at 150.41 Hz for the chosen bearings.

BPFO =
1

2
nf(1− d

D
cosα) (3.5)

To detect this BPFO and its corresponding amplitude in the frequency spec-
trum, envelope detection is applied. The different steps of envelope detection are
explained next together with illustrations of the results of each step on the simu-
lated signal. The first step in envelope detection is a high-pass filter to separate the

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 61

superimposed signal from the low frequency signals. The high-pass filter’s cutoff
frequency is set to 1000 Hz. This cutoff frequency should be much lower than
the resonance frequency. This is because the resonance frequency should not be
filtered out. Additionally, there are sidebands around the resonance frequency as
a result of outer-raceway fault, which also should not be filtered out. For the sim-
ulation of the signal in Figure 3.10, the resonance frequency is set to 13200 Hz.
The cutoff frequency should also be higher than the rotation speed. As a result the
bursts are isolated as can be seen in Figure 3.11a.

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

0.10

0.05

0.00

0.05

0.10

Am
pl

itu
de

 (g
)

(a)

20000 10000 0 10000 20000
Frequency (Hz)

0.000

0.002

0.004

0.006

Am
pl

itu
de

 (g
)

(b)

Figure 3.11: The signal after applying a high-pass filter (a) and its frequency spectrum (b).

The remaining signal (Figure 3.11a) can be seen as the result of amplitude
modulation where the BPFO signal can be considered as the message and the res-
onance frequency as the carrier signal with frequency fc [77]. Hence, the reason
why in the frequency spectrum (Figure 3.11b), there are sidebands surrounding the
resonance frequency (13200 Hz). To extract the BPFO signal in the next step, am-
plitude demodulation is done using the square-law demodulation technique [78].
The signal is squared, which results in a convolution of its frequency spectrum
with itself [79]. This causes half of the energy to shift towards higher frequencies
([−2fc−2w;−2fc+2w] and [2fc−2w; 2fc+2w], wherew is the cutoff frequency
of the sidebands) and half the energy to lower frequencies ([−2w; 2w]) [80]. The
result can be seen in Figure 3.12. Note that a part of the higher frequencies lie
outside of the frequency spectrum shown in Figure 3.12b.

62 CHAPTER 3

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

0.000

0.005

0.010

Am
pl

itu
de

 (g
)

(a)

20000 10000 0 10000 20000
Frequency (Hz)

0.0000

0.0001

0.0002

0.0003

0.0004

Am
pl

itu
de

 (g
)

(b)

Figure 3.12: The signal after squaring it (a) and its frequency spectrum (b).

As the BPFO is a relatively low frequency compared to the carrier frequency
(resonance frequency), we only have to keep the low frequencies. Hence, a low-
pass filter is applied. The cutoff frequency should be larger than 2w and lower than
2fc−2w, but as both w and fc are not known in a real-life situation, the cutoff can
also be determined visually. The cutoff frequency utilized here is 10000 Hz. The
result of this can be seen in Figure 3.13.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 63

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

0.000

0.001

0.002

0.003

0.004

0.005

Am
pl

itu
de

 (g
)

(a)

20000 10000 0 10000 20000
Frequency (Hz)

0.0000

0.0001

0.0002

0.0003

0.0004

Am
pl

itu
de

 (g
)

(b)

Figure 3.13: The signal after applying a lowpass filter (a) and its frequency spectrum (b).

This results in an envelope of the impacts. However, a DC component is still
present in the signal due to the squaring and the signal is not in the scale of the
original signal. Hence, first the square root is taken of the signal and subsequently
a high-pass filter is applied. This high-pass filter is set to 100 hz as it should be
higher than the DC component and lower than the BPFO. The result can be seen
in Figure 3.14.

In the frequency spectrum of the envelope signal, the BPFO frequency will
have the highest amplitude as can be seen in Figure 3.15. This frequency can be
isolated better using a band-pass filter as is done for the actual measurements.

64 CHAPTER 3

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

0.00

0.02

0.04

Am
pl

itu
de

 (g
)

(a)

20000 10000 0 10000 20000
Frequency (Hz)

0.000

0.002

0.004

0.006

Am
pl

itu
de

 (g
)

(b)

Figure 3.14: The signal after taking the square root and applying a high pass filter (a) and
its frequency spectrum (b).

0 100 200 300 400 500
Frequency (Hz)

0.000

0.002

0.004

0.006

Am
pl

itu
de

 (g
)

Figure 3.15: Part of the frequency spectrum of the envelope signal highlighting the BPFO.

To summarize, if the frequency of the envelope signal is near the calculated
BPFO and has a high amplitude, it can be concluded that an outer-raceway fault is
present. An example of this envelope signal determined on the measurements can
be seen in Figure 3.16. From the envelope frequency, the maximum amplitude and
the corresponding frequency are extracted as features. These two features are cal-
culated for both vibrations signals (x-direction and y-direction per measurement).

All these features are extracted from overlapping windows on the vibration
signals, resulting in 19 samples per measurement.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 65

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds)

20

10

0

10

20

Am
pl

itu
de

 (g
)

Signal
Envelope

(a)

0 50 100 150 200
Frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Am
pl

itu
de

 (g
)

(b)

Figure 3.16: Vibration signal generated by an outer-raceway fault together with its
frequency spectrum. (a) The signal together with the corresponding envelope. (b)

Frequency spectrum of the envelope signal.

66 CHAPTER 3

3.5.1.3 Classification method

Classifying between the different bearing conditions is a complex task as there are
many features and the data is not linearly separable. Several classification algo-
rithms are suitable for this task such, as a support vector machine, neural network
or random forest classifier. In an empirical evaluation done by Caruana et al. [81]
on 11 classification problems, it was shown that the random forest classifier outper-
forms support vector machines and neural networks. These results should be taken
with a grain of salt, as many aspects of the data set can influence these results.
However, they can be taken as a guideline. Hence, the random forest classifier is
chosen here.

More information about the random forest algorithm for classification purposes
can be read in Section A.5.1. It should also be noted that, as was presented in
Chapter 2, random forests can provide insights into the data by providing feature
importance, which also motivated the choice of classification algorithm.

The random forest classifier has several hyperparameters, however the amount
of classification trees in the random forest is the most important hyperparameter.
The more trees, the better the results, however at a certain point this will stop and
the random forest can possibly start to overfit. Therefore, this hyperparameter was
optimized using grid-search, which resulted in in an optimal number of trees which
was 200.

The conditions determined by this pipeline are combined with the discovered
conditions in pipeline two as is discussed next.

3.5.2 Pipeline two
The goal of pipeline two is to determine if there is imbalance, and if so how much,
regardless of the presence of a bearing fault.

3.5.2.1 Feature extraction

As discussed in the literature review, imbalance is detectable by observing if there
is a high amplitude at the rotation frequency of the machine. The first step to
extract the amplitude at the rotation frequency is windowing as was described for
pipeline one. Per window, the discrete Fourier transform (DFT) of the signals
is taken. An example of a frequency plot is given in Figure 3.17. As can be
seen, a peak close to the rotation frequency (25 Hz) can be observed when there
is imbalance. In the final step, a band-pass filter is applied to isolate the 25 Hz
frequency. The amplitude corresponding to the rotation frequency is subsequently
used as feature. This feature is extracted for the two vibration signals per window,
resulting in 19 samples per test run, each containing two features. After these
features are calculated, classification is applied.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 67

0 25 50 75 100 125 150 175
Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

Am
pl

itu
de

 (g
)

(a)

0 25 50 75 100 125 150 175
Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

Am
pl

itu
de

 (g
)

(b)

Figure 3.17: Frequency plots during imbalance and balance. (a) Frequency spectrum of a
bearing when the system is in balance. (b) Frequency spectrum of a bearing during

imbalance. The peak at ∼ 25 Hz is clearly visible.

68 CHAPTER 3

3.5.2.2 Classification method

The classification problem in data set one for this pipeline is easy as the distinction
between balance and imbalance has to be made. This is a binary classification
problem and we observe that the classes are also linearly separable. Hence, the
most simple classification algorithm is chosen which is logistic regression. More
info on logistic regression can be read in Section A.5.3. For data set two, the
classification task is more difficult as a distinction between several gradations of
imbalance has to be made. To solve this multiclass classification problem, the
random forest algorithm is again chosen as classifier.

In the end the conditions of both pipelines are combined as depicted in Fig-
ures 3.8a and 3.8b, to provide the condition of the machine.

In the next section the infrared thermal image-based fault/condition detection
system is discussed, where after the system discussed above is combined with the
IRT-based system resulting in a multi-sensor system.

3.6 Methodology: single-sensor infrared ther-
mal image-based fault detection

For the IRT-based system also a two-pipeline architecture is proposed similar to
the architectures depicted in Figures 3.8a and 3.8b.

3.6.1 Pipeline one
As for the vibration-based system, pipeline one for the IRT-based system detects
the different conditions of the bearings. For data set one, pipeline one detects if the
bearing is properly, inadequately or extremely inadequately lubricated or contains
an outer-raceway fault. For data set two, pipeline one detects if the grease of the
bearing contains solid particles, if the bearing contains an outer-raceway fault or if
the bearing is healthy. To do this task, pipeline one starts of with the preprocessing
of the thermal videos. Afterwards, feature extraction and machine learning are
applied.

3.6.1.1 Preprocessing

First, sub-sampling in time is applied, resulting in a frame rate of 1 fps. The ideal
framerate is determined experimentally for optimal results. The framerate does
not influence the results significantly. However, if too many frames are kept the
data will become unmanageable. If too few frames are kept, windowing will not be
possible. Windowing is required to average-out the effects of outliers. 19 windows
per video are created. Subsequently, for every frame, all the pixel values are trans-
formed to relative temperatures. This transformation is done by subtracting the

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 69

ambient temperature, measured by a thermocouple in the darkened room, from ev-
ery temperature value measured by the thermal camera. Next, the foreground, i.e.
the bearing housing which is relatively warm, needs to be isolated from the back-
ground, i.e. not-relevant colder part. This segmentation is done using a threshold
determined by the Otsu algorithm [82]. If this is not done, the calculated features
will be influenced by non-relevant elements in the background.

As the measurements were done over a time-span of weeks wherein the bear-
ings had to be swapped and the camera stored, the infrared thermal camera moved
and so did the set-up. As a result translations and rotations are induced in the data
set. To enable robustness against these transformations, all the frames need to be
aligned to a common reference image (i.e. image registration). By applying image
registration, the bearing housing will be in the same position in every frame of
every recording. Image registration is done using the following steps:

1. A random reference frame from a random recording is extracted. In the end,
every frame should be aligned to this reference frame.

2. From the reference frame, but also from every first frame from every record-
ing, key points are extracted. The key points are corners and are determined
using the FAST algorithm [83].

3. Image patches are extracted around every key point for which ORB feature
descriptors are calculated [84].

4. Matching key points extracted from the reference frame and a frame that
needs to be aligned are selected. This is done by calculating the hamming
distance which allows for very fast matching computation compared to for
example the euclidean distance [85].

5. Using the matching key points from the reference frame and a frame that
needs to be aligned, the affine transformation is determined using the RAN-
SAC algorithm. The affine transformation describes how an image should
be translated, rotated and scaled so that it will match the geometry of the
reference frame. This transformation is calculated for every recording and
applied to every frame, resulting in recordings wherein the housing is ap-
proximately in the same place.

As last step, a boxcar filter is applied on every frame to eliminate high fre-
quency components in the image. The goal of this step is to reduce the influence of
edges in the feature extraction step as these are not informative for fault detection.
Note that all these preprocessing steps, i.e. temperature conversion, background
subtraction, image registration and filtering, are required to make sure that condi-
tions/faults are detected based on the heat in the component and not based on other
factors. For example, if all recordings for condition A are taken on a hot day (i.e

70 CHAPTER 3

high absolute temperature) and all recordings of condition B on a cold day (i.e.
low absolute temperatures), then by just using the mean temperature the condition
of the component can be determined. However, this is not correct as the ambient
temperature is not related to the condition/fault. The same example holds true for
the camera placement.

From the preprocessed frames features are extracted.

3.6.1.2 Feature extraction

In total three features are extracted form the preprocessed frames. The literature
overview indicates several usable and reproducible data-driven image processing
features such as the central moments, standard deviation, mean, skewness, kurto-
sis, variance, maximum and minimum from the image histogram. For the specific
faults considered here, only the standard deviation proves to be valuable. There-
fore, the standard deviation of the pixel values is chosen as first feature (Equa-
tion 3.6 where µ is the mean and xi the i-th sample). The standard deviation is a
measure that is used to quantify the amount of variation or dispersion of a set of
data values.

SD =

√√√√ 1

N

N∑
i=0

(xi − µ)2 (3.6)

The second feature is the Gini coefficient (GC) which is often used in eco-
nomics and astronomy to measure inequality [86]. As opposed to the standard
deviation, the GC is not a metric based on central tendency, i.e. deviation from the
mean, but a general measurement of dispersion. To calculate the GC, two cumula-
tive distributions are required. The first is the cumulative distribution of the sorted
pixel values of the IR image (IRCS). The second is the line of equality (LOE),
which is a cumulative distribution of the image pixels values as if they were equal.
Examples of these curves can be seen in Figure 3.18a and 3.18b. In these figures,
the light shaded grey area represents the area under the LOE (AULOE) and the
dark shaded gray area represents the area under the IRCS (AUIRCS). If the pixel
values of the IR image are completely uniformly distributed, i.e. if all pixel values
are equal, the AULOE is equal to the AUIRCS. The GC is directly related to the
size of the area between the LOE and IRCS. Therefore, the GC is calculated ac-
cording to Equation 3.7. If the GC is 0 % there is total equality and 100 % if there
is total inequality.

AULOE ∩AUIRCS

AULOE
(3.7)

Both the SD and the GC measure dispersion, however, there is a fundamental
difference between the two statistics. The SD will be maximal if half the samples

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 71

0 20 40 60 80 100
% pixels

0

20

40

60

80

100

%
 fl

ux

LOE
IRCS
AU-LOE
AU-IRCS

(a)

0 20 40 60 80 100
% pixels

0

20

40

60

80

100

%
 fl

ux

LOE
IRCS
AU-LOE
AU-IRCS

(b)

Figure 3.18: Graphical representation of the Gini Coefficient. (a) Example of a healthy
bearing with Gini coefficient equal to 66.47 %. (b) Example of a MILB with Gini

coefficient equal to 68.74 %. The Gini coefficient for the MILB case is 2.27 % higher
compared to the HB case. Flux, i.e. heat flow, corresponds to the brightness of the pixels.

72 CHAPTER 3

are at each bound, i.e. extremes of the range of temperatures, whereas the GC
will be maximal if one sample is at one bound and all the rest at the other. This
implies that if there is a very narrow hotspot wherein the temperatures are very
high compared to the other temperatures, the GC will be very high, however, this
will not cause the SD to be at its maximum. Conversely, if half of the pixels are
at room temperature and the other half are significantly warmer, the SD will be at
its maximum and the GC will not be abnormally high. This is due to the fact that
there is still equality, as the amount of pixels at room temperature is the same as
the amount of pixels that are warm.

An example from economy to better understand the difference between the GC
and SD: if one person has almost all the wealth, the GC of the population will be
maximal (the wealth is extremely unequally distributed). However the SD will not
be maximal as one outlier will not influence the mean a lot, which is used in the
calculation of the SD. Conversely, if 50 % of the population has all the wealth and
the other 50 % nothing, the SD will be maximal. This is due to the fact that the two
extremes are maximally removed from the mean. The GC on the other hand will
not be maximal as the wealth is still quite equally distributed. The fact that the two
metrics behave differently is mainly due to the fact that the SD is a measurement
of central tendency

We observe that when the bearing is mildly inadequately lubricated and there
is no grease reservoir, the temperature of the seal of the housing will be high. Due
to the fact that the heat is concentrated on a small area, the GC will be closer to
100 %. However, this is not immediately noticeable when the bearing is extremely
inadequately lubricated. This is due to the fact that also a part of the housing
near the bearing will be noticeably hot, not resulting in a significantly larger GC.
Also, when the bearing is healthy, the GC will not be noticeably high. The SD
will be high for the conditions when there is a grease reservoir due to the fact that
there are two large groups of pixels, those that are heated up (the housing close to
the bearing) and those that are not heated up (e.g. bolts, bottom of the housing).
Conversely, the SD will be lower when there is no grease reservoir.

To summarize, the GC proves to be useful to detect the different levels of
lubrication inadequacy when no grease reservoir is used as can be observed in
Figure 3.19. In this figure there is clearly no overlap between the EILB samples
and the MILB samples. The SD is useful to make the distinction between a bearing
housing containing a grease reservoir and without a grease reservoir. However,
there is no complete separation between the two conditions in the features space,
hence a third feature is added, which is called the Moment of Light.

The Moment of Light, is a measurement of concentration related to the spatial
temperature distribution and is also often used in astronomy [86]. The Moment of
Light is also called the second-order moment of the pixels collectively containing
20 % of the brightest pixels (M20). M20 is calculated according to Equation 3.8,

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 73

0.660 0.665 0.670 0.675 0.680 0.685 0.690
Gini

20

25

30

35

40

45

50
SD

EILB
MILB
HB

Figure 3.19: Scatter plot of the GC and the SD. No overlap exist between the EILB and
MILB samples.

where Mi is the value of each pixel fi multiplied by the squared distance to the
hottest/brightest point (Equation 3.9). For the denominator of Equation 3.8, Mi is
summed over the set of all the pixels (denoted as I).

The most interesting property of the M20 is that it will be more negative if
there is only one distribution of significant size, and higher (i.e. close to zero)
when there are two or more distributions of significant size. Significant size means
that it is taken into account in the nominator of Equation 3.8 due to the fact that it
contains points that are a part of the 20 % of the highest points. More information
about this property can be found in Appendix E.

The following phenomena have been observed: (1) if a grease reservoir is
present, which is the case for HBs(-IM) and ORFs(-IM), the hottest point will
generally be on top of the housing closest to the bearing; (2) If there is no grease
reservoir, as for MILBs (-IM) and EILB (-IM), the hottest point will be at the seal
near the shaft, due to friction between the seal and shaft;(3) most of the 20 % of
the brightest pixels are usually situated on top of the housing for this set-up as
this is always a hot area due to its close proximity to the bearing. As a result,
there is only one hotspot of significant size when a grease reservoir is present and
the distance between the hottest pixels and the hottest points will be small when
a grease reservoir is present, resulting in a small nominator of Equation 3.8 and a
low M20 score. On the other hand, when no grease reservoir is present, there will

74 CHAPTER 3

be two hotspots of significant size. Hence, the nominator will be much larger and
the M20 will be higher (i.e. closer to 0) 2

M20 = log10

(∑
∀∈I20 Mi∑
∀∈IMi

)
(3.8)

Mi = fi · ((xi − xc)2 + (yi − yc)2) (3.9)

Since the M20 exhibits properties related to the presence of a grease reservoir,
it is very useful to help indicate if a grease reservoir is present or not. Furthermore,
if the M20 and the SD are combined, a clear distinction can be made between the
samples created when a grease reservoir was present, i.e. HB and ORF, and the
samples without a grease reservoir, i.e. EILB and MILB as depicted in Figure 3.20.
In this figure it can be observed that the samples with and without a grease reservoir
do not overlap and are clearly separated.

20 25 30 35 40 45 50 55 60
SD

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

M
2
0

EILB
MILB
HB
ORF

Figure 3.20: SD and M20 of the samples. Two non-overlapping clusters can be observed.
One cluster containing the EILB and MILB samples for which no grease reservoir was

present and another cluster containing the HB and ORF samples for which a grease
reservoir was present.

Using these three features most of the conditions can be detected, however as
Figure 3.21 illustrates, there is still some overlap between the ORF and HB classes
for data set one. This is also the case for data set two as can be seen in Figure 3.23

2Lotz et al. [86] observed this fact also as they observed that the M20 is sensitive to mergers of
galaxies (i.e. multiple galaxy nuclei).

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 75

0.660 0.665 0.670 0.675 0.680 0.685 0.690
Gini

20

25

30

35

40

45

50

55

60

SD

EILB
MILB
HB
ORF

Figure 3.22: 2D plots of the GC and the SD. Some overlap exists between the ORF and HB
samples.

76 CHAPTER 3

0.060 0.065 0.070 0.075 0.080 0.085
Gini

10

15

20

25

30

SD

HB
ORF
HP

(a)

0.060 0.065 0.070 0.075 0.080 0.085
Gini

14

16

18

20

22

24

26

28

SD

HB
HP

(b)

Figure 3.23: (a) Scatter plot of the healthy bearings samples, the bearings with an
outer-raceway fault and bearings with hard particle contamination. (b) Scatter plot of the

samples of the healthy bearings and the bearings with hard particle contamination.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 77

3.6.1.3 Classification method

Similar to the single-sensor system that uses vibration signals, here too a random
forest classifier is used because there are multiple classes which are not linearly
separable. However, only 100 decision trees were required in the random forest to
perform optimally.

3.6.2 Pipeline two
The goal of pipeline two is to detect and quantify imbalance. To do this, as in
pipeline one, first the videos are preprocessed.

3.6.2.1 Preprocessing

As opposed to the preprocessing in pipeline one, in this pipeline no image regis-
tration or temperature correction is done. However, an additional step is required
in this pipeline.

Due to imbalance the set-up will vibrate. Although, this vibration is very small,
it can be seen in the video. In Appendix D the relationship between the amount
of imbalance and the observable displacement in the IRT video is described an-
alytically and quantified (which is not common knowledge). This observerable
displacement can be isolated by differencing two consecutive frames. For exam-
ple when subtracting Figure 3.24a from Figure 3.24b, Figure 3.24c is obtained
showing the outline of the housing as a result of the movement due to imbalance.
A threshold is additionally applied to remove background noise in the differenced
image, as is displayed in Figure 3.24d. The optimal threshold value is empirically
determined. Note that only the right side of the image is used as the movement of
the shaft, i.e. rotation, is not related to the imbalance condition. Hence, if the shaft
is included in the image lower classification performance is achieved.

3.6.2.2 Feature extraction

To detect the degree of imbalance, the difference between frames needs to be quan-
tified resulting in features for the classification step. In order to do so, for each
differenced frame, along each column of pixels, the sum of the pixels is taken.
Similarly, along each row of pixels, the sum of the pixels is taken. The operation
on the rows can be expressed as x = jXT and the operation on the columns can
be seen in expressed as y = iX; where X ∈ RNxM ; i = [1, 1, ..., 1] ∈ R1xN ;
j = [1, 1, ..., 1] ∈ R1xM and thus x ∈ R1xN and y ∈ R1xM . Examples of the
output vectors displayed in bar charts can be seen in Figure 3.25a and 3.25b. As
can be seen, the width of these bar charts indicates the amount of movement in
the differenced frame. Generally, if there is imbalance, the width will be larger.

78 CHAPTER 3

(a) (b) (c) (d)

Figure 3.24: Movement detection. Parts of consecutive frames (a)(b) are differenced
resulting in (c). Afterwards a threshold is applied (d).

Hence, the standard deviation (SD), calculated on the output vectors, is chosen as
feature. Also, the kurtosis is used as it describes how peaked the bar charts are.

When the SDs of the sum vectors along both axis, i.e. rows and columns, are
plotted for data set two, four regions corresponding to the four balance/imbalance
conditions can be observed (Figure 3.26a). It can be stated that the higher the SDs,
the more imbalance is present in the system. Nevertheless, the clusters of points
do partially overlap. Generally, a classifier will already be able to make a good
distinction between the different levels of imbalance using the SDs, however, by
adding the kurtosis the classifier’s performance improves.

Figure 3.27 illustrates the preprocessing and feature extraction steps for this
pipeline.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 79

0 1 2 3 4 5 6 7
Sum

0

100

200

300

400

y-
co

or
di

na
te

0 50 100 150 200 250
x-coordinate

0
2
4
6
8

10
12
14

Su
m

(a)

0 50 100150200250300350
Sum

0

100

200

300

400

y-
co

or
di

na
te

0 50 100 150 200 250
x-coordinate

0
10
20
30
40
50
60
70
80

Su
m

(b)

Figure 3.25: Examples of the bar charts representing the sums along the x axis and y axis
for a healthy bearing when in balance (a) and imbalance (b).

80 CHAPTER 3

20 0 20 40 60 80 100 120

Standard deviation of the sum of pixels along the columns

10

0

10

20

30

40

50

60

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
su

m
 o

f p
ix

el
s

al
on

g
th

e
ro

w
s

Balanced
Imbalance: 4.1 g bolt
Imbalance: 9.3 g bolt
Imbalance: 13 g bolt

(a)

0 20 40 60 80 100

Standard deviation of the sum of pixels along the columns

0

10

20

30

40

50

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
su

m
 o

f p
ix

el
s

al
on

g
th

e
ro

w
s

Balanced
Imbalance: 4.1 g bolt
Imbalance: 9.3 g bolt
Imbalance: 13 g bolt

(b)

Figure 3.26: (a) Scatter plot of the standard deviations along the image axis for the
different levels of imbalance. (b) When these samples are classified, clear, logical regions

are noticeable according to the level of imbalance.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 81

Preprocessing

c)

b)

a)

e)

f)

d)

𝑥1, 𝑥2, … , 𝑥𝑑 𝑥1, 𝑥2, … , 𝑥𝑑

𝑥1, 𝑥2, … , 𝑥𝑑 𝑥1, 𝑥2, … , 𝑥𝑑

𝑥11, 𝑥12,…, 𝑥1𝑑
𝑥21, 𝑥22,…, 𝑥2𝑑
…
𝑥𝑛1, 𝑥𝑛2,…, 𝑥𝑛𝑑

𝑦1
𝑦2
…
𝑦𝑛

Figure 3.27: Preprocessing and feature extraction on the infrared videos (a) for imbalance
detection. In (b), windowing is applied. Next, frame differencing (c) is done resulting in

(d). Finally, per differenced frames features are extracted which are aggregated per
window. The final result is a design matrix (f) which is ready to be used in the

classification step.

3.6.2.3 Classification method

As in pipeline one, a random forest classifier is also used for pipeline two. When
plotting the decision boundaries that the random forest determined, the regions
which correspond to the level of imbalance, become visible (Figure 3.26b).

3.7 Methodology: Multi-sensor fault detection
Detecting the many different conditions of the component is a difficult task. Hence,
in order to accurately detect these conditions, the features extracted from the two
types of sensor data (i.e. IRT and vibrations) are used together in a multi-sensor

82 CHAPTER 3

system. The features listed in Table 3.5 are used for the respective pipelines and
data sets. To classify the samples, random forest classifiers are used.

Data set Pipeline Vibration features IRT features

One One Amplitude at the BPFO
Amplitude at the rotation frequency

GC
SD
M20

One Two Amplitude at the rotation frequency SD along the y-axis

Two One Detected BPFO frequency
RMS
Kurtosis
Crest
Amplitude at the rotation frequency

SD

Two Two Amplitude at the rotation frequency SD along the y-axis

Table 3.5: Features used for the multi-sensor system for both data sets and pipelines. Note
that pipeline one detects bearing conditions and pipeline two imbalance gradation.

3.8 Results
In this section the results for the two single-sensor fault/condition detection sys-
tems are discussed and also the results of the multi-sensor system. First, the eval-
uation procedure is presented. The evaluation metric used is accuracy but also
confusion matrices.

