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1.1 Cryopreservation of oocytes and embryos in assisted 

reproduction 
 

Cryopreservation literally means preservation by cold. Typically, cryopreservation refers to storage of 

live cells or tissue, at temperatures below 0°C, more specifically below −80°C, while maintaining 

functional intactness. Cryopreservation is applied to various types of somatic cells, tissues, and 

organs, but also to germplasm, e.g. semen, oocytes, ovaries, embryos, etc. Germplasm may be 

preserved for gene-banking purposes or for application in human or animal assisted reproductive 

technologies (ART), because it allows preserving the genetic material for a longer period of time, for 

later use when it is required.  

In humans, cryopreservation of embryos is routinely used to preserve spare embryos produced 

during in vitro fertilization, allowing patients to make use of these embryos in case the first transfer 

fails to produce a child. On the other hand, oocyte cryopreservation is beneficial for all female 

patients because of numerous reasons: (1) it permits women to cryopreserve their fertility in case 

that they have to go through a chemotherapy treatment or an ovariectomy, (2) it eliminates donor-

recipient synchronization problems, (3) it avoids ethical, moral and legal concerns about unused 

embryos and embryo ownership and (4) it allows women to electively delay childbearing.  

In domestic animals, cryopreservation of embryos has become an important part in breeding 

programs. It permits temporary storage of embryos, which is important when embryos are meant for 

international trade. In this way, embryos can also be thawed at the desired moment to be 

transferred into recipient animals, which are at day 6-8 of the cycle after exhibiting natural oestrus. 

On the other hand, cryopreservation of oocytes and banking would provide a repeatable, accessible 

supply of oocytes for research. This is particularly the case for the horse: in some countries like the 

USA, slaughtering of horses is forbidden, and hence there is no supply of slaughterhouse ovaries 

from mares for research. Moreover, it would provide a means to preserve the genetic material of a 

genetically valuable female donor animal, something which has been done for over fifty years for 

male animals by semen freezing.  

Furthermore, cryopreservation of embryos and oocytes has become an important tool for the 

conservation of endangered wild species, providing a safeguard against disease, genetic drift and 

catastrophic and unexpected losses. Also for domestic species, this application becomes more 

important for ancient breeds, because during the last decades, farm animal genetic diversity has 

rapidly declined due to changing market demands and intensification of agriculture. Approximately 
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20% of the world’s breeds of cattle, goats, pigs, horses and poultry are currently at risk of extinction 

(Prentice and Anzar 2010). 

1.2 History of cryopreservation of gametes and embryos 
 

The basis of cryopreservation was established at the end of 1940´s with the discovery of the 

protective effect of glycerol for semen freezing (Polge et al. 1949).This discovery marked the 

beginning of an era in which practical methods for freezing and banking of blood, cells, semen, 

various tissues and organs were developed. However, more than two decades went by before the 

successful cryopreservation of a mammalian embryo was reported (Whittingham 1972). After this 

report many other offspring obtained from cryopreserved embryos were born in different species, as 

in cow (Wilmut and Rowson 1973), rabbit (Bank and Maurer 1974), sheep (Willadsen et al. 1976), 

goat (Bilton and Moore 1976), horse (Yamamoto et al. 1982), human (Zeilmaker et al. 1984), cat 

(Dresser et al. 1988), and pig (Hayashi et al. 1989).  

The first attempts to cryopreserve oocytes were published in 1958 (Sherman and Lin 1958), but the 

first live offspring from cryopreserved mouse oocytes was only reported in 1976 (Parkening et al. 

1976). A major breakthrough occurred in 1996, when Martino and coworkers reported that oocytes 

are extremely sensitive to cooling, making their cryopreservation difficult. Further studies focused on 

understanding the oocyte sensitivity to cryopreservation, and tried to minimize the damage in order 

to maintain oocyte competence. However, the overall success is still limited, and just a few offspring 

have been reported using oocyte cryopreservation, including rabbit (Al-Hasani et al. 1989), cow (Fuku 

et al. 1992), human (Chen 1986), and horse (Hochi et al. 1994). 

1.3 Basics in cryobiology 
 

Cryopreservation is the use of very low temperatures to preserve intact cells and tissues. At -196°C, 

cells can be stored without a lethal effect due to the fact that there is no aqueous diffusion, and 

thermal energy is insufficient for chemical reactions to occur. However, when cells are cooled to 

subzero temperatures, ice crystals can be formed. At first, water freezes extracellularly as pure ice 

and an unfrozen fraction remains, which contains all the solutes. The high concentration of the 

remaining unfrozen solution establishes an osmotic gradient across the cell membrane, causing an 

efflux of water from the cell. Slow cooling allows keeping the cytoplasm in a near equilibrium state 

with the extracellular solution. However, a high cooling rate does not allow enough time for the 

water to leave the cell and maintain a near equilibrium state with the extracellular solution, leading 

to intracellular ice formation that normally is fatal for the cells (Figure 1). 
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Figure 1. Schematic diagram representing the physical events that occur when cells are preserved at 

different cooling rates. Slow cooling produces an intense dehydration in the cell and a strong 

concentration of intracellular solutes, which may lead to cell damage. On the other hand, when very 

rapid cooling rates are applied, cells are not correctly dehydrated and the remaining water forms 

intracellular ice crystals. Modified from Mazur 1985. 

 

 
Moreover, lowering the temperature exerts significant effects on the cell, even though there is no ice 

formation, such as the thermotropic behavior suffered by the membranes. Membranes are 

composed of proteins and lipids, such as phospholipids and cholesterol that form a lipid bilayer with 

the hydrophilic ends of the lipids externally and the hydrophobic fatty acyl chains internally. 

Phospholipids are randomly arranged in a lamellar structure, and move free laterally within one 

leaflet of the membrane bilayer. Under this condition, membranes are permeable to water that can 

diffuse across cellular membrane and impermeable for solutes. However, a drop in the temperature 

produces a shift from a liquid crystal phase to a gel phase (Figure 2), which will result in clustering of 

specific lipids and membranes proteins concentrated in a specific area. The aggregation of proteins 

can result in a decrease of the membrane permeability and decreased metabolic function (De Leeuw 

et al. 1990).  
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Figure 2. Effect of temperature on the phospholipids bilayer permeability. When membranes are 

cooled, phase transition takes place from the liquid crystal phase to the gel phase resulting in a lower 

fluidity and permeability of the membrane.  

 

1.3.1 Cryopreservation techniques 
 

Two techniques are traditionally used to cryopreserve oocytes and embryos: Slow freezing and 

vitrification. Slow freezing routinely involves equilibration of oocytes or embryos in freezing medium, 

containing low concentrations of cryoprotectants (CPAs, which are organic compounds used to 

protect cells during freezing) for periods up to 10 min before loading (in a volume of ∼200 µl) into 

plastic straws, which are sealed at both ends. Next, straws are placed in the chamber of a 

programmable freezing machine, which slowly reduces the temperature (∼0.3°C/min) to ∼−30°C. 

During this cooling phase, ice nucleation (seeding) is induced manually at a temperature between −5 

and −8°C. On reaching −30°C, the temperature is then reduced rapidly (at ∼−50°C/min) to −150°C 

before storage in liquid nitrogen. Rapid thawing is accompanied by re-swelling of the cells to regain 

approximately their original volume. After that, the CPAs can be removed by incubation of the 

embryos or oocytes in successive media with decreasing concentrations of permeating CPAs (Edgar 

and Gook 2012). This technique has been successfully used in mouse embryos (Shaw and Jones 2003, 

Kader et al. 2009), but poor results have been reported in more sensitive species, such as pig, sheep 

or horse. Many studies focused on finding an alternative to slow freezing, because the process takes 

long time, and requires expensive equipment (Table 1).  

In 1985, Rall and Fahy reported the cryopreservation of mouse morula by vitrification. Since then, 

vitrification became a promising alternative technique to preserve oocytes and embryos. Vitrification 

is defined as the solidification of a solution at a low temperature without ice crystal formation. This 

can be achieved by using very high concentrations of CPAs (Rall and Fahy 1985). The CPA 

concentrations should then be so high that the tendency of the water molecules to form ice has 
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become zero, and vitrification can be achieved regardless of cooling rate. This is so-called 

thermodynamically stable vitrification. Alternatively, vitrification can also be achieved at less extreme 

CPA concentrations, provided that the rates of both cooling and rewarming are very high (so-called 

meta-stable vitrification).  

Several studies comparing conventional slow freezing and vitrification have reported better survival 

and development after vitrification of oocytes and embryos (Nedambale et al. 2004, Stehlik et al. 

2005, Mucci et al. 2006, Huang et al. 2007, Cao et al. 2009, Chen and Yang 2009, Martínez-Burgos et 

al. 2011), suggesting that with time, conventional slow freezing may be replaced entirely by 

vitrification (Vajta and Kuwayama 2006). Nowadays, slow freezing is still the technique of choice for 

cryopreservation of bovine and equine embryos in the breeding industry. On the other hand, most 

laboratories working in human ART have completely replaced slow freezing by vitrification.  

 

Table 1. Differences between slow freezing and (metastable) vitrification with current minimal 

volume approaches. Adapted from Pereira and Marquez 2008. 

 Slow Freezing Vitrification 

Device Standard straw, Cryovial OPS, Cryoloop, Cryotop, Cryoleaf, 

Electron microscopic grids, etc. 

Volume Large (0.2-2ml) Very small (<1μL) 

Cryoprotectants Low concentration CPAs (1.5M) High concentration CPAs (5-7M) 

Cooling rate Progressive (0.1 to 0.3°C/min). Immediate (-2500°C/min to 

20000°C/ min). 

Equipment Programmable freezer No special equipment needed 

Procedure Long time required, complicated, 

mostly depending on equipment 

Rapid, depending on the operator 

skills 

 

1.4 Vitrification of oocytes and embryos 
 

Successful vitrification of oocytes and embryos is influenced by different variables that have been 

studied for years. These can be classified into technical and biological variables. 
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1.4.1 Technical variables 
 

Different protocols have been used for oocyte and embryo vitrification in order to minimize effects 

caused by CPAs. These protocols make use of different types and concentrations of cryoprotectants 

(Wani et al. 2004) and also several cryodevices are available (Liu et al. 2008). 

1.4.1.1 Type of cryoprotectants 
 

Cryoprotectants are organic compounds that reduce the freezing point of aqueous solution, increase 

the viscosity of aqueous solution and lower the ice nucleation temperatures of cells or solutions (Rall 

et al. 1983). They can be classified as permeable and non-permeable.  

Permeable CPAs, including dimethyl sulfoxide (DMSO), glycerol, propylene glycol (PG), ethylene 

glycol (EG) and methanol are capable of passing oocyte and embryo membranes and provide 

protection both within and around the cells (Lovelock 1954). Prior to cooling, the addition of CPAs 

makes the medium hyperosmotic, resulting in a shrinking of cells due to the efflux of water (Figure 

3). But because of the difference in concentration of the CPA between the extra and intracellular 

solutions, the CPA begins to permeate the cell by simple diffusion. Simultaneously water begins to re-

enter the cell to maintain osmotic equilibrium between the extra and intracellular solutions (Figure 

3). 

Upon removal of the CPA (warming, Figure 4), cells can also be subjected to osmotic shock. Osmotic 

shock occurs because water enters the cell more rapidly than an intracellular CPA can leave it. As a 

result, cell volume may increase to a critical volume and the cell may burst (Oda et al. 1992). 

 

Figure 3. Osmotic volume changes of an oocyte after exposition to cryoprotectants. 
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Moreover permeable CPAs inducing direct or indirect effects are known to affect cells and cell 

constituents. More specifically CPAs can cause; (1) depolymerization and disorganisation of 

microtubules and microfilaments, resulting in chromosomal scattering, the development of 

aneuploidy or abnormal cytokinesis (Van der Elst et al. 1988, Vincent and Johnson 1992); (2) 

alterations in membrane integrity, metabolism and developmental potential of embryos (Damien et 

al. 1989); (3) hardening of the zona pellucida of oocytes (Vincent et al. 1990); (4) destabilisation of 

proteins (Arakawa et al. 1990) and (5) disturbance of intracellular calcium homeostasis in oocytes 

(Litkouhi et al. 1999).  

Non permeable CPAS include monosaccharides (galactose), disaccharides (sucrose and threhalose), 

polysaccharides (dextrans) and polymers (polyvinylalcohol) (Ashwood-Smith 1986). Non permeable 

CPAs protect through dehydration, stabilisation of lipid bilayers and proteins, or they can change the 

water properties in the vicinity of membranes (Franks et al. 1977, Crowe et al. 1990). When oocytes 

or embryos are exposed to mono or disaccharides, cells respond osmotically by losing water. Since 

these cryoprotectants do not pass membranes, cells remain contracted when equilibrium is reached. 

 

1.4.1.2 Concentration and time of exposure to CPAs 
 

In cryopreservation, equilibrium refers to the relative amount of water inside the cell and outside the 

cell being the same (or nearly so). If sufficiently high concentration of CPAs could be added at the 

beginning of freezing, the system would vitrify with no supercooling no matter how slowly it was 

cooled. However, the concentration of CPA necessary to achieve thermodynamically stable 

vitrification is extremely high (80% w/v) leading to osmotic and toxic effects (Allahbadia et al. 2015). 

Two approaches are followed in order to minimize these effects of CPAs. The first approach is the 

reduction of the temperature and the time of exposure to CPAs following two step-vitrification. In 

the first step, equilibration (Figure 4), cells are exposed to lower concentration of CPAs for a 

considerable time of exposure (∼10-15 min). This allows the entry of CPAs producing cells to re-swell 

and thus avoiding osmotic damage. In the second step, vitrification (Figure 4), higher concentration 

of CPAs are used, with the aim to osmotically reduce the water content of the cells and rapidly 

increase intracellular CPA concentrations, without having to wait for the slower further influx of 

CPAs. 

 

 



Chapter 1 
 
 

16 
 

 

 

Figure 4. Schematic overview of vitrification. (1) Cells are exposed to low concentration of 

cryoprotectants (equilibration). (2) Cells are moved to a medium containing higher concentration of 

cryoprotectants (vitrification). (3) Cells are loaded on the cryo-device, which is directly plugged into 

liquid nitrogen (LN2) (4).  For warming, cryodevice is directly introduced in the medium and oocytes 

are recovered.  

The second approach is the reduction of the concentration of CPAs by using metastable vitrification 

protocols, in which cooling rates and warming rates are strongly increased by using minimum volume 

cryo-devices (described below). Minimizing the volume of the sample decreases the amount of liquid 

which has to be cooled, thereby increasing cooling and warming rates. High cooling rates reduce the 

likelihood of ice nucleation, while high warming rates prevent the lethal growth of small crystals, if 

they were formed during cooling.  

 

1.4.1.3 Cooling and warming rates 
 

As previously described, the concentration of CPAs can be also reduced when higher cooling and 

warming rates are achieved. While straws of 0.25 ml or 0.5 ml are normally used for slow freezing 

(Table 1), a large number of cryodevices have been developed for vitrification in order to increase 

the cooling rate: The Minimum Drop Size (Arav 1992), Electron Microscope Copper Grids (Steponkus 

and Caldwell 1990), Open Pulled Straws (Vajta et al. 1998), Cryoloops (Lane et al. 1999), Superfine-

pulled Open Pulled Straw (Isachenko et al. 2000), Micro-drops (Papis et al. 2000), Hemi-straw 

(Vanderzwalmen 2000), Solid-surface (Dinnyes et al. 2000), Nylon-mesh (Matsumoto et al. 2001), 

Closed Open Pulled Straw (Chen et al. 2001), Flexipet-Denuding Pipettes (Liebermann and Tucker 

2002), Cryotop (Hamawaki et al. 1999, Kuwayama and Kato 2000), Cryoleaf (Chian et al. 2005), 

Cryotip (Kuwayama et al. 2005a), Direct Cover Vitrification (Chen et al. 2006), High Security 

Vitrification (Camus et al. 2006), Fiber Plug (Muthukumar et al. 2008), Vitrification Spatula (Tsang and 
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Chow 2009), Cryo-E (Petyim et al. 2009), Cryopette (Portmann et al. 2010), Plastic Blade (Sugiyama et 

al. 2010), Vitri-Inga (Almodin et al. 2010) and Rapid-I (Balaban et al. 2010).  

Differences in cooling and warming rates have been observed when diverse cryodevices are being 

used, for example, 16,700- 13,900°C/min achieved with Open Pulled Straw (OPS) and 23,000-

42,000°C/min obtained by Cryotop (reviewed in Zhang et al. 2011). This is due to the fact that higher 

cooling rates are achieved when lower volumes are used, 1.5μL for OPS compared to< 0.1 μL for 

CryoTop. Therefore, better results have been reported after vitrification using CryoTop compared to 

OPS (Liu et al. 2008, Morato et al. 2008).  

In our laboratory, we have developed a custom-adapted device consisting of a 0.25 ml straw with a 

cut in one end to allow loading of the oocytes in a minimal volume (<1 μL). At the opposite end, a 

wire is added to prevent floating in LN2 (Figure 5). Oocytes are loaded using a 130 µm pipette in order 

to minimize the volume surrounding the oocytes, and excess medium is removed with the pipette by 

capillarity in order to increase cooling and warming rates. 

 

Figure 5. Drawing (A) and representative image (B) of the custom-adapted device used in the present 

study. The arrows denote where the oocytes are loaded and the asterisks denote the wire added. 

 

Higher cooling rates can be also achieved when slush nitrogen (SN2) is used (135,000°C/min). Slush 

nitrogen is liquid nitrogen mixed with nitrogen ice, i.e. nitrogen at its melting point (−210°C), rather 

than at its boiling point (−196°C). Obviously, the temperature of melting N2 is lower than that of 

boiling N2, but more importantly, N2 at its melting point will not boil of the heat it receives from a 

specimen to be cooled. In conventionally used LN2, (boiling point), an insulating sheath of N2 gas is 

generally formed around an object that needs to be cooled (Leidenfrost effect), which can slow down 

heat transfer from that object. The high cooling rate that can be achieved in N2 slush may allow the 
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use of lower CPA concentrations for metastable vitrification, or may help prevent to ‘outrun’ 

damaging cellular changes that may occur during cooling (Huang et al. 2005, Lee et al. 2007, Yoon et 

al. 2007, Cha et al. 2011). However, SN2 is difficult to produce since it is necessary to reduce the 

pressure above a Dewar of LN2 using a vacuum pump in a sealed system until conversion occurs.  

Although a lot of efforts have been made to achieve a very high cooling rate, Seki et al. 2009 

reported that warming has a higher influence in cell survival. This occurs because intracellular water 

can freeze or vitrify during cooling. But, the outcome would be mainly influenced during warming 

under the three situations described below.  

Firstly, if large intracellular ice crystals have formed during cooling, survival was near zero 

independently of warming rate. Secondly, if small intracellular crystals are formed during cooling, 

slow warming would result in (1) growth of large and small crystals, (2) recrystallization (small 

crystals that are thermodynamically unstable tend to melt with larger ice crystals), and  (3) de novo 

ice nucleation. These three phenomena could have lethal effect on the cells. However, if warming 

rate is sufficiently rapid, recrystallization may be blocked (Seki and Mazur 2009). This explains why 

cells can survive even when small crystals are formed during cooling.  

 

1.4.2 Biological variables 
 

1.4.2.1 Variables that influence oocytes vitrification 
 

In general, oocytes are difficult to preserve due to the fact that they have certain features that make 

them very sensitive to cooling. Firstly, the oocyte is the largest cell in the body, resulting in a low 

surface-volume ratio. This lower surface volume ratio, compared to other cells makes the movement 

of water and cryoprotectants slowly, because it needs to be accommodated through a relatively 

small surface area. 

As a single cell, the oocyte needs to maintain its integrity of several unique structures to undergo 

maturation, fertilization and subsequently embryo development. Those structures include the 

surrounding cumulus cells, the zona pellucida, the oolemma, the cortical granules and the metaphase 

II spindle (Figure 6). All of these are really susceptible to suffer cryoinjuries during cryopreservation, 

affecting vitrification.  
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Figure 6. Schematic diagram of a mature oocyte with its investments and internal structures. 

 

On the outside, oocytes are surrounded by different layers of cumulus cells and communicating with 

them through cellular projections. Such communication is necessary to prepare the oocyte for 

normal maturation and fertilization (Bloor et al. 2004). Moreover, cumulus cells are responsible to 

trap and select the spermatozoa, and induce sperm capacitation, acrosome reaction and penetration 

during the fertilization (Van Soom et al. 2002, Tanghe et al. 2003). While it is clear that cumulus cells 

play a fundamental role during in vitro culture, their role during vitrification is still not clear. It seems 

that cumulus cells protect oocytes from the adverse effects of chilling injuries (Tharasanit et al. 

2009), and may enhance their chance for fertilization by preventing zona hardening (Vincent et al. 

1990), but it also has been proposed that cumulus cells may hinder the movement of water and 

cryoprotectants leading to an undesired shield, preventing the transport of these molecules (Papis et 

al. 2013). Different authors have tried to clarify this subject (reviewed in Table 2), but apparently the 

effect is species-specific and it also depends on the oocyte stage (Fujihira et al. 2005). The use of 

corona radiata (CR) oocytes has been proposed as an alternative to the vitrification of denuded or 

cumulus oocyte complexes (Figure 7). Corona radiata oocytes are surrounded by two or three layers 

of cumulus cells, which less affects the movement of CPAs and water contribute to a normal oocyte 

development (Papis et al. 2013). 
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Figure 7. Microscopic images of a cumulus oocyte complex (A), corona radiata oocyte (B) and 

denuded oocyte (C).Scale bar: 50 µm. 

Table 2.Comparative survival, spindle quality and competence of denuded or partially denuded 

oocytes versus cumulus-oocyte- complexes after vitrification at immature (GV) and mature (MII) 

stage in different species. 

Species Survival Meiotic compet. Spindle quality Fertili-zation Embryo develop. Reference 

Germinal vesicle 

Sheep Higher Higher ND - - Bogliolo et al. 2007 

Goat Lower Lower - - - Purohit et al. 2012 

Cattle Lower - - - Lower Zhou et al. 2010 

Cattle Higher - - - Higher Papis et al. 2013 

Horse - Lower Lower  - Tharasanit et al. 2009 

Mature 

Mouse ND - ND Lower ND Park et al. 2001 

Mouse Lower - - - Lower Zhou et al. 2016 

Sheep ND - - - ND Zhang et al. 2009 

Goat - - - ND - Purohit et al. 2012 

Cattle Higher - - - ND Chian et al. 2004 

Cattle ND - - - ND Zhou et al. 2010 

Buffalo Lower - - - Lower Gasparrini et al. 2007 

Horse - - Lower - - Tharasanit et al. 2009 

ND: No differences 
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Below the cumulus cells, we encounter the zona pellucida and the oolemma (Figure 6). The oolemma 

is really sensitive to chilling injuries, and when it is cooled, it exhibits a thermotropic behavior 

changing the usual lipids arrangement, and resulting in significant deleterious effects on its function, 

as previously described. One level deeper we find the cytoplasm, which may or may not contain 

structures susceptible to cooling depending upon the stage of maturation (germinal vesicle or 

mature).  

Mature oocytes have a number of secretory organelles named cortical granules in the cytoplasm 

(Figure 8). Cortical granules release secretions into the perivitelline space, as a reaction on the 

oscillations of calcium induced by the entrance of one spermatozoa to the oocyte. The released 

substances change the composition of the zona pellucida, and induce the so-called zona-block, 

avoiding the further entrance of more spermatozoa. However, during cryopreservation, the use of 

some CPAs can also induce calcium oscillations, resulting in premature release of cortical granules, 

and subsequently zona pellucida hardening, which prevents normal fertilization (Carroll et al. 1990, 

Mavrides and Morroll 2005). Zona hardening effect can be minimized in cryopreserved oocytes by 

adding 20% of fetal bovine serum to the medium (George et al. 1992) or by using a calcium-free 

medium (Larman et al. 2006). 

 

Figure 8. Diagram of an immature oocyte surrounded by compact cumulus cells and with the genetic 

material contained within the nucleus. During maturation cortical granules are relocated and the 

metaphase plate that is composed of the chromosomes and the spindle apparatus is organized in the 

cytoplasm.  

Moreover, mature oocytes are in the middle of the meiotic division, thus genetic material is 

condensed forming chromosomes, which are organized by the spindle apparatus (Figure 9). The 

spindle apparatus is formed by microtubules, which organize centers at opposite poles and keep the 
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chromosomes aligned at the equatorial plane of the meiotic spindle (Figure 9). A drop in temperature 

causes depolymerization of microtubules, resulting in spindle disorganization (Aman and Parks 1994). 

Meiotic spindle can be also altered by the use of CPAs (Vincent et al. 1990, Vincent and Johnson 

1992). For example, DMSO and PG change the polymerization pattern of nearly all the microtubules 

in the MII spindle of mouse oocytes (Johnson and Pickering 1987) , while a similar effect is observed 

in cattle when oocytes are exposed to EG (Saunders and Parks 1999). 

Even though microtubules repolarization occurs after cryopreservation, a wrong alignment of 

chromosomes increases the chance for aneuploidic embryos, which is undesirable (Wang and Sun 

2006, Bromfield et al. 2009). Additionally, alterations in microtubules lead to an abnormal 

distribution of the mitochondria and a multiple aster formation. In cattle, a single sperm aster is the 

result of the microtubule organizer center, which is formed by polymerization of microtubules and 

produces the migration and fusion of the male and female pronucleus. However, vitrification 

adversely affects the recruitment of the centrosomal proteins by the sperm centrosome due to the 

cytoskeleton disorganization, resulting in an erroneous fertilization and subsequently embryo 

development (Hara et al. 2012). 

 

 

Figure 9. Schematic diagram (A) and confocal picture (B) of a normal MII oocyte with its typical 

barrel-shaped metaphase II spindle configuration and the chromosomes perfectly aligned in blue. 
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On the other hand, germinal vesicle (GV) oocytes do not contain any of these structures (Figure 8), 

and therefore, they have been proposed as a sound alternative to mature oocytes for vitrification. 

However, immature oocytes also present some difficulties. They have a less permeable membrane, 

which may hamper the movement of water and CPAs (Agca et al. 1998).  

