

Quantitative first principles based kinetic modeling for the synthesis of well-defined macromolecular architectures

<u>Gilles B. Desmet</u>, Dagmar R. D'hooge, Maarten K. Sabbe, Marie-Françoise Reyniers and Guy B. Marin

> Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

Contents: 2 case studies related to Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization

- 1. RAFT polymerization of styrene () using a trithiocarbonate (
 - Calculation of **addition-fragmentation** rate coefficients
 - Application in a microkinetic model

- 2. The aminolysis of RAFT-macromolecules
 - Determination of the reaction mechanism
 - calculation of rate coefficients for a variety of RAFT-agents

How do RAFT agents help us to obtain control over the chain length in radical polymerization

Ab initio calculation of addition-fragmentation reactions using a dimer model: 4 model reactions

Model assumptions

- dimer radical to model macroradical^a
- ethyl group to model dodecyl group

Ab initio calculation

- scan conformers: B3LYP/6-31G(d)
- geometry optimization and frequencies: B3LYP/6-31G(d)
- 'single point' electronic energy: M06-2X/6-311+G(d,p)

Solvation via COSMO-RS

 $k_{add} = \frac{1}{n_0} \sum_{i} k_{add,i} \qquad k_{frag} = \frac{\sum_{i} k_{frag,i} K_i}{\sum_{i} K_i}$

Gibbs free energy diagrams of the addition-fragmentation reactions

$$K = e^{\frac{-\Delta_r G^{\circ}}{RT}} \quad k_+ = \frac{k_B T}{h} e^{\frac{-\Delta^{\ddagger} G^{\circ}}{RT}} \quad k_- = k_+/K$$

5

Deterministic kinetic model based on methods of moments^a

Reaction	Equation	E _a	Α	
		kJ mol ⁻¹	L mol ⁻¹ s ⁻¹	* In
Dissociation*	$I_2 \rightarrow 2R_0$	129.0	1.6 E +15 ^d	f
(Re)Initiation	$R_0 + M \rightarrow R_1$	26.0	4.9 E +07 ^e	
Propagation	$R_{i}^{}+M^{}\toR_{i+1}^{}$	32.5	4.2 E +07 ^f	** Г
Combination**	$R_i + R_j \to R_{i+j}$	0.0	5.0 E +08 ^g	Via
Addition	$R_0 + TR_0 \rightarrow R_0 TR_0$	13.9	7.4 E +06	•for
Addition	$R_0 + TR_i \rightarrow R_0 TR_i$	24.2	1.6 E +07	$k_{t,ii}^{app}$
Addition	$R_i + TR_0 \rightarrow R_i TR_0$	3.0	9.4 E +06	$k_{t,ii}^{apj}$
Addition	$R_i + TR_i \rightarrow R_i TR_i$	15.4	1.7 E +07	•for
Fragmentation	$R_0TR_0 \rightarrow R_0 + TR_0$	44.6	9.4 E +12	$k_{t,ii}^{app}$
Fragmentation	$R_0TR_i \rightarrow R_0 + TR_i$	48.3	1.2 E +13	•for
Fragmentation	$R_iTR_0 \rightarrow R_i + TR_0$	51.7	2.6 E +12	^{<i>K</i>} t,ii
Fragmentation	$R_iTR_i \rightarrow R_i + TR_i$	53.2	1.2 E +13	

FRP

RAFT

* Initiator efficiency^b

$$f_{app} = \frac{D_I}{D_I + D_{term}}$$
** Diffusional limitations
Via composite k_t model^c
•for $i < i_{gel}$ and $i < i_{SL}$:
 $k_{t,ii}^{app} = k_{t,11}i^{-\alpha_S}$
•for $i < i_{gel}$ and $i \ge i_{SL}$:
 $k_{t,ii}^{app} = k_{t,11}i_{SL}^{\alpha_I - \alpha_S}i^{-\alpha_I}$
•for $i \ge i_{gel}$ and $i < i_{SL}$:
 $k_{t,ii}^{app} = k_{t,11}i_{gel}^{\alpha_{gel} - \alpha_S}i^{-\alpha_{gel}}$
•for $i \ge i_{gel}$ and $i < i_{SL}$:
 $k_{t,ii}^{app} = k_{t,11}i_{gel}^{\alpha_{gel} - \alpha_S}i^{-\alpha_{gel}}i^{-\alpha_{gel}}$
•for $i \ge i_{gel}$ and $i \ge i_{SL}$:
 $k_{t,ii}^{app} = k_{t,11}i_{SL}^{\alpha_I - \alpha_S}i_{gel}^{\alpha_{gel} - \alpha_I}i^{-\alpha_{gel}}i^{-\alpha_{gel}}$

^a De Rybel *et al., Macromol. Theor. Simul.* 2016, *in press;* ^b Buback *et al., Macromol. Chem. Phys.* 1994, 195, 2117; ^c Johnston-Hall and Monteiro, *J. Polym. Sci. Polym. Chem.* 2008, 46, 3155-3173; ^d Van Hook el al, *J. Am. Chem. Soc.* 1958, 80, 779–782; ^e Heberger el al., *Int. J. Chem. Kinet.* 1993, 25, 249–263; ^f M. Buback, *Macromol. Chem. Phys.* 1995, 196, 3267–3280; ^g Johnston-Hall et al., *Macromolecules,* 2008, 41, 727–736

Simulation and experimental validation

T = 70 °C, TCL = 400, CTA:AIBN = 5:1

- 1. RAFT polymerization of styrene using a trithiocarbonate
 - Calculation of addition-fragmentation rate coefficients
 - Application in a **microkinetic model**

- 2. The aminolysis of RAFT-macromolecules
 - Determination of the reaction mechanism
 - calculation of rate coefficients for a variety of RAFT-agents

Aminolysis of RAFT agents in aprotic solvents: reaction mechanism

Gibbs Free Energy Diagram for EthylAmine (EA) + Methyl Ethane DiThioate (MEDT)

(Gibbs free energies in kJ mol⁻¹ at 298.15 K)

Amine assisted transition state are asynchronous and early

Aminolysis of RAFT agents in aprotic solvents: reaction mechanism

Proton transfer in transition states can be assisted by amines and by thiols

Gibbs Free Energy Diagram for EthylAmine (EA) + Methyl Ethane DiThioate (MEDT)

The coupled encounter pair model to account for diffusion for TS 6 and 7

$$\frac{1}{k_{app,+}} = \frac{1}{k_{+}} + \frac{1}{k_{diff,+}}$$
$$\frac{1}{k_{app,-}} = \frac{1}{k_{-}} + \frac{K}{k_{diff,+}}$$

Diffusivity coefficients based on molecular dynamics

15

Rate and affinity analysis reveal the dominant path and the nature of the elementary steps for the aminolysis of MEDT

Prediction of conversion profiles for other RAFT-agents

Reaction of 10⁻³ mol L⁻¹ RAFT-macromolecule with 5 x 10⁻³ mol L⁻¹ ethylamine in THF at 25 °C for dithioates, thiobenzoates, xanthates, trithiocarbonates and dithiocarbamates:

17

Conclusion: first principles techniques are a valuable tool to obtain reaction parameters for kinetic models

- 1. RAFT polymerization of styrene with a trithiocarbonate
 - Calculation of addition-fragmentation rate coefficients
 - Implementation in microkinetic model
 - conversions
 - chain lengths
 - dispersities

2. Aminolysis of RAFT-macromolecules

- Determining the **dominant mechanism** using ab initio based kinetic model
 - quasi-equilibrated formation of a zwitterion
 - **amine-assisted diffusion-limited proton transfer** over a complex intermediate towards a neutral intermediate
 - rate limiting amine-assisted breakdown of the neutral intermediate towards the product
- Simulation of conversion of range of RAFT agents
 - Reactivity: thioates > thiobenzoates > xanthates ≥ trithiocarbonates >> dithiocarbamates

Acknowledgements

Questions?