To objectively evaluate the performance of the classifiers, leave-one-bearing-
out cross-validation is used as depicted in Figure 3.28 for data set one. Hence,
from the 40 recordings, 32 recordings, i.e. 608 samples, are used to train the
random forest classifier, and 8 recordings, i.e. one recording for each condition
from a single bearing resulting in 152 samples, are used to test the classifier. This
procedure is done five times so that every bearing is used once for testing, assuring
that the system provides a generalized solution.

As the goal is to classify a recording according to the different conditions, and
19 samples per recording are classified, a majority vote is done per recording when
testing. For the balance-imbalance case this means that whenever (for a single
recording), more than 10 of the 19 samples are classified according to imbalance,
the recording is classified as imbalance, and vice versa.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 83

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

HB

HB - IM

MILB

MILB - IM

EILB

EILB - IM

ORF

ORF - IM

Be
ar

in
g

1

Be
ar

in
g

2

Be
ar

in
g

3

Be
ar

in
g

4

Be
ar

in
g

5

Figure 3.28: Leave-one-bearing-out cross-validation represented visually. Every test
iteration all samples of one bearing are used as test set and the remaining samples as

training set.

84 CHAPTER 3

3.8.0.4 Results: data set one

The results for the two single sensor systems and the multi-sensor system can be
seen in Table 3.6. Detecting if the machine suffers from imbalance or not can
be done perfectly using both the single-sensor systems and the multi-sensor sys-
tem. However, detecting the specific bearing condition (EILB, MILB, ORF or
HB) is more difficult. When observing the confusion matrix for the single-sensor
IRT based system (Figure 3.29b) and the vibration based system (Figure 3.29a), it
can be concluded that the IRT-based system has difficulty detecting outer-raceway
faults. Conversely, the vibration-based system has more difficulty detecting lu-
brication related conditions. Both single-sensor system exhibit a specific weak-
ness that can be nullified by the strengths of the other sensor. Hence, combining
them in a multi-sensor solution results in a better overall system (Figure 3.29c).
Furthermore, there is an additional general improvement in all classes due to the
interaction of features in the machine learning algorithms on top of eliminating
the weaknesses of the respectively single sensor solutions. This way, for example,
outer-raceway faults can perfectly be classified (100 % accuracy), while at most
90 % accuracy could be achieved using solely vibration data, respectively 74 % us-
ing only IRT data. Using a multi-sensor solution, the classification task becomes
easier as more information is available resulting in a perfect classification results.

IR VIB Conditions Accuracy

IR MILB, EILB, HB, ORF 88.25 % (σ = 8.07 %)
VIB MILB, EILB, HB, ORF 87.25 % (σ = 8.10 %)

IR VIB MILB, EILB, HB, ORF 100.00 % (σ = 0.00 %)

IR balance and imbalance 100.0 % (σ = 0.00 %)
VIB balance and imbalance 100.0 % (σ = 0.00 %)

IR VIB balance and imbalance 100.0 % (σ = 0.00 %)

IR All 8 conditions 88.25 % (σ = 8.07 %)
VIB All 8 conditions 87.25 % (σ = 8.10 %)

IR VIB All 8 conditions 100.0 % (σ = 0.00 %)

Table 3.6: Classification results for data set one.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 85

(a)

(b)

(c)

Figure 3.29: Confusion matrices of the (a) vibration-based fault detection system, (b) the
IRT-based fault detection system and the (c) multi-sensor fault detection system for data

set one.

86 CHAPTER 3

By using a random forest classifier it is possible to extract how important each
feature is to the model [87], which is listed in Table 3.7 for the multi-sensor sys-
tem. The table illustrates that the amplitude at the rotation frequency is not very
important to the model, which is to be expected since little improvement is gained
when adding it to the model (2.5 % accuracy) and it is not directly related to a
specific condition. On the other hand, the amplitude at the ball pass frequency of
the outer raceway is very important to the model and adding this feature to the IRT
features results in an accuracy gain of 9.25 %. In total, by using the strengths of
both sensors, the accuracy rises by 11.75 % compared to an IRT-based system and
12.75 % compared to a vibration-based system.

Metric Multi-sensor based

Gini Coefficient 29.41 % (σ = 1.07 %)
SD 22.22 % (σ = 3.84%)
M20 20.29 % (σ = 3.26 %)
Amplitude at the BPFO 25.63 % (σ = 1.82 %)
Amplitude at the rotation frequency 2.45 % (σ = 0.40 %)

Table 3.7: Feature importance in the final multi-sensor system according to the random
forest classifier.

3.8.0.5 Results: data set two

The results of the two single-sensor system and the multi-sensor system can be
seen in Table 3.8. For pipeline two a relatively low accuracy is achieved due to the
overlap between the ORF and HB samples using IRT features. As the confusion
matrix in Figure 3.30a illustrates, the ORF class is hard to detect. This was also
noticeable for data set one. Conversely, vibration-based bearing condition detec-
tion achieves a very high accuracy, and the classes do not get confused very often
(Figure 3.30a). When features from both systems are combined, the three bearing
conditions can be detected perfectly (Figure 3.30c).

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 87

IR VIB Conditions Accuracy

IR HP, ORF, HB 65.00 % (σ = 16.16 %)
VIB HP, ORF, HB 91.67 % (σ = 12.91 %)

IR VIB HP, ORF, HB 100.00 % (σ = 0.00 %)

IR Imbalance gradation 88.33 % (σ = 12.47 %)
VIB Imbalance gradation 75.00 % (σ = 9.13 %)

IR VIB Imbalance gradation 90.00 % (σ = 6.24 %)

IR All 12 conditions 55.00 % (σ = 11.31 %)
VIB All 12 conditions 66.67 % (σ = 21.08 %)

IR VIB All 12 conditions 90.00 % (σ = 6.24 %)

Table 3.8: Classification results for data set two.

The detection of the amount of imbalance is more difficult. Generally, the IRT-
based system seems to outperform the vibration-based system. However, when
both features from both modalities are used, the overall accuracy increases. The
confusion matrices in Figure 3.31 indicate that the classifier can confuse a cer-
tain imbalance condition with another imbalance condition for which the weight
difference is small.

Pipeline one detects the different amounts of imbalance and pipeline two de-
tects the specific REB conditions. In total there are 12 conditions. When solely
using IRT data the accuracy score is 55.00 % (σ = 11.31 %) and when solely using
vibration data the accuracy score is 66.67 % (σ = 21.08 %). However, when both
modalities are combined there is a major improvement as the multi-sensor system
achieves an accuracy score of 90.00 % (σ = 6.24 %). When observing the overall
confusion matrix (Figure 3.32), it can be seen that when imbalance occurs together
with contamination in the lubricant, it is more difficult to detect the conditions.

88 CHAPTER 3

(a)

(b)

(c)

Figure 3.30: Confusion matrices of the (a) vibration-based fault detection system, (b) the
IRT-based fault detection system and the (c) multi-sensor fault detection system for data

set two.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 89

(a)

(b)

(c)

Figure 3.31: Confusion matrices for (a) vibration-based imbalance detection, (b) the
IRT-based imbalance detection and (c) multi-sensor based imbalance detection for data

set two.

90 CHAPTER 3

HB

4.
1

g
bo

lt
- H

B

9.
3

g
bo

lt
- H

B

13
 g

 b
ol
t -

 H
B

ORF

4.
1

g
bo

lt
- O

RF

9.
3

g
bo

lt
- O

RF

13
 g

 b
ol
t -

 O
RF HP

4.
1

g
bo

lt
- H

P

9.
3

g
bo

lt
- H

P

13
 g

 b
ol
t -

 H
P

Predicted label

13 g bolt - HP

9.3 g bolt - HP

4.1 g bolt - HP

HP

13 g bolt - ORF

9.3 g bolt - ORF

4.1 g bolt - ORF

ORF

13 g bolt - HB

9.3 g bolt - HB

4.1 g bolt - HB

HB

T
ru

e
 l
a
b

e
l

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

20.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

60.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

20.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

80.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

20.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

20.00 %

80.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

20.00 %

80.00 %

20.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

80.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0

10

20

30

40

50

60

70

80

90

100

Figure 3.32: Confusion matrix of the multi-sensor system for data set 2 for all 12
condition.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 91

3.9 Discussion
In this discussion section we reflect on three aspects of this chapter. The first is the
generalizability of the proposed system. Second, the choice of classifier and third
the majority voting approach.

3.9.1 Generalizability
The systems presented in this chapter work well. However, the system trained
on data gathered from this setup will not perform well for a completely different
set-up. For example, if the bearing type is changed, the BPFO will most likely be
different. Hence, the bandpass filter to isolate the BPFO will have to be modified,
and the classifier will have to be retrained. Similar for the infrared thermal data,
new data will have to be gathered and the classifiers will have to be retrained.

Nevertheless, the methodology proposed in this chapter is re-useable. To illus-
trate this fact, in Appendix C, the methodology to create the IRT-based system is
employed in a use case where a much larger bearing is used and a re-circulatory lu-
brication system is present in the set-up. Although this set-up is different compared
to the set-up described in this chapter, using the methodology of this chapter and
IRT imaging to create an automatic oil-level detection system, very good results
can be achieved. In order to do so, the machine learning models were retrained on
data from this new set-up. Note that, in general, potentially also new features will
have to be designed to improve results.

3.9.2 Choice of classifier
There are many possible classification algorithms that can be used. However, the
random decision forest algorithm is used almost exclusively in this chapter. This is
due to the fact that random forests perform very well in general [81]. Besides the
fact that a random forest is a very well performing algorithm, it has several other
advantages. The first is that almost no preprocessing is required. The features do
not have to be rescaled and the mean does not have to be removed. A random
forest can deal with both discrete and continuous variables. The algorithm can
handle a lot of data as the individual trees are trained on subsets of the data which
can be done in parallel on different machines. Furthermore, random forests seldom
overfit in practice, which is not the case for support vector machines and neural
networks. Random forest will only tend to overfit if too many trees are used.
Hence, this is the most important hyperparameter to tune. Other hyperparameters
such as the depth of individual trees, or subset size, or subset of features to choose
from when constructing individual trees seldom have a large impact on the random
forest’s performance. Hence, random forests are very robust classifiers, which are
very easy to use. Compared to for example neural networks and support vector

92 CHAPTER 3

machines, random forests have a much lower entrance barrier to use. When using
neural networks hyperparameters such as the number of layers, number of nodes
per layer, activation function and loss function have to be optimized, which can be
a lot of work. When using a support vector machine a suitable kernel has to be
chosen and subsequently the hyperparameters of the kernel have to be optimized,
which is also considerable more work compared to the work required for using a
random forest.

In general, from our experience it can also be concluded that when using a
feature engineering based approach, the chosen features have the most impact on
the end results compared to the classification algorithm. If the features are badly
chosen/created, no algorithm will be able to achieve a good score. However, if the
features are well designed, the performance difference between algorithms such as
random forests, neural networks, support vector machines or K-nearest neighbors
classification will often be small.

3.9.3 Majority voting
For every signal windowing is applied. In the end, every signal has to be classified
based on the extracted windows. To do this, every signal in a window is classified,
and the results of this classification step are used in a majority voting process.
This means that if condition A is detected in the majority of the extracted windows
from the original signal, the entire signal is assigned the label of condition A.
When dealing with a binary classification problem (as for example is the case
when detecting imbalance in data set one) this majority voting is in fact a check to
see which label has more than 50 % of the “votes”. Hence, in this discussion we
want to make the reader aware that this threshold can also be optimized depending
on the fault detection requirements/needs, or operator preferences. If we want
to make sure that even if a few of the windows are classified as condition A, an
alarm should be triggered, then this threshold value should be lowered. This can
however result in more false positive classifications. Conversely, if we want to
make sure that the entire signal is classified as condition A before assigning the
label of condition A, then this threshold has to be increased. This however can
results in more false negative classifications.

3.10 Conclusion
In this chapter, fault detection on component level is investigated. Instead of solely
identifying if the machine is not performing as expected, the actual faults are iden-
tified. By identifying specific faults and conditions more efficient maintenance
is possible. However, additional sensors are required to enable this. To be able
to detect a multitude of conditions, a novel multi-sensor system is proposed that

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

ENGINEERING 93

uses both vibration signals and infrared thermal video. Two data sets are created
containing conditions that have not yet been researched previously using thermal
imaging, such as reduced lubrication and hard particle contamination.

For both types of data, specific features are engineered enabling the system
to detect the different conditions. Features extracted from the vibration signal are
physics-based features and statistical features. For the thermal infrared data, statis-
tical features are used. We introduce two new features that are valuable for bearing
fault detection using IRT images i.e. Gini coefficient and Moment of Light. For
imbalance detection we illustrate that the machine’s vibrations can be monitored
using a camera. Hence, the displacement is used for imbalance detection. Over-
all, by combining features from the vibration measurements together with features
from the IRT video, a multitude of conditions can be identified more accurately
compared to when a single-sensor system is used. As the proposed approach can
detect many conditions very accurately, it is possible to prevent fault escalation
more often.

Based on our experiments and data sets, we can conclude that when measure-
ments from different sensors are combined, improvements can be expected. Im-
provement is a logical result due to the fact that more information about the con-
ditions become available as a certain aspects of the conditions and faults are only
measurable with certain sensors types.

The main disadvantage of the proposed system is that it requires expert knowl-
edge to create suitable features for the specific conditions and faults to be detected.
This means that only features can be created for faults which are well understood.
Furthermore, if a new fault has to be detectable, a new feature will possibly have
to be created. A solution for this problem is presented in the next chapter where
features will be learned by the machine learning algorithm.

The work presented in this chapter has lead to the following publications, or
are submitted as follows:

• Olivier Janssens, Raiko Schulz, Viktor Slavkovikj, Kurt Stockman, Mia
Loccufier, Rik Van de Walle and Sofie Van Hoecke, Thermal Image Based
Fault Diagnosis for Rotating Machinery, Infrared Physics & Technology,
vol. 73, pp. 78-78

• Olivier Janssens, Mia Loccufier, Rik Van de Walle and Sofie Van Hoecke,
Data-Driven Imbalance and Hard Particle Detection in Rotating Machinery
Using Infrared Thermal Imaging, Infrared Physics & Technology, Vol.82,
pp. 28-39

• Olivier Janssens, Mia Loccufier, Rik Van de Walle, Sofie Van hoecke, Vi-
TIS: Vibration and Thermal Imaging Based Multi-Sensor Fault Detection
for Rotating Machinery, ISA Transactions, under review

94 CHAPTER 3

• Olivier Janssens, Lothar Verledens, Raiko Schulz, Veerle Ongenae, Kurt
Stockman, Mia Loccufier, Rik Van de Walle and Sofie Van Hoecke, Infrared
and vibration based bearing fault detection using neural networks, Proceed-
ings of the 13th International Workshop on Advanced Infrared Technology
and Applications, Proceedings, pp. 220-223

• Sofie Van Hoecke, Olivier Janssens, Raiko Schulz, Kurt Stockman, Mia
Loccufier and Rik Van de Walle, Towards thermal imaging based condition
monitoring in offshore wind turbines, Proceedings of the 13th International
Workshop on Advanced Infrared Technology and Applications, Proceed-
ings, pp. 291-295

Chapter 4

Component level: Multi-sensor fault
detection using feature learning

Chapter highlights

0.00 0.02 0.04 0.06 0.08 0.10

Time (seconds)

40

20

0

20

40

A
m

pl
itu

de
 (g

)

Vibration signal

Infrared thermal video

Convolutional neural network

Convolutional neural network

Data set

- Outer-raceway fault
- Reduced lubrication
- Extremely reduced lubrication
- Healthy bearing
- Lubricant contamination
- Imbalance

Result

In the previous chapter, fault detection systems were proposed for which
the features were engineered either by expert knowledge or driven by the
data. In this chapter, we propose feature learning systems for fault detec-
tion wherefore no features are designed manually. For both the thermal
infrared imaging data and the vibration data, convolutional neural net-
works are researched and developed which are end-to-end machine learn-
ing systems. We show that for most faults in our data sets, the proposed
feature learning systems outperform the feature engineering systems. We
also show that transfer learning from natural images to infrared thermal
images is feasible. Finally, using the convolutional neural networks, we
illustrate that insights can be extracted from the infrared thermal data.

96 CHAPTER 4

4.1 Introduction

Feature engineering is mainly used for automatic (component-level) fault detec-
tion and can be data-driven or model-driven. Data-driven feature engineering en-
tails creating features that describe measurable characteristics that can be related
to a condition by observation. How these characteristics occur as a result of the
underlying physics is not taken into account. Model-driven feature-engineering re-
quires reasoning based on the underlying physics of the conditions to deduce what
resulting phenomena can occur and how to extract them from the measurements
and quantify them in features.

In the end, whether the features are data-driven and/or model-driven, to auto-
matically determine what fault/condition a component is suffering from, classifi-
cation algorithms (i.e. machine learning) are required. It has been demonstrated in
the previous chapter that by using feature engineering and machine learning, very
well performing fault detection systems can be created using vibration data or/and
IRT imaging data. However, feature engineering requires domain knowledge, data
processing effort and feature engineering time as complex machines contain many
components that can have many conditions for which characteristics are measured
using different sensors. On that of that, by manually engineering features, there
is a possibility that the system will not perform optimally as the feature engineer-
ing depends on (one or more) expert(s) with knowledge about the components and
mechanical engineering or statistics. These experts might not be able to devise
features that fully describe the dynamics of the signals that are required for correct
classification as not all possible faults are yet completely understood. Furthermore,
a fault/condition detection system can be designed for a specific set of conditions
of the components, hence, when new conditions should be detectable, an expert
possibly has to implement new feature extraction capabilities into the system.

In order to circumvent this problem, feature learning/representation learning
can be employed. As opposed to feature engineering, wherein a human creates
the features, feature learning uses a machine learning algorithm to learn and cre-
ate useful features from raw data. The algorithm learns features that optimally
represent the raw data for the required task. Feature learning, in essence, enables
end-to-end machine learning systems.

Beside the fact that feature engineering is fundamentally different from fea-
ture learning, it should be noted that feature learning is also different from feature
selection. Feature selection is used to select the most informative subset of fea-
tures from all the available (manually engineered) features. This means that there
is no feature learning during feature selection. A schematic representation of the
difference between feature engineering, feature engineering in combination with
feature selection and feature learning can be seen in Figure 4.1. In the feature
engineering part of the figure it can be seen that from the input data (X) features

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 97

Classification
model

FeaturesInput data Output

fθn
(.)tθ1

(X)X Ytθ2
(.)

Classification
model

Transformation 1 Input data OutputTransformation2
…

fθ(Φ)ΦX Y

Feature engineering

Feature learning

Classification
model

FeaturesInput data Output

fθ(ψ)ΦX Y

Feature engineering and feature selection

Feature selection

ψ	 ⊆	Φ

Figure 4.1: Schematic representation of feature engineering, feature engineering in
combination with feature extraction and feature learning.

are extracted (φ) and used to train a classification algorithm (fθ(.)) that outputs
predictions (Y). The learnable parameters of the classification algorithm are de-
noted by θ. In the part of the figure about feature engineering in combination with
feature selection, a feature selection step is added wherein a subset of the features
are selected (ψ ⊆ φ) that are afterwards used in the classification algorithm. In the
feature learning part of the figure no manually engineered features are extracted
from the input data, instead, the input data is transformed using tθ1(.) wherein θ1
consists of the learnable parameters of the transformation. The transformation will
output a new representation of the input data that should be better suited for the
classification task. Transformation steps can be repeated many times –each with
their own set of learnable parameters– so that at the classification step the data is
transformed optimally, i.e., optimal features are learned for the classification task.

In recent years feature learning has become very popular in the form of deep
learning (DL) [3]. DL methods are representation-learning methods with multiple
levels of representation, obtained by composing simple non-linear modules that
each transform the representation (of the data) at one level (starting with the raw
input) into a representation at a higher, slightly more abstract level. With the com-
position of enough such transformations, very complex functions can be learned.
DL is done using various types of deep neural networks (DNN) wherein every

98 CHAPTER 4

layer will learn a new representation of the data (i.e. learn features). In recent years
DL achieved state-of-the-art results in image recognition, speech recognition, drug
discovery, analysing particle accelerator data and natural language processing [3].

In this chapter, DL using convolutional neural networks is applied to thermal
infrared videos and vibration signals originating from a rotating machine. We
show that transfer learning can be applied on our thermal infrared videos by using
a pre-trained convolutional neural network network which was trained on natural
images. Furthermore, we show that the network focusses on certain parts of the
infrared thermal images indicating that the network has learned relations between
certain hotspots and conditions. Finally, we show that by combining a convolu-
tional neural network for vibration data and a convolutional neural network for
IRT data, a very well performing fault detection system can be created.

4.2 Background
In this chapter we investigate DL methods in the form of neural networks for fea-
ture learning purposes. More information on traditional neural networks can be
read in Section A.5.2 of the preliminaries chapter.

4.2.1 Deep learning
Neural networks have been around for several decades. However, in the late 1990s
neural networks were abandoned by most researchers and not even considered by
the computer-vision and speech-recognition communities [3]. It was considered
that neural networks could not serve the purpose of feature learning with little
prior knowledge.

In 2006, researchers at the Canadian Institute of Advanced Research, intro-
duced unsupervised learning of layers [3]. Hence, layers could be trained inde-
pendently from one-another and resulted in layers which learned features or their
own. By stacking such pre-trained layers, and fine-tuning the entire architecture
using gradient descent, well performing neural networks could be created.

Up until the year 2012, there was a problem when training NNs with many
hidden layers –which were randomly initialized– as a whole, called vanishing gra-
dient or exploding gradient. During NN training, gradient descent is used and to
calculate the gradients, back-propagation is used. Back-propagation in essence
is the chain-rule applied to a NN. Hence, the gradient is propagated backward
through each layer. With each subsequent layer the magnitude of the gradients
gets exponentially smaller (vanishes) thus making the steps also very small, which
results in very slow learning of the weights in the lower (first) layers of a DNN.
An important factor causing the gradients to shrink are the activation function
derivatives (i.e. derivative of a layer’s output with respect to its input). When the

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 99

6 4 2 0 2 4 6
0

1

2

3

4

5

6 ReLU
Derivative of ReLU

(a)

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Derivative of sigmoid

(b)

Figure 4.2: (a) Relu activation function and its derivative and (b) the sigmoid activation
function and its derivative.

sigmoid activation function is used in the network, the magnitude of the sigmoid
derivative is well below 1 in the function’s range causing the gradient to vanish as
can be seen in Figure 4.2b. To solve this problem, in 2012 Krizhevsky et al. [88]
proposed another type of activation function, called the rectified linear unit (ReLU,
see Equation 4.1 and Figure 4.2a) which does not suffer from this problem. Hence,
the vanishing gradient problem was mostly solved enabling much deeper NNs to
be trained resulting in many new state of-the-art-results.

f(x) = max(0, x) (4.1)

A neural network is commonly dense and fully connected, meaning that every

100 CHAPTER 4

neuron of a layer is connected to every other neuron in the subsequent layer. Each
connection is a weight totalling many parameters. This number of parameters is
difficult to train as the network will memorize the data (overfitting), especially
when too little data is available. If possible, a partial solution to this problem
is to gather more data. Nevertheless, the training procedure will take very long.
Another partial solution is implicitly provided in convolutional neural networks
(CNN) [89] as CNNs are designed to deal with images and therefore exploit certain
properties resulting in faster training, but also less parameters to train.

4.2.2 Convolutional neural networks
As opposed to a dense NN, a CNN is designed to use input data that exhibits a
topological structure, such as a grid of pixels (such as image) or multiple sequences
of values (such as signals). A CNN layer computes a similar transformation as the
one in Equation 4.2 of a standard fully connected layer, with the difference that the
adjustable parameters of the layer (i.e. weights) are organized as a set of filters (or
filter bank) and cross-correlated over the input to produce the layer’s output. The
output of a CNN layer is a 3D matrix, which consists of a stack of matrices called
feature maps, and can be used as input to a higher level layer of the CNN model.
The CNN transformation can be represented as in Equation 4.3.

xn = f(Wnxn−1 + bn) (4.2)

X
(m)
k = f

(
C∑
c=1

W (c,m)
n ∗X(c)

n−1 +B(m)
n

)
(4.3)

In Equation 4.3 the layer of the network is denoted with n as before, and the ∗
operator is used for the 2D cross-correlation of channel c = 1, . . . , C of the input
Xn−1 and the filter W (c,m)

n , which is responsible for the m-th output feature map
X

(m)
k , where m = 1, . . . ,M . The matrix B(m)

n contains the bias weights. Finally,
a nonlinear activation function f is applied to the sum of convolutions to obtain
the final output. A visual representation of this operation can be seen in Figure 4.3
and an example can be seen in Figure 4.4.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 101

𝐖
𝑛(𝑐
=
2
,𝑚
=
1
)

𝐖
𝑛(𝑐
=
2
,𝑚
=
0
)

𝐖
𝑛(𝑐
=
1
,𝑚
=
1
)

𝐖
𝑛(𝑐
=
1
,𝑚
=
0
)

𝐗
𝑛
−
1

(𝑐
=
2
)

𝐗
𝑛
−
1

(𝑐
=
1
)

𝐖
𝑛(𝑐
=
0
,𝑚
=
1
)

𝐖
𝑛(𝑐
=
0
,𝑚
=
0
)

𝐗
𝑛(𝑚

=
1
)

𝐗
𝑛(𝑚

=
0
)

𝐗
𝑛
−
1

(𝑐
=
0
)

Fi
gu

re
4.

3:
Vi

su
al

re
pr

es
en

ta
tio

n
of

an
ex

am
pl

e
of

a
co

nv
ol

ut
io

n
la

ye
r.

A
tt

he
le

ft-
ha

nd
si

de
th

er
e

is
fo

r
ex

am
pl

e
an

im
ag

e
w

ith
th

re
e

ch
an

ne
ls

(R
G

B
).

Tw
o

fil
te

rs
,e

ac
h

w
ith

th
re

e
ch

an
ne

ls
,a

re
cr

os
s-

co
rr

el
at

ed
ov

er
th

e
in

pu
ti

m
ag

e.
Th

is
re

su
lts

in
th

e
ou

tp
ut

at
th

e
ri

gh
t-

ha
nd

si
de

,w
hi

ch
ha

s
tw

o
ch

an
ne

ls
.

102 CHAPTER 4

Every set of weights in a convolutional layer can be thought of as a filter. Simi-
lar to filters in the image processing domain, these filters extract specific properties
from the given data. However, as opposed to the filters in the image processing do-
main, the filters in a CNN are trained/adapted for the task at hand.

In a convolutional layer not every input value is connected to every node in
the subsequent layer. Only small, local regions are connected to specific hidden
nodes. This property is called local connectivity. Furthermore, instead of having a
unique set of weights for every local area, the weights are shared. The idea behind
this property, i.e. weight sharing, is that the set of learned filters will extract the
same feature in different areas of the input. By convolving a filter over the input,
a feature map/output is obtained. The output can have reduced dimensions and
parts of the output will be suppressed by the filter and some parts will be made
more noticeable. For example, a specific filter can have learned to detect edges in
an input image. Because of the weight sharing property, edges will be detected in
the entire input image. To be able to detect many features, multiple feature maps
and accompanying filters are required. In the example in Figure 4.3 an image with
three channels is provided as input. The output consists of two feature maps with
their respective set of weights which are convolved over the input image. Note
that a set of weights has the same amount of channels as the input, however, the
amount of channels in the output, i.e. feature maps, is a hyperparameter that has
to be tuned.

Beside convolutional layers, a CNN often also uses pooling layers. Pooling is
done after a convolutional layer and reduces the dimension of the feature maps.
Pooling is applied by sliding a small window over the feature maps while ex-
tracting a single value from that region by the use of for example a max or mean
operation. Because of this property, i.e. pooling, a feature map will reduce in size,
resulting in less parameters and less computations in subsequent layers.

Due to these three properties, i.e. local connectivity, weight sharing and pool-
ing, a CNN contains significantly less parameters than a dense NN, making the
CNN less susceptible to overfitting and faster to train.

4.2.3 Transfer learning

Data sets are often very small for tasks in specialized fields compared to the re-
quired amount of data to train a DNN. Hence, DNNs will tend to overfit. To over-
come this problem, pre-trained networks can be used which are NNs trained for
another task for which a lot of data was available. Such networks are for example
alexnet [88], VGG network [90] and the GoogLeNet [91]. In essence, the weights
of the already trained network are re-purposed for the new tasks. It has been shown
that such a NN will learn general features that can be used for other tasks [92,93].
It has also been shown that NNs, which are trained on images of everyday scenery,

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 103

0 0 0 0 0 0 0

0 0 0 0 2 2 0

0 2 0 2 0 2 0

0 2 2 1 0 1 0

0 1 2 2 1 2 0

0 0 0 1 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 2 0 2 0 0 0

0 2 1 2 0 0 0

0 0 2 1 1 2 0

0 2 1 2 2 2 0

0 2 2 0 2 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 1 1 0

0 1 0 1 0 0 0

0 1 1 0 1 2 0

0 0 2 0 0 1 0

0 0 0 1 2 0 0

0 0 0 0 0 0 0

1 0 0

1 1 1

-1 -1 -1

-1 0 1

-1 0 1

-1 -1 1

0 -1 0

1 1 1

1 -1 0

-1 0 0

0 1 0

-1 0 1

0 1 1

0 0 0

-1 -1 -1

0 0 0

1 0 1

0 -1 0

-2 1 5

9 1 -4

4 8 0

-1 0 3

5 0 -2

5 5 5

Input
Width = 8 pixels
Height = 8 pixels
Channels = 3

Weights 1
Width = 3 pixels
Height = 3 pixels
Channels = 3

Weights 2
Width = 3 pixels
Height = 3 pixels
Channels = 3

Output
Width = 3 pixels
Height = 3 pixels
Channels = 2

1 0 0

1 1 1

-1 -1 -1

1

Bias 1

0

Bias 2

R

G

B

Figure 4.4: Visual example of a convolutional layer. The input is for example an image of 8
by 8 pixels. The image has three channels (red, green, blue). There are two filters/weights,
hence there are two channels in the output. Weights 1 result in channel 1 in the output, and

weights 2 in channel 2. As the weights slide over the image with stride 2, and each step
results in a single value in the output, the output has a width and height of 3 pixels.

104 CHAPTER 4

can be re-purposed and modified to be applicable in tasks which require domain
specific images, such as medical images [94] or aerial images [95]. The process of
re-using and modifying a trained NN is called transfer learning. There are several
methods to apply transfer learning [92]:

• Option A: Remove the last layer (k). Hence, by providing the modified pre-
trained NN with input samples the network will output intermediary abstract
representations of the data that can be given to a new classifier such as a
support vector machine. The idea behind this approach is that the network
has learned re-usable features, which are useful for the task at hand, and that
only the classifier has to be trained for the task at hand.

• Option B: Remove multiple layers (k, .., k− t) and use the output of the last
remaining layer to train another classifier such as a SVM. This is similar to
option A, but by using the output of an intermediate layer, a more abstract
representation of the data is obtained.

• Option C: In addition to removing one or more layers, it is also possible
to attach a new layer to the modified pre-trained network. The idea behind
this method is that the initial layers have learned useful weights, but that
the last layer (layer that will classify the data using the softmax function),
was not initially designed for the task at hand. Hence, it has to be replaced
and trained. During the training phase all the layers can be trained, or only
the newly added layers. It is often useful to retrain all the layers because
weights of subsequent layers actually depend on each other.

• Option D: Similar to option C, but multiple new layers are added to the
network. In this option the assumption is made that the initial layers have
learned useful representations of the data, but the final layers have not.
Again, a decision has to be made to train the entire network, or only the
newly added layers.

The different options are also visualized in Figure 4.5

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 105

o
u

tp
u

t

In
p

u
t

Original NN

o
u

tp
u

t

In
p

u
t

Option A

SV
M

o
u

tp
u

t

In
p

u
t

Option B

SV
M

o
u

tp
u

t

In
p

u
t

Option C

or or or or or or or or or or or

o
u

tp
u

t

In
p

u
t

Option D

or or or or or or or

Figure 4.5: Visual representation of the different transfer learning options. Gray boxes
indicate pre-trained layers, white boxes indicate newly added layers, a closed lock icon

indicates that the layer is not trained in the training phase and finally, the open lock icon
indicates that the layer is trained during the training phase.

106 CHAPTER 4

4.3 Related literature

Neural networks (NN) have been used for many decades. However, most often
they are used in combination with features engineered by an expert [96, 97]. In
contrast, feature learning uses a raw representation of the input data and lets an al-
gorithm learn and create a suitable representation of the data, i.e. features. An ex-
ample of such a process using NNs is given in [98], wherein vibration spectrum im-
ages are created and given to NNs for rolling element bearing fault classification.
Feature learning can be done using both supervised and/or unsupervised methods.
Within the condition monitoring domain, feature learning has not been used ex-
tensively, only unsupervised methods, more specifically auto-encoders have been
used for bearing fault detection using vibration measurements [99]. Auto-encoders
are NNs which are designed to replicate the given input. The NN has a single hid-
den layer containing less nodes than the input layer. The purpose of this hidden
layer is to learn a compressed representation of the input data. An auto-encoder
is used to extract features which are given to a classification algorithm. It should
be noted that many auto-encoders can be stacked on top of each-other to form a
deep neural network. Although, there is little related work on deep learning for
condition monitoring, the techniques are very promising as is illustrated in this
chapter.

4.4 Methodology

The data sets from Chapter 3 are also used in this chapter, this way enabling a
comparison between the feature engineering approach and the feature learning ap-
proach for CM on the component level.

4.4.1 Architecture

Since a condition can be assigned two labels (i.e. a REB condition and a ma-
chine condition), as in Chapter 3, the automatic detection of a specific condition
is regarded as a combination of two multi-class classification problems. Hence,
for each modality two neural networks are trained. One CNN will distinguish be-
tween the REB conditions (for data set one this is HB, MILB, EILB and ORF; for
data set two this is HB, HP and ORF). The second CNN distinguishes between the
different gradations of imbalance. If only one network for all conditions would be
used, the classification task would become more difficult as there would be more
classes.

Next the CNN for the vibration measurements is discussed.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 107

𝐶32
2 𝑥 64

𝐷200

𝑆

Figure 4.6: Architecture of the CNN model using vibration measurements.

4.4.2 Vibration-based fault detection

The proposed CNN approach is similar to the one proposed in [100]. However,
here, the network is given both the frequency spectrum of the signal containing ac-
celerations in the x-direction and also the frequency spectrum of the signal contain-
ing accelerations in the y-direction. The short-hand notation of the architecture of
the network is as follows: C2×64

32 −D200−S where Ch×wk denotes a convolutional
layer with k feature maps, h height and w width. The height of the convolutional
layer corresponds to the two signals originating from the accelerometers. Dn de-
notes a dense fully connected layer with n nodes. S denotes a softmax layer. For
the convolutional layer and dense layer the tanh activation function is applied and
cross-entropy is used as loss function. Figure 4.6 shows a diagram of the proposed
CNN architecture. The convolutional layer corresponds to Equation 4.3, and the
fully connected layer to Equation 4.2.

The input signals are preprocessed in order to train the model. First, the ac-
celerometer signals are scaled to have zero mean and unit variance. Then, from the
training set signals, non-overlapping windows are extracted containing one second

108 CHAPTER 4

of measurement samples. For each window of extracted samples, the DFT is cal-
culated. The amplitudes of the frequency decompositions are then used as training
samples for the neural network model. It was experimentally determined that the
accelerometer’s sampling resolution could be lowered without affecting the output
of the model. Therefore, 5-fold subsampling is applied on the original accelerom-
eter data. It should be noted that only the amplitudes of the frequency spectrum
are used and not the frequency values themselves. This is because the sequence of
the amplitudes remain unchanged in the data and hence the order of the frequen-
cies is implicitly present due to the order of the amplitudes. The CNN model was
trained using minibatch gradient descent and momentum [101], using 100 training
examples per minibatch.

There are three notable aspects about the proposed CNN architecture:

• The architecture contains no pooling layers as pooling will reduce the di-
mensionality of the feature maps obtained from the convolutional layers by
selecting the maximum activation in a small region of a feature map. For
example, a filter has learned to detect a large amplitude in a region. If such
a large peak occurs somewhere in the frequency spectrum, the result of ap-
plying the filter to that region will yield a large value, but a small value
in other regions. By subsequently applying pooling, information of occur-
rence is kept but the location is lost. The information of where it occurred
is however important to detect a specific fault as large amplitudes at specific
frequencies are related to certain faults. The usefulness of pooling layers
was also experimentally validated and pooling did not improve results.

• It has been shown that by using a deep architecture, i.e., a network con-
taining layers, the network becomes more robust to the variation in the
data [102]. Hence, if the dataset has a lot of variation, a deep architec-
ture is required. As the manifestation of the different faults considered here
shows little variation, a shallow architecture suffices. Furthermore, the ini-
tial layers of CNNs learn the fastest, hence a short training time is sufficient
to achieve convergence [102]. Several variations of the proposed network
were tested by varying the number of convolutional and fully connected lay-
ers, and the number of units per layer. For our particular use case, it was
determined that a deep version of the proposed architecture does not yield
better results. In other words, adding additional layers to the network will
not cause an increase in accuracy.

• Changing the width of the filters in the convolution layer does influence the
results. Currently, the width is low, given the length of the signal. Lowering
the width further will slightly decrease the accuracy. For example, halv-
ing the width will lead to an approximate accuracy loss of 1 %. However,

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 109

increasing the width will decrease the accuracy much more rapidly. For ex-
ample if the width is doubled, the accuracy will be approximately 5 % lower.
The amount of filters does not influence the results much compared to the
width of a filter. However, if too few filters are chosen i.e. 8 instead of 32,
then the accuracy will drop by 1 % because too few features will be detected.

Depending on the task at hand, the amount of outputs will be four to determine
the bearing condition in data set one; two to determine if there is imbalance or not
for data set one; three to determine the bearing condition in data set two and four
to determine the gradation of imbalance in data set two.

4.4.3 Infrared thermal video based fault detection
As opposed to vibration data, images have many more variables. An input sample
for the vibration CNN has 2 × 5120 input variables. An image has many more
parameters (640 × 480), hence a deeper network is required. However, it was
observed that the data sets contained too little data to properly train a DNN for
IRT data. Hence, as discussed in the related literature section we opted to apply
transfer learning.

Various transfer learning methods were tested, however, option C, described in
Section 4.2.3 resulted in the most robust solution providing the best results. We
opted to use a pre-trained convolutional neural network from the visual geometry
group (VGG) at the University of Oxford [90]. There are several pre-trained net-
works available, however, at the time of writing the VGG network achieved the
state-of-the-art results on the image-net data set and the network is made publicly
available. Hence, the network was trained on natural images. The goal of the VGG
network was to classify images in one of a thousand categories. The VGG network
uses rectified linear activation functions in every layer except the last layer, which
is a fully-connected layer, where softmax activation functions are used.

For transfer learning purposes the last layer of the VGG network was removed
as our data-set has fewer classes. Removal of additional layers did not perform
any better. A new fully-connected layer was attached to the network. This layer
also uses softmax activation functions, and less weights, as there are less classes to
distinguish for the task at hand. Tests were also done where multiple layers were
attached, but no improvements were observed. Furthermore, more layers results
in more training time. In the end this means that all except for one layer of the
VGG network (which are pre-trained) are reused in our network and only the last
layer is new. As has been demonstrated in other research, the fact that a network’s
layers have been trained using a certain type of images, does not mean that transfer
learning is not possible for totally different types of images. Hence, we hypothesis
that a pre-trained DNN, such as the VGG network, can be re-used for component
condition detection using IRT images.

110 CHAPTER 4

As the input layer of the VGG network is also re-used, our dataset also has to be
preprocessed as the data that was initially provided to the original VGG network.
Hence, preprocessing as described in [90] was applied. Images (i.e. frames) are
pre-processed by removing the mean value. Furthermore smoothing is also applied
using a Gaussian kernel with a standard deviation of 3 pixels. Another requirement
is that the input image has a width and height of 224 pixels. Hence, the images are
manually cropped after an image registration step (as in Chapter 3).

As the last layer of our network is not trained for our task, a training phase
is required. In this training phase mini-batch gradient descent is used to update
all the weights of the network, even the weights of the pre-trained layers. The
idea behind this methodology is that neighbouring layers co-adapt during training,
which can only be done when training all layers [92]. However, the learning rate
for the mini-batch gradient descent algorithm should be smaller than the original
learning rate to minimally influence the already pre-trained layers. The learning
rate was set to 1.10−5. The architectures of our network is as follows: C3×3

64 −
C3×3

64 −P −C
3×3
128 −C

3×3
128 −P −C

3×3
256 −C

3×3
256 −C

3×3
256 −P −C

3×3
512 −C

3×3
512 −

C3×3
512 − P − C

3×3
512 − C

3×3
512 − C

3×3
512 − P − D4096 − D4096 − S. As activation

function the ReLu activation function is used for all the layers except the last one
where the softmax function was used. As loss function the cross-entropy loss is
used.

The network can also be seen in Figure 4.7.
In order to detect imbalance using infrared images the same network structure

and transfer learning methodology is applied. However, the input data is different.
It was determined that imbalance could not be detected by solely using spatial
information of the heat distribution in the component. Temporal information is
required to make the vibrations visible in the images. Hence, subsequent images
are differenced (i.e. It−1− It). By differencing these frames, the movement in the
images become visible as described in chapter 3, and as can be seen in Figure 4.8.
Afterwards, these images are rescaled to 224 × 224, normalized and used to train
a CNN.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 111

𝐶64
3 𝑥 3

𝐶64
3 𝑥 3

𝑃2 𝑥 2

𝐶128
3 𝑥 3

𝐶128
3 𝑥 3

𝑃2 𝑥 2

𝐶256
3 𝑥 3

𝐶256
3 𝑥 3

𝑃2 𝑥 2

𝐶256
3 𝑥 3

𝐶512
3 𝑥 3

𝐶512
3 𝑥 3

𝑃2 𝑥 2

𝐶512
3 𝑥 3

𝐶512
3 𝑥 3

𝐶512
3 𝑥 3

𝑃2 𝑥 2

𝐶512
3 𝑥 3

𝐷4096

𝐷4096

𝑆

Figure 4.7: Architecture of the CNN model using infrared thermal imaging data.

112 CHAPTER 4

Figure 4.8: Visible movement in the differenced frame.

4.4.4 Multi-sensor approach
We observed that the single-sensor approaches could still be improved. Hence,
similar to Chapter 3, in this section the potential of a multi-sensor system is re-
searched.

In Figure 4.9 the multi-sensor architecture can be observed. As can be seen,
the networks for the respective modalities are combined. In order to make a deci-
sion based on the output of the two networks, the output of the two networks are
averaged. It should be noted that the networks are not trained in this configuration.
The networks are trained separately on their respective data and afterwards com-
bined. This is possible as the decision fusion does not require a layer to be trained
as it requires an averaging operation. In the end, to classify all the different con-
ditions two such multi-sensor architectures are required: one to detect the bearing
conditions and another to detect the (gradation of) imbalance. In the next section
the result of the CNN approaches are presented and discussed.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 113

𝐶64
3 𝑥 3

𝐶64
3 𝑥 3

𝑃2 𝑥 2

𝐶128
3 𝑥 3

𝐶128
3 𝑥 3

𝑃2 𝑥 2

𝐶256
3 𝑥 3

𝐶256
3 𝑥 3

𝑃2 𝑥 2

𝐶256
3 𝑥 3

𝐶512
3 𝑥 3

𝐶512
3 𝑥 3

𝑃2 𝑥 2

𝐶512
3 𝑥 3

𝐶512
3 𝑥 3

𝐶512
3 𝑥 3

𝑃2 𝑥 2

𝐶512
3 𝑥 3

𝐷4096

𝐷4096

𝑆

𝐶32
2 𝑥 64

𝐷200

𝑆

𝑂

Figure 4.9: Architecture of the multi-sensor fault detection system. Ch×w
k denotes a

convolutional layer with k feature maps and receptive field of dimension h×w. P denotes
a pooling layer. Dn denotes a dense fully connected layer with n neurons. S denotes a

softmax layer and O denotes the output layer.

114 CHAPTER 4

4.5 Results
To put the results of the feature learning based approach for component-level fault
detection in perspective, the results obtained in this chapter are compared to the
results from Chapter 3. Again, the results for both data sets are discussed.

4.5.1 Results data set one
The results for both the feature engineering based approach and the feature learn-
ing based approach (i.e. the CNNs) on data set one are listed in Table 4.1. The first
two columns indicate which modalities have been used to obtain the result. The
third column identifies what method has been used (i.e. feature learning or feature
engineering). The fourth column specifies which conditions were targeted and the
last column lists the accuracy.

Three notable insights can be observed in this table:

1. Both feature engineering and feature learning are able to distinguish be-
tween all 8 conditions perfectly.

2. A multi-sensor approach, using two modalities, improves the results signif-
icantly for feature engineering (88.25 %⇒ 100.00 %)

3. A multi-sensor approach, using two modalities, also improves the results up
to 100 % (similar to the feature engineering system), however, single sensor
based approaches already achieve a high accuracy scores.

Finally, when observing the confusion matrices (Figures 4.10) it can be seen
that when using IRT data, ORFs are not perfectly detected, and when using vibra-
tion measurements, faults related to lubrication conditions are less well detected.
These observations are in line with the conclusions drawn in Chapter 3. However
by using feature learning, the amount of errors are reduced. Finally, by com-
bining the two systems in a multi-sensor system, perfect classification results are
achieved.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 115

IR VIB Method Conditions Accuracy

IR FE MILB, EILB, HB, ORF 88.25 % (σ = 8.07 %)
IR FL MILB, EILB, HB, ORF 95.00 % (σ = 6.12 %)

VIB FE MILB, EILB, HB, ORF 87.25 % (σ = 8.10 %)
VIB FL MILB, EILB, HB, ORF 95.00 % (σ = 6.12 %)

IR VIB FE MILB, EILB, HB, ORF 100.00 % (σ = 0.00 %)
IR VIB FL MILB, EILB, HB, ORF 100.00 % (σ = 0.00 %)

IR FE balance and imbalance 100.0 % (σ = 0.00 %)
IR FL balance and imbalance 100.0 % (σ = 0.00 %)

VIB FE balance and imbalance 100.0 % (σ = 0.00 %)
VIB FL balance and imbalance 100.0 % (σ = 0.00 %)

IR VIB FE balance and imbalance 100.0 % (σ = 0.00 %)
IR VIB FL balance and imbalance 100.0 % (σ = 0.00 %)

IR FE All 8 conditions 88.25 % (σ = 8.07 %)
IR FL All 8 conditions 95.00 % (σ = 6.12 %)

VIB FE All 8 conditions 87.25 % (σ = 8.10 %)
VIB FL All 8 conditions 95.00 % (σ = 6.12 %)

IR VIB FE All 8 conditions 100.0 % (σ = 0.00 %)
IR VIB FL All 8 conditions 100.0 % (σ = 0.00 %)

Table 4.1: Results of both the feature engineering and feature learning based approach on
data set one. FE = feature engineering, FL = feature learning.

116 CHAPTER 4

(a)

(b)

Figure 4.10: Confusion matrices for the CNN using IRT data (a) and vibration data (b) for
bearing fault detection.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 117

4.5.2 Results data set two
The results for both the feature engineering based approach and the feature learn-
ing based approach on data set two are listed in Table 4.2. To distinguish between
the 12 conditions using the multi-sensor system, it was observed that for the im-
balance detection the vibration based CNN did not improve the results. Hence it is
not used for imbalance detection. Solely the IRT based CNN is used for this part
of the multi-class and multi-label problem.

From the results, six interesting aspects can be deduced:

1. In the end, feature learning slightly outperforms feature engineering (93.33 %
vs. 90.00 % respectively)

2. Imbalance detection using feature learning and vibration data is difficult
(55 %). This is discussed further in Section 4.5.4.

3. A multi-sensor approach, using two modalities gives a huge improvement
with respect to feature engineering (66.67 %⇒ 90.00 %)

4. A multi-sensor approach, using two modalities improves the results up to
93.33 %. However, the single sensor based systems already achieve high
accuracy scores.

5. Outer-raceway faults seem to be detectable using IRT data and feature lear-
ing. This can also be seen in Figure 4.11a.

6. When observing the confusion matrix of the feature learning multi-sensor
system (Figure 4.12), it can be concluded that the system only makes some
mistakes for imbalance conditions while there is an outer raceway fault
present at the same time, which can be expected as both ORFs and imbal-
ance are known to generate vibrations, which can be difficult to distinguish
using IRT data using the current pre-processing approach.

When comparing the confusion matrices of the feature engineering approach
and the feature learning approach regarding bearing condition detection, it can be
observed that when using vibration measurements, the feature learning approach
provides better results. Only a small error is made where the CNN confuses HBs
for REBS with HPs (Figure 4.11b), which is also present in the confusion matrix
for the feature engineering approach (Figure 3.30a).

In general it can be concluded that the CNN approach gives very good results
on both data sets without requiring much expert knowledge about the problem.
However, NNs in general are black box system, meaning that their inner-workings
are not human-interpretable. Nevertheless, some insights can be derived from
them, which are presented next.

118 CHAPTER 4

IR VIB Method Conditions Accuracy

IR FE HP, ORF, HB 65.00 % (σ = 16.16 %)
IR FL HP, ORF, HB 98.33 % (σ = 3.33 %)

VIB FE HP, ORF, HB 91.67 % (σ = 12.91 %)
VIB FL HP, ORF, HB 98.33 % (σ = 3.33 %)

IR VIB FE HP, ORF, HB 100.00 % (σ = 0.00 %)
IR VIB FL HP, ORF, HB 100.00 % (σ = 0.00 %)

IR FE Imbalance gradation 88.33 % (σ = 12.47 %)
IR FL Imbalance gradation 93.33 % (σ = 9.72 %)

VIB FE Imbalance gradation 75.00 % (σ = 9.13 %)
VIB FL Imbalance gradation 55.00 % (σ = 4.08 %)

IR VIB FE Imbalance gradation 90.00 % (σ = 6.24 %)
IR VIB FL Imbalance gradation 78.33 % (σ = 12.47 %)

IR FE All 12 conditions 55.00 % (σ = 11.31 %)
IR FL All 12 conditions 91.67 % (σ = 9.13 %)

VIB FE All 12 conditions 66.67 % (σ = 21.08 %)
VIB FL All 12 conditions 55.00 % (σ = 4.08 %)

IR VIB FE All 12 conditions 90.00 % (σ = 6.24 %)
IR VIB FL All 12 conditions 93.33 % (σ = 9.72 %)

Table 4.2: Results of both the feature engineering and feature learning based approach on
data set two.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 119

(a)

(b)

Figure 4.11: Confusion matrices for the CNN using IRT data (a) and vibration data (b) for
bearing fault detection.

120 CHAPTER 4

HB

4.
1

g
bo

lt
- H

B

9.
3

g
bo

lt
- H

B

13
 g

 b
ol
t -

HB
ORF

4.
1

g
bo

lt
- O

RF

9.
3

g
bo

lt
- O

RF

13
 g

 b
ol
t -

 O
RF HP

4.
1

g
bo

lt
- H

P

9.
3

g
bo

lt
- H

P

13
 g

 b
ol
t -

 H
P

Predicted label

13 g bolt - HP

9.3 g bolt - HP

4.1 g bolt - HP

HP

13 g bolt - ORF

9.3 g bolt - ORF

4.1 g bolt - ORF

ORF

13 g bolt - HB

9.3 g bolt - HB

4.1 g bolt - HB

HB

T
ru

e
 l
a
b

e
l

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

20.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

20.00 %

80.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

20.00 %

60.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

80.00 %

20.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

100.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0

10

20

30

40

50

60

70

80

90

100

Figure 4.12: Confusion matrix of the multi-sensor feature learning system for all 12
conditions in data set two.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 121

4.5.3 Insights into infrared thermal data
Generally, when using infrared thermal imaging for fault detection, it is hard to
know where to look in the image to be able to detect a specific machine condition.
However, as presented in the previous section, using data-driven feature-learning
techniques it is possible to detect a condition without having any prior knowledge.
Hence, it can be concluded that information related to the condition is present in
the thermal images. Therefore, in this section we apply the technique described by
Zeiler et al. [102] to investigate what exactly is important in a thermal image for
the specific conditions.

The method has three steps that are iterated over:

1. The first step masks a part of the input image (i.e. a 7× 7 square of pixels is
set to a constant value).

2. In step two, the modified incomplete image is classified by the trained CNN.
The CNN has softmax activation functions in the output layer which give a
probability for every possible class.

3. In the third step the class probability corresponding to the correct class is
saved in a matrix with the same dimensions as the image. The probabilities
are stored in the location corresponding to the location that was masked in
the original image.

These three steps are iterated over so that every part of the image is masked
once. The idea behind this method is that if an important and crucial part of the
image is masked, the probability for the correct class will be low (i.e. closer to
zero). Hence, if such a drop in probability is observed when a specific part of the
image is masked, it can be concluded that said part of the image is crucial for that
particular class. An intuitive example is given in [102], where a CNN is trained
to detect objects in natural images. One of the possible classes is “dog”. Hence,
if a picture of a dog is given to the NN where the face of the dog is hidden by
the mask, the probability for the class dog, provided by the network, will be much
lower compared to the case when the dog’s face is not masked.

In Figure 4.13 the output of this method is visualized for the six bearing con-
ditions. However, to make the areas more clear, we have visualized one minus
the output probability and scaled in the range between 0 and 1. It can be seen
that different areas on the REB’s housing are important for specific conditions.
For example, to identify if a REB is extremely inadequately lubricated, the area
around the seal is very important, which can for example be due to the heat origi-
nating from the increased friction between the shaft and the seal. In general, these
locations can help to make a link to the underlying physics. In Appendix C, con-
volutional neural networks are applied on another use case where the oil level in a
bearing is determined. In that use case, insights into the CNN’s decisions are more
easily to link to the underlying physics.

122 CHAPTER 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 123

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

124 CHAPTER 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f)

Figure 4.13: Regions that influence the CNNs output for a healthy bearing (a), mildly
inadequately lubricated bearing (b), extremely inadequately lubricated bearing (c),

outer-raceway fault at the 10 o’clock position (d), outer-raceway fault at the loaded zone
(e), hard particles (f).

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 125

4.5.4 Imbalance detection
The results indicate that detecting the gradation of imbalance using vibration data
is difficult resulting in an accuracy of 55 %. This result is counter intuitive as
vibration data should contain information on the amount of imbalance. It is known
that the amplitude at the rotation frequency depends on the amount of imbalance.
To investigate this unexpected result, the frequency spectrum of every signal in
data set two was visually inspected. It was determined that a small number of
signals displayed unexpected behavior. The signals had a large DC component
and had no significant peak at the rotation frequency. From the 60 recordings, 11
were removed for subsequent tests. The CNN was trained and tested again, similar
to as was done initially. The accuracy of the CNN rose to 58.43 %. This means
that this was not the main reason why the accuracy is low.