Different stages have been reported as most favorable for vitrified bovine oocytes, GV (Zhou et al. 

2010) and MII (Otoi et al. 1995, Men et al. 2002, Diez et al. 2005). In porcine, GV oocytes seem to be 

more sensitive to cooling than MII oocytes (Rojas et al. 2004), while the opposite was reported for 

equine oocytes (Tharasanit et al. 2006). 

 

1.4.2.2 Variables that influence embryo vitrification 
 

 

An embryo is an early stage of development of a multicellular diploid eukaryotic organism. The fact 

that embryos are diploid may be considered advantageous, as such cells show higher resistance to 

mutagenic and stress factors (Cherfas and Zoy 1984). However, it is worth noticing that embryos are 

susceptible to cooling, because they contain actively dividing cells.  

  

An embryo is formed when an oocyte is successfully fertilized by a spermatozoon. After one or two 

days, cells start to divide and become a spherical structure denominated morula around day five or 

six post fertilization. At day six to seven, a cavity is formed, the blastocoel, and the morula is 

transformed into a blastocyst, consisting of two type of cells, which form the inner cell mass and the 

trophoblast (Figure 10).  

 

 

Figure 10. Bovine embryo development after fertilization.  
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Like oocytes, embryos are surrounded by the zona pellucida. Fractures in the zona pellucida and lysis 

of the cellular membranes of the embryonic cells are frequently observed after cryopreservation 

(Cuello et al. 2007). In addition, ultrastructural investigations revealed cryoinjuries in mitochondria 

and rough endoplasmic reticulum alterations. Similarly, poorly developed desmosomes, 

disintegration of cell adhesions and communication between adjacent trophoblastic cells have been 

reported after embryo cryopreservation (Dalcin et al. 2013).  

The communication of cell-cell is necessary for successful development and appropriate implantation 

in mammalian embryos (Bloor et al. 2004). The most direct form of cell-cell communication is 

provided by gap junctions, which are formed by two assembled hemichannels. Hemichannels (HCs) 

consist of six connexin proteins and each connexin has four transmembrane segments, two 

extracellular loops, one intracellular loop and N- and C- terminal tails projecting into the cytoplasm 

(Figure 11). While the function of gap junctions is the communication of cell to cell, hemichannels are 

responsible for connecting the cytoplasm of the cell with the exterior.  

Unapposed hemichannels, which are normally closed, open under certain osmotic and chemical 

conditions (Wang et al. 2013) allowing the movement out of the cell of small metabolites and 

molecules necessary for normal cell functioning (Decrock et al. 2009).  

Cryopreservation is a dynamic process during which a number of physical and chemical factors, such 

as osmotic and hydrostatic pressure, ionic intracellular content, pH and temperature, fluctuate over a 

wide non-physiological range. In the case of cryopreservation of human blood vessels, it was found 

that cryopreservation can lead to opening of HCs in endothelial cells and gap junctions in smooth 

muscle cells, which can cause extensive cell death (Bol et al. 2013). Interestingly, it has been 

described that the open HCs can be blocked with connexin-targeting peptides. The connexin peptide 

binds to extracellular domains of connexins during the processes of cryopreservation of human 

vascular grafts, reducing cell death of endothelial and smooth muscle cells (Bol et al. 2013). 
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Figure 11. Diagram of the gap junctions and hemichannels. EL; extracellular loop, NT; N-terminal tail 

and CT; C-terminal tail.  
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1.4.3 Biological variables influenced by technical variables  
 

Although oocytes and embryos of farm animals, such as cattle and pigs, are rich in cytoplasmic lipids 

in comparison with human or murine oocytes (McEvoy et al. 2000), this variable can also be altered 

by the environment in which oocytes and embryos are cultured.  

Oocytes and embryos are routinely cultured in a medium with serum, because it contains 

components such as hormones, vitamins, lipids, proteins and growth factors which are important for 

embryo development. However, the success of cryopreservation is highly correlated with cytoplasmic 

lipid content, the specific mechanism is unknown and may be indirectly related to cytoplasmic lipids. 

It is known that serum induces the neosynthesis of triacyglycerides (Razek et al. 2000), changes in the 

membrane composition, and changes in the function of beta oxidation in the mitochondria (Abe et 

al. 2002), which may compromise the survival and further embryonic development of vitrified 

oocytes and embryos (Abe et al. 2002, Gómez et al. 2008, Shirazi et al. 2012). 

 

In this chapter we have discussed the importance of cryopreservation in assisted reproductive 

technology, as well as the basics of cryobiology that allow us to understand how technical and 

biological variables have an effect on a successful vitrification. In the next chapter we will describe 

the aims that have guided our work in this dissertation. 
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Despite the major progress that has been made, vitrification of oocytes and embryos remains a 

challenge because after warming, their survival and development are compromised. As previously 

described in the introduction, technical and oocyte/embryo variables influence successful 

vitrification. These variables need to be addressed to find the most adequate protocol to minimize 

the damage suffered during the vitrification and to achieve higher survival rates and developmental 

competence. The aim of this work is to develop and optimize a vitrification strategy for equine and 

bovine oocytes and for bovine embryos. In order to realize this general aim, specific objectives were 

formulated as follows: 

I. To determine the effect of cumulus cells during the vitrification of mature bovine oocytes 

(Chapter 3). 

II. To study the effect of the level of cumulus cells surrounding the equine immature oocyte 

at vitrification time (Chapter 4). 

III. To compare two protocols for vitrification of immature equine COCs and CR, one with a 

short exposure to a high concentration of cryoprotectants, and one with a longer 

exposure to a lower concentration of cryoprotectants (Chapter 5). 

IV. To study the effect of maturation in the presence of serum on the vitrification of oocytes 

(Chapter 5.1) and blastocysts (Chapter 5.2). 

V. To investigate whether blocking Cx channels with Gap26, which mimics a sequence of 

the first extracellular Cx loop, could improve the outcome of vitrified bovine blastocysts 

matured as oocytes in serum containing or serum-free media (Chapter 5.2).  
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Summary 

This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. 

Mature cumulus oocytes complexes (COCs) surrounded by many layers of cumulus cells, corona 

radiata (CR) oocytes, with a few layers of cumulus cells and denuded oocytes (DOs) without cumulus 

cells were vitrified in 15% ethylene glycol (EG), 15% dimethylsulfoxide (DMSO) and 0.5M sucrose. 

Oocytes that survived the vitrification process were fertilized. Denuded oocytes were fertilized with 

or without supplementation of intact COCs (DOscocs). First, survival and embryo development rates 

were studied. Higher survival rates were obtained for DOs and DOscocs (94% and 95% respectively) 

compared to COCs (82.7%, P<0.05). Corona radiata oocytes showed similar survival rates when 

compared to denuded oocytes. The cleavage and blastocyst rates of vitrified DOs were compromised, 

since cumulus cells were not present during the fertilization (34% and 2.7% respectively). However, 

the situation could be reverted when DOs were supplemented with intact COCs (DOscocs) (62.7% 

and 12.7% respectively, p<0.05). Vitrified CR oocytes showed similar cleavage and blastocyst rate 

(49.3% and 7.7% respectively) compared to COCs (54.8% and 4.9% respectively). In the second 

experiment, the penetration rate was analyzed. Removing cumulus cells before fertilization reduced 

the fertilization of vitrified DOs compared to COCs (24.3% vs.52.8%, p<0.05). The supplementation of 

DOs with intact COCs (DOscocs) improved the fertilization rate though (49.6%, p<0.05). No 

differences in the fertilization rate were found between CR oocytes and COCs. In the third 

experiment, parthenogenetic activation was examined. Interestingly, the CR oocytes showed higher 

cleavage and blastocyst rates (76.8% and 29.6% respectively) than the COCs (39.1% and 7.5 % 

respectively, p<0.05). Furthermore, oocytes from vitrified CR oocytes had the same odds to become 

a blastocyst as fresh oocytes (1.1 vs. 1.5, respectively). In conclusion, our data demonstrated that 

cumulus cells reduce survival after the vitrification of mature bovine oocytes. Since cumulus cells are 

required for fertilization, the use of partially denuded (CR) oocytes or the addition of intact COCs 

(DOscocs) during fertilization can result in higher survival and embryo development after vitrification.  
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INTRODUCTION 

The vitrification of oocytes provides many benefits for assisted reproductive technology (ART). In 

humans, it allows to reduce the number of embryos produced at any given time, it permits 

synchronization in donor-recipient programs and it preserves the fertility of young women receiving 

cancer treatment; in animals, it allows preserving genetic diversity and it increases the material 

available for research and animal breeding programs (Ledda et al. 2001, Pereira and Marques 2008). 

Oocytes are very sensitive to vitrification because of their high lipid content and low surface-to-

volume ratio. Furthermore, their complex structure (zona pellucida, oolemma, cortical granules, 

metaphase plate or germinal vesicle) can be severely damaged during cooling and warming (Chen et 

al. 2003). Oