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Abstract

In this contribution, the reconstruction of a solely time-dependent convolution kernel in an nonlinear parabolic equation is studied.
The missing kernel is recovered from a global integral measurement. The existence, uniqueness and regularity of a weak solution
is addressed. More specific, a numerical algorithm based on Rothe’s method is designed. Numerical experiments support the
obtained results.
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1. Introduction

In this contribution, the following inverse problem for a nonlinear parabolic equation with memory is considered:
determine the unknown couple 〈K, u〉 obeying

∂tu(x, t) − ∇ · (∇β(u(x, t))) + (K ∗ u(x))(t) =

∫ t

0
f (u(x, s)) ds + F(x, t), in Ω × I,

−∇β(u(x, t)) · ν = g(x, t), on Γ × I,

u(x, 0) = u0(x), in Ω,

(1)

where Ω is a bounded Lipschitz domain in Rd, d ≥ 1, with ∂Ω = Γ and I = [0,T ], T > 0, is the time frame. The usual

convolution in time is denoted by K ∗ u, namely (K ∗ u(x))(t) =

∫ t

0
K(t − s)u(x, s) ds. The goal of this paper is to

develop a numerical scheme for recovering the missing time-convolution kernel K = K(t). This scheme is based on
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the additional integral-type measurement∫
Ω

u(x, t) dx = m(t), t ∈ [0,T ]. (2)

The identification of missing memory kernels in partial integrodifferential equations of parabolic type is studied
in [1, 2, 3, 4, 5]. The same subject for equations of hyperbolic type is studied in [6, 7, 8, 9, 10, 9, 11]. These papers
give some local and global in time existence results for the recovery of solely time-dependent memory kernels in
semilinear integrodifferential models. However, these contributions are not focussing on a numerical implementation.
The development of a numerical algorithm for the kernel K based on the global measurement (2) in the following
semilinear parabolic problem

∂tu(x, t) − ∆u + K(t)h + (K ∗ u(x))(t) = f (u,∇u)

with Neumann-type boundary condition is done in [12]. This numerical algorithm is based on a measurement of this
equation by using (2). The error analysis of the scheme is performed in [13]. The interested reader is also referred to
[14], where the authors studied the same partial differential equation with a convolution of the form K ∗ ∆u instead of
K∗u and source term f (u) instead of f (u,∇u). More recently, in [15], using semigroup theory, the authors investigated
the reconstruction of an unknown memory kernel from a more general linear integral overdetermination Φ(u(t)) = m(t)
in an abstract linear (of convolution type) evolution equation of parabolic type:

∂tu + Au + K(t)h + (K ∗ Bu)(t) = f .

In this contribution, the governing equation is nonlinear and the term K(t)h is skipped out of the equation, which
complicates the analysis. Crucial in the analysis is that the term depending on the solution u in the right-hand side of
(1) is in integral form. Note that other parameter (time-dependent) identification problems can be found in [16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

For linear β, the type of integro-differential problems under consideration arise in the theory of reactive contam-
inant transport [29] and in the modelling of phenomena in viscoelasticity [30]. An nonlinear application arises from
the modelling of flow in variably saturated rigid soils. The water flow in porous media is usually mathematically de-
scribed by the Richards equation, a nonlinear, possibly degenerate, parabolic partial differential equation. The authors
in [31] derived a non-local Richards equation for the water content in the mobile domain that is characterized by a
memory kernel that encodes the local mass transfer dynamics as well as the geometry of the slow zones (cf. equation
[19] from [31]).

As mentioned before, the main goal of this paper is to design a numerical scheme describing a way of retrieving
the couple 〈K, u〉. This is achieved not by the minimization of a cost functional (which is typical for IPs) but by
the semi-discretization in time by Rothe’s method. The paper is organized as follows. First, the most important
notations are introduced in Section 2 and a suitable variational formulation is derived in Section 3. Section 4 deals
with the numerical scheme. A priori estimates are derived in Section 5 and the convergence of the proposed numerical
scheme is shown in Section 6. The uniqueness of a weak solution is addressed in Theorem 6.2. Afterwards, an error
analysis is performed in Section 7. Finally, in Section 8, the theoretically obtained results are illustrated by numerical
experiments.

2. Notations

Denote by (·, ·) the standard inner product of L2(Ω) and ‖·‖ its induced norm. A similar notation is used when
working at the boundary Γ, namely (·, ·)Γ, L2(Γ) and ‖·‖Γ. Consider an abstract Banach space X with norm ‖·‖X . Let
k ∈ N ∪ {0}. The set of k-times continuously differentiable functions w : [0,T ]→ X equipped with the usual norm

k∑
j=0

max
t∈[0,T ]

∥∥∥w( j)
∥∥∥

X

is denoted by Ck ([0,T ], X). The space Lp ((0,T ), X) is furnished with the norm
(∫ T

0 ‖·‖
p
X

) 1
p

with p > 1, cf. [32]. The
symbol X∗ stands for the dual space to X. Finally, as is usual in papers of this sort, C, ε and Cε denote generic positive
constants depending only on a priori known quantities, where ε is small and Cε = C

(
ε−1

)
is large.
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3. Derivation of the variational problem

First, the PDE in (1) is multiplied with a test function φ ∈ H1(Ω) and integrated over Ω to obtain for a.e. t ∈ [0,T ]
that

(∂tu(t), φ) − (∇ · (∇β(u(t))) , φ) + ((K ∗ u)(t), φ) =

(∫ t

0
f (u(s)) ds, φ

)
+ (F(t), φ) .

Secondly, using Green’s theorem implies that

(∂tu(t), φ) + (∇β(u(t)),∇φ) + ((K ∗ u)(t), φ) =

(∫ t

0
f (u(s)) ds, φ

)
+ (F(t), φ) − (g(t), φ)Γ . (P)

Now, setting φ = 1 in (P) and using the measurement
∫

Ω
u(t) = m(t), it is clear that

m′(t) + (K ∗ m)(t) =

(∫ t

0
f (u(s)) ds, 1

)
+ (F(t), 1) − (g(t), 1)Γ .

Finally, taking the time derivative of this equality, it holds that

m′′(t) + K(t)m(0) + (K ∗ m′)(t) = ( f (u(t)), 1) +
(
F′(t), 1

)
−

(
g′(t), 1

)
Γ , (MP)

where F′(t) := ∂tF(t) and g′(t) := ∂tg(t). The relations (P) and (MP) represent the variational formulation of the
problem (1)–(2). In fact, the inverse problem is reformulated into a direct one.

From now on, the real-valued everywhere differentiable function β satisfies the properties

β(0) = 0, (3)
0 < β0 6 β′(s) 6 β1, ∀s ∈ R, (4)

i.e. β is strict monotone and Lipschitz continuous. Then β−1 exists and has the following properties

1
β1

6
(
β−1

)′
(s) 6

1
β0
, ∀s ∈ R.

The potential of β is defined by

Φβ(z) =

∫ z

0
β(s) ds, z ∈ R.

Using the properties of β, it is clear that Φβ is convex and (see [33, Lemma 3.1])

0 6
β0z2

2
6 Φβ(z) 6

β1z2

2
, ∀z ∈ R. (5)

Moreover, via the integral form of Φβ, one can easily verify by the monotone character of β that

β(z1)(z2 − z1) 6 Φβ(z2) − Φβ(z1) 6 β(z2)(z2 − z1), ∀z1, z2 ∈ R. (6)

4. Numerical scheme

The well-posedness of (P) and (MP) is studied by using Rothe’s method [34]. This means that a time-discrete
scheme based on Backward Euler’s method is designed and the convergence of the approximations towards the unique
weak solution is proved under appropriate conditions on the data. Rothe’s method starts with an equidistant time-
partitioning of the time frame [0,T ] into n ∈ N intervals [ti−1, ti]. The time step is denoted by τ = T/n < 1 and the
discrete time points by ti = iτ, i = 0, . . . , n. The notations

zi ≈ z(ti), 0 6 i 6 n, and δzi =
zi − zi−1

τ
, 1 6 i 6 n,
3
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are introduced for any function z. Based on (P) and (MP), the following decoupled system for approximating the
unknowns (K, u) at time ti, 1 6 i 6 n, is proposed

(δui, φ) + (∇β(ui),∇φ) +

 i∑
k=1

Kkui−kτ, φ

 =

 i−1∑
k=0

f (uk)τ, φ

 + (Fi, φ) − (gi, φ)Γ (DPi)

and

m′′i + Kim(0) +

i∑
k=1

Kkm′i−kτ = ( f (ui−1), 1) +
(
F′i , 1

)
−

(
g′i , 1

)
Γ . (DMPi)

Define vi = β(ui) for i = 1, . . . , n, then equation (DPi) can also be written as 〈A(vi), φ〉 = 〈F̃i, φ〉, with the nonlinear
operator A : H1(Ω)→ H1(Ω)∗ and the linear functional F̃i : H1(Ω)→ R defined by

〈A(vi), φ〉 =
1
τ

(β−1(vi), φ) + (∇vi,∇φ) (7)

and

〈F̃i, φ〉 =
1
τ

(ui−1, φ) +

 i−1∑
k=0

f (uk)τ, φ

 + (Fi, φ) − (gi, φ)Γ −

 i∑
k=1

Kkui−kτ, φ

 , (8)

for any φ ∈ H1(Ω). For given i ∈ {1, . . . , n}, first (DMPi) is solved and then (DPi). Further, the index i is increased to
i + 1. Using monotone operator theory [35], the existence and uniqueness of a solution (Ki, ui = β−1(vi)) ∈ R ×H1(Ω)
for i = 1, . . . , n obeying (DMPi) and (DPi) can be proved.

Theorem 4.1 (Existence of a solution on a single time step). Let f : R → R be bounded. The function β satisfies
(3–4). Moreover, assume that u0 ∈ L2(Ω), g ∈ C1

(
[0,T ],L2(Γ)

)
, F ∈ C1

(
[0,T ],L2(Ω)

)
, and m ∈ C2 ([0,T ]) with

m(0) , 0. Then there exist C > 0 and τ0 > 0 such that for any τ < τ0 and each i ∈ {1, . . . , n} there exists an unique
couple (Ki, ui) ∈ R × H1(Ω) solving (DMPi) and (DPi). Moreover, there exists a positive constant C such that

max
i=1,...,n

|Ki| 6 C.

Proof. If m′(0) = 0, then |m(0) + m′(0)τ| > 0. If m′(0) , 0, then set τ0 = min
{

1,
|m(0)|

2 |m′(0)|

}
. Then for any τ < τ0, we

get by the triangle inequality that∣∣∣m(0) + m′(0)τ
∣∣∣ > |m(0)| −

∣∣∣m′(0)
∣∣∣ τ > |m(0)| −

∣∣∣m′(0)
∣∣∣ τ0 >

|m(0)|
2

> 0.

For each i ∈ {1, . . . , n}, the following recursive deduction can be made. Let u0, . . . , ui−1 ∈ L2(Ω) and K1, . . . ,Ki−1 ∈ R
be given. Then, (DMPi) implies the existence of a unique Ki ∈ R such that

Ki
[
m(0) + m′(0)τ

]
= ( f (ui−1), 1) +

(
F′i , 1

)
−

(
g′i , 1

)
Γ −

i−1∑
k=1

Kkm′i−kτ − m′′i . (9)

The operator A defined in (7) is strict monotone because for all u, v ∈ H1(Ω) holds that

〈A(u) − A(v), u − v)〉 =
1
τ

(
β−1(u) − β−1(v), u − v

)
+ (∇u − ∇v,∇u − ∇v) > min

{
1
β1τ

, 1
}
‖u − v‖2H1(Ω) .

From A(0) = 0, it follows that A is coercive. The continuity of β−1 implies the demicontinuity of A. Moreover, the
functional F̃i defined in (8) is bounded. Starting from u0 ∈ L2(Ω), the operator equation A(vi) = F̃i has a unique
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solution vi ∈ H1(Ω) for every i = 1, . . . , n [35]. Therefore, for i = 1, . . . , n, ui = β−1(vi) is uniquely determined in
H1(Ω). Finally, the relation (9) yields

|Ki| 6 C

1 +

i−1∑
k=1

|Kk | τ

 ,
which is valid for any i = 1, . . . , n. An application of the discrete Grönwall lemma [36] gives the uniform bound of
|Ki|.

5. A priori estimates

The a priori estimates proved in this section serve as uniform bounds to prove convergence.

Lemma 5.1. Let the conditions of Theorem 4.1 be satisfied. Then there exist positive constants C such that for any
τ < τ0 holds that

max
16 j6n

∥∥∥u j

∥∥∥2
+

n∑
i=1

‖∇β(ui)‖2 τ 6 C

and

max
06 j6n

∥∥∥β(u j)
∥∥∥ 6 C and

n∑
i=1

‖ui‖
2
H1(Ω) τ 6 C.

Proof. We set φ = β(ui)τ in (DPi) and sum up for i = 1, . . . , j, we obtain that

j∑
i=1

(δui, β(ui)) τ +

j∑
i=1

‖∇β(ui)‖2 τ

=

j∑
i=1

 i−1∑
k=0

f (uk)τ, β(ui)

 τ +

j∑
i=1

(Fi, β(ui)) τ −
j∑

i=1

(gi, β(ui))Γ τ −

j∑
i=1

 i∑
k=1

Kkui−kτ, β(ui)

 τ. (10)

For the first term on the left-hand side (LHS), we get that

j∑
i=1

(ui − ui−1, β(ui))
(6)
>

j∑
i=1

(∫
Ω

Φβ(ui) −
∫

Ω

Φβ(ui−1)
)

=

∫
Ω

Φβ(u j) −
∫

Ω

Φβ(u0).

Moreover, ∫
Ω

Φβ(u j)
(5)
>
β0

2

∥∥∥u j

∥∥∥2
and

∣∣∣∣∣∫
Ω

Φβ(u0)
∣∣∣∣∣ (5)
6
β1

2
‖u0‖

2 6 C.

The first two terms on the right-hand side (RHS) of (10) can be estimated by by the boundedness of f and the Lipschitz
continuity of β as∣∣∣∣∣∣∣

j∑
i=1

 i−1∑
k=0

f (uk)τ, β(ui)

 τ
∣∣∣∣∣∣∣ 6 C + C

j∑
i=1

‖ui‖
2 τ and

∣∣∣∣∣∣∣
j∑

i=1

(Fi, β(ui)) τ

∣∣∣∣∣∣∣ 6 C + C
j∑

i=1

‖ui‖
2 τ.

The third therm can be estimated by using the Nečas inequality [37], i.e.

‖z‖2Γ 6 ε ‖∇z‖2 + Cε ‖z‖2 , ∀z ∈ H1(Ω), 0 < ε < ε0. (11)

Due to the properties of β, it holds true that∣∣∣∣∣∣∣
j∑

i=1

(gi, β(ui))Γ τ

∣∣∣∣∣∣∣ 6 Cε + Cε

j∑
i=1

‖ui‖
2 τ + ε

j∑
i=1

‖∇β(ui)‖2 τ.

5
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By Young’s inequality, Hölder’s inequality, Theorem 4.1 and u0 ∈ L2(Ω), we obtain that∣∣∣∣∣∣∣
j∑

i=1

 i∑
k=1

Kkui−kτ, β(ui)

 τ
∣∣∣∣∣∣∣ 6 1

2

j∑
i=1

 i∑
k=1

K2
k τ

  i∑
k=1

‖ui−k‖
2 τ

 τ + 1
2

j∑
i=1

‖β(ui)‖2 τ 6 C + C
j∑

i=1

‖ui‖
2 τ.

Collecting the previous estimates and fixing ε sufficiently small gives that

∥∥∥u j

∥∥∥2
+

j∑
i=1

‖∇β(ui)‖2 τ 6 C + C
j∑

i=1

‖ui‖
2 τ.

An application of the discrete Grönwall lemma concludes the proof.

Lemma 5.2. Let the conditions of Theorem 4.1 be satisfied and u0 ∈ H1(Ω). Then there exist positive constants C
such that for any τ < τ0 holds that

n∑
i=1

‖δui‖
2 τ + max

16 j6n

∥∥∥∇β(u j)
∥∥∥2

+

j∑
i=1

‖∇β(ui) − ∇β(ui−1)‖2 6 C

and

max
16 j6n

∥∥∥u j

∥∥∥
H1(Ω) 6 C and

j∑
i=1

‖∇ui − ∇ui−1‖
2 6 C.

Proof. First, we put φ = β(ui) − β(ui−1) in (DPi) and sum up for i = 1, . . . , j, we get that

j∑
i=1

(δui, β(ui) − β(ui−1)) +

j∑
i=1

(∇β(ui),∇β(ui) − ∇β(ui−1)) =

j∑
i=1

 i−1∑
k=0

f (uk)τ, β(ui) − β(ui−1)


+

j∑
i=1

(Fi, β(ui) − β(ui−1)) −
j∑

i=1

(gi, β(ui) − β(ui−1))Γ −

j∑
i=1

 i∑
k=1

Kkui−kτ, β(ui) − β(ui−1)

 . (12)

The strict monotonicity of β implies that

j∑
i=1

(δui, β(ui) − β(ui−1)) > β0

j∑
i=1

‖δui‖
2 τ.

For the second term on the LHS of (12), we apply Abel’s lemma [38], which states that

2
j∑

i=1

ai(ai − ai−1) = a2
j − a2

0 +

j∑
i=1

(ai − ai−1)2.

Hence (consider ∇β(ui) instead of ai and integrate over Ω),

j∑
i=1

(∇β(ui),∇β(ui) − ∇β(ui−1)) = 1
2

∥∥∥∇β(u j)
∥∥∥2
− 1

2 ‖∇β(u0)‖2 + 1
2

j∑
i=1

‖∇β(ui) − ∇β(ui−1)‖2 .

On all the first term on the RHS of (12), we apply the following summation by parts formula: for any real sequences
{zi}
∞
i=0 and {wi}

∞
i=0 holds that

j∑
i=1

zi (wi − wi−1) = z jw j − z0w0 −

j∑
i=1

(zi − zi−1) wi−1.

6
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Therefore,

j∑
i=1

 i−1∑
k=0

f (uk)τ, β(ui) − β(ui−1)

 =

 j−1∑
k=0

f (uk)τ, β(u j)

 − j∑
i=1

( f (ui−1), β(ui−1)) τ,

j∑
i=1

(Fi, β(ui) − β(ui−1)) =
(
F j, β(u j)

)
− (F0, β(u0)) −

j∑
i=1

(δFi, β(ui−1)) τ,

j∑
i=1

(gi, β(ui) − β(ui−1))Γ =
(
g j, β(u j)

)
Γ
− (g0, β(u0))Γ −

j∑
i=1

(δgi, β(ui−1))Γ τ,

j∑
i=1

 i∑
k=1

Kkui−kτ, β(ui) − β(ui−1)

 =

 j∑
k=1

Kkui−kτ, β(u j)

 − j∑
i=1

Kiu0 +

i−1∑
k=1

Kkδui−kτ, β(ui−1)

 τ.
Using Lemma 5.1, it is clear that∣∣∣∣∣∣∣

j∑
i=1

 i−1∑
k=0

f (uk)τ, β(ui) − β(ui−1)


∣∣∣∣∣∣∣ 6 C and

∣∣∣∣∣∣∣
j∑

i=1

(Fi, β(ui) − β(ui−1))

∣∣∣∣∣∣∣ 6 C.

Due to Nečas inequality (11), Lemma 5.1 and the assumption u0 ∈ H1(Ω), we readily obtain that∣∣∣∣∣∣∣
j∑

i=1

(gi, β(ui) − β(ui−1))Γ

∣∣∣∣∣∣∣ 6 Cε + ε
∥∥∥∇β(u j)

∥∥∥2
.

For the last term on the RHS of (12), it is clear by Lemma 4.1, Lemma 5.1 and Hölder’s inequality that∣∣∣∣∣∣∣
j∑

i=1

 i∑
k=1

Kkui−kτ, β(ui) − β(ui−1)


∣∣∣∣∣∣∣ 6 C + C

j∑
i=1

∥∥∥∥∥∥∥
i−1∑
k=1

Kkδui−kτ

∥∥∥∥∥∥∥
2

τ

6 C + C
j∑

i=1

 i−1∑
k=1

K2
k τ


 i−1∑

k=1

‖δui−k‖
2 τ

 τ
6 C + C

j∑
i=1

 i∑
k=1

‖δuk‖
2 τ

 τ.
Combining the previous estimates and fixing ε sufficiently small gives that

j∑
i=1

‖δui‖
2 τ +

∥∥∥∇β(u j)
∥∥∥2

+

j∑
i=1

‖∇β(ui) − ∇β(ui−1)‖2 6 C + C
j∑

i=1

 i∑
k=1

‖δuk‖
2 τ

 τ.
An application of the discrete Grönwall lemma concludes the proof.

In the following lemma, the PDE in (1) needs to be satisfied at t = 0. Hence, the following compatibility conditions
are defined:

δu0 := ∂tu(0) := F0 + ∇ · (∇β(u0)) ∈ L2(Ω) if ∇β(u0) ∈ H(div; Ω) (13)

and
u−1 := u0 − τδu0 ∈ L2(Ω).

Now, the discrete measured problem (DMPi) is valid at t = 0. It holds that

m′′0 + K0m0 = ( f (u−1), 1) +
(
F′0, 1

)
−

(
g′0, 1

)
Γ
, (DMP0)

which defines K0.
7
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Lemma 5.3. Let the assumptions of Lemma 5.2 be fulfilled. Moreover, assume that ∇β(u0) ∈ H(div; Ω), g ∈
C2

(
[0,T ],L2(Γ)

)
, F ∈ C2

(
[0,T ],L2(Ω)

)
, m ∈ C3([0,T ]) and f : R → R is global Lipschitz continuous. Then,

there exist positive constants C and τ0 such that for all τ < τ0 holds that
n∑

i=1

|δKi|
2τ 6 C.

Proof. First, lets subtract (DMP0) from (DMPi) for i = 1 and divide the result by τ. We obtain

δK1m0 = ( f (u0) − f (u−1), 1) +
(
δF′1, 1

)
−

(
δg′1, 1

)
Γ − δm

′′
1 − K1m′0.

By the mean value theorem and the Lipschitz continuity of f , we get for τ < τ0 holds that

|δK1| 6 C ‖δu0‖ τ + C 6 C,

as m(0) , 0. Next, we apply the δ-operator to (DMPi) for 2 6 i 6 n. This gives us

δKim(0) = (δ f (ui−1), 1) +
(
δF′i , 1

)
−

(
δg′i , 1

)
Γ − δm

′′
i − Kim′0 −

i−1∑
k=1

Kkδm′i−kτ.

Theorem 4.1 and the Lipschitz continuity of f lead to

|δKi| 6 C (1 + ‖δui−1‖) for 2 6 i 6 n.

Therefore, for τ < τ0, Lemma 5.2 implies that
n∑

i=1

|δKi|
2 τ = |δK1|

2 τ +

n∑
i=2

|δKi|
2 τ 6 C

1 +

n∑
i=2

‖δui−1‖
2 τ

 6 C.

6. Convergence and existence of a solution

Let us introduce the following piecewise linear function in time

un : [0,T ]→ L2(Ω) : t 7→

u0 t = 0
ui−1 + (t − ti−1)δui t ∈ (ti−1, ti]

, 1 6 i 6 n,

and a step function

un : [0,T ]→ L2(Ω) : t 7→

u0 t = 0
ui t ∈ (ti−1, ti]

, 1 6 i 6 n.

Similarly, define Kn, Fn, F′n, gn, g′n, m′n and m′′n. Using these so-called Rothe’s functions, (DPi) and (DMPi) can be
rewritten on the whole time frame as1

(∂tun(t), φ) + (∇β(un(t)),∇φ) +

 dteτ∑
k=1

Kn(tk)un(t − tk)τ, φ

 =

 btcτ∑
k=0

f (un(tk))τ, φ

 +
(
Fn(t), φ

)
−

(
gn(t), φ

)
Γ (DP)

and

m′′n(t) + Kn(t)m(0) +

dteτ∑
k=1

Kn(tk)m′n(t − tk)τ = ( f (un(t − τ)), 1) +
(
F′n(t), 1

)
−

(
g′n(t), 1

)
Γ
. (DMP)

This puts us in a position to prove the existence of a weak solution to (P) and (MP).

1dteτ = i and btcτ = i − 1 when t ∈ (ti−1, ti]
8
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Theorem 6.1 (Existence). Suppose the conditions of Lemma 5.2 are fulfilled. Moreover, let f : R → R be global
Lipschitz continuous. Then there exists a weak solution 〈K, u〉 to the problem (P)-(MP), where K ∈ L2(0,T ) and
u ∈ C

(
[0,T ],L2(Ω)

)
∩ L2

(
(0,T ),H1(Ω)

)
with ∂tu ∈ L2

(
(0,T ),L2(Ω)

)
.

Proof. From Lemmas 5.1 and 5.2, we have for all n > 0 that

max
t∈[0,T ]

‖un(t)‖H1(Ω) 6 C for all t ∈ [0,T ],
∫ T

0
‖∂tun(t)‖2 dt 6 C.

The Rellich-Kondrachov theorem [39, §5.8.1] implies the compact embedding

H1(Ω) ↪→↪→ L2(Ω).

Then, the conditions of [34, Lemma 1.3.13] are satisfied. This implies the existence of an element

u ∈ C
(
[0,T ],L2(Ω)

)
∩ L∞

(
(0,T ),H1(Ω)

)
,

and a subsequence (unl )k∈N of (un)n∈N such that
unl → u, in C

(
[0,T ],L2(Ω)

)
,

unl (t) ⇀ u(t), in H1(Ω) for all t ∈ [0,T ],
unl (t) ⇀ u(t), in H1(Ω) for all t ∈ [0,T ],

∂tunl ⇀ ∂tu, in L2
(
(0,T ),L2(Ω)

)
, (14a)

which we denote again by un for ease of reading. Note that un(0) − un(0) = 0. For all t ∈ (ti−1, ti] with 1 6 i 6 n, we
have that

|un(t) − un(t)| = |ui−1 + (t − ti−1)δui − ui| = |(t − ti−1 − τ)δui| = |(t − ti)δui| 6 τ |δui| .

Employing Lemma 5.2 gives

lim
n→∞
‖un − un‖

2
L2((0,T ),L2(Ω)) 6 lim

n→∞
τ2

n∑
i=1

‖δui‖
2 τ 6 lim

n→∞

C
n2 = 0,

such that un and un have the same limit in L2
(
(0,T ),L2(Ω)

)
, i.e.

un → u in L2
(
(0,T ),L2(Ω)

)
. (15)

By [40, p. 88], the exists a subsequence {un} of {un} such that

un → u, a.e. in (0,T ) ×Ω.

Therefore, by the Lipschitz continuity of β, we get that

β(un)→ β(u) in L2
(
(0,T ),L2(Ω)

)
. (16)

From Lemma 5.2 follows that ∫ T

0
‖β(un(t))‖2H1(Ω) dt 6 C.

By the reflexivity of the space L2
(
(0,T ),H1(Ω)

)
, we get the existence of a subsequence (again denoted with the same

index) such that β(un) ⇀ z in L2
(
(0,T ),H1(Ω)

)
. Due to (16), we obtain that z = β(u). Therefore,

∇β(un) ⇀ ∇β(u) in L2
(
(0,T ),L2(Ω)

)
. (17)

9
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Using Theorem 4.1, we have that
∫ T

0

∣∣∣Kn(t)
∣∣∣2 dt 6 C, which means by the reflexivity of L2(0,T ) that (in the sense of

a subsequence being indexed by n as well)

Kn ⇀ K in L2(0,T ). (18)

It is clear that limn→∞ m′n(t) = m′(t) and limn→∞ m′′n(t) = m′′(t) in L2([0,T ]), limn→∞ gn(t) = g(t) and
limn→∞ g′n(t) = g′(t) in L2

(
(0,T ),L2(Γ)

)
and limn→∞ Fn(t) = F(t) and limn→∞ F′n(t) = F′(t) in L2

(
(0,T ),L2(Ω)

)
because m, F and g are prescribed. Now, we integrate (DP) in time over (0, η) ⊂ [0,T ] for the resulting subsequence
to get

∫ η

0
(∂tun(t), φ) dt +

∫ η

0
(∇β(un(t)),∇φ) dt +

∫ η

0

 dteτ∑
k=1

Kn(tk)un(t − tk)τ, φ

 dt

=

∫ η

0

 btcτ∑
k=0

f (un(tk))τ, φ

 dt +

∫ η

0

(
Fn(t), φ

)
dt −

∫ η

0

(
gn(t), φ

)
Γ dt. (19)

This expression is valid for any η ∈ [0,T ]. We want to pass the limit n → ∞ in (19). Using the stability result (14a),
we have for n→ ∞ that∫ η

0
(∂tun, φ)→

∫ η

0
(∂tu, φ) , ∀φ ∈ H1(Ω).

Thanks to (17), we have that∫ η

0
(∇β(un(t)),∇φ) dt →

∫ η

0
(∇β(u(t)),∇φ) dt, ∀φ ∈ H1(Ω).

By Theorem 4.1 and Lemma 5.1, it holds for all t ∈ [0,T ] that

dteτ∑
k=1

Kn(tk)un(t − tk)τ = (Kn ∗ un)(t) +

∫ τdteτ

t
Kn(s)un(t − s) ds = (Kn ∗ un)(t) + O (τ) (20)

and

btcτ∑
k=0

f (un(tk))τ = f (u0)τ +

∫ t

0
f (un(s)) ds −

∫ t

τbtcτ
f (un(s)) ds =

∫ t

0
f (un(s)) ds + O (τ) . (21)

Hence, by (15), (18) and the Lipschitz continuity of f , we see that

lim
n→∞

∫ η

0

 dteτ∑
k=1

Kn(tk)un(t − tk)τ, φ

 dt = lim
n→∞

∫ η

0

dteτ∑
k=1

Kn(tk) (un(t − tk), φ) τ =

∫ η

0
((K ∗ u)(t), φ) dt

and

lim
n→∞

∫ η

0

 btcτ∑
k=0

f (un(tk))τ, φ

 dt =

∫ η

0

(∫ t

0
f (u(s)) ds, φ

)
ds.

Now, taking the limit n→ ∞ in (19) results in∫ η

0
(∂tu(t), φ) dt +

∫ η

0
(∇β(u(t)),∇φ) dt +

∫ η

0
((K ∗ u)(t), φ) dt

=

∫ η

0

(∫ t

0
f (u(s)) ds, φ

)
dt +

∫ η

0
(F(t), φ) dt −

∫ η

0
(g(t), φ)Γ dt.

10
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Taking the derivative with respect to η, we arrive at (P). In the same way as before, we integrate (DMP) in time and
pass the limit for n → ∞. This follows the same line as passing the limit in (19), therefore we skip the details. Note
that

lim
n→∞

∫ T

0
‖un(t − τ) − un(t)‖2 dt = 0.

Finally, we differentiate the result with respect to time and arrive at (MP).

In the previous theorem, to prove the existence of a weak solution to (P) − (MP), only the weak convergence of
Kn to K in L2(0,T ) is used. However, assume that the conditions of Lemma 5.3 are satisfied. Then, from this lemma,
it is clear that

max
t∈[0,T ]

|Kn(t)| 6 C for all t in [0,T ] and
∫ T

0
|∂tKn(t)|2 dt 6 C.

From this follows that Kn and Kn have the same limit in L2(0,T ). Moreover, by the Arzelà-Ascoli theorem [41, The-
orem 11.28], there exists a subsequence {Kn} (which we denote by the same symbol again) that converges uniformly
on [0,T ] to K, i.e. K ∈ C([0,T ]). The reflexivity of the space L2(0,T ) implies that ∂tKn ⇀ ∂tK in L2(0,T ).

Corollary 6.1. Suppose the conditions of Lemma 5.3 are fulfilled. Then there exists a weak solution 〈K, u〉 to the
problem (P)-(MP), where K ∈ C([0,T ]) with K′ ∈ L2(0,T ) and u ∈ C

(
[0,T ],L2(Ω)

)
∩ L2

(
(0,T ),H1(Ω)

)
with

∂tu ∈ L2
(
(0,T ),L2(Ω)

)
.

Now, it is possible to establish the uniqueness of a solution to (P)-(MP).

Theorem 6.2 (Uniqueness). Let the assumptions of Lemma 6.1 be satisfied. Then the problem (P)-(MP) has at most
one solution 〈K, u〉 ∈ L2(0,T ) ×

[
C

(
[0,T ],L2(Ω)

)
∩ L2

(
(0,T ),H1(Ω)

)]
with ∂tu ∈ L2

(
(0,T ),L2(Ω)

)
.

Proof. First, we integrate (P) over the time variable t ∈ (0, ξ) ⊂ (0,T ). We obtain that

(u(ξ) − u0, φ) +

(∫ ξ

0
∇β(u(t)) dt,∇φ

)
+

(∫ ξ

0
(K ∗ u)(t) dt, φ

)
=

(∫ ξ

0

∫ t

0
f (u(s)) ds dt, φ

)
+

(∫ ξ

0
F(t) dt, φ

)
−

(∫ ξ

0
g(t) dt, φ

)
Γ

. (22)

Suppose that there are two solutions 〈K1, u1〉 and 〈K2, u2〉 solving (P)-(MP). Denote the difference of the solutions by
K = K1 − K2 and u = u1 − u2. Subtracting the integrated variational formulation (22) for the different solution gives
that

(u(ξ), φ) +

(∫ ξ

0

[
∇β(u1(t)) − ∇β(u2(t))

]
dt,∇φ

)
+

(∫ ξ

0
(K1 ∗ u)(t) dt, φ

)
+

(∫ ξ

0
(K ∗ u2)(t) dt, φ

)
=

(∫ ξ

0

∫ t

0

[
f (u1(s)) − f (u2(s))

]
ds dt, φ

)
.

Now, we put φ = β(u1(ξ)) − β(u2(ξ)) and integrate again over the time variable ξ ∈ (0, η) ⊂ (0,T ). This gives∫ η

0
(u(ξ), β(u1(ξ)) − β(u2(ξ))) dξ +

∫ η

0

(∫ ξ

0

[
∇β(u1(t)) − ∇β(u2(t))

]
dt,∇β(u1(ξ)) − ∇β(u2(ξ))

)
dξ

+

∫ η

0

(∫ ξ

0
(K1 ∗ u)(t) dt, β(u1(ξ)) − β(u2(ξ))

)
dξ +

∫ η

0

(∫ ξ

0
(K ∗ u2)(t) dt, β(u1(ξ)) − β(u2(ξ))

)
dξ

=

∫ η

0

(∫ ξ

0

∫ t

0

[
f (u1(s)) − f (u2(s))

]
ds dt, β(u1(ξ)) − β(u2(ξ))

)
dξ. (23)

11
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Subtracting (MP) for the different solutions gives

K(t)m(0) + (K ∗ m′)(t) = ( f (u1(t)) − f (u2(t)), 1) .

By the Lipschitz continuity of f and Grönwall’s lemma, it follows easily that

|K(t)| 6 C ‖u(t)‖ , t ∈ [0,T ]. (24)

Now, we are able to estimate each term of (23). The strict monotonicity of β implies that∫ η

0
(u(ξ), β(u1(ξ)) − β(u2(ξ))) dξ > β0

∫ η

0
‖u(ξ)‖2 dξ.

For the second term on the LHS, we get by the strict monotonicity of β and integration by parts that∫ η

0

(∫ ξ

0

[
∇β(u1(t)) − ∇β(u2(t))

]
dt,∇β(u1(ξ)) − ∇β(u2(ξ))

)
dξ =

1
2

∥∥∥∥∥∫ η

0

[
∇β(u1(ξ)) − ∇β(u2(ξ))

]
dξ

∥∥∥∥∥2

> 0.

By Young’s, Hölder’s and Jensen’s inequality, the Lipschitz continuity of β and K1 ∈ L2(0,T ), it follows for the third
term on the LHS that∣∣∣∣∣∣

∫ η

0

(∫ ξ

0
(K1 ∗ u)(t) dt, β(u1(ξ)) − β(u2(ξ))

)
dξ

∣∣∣∣∣∣ 6 Cε

∫ η

0

∫ ξ

0
‖u(t)‖2 dt dξ + ε

∫ η

0
‖u(ξ)‖2 dξ.

For the last term on the LHS, we use the fact that u2 ∈ C
(
[0,T ],L2(Ω)

)
and (24) such that∣∣∣∣∣∣

∫ η

0

(∫ ξ

0
(K ∗ u2)(t) dt, β(u1(ξ)) − β(u2(ξ))

)
dξ

∣∣∣∣∣∣ 6 Cε

∫ η

0

∫ ξ

0
‖u(t)‖2 dt dξ + ε

∫ η

0
‖u(ξ)‖2 dξ.

The same upper bound can be obtained for the term on the RHS of (23) by the Lipschitz continuity of f . Collecting
all the estimates above and fixing ε sufficiently small imply that∫ η

0
‖u(ξ)‖2 dξ 6 C

∫ η

0

∫ ξ

0
‖u(t)‖2 dt dξ.

An application of Grönwall’s lemma gives that
∫ η

0 ‖u(ξ)‖2 dξ = 0, i.e. u = 0 or u1 = u2 a.e. in Ω × [0,T ]. The
uniqueness of K in L2(0,T ) follows from (24).

The convergence of Rothe’s functions towards the weak solution have been shown for a subsequence {un} and
{Kn} in Theorem 6.1. However, taking into account the uniqueness of a solution, it is clear that the whole Rothe’s
sequences {un} and {Kn} converge against the solution.

7. Error analysis

For the error analysis, the assumptions of Lemma 5.3 needs to be satisfied. First, the following notations are
introduced:

eu = un − u, eu = un − u, eK = Kn − K.

Analogously, eg, eg′ , eF , eF′ , em′ and em′′ are defined. Secondly, the following estimates are frequently used

‖un(t − τ) − un(t)‖ + ‖un(t) − un(t)‖ 6 ‖∂tun(t)‖ τ, ∀ t ∈ [0,T ].

Note that this inequality is also valid for t = 0 by compatibility condition (13). Based on the result of Lemma 5.2, this
yields∫ T

0

(
‖un(t − τ) − un(t)‖2 + ‖un(t) − un(t)‖2

)
dt 6 Cτ2. (25)

Finally, the following theorem contains the error estimates. Optimal convergences rates for Rothe’s method (O (τ))
are obtained.

12
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Theorem 7.1. Let the conditions of Lemma 5.3 be fulfilled. Then there exist positive constants C and τ0 such that for
all τ < τ0 holds that∫ T

0

∣∣∣Kn(t) − K(t)
∣∣∣2 dt +

∫ T

0
‖un(t) − u(t)‖2 6 Cτ2.

Proof. The proof exists out of two steps. First, a bound on eK in L2(0,T ) is proved. Afterwards, the error estimates
are established. For the first step, we subtract (MP) from (DMP) and we use an analogue of (20) to get

em′′ (t) + eK(t)m0 +

∫ τdteτ

t
Kn(s)m′n(t − s) ds +

(
eK ∗ m′n

)
(t) +

(
K ∗ em′

)
(t)

= ( f (un(t − τ)) − f (u(t)), 1) +
(
eF′ (t), 1

)
−

(
eg′ (t), 1

)
Γ
. (26)

By Theorem 4.1 and the mean-value theorem, we obtain that

∣∣∣em′′ (t)
∣∣∣ +

∣∣∣∣∣∣
∫ τdteτ

t
Kn(s)m′n(t − s) ds

∣∣∣∣∣∣ +
∣∣∣∣(K ∗ em′

)
(t)

∣∣∣∣ +
∣∣∣∣(eF′ (t), 1

)∣∣∣∣ +
∣∣∣∣(eg′ (t), 1

)
Γ

∣∣∣∣ 6 Cτ.

For the fourth term on the LHS of (26), it is true that∣∣∣∣(eK ∗ m′n
)

(t)
∣∣∣∣ 6 C

∫ t

0

∣∣∣eK(s)
∣∣∣ ds.

The Lipschitz continuity of f implies for the first term on the RHS of (26) that

|( f (un(t − τ)) − f (u(t)), 1)| 6 C ‖un(t − τ) − un(t)‖ + C ‖eu(t)‖ .

Gathering all the estimates, we obtain from (26) (after division by m0) that

∣∣∣eK(t)
∣∣∣ 6 C

(
τ + ‖un(t − τ) − un(t)‖ + ‖eu(t)‖ +

∫ t

0

∣∣∣eK(s)
∣∣∣ ds

)
.

We take the second power and integrate the result with respect to the time variable. For each η ∈ [0,T ] holds that∫ η

0

∣∣∣eK(t)
∣∣∣2 dt 6 C

(
τ2 +

∫ η

0
‖un(t − τ) − un(t)‖2 dt +

∫ η

0
‖eu(t)‖2 dt +

∫ η

0

∫ t

0

∣∣∣eK(s)
∣∣∣2 ds dt

)
.

Applying estimate (25) and Grönwall’s argument imply that∫ η

0

∣∣∣eK(t)
∣∣∣2 dt 6 C

(
τ2 +

∫ η

0
‖eu(t)‖2 dt

)
. (27)

The second part of the proof starts with the subtraction of (P) from (DP). Next, the result is integrated in time over
(0, η) ⊂ (0,T ). We obtain

(un(ξ) − u(ξ), φ) +

(∫ ξ

0

[
∇β(un(t)) − ∇β(u(t))

]
dt,∇φ

)
+

∫ ξ

0

 dteτ∑
k=1

Kn(tk)un(t − tk)τ − (K ∗ u)(t)

 dt, φ


=

∫ ξ

0

 btcτ∑
k=0

f (un(tk))τ −
∫ t

0
f (u(s)) ds

 dt, φ

 +

(∫ ξ

0
(Fn(t) − F(t)) dt, φ

)
−

(∫ ξ

0
(gn(t) − g(t)) dt, φ

)
Γ

.

13
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Now, we put φ = β(un(ξ)) − β(u(ξ)) and integrate again over the time variable ξ ∈ (0, η) ⊂ (0,T ). This gives∫ η

0
(un(ξ) − u(ξ), β(un(ξ)) − β(u(ξ))) dξ +

∫ η

0

(∫ ξ

0

[
∇β(un(t)) − ∇β(u(t))

]
dt,∇β(un(ξ)) − ∇β(u(ξ))

)
dξ

+

∫ η

0

∫ ξ

0

 dteτ∑
k=1

Kn(tk)un(t − tk)τ − (K ∗ u)(t)

 dt, β(un(ξ)) − β(u(ξ))

 dξ

=

∫ η

0

∫ ξ

0

 btcτ∑
k=0

f (un(tk))τ −
∫ t

0
f (u(s)) ds

 dt, β(un(ξ)) − β(u(ξ))

 dξ

+

∫ η

0

(∫ ξ

0
(Fn(t) − F(t)) dt, β(un(ξ)) − β(u(ξ))

)
dξ −

∫ η

0

(∫ ξ

0
(gn(t) − g(t)) dt, β(un(ξ)) − β(u(ξ))

)
Γ

dξ.

After some rearrangements in the terms and using (20) and (21), it holds that∫ η

0
(un(ξ) − u(ξ), β(un(ξ)) − β(u(ξ))) dξ +

∫ η

0
(un(ξ) − un(ξ), β(un(ξ)) − β(u(ξ))) dξ

+ 1
2

∥∥∥∥∥∫ η

0

[
∇β(un(t)) − ∇β(u(t))

]
dt

∥∥∥∥∥2

+

∫ η

0

(∫ ξ

0

(∫ τdteτ

t
Kn(s)un(t − s) ds

)
dt, β(un(ξ)) − β(u(ξ))

)
dξ

+

∫ η

0

(∫ ξ

0
(eK ∗ un)(t) dt, β(un(ξ)) − β(u(ξ))

)
dξ +

∫ η

0

(∫ ξ

0
(K ∗ eu)(t) dt, β(un(ξ)) − β(u(ξ))

)
dξ

=

∫ η

0

(∫ ξ

0

[
f (u0)τ +

∫ τbtcτ

t
f (un(s)) ds

]
dt, β(un(ξ)) − β(u(ξ))

)
dξ

+

∫ η

0

(∫ ξ

0

[∫ t

0
( f (un(s)) − f (u(s))) ds

]
dt, β(un(ξ)) − β(u(ξ))

)
dξ

+

∫ η

0

(∫ ξ

0
eF(t) dt, β(un(ξ)) − β(u(ξ))

)
dξ −

∫ η

0

(∫ ξ

0
eg(t) dt, β(un(ξ)) − β(u(ξ))

)
Γ

dξ. (28)

By the strict monotonicity of β, we get that∫ η

0
(un(ξ) − u(ξ), β(un(ξ)) − β(u(ξ))) dξ > β0

∫ η

0
‖eu(ξ)‖2 dξ.

For the second term on the LHS, by the Cauchy and Young inequalities, the Lipschitz continuity of β and (25), we
obtain that ∣∣∣∣∣∫ η

0
(un(ξ) − un(ξ), β(un(ξ)) − β(u(ξ))) dξ

∣∣∣∣∣ 6 Cετ
2 + ε

∫ η

0
‖eu(ξ)‖2 dξ.

Using the Cauchy and Young inequalities, the uniform boundedness of Kn and un and the Lipschitz continuity of β, it
follows that ∣∣∣∣∣∣

∫ η

0

(∫ ξ

0

(∫ τdteτ

t
Kn(s)un(t − s) ds

)
dt, β(un(ξ)) − β(u(ξ))

)
dξ

∣∣∣∣∣∣ 6 Cετ
2 + ε

∫ η

0
‖eu(t)‖2 dt.

For the fifth term on the LHS of (28), we use Young’s, Hölder’s and Jensen’s inequality together with the previously

14
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obtained estimate (27). We obtain that∣∣∣∣∣∣
∫ η

0

(∫ ξ

0
(eK ∗ un)(t) dt, β(un(ξ)) − β(u(ξ))

)
dξ

∣∣∣∣∣∣
6 Cε

∫ η

0

∥∥∥∥∥∥
∫ ξ

0
(eK ∗ un)(t) dt

∥∥∥∥∥∥2

dξ + ε

∫ η

0
‖eu(ξ)‖2 dξ

6 Cε

∫ η

0

∫ ξ

0

(∫ t

0
|eK(s)|2 ds

)
dt dξ + ε

∫ η

0
‖eu(ξ)‖2 dξ

(27)
6 Cετ

2 + Cε

∫ η

0

∫ ξ

0
‖eu(s)‖2 ds dξ + ε

∫ η

0
‖eu(ξ)‖2 dξ.

Moreover, in an analogous way, it holds that∣∣∣∣∣∣
∫ η

0

(∫ ξ

0
(K ∗ eu)(t) dt, β(un(ξ)) − β(u(ξ))

)
dξ

∣∣∣∣∣∣ 6 Cε

∫ η

0

∫ ξ

0
‖eu(s)‖2 ds dξ + ε

∫ η

0
‖eu(ξ)‖2 dξ.

Now, we estimate the terms in the RHS of (28). The first term can be estimated as∣∣∣∣∣∣
∫ η

0

(∫ ξ

0

[
f (u0)τ +

∫ τbtcτ

t
f (un(s)) ds

]
dt, β(un(ξ)) − β(u(ξ))

)
dξ

∣∣∣∣∣∣ 6 Cετ
2 + ε

∫ η

0
‖eu(ξ)‖2 dξ.

By the Lipschitz continuity of f , we calculate that∣∣∣∣∣∣
∫ η

0

(∫ ξ

0

[∫ t

0
( f (un(s)) − f (u(s))) ds

]
dt, β(un(ξ)) − β(u(ξ))

)
dξ

∣∣∣∣∣∣
6 Cε

∫ η

0

∫ ξ

0
‖eu(s)‖2 ds dξ + ε

∫ η

0
‖eu(ξ)‖2 dξ.

For the third term on the RHS, we use the mean value theorem such that∣∣∣∣∣∣
∫ η

0

(∫ ξ

0
eF(t) dt, β(un(ξ)) − β(u(ξ))

)
dξ

∣∣∣∣∣∣ 6 Cετ
2 + ε

∫ η

0
‖eu(ξ)‖2 dξ.

We use the integration by parts formula for the last term on the RHS, i.e.∫ η

0

(∫ ξ

0
eg(t) dt, β(un(ξ)) − β(u(ξ))

)
Γ

dξ =

(∫ η

0
eg(t) dt,

∫ η

0
β(un(t)) − β(u(t)) dt

)
Γ

−

∫ η

0

(
eg(ξ),

∫ ξ

0
β(un(t)) − β(u(t)) dt

)
Γ

dξ.

We employ Cauchy’s and Young’s inequalities, the mean value theorem, the trace inequality and the Lipschitz conti-
nuity of β such that∣∣∣∣∣∣

∫ η

0

(∫ ξ

0
eg(t) dt, β(un(ξ)) − β(u(ξ))

)
Γ

dξ

∣∣∣∣∣∣ 6 Cετ
2 + ε

∫ η

0
‖eu(t)‖2 dt

+ ε

∥∥∥∥∥∫ η

0

[
∇β(un(t)) − ∇β(u(t))

]
dt

∥∥∥∥∥2

+ C
∫ η

0

∫ ξ

0
‖eu(s)‖2 ds dξ + C

∫ η

0

∥∥∥∥∥∥
∫ ξ

0

[
∇β(un(t)) − ∇β(u(t))

]
dt

∥∥∥∥∥∥2

dξ.

Collecting all the previous estimates give

(β0 − ε)
∫ η

0
‖eu(ξ)‖2 dξ +

(
1
2 − ε

) ∥∥∥∥∥∫ η

0

[
∇β(un(t)) − ∇β(u(t))

]
dt

∥∥∥∥∥2

6 Cετ
2 + C

∫ η

0

∫ ξ

0
‖eu(s)‖2 ds dξ + C

∫ η

0

∥∥∥∥∥∥
∫ ξ

0

[
∇β(un(t)) − ∇β(u(t))

]
dt

∥∥∥∥∥∥2

dξ.

Fixing ε sufficiently small, an application of Grönwall’s lemma concludes the proof.
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Corollary 7.1. Let the conditions of Lemma 5.3 be fulfilled. Then there exist positive constants C and τ0 such that for
all τ < τ0 holds that ∫ T

0
|Kn(t) − K(t)|2 dt 6 Cτ2.

8. Numerical Experiments

In this section, it is assumed that the assumptions of Theorem 7.1 are satisfied. The presented numerical algorithm
in the previous sections is summarized in the following pseudo code:

Algorithm: numerical scheme in pseudo code
input : T > 0, n ∈ N and functions F, F′, f , β, g, g′, m, m′, m′′ and u0
output: kernel K and solution u at discrete time steps

1 τ← T/n;
2 θ ← [0 : τ : T ];
3 K← zeros(n + 1);
4 u[0]← u0;

5 K[0]←
1

m0

(
( f (u0 − τδu0), 1) +

(
F′0, 1

)
−

(
g′0, 1

)
Γ
− m′′0

)
;

6 for i = 1 to n do

7 K[i]←
1

m0 + m′0τ

( f (ui−1), 1) +
(
F′i , 1

)
−

(
g′i , 1

)
Γ −

i−1∑
k=1

Kkm′i−kτ − m′′i

;
8 u[i]← solveEP(〈A(ui), φ〉 = 〈F̃i, φ〉;

The aim of the simulations is to demonstrated the established error estimate on the convolution kernel K in Corol-
lary 7.1. For these simulations, the finite element library DOLFIN [42, 43] from the FEniCS project [44, 45] is
used.

In each experiment, the domain Ω = [0, 1]. The number of time discretization interval is chosen to be n = 2 j, j =

2, . . . , 8, such that the time step τ for the equidistant time partitioning equals respectively 2− jT, j = 2, . . . , 8. At
each time-step, the resulting nonlinear elliptic problems (see Line 8 in the Algorithm) are solved numerically by the
finite element method (FEM) using first order (P1-FEM) Lagrange polynomials for the space discretization. At each
timestep, the nonlinearity ∇β(ui) is approximated by β′(ui−1)∇ui. For the space discretization, a fixed uniform mesh
of 100 intervals is used. The L2-error between the numerical and exact kernel is approximated by Simpson’s rule for
the several values of the timestep τ:

EKex (τ) =

∫ T

0
|Kn(t) − Kex(t)|2 dt ≈

n∑
i=1

τ

6

[
(Ki−1 − Kex(ti−1))2 +

(Ki−1 + Ki

2
− Kex

( ti−1 + ti
2

))2

+ (Ki − Kex(ti))2
]
.

8.1. Experiment 1

The exact solution in the first experiment is prescribed as follows

uex(x, t) =
(
1 + t + t2

) (
1 + x2

)
and Kex(t) = exp(t), x ∈ [0, 1], t ∈ [0, 1]. (29)

The functions f and β are given by f (s) = s + 1 and β(s) = s + 1. Note that β is linear. The exact kernel Kex is
compared with the numerical solution for τ = 2−3, 2−5 and τ = 2−7 in Figure 1(a). The errors EKex (τ) are depicted
in Figure 1(b), where the error log2 EKex is plotted as a function of log2 τ. The linear regression line through all data
points is given by log2 EKex = 2.0233 log2 τ − 0.9666. This is in accordance with the predicted convergence rate in
Corollary 7.1. The linear regression line for the relative error is given by log2 Er

Kex
= 2.0233 log2 τ − 2.6422. For

instance, the CPU time for τ = 2−8 is 8s.
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K. Van Bockstal, M. Slodička and F. Gistelinck / Applied Numerical Mathematics 00 (2017) 1–20 17

8.2. Experiment 2

In the second experiment the unknown kernel is sinusoidal, i.e.

uex(x, t) =
(
1 + t + t2 + t3

)
(1 + sin (π x)) and Kex(t) = sin(2πt), x ∈ [0, 1], t ∈

[
0,

1
2

]
. (30)

The functions f and β are given by respectively f (s) = s + 5 and β(s) = s2 + s. The function β can be linearized
outside the range of uex. The CPU time for τ = 2−8 is 8s. The results of the numerical experiment are depicted in
Figures 2(a)–2(b). The linear regression line through the data points is given by log2 EKex = 2.0282 log2 τ + 0.0166.
The linear regression line for the relative error is given by log2 Er

Kex
= 2.0282 log2 τ + 2.0166. The CPU time for

τ = 2−8 is 3s.

8.3. Experiment 3

In the third experiment, the prescribed solution u is more general, i.e.

uex(x, t) =
(
1 + t + t2 + t3

)
(1 + sin (tx)) and Kex(t) = sin(2πt), x ∈ [1, 2], t ∈ [0, 1] . (31)

The functions f and β are the same as in Experiment 2. Again, accurate numerical approximations are obtained
when the timestep is sufficiently small, see Figures 3(a)–3(b). The linear regression line through all data points is
given by log2 EKex = 2.0142 log2 τ + 1.8951. The linear regression line for the relative error is given by log2 Er

Kex
=

2.0142 log2 τ + 2.8951. The CPU time for τ = 2−8 is 10s.

9. Conclusion

A nonlinear parabolic integro-differential problem of second order with an unknown solely time-dependent con-
volution kernel is considered. The missing information is compensated by an integral-type measurement over the
domain. The existence and uniqueness of a weak solution for the problem is proved using Rothe’s method. This
convergence of the numerical approximations to the exact solution is optimal in time. Numerical experiments sup-
port this theoretically obtained results. For instance, future research can concern the detemination of K when a local
measurement

∫
Ω
χ(x)u(x, t) dx = m(t) is considered and the implementation of numerical experiments with noisy data.
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Appendix A. Figures

(a) exact solution (29) and its numerical approximation
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Figure A.1. Kernel reconstruction in Experiment 1.

(a) exact solution (30) and its numerical approximation
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Figure A.2. Kernel reconstruction in Experiment 2.
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(a) exact solution (31) and its numerical approximation
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Figure A.3. Kernel reconstruction in Experiment 3.
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