As the problem could not solely be attributed to the quality of the data, the
imbalance gradations were investigated. The amplitude at the rotation frequency
is expected to increase if the mass of the bolt causing the imbalance is increased.
In an ideal situation, this amplitude would rise and would be noticeably different
from the amplitude at a lower imbalance gradation. However, due to noise added to
the vibration signal as a result of for example bearing mounting, sleeve tightening
and amount of lubrication, this amplitude will fluctuate. Hence, there could be the
problem that due to these additional effects, the intraclass variation per imbalance
gradation is large. Additionally, because there are four levels of imbalance, the
interclass variation could be low, hence making the signal indistinguishable from
one-another.

To tests this hypothesis, convolutional neural networks were trained to distin-
guish between neighboring imbalance gradations. This means that three binary
classification CNNs were created. The first distinguishes between balance and
4.1 g of imbalance; the second distinguishes between 4.1 g of imbalance and 9.3 g
of imbalance; and the third distinguishes between 9.3 g of imbalance and 13 g
of imbalance. If our hypothesis is correct then the three binary neural networks
would achieve a low accuracy score. This however was not the case. The CNNs
achieved 70 %; 93.33 % and 80 % accuracy respectively. These results indicated
that our hypothesis is not correct.

The experiments above indicated that binary classifiers work well, hence, in
addition to the three binary CNNs trained to distinguish neighboring imbalance
gradations, three additional binary CNNs were trained. The first distinguishes
between balance and 13 g of imbalance; the second distinguishes between 4.1 g
and 13 g of imbalance; and the third distinguishes between balance and 9.3 g of
imbalance. These additional binary classifiers also provided high accuracy scores
(96 %; 88.67 % and 96.67 % respectively). Hence, the different gradations of
imbalance are independently distinguishable to a certain extent.

Subsequently, an experiment was done to solve the multi-class imbalance de-

126 CHAPTER 4

0 g versus 4.1 g 4.1 g versus 9.3 g 9.3 g versus 13 g 0 g versus 13 g 4.1 g versus 13 g 0 g versus 9.3 g

All data

0 g 4.1 g 9.3 g 13 g

One-versus-one

Figure 4.14: Block diagram of the one-versus-one approach combining six binary
convolutional neural networks. All data is given to each binary CNN which can then vote

for a certain imbalance gradation (lightgray boxes).

tection problem by combining the six binary CNNs using one-versus-one approach.
Given a sample, each of the six binary CNNs can vote for one of the two classes
they were respectively trained on. Hence, any class (i.e. imbalance gradation) can
receive at most three votes. This strategy is illustrated in Figure 4.14. When test-
ing this approach, the accuracy did not improve a lot (59.29 %). Even though the
binary CNNs work well individually, when combined the accuracy gain is lost. It
seemed that this approach did not work well because each binary classifier has to
predict for all the data. For example, the binary CNN that distinguishes between
4.1 g and 13 g has to predict for every sample, even if a sample has a ground truth
label of 0 g, for which that specific binary CNN hasn’t been trained. Hence, such
a classifier is more likely to misclassify, resulting in an overall accuracy reduction.

To solve this problem a one-versus-all approach was tested next. A one-versus-
all approach requires four classifiers to be constructed (i.e. four binary CNNs).
Each binary CNN is trained to detect if a sample belongs to one specific class or
not. As the CNNs use the softmax activation function in the last layer, probabilities
are provided as output. Each binary CNN provides the probability that a sample
belongs to its specific class. This approach is illustrated in Figure 4.15. This ap-
proach requires less binary CNNs to be trained, but unfortunately does not provide
better results. Each individual CNN is trained using imbalanced data as a result of
the one-versus-all approach which results sub-optimal classifiers.

In the next experiment, a hierarchical combination strategy was tested. In this
approach there are two classification levels. In the first level, a binary CNN dis-
tinguishes between small/no imbalance and large imbalance, i.e. 0 g and 4.1 g
versus 9.3 g and 13 g. When all the data is provided to this single binary CNN,
it provides a label for each sample in the data set. Using this label, the data set
is split into two parts which are given to the second level binary CNNs. In the
second level there are two binary CNNs. One that distinguishes between 0 g and
4.1 g imbalance and another that distinguishes between 9.3 g and 13 g. A block

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 127

0 g versus rest 4.1 g versus rest 9.3 g versus rest 13 g versus rest

All data

0 g 4.1 g 9.3 g 13 g

class

probability

One-versus-all

Figure 4.15: Block diagram of the one-versus-all approach. All data is provided to three
binary convolutional neural networks. Each convolutional neural network will provide a
probability of each sample belonging to a certain class, i.e. imbalance gradation. Hence,
per sample, the class corresponding to the highest probability is assigned to the sample.

128 CHAPTER 4

0 g and 4.1 g versus 9.3 g and 13 g

All data

0 g and 4.1 g 9.3 g and 13 g

9.3 g 13 g

All data with imbalance of 0 g or 4.1 g All data with imbalance of 9.3 g or 13 g

0 g versus 4.1 g 9.3 g versus 13 g

0 g 4.1 g

Figure 4.16: Block diagram of the hierarchical approach. All data is first provided to a
single binary convolutional neural network. The CNN predicts one of two labels per

sample which is used to split the original data set in two. The two subsets are given two
two binary CNNs respectively which provide the eventual labels for the samples.

diagram of this approach can be seen in Figure 4.16. This approach only requires
three binary CNNs and will result in balanced data at each stage. Furthermore, it
will exploit the logical sequential order (ordinal) of the labels, i.e. balance < 4.1 g
imbalance < 9.3 g imbalance < 13 g imbalance. This resulted in an accuracy of
75.31 %. Which is a large improvement.

This approach illustrates that exploiting the ordinal nature of the labels is ben-
eficial to detect imbalance gradation more accurately. Hence, in the final experi-
ment the original multi-class neural network is used. However, two modifications
are made to the network. First, the dense output layer only has one node and the
softmax activation function is replaced by a linear activation function. As a re-
sults of this linear output unit, the network will predict a single continuous value
for a given sample. This value corresponds to the amount of imbalance. Second,
the loss function, which was previously the cross-entropy loss, is replaced by the
squared error loss (see Equation 4.4, where y is the ground truth and ŷ is the pre-
diction provided by the CNN). The original loss function, i.e. the cross-entropy
loss, is a loss function designed for classification purposes. Hence, the loss value
will not differ if the predicted imbalance gradation is much larger than the ground

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 129

truth. The loss function only takes into account that the prediction is wrong. In
contrast, the squared error loss value depends on how much the predicted value
deviates from the ground truth. These two modifications convert the original CNN
into a regression CNN that inherently takes the sequential order of the amount of
imbalance gradation into account. For example, the network performs less well if
it predicts 13 g if the label is actually 4.1 g than when it predicts 9.3 g.

f(ŷ, y) = (ŷ − y)2 (4.4)

Because the CNN now provides continues values due to the single linear output
node, discretization is required to evaluate its performance. This means that in
order to calculate the accuracy score, discrete values are required. Discretization
is done according to Equation 4.5. The threshold values are simply set to half the
interval between two imbalance levels. In Figure 4.17, this new approach can be
seen next to the original approach. The regression-based approach results in a large
increase in accuracy (81.17 %) which indicates that it is better to cast the detection
of the gradation of imbalance as a regression problem instead of a classification
problem.

f(ŷ) =

0 g if ŷ < 2.05 g
4.1 g if 2.05 g ≤ ŷ < 6.7 g
9.3 g if 6.7 g ≤ ŷ < 11.15 g
13 g if 11.15 g ≤ ŷ

(4.5)

130 CHAPTER 4

���
�	�	��

��		

0 g 4.1 g 9.3 g 13 g

���
�	�	��

��		

�

x g

-1 0 1 2 3 4 5 6 7 8 9 1310 11 12 14 15

0 g 4.1 g 9.3 g 13 g

(a) (b)

Figure 4.17: Block diagrams of (a) the original architecture where S indicates a fully
connected layer with the softmax activation function, and (b) the modified architecture to
solve imbalance detection. In architecture (b), L indicates a fully connected layer with
linear a activation unit. Discretization is subsequently applied to the continuous value.

COMPONENT LEVEL: MULTI-SENSOR FAULT DETECTION USING FEATURE

LEARNING 131

4.6 Discussion
In this discussion we briefly reflect on the added value of getting insights into
the convolutional neural networks and the implications of this technique on the
required expert knowledge for fault detection.

When using feature engineering, especially on infrared thermal video, good re-
sults can be achieved as is demonstrated on our two data sets. However, to improve
a feature-engineering-based approach insights into the machine condition and how
these manifest are required. When it comes to vibrations, already a substantial
amount of knowledge is available which can be used to create more advanced fea-
tures. However, for infared thermal data new insights are necessary to improve
feature engineering-based fault detection. Convolutional neural networks, and in
general feature learning, can aid to acquire these insights in a data-driven manner.

Feature learning enables a data-driven solution for fault detection resulting in
less required domain knowledge. However, more knowledge is required on ma-
chine learning. Feature learning has the advantage of being applicable on different
types of data, making it a solution that requires limited, but specific knowledge.

4.7 Conclusion
In this chapter, the potentials of feature learning are illustrated. For both the vi-
bration measurements as well as the infrared thermal imaging data, convolutional
neural networks are researched, developed and trained. Convolutional neural net-
works are end-to-end machine learning systems that do not require engineered
features as input, but rather raw data.

For the vibration measurements, we have created a shallow convolutional neu-
ral network which is designed to processes the frequency spectra of the two ac-
celeration signals simultaneously. For the infrared thermal imaging data, a deep
convolutional neural network is constructed as a result of transfer learning. We
show that transfer learning, using a deep neural network trained on natural images,
can be applied on thermal infrared data, resulting in large improvements regarding
infrared thermal imaging-based fault detection on our data sets.

By combining both the infrared-based convolutional neural network and the
vibration-based convolutional neural network, a multi-sensor system is created.
The system does not require features to be engineered. The main advantage of
such a system is that for conditions for which no physics-based features exist,
feature-learning can be employed. This is especially useful if the expert does not
know what the condition is, causing for example under-performance, but does want
to be able to detect it in the future.

Finally, insights into the convolutional neural networks trained on infrared
thermal imaging are given. We have shown that the networks looks at specific

132 CHAPTER 4

parts of the bearings’ housing for specific faults that can possibly be related back
to the underlying physics. By using methods to gain insights into the convolutional
neural networks, human-interpretable knowledge can possibly be extracted about
the physics of machine faults.

The work presented in this chapter has lead to the following publications, or
are submitted as follows:

• Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia
Loccufier, Steven Verstockt, Rik Van de Walle, Sofie Van Hoecke, Con-
volutional Neural Network Based Fault Detection for Rotating Machinery,
Journal of Sound and Vibration, vol. 377, pp. 331-345, 2016

• Olivier Janssens, Rik Van de Walle, Mia Loccufier, Sofie Van Hoecke, Deep
Learning for Infrared Thermal Image Based Machine Health Monitoring,
IEEE/ASME Transactions on Mechatronics, Accepted for publication

Chapter 5

Fleet level: Dynamic dashboard

Chapter highlights

Semantics

Sensor

Web API

Semantics

Virtual Sensor

Web API

Semantics

Visualization

Web API

In the previous chapters, systems were proposed for performance monitor-
ing and fault/condition detection for offshore wind turbines. The contri-
bution of this chapter is a dynamic dashboard wherein these systems can
be deployed as virtual sensors. Additional to these virtual sensors, also real
sensors can be used in the dashboard. The goal of the dynamic dashboard is to
dynamically visualize values from these sensors. This is done by web-enabling
the sensors and augmenting them with semantic information, hence enabling the
dashboard to visualize sensor data dynamically.

134 CHAPTER 5

5.1 Introduction
On average, a Belgian offshore wind park contains 36 wind turbines [9]. To easily
monitor the performance of many wind turbines individually, a data-driven ap-
proach as proposed in Chapter 2 is suitable enabling power production prediction
to be tailored to every individual wind turbine. This is necessary as due to degra-
dation, location and maintenance the performance of two turbines will not be the
same [103]. These individual models can be constructed in a limited amount of
time with little effort and expertise knowledge. Furthermore, they only require
data from the wind farm. Additional to monitoring the performance of wind tur-
bines in the wind farm, the methods in Chapter 3 and 4 enable the condition of
wind turbine inner components to be monitored. However, visualizing the outputs
of all these models for an entire wind park is a daunting task but required in order
to monitor an entire fleet. Hence, the contribution of this chapter is a dynamic
dashboard that enables models such as described in Chapter 2, 3 and 4 to be put in
to practice. A model is transformed into a virtual sensor for which the dashboard
can visualize values. Additional to the virtual sensors, there are also a vast number
of sensors that produce data in a wind farm. The dynamic dashboard proposed in
this chapter is also able to use these data and visualize it. However, optimally visu-
alizing the data is a difficult task. Hence, the dynamic dashboard can automatically
reason on the available (virtual) sensors to find suitable visualization options.

Some examples to illustrate the usefulness of such a dynamic dashboard are:

• Instead of plotting the power production of every wind turbine in separate
time series plots, the dynamic dashboard can automatically recommend to
visualize them in a graphical map, displaying wind turbines and the pro-
duced power next to them. Hence, the power production of the entire fleet is
summarized in one plot (e.g. Figure 5.1).

• To do anomaly detection, the regression models described in Chapter 2 can
be thought of as a virtual sensor. A virtual sensor produces the same value
as an actual sensor but is in fact not a physical sensor. For example, a vir-
tual sensor can provide the output power given data from other sensors (i.e.
yaw, wind speed, wind direction, pitch, temperature,...). The dashboard can
automatically provide these required values to the virtual sensor without the
need of human interference. Furthermore, the dashboard can subsequently
compare the predicted value to the actual sensor value and see if the values
are the same. If the actual value deviates from predicted value an anomaly
has occurred which can be brought to the operators attention automatically
(e.g. Figure 5.2).

• When an anomaly has occurred at the machine-level (i.e. an unexpected per-
formance drop) it can be because of many reasons. By monitoring the con-

FLEET LEVEL: DYNAMIC DASHBOARD 135

dition of components, the operator can rule out potentially damaged compo-
nents if the fault detection systems have not detected anything. In the end
the operator can start to explore possible options of the root-cause of the
problem by making use of the intelligent visualizations in the dashboard. If
for example the operator suspects yaw misalignment, the operator can start
of by visualizing the wind direction. The dashboard will automatically pro-
vide the option to visualize the wind direction together with the turbine’s
orientation in a suitable plot (e.g. Figure 5.3).

• Measuring how much imbalance a rotor of the wind turbine has cannot be
done directly. No sensor exists that measures imbalance. However, the
regression-based convolutional neural network proposed in Chapter 4, Sec-
tion 4.5.4, can predict the weight imbalance using vibration measurements.
Hence, this approach enables virtual sensing and can be implemented as a
virtual sensor in the dynamic dashboard. An example of how this imbalance
can be visualized using a time series diagram can be seen in Figure 5.4.

Figure 5.1: Overview visualization of the power production of the wind turbines in a wind
farm.

To enable such a dynamic dashboard, the Industry 4.0 design principle of in-
teroperability/interconnection is required [104]. The idea behind this design prin-
ciple is to enable machines, devices, sensors, software services to connect and
communicate with each other via the Internet of Things (IoT). In this chapter the
IoT vision is implemented by encapsulating sensors –both physical and virtual– in
RESTful web APIs hence transforming them into web-connected devices as de-
scribed in [105]. Restful web APIs provide a uniform way of accessing data such
as sensor values. To enable dynamic visualizations, also the visualization services

136 CHAPTER 5

Figure 5.2: Anomaly detection on the power production of a wind turbine.

Figure 5.3: Scatter plot suggested by the dashboard. Direction of the wind versus the
turbine’s orientation for yaw misalignment diagnosis.

FLEET LEVEL: DYNAMIC DASHBOARD 137

Figure 5.4: Example of how the virtual sensor for imbalance can be visualized in the
dynamic dashboard.

are encapsulate in web APIs. All web APIs are semantically annotated1 and by
using Semantic Web reasoners2, advanced sensor and visualization compositions
can be created. These compositions result in sensible visualization instantiations
in the dashboard, possibly enabling the detection of complex events that previously
would have remained undetected.

In the next section the related literature regarding industrial applications of the
Internet-of-Things is provided together with information on commercially avail-
able dashboard systems. Afterwards, the inner workings of the dynamic dashboard
are discussed and how it is applied on a fictional wind farm. Finally, the evaluation
of the dashboard is presented together with a conclusion.

5.1.1 Related work: Internet-of-Things
In recent years, several IoT applications have emerged as is described in the survey
by Da Xu et al. [106]. Applications can be found in industries such as manufactur-
ing, healthcare, automotive and mining. However, issues that often return are the
lack of a commonly accepted service description languages and heterogeneity of
data and communication protocols [107]. This makes the development and integra-
tion of physical objects into value-added services difficult as they can be incompat-
ible with different communication protocols or/and will not be discoverable [106].
The Industry 4.0 design principle of interoperability/interconnection [104] solves

1Semantically annotating means that a description of the sensor is made, detailing the type of sensor,
what output is provided and the possible input that is required (in case of virtual sensor). This semantic
description is also made available via the web API.

2A semantic web reasoner takes semantic descriptions and draws conclusions based on these de-
scriptions. For example, if the web API of a virtual sensor requires a temperature value as input, the
semantic reasoner can use its reasoning the select the right web API that will provide this value.

138 CHAPTER 5

this shortcoming by enabling machines, devices, sensors, software services to con-
nect and communicate with each other via the Internet of Things (IoT). Restful
web APIs can be used to implement this design principle by providing a uniform
interface for accessing the sensors [105,108] . By encapsulating a device/sensor in
a web API, the HTTP functionality can be used, making also the communication
protocol uniform. Requesting a value from a sensor can then simply be accom-
plished by using a HTTP GET request. Using restful web APIs thus solves both
the problems of data and communication protocol heterogeneity.

5.1.2 Related work: Dynamic visualization systems
Data visualization has been researched and commercialized in recent years by for
example dashboard.io3, QlikView4 and Tableau5, but still requires the end-users
to have detailed knowledge of the data and to handcraft visualizations. To sup-
port automated crafting and integration, the use of semantics is required. Cur-
rent state-of-the-art research solutions using Semantic Web technology and/or rea-
soning in dashboards are more low-level (requiring SPARQL6 queries to be writ-
ten) [109–112].

In the dynamic dashboard proposed in this chapter, dynamic composition of vi-
sualization services and sensors (both real and virtual sensors), is possible by using
Semantic Web technology and reasoning. The dynamic dashboard automatically
suggests correct visualization options for specific types of data.
In the next section the architecture and the components of the proposed dynamic
dashboard are discussed.

5.2 Methodology
A high level architecture of the dynamic dashboard can be seen in Figure 5.5. The
dashboard has several components which are required to dynamically combine
sensors, virtual sensors and visualization services.

3https://dashboard.io
4www.qlik.com
5www.tableau.com
6Semantic query language for databases, able to retrieve and change data stored in resource descrip-

tion framework (RDF) format.

https://dashboard.io
www.qlik.com
www.tableau.com

FLEET LEVEL: DYNAMIC DASHBOARD 139

Semantic description

WEB API

Semantic description

WEB API

Semantic description

WEB API

Semantic description

WEB API

Semantic description

WEB API

Semantic description

WEB API

V
is

u
a

li
za

ti
o

n
 s

er
v

ic
es

S
en

so
r

d
a

ta
 s

er
v

ic
es

Dashboard engine Web interface

User input: goal

Knowledge base

Historical data

Semantic

description

WEB API

Semantic

description

WEB API

Semantic

description

WEB API

V
ir

tu
a

l
se

n
so

r
d

a
ta

 s
er

v
ic

es

Model

Model

Model

HTTP

HTTP

HTTP

Flow executor Reasoner Composer

Figure 5.5: Platform for dynamic visualization of multi-sensor architectures.

140 CHAPTER 5

5.2.1 Sensor data services
Sensors are encapsulated in web APIs to cope with the heterogeneous data rep-
resentation standards and communication protocols. A sensor value can hence be
requested using a HTTP GET request as can be seen in Figure 5.6. A web API is
semantically annotated which can be requested using a HTTP OPTIONS request.
A semantic description specifies the functionality of the web API. Using semantic
annotations and reasoning, a higher level coupling can be achieved without any
additional configuration required and the system will be less application specific.

Semantic description

WEBAPI

GET http://windfarm.com/thermocouple/1

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 528
[{

"@id": "http://windfarm.com/thermocouple/1",
"http://windfarm.com/description": [{

"@value": "Surrounding temperature“
}],
"http://windfarm.com/discrete": [{

"@value": "false“
}],
"http://windfarm.com/location": [{

"@id": http://windfarm.com/locations/1
}],
"http://windfarm.com/semantics": [{

"@value": http://windfarm.com/semantics/thermocouple/1.n3
}],
"http://windfarm.com/unit": [{

"@value": "°C“
}],
"http://windfarm.com/value": [{

"@value": "7.1"
}]

}]

Request

Response

Figure 5.6: A value of a sensor can be requested using a HTTP GET request for which a
response will be returned containing the required value.

Because of the confidentiality of the data of existing wind farms, a virtual
offshore wind farm with 15 turbines (each turbine containing 9 sensors and one
virtual sensor) is simulated. Three major sensor categories are created, each but
one producing fictitious sensor values. In order to truthfully simulate the wind
farm, the values are restricted and depend on the values of related sensors.

The sensor data is semantically annotated using json-LD. Json-LD provides
mappings from json to the RDF model using the context concept, linking json
object properties with ontology concepts [113]. An example of the sensor data in
json-LD can be seen in Listing 5.1. As can be seen, more than just the sensor value
is provided. Additional (semantic) information is provided which can be used. If
for example a sensor value in “Bar” is required instead of “Pascal”, then using the
additional semantic information a check can be done to make sure that the web
API provides sensor values in the required unit.

The semantic description of the web APIs functionality itself, is done using

FLEET LEVEL: DYNAMIC DASHBOARD 141

RESTdesc [114]. RESTdesc is designed for compactness. An example of such a
description can be seen in Listing 5.2. This semantic description specifies that the
resource is an air pressure sensor and that if you want an air pressure observation
(a single measurement), then you can execute a GET request to the resource’s URI.

1 [{
2 "@id": "http://windfarm.com/
3 air_pressure_sensors/1",
4 "http://windfarm.com/description": [{
5 "@value": "Surrounding temperature"
6 }],
7 "http://windfarm.com/discrete": [{
8 "@value": "false"
9 }],

10 "http://windfarm.com/location": [{
11 "@id": "http://windfarm.com/locations/1"
12 }],
13 "http://windfarm.com/semantics": [{
14 "@value": "http://windfarm.com/semantics/
15 air_pressure_sensors/1.n3"
16 }],
17 "http://windfarm.com/unit": [{
18 "@value": "Pa"
19 }],
20 "http://windfarm.com/value": [{
21 "@value": "101,325"
22 }]
23 }]

Listing 5.1: Example of the data (in json-LD) returned by a sensor web API.

1 @prefix ex: <http://example.org/>.
2 @prefix http: <http://www.w3.org/2011/http#>.
3
4 <http://windfarm.com/air_pressure_sensors/1>
5 a ex:AirPressureSensor.
6
7 {
8 ?sensor a ex:AirPressureSensor;
9 ex:value ?value;

10 ex:unit ?unit;
11 ex:location ?location;
12 ex:description ?description;
13 ex:discrete ?discrete.
14 }
15 =>

142 CHAPTER 5

16 {
17 _:request http:methodName "GET";
18 http:requestURI ?sensor;
19 http:resp [http:body _:observation].
20 _:observation a ex:AirPressureObservation;
21 ex:value ?value;
22 ex:unit ?unit;
23 ex:location ?location;
24 ex:description ?description;
25 ex:discrete ?discrete.
26 }.

Listing 5.2: Example of semantic description in restdesc for a air pressure sensor.

5.2.2 Virtual sensors
Beside real sensors, it is also possible to have virtual sensors. Virtual sensors are
created to emulate a physical sensor and can be used in machine fault detection
techniques, such as anomaly detection. As described in Chapter 2, a machine
learning algorithm can be used to train a model that can predict the power output
of a wind turbine. This model requires data from physical sensors. The model
is created offline manually, and is then encapsulated in a web API and semanti-
cally annotated to deploy it as a virtual sensor, similar to the process for physical
sensors. To use such a virtual sensor one has to do a HTTP GET request to the
virtual sensor’s web API including a value of the wind speed. The web API will
subsequently return a prediction for the power output. For the dynamic dashboard
a real sensor and a virtual sensor are indistinguishable. The only difference exists
in the fact that the former does not require input values and the latter does.

5.2.3 Visualization services
The main responsibility of the visualization services is to visualize the submitted
(virtual) sensor data. Many visualization libraries exist, and it suffices to enclose
one of them in a web API. For the proof-of-concept dashboard, the HighCharts
JS 7 library is used to create nine different visualization service web API, but any
other JavaScript-based visualization could be used. On request, a visualization
service provides source code to the dynamic dashboard resulting in a visualization
widget in the dashboard. To update the generated visualization, an update function,
to which real-time data can be provided, is also present in the generated source
code. This update function is called periodically, with a frequency specified by the
current user.

7https://www.highcharts.com

https://www.highcharts.com

FLEET LEVEL: DYNAMIC DASHBOARD 143

5.2.4 Broker component
The broker component has several tasks. The first task is to retrieve, and afterwards
store, all available visualization and sensor web API URIs. To retrieve the URIs a
discovery mechanism is used, enabling a loosely coupled system. The discovery
mechanism consists of performing a GET request to both the domain name of
sensor web APIs and to the domain name of the visualization web APIs. A list of
available sensor web APIs or visualization web APIs is subsequently returned.
It should be noted that the discovery mechanism also actively monitors the statuses
of discovered sensors by the use of pinging. Alternatively, sensor discovery can
also be done passively by listening to a sensor’s heartbeat (i.e. periodical value
change). A sudden disconnection may indicate a component failure, so in this case
all dashboard users are notified.
The second task is to get sensor resources and match them to suitable visualization
APIs. To do this several sub-components are required.

• Reasoner: The reasoner takes semantic descriptions and will suggest op-
tions. It is used to confirm if a goal is completed, to recommend visual-
ization options and to help discover new options to explore. The reasoner
provides a proof (i.e. set of instructions) which is given to the composer.
The EYE reasoner is used in the dashboard [115].

• Composer: The composer uses the proof and composes a set of HTTP re-
quests to execute the proof.

• Flow executor: The flow executor is a small component that uses the com-
posed requests and executes them.

• Knowledge base (kb): The kb contains central semantic descriptions of
logical rules (described using RESTdesc) which is required to perform sen-
sor and visualization composition. A first description contains an ontology
describing the taxonomy hierarchy of the sensors and the visualization ser-
vices. A second description lists the possible visualization options for the
different types of sensors. Note that reasoning can already be done using
these two descriptions. For example, using the ontology it can be deduced
that a temperature sensor provides real values (i.e. it is a real-valued sen-
sor). Using the second description it can be deduced that if a sensor pro-
vides real values, a time series visualization web API can be employed. A
third description describes what the related sensors are of a senor, e.g.: wind
direction is related to the pitch. This description enables the broker to rec-
ommend additional sensors to be visualized. Finally, the kb also contains
descriptions of goals. These are very brief and solely state what kind of
resource is required.

144 CHAPTER 5

• Historical database (hdb) The hdb is responsible for the storage of his-
torical data, as sensors generally have no or limited storage. The Semantic
Web data model is closely connected to the relational database model [116].
When the current visualization service is able to display historical data, the
HDB has to be considered as a primary (pseudo) API.

The reasoner, composer and flow executor are used in a generic broker algorithm
that is able to retrieve a sensor resource from a web API. The algorithm is discussed
in more depth in the next section.
Using the sensor resource, semantic description of the sensor web API, the kb and
visualization web API semantic descriptions, the reasoner will provide options on
how the sensor web API’s values can be displayed in the dashboard. This process
will not return a visualization instantiation to the user, but rather a list of possible
visualization options from which he/she can choose.
When the user selects a visualization option from the suggested possibilities, the
broker’s third task is to put it into action. The reasoner, composer and flow executor
are employed to construct and execute the appropriate GET request containing
the sensor data. In this phase also historical data from the hdb can be utilized.
Afterwards the visualizer service generates the desired source code which results
in a visualization instantiation on the dashboard.
Once the connection between data and visualization services is established, it can
be exploited unaltered in order to facilitate the stream of up-to-date sensor data.
Accordingly, no reasoning is required for the update process.
As sensors and visualization services are already implemented as web APIs and a
platform independent application is desired, a web application implementation as
dashboard is preferred. The dashboard in its most elementary shape has a search
bar, allowing the user to browse the available entities and select the required sen-
sors. Requested visualization instantiations are allocated to widgets on the dash-
board as can be seen in Figure 5.7.

FLEET LEVEL: DYNAMIC DASHBOARD 145

En
er

gi
ep

ro
du

ct
ie

 (T
ur

bi
ne

 6
)

×
+

W
in

d
sn

el
he

id
 (

km
/u

)

Energieproductie (kW)

0
5

0
1

0
0

1
5

0
0

k

1
k

2
k

W
in

ds
ne

lh
ei

d
(T

ur
bi

ne
 4

)
×

+

N
N

N
E

N
E

EN
E E

ES
E

SE

SS
E

S
SS

W

SW

W
SW

WW
N

W

N
W

N
N

W

0

2
2

4
4

O
m

ge
vi

ng
st

em
pe

ra
tu

ur
 (T

ur
bi

ne
 4

)
×

+

+ -
23

.1
 °C

23
.1

 °C

7.
2

°C

7.
2

°C

9.
6

°C

9.
6

°C

14
.9

 °C

14
.9

 °C

8.
9

°C

8.
9

°C

14
.7

 °C

14
.7

 °C

G
en

er
at

or
ro

ta
tie

sn
el

he
id

 (T
ur

bi
ne

 5
)

×
+

86
6.

92

86
6.

92

23
5.

07

23
5.

07

85
.8

1

85
.8

1

52
1.

1

52
1.

1

13
5.

9

13
5.

9

51
.2

51
.2

T
5

T
4

T
9

0
 k

W

5
0

0
 k

W

1
0

0
0

 k
W

1
5

0
0

 k
W

0
 r

p
m

2
0

0
 r

p
m

4
0

0
 r

p
m

6
0

0
 r

p
m

G
ol

fh
oo

gt
e

(T
ur

bi
ne

 6
)

×
+

0
1

5

1.
79 m

En
er

gi
ep

ro
du

ct
ie

 (T
ur

bi
ne

 7
)

×
+

Tu
rb

in
e

7

Tu
rb

in
e

7

13
81

.4
1

kW

13
81

.4
1

kW

Tu
rb

in
e

6

Tu
rb

in
e

6

18
4.

75
 k

W

18
4.

75
 k

W

Tu
rb

in
e

8

Tu
rb

in
e

8

39
5.

41
 k

W

39
5.

41
 k

W

Tu
rb

in
e

11

Tu
rb

in
e

11

93
6.

6
kW

93
6.

6
kW

Tu
rb

in
e

2

Tu
rb

in
e

2

39
9.

81
 k

W

39
9.

81
 k

W

Tu
rb

in
e

3

Tu
rb

in
e

3

13
85

.4
2

kW

13
85

.4
2

kW

R
ot

or
ro

ta
tie

sn
el

he
id

 (T
ur

bi
ne

 5
)

×
+

2
.

M
ay

3
.

M
ay

4
.

M
ay

0
 r

p
m

2
5

 r
p
m

5
0

 r
p
m

7
5

 r
p
m

O
m

ge
vi

ng
st

em
pe

ra
tu

ur
 (T

ur
bi

ne
 5

)
×

+

9.
3

9.
3

9.
1

9.
1

14
.6

14
.6

7.
1

7.
1

T
5

T
9

T
1

0
T

4
0

 °
C

5
 °

C

1
0

 °
C

1
5

 °
C

2
0

 °
C

R
ot

or
ro

ta
tie

sn
el

he
id

 (T
ur

bi
ne

 8
)

×
+

rp
m

40
.7

40
.7

0

20

40

60

W
in

dp
ar

k
da

sh
bo

ar
d

Vi
su

al
is

ee
r

Tu

rb
in

es
...

Se
ns

or
en

...

Fi
gu

re
5.

7:
P

la
tfo

rm
fo

r
dy

na
m

ic
vi

su
al

iz
at

io
n

of
m

ul
ti-

se
ns

or
ar

ch
ite

ct
ur

es
.

146 CHAPTER 5

5.3 Internal Design Details
Below is an overview of the main platform design details.

5.3.1 Proposed reasoning algorithm for sensor data re-
trieval

To visualize the data stream coming from a sensor, several web APIs have to be
chained after one another. Especially when considering a virtual sensor, as vir-
tual sensors need a sensor that provides the input value for the prediction, and a
web API that is able to make a prediction for said value. Instead of providing the
broker component with a description of which web APIs should be queried one
after another, we let the broker discover the web APIs itself and combine them. To
do this, a generic mutual recursive algorithm is devised that can serendipitously
discover new web APIs. The algorithm combines the reasoner, composer and flow
executor. A detailed illustration of the specific steps of the algorithm is provided in
Figure 5.8. The first function of the mutual recursive algorithm will query a given
URI, and by using a goal retrieved from the knowledge base it will check if said
goal is reached. Sensor resources have hypermedia links8 to relevant web APIs.
Hence, the broker will subsequently use the semantic description of the web API
and the sensor resource to try to find a new web API to query to achieve its goal.
This new URI is given to the second recursive function that immediately calls the
first recursive function again using the newly discovered URI. Only when no new
URI is discovered will the rest of the second recursive function be executed. This
remaining part of the second recursive function will backtrack the steps (i.e. query
previously queried web APIs) and use its discovered knowledge (i.e. resources),
to check if new options become available. This is done because some web APIs
require input values and can only be queried if the required resources are avail-
able. If new options become available, the second recursive function will execute
a function call to itself with the new URI. Only when no new URIs are discovered
or if the goal is met, will the mutual recursive functions start to return values that
the dashboard requires.

8Hypermedia links are URIs that refer to web APIs that can be requested next.

FLEET LEVEL: DYNAMIC DASHBOARD 147

Figure 5.8: Proposed reasoning algorithm for sensor stream visualization illustrating the
steps to discover new web APIs and achieve a predefined goal.

148 CHAPTER 5

5.3.2 Reasoning algorithm: virtual sensors
When dealing with real sensors, the reasoning algorithm for sensor data retrieval
will finish quickly as the goal is met after the first GET request. However, as can
be seen in Figure 5.9, virtual sensors require more steps:

1. The process starts with a user selecting a virtual sensor in the dashboard.
The broker will fetch the required goal from its knowledge base. The goal
description specifies what kind of resource is required in the end (i.e. a
prediction of the power production in this case).

2. Next, the broker executes a GET request to the web API of the virtual sensor.
This web API does not return the required sensor value as it does not have
the required input to predict the output. The virtual sensor rather gives a
response which is a resource containing another URI (i.e. hypermedia link)
to the web API of another sensor (which is the sensor that will provide the
input value).

3. The broker subsequently uses a HTTP OPTIONS request to the web API to
get the semantic description of the functionality of the web API.

4. The reasoner uses the predefined goal, semantic description and the resource
to see if the goal is met, which is not the case.

5. Next, the reasoner combines the virtual sensor resource and its semantic
description to provide an option of what a possible next step could be to
reach the goal. The semantic description specifies that if the resource has a
URI to an input sensor, there exists a GET request resulting in a response
containing a value (the required input value) and also a URI to the web API
that will be able to make a prediction. The result of the reasoning process
is a detailed instruction (i.e. proof, for which an example can be seen in
Listing 5.3) what could be the next step. In this case the proof specifies that
a GET request can be done to the hypermedia link in the resource.

6. The broker’s flow executor will subsequently execute the aforementioned
GET request. The GET request will return a resource of the required input
sensor containing a value and another hypermedia link.

7. The broker will also do an OPTIONS request to this web API to fetch its
semantic description. The semantic description clarifies that if the resource
contains a URI to a prediction web API, there exists a GET request to that
URI that requires an input parameter and will return a value (i.e. the predic-
tion).

8. Again, the broker will first check if its goal has been met, which is not the
case as it does not posses a resource containing a prediction value.

FLEET LEVEL: DYNAMIC DASHBOARD 149

9. Next the reasoner will again use the semantic description and the resource
to figure out what the possible next step could be. The reasoner provides a
detailed instruction specifying that a GET request can be done to the hyper-
media link. The GET request should also contain a (input) parameter.

10. The broker’s composer will use the input parameter and construct the re-
quired GET request, which is executed by the flow executor. This request
will result in a response containing a prediction resource including the pre-
dicted value.

11. To fetch the semantic description, an OPTIONS request is done again.

12. Finally, the reasoner will again check if the goal has been reached, which is
the case and the cycle will end.

As with a real sensor, the broker ends up with a sensor resource. Hence,
in a next step the dashboard uses the reasoner to find possible visualization
options from which the user can choose. When the user has made a decision
the reasoner, composer and flow executor are used to combine the (virtual)
sensor and a visualization resulting in a widget in the dashboard.

As can be seen, there is no predefined path on how to get a value from a virtual
sensor. The broker will start of with one resource that contains a URI to another
resource and so on. This procedure enables the broker to serendipitously find
its own way towards its goal. This has several advantages. First, if a URI would
change, the broker will automatically discover this making the system loosely cou-
pled. Second, one can imagine that a virtual sensor only takes one value as input,
however, it is also possible that another virtual sensor can take multiple values as
input. The first resource can contain URIs to multiple other resources which all
can be queried. If there exists a prediction web API that only requires one input
value, the broker will reach its goal as soon as it has discovered the correct input
value and a matching prediction web API. However, if there only exists a web API
that requires multiple input values, the broker will continue to follow URIs until
it has all the required input values for the prediction web API. This is because the
broker will follow every URI until there are none left or until its goal is achieved.
Third, the dashboards user could specify a new goal in the kb. This will not cause
the dynamic dashboard to malfunction. The broker will still try to reach its goal
given the initial resource from which it can start its search.

150 CHAPTER 5

Figure 5.9: Sequential diagram illustrating the different steps the algorithm will execute to
discover the required resource.

FLEET LEVEL: DYNAMIC DASHBOARD 151

1 PREFIX http: <http://www.w3.org/2011/http#>
2
3 _:sk0
4 http:methodName "GET".
5
6 _:sk0
7 http:requestURI
8 "http://windfarm.com/wind_speed_sensors/1".
9

10 _:sk0
11 http:resp _:sk1.
12
13
14 _:sk1
15 http:body _:sk2.
16
17
18 _:sk2
19 a <http://windfarm.com/WindSpeedSensor>.
20
21 _:sk2
22 <http://windfarm.com/PowerProductionPrediction>
23 _:sk3.
24
25 _:sk2
26 <http://windfarm.com/value> _:sk4.
27
28 _:sk2
29 <http://windfarm.com/unit> _:sk5.
30
31 _:sk2
32 <http://windfarm.com/location>
33 <http://windfarm.com/locations/1>.
34
35 _:sk2
36 <http://windfarm.com/discrete> _:sk6.

Listing 5.3: Example of the output of the reasoner. The proof details that a GET request
(:sk0) can be done to a wind speed sensor which will return a wind speed sensor

resource(:sk2), which will have a hypermedia link to a power production prediction
sensor (:sk3). Furthermore, the wind speed sensor resource will have a value (:sk4), a

unit (:sk5), a location and will be indicate if its a discrete value or not (:sk6).

152 CHAPTER 5

5.3.3 Reasoning algorithm: anomaly detection
Within this section, anomaly detection is implemented in order to further clarify
the advantage of serendipitous resource discovery.
As discussed in Chapter 2, if a wind turbine performs sub-optimally, its generated
power will change unexpectedly. Such a change is defined as an anomaly. More
specifically, if the signal deviates from its expected behavior, the deviation can be
labeled as an anomaly. It is safe to say that anomaly detection is crucial when it
comes to monitoring many wind turbines, as a single individual (i.e. an operator)
is not able to monitor and interpret all signals. By employing anomaly detection a
user will be notified of deviating behavior which requires no effort from the user’s
side.
Anomaly detection itself requires two main components. First, a virtual sensor is
required. This virtual sensor (i.e. machine learning model) is trained using data
from normal operational conditions and will therefore be able to emulate this nor-
mal operational condition. Second, a deviation detection module is required that
takes a real sensor value as input, and a matching predicted value. Next, the mod-
ule will compare the two values and see if there is a deviation. If the machine is
operating in normal operational conditions, the deviation will be 0 or very close to
zero. However, if the machine is performing not as expected, there will be a large
deviation, i.e. anomaly. There are several methods to quantify this deviation and
subsequently determine if the deviation is anomalous. To illustrate how anomaly
detection can be done in the dynamic dashboard, a common method from statisti-
cal process control is used. The predicted value is subtracted from the real value
resulting in a residual value. Subsequently, a check is done to see if this residual
is larger or smaller than three times the standard deviation calculated using a dis-
tribution of residuals during normal operation conditions. 99.7 % of the residuals
during normal operation conditions lie within this three standard deviations range.
Hence, it is very unlikely that a residual will fall outside this range. Therefore,
if a residual exists outside the range, it is labeled as an anomaly and is cause for
further inspection.

5.3.4 Anomaly detection in the dynamic dashboard
Anomaly detection in the dynamic dashboard uses the same mutual recursive al-
gorithm as for the other sensors, however additional steps are executed. First, as
with other sensors, the user selects anomaly detection in the dashboard. This can
be done by selecting it in the drop-down list or by activating it in the options screen
of an existing widget. By activating anomaly detection, a goal is retrieved from
the knowledge base and a GET request is done to the anomaly detection URI of
that sensor’s web API. The response will not provide the required resource be-
cause several steps need to be done beforehand. Instead, the response contains

FLEET LEVEL: DYNAMIC DASHBOARD 153

three URIs (i.e. hypermedia links). The first URI is to the virtual sensor described
above, the second URI is to the actual physical sensor and the third URI is to
the deviation detection module. The broker will execute an OPTIONS request
to anomaly detection web API, which will return the semantic description of the
anomaly detection module. The reasoner will then check if the goal has been met,
which is not the case. The broker subsequently will use the reasoner to figure out
its options as before. The first option is the rule that if the resource contains a
URI to a virtual sensor, a GET request can be done to that URI and a response
will be returned containing a URI to the web API that can give the input value for
the virtual sensor. In fact, these are the steps described above to get a value from
a virtual sensor. For brevity the steps will not be repeated here. In the end the
broker will end up with a prediction from the virtual sensor which is a resource.
The initial anomaly detection resource has two other URIs. As the goal has not
been reached yet, the broker will continue to serendipitously explore the URIs to
find its goal. The second URI is to the web API of the actual physical sensor.
The broker’s composer will construct a GET request and the flow executor will
execute it. The request returns a response containing among other properties, the
value from the physical sensor. The broker fetches the semantic description by
executing an OPTIONS request. Next, the broker will again use the reasoner to
check if the goal has been reached. Which is not the case. Although the broker
has a prediction and a real value, the deviation detection step is still required. The
broker uses the semantic description and the resource to plan its next step. The
reasoner will return that there are no more available options. Hence, the broker
has run into a dead end. As with the virtual sensor, the broker will back-track
its steps and with the new information, investigating if new options have become
available. Eventually, the broker will use the semantic description of the anomaly
detection module, the virtual sensor resource and the physical sensor resource in
the reasoning process to see if a new option has become available. Because the
broker has these two resources, the reasoning process reveals that a new option
has become available. The broker has serendipitously discovered that there exists
a GET request that requires two input values and will return a response which is a
deviation detection resource. This resource contains a value (i.e. the residual) and
the standard deviation. The broker’s composer creates a GET request with the two
input values and the flow executor executes this GET request. The broker conse-
quently receives the aforementioned response. The broker will use the reasoner to
check if the goal has been met, which is true. As the goal has been reached the
reasoning process is done.
As with the physical sensor and the virtual sensor, the broker ends up with a sen-
sor resource, which in this case contains a residual and a standard deviation. As
before, the broker will find suitable matching visualization options. The user will
receive several options which he/she can select. In a matching visualization ser-

154 CHAPTER 5

vice a check is implemented as described in Equation 5.1 where x is the residual
value and σ the (running) standard deviation. Depending on the visualization, the
data point can for example be colored red, or a notification can be placed in the
dashboard to alert the user.

f(x) =

{
anomaly, if x > 3σ or x < −3σ
no anomaly, otherwise

(5.1)

By not tightly coupling all the web APIs, a more powerful dashboard is created.
For example, someone can decide to create a deviation detection web API that
requires a real value and a prediction value and which returns the residual, in-
terquartile range (IQR), Q1 and Q3 9. The dashboard can automatically discover
this web API and use it in its reasoning process. No modification has to made to
the web API or semantic descriptions of the physical or virtual sensors. Moreover,
if a web API exists that uses the residual, Q1, Q3 and IQR, the dashboard will auto-
matically recommend this visualization option without requiring additional coding
work.

5.4 Implementation
All components are implemented using the Ruby on Rails (RoR) MVC frame-
work. A RoR application offers a full web application stack, and follows a restful,
resource-oriented approach. A proper web server is embedded, so besides a work-
ing Ruby installation, no additional software is required. RoR provides a database
by default and encourages the use of web standards (such as json) for data transfer
and html, css and JavaScript for user interfacing.

5.4.1 Resulting dynamic dashboard
Figure 5.7 presents a possible dashboard configuration for monitoring offshore
wind farms. Widgets can be easily added and/or removed in a straightforward
way. Every widget holds the descriptions of the containing sensors and has a
menu to adjust the visualization and according options. Thanks to the semantic
descriptions of all sensors and visualization services, related sensor data can also
be easily selected from these widgets and added to the visualization.

5.4.2 Fault detection
It should be noted that fault detection is also possible in the dashboard. The sys-
tems described in Chapter 3 and 4 are also easily integrated in a web API similarly

9Another anomaly detection method is to check if Q1 − 1.5IQR < x < Q3 + 1.5IQR

FLEET LEVEL: DYNAMIC DASHBOARD 155

to as described for performance monitoring of Chapter 2. To do this, virtual sen-
sors can be created that provide features extracted from measurements of certain
components. Furthermore, the classification algorithms can be encapsulated in
a web API so that the broker can automatically discover the virtual sensors that
provide features and couple them to the right web APIs that will provide a classifi-
cation. This classification can subsequently be placed in a notification screen in the
dashboard. In Figure 5.10 the composition of fault detection using the dashboard
is depicted. Similarly, for fault detection using feature engineering and vibration
measurements the composition can be seen in Figure 5.11. Using the feature-
learning approach the compositions become even more simplified as can be seen
in Figure 5.12. For example, the convolutional neural network from Chapter 4 does
virtual sensing. Hence, it can be implemented in the dashboard as a virtual sensor.
The values predicted by the virtual sensor can subsequently be visualized by the
dynamic dashboard. These compositions illustrate that the proposed approach to
monitor many machines and components is a generic one.

Semantics

Sensor wind speed

Web API

Semantics

Visualization

Web API

Semantics

Virtual Sensor: SGBRT

Web API

Semantics

Sensor yaw

Web API

Semantics

Sensor pitch

Web API

Semantics

Sensor RPM

Web API

Semantics

Sensor wind direction

Web API

Semantics

Deviation detection

Web API

Semantics

Sensor power output

Web API

Figure 5.10: Service composition for fault detection.

156 CHAPTER 5

Semantics

Sensor: vibration

Web API

Semantics

Visualization

Web API

Semantics

Virtual Sensor: Kurtosis

Web API

Semantics

Classifier

Web API

Semantics

Virtual Sensor: Crest

Web API

Semantics

Virtual Sensor: SD

Web API

Figure 5.11: Service composition for fault detection using feature engineering applied on
vibration measurements.

Semantics

Sensor: Thermal imaging

Web API

Semantics

Visualization

Web API

Semantics

Classifier: CNN

Web API

Figure 5.12: Service composition for component-level fault detection using feature
learning applied on infrared thermal data.

FLEET LEVEL: DYNAMIC DASHBOARD 157

5.4.3 Evaluation
The limited adaptability and static nature of traditional dashboards, as well as the
automated detection of complex events and creation of advanced compositions, are
the driving forces behind the design of the proposed platform. There is a need for
dashboards that satisfy current user needs, in a user-friendly way and with minimal
configuration required.
Data is fetched and visualized in soft real-time, so users can get no false sense of
security. Real-time or soft real-time visualization of new data is achieved as indi-
vidual sensor requests are independent, and therefore can be executed in parallel.
As long as the total retrieval time does not exceed the user defined update interval,
the user will not experience noticeable delays.
The reasoning process is the most time consuming, resulting in a few hundred
milliseconds delay for average widget creation and dashboard configuration, which
is acceptable as creating new widgets and configuring the dashboards only happens
occasionally. The reason for this larger delay is an acceptable initialization and
networking overhead (in which the required semantic descriptions are collected),
but the actual reasoning process is the most time-intensive. Execution times could
be reduced by providing the reasoner with additional directives and less generic
linking logic. However, this undermines the dynamic nature of the system, which
of course is its absolute strength.

5.5 Conclusion
Dashboards present and communicate the condition of monitored fleets to super-
vising experts. Contrary to static solutions for monitoring dashboards, the pro-
posed platform enables dynamic data visualization.
By adopting the Internet of Things vision and implementing sensors as Web
connected devices, semantically annotated using RESTdesc, the presented plat-
form allows to precisely visualize the data produced by sensors in multi-sensor
environments by dynamically generating meaningful service compositions. Such
a dynamic dashboard application, combined with advanced failure detection
mechanisms –such as virtual sensors and anomaly detection– proves to be a very
powerful monitoring tool for complex, hard to access and/or critical environments
such as wind parks. It enables its users to correctly monitor the condition of
the environment and moreover, as a result of the meaningful sensor composition
process. In the end dynamic dashboards facilitate condition monitoring of an
entire fleet supporting predictive maintenance.

The work presented in this chapter has lead to the following publications, or are
submitted as follows:

158 CHAPTER 5

• Sofie Van Hoecke, Cynric Huys, Olivier Janssens, Ruben Verborgh and Rik
Van de Walle, Dynamic monitoring dashboards through composition of web
and visualization services, Proceedings of the 2nd EAI International Confer-
ence on Software Defined Wireless Networks and Cognitive Technologies
for IoT, 2015

• Olivier Janssens, Mia Loccufier, Rik Van de Walle and Sofie Van Hoecke,
Dynamic Dashboards for Multi-Sensor Machine Monitoring Using Seman-
tic Web Technologies, Semantic Web Journal, submitted to

Chapter 6

Conclusion and future work

In this chapter a conclusion summary is provided together with possible future
research directions.

6.1 Summary
Monitoring the health of wind turbines in a wind farm is a difficult task. In this
dissertation this monitoring task is broken down into three levels to make the task
more manageable: machine level, component level and fleet level. In order to es-
timate the overall condition of a wind turbine (machine-level), performance mon-
itoring is done. However, this can be a daunting task as many factors influence
the performance of a wind turbine. Creating physics-based models can require
considerable expert knowledge, effort and possibly computational resources. As
an alternative, data-driven performance modeling is researched within this disser-
tation. Up until now, these approaches were almost solely used to model the rela-
tion between the wind speed and the generated output power of the wind turbine.
To improve data-driven performance modeling, in Chapter 2, both univariate and
multivariate performance modeling approaches are researched. Several machine
learning algorithms are evaluated using both a synthetically generated data set and
a data set containing measurements from three actual offshore wind turbines.
First, we illustrated that univariate modeling can be improved using tree-based
methods such as stochastic gradient boosted regression trees. Second, we showed
that data-driven performance modeling can be improved considerably by using ad-
ditional variables (i.e. rotations per minute of the rotor, turbine yaw, blade pitch,
wind direction and wind speed) as input to the models in order to predict the gen-
erated power. Furthermore, we show that by using these tree-based algorithms,
insights into the data can be gathered and that the models do in fact use informa-
tion from these additional variables to predict the output power.
When a deviation is detected in the performance of a wind turbine the cause of it

160 CONCLUSION AND FUTURE WORK

is unknown. Hence, in Chapter 3 fault detection is done using feature engineering
on the level of the components. In this chapter the focus lies on rolling element
bearings, due to the fact that these often suffer from damages and hence result in
the most down time of a wind turbine. The root-cause of many bearing failures
can be linked to lubricant inadequacy. One of the purposes of lubricant is friction
control. Hence, a feasibility study is done to see if infrared thermal imaging can
be used to detect lubricant conditions.
A wind turbine is a complex machine, therefore, the feasibility study is done us-
ing a lab-scale set-up. Two data sets were created containing measurements of a
multitude of conditions and faults. The first data set contains conditions such as
outer-raceway faults, reduced lubrication, extremely reduced lubrication and also
imbalance of the machine. The second data set contains conditions such as outer-
raceway faults, hard particle contamination of the lubricant and several gradations
of imbalance.
A system was created to detect the introduced conditions and faults using infrared
thermal imaging data. To bridge the gap between the current knowledge regarding
thermodynamics of bearing faults and applied condition monitoring, data-driven
features were researched. In the proposed system, we showed that three specific
features, i.e. moment of light, Gini coefficient and standard deviation are useful for
infrared thermal imaging-based fault detection. From the feasibility study, which
was conducted using a lab-scale set-up, we could conclude that infrared thermal
imaging may be a very suitable method to detect conditions related to lubrication
in rotating machinery such as wind turbines.
Similar to the infrared-based system, a vibration-based fault detection system was
created. Vibration-based approaches have been proven to work well over the
years and are the predominant fault detection tool in the wind energy sector. The
vibration-based system in Chapter 3 uses both summary statistics (i.e. data-driven)
and expert features.
In general, we observe that both the infrared thermal imaging-based and vibration-
based approaches work well, but not perfectly. On one hand, the infrared thermal
imaging-based system is less well able to detect outer-raceway faults. On the other
hand, the vibration-based approach detects the different lubrication conditions less
well. Hence, a multi-sensor system is designed and created that nullifies the re-
spective weaknesses and results in an overall better performing system.
The component-level fault detection system proposed in Chapter 3 uses features
created using thermal infrared data and vibration data. To create these features,
knowledge is required on vibration analysis and image processing. Even though
the systems performs very well, it requires substantial knowledge from the prac-
titioner to create these features. Also, if new faults have to be detected, possible
new features have to be created. To mitigate this disadvantage, in Chapter 4 a fea-
ture learning-based approach is proposed to detect the multitude of conditions and

CONCLUSION FUTURE WORK 161

faults. The technique employed for this purpose is convolutional neural networks.
Convolutional neural networks are end-to-end machine learning systems that learn
to transform the data to optimally represent it for the classification task. In Chap-
ter 4, convolutional neural networks are researched and designed and subsequently
applied to both infrared thermal imaging data and vibration data. For vibration
data, a shallow convolutional neural network is developed which is able to de-
tect many of the faults and conditions accurately. Infrared thermal data is a more
complex form of data and hence requires a deeper convolutional neural network.
However, training such a model requires a lot of data. Hence, in Chapter 4, transfer
learning is researched enabling a deep convolutional neural network to be trained
and used. We show that a deep convolutional neural network that is trained on
natural images can be re-purposed in order to process thermal infrared images.
Furthermore, the convolutional neural networks are able to detect the different
faults and conditions more accurately compared to the feature engineering based
approach which is proposed in Chapter 3.
In the end, a multi-sensor approach is proposed which uses the vibration-based
convolutional neural networks and the thermal infrared-based convolutional neu-
ral networks, again slightly improving the multi-sensor approach. Additionally,
we show that by using the infrared thermal imaging-based convolutional neural
networks, insights into the infrared images can be gained by visualizing what the
important areas in the images are for the convolutional neural network. Based
on the data captured using our controlled lab-scale set-up, we can conclude that
different areas in the thermal image can be linked to certain conditions using the
trained convolutional neural networks. These insights are a first step towards help-
ing to understand the thermodynamical effects in the bearings from a data-driven
perspective.
In order to put the performance monitoring system and the fault detection system
into practice, in Chapter 5 a dynamic dashboard is proposed. The dynamic dash-
board enables to monitor the signals generated by an entire fleet of wind turbines.
To be able to do this, research is done how the industry 4.0 principle of interop-
erability/interconnection can be implemented. The idea behind this principle is to
enable machines, sensors and software services to connect and communicate via
the Internet of Things. In Chapter 5, this design principle is implemented by en-
capsulating sensors in web APIs hence making them web-enabled. Furthermore,
the machine learning models are transformed into virtual sensors and also encap-
sulated in web APIs.
To let the dynamic dashboard interpret what the web APIs can provide and do,
they are semantically annotated. Hence, by using a semantic reasoner the dynamic
dashboard can combine sensors and virtual sensors. Furthermore, by also encap-
sulating visualization services in web APIs and semantically annotating them, dy-
namic compositions of sensors, virtual sensors and visualization services are made

162 CONCLUSION AND FUTURE WORK

possible. This for example enables the dynamic dashboard to do anomaly detection
for every single wind turbine in a wind farm without having an operator configure
and program a dashboard to do this.
Finally, by making use of Semantic Web technologies the dashboard can also be
easily extended. New sensors, virtual sensors and visualization services can easily
be added by encapsulating them in a web API and semantically annotating them
enabling the dynamic dashboard to discover them.
To conclude, monitoring of an entire fleet of complex machines, such as wind
turbines, can be made easier by dividing the task in three levels. Additionally,
data-driven techniques can be used for monitoring tasks, enabling to detect con-
ditions and faults which were up until now, difficult to detect with state-of-the-art
techniques. Finally, monitoring of many sensors streams can be made more ac-
cessible by web-enabling sensors and virtual sensors so that they can be used in
dynamic dashboards. In the end, the approaches and systems researched and pro-
posed in this dissertation have the potential to make condition monitoring more
effective and easy to use, resulting in reduced maintenance and operational costs.
When the operation and maintenance costs are lowered of offshore wind turbines,
the price of electrical energy generated by offshore wind can drop making invest-
ments in renewable (wind) energy even more attractive. By doing so, we continue
to progress towards a greener world.

6.2 Future work
In this dissertation, one of the goals is to complement physics-based approaches
with data-driven ones in order to overcome the current shortcomings. For example,
during the research conducted within this dissertation, it has become clear that
expert knowledge is most useful in tasks such as pre-processing, interpretation
or even feature engineering. Hence, both have a vital role to play in predictive
maintenance. One of the possible future research directions, to make the leap to
predictive maintenance, is to enhance the synergy between the expert knowledge
and the data-driven approaches. Research into better pre-processing of the data,
restricting models to enable transferability and generalizability to other machine
set-ups, and gaining insights into the data are relevant topics for which both expert
knowledge and data-driven approaches are required.
Another research challenge in wind energy is to exploit the large amount of data
that is available in a wind park. Not only to optimize the design of the turbines,
but also to improve condition monitoring. Data-driven techniques are an ideal tool
to tackle this challenge as has been demonstrated in this dissertation. Many more
use-cases can be thought of when large amounts of data become available, such as
the prediction of wind turbine behavior based on other wind turbines in the sur-
rounding. Furthermore, when data becomes available which has been recorded for

CONCLUSION FUTURE WORK 163

a long time, one can try to predict the remaining useful lifetime of components
or even turbines. Recently, the IDlab has begun to participate in a project which
will focus on data of entire fleets of machines such as wind turbine parks. This
project, called “hypermodelling strategies on multi-stream time-series data for op-
eration optimization”, has the goal to reduce the operation and maintenance costs
of a fleet of machines, by using innovative modeling and dataprocessing/analysis
techniques that are able to cope with large amounts of complex data. Within this
project, both data-driven and physics-based approaches are considered for fleet-
level anomaly detection. As is demonstrated in Chapter 4, it is possible to detect
faults using complex machine learning approaches. However, an expert designed
feature can detect a condition with significant less computational effort. Hence,
the reason why physics-based models should also be considered even when deal-
ing with a large amount of data.
Not only Big Data is a promising frontier in the wind energy sector, but also new
types of sensors. Within this dissertation the feasibility of infrared thermal imaging
is researched. Even though the potential of infrared thermal imaging for automated
fault detection has been established on experimental set-ups, future work will have
to include research into the practical applicability within wind turbines. Also,
the costs of an infrared thermal camera is currently high. However, in 2015 and
2016, consumer-grade thermal cameras have started to appear at a fraction of the
costs of common thermal cameras. Even though these low-end thermal cameras
have a significantly smaller resolution and framerate, they are the first step towards
making infrared thermal imaging-based automated condition monitoring a reality.
In order to process the data from new sensors and the large amount of data in gen-
eral, further research into machine learning in combination with semantics will
have to be done. In this dissertation, first steps are taken to combine Semantic
Web technology and machine learning, but it would be interesting to continue this
line of research to enable root-cause detection for the detected faults within this
dissertation in order to identify the sources of the problem. By using the dynamic
dashboard with its semantic web technologies and machine learning, (semi-) au-
tomated root-cause detection can be improved. To achieve this, several high-level
research tasks are identified as future work. A first research task is to research
and define semantic models (i.e. ontologies) using expert knowledge concerning
root-causes and fault escalation. Hence, inference can be done using these mod-
els to find the root-cause. Another research task is to identify root-causes when
no domain knowledge is available. In this case, machine learning algorithms can
be used to help identify the root-cause. For example, Bayesian networks or PCA
together with contribution plots can help identify possible data streams related to
the fault. In a third research task, machine learning and semantic technology will
come closer together as machine learning can identify interesting data streams re-
lated to the problem, which are subsequently presented to the operator through

164 CONCLUSION AND FUTURE WORK

the dynamic dashboard. The operator can provide feedback which implicitly will
update the semantic domain knowledge model. In the end, we can foresee a dash-
board that adapts its view based on the anomalies and related root-causes that have
been detected again making condition monitoring easier.
The future perspectives can be combined resulting in synergies which further re-
duce the operation and maintenance costs, hence lowering the cost of renewable
energy.

Appendix A

Preliminaries on machine learning

This appendix provides an overview of basic machine learning concepts and tech-
niques required to understand this dissertation. This appendix can be consulted if
the reader is not familiar with machine learning.

A.1 Notation
A Matrix is denoted as a capital bold letter e.g. A. The k-th column vector is
written as a lower case bold letter e.g. ak. The value in the matrix located in the
i-th row and j-th column is written as a lower case italic letter e.g. aij . A scalar is
written as an italic letter (both upper case as well as lower case).

A.2 Machine learning
Machine learning algorithms are able to learn from examples without being pro-
grammed explicitly. This is done by constructing a model which consists on one
hand of parameters that have to be optimized for the task at hand, and on on the
other, a function that produces a prediction given those parameters. In essence,
the goal is to make the model fit the example data well, so it can make predictions
about it.
Machine learning can be seen as an optimization problem. A data set, consisting
of training examples, is provided and a machine learning model is trained by op-
timizing a certain objective function. However, as opposed to typical optimization
problems, the goal of a machine learning algorithm is to perform well on new,
previously unseen data.
Machine learning can be either supervised or unsupervised. Supervised machine
learning will learn the relationship between the data and a corresponding output
variable. It is used to classify data into groups or predict continuous values. Unsu-

166 APPENDIX A

Machine learning

Algorithm

FeaturesInput data

Predictions

f(X,y)XD

ො𝐲

Model

fθ(X)

Features
New Input

data

XD

Labels

y

Training phase

In production (testing phase)

θ

A.2

A.3

A.4 A.5

Figure A.1: General block diagram on supervised machine learning. From the input data,
features are extracted, and – together with the matching labels/responses– provided to the
machine learning algorithm. The machine learning algorithm will create a model using
the provided data. Using this machine learning model, predictions can be made for new

unseen data.

pervised machine learning on the other hand will learn a relationship to describe
a possible hidden structure in the data. Unsupervised machine learning is used
to estimate the density, cluster, or reduce the dimensionality of the data set. In
this dissertation mainly supervised techniques are employed, hence, supervised
machine learning is discussed more in depth.
In Figure A.1, a general block diagram of a supervised machine learning system
can be seen where the numbers in dark boxes match the relevant sections in this
chapter. When collecting data, such as sensor measurements, accompanying la-
bels/targets/ground truth can be gathered. The goal of using machine learning is
to predict such labels, given the input data. In the training phase, data (D) together
with labels (y) are gathered. Using the data, features are extracted. A feature (x)
is a distinctive attribute or aspect of the data. Features are organized in a design
matrix (X ∈ Rnxd, n denoting the amount of samples and d the dimensionali-
ty/number of features). X can be seen in Equation A.1.

X =

x11 x12 x13 . . . x1d
x21 x22 x23 . . . x2d

.
xn1 xn2 xn3 . . . xnd

 (A.1)

The combination of X and y is called labeled data. An example of y can be seen
in Equation A.2.

PRELIMINARIES ON MACHINE LEARNING 167

y =

y1
y2
.
yn

 (A.2)

Labeled data is provided to a machine learning algorithm, which will learn the
relation between X and y using a training procedure, resulting in a machine learn-
ing model Θ. The machine learning model can now predict labels given new data.
Hence, in a production/testing phase, data is provided to the trained machine learn-
ing model which will output predictions (ŷ) for the new data.

A.3 Model creation
When creating a machine learning model, different settings and parameters can be
tuned in order to optimize performance. The procedures to do this, are described
here.

A.3.1 Hyperparameters
As opposed to the parameters of a machine learning model, which are learned
by the learning algorithm using data, hyperparameters are not tuned by the learn-
ing algorithm. Hyperparameters are parameters which for example determine the
model’s complexity, such as the number of trees, the maximum depth of a decision
tree or the number of layers of a neural network. These are either manually deter-
mined or using a hyperparameters optimization algorithm, such as grid-search.

A.3.2 Training and testing
To make sure that a machine learning model will work well on unseen data, it has
to be tested on unseen data. To ensure this, a data set is split in a training set and a
test set. The model is created using the training set and is subsequently tested on
the test set. If enough data is available a data set can also be split into three sets. A
training set, validation set and test set. The training set is used to train the model.
The validation set is used to test combinations of hyperparameters and select the
most optimal combination. The test set is only used in the end when the model has
been created and the hyperparameters have been optimized.

A.3.3 Cross validation
Another approach to evaluate a machine learning model is to use k-fold cross val-
idation. Using k-fold cross validation, the data set is randomly partitioned into k
equal size subsets. Of these subsets, a single subset is retained as the validation

168 APPENDIX A

data for testing the model, and the remaining k-1 subsets are used as training data.
The cross-validation process is repeated k times such that each subset is used as
validation set only once.

A.3.4 Overfitting and underfitting
The validation procedures described above are designed to test the models regard-
ing their generalization capabilities, i.e, to test how well they predict for unseen
data. When a machine learning model is overly complex, for example by having
too many parameters compared to the number of training samples, the model will
not capture the underlying trend of the data, but rather memorize the data resulting
in poor ability to generalize. This is called overfitting. Conversely, when a model
is too simple, it is not able to capture the underlying trend and will will not be able
to predict well. This is called underfitting.

A.3.5 Grid-search
Grid-search can be used to find the most optimal hyperparameters for a machine
learning algorithm. This is done by defining a set of plausible hyperparameters
and testing every combination of these hyperparameters.

A.4 Regression
Supervised machine learning has two major subgroups, namely regression and
classification. Regression is the task of predicting continuous output values given
data. Below, several regression algorithms used in this dissertation are discussed.

A.4.1 K-nearest neighbors regression (KNN)
KNN is a non-parametric instance based regression algorithm [1]. Instead of learn-
ing the underlying pattern of the data, the algorithm will compare new samples to
instances which are saved in the training phase. A new sample is assigned a value
equal to the average of the values of its K closest neighbors determined using the
euclidean distance.
More concretely, the algorithm consists of three steps:

• Step 1. Calculate distances: Given a new sample xnew, calculate the dis-
tance to all samples in the training set using Equation A.3. N is the number
of samples in the training set.

d(xnew, x) =

√√√√ N∑
i=1

(xnew,i − xi)2 (A.3)

PRELIMINARIES ON MACHINE LEARNING 169

• Step 2. Sort the samples: Using the distances calculated in step 1, sort the
samples from small to large.

• Step 3. Determine output value:

Predict the output value ŷ using Equation A.4

ŷ =
1

K

K∑
k=1

(yk) (A.4)

Where K is a hyperparameter.

KNN allows multivariate regression, but it should be noted that when using multi-
ple features, the features should be normalized, i.e. re-scaled so all features have
the same scale. This is due to the fact that when using the Euclidean distance,
features in a large range will influence the distance metric more than those with a
small range.

A.4.2 Regression trees (CART)
Regression trees split the data set/feature space into several subsets/regions. A
region is delimited by a certain feature and a corresponding feature value. For
example, if feature one of a sample is smaller than value s, the sample belongs
in region Q1, else it belongs to region Q2. Every sample in the data set is put
into such a region (Qm), based on the values of its features. Every region has a
corresponding response cm which is determined using Equation A.5, where ave is
the average according to the notation in [1].

cm = ave(yi|xi ∈ Qm) (A.5)

To make a prediction for a new sample, a corresponding region has to be deter-
mined based on the sample’s feature values. When the region is known, the cor-
responding response cm is used as prediction for the new sample as is formulated
in Equation A.6. In this equation, M is the total number of subspaces; x a new
sample for which a prediction has to be made and 1 the indicator function.

f(x) =
M∑
m=1

cm1(x ∈ Qm) (A.6)

To construct the regions, the regression tree building algorithm has to automati-
cally decide on the feature (f) and accompanying value (s) to split the data set/fea-
ture space (Q) on. The goal is to split Q in a manner so that when predicting for a
data set, the responses match y as well as possible. In practice a feature f and split
point s is sought that solves the mean squared error, as formulated in Equation A.7.

170 APPENDIX A

f1

f2

f3

f1

f2

f3

s1

f1

f2

f3

s1

s2

Q Q2

Q1
Q3

Q1

Q4

yi =c0

xi ∈ Q

f1 < s1

xi ∈ Q1 xi ∈ Q2 xi ∈ Q1

xi ∈ Q3 xi ∈ Q4

f1 < s1

f2 < s2yi =c1 yi =c2 yi =c1

yi =c3 yi =c4

a b c

Figure A.2: At the left-hand side the data set Q is not split yet. In the middle, Q is split
into Q1 and Q2 based on feature f1 and value s1. At the right-hand side, Q2 is further

split into Q3 and Q4 using feature f2 and value s2.

min
f,s

[min
c1

∑
xi∈Q1(j,s)

(yi − c1)2 + min
c2

∑
xi∈Q2(j,s)

(yi − c2)2] (A.7)

For each possible splitting feature f , the determination of the split point s can be
done very quickly by scanning through all of the unique possible options in the
data. When the split is found, the data is partitioned in two subsets. This region
splitting procedure is done recursively to construct the tree. Figure A.2 illustrates
this procedure visually.
To determine how many splits a tree should contain, a hyperameter optimization
procedure can be applied.
It should be noted that no normalization of the features is required when using
tree-based approaches. This is because the range of the features do not affect the
tree growing procedure.
For more information on regression trees the reader is referred to [1].

A.4.3 Random forest (RF) regression
Random forests are built upon regression trees. Regression trees consist of human
interpretable “if-then” rules, built by optimally splitting the data set in subsets
according to a certain feature and accompanying feature-value. In this disseration
the CART algorithm [2] is used to build the regression trees. CART constructs
binary trees and to find the optimal splits, the mean squared error metric is used.

PRELIMINARIES ON MACHINE LEARNING 171

After a regression tree is constructed, a new prediction based on the regression tree
can be computed by traversing down the constructed tree, and subsequently taking
the average value of the remaining samples in the subset.
The downside of a regression tree is that it is prone to overfit, i.e. the underlying
pattern in the data will not be learned, but the data itself will be memorized,
including the random noise. Such a tree will have high variance in the predictions.
Variance is the variability of a model’s prediction for a given data point. To
reduce the high variance, ensemble methods have been proposed, such as random
forests. A random forest consists of a set of regression trees grown on subsets of
the original training set. These subsets are created using bootstrap aggregation
(bagging). Additional to using a subset of the data, often, a subset of features
is used to make sure that not all regression trees are trained using the same features.

Bootstrap aggregation or bagging: Given a training set X containing n samples,
bootstrap aggregation generates m new training sets Xi each containing n′

samples. These new training sets are constructed by sampling from X uniformly
and with replacement.

In order to get a prediction from a random forest, the individual predicted val-
ues from the regression trees are averaged [1]. The goal is to have uncorrelated
trees, i.e. the fluctuations in the predictions causing high variance should not be
correlated to the fluctuations of other models. This because when averaging the
predictions, the variance of the entire RF will be small compared to the variance
of the individual models.
The most important hyperparameter to be tuned for a random forest is the amount
of trees that are used. One hand, if only a few trees are used, the performance
will often not be much better compared to when using a single regression tree. On
the other hand, if too many trees are used, the model will become very large and
difficult to work with, and possibly start to overfit.

A.4.4 Extremely randomized trees (ERT)

There are two main differences between RF and ERT. First, the construction of the
regression trees in ERT is not done using different bootstrap samples, instead the
entire training set is used. Second, as opposed to finding an optimal feature and
feature-value to split the data set at every step, a random value is chosen for every
feature. From this feature-value set an optimal feature together with its random
value is used to split the data set.
Additional to the fact that ERT can outperform RF, the ERT method is also com-
putationally cheaper than RF. This is due to the fact that for the RF method a
best possible split has to be found considering every available feature and possible

172 APPENDIX A

value, while for the ERT method one random value is chosen for every available
feature.
Similar to RFS, the number of trees is a hyperparameter for ERT, which has to be
determined by the practitioner, using for example grid-search.

A.4.5 Gradient boosted regression trees
The idea behind this method is to improve upon a simple model, such as a regres-
sion tree, by creating an additional regression tree that focuses on the errors of
the previous regression tree. This is done in a stage-wise procedure, meaning that
additional regression trees are created, each focusing on the error of the previous
regression tree. Such a procedure is called boosting.
The algorithm starts off by creating a regression tree f(X) as described in Sec-
tion A.4.2. ŷ are the predictions of this regression tree, when provided with X.
These predictions will not match y. The differences between ŷ and y are called the
residuals r. Hence, r = y− ŷ. If these residuals were known for new data, perfect
predictions could be made (y = ŷ + r). Hence, the very interesting idea to create
a regression tree to predict these residuals, given X. In other words, f2(X) ≈ r.
This means that y ≈ ŷ + f2(X) or rather ŷ2 = f(X) + f2(X) which improves
the predictions as a model has been added that can predict the error of the first
model. However, improvements upon predictions can still be made by again creat-
ing a regression tree using the new residuals. This entire procedure is in fact done
iteratively as is formulated in Equation A.8, where k is the amount of additional
models to create, which is a hyperparameter.

g(X) =

k∑
i=1

fi(X) (A.8)

This procedure is called gradient boosting because the residual is in fact the neg-
ative gradient of the objective function with respect to the output of the model.
By constructing a regression tree to predict the residuals, the regression tree can
in fact predict an approximation of the negative gradient. Hence, the model is
updated based on the negative gradient.
The gradient which is used to update the model, is scaled using a learning rate
parameter to limit the influence of the gradient. Furthermore, to help the model to
generalize, the regressions trees in the gradient boosted regression trees algorithm
are kept shallow to prevent overfitting. Finally, at each iteration regression trees
are often not trained on the entire data set, but rather a random subset of the data.
This is also done to prevent overfitting.
For more information on stochastic gradient boosted regression trees the reader is
referred to [1].

PRELIMINARIES ON MACHINE LEARNING 173

A.5 Classification
Contrary to regression, where the machine learning task is to predict continuous
values, classification has the task to predict a discrete output given data. Next,
several classification algorithms used in this dissertation are discussed.

A.5.1 Classification trees (CART)
Classification trees are built similar to regression trees. However, whereas regres-
sion trees use the mean squared error to optimally split the data on, classification
trees use metrics such as the Gini impurity. To optimally split a data set, the Gini
impurity has to be minimized. The Gini impurity is given by Equation A.9, where
pc is described in Equation A.10, and c is a certain class and C the total number of
classes. The Gini impurity of a subset is maximal if the number of samples, in the
subset, per class is the same for each class, i.e. p1 = p2. Conversely, the Gini im-
purity is minimal if only samples of one class is present in a subset p1 = 1; p2 = 0.
To make a prediction for a new sample using a classification tree, the new sample
has to be put in the right subset/region and will subsequently be assigned the value
equal to the majority class in said subset/region.

G(Q) =

C∑
c=1

pc(1− pc) (A.9)

pc =
1

N

∑
xi∈Q

1(yi = c) (A.10)

For more information on classification trees the reader is referred to [1].

A.5.2 Neural networks (NN)
A NN is a model that consists of layers, where each layer contains a number of
nodes/neurons. Each node computes a weighted linear combination of the input,
followed by an non-linear activation function. The output of a layer is calculated
as in Equation A.11, where xn−1 is the input to layer n, Wn a matrix of weights,
bn a vector of biases and f the activation function. The activation function can
be for example a sigmoid or tanh. However for the final layer, the softmax ac-
tivation function is used for multiclass classification problems where the classes
are mutually exclusive. The softmax function provides a probability distribution
of the output classes. The softmax function can be seen in Equation A.12, where
z is the pre-activation as can be seen in Equation A.13, which has k elements,
corresponding to the number of classes.

xn = f(Wnxn−1 + bn) (A.11)

174 APPENDIX A

f(z)j =
ezj∑
k e

zk
(A.12)

zn = Wnxn−1 + bn (A.13)

Generally, a neural network consists of three layers, i.e.: one input layer, a hidden
layer and an output layer. The number of layers and nodes per layer are hyper-
parameters that have to be determined. When no hidden layer is used, the neural
network is only capable of representing linearly separable functions. When one
or more are used, more complex functions can be learned. How many layers are
required, depends on the complexity of the task. Regarding the number of nodes,
on the one hand when few nodes are used there is a chance that the neural network
will not have the capacity to learn a good decision boundary. On the other hand,
when too many nodes are used, the NN will memorize the data.
In order to evaluate if a NN is performing well, a loss function is required. When
using the softmax activation function in the last layer of the network, the cross-
entropy loss function can be used as in Equation A.14, where q represents the
estimated class probabilities of the respective classes; k determined by the soft-
max function and p the true distribution wherein all probability mass is on the
correct class (i.e. p = [0,...1,...,0] contains a single 1 at the location of the correct
class). Hence, the eventual loss –also known as the softmax loss– when combin-
ing the softmax function and the true distribution can be seen in Equation A.15.
In Figure A.3 an example of the softmax activation in combination with the cross-
entropy loss can be seen for sample xi.

H(p, q) = −
∑
k

p(k) log q(k) (A.14)

l = −log
(

ezj∑
k e

zk

)
(A.15)

This loss function indicates how well a NN is performing. When the output of the
loss function is high, the NN is not performing well. Conversely, if the loss value is
low, the network is performing well. Hence, a NN that is performing optimally will
have a very low loss value. To train a NN, the loss function has to be minimized by
adapting the weights in every layer. Updating the weights is done using gradient
descent. The update rules for gradient descent can be seen in Equation A.16,
where η is a hyperparameter called the learning rate and ∇Wl the gradient of the
loss function with respect to the weights. The purpose of gradient descent is to
update the weights so that the value of the loss function becomes smaller. The
gradient of the loss function provides the information in what direction the weights
should be updated in order to minimize the prediction error. The update rules of
gradient descent are executed iteratively during many epochs (τ), each time with

PRELIMINARIES ON MACHINE LEARNING 175

0.01 -0.05 0.1 0.05

0.7 0.2 0.5 0.16

0.0 -0.45 -0.2 0.03

-15

22

-44

56

0.0

0.2

-0.3

-2.85

0.86

0.28

0.058

2.36

1.32

0.016

0.631

0.353

xiW zb

. + =

𝒆𝒛
𝒆𝑧𝑗

σ𝑘 𝑧𝑘

0

0

1

𝑦𝑖 -log(0.353) = 1,04

𝐿

Figure A.3: Example of the softmax activation function and the cross-entropy loss, i.e.
softmax loss.

the goal of lowering the loss value. To calculate the gradient of the loss (∇Wl) the
backpropagation algorithms is used [3].For more information on backpropagation,
the reader is referred to [4], for an in depth explanation.

W(τ) ←W(τ−1) − η∇Wl (A.16)

A.5.3 Logistic regression
Logistic regression is a binary linear classifier, where a logistic sigmoid is applied
to a linear function of the feature vector (x) restricting the output between 0 and 1
(see Equation A.17). Logistic regression does not output the class of the sample,
but rather provides the probability that the given sample belongs to a certain class.
To optimize the model’s parameters, the maximum likelihood approach is used.
The maximum likelihood estimate of a parameter is the value that maximizes the
probability of the observed data. Several algorithms can be used to do this, how-
ever, in practice the Newton-Raphson approach is often used [5].

P (y = 1|x) = 1

1 + exp(−wT x)
(A.17)

A.6 Evaluation metrics
In order to judge the performance of machine learning algorithms, several metrics
can be calculated.

176 APPENDIX A

A.6.1 Regression
Within this dissertation, two metrics to evaluate regression tasks are used.

Mean absolute error (MAE) (Equation A.18) is an error metric, which means
that the lower the score the better.

MAE =
1

N

N∑
i=1

|yi − ŷi| (A.18)

Root mean squared error (RMSE) (Equation A.19) is also an error metric, hence,
the lower the score the better. Additionally, compared to the MAE, RMSE ampli-
fies large deviations resulting in larger errors.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (A.19)

A.6.2 Classification
Within this dissertation classification tasks are evaluated using the accuracy
metric, but also using confusion matrices. The data sets used are balanced hence
accuracy enables the most intuitive comparison.

The accuracy metric can be seen in Equation A.20 with |TP| being the amount
of true positive classifications; |TN|, the amount of true negative classifications;
|FP|, the amount of false positive classifications, e.g. a false alarm, and |FN|, the
amount of false negative classifications, e.g. missed faults. In essence, the goal
is to maximize the true negative and true positive classifications and minimize the
false positive classifications and the false negative classifications. However, often
there will be a trade-off between minimizing the false positive classifications and
the false negative classifications, so a decision has to be made, e.g. allow more
false alarms but detect all real faults, or miss some real faults and have almost no
false alarms.
It should be noted that the accuracy score is not a good metric to use when the data
set is imbalanced because, if the model always predicts the label of the majority
class, the accuracy will be good although the model did not learn anything. Hence,
in case of imbalance data sets, other metrics should be considered such as the Co-
hen Kappa statistic, F1-score or the area under the receiver operator characteristic
curve.

accuracy =
|TP |+ |TN |

|TP |+ |FP |+ |FN |+ |TN |
(A.20)

PRELIMINARIES ON MACHINE LEARNING 177

Confusion matrices are tables displaying the classification results of a model.
How a confusion matrix works can be seen in Figure A.4.

50 % 30 % 10 % 10 %

10 % 80 % 5 % 5 %

30 % 10 % 60 % 0 %

0 % 5 % 5 % 90 %

Class A

Class B

Class C

Class D

C
lass A

C
lass B

C
lass C

C
lass D

Figure A.4: Illustration of a confusion matrix. From this confusion matrix, it can, for
example be seen that of all the samples belonging to class A, 50 % are classified as class

A; 30 % as class B; 10 % as class C and 10 % as class D.

Appendix B

Hyperparameters

In this chapter, graphs for the hyperparameters for the multivariate machine learn-
ing models discussed in Chapter 2 can be consulted.

200 400 600 800 1000
Number of trees

30

40

50

60

70

80

90

M
AE

(a)

200 400 600 800 1000
Number of trees

10

20

30

40

50

60

70

M
AE

(b)

200 400 600 800 1000
Number of trees

20

30

40

50

60

70

M
AE

(c)

Figure B.1: Effects of modifying the number of trees for the gradient boosted regression
trees model for turbine 1,2 and 3 respectively.

180 APPENDIX B

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Subsample ratio

30

40

50

60

70

80

90

M
AE

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Subsample ratio

10

20

30

40

50

60

70

M
AE

(b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Subsample ratio

20

30

40

50

60

70

M
AE

(c)

Figure B.2: Effects of modifying the subsample ratio for the gradient boosted regression
trees model for turbine 1,2 and 3 respectively.

PERFORMANCE MONITORING HYPERPARAMETERS 181

10 3 10 2 10 1 100

Learning rate

100

200

300

400

500
M

AE

(a)

10 3 10 2 10 1 100

Learning rate

100

200

300

400

500

M
AE

(b)

10 3 10 2 10 1 100

Learning rate

100

200

300

400

500

M
AE

(c)

Figure B.3: Effects of modifying the learning rate for the gradient boosted regression trees
model for turbine 1,2 and 3 respectively.

182 APPENDIX B

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Maximum depth

40

50

60

70

80

90

100

M
AE

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Maximum depth

10

20

30

40

50

60

70

M
AE

(b)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Maximum depth

20

30

40

50

60

70

80

90

M
AE

(c)

Figure B.4: Effects of modifying the maximum depth for the gradient boosted regression
trees model for turbine 1,2 and 3 respectively.

PERFORMANCE MONITORING HYPERPARAMETERS 183

0 200 400 600 800 1000
Number of trees

30

40

50

60

70

80

M
AE

(a)

0 200 400 600 800 1000
Number of trees

10

20

30

40

50

60

70

M
AE

(b)

0 200 400 600 800 1000
Number of trees

20

30

40

50

60

70

M
AE

(c)

Figure B.5: Effects of modifying the number of trees for the random forest model for
turbine 1,2 and 3 respectively.

184 APPENDIX B

0 200 400 600 800 1000
Number of trees

30

40

50

60

70

80

M
AE

(a)

0 200 400 600 800 1000
Number of trees

10

20

30

40

50

60

70

M
AE

(b)

0 200 400 600 800 1000
Number of trees

20

30

40

50

60

70

M
AE

(c)

Figure B.6: Effects of modifying the number of trees for the extremely randomized trees
model for turbine 1,2 and 3 respectively.

Appendix C

Towards intelligent lubrication
control: infrared thermal imaging
for oil level prediction in bearings

C.1 Introduction

Industry consumes 33 % of the worlds available energy [117]. The majority of
this energy goes to electromechanical drive systems. Hence, reducing the en-
ergy usage of these machines can have a great impact on the global energy us-
age. To reduce the energy usage of drive systems, the individual components have
to be optimized such as rollling element bearings (REB). Bearings are one of the
most common components in drive systems. These bearings suffer from energy
losses as for example in cars up to 30 % of the energy can be consumed by bear-
ings [118]. Generally, the total losses of a bearing can be divided into two parts.
The main part is the mechanical friction. It results for example from contact forces
between rolling elements and the runway. The second part is caused by displace-
ment of lubricant, called churning and drag losses. These lubricant related losses
are important because they depend on the operating conditions, and can be as
high as the mechanical losses! [119]. Some bearing manufacturers already pro-
vide energy-efficient bearings [120]. However, the lubrication is often not opti-
mized for energy-efficiency. The selection of bearings follows from a procedure
where operation conditions such as operational speed, nominal load and working
environment are taken into account. Depending on the bearing and the usage, an
appropriate lubrication system is chosen. However, during the operational period
of a machine the parameters of the lubrication are often not monitored actively
or adjusted. Nevertheless, as the energy losses in a bearing are dependent on the
lubrication, adjusting these parameters in real-time can potentially result in a sig-
nificant amount of saved energy. Recently, it was determined that rotational speed,

186 APPENDIX C

oil viscosity and especially the oil level affect the drag and churning losses in a
bearing [119]. Hence, an intelligent lubrication system should be able to to adapt
these properties in real-time to optimize the energy efficiency. Nevertheless, de-
termining the oil level, which is the most important factor, in a bearing is difficult
as it is not possible to visually determine this, and no sensors exist for this pur-
pose. We showed that it is possible to detect grease inadequacy in bearings using
infrared thermal imaging (see Chapter 3). Generally, we showed that lubrication
related conditions can be identified using a data-driven approach and infrared ther-
mal imaging. Therefore, in this chapter we investigate the use of infrared thermal
imaging in order to determine the oil-level in bearings using a data-driven ap-
proach, as a step towards intelligent lubrication control. To do this, both a feature
engineering as in Chapter 3, and a feature learning approach as in Chapter 4 is
used. In the next section the set-up and data set are discussed. Next, the descrip-
tion of the methodology for the oil-level detection using infrared thermal imaging
is given. Subsequently, the results are discussed and finally in a conclusion is
given.

C.2 Data and set-up
The used set-up can be seen in Figure C.1. The used bearing is a cylindrical
roller bearing (NUP212) from FAG. A re-circulatory lubrication system was used
with Mobil SHC 630 oil. The hydrostatic pad and pneumatic muscle are used to
apply a controlled radial force on the outer-raceway of the bearing. The controlled
variables which were changed in between test-runs are the rotational velocity of
the inner ring, lubricant flow rate and lubricant temperature. As thermal camera
the Flir A320 was used1. The distance between the set-up and the camera was 70
cm. An example of an infrared thermal image can be seen in Figure C.2. The
main body of the bearing cover is made out of stainless steel. However, at the
left-hand side of the cover a small plexiglass window was added to monitor the
oil level. This was done because the method proposed in this chapter is a data-
driven method and requires ground truth data, i.e. labeled data, to learn a model
on. However, as will be made clear in Section C.3, the plexiglass cover part is
removed from the thermal image before the feature extraction step.
In total 30 runs were done using this set-up. It was made sure that the tempera-
ture reached steady-state, i.e. the temperatures did not rise any further, before the
recording started. Every recording contains 300 frames. To make sure that the oil
level can be detected in different operational conditions, several parameters of the
set-up were changed between runs. The load was set to 5000 N for all these tests.
The rotation speed was changed between 200, 500, 1000 and 1500 rpm. The oil

1http://www.flir.com/uploadedFiles/Thermography_APAC/Products/
Product_Literture/090722%20A320%20datasheet_eng.pdf

http://www.flir.com/uploadedFiles/Thermography_APAC/Products/Product_Literture/090722%20A320%20datasheet_eng.pdf
http://www.flir.com/uploadedFiles/Thermography_APAC/Products/Product_Literture/090722%20A320%20datasheet_eng.pdf

TOWARDS INTELLIGENT LUBRICATION CONTROL: INFRARED THERMAL IMAGING FOR

OIL LEVEL PREDICTION IN BEARINGS 187

Figure C.1: Image of the used set-up. 1. bearing, 2. hydrostatic pad to apply radial load
on the bearing, 3. pneumatic muscle for loading the bearing, 4. force cell for friction

torque, 5. temperature measurements.

15 ◦ C

47.5 ◦ C

80 ◦ C

Figure C.2: Example of a thermal infrared image of the bearing.

188 APPENDIX C

flow rate was changed between 30, 35, 50, 100, 200, 250, 300, 350, 500, 750, and
1000 CC/min. The oil temperature was set to 40, 50 and 60 ◦C . Finally, the room
temperature was kept constant at 23 ◦C.
During the test runs, the height of the oil was measured and ranged between 25
and 120 mm. The main goal of this research is to investigate if it is feasible to
determine the height of the oil-level using infrared thermal imaging. As we want
to investigate the feasibility, the prediction is coarse-grained. Hence, we want to be
able to predict if the bearing is full of oil or not. A full bearing suffers the greatest
from churning and drag losses. Hence, for each measurement a label “full” or “not
full” was assigned according to Equation C.1 with a threshold level set to 100 mm.
From the 30 samples 9 were labeled as full and 21 as not full.

yi =

{
Full if oil level >= 100 mm
Not full otherwise

(C.1)

C.3 Methodology: Feature engineering
Per IRT image several features have to be extracted in order to be able to determine
what the oil level in the bearing is. To do this, several image processing steps are
done as depicted in Figure C.3. The first step in this process is image registration.

IRT video
Image

registration
ROI

extraction
Feature

extraction
Classification

Figure C.3: The image processing and machine learning pipeline.

C.3.1 Image registration
In between the measurements, the IRT camera moved. Due this movements, trans-
lations and rotations are induced in the data set. To enable robustness against these
transformations, all the frames need to be aligned to a common reference image
(i.e. image registration). By applying image registration, the REB housing will be
in the same position in every frame of every recording. Image registration is done
using the following steps:

1. A random reference frame from a random recording is extracted. In the end,
every frame should be aligned to this reference frame.

2. From the reference frame, but also from every first frame from every record-
ing, key points are extracted. The key points are corners and are determined
using the FAST algorithm [83].

TOWARDS INTELLIGENT LUBRICATION CONTROL: INFRARED THERMAL IMAGING FOR

OIL LEVEL PREDICTION IN BEARINGS 189

Figure C.4: Matching points between the reference frame and the frame that has to be
aligned.

3. Image patches are extracted around every key point for which ORB feature
descriptors are calculated [84].

4. Matching key points extracted from the reference frame and a frame that
needs to be aligned are selected. This is done by calculating the hamming
distance which allows for very fast matching computation compared to for
example the euclidean distance [85].

5. Using the matching key points from the reference frame and a frame that
needs to be aligned, the affine transformation is determined using the RAN-
SAC algorithm. The affine transformation describes how an image should
be translated, rotated and scaled so that it will match the geometry of the
reference frame. This transformation is calculated for every recording and
applied to every frame, resulting in recordings wherein the housing is ap-
proximately in the same place. An example of matching keypoints can be
seen in Figure C.4.

C.3.2 Region of interest extraction
The goal in the ROI extraction step is to segment the right side of the bearing
housing as the plexiglass part cannot be used for feature extraction as plexiglass
is not used in industrial machines. The plexiglass part, in this set-up, is used to
visually monitor the oil-level and create ground truth labels for the different test
runs. Furthermore, only the cover should be extracted and the background should
be removed as the cover is closest to the bearing. To do this ROI segmentation,
several steps are required. First, the shaft has to be detected. As the shaft is a circle
in the image, this is done using the circle Hough transform [121]. The result of
this can be seen in Figure C.5a. Using this circle a binary matrix, i.e. a mask, is
created according to Equation(C.2) where M1 is the binary matrix and i and j its

190 APPENDIX C

indices, i1c and j1c are the coordinates of the center of the circle and r1 its radius.
In this binary mask all pixels within the circle will be equal to 0 and the pixels
outside the circle equal to 1. Afterwards this mask is applied on the IRT frames:
I = I �M1.

M1ij =

{
0, if (i− i1c)2 + (j − j1c)2 < r21
1, otherwise.

(C.2)

Now that the center is removed, in the next step the circle Hough transform is
applied again. This time to detect the outer-raceway of the bearing. The result can
be seen in Figure C.5b. The goal is now to remove the background of the image.
To do this, again a mask is created as in Equation C.3. This time, the pixels within
the circle are equal to 1 and those outside the circle equal to 0. Afterwards, the
mask is applied on the IRT frames: I = I � M2. This operation results in an
isolated ROI as can be seen in Figure C.5c. From this ROI only the right-hand
side is kept as this side made out of stainless steel. The final ROI can be seen in
Figure C.5d.

M2ij =

{
0, if (i− i2c)2 + (j − j2c)2 > r22
1, otherwise.

(C.3)

C.3.3 Feature extraction
To evaluate the feature proposed in Chapter 3 the Gini Coefficient, standard devi-
ation and the M20 are extracted and tested.
To minimize the influence of noise and outliers in the feature extraction step, win-
dowing is applied. A window contains 30 frames of IR video and overlaps its
neighbouring windows by 15 frames, resulting in 19 windows per video sequence.
Per window all the features are averaged. This means that in the end there are 30
videos × 19 windows = 570 samples.

C.3.4 Machine learning
In an intelligent lubrication control system the oil level will have to be updated
automatically to optimize the energy efficiency and the lifetime of the machine.
This also means that the level of the oil will have to be determined automatically.
Hence, an algorithm has to interpret the extracted features from the infrared ther-
mal video and make a decision. The classification problem at hand is a binary
classification problem and when plotting the data, it can be seen that a non-linear
classifier is required as no straight decision boundary can separate the two classes,
i.e. full and not full. As in Chapter 3, a random forest classifier is used.

TOWARDS INTELLIGENT LUBRICATION CONTROL: INFRARED THERMAL IMAGING FOR

OIL LEVEL PREDICTION IN BEARINGS 191

15 ◦ C

47.5 ◦ C

80 ◦ C

(a)

15 ◦ C

47.5 ◦ C

80 ◦ C

(b)

192 APPENDIX C

15 ◦ C

47.5 ◦ C

80 ◦ C

(c)

15 ◦ C

47.5 ◦ C

80 ◦ C

(d)

Figure C.5: Region of interest extraction procedure. First, the shaft is removed from the
image (a). Afterwards the outer-raceway is detected (b). Finally, the background is

removed (c) and the left part of the image is removed (d).

TOWARDS INTELLIGENT LUBRICATION CONTROL: INFRARED THERMAL IMAGING FOR

OIL LEVEL PREDICTION IN BEARINGS 193

C.4 Methodology: feature learning
Additional to the feature engineering approach, the feature learning approach of
Chapter 4 is also tested in this use case. The same preprocessing steps as described
above are used. However, also rescaling and normalization as in Chapter 4 are
done. As in Chapter 4, transfer learning is applied by re-using a VGG network
and removing the last layer. The whole network is trained using infrared thermal
images.

C.5 Results
C.5.1 Evaluation
To quantify the classification performance, four error measurements are used: ac-
curacy, weighted precision, weighted recall and f1-score for which the equations
can be seen in equations C.4–C.7, with |TPk| being the amount of true positive
classifications for class k; |TNk| the amount of true negative classifications; |FPk|
the amount of false positive classifications for class k, e.g. a false alarm, and
|FNk| the amount of false negative classifications for class k, e.g. miss. Accuracy
is chosen as it easy to interpret, however it does not always reflect the classifier’s
performance when the data set is imbalanced, i.e. when there are many more sam-
ples of one class in the data set than the others. As here the data set is imbalanced,
weighted precision and recall are chosen to deal with this problem. For example,
if the classifier doesn’t learn anything and predicts that every sample in our data
set has the label of “not-full”, then the accuracy would be 70 %, which a fairly
good accuracy. However, the classifier didn’t learn anything, so the accuracy does
not reflect the situation well. Weighted precision, recall and f1-score on the other
hand would respectively be 49 %; 70 % and 57.66 % which better reflect the per-
formance of the classifier and help to interpret the classifier’s performance.

accuracy =
|TP |+ |TN |

|TP |+ |FP |+ |FN |+ |TN |
(C.4)

precision =
∑
k∈K

wk
|TPk|

|TPk|+ |FPk|
(C.5)

recall =
∑
k∈K

wk
|TPk|

|TPk|+ |FNk|
(C.6)

f1− score = 2 ∗ precision ∗ recall
precision+ recall

(C.7)

To make sure that the classification algorithm generalizes, the data set is split into
the training and test set according to per-sample-cross validation. This means that

194 APPENDIX C

Algorithm and parameters Precision Recall F1-score Accuracy

RDF (amount of decision trees = 100) 86.67 % 88.13 % 86.67 % 87 %
CNN 86.67 % 88.13 % 86.67 % 87 %

Table C.1: Results of the three classification algorithms.

the features extracted from one recording are put in the test set and the rest is put
into the training set. This is done several times so that all the samples are in the test
set only once, while the remaining sequences served as training set. The results
are discussed next.

C.5.2 Performance results

The results for the feature engineering approach and the feature learning approach
are presented in Table C.1. As can be seen, the two methods perform the same.
The approaches do not achieve a perfect score which is due to the fact that when
the machine is rotating at 1500 rpm, the oil becomes turbulent and no exact oil
level remains. Hence, miss-classification happens.

C.5.3 Feature-learning insights

As in Chapter 4, insights into the decision of the CNNs can be extracted which can
be seen in Figure C.6a for a bearing full of oil and in Figure C.6b, for a bearing not
full of oil. These figures illustrate that specific areas in the images are important
for the specific conditions. If the bearing is full of oil, the top of the bearing is
very important for the CNN’s decision, which is to be expected as this part will
be much warmer than when the bearing is not full. Conversely, when the bearing
is not full of oil, the bottom part of the bearing is important. This is also to be
expected as this part of the image will be less warm compared to when the bearing
is full of oil.
Tests were done using features inspired by the regions indicated by the CNN. Two
features were created. The first is the difference between the temperature at the
top and the bottom of the bearing housing and the second is the difference be-
tween the maximum and minimum temperature in the IRT image. When a data
set is provided containing these features to a random forest classifier and accuracy,
precision, recall and f1-score of 80 % is achieved. This indicates that the informa-
tion and insights extracted from the CNN are valuable to gain knowledge into the
underlying physical phenomena.

TOWARDS INTELLIGENT LUBRICATION CONTROL: INFRARED THERMAL IMAGING FOR

OIL LEVEL PREDICTION IN BEARINGS 195

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Figure C.6: Regions that influence the CNNs output for a bearing full of oil (a) and not full
of oil (b).

C.6 Conclusion
In this appendix a first step towards intelligent lubrication control with energy
efficiency as focus is described. The goal of this research is to automatically deter-

196 APPENDIX C

mine the oil level in a rolling element bearing as the oil level influences the energy
efficiency of a bearing the most. To detect this oil level a data-driven approach
is used employing infrared thermal imaging. Both feature engineering and fea-
ture learning are used for this purpose. A data set was created containing infrared
thermal videos of a rotating set-up during different conditions. The conditions
were created by varying several parameters of the set-up between test runs such
as rotation speed, oil temperature and flow rate. The feature engineering based
approach and the feature learning based approach perform the same. Hence, it can
be concluded that even under different rotation speeds, initial oil temperatures and
flow rates the oil level can be determined. However, at high rotational speeds this
becomes difficult due to turbulent oil. Finally it is also shown that the insights
into the convolutional neural networks can help to design features which are more
closely linked to the underlying physical phenomena.

Appendix D

Imbalance displacement

As a result of imbalance, the set-up will vibrate. This vibration has a certain
displacement that needs to be measurable by the camera. Hence, in this appendix
this displacement is calculated for the three imbalance conditions in data set
two. Next, the area size that is captured in each pixel is calculated. Finally, the
displacement is converted into pixels.

The following parameters are known of the set-up.

• Mass of the shaft: 1.618 kg

• Mass of one disks: 2.317 kg

• Total mass (m) = 6.252 kg

• Rotation frequency (ω): 25 Hz

• First eigenfrequency of the set-up (ωn): 17.8 hz. This was determined using
an impact test.

• Radius at which the screws were attached to the disk (r) = 5.4 x 10−2 m

• Mass of screw 1: 4.1 x 10−3 kg

• Mass of screw 2: 9.3 x 10−3 kg

• Mass of screw 3: 13.0 x 10−3 kg

The displacements are calculated according to Equation D.1. The right-hand side
of the denominator can be ignored due to the fact that there is no, or no significant,
dampening, hence ζ will be zero or very close to zero.

198 APPENDIX D

q0 =

mrr
m

ω2

ω2
n√

(1− ω2

ω2
n
)2 + 4ζ2 ω

2

ω2
n

(D.1)

The resulting displacements are:

• Displacement by screw 1: 73.15 µm

• Displacement by screw 2: 165.9 µm

• Displacement by screw 2: 231.9 µm

Next, the area size that is captured by a single pixel, given the properties of the
camera, is determined.

Two properties are required:

• Vertical field-of-view (v): 19◦

• Distance from the camera to the bearing housing (d): 380 mm

Using Equation D.2, it is determined that at a distance of 380 mm, the camera can
capture 130.84 mm vertically. By dividing this vertical dimension by the amount
of vertical pixels (130.84 mm

480 pixels) it is determined that 1 pixel = 272.59 µm.

Vertical dimension = d tan (v) (D.2)

Finally, the displacements are converted into pixels (Equations D.3, D.4, D.5).
Note that displacements are multiplied by two as displacements are both in the
upwards and downwards direction.

s1 = 2
73.15 µm

272.59 µm
pixel

= 0.54 pixels (D.3)

s2 = 2
165.9 µm

272.59 µm
pixel

= 1.22 pixels (D.4)

s3 = 2
231.9 µm

272.59 µm
pixel

= 1.70 pixels (D.5)

In general, there is a relationship between the weight causing the imbalance and the
displacement in the image 1. This also means that there is a limit to the amount of
imbalance that can be distinguished using this technique, as amounts of imbalance
that are almost the same will not be distinguishable from one another. Furthermore,

1Note that several properties of the set-up and camera have to be taken into account.

IMBALANCE DISPLACEMENT 199

due to noise, inherent to a thermal camera, very low levels of imbalance will not
be measurable with great certainty.
It should also be noted that due to this relationship it should also be possible to
calculate the weight of imbalance to a certain degree, given the measured dis-
placement. However, this requires further investigation.

Appendix E

M20 properties

Theorem 1. The moment of light will be large (i.e. closer to zero) when there
are two distributions of significant size, and low if there is only one distribution of
significant size and one or more distributions of non-significant size. Significant
size means that it is taken into account in the nominator of Equation 3.8 due to the
fact that it contains points that are a part of the 20 % of the highest points.

Proof. Given two Laplace distributions 1 (Equations (E.1) and (E.2)), and a dis-
tance function (equation (E.3)). The distance function is dependent on the location
of the highest peak. λ and θ represent the scale of the distributions and µ and η the
means.

f(x) =

{
λ
2 e
−λ(x−µ), if x > µ

λ
2 e
−λ(µ−x), x < µ

(E.1)

f(x) =

{
θ
2e
−θ(x−η), if x > η

θ
2e
−θ(η−x), x < η

(E.2)

g(x) = (x− z)2 where z =

{
µ, if θ < λ

η, λ < θ
(E.3)

The M20 can be written as in equation (E.4), wherein µ− d,µ+ d,η− t and η+ t

are used to define the borders in the distributions so that 20 % of the highest points
are used to calculate the nominator. These boundaries are illustrated in Figure E.1.

M20 = f(x, λ, θ, η, µ, d, t) =∫ µ+d
µ−d

λ
2 e
−λ|x−µ|(x− µ)2dx+

∫ η+t
η−t

θ
2e
−θ|x−η|(x− η)2dx∫∞

−∞
λ
2 e
−λ|x−µ|(x− µ)2dx+

∫∞
−∞

θ
2e
−θ|x−η|(x− η)2dx

(E.4)

202 APPENDIX E

μ μ+dμ-d

f(x)

x

20% of the highest points

η η+tη-t

Figure E.1: Laplace distributions with boundaries.

Both µ and λ are kept fixed as varying one distribution is sufficient to illustrate the
behavior of the M20 when there are two distributions.
The borders, which dependent d and t, have to be determined, which is done using
the optimization problem in Equation (E.5).

max
d,t

0.2(

∫ µ+d

µ−d

λ

2
e−λ|x−µ|(x− µ)2dx+

∫ η+t

η−t

θ

2
e−θ|x−η|(x− η)2dx) =∫ ∞

−∞

λ

2
e−λ|x−µ|(x− µ)2dx+

∫ ∞
−∞

θ

2
e−θ|x−η|(x− η)2dx (E.5)

θ is varied between 0.01 and 0.25 and η between 1000 and 1500 and used in Equa-
tion E.4 together with the results of the optimization problem in Equation (E.5), so
that the M20, now a function of x, θ and eta, can be plotted.
Figure E.2, illustrates that when increasing the height of the second distribution the
M20 will rise. In fact, the M20 will suddenly rise when the second distribution
achieves a critical mass, i.e. will be used in the nominator of the M20.
figurename E.3, illustrates that the location of the second hotspot does not affect
the M20 a lot. When the second distribution does not contain a critical mass, the
M20 will decrease the larger the distance between the two distributions. This is
due to the fact that the denominator ofM20 will increase faster than the nominator
when increasing the distance between the distributions.
Only when the second distribution achieves critical mass will the distance not in-
fluence the M20 as can be observed in figurename E.3.

1Laplace distribution is chosen as it is parameterized by its shape and location

M20 PROPERTIES 203

Height

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

M20

6

5

4

3

2

1

Figure E.2: y-axis: M20; x-axis: θ.

Location

1000 1100 1200 1300 1400 1500

M20

6

5

4

3

2

1

Figure E.3: y-axis: M20; x-axis: η.

References

[1] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer, 2009.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Re-
gression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[3] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[4] Michael A Nielsen. Neural networks and deep learning. URL:
http://neuralnetworksanddeeplearning. com/.(visited: 01.11. 2014), 2015.

[5] Christopher M Bishop. Pattern recognition. Machine Learning, 128:1–58,
2006.

[6] EWEA. Wind energy scenarios for 2020; A report by the European Wind
Energy Association, 2014.

[7] iea wind. 2015 annual report. https://www.ieawind.org/
annual_reports_PDF/2015/2015%20IEA%20Wind%20AR_
small.pdf, 2016.

[8] World-Energy-Council. World Energy Resources: Wind. https:
//www.worldenergy.org/wp-content/uploads/2013/10/
WER_2013_10_Wind.pdf, 2013.

[9] EWEA. The European offshore wind industry - key
trends and statistics 2015. http://www.ewea.org/
fileadmin/files/library/publications/statistics/
EWEA-European-Offshore-Statistics-2015.pdf, 2016.

[10] International Renewable Energy Agency. Renewable energy tech-
nologies: cost analysis series. https://www.irena.org/
documentdownloads/publications/re_technologies_
cost_analysis-wind_power.pdf, 2012.

https://www.ieawind.org/annual_reports_PDF/2015/2015%20IEA%20Wind%20AR_small.pdf
https://www.ieawind.org/annual_reports_PDF/2015/2015%20IEA%20Wind%20AR_small.pdf
https://www.ieawind.org/annual_reports_PDF/2015/2015%20IEA%20Wind%20AR_small.pdf
https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_10_Wind.pdf
https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_10_Wind.pdf
https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_10_Wind.pdf
http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2015.pdf
http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2015.pdf
http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2015.pdf
https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-wind_power.pdf
https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-wind_power.pdf
https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-wind_power.pdf

206 REFERENCES

[11] European Commision. Subsidies and costs of EU energy.
https://ec.europa.eu/energy/sites/ener/files/
documents/ECOFYS%202014%20Subsidies%20and%20costs%
20of%20EU%20energy_11_Nov.pdf, 2014.

[12] National Renewable Energy Laboratory. Report on Wind Turbine Subsystem
Reliability - A Suvery of Various Databases. http://www.nrel.gov/
docs/fy13osti/59111.pdf, 2013.

[13] C. Radu. The Most Common Causes of Bearing Failure and the Importance
of Bearing Lubrication. RKB Technical Review-February, 2010.

[14] W. A. Smith and R. B. Randall. Rolling element bearing diagnostics using
the Case Western Reserve University data: A benchmark study. Mechanical
Systems and Signal Processing, 64 – 65:100 – 131, December 2015.

[15] W. M Hannon. Rolling-Element Bearing Heat TransferPart I: Analytic
Model. Journal of Tribology, 137(3):031102, 2015.

[16] O. Janssens, R. Schulz, V. Slavkovikj, K. Stockman, M. Loccufier,
R. Van de Walle, and S. Van Hoecke. Thermal Image Based Fault Diag-
nosis for Rotating Machinery. Infrared Physics & Technology, 73:78 – 87,
2015.

[17] O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Ver-
stockt, Van de Walle R., and S. Van Hoecke. Convolutional Neural Network
Based Fault Detection for Rotating Machinery. Journal of Sound and Vi-
bration, 377:331 – 345, 2016.

[18] G. M. Masters. Wind Power Systems, pages 307–383. John Wiley & Sons,
Inc., 2005.

[19] Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. Condition
monitoring and fault detection of wind turbines and related algorithms: A
review. Renewable and Sustainable Energy Reviews, 13(1):1–39, 2009.

[20] J. Tamura. Calculation Method of Losses and Efficiency of Wind Genera-
tors, pages 25–51. Springer London, London, 2012.

[21] JG Slootweg, SWH De Haan, H Polinder, and WL Kling. General model
for representing variable speed wind turbines in power system dynamics
simulations. IEEE Transactions on power systems, 18(1):144–151, 2003.

[22] M. Singh and S. Santoso. Dynamic models for wind turbines and wind
power plants. National Renewable Energy Laboratory, 2011.

https://ec.europa.eu/energy/sites/ener/files/documents/ECOFYS%202014%20Subsidies%20and%20costs%20of%20EU%20energy_11_Nov.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/ECOFYS%202014%20Subsidies%20and%20costs%20of%20EU%20energy_11_Nov.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/ECOFYS%202014%20Subsidies%20and%20costs%20of%20EU%20energy_11_Nov.pdf
http://www.nrel.gov/docs/fy13osti/59111.pdf
http://www.nrel.gov/docs/fy13osti/59111.pdf

REFERENCES 207

[23] R. J. Barthelmie, S. T. Frandsen, M. N. Nielsen, S. C. Pryor, P.-E. Rethore,
and H. E. Jrgensen. Modelling and measurements of power losses and tur-
bulence intensity in wind turbine wakes at Middelgrunden offshore wind
farm. Wind Energy, 10(6):517–528, 2007.

[24] Noppe N. , Wout W., and C. Devriendt. Reliable empirical analysis of ef-
fects of turbulent air in an operating wind farm based on unreliable SCADA-
data. In European Academy of Wind Energy, 2015.

[25] C. Biyun, W. Suifeng, Z. Yongjun, and H. Ping. Wind power prediction
model considering smoothing effects. In 2013 IEEE PES Asia-Pacific Power
and Energy Engineering Conference (APPEEC), pages 1–4, Dec 2013.

[26] N. Charhouni, A. Arbaoui, and M. Sallaou. Analysis of wake impact on
wind farm performance using two analytical models. In 2014 International
Renewable and Sustainable Energy Conference (IRSEC), pages 323–327.
IEEE, 2014.

[27] B. Sanderse, S. Pijl, and B. Koren. Review of computational fluid dynamics
for wind turbine wake aerodynamics. Wind Energy, 14(7):799–819, 2011.

[28] P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Wingerden, P. A. Fleming,
S. D. Ruben, J. R. Marden, and L. Y. Pao. Wind plant power optimiza-
tion through yaw control using a parametric model for wake effectsa CFD
simulation study. Wind Energy, 19(1):95–114, 2016.

[29] G. Crasto, F. Castellani, A. R. Gravdahl, and E. Piccioni. Offshore wind
power prediction through CFD simulation and the actuator disc model.
EWEA ANNUAL EVENT, 2011.

[30] M. Etemaddar, M. O. L. Hansen, and T. Moan. Wind turbine aerodynamic
response under atmospheric icing conditions. Wind Energy, 17(2):241–265,
2014.

[31] K. Park, T. Asim, and R. Mishra. Computational fluid dynamics based
fault simulations of a vertical axis wind turbines. In Journal of Physics:
Conference Series, volume 364, page 012138. IOP Publishing, 2012.

[32] A. Clifton and R. Wagner. Accounting for the effect of turbulence on wind
turbine power curves. In Journal of Physics: Conference Series, volume
524, pages 1–11. IOP Publishing, 2014.

[33] J. S Oakland. Statistical process control. Routledge, 2007.

[34] S. J. Qin. Survey on data-driven industrial process monitoring and diagno-
sis. Annual Reviews in Control, 36(2):220–234, 2012.

208 REFERENCES

[35] S. Yin, S. X. Ding, X. Xie, and H. Luo. A Review on Basic Data-Driven
Approaches for Industrial Process Monitoring. IEEE Transactions on In-
dustrial Electronics, 61(11):6418–6428, 2014.

[36] A. Kusiak, H. Zheng, and Z. Song. On-line monitoring of power curves.
Renewable Energy, 34(6):1487–1493, 2009.

[37] M. Lydia, S. Suresh Kumar, a. Immanuel Selvakumar, and G. Edwin Prem
Kumar. A comprehensive review on wind turbine power curve model-
ing techniques. Renewable and Sustainable Energy Reviews, 30:452–460,
2014.

[38] M. Lydia, S. Selvakumar, A.and Kumar, and G. Kumar. Advanced Algo-
rithms for Wind Turbine Power Curve Modeling. IEEE Transactions on
Sustainable Energy, 4(3):827–835, 2013.

[39] A. Kusiak and A. Verma. Monitoring Wind Farms With Performance
Curves. IEEE Transactions on Sustainable Energy, 4(1):192–199, January
2013.

[40] M. Schlechtingen, I. F. Santos, and S. Achiche. Using Data-Mining Ap-
proaches for Wind Turbine Power Curve Monitoring: A Comparative Study.
IEEE Transactions on Sustainable Energy, 4(3):671–679, July 2013.

[41] M. Schlechtingen, I. F. Santos, and S. Achiche. Wind turbine condition
monitoring based on SCADA data using normal behavior models. Part 1:
System description. Applied Soft Computing, 13(1):259–270, 2013.

[42] B. Choi. Statistical Analysis, Modeling, and Algorithms for Pharmaceutical
and Cancer Systems. PhD thesis, University of South Florida, 2014.

[43] International Electrotechnical Commission. Wind Turbines Part 12-2:
Power performance of electricity producing wind turbines based on nacelle
anemometry. Technical report, International Electrotechnical Commission,
2008.

[44] L. Breiman. Bagging predictors, 1996.

[45] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

[46] J. Friedman. Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38(4):367–378, 2002.

[47] M. D. G. Dukes and J. P. Palutikof. Estimation of Extreme Wind Speeds with
Very Long Return Periods. Journal of Applied Meteorology, 34(9):1950–
1961, 1995.

REFERENCES 209

[48] J. Krause, A. Perer, and K. Ng. Interacting with Predictions: Visual Inspec-
tion of Black-box Machine Learning Models. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, pages 5686–
5697. ACM, 2016.

[49] K. Fischer, F. Besnard, and L. Bertling. Reliability-Centered Maintenance
for Wind Turbines Based on Statistical Analysis and Practical Experience.
Energy Conversion, IEEE Transactions on, 27(1):184 – 195, 2012.

[50] J. Lacey. An Overview of Bearing Vibration Analysis. Maintenance & Asset
Management, 23(6):32–42, 2008.

[51] B. Graney and K. Starry. Rolling element bearing analysis. Materials Eval-
uation, 70(1):78 – 85, 2012.

[52] R.B.W. Heng and M.J.M. Nor. Statistical analysis of sound and vibration
signals for monitoring rolling element bearing condition. Applied Acous-
tics, 53(1–3):211 – 226, 1998.

[53] I. El-Thalji and E. Jantunen. A summary of fault modelling and predictive
health monitoring of rolling element bearings. Mechanical Systems and
Signal Processing, 6061:252 – 272, 2015.

[54] H. Ohta, Y. Nakajima, S. Kato, and H. Tajimi. Vibration and Acoustic Emis-
sion Measurements Evaluating the Separation of the Balls and Raceways
With Lubricating Film in a Linear Bearing Under Grease Lubrication. Jour-
nal of Tribology, 135(4), 2013.

[55] P. Bokoski, J. Petrovi, B. Musizza, and Jurii”. Detection of lubrication
starved bearings in electrical motors by means of vibration analysis. Tri-
bology International, 43(9):1683 – 1692, 2010.

[56] D. Koulocheris, A. Stathis, T. Costopoulos, and G. Gyparakis. Compara-
tive Study of the Impact of Corundum Particle Contaminants Size on Wear
and Fatigue Life of Grease Lubricated Ball Bearings. Modern Mechanical
Engineering, 2013.

[57] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, T. Tameghe,
and G. Ekemb. Wind turbine condition monitoring: State-of-the-art review,
new trends, and future challenges. Energies, 7(4):2595–2630, 2014.

[58] S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayaku-
mar. Infrared thermography for condition monitoring – A review. Infrared
Physics & Technology, 60(0):35 – 55, 2013.

210 REFERENCES

[59] D. Kateris, D. Moshou, X. Pantazi, I. Gravalos, N. Sawalhi, and
S. Loutridis. A machine learning approach for the condition monitoring
of rotating machinery. Journal of Mechanical Science and Technology,
28(1):61 – 71, 2014.

[60] B. A. Jaouher, F. Nader, S. Lotfi, C. Brigitte, and F. Farhat. Application
of empirical mode decomposition and artificial neural network for auto-
matic bearing fault diagnosis based on vibration signals. Applied Acous-
tics, 89:16 – 27, 2015.

[61] P.K. Kankar, S. C. Sharma, and S. P. Harsha. Fault diagnosis of ball bear-
ings using machine learning methods. Expert Systems with Applications,
38(3):1876 – 1886, 2011.

[62] M. Monte, F. Verbelen, and B. Vervisch. Detection of Coupling Misalign-
ment by Extended Orbits. In Experimental Techniques, Rotating Machinery,
and Acoustics, Volume 8, pages 243 – 250. Springer, 2015.

[63] A. Widodo, D. Satrijo, T. Prahasto, G. Lim, and B. Choi. Confirmation of
Thermal Images and Vibration Signals for Intelligent Machine Fault Diag-
nostics. International Journal of Rotating Machinery, pages 1–10, 2012.

[64] H. Fandino-Toro, O. Cardona-Morales, J. Garcia Alvarez, and
G. Castellanos-Dominguez. Bearing Fault Identification using Watershed-
Based Thresholding Method. In Giorgio Dalpiaz, Riccardo Rubini,
Gianluca D’Elia, Marco Cocconcelli, Fakher Chaari, Radoslaw Zimroz,
Walter Bartelmus, and Mohamed Haddar, editors, Advances in Condition
Monitoring of Machinery in Non-Stationary Operations, Lecture Notes
in Mechanical Engineering, pages 137–147, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[65] G. Lim, Y. Ali, and B. Yang. The Fault Diagnosis and Monitoring of Rotat-
ing Machines by Thermography. In J. Mathew, L. Ma, A. Tan, M. Weijnen,
and J. Lee, editors, Engineering Asset Management and Infrastructure Sus-
tainability, pages 557–565. Springer London, 2012.

[66] V. Tran, B. Yang, F. Gu, and A. Ball. Thermal image enhancement using bi-
dimensional empirical mode decomposition in combination with relevance
vector machine for rotating machinery fault diagnosis. Mechanical Systems
and Signal Processing, 38(2):601–614, 2013.

[67] A. Younus and B. Yang. Wavelet co-efficient of thermal image analysis
for machine fault diagnosis. In International Conference on Mechanical
Engineering, pages 1–7, 2009.

REFERENCES 211

[68] A. Younus and B. Yang. Intelligent fault diagnosis of rotating machinery
using infrared thermal image. Expert Systems with Applications, 39:2082–
2091, 2012.

[69] G. Lim, D. Bae, and J. Kim. Fault diagnosis of rotating machine by ther-
mography method on suport vector machine. Journal of Mechanical Science
and Technology, 28(8):2948–2952, 2014.

[70] A. Nembhard, J. Sinha, A. Pinkerton, and K. Elbhbah. Combined vibration
and thermal analysis for the condition monitoring of rotating machinery.
Structural Health Monitoring, 13(3):281–295, 2014.

[71] S. Verstockt, S. Van Hoecke, P. De Potter, P. Lambert, C. Hollemeersch,
B. Sette, B. Merci, and R. Van de Walle. Multi-modal time-of-flight based
fire detection. MULTIMEDIA TOOLS AND APPLICATIONS, 69(2):313–
338, 2014.

[72] S. Van Hoecke, R. Verborgh, D. Van Deursen, and R. Van de Walle. SAMuS:
service-oriented architecture for multisensor surveillance in smart homes.
SCIENTIFIC WORLD JOURNAL, pages 0–9, 2014.

[73] SKF. Spherical roller bearings. Online, October 2009.

[74] Schaeffler. FAG split plummer block housings of series SNV. Online, 2015.

[75] R Schulz, S Verstockt, J Vermeiren, M Loccufier, K Stockman, and
S Van Hoecke. Thermal Imaging for Monitoring Rolling Element Bearings.
In Quantitative InfraRed Thermography, pages 1–10, 2014.

[76] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the
H. 264/AVC video coding standard. IEEE Transactions on Circuits and
Systems for Video Technology, 13(7):560–576, 2003.

[77] E. Bechhoefer and M. Praneet. Bearing Envelope Analysis Window Se-
lection. In Proceedings of the Annual Conference of the Prognostics and
Health Management Society, pages 1–7, 2009.

[78] R. Lyons. Understanding digital signal processing. Pearson Education,
2010.

[79] S. W. Smith. The scientist and engineer’s guide to digital signal processing.
1997.

[80] S. Tretter. Communication System Design Using DSP Algorithms. Springer
Science & Business Media, 2008.

212 REFERENCES

[81] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on
Machine learning, pages 161–168. ACM, 2006.

[82] N. Otsu. A Threshold Selection Method from Gray-Level Histograms. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 9(1):62–66, 1979.

[83] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430–443.
Springer, 2006.

[84] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An Efficient
Alternative to SIFT or SURF. In Proceedings of the 2011 International
Conference on Computer Vision, pages 2564–2571, 2011.

[85] F. Selka, V. Agnus, S. Nicolau, A. Bessaid, L. Soler, J. Marescaux,
and M. Diana. Biomedical Image Registration: 6th International Work-
shop, WBIR 2014, London, UK, July 7-8, 2014. Proceedings, chapter
Fluorescence-Based Enhanced Reality for Colorectal Endoscopic Surgery,
pages 114–123. Springer International Publishing, 2014.

[86] J. M. Lotz, J. Primack, and P. Madau. A New Nonparametric Approach to
Galaxy Morphological Classification. Astronomical Journal, 128:163–182,
2004.

[87] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

[88] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097 – 1105, 2012.

[89] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[90] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In International Conference on Learning
Representations, 2015.

[91] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1–9, 2015.

REFERENCES 213

[92] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are fea-
tures in deep neural networks? In Advances in neural information process-
ing systems, pages 3320–3328, 2014.

[93] Ali Sharif R., H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 806–813, 2014.

[94] W. Zhang, R. Li, T. Zeng, Q. Sun, S. Kumar, J. Ye, and S. Ji. Deep model
based transfer and multi-task learning for biological image analysis. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1475–1484. ACM, 2015.

[95] F. Hu, G. Xia, J. Hu, and L. Zhang. Transferring deep convolutional neu-
ral networks for the scene classification of high-resolution remote sensing
imagery. Remote Sensing, 7(11):14680–14707, 2015.

[96] B. Li, M.-Y. Chow, Y. Tipsuwan, and J. C. Hung. Neural-network-based
motor rolling bearing fault diagnosis. IEEE transactions on industrial elec-
tronics, 47(5):1060–1069, 2000.

[97] Z. Chen, C. Li, and R. Sanchez. Gearbox Fault Identification and Classifi-
cation with Convolutional Neural Networks. Shock and Vibration, 2015:10,
2015.

[98] M. Amar, I. Gondal, and C. Wilson. Vibration spectrum imaging: A novel
bearing fault classification approach. IEEE Transactions on Industrial Elec-
tronics, 62(1):494–502, 2015.

[99] N.K. Verma, V.K. Gupta, M. Sharma, and R.K. Sevakula. Intelligent condi-
tion based monitoring of rotating machines using sparse auto-encoders. In
IEEE Conference on Prognostics and Health Management (PHM), pages 1
– 7, 2013.

[100] V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, and R. Van de
Walle. Hyperspectral Image Classification with Convolutional Neural Net-
works. In Proceedings of the 23rd Annual ACM Conference on Multimedia
Conference, MM ’15, pages 1159–1162, 2015.

[101] I. Sutskever, J. Martens, G. E. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13), volume 28,
pages 1139–1147, 2013.

214 REFERENCES

[102] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional
Networks. In Computer Vision ECCV 2014, Lecture Notes in Computer
Science, pages 818–833. Springer International Publishing, 2014.

[103] P. Cambron, C. Masson, A. Tahan, and F. Pelletier. Control chart monitor-
ing of wind turbine generators using the statistical inertia of a wind farm
average. Renewable Energy, pages –, 2016.

[104] M. Hermann, T. Pentek, and B. Otto. Design Principles for Industrie 4.0
Scenarios. In 2016 49th Hawaii International Conference on System Sci-
ences (HICSS), pages 3928–3937. IEEE, 2016.

[105] S. Van Hoecke, R. Verborgh, D. Van Deursen, and R. Van de Walle. SAMuS:
service-oriented architecture for multisensor surveillance in smart homes.
SCIENTIFIC WORLD JOURNAL, pages 1–9, 2014.

[106] L. Da Xu, W. He, and S. Li. Internet of things in industries: A survey. IEEE
Transactions on Industrial Informatics, 10(4):2233–2243, 2014.

[107] W. He, G. Yan, and L. Da Xu. Developing vehicular data cloud ser-
vices in the IoT environment. IEEE Transactions on Industrial Informatics,
10(2):1587–1595, 2014.

[108] B. Xu, Li Da X., H. Cai, C. Xie, J. Hu, and F. Bu. Ubiquitous data accessing
method in IoT-based information system for emergency medical services.
IEEE Transactions on Industrial Informatics, 10(2):1578–1586, 2014.

[109] D. Hoang, T. Nguyen, and A M. Tjoa. Dashboard by-example: A
hypergraph-based approach to on-demand data warehousing systems. In
2012 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 1853–1858. IEEE, 2012.

[110] M. Leida, D. Xiaofeng, P. Taylor, and B. Majeed. Toward automatic genera-
tion of SPARQL result set visualizations: A use case in service monitoring.
In e-Business (ICE-B), 2011 Proceedings of the International Conference
on, pages 1–6. IEEE, 2011.

[111] J. Gitanjali, M. Kuriakose, and R. Kuruba. Ontology and Hyper Graph
Based Dashboards in Data Warehousing Systems. Asian Journal of Infor-
mation Technology, 13(8):412–415, 2014.

[112] S. Mazumdar, A. Varga, V. Lanfranchi, D. Petrelli, and F. Ciravegna. A
knowledge dashboard for manufacturing industries. In Extended Semantic
Web Conference, pages 112–124. Springer, 2011.

REFERENCES 215

[113] M. Lanthaler and C. Gütl. On using JSON-LD to create evolvable RESTful
services. In Proceedings of the Third International Workshop on RESTful
Design, pages 25–32. ACM, 2012.

[114] R. Verborgh, T. Steiner, R. Van de Walle, and J. Gabarro. The missing
links: how the description format RESTdesc applies the linked data vision to
connect hypermedia APIs. In Proceedings of the Workshop on Linked APIs
for the Semantic Web, page 8. Ghent University, Department of Electronics
and information systems, 2012.

[115] R. Verborgh and J. De Roo. Drawing Conclusions from Linked Data on the
Web: The EYE Reasoner. IEEE Software, 32(3), 2015.

[116] Web Design Issues; What the Semantic Web can represent. http://www.
w3.org/DesignIssues/RDFnot.html. Accessed: 2016-06-28.

[117] Key World Energy Statistics 2015. https://www.iea.
org/publications/freepublications/publication/
KeyWorld_Statistics_2015.pdf. Accessed: 2016-02-15.

[118] K Holmberg, P. Andersson, and A. Erdemir. Global energy consumption
due to friction in passenger cars. Tribology International, 47:221 – 234,
2012.

[119] L. Liebrecht, X. Si, B. Sauer, and H. Schwarze. Investigation of Drag and
Churning Losses on Tapered Roller Bearings. Strojniki vestnik - Journal of
Mechanical Engineering, 61(6), 2015.

[120] SKF Energy Efficient (E2) bearings. http://www.skf.
com/group/industry-solutions/electric-motors/
industrial-electric-motors-and-generators/
applications/general-purpose-motors/
energy-efficient-e2-bearings.html. Accessed: 2016-
02-15.

[121] D. H. Ballard. Readings in Computer Vision: Issues, Problems, Principles,
and Paradigms. chapter Generalizing the Hough Transform to Detect Arbi-
trary Shapes, pages 714–725. Morgan Kaufmann Publishers Inc., 1987.

http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/DesignIssues/RDFnot.html
https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_2015.pdf
https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_2015.pdf
https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_2015.pdf
http://www.skf.com/group/industry-solutions/electric-motors/industrial-electric-motors-and-generators/applications/general-purpose-motors/energy-efficient-e2-bearings.html
http://www.skf.com/group/industry-solutions/electric-motors/industrial-electric-motors-and-generators/applications/general-purpose-motors/energy-efficient-e2-bearings.html
http://www.skf.com/group/industry-solutions/electric-motors/industrial-electric-motors-and-generators/applications/general-purpose-motors/energy-efficient-e2-bearings.html
http://www.skf.com/group/industry-solutions/electric-motors/industrial-electric-motors-and-generators/applications/general-purpose-motors/energy-efficient-e2-bearings.html
http://www.skf.com/group/industry-solutions/electric-motors/industrial-electric-motors-and-generators/applications/general-purpose-motors/energy-efficient-e2-bearings.html

	Examination Board
	Acknowledgments
	Samenvatting
	Summary
	Introduction
	Situating the importance
	Operations and Maintenance
	Machine-level: performance monitoring
	Component-level: fault detection
	Fleet-level: dynamic dashboards
	Main research contributions and outline
	Publications
	International journal publications
	Submitted international journal publications
	Book chapters
	International conference publications

	Machine level: Data-driven multi-sensor performance monitoring
	Introduction
	Related literature
	Physics-based machine-level performance monitoring
	Data-driven machine-level performance monitoring

	Data-driven performance modeling
	Data sets
	Synthetic data
	Real world data sets
	Testing procedure

	Univariate performance modeling
	Results for the synthetic data set
	Results for the real world data set

	Multivariate power curve modeling
	Feature importance
	Partial dependence
	Generated power versus the predicted power

	Discussion: data-driven versus physics-based
	Conclusion

	Component level: Fault detection using feature engineering
	Introduction
	Related literature
	Vibration-based fault detection
	Infrared thermal imaging based fault detection
	Multi-sensor systems

	Set-up
	Data-set
	Methodology: vibration-based fault detection
	Pipeline one
	Preprocessing
	Feature extraction
	Classification method

	Pipeline two
	Feature extraction
	Classification method

	Methodology: infrared thermal image-based fault detection
	Pipeline one
	Preprocessing
	Feature extraction
	Classification method

	Pipeline two
	Preprocessing
	Feature extraction
	Classification method

	Methodology: Multi-sensor fault detection
	Results
	Results: data set one
	Results: data set two

	Discussion
	Generalizability
	Choice of classifier
	Majority voting

	Conclusion

	Component level: Fault detection using feature learning
	Introduction
	Background
	Deep learning
	Convolutional neural networks
	Transfer learning

	Related literature
	Methodology
	Architecture
	Vibration-based fault detection
	Infrared thermal video based fault detection
	Multi-sensor approach

	Results
	Results data set one
	Results data set two
	Insights into infrared thermal data
	Imbalance detection

	Discussion
	Conclusion

	Fleet level: Dynamic dashboard
	Introduction
	Related work: Internet-of-Things
	Related work: Dynamic visualization systems

	Methodology
	Sensor data services
	Virtual sensors
	Visualization services
	Broker component

	Internal Design Details
	Proposed reasoning algorithm for sensor data retrieval
	Reasoning algorithm: virtual sensors
	Reasoning algorithm: anomaly detection
	Anomaly detection in the dynamic dashboard

	Implementation
	Resulting dynamic dashboard
	Fault detection
	Evaluation

	Conclusion

	Conclusion and future work
	Summary
	Future work

	Preliminaries on machine learning
	Notation
	Machine learning
	Model creation
	Hyperparameters
	Training and testing
	Cross validation
	Overfitting and underfitting
	Grid-search

	Regression
	K-nearest neighbors regression (KNN)
	Regression trees (CART)
	Random forest (RF) regression
	Extremely randomized trees (ERT)
	Gradient boosted regression trees

	Classification
	Classification trees (CART)
	Neural networks (NN)
	Logistic regression

	Evaluation metrics
	Regression
	Classification

	Performance monitoring hyperparameters
	Infrared thermal imaging for oil level prediction
	Introduction
	Data and set-up
	Methodology: Feature engineering
	Image registration
	Region of interest extraction
	Feature extraction
	Machine learning

	Methodology: feature learning
	Results
	Evaluation
	Performance results
	Feature-learning insights

	Conclusion

	Imbalance displacement
	M20 properties
	References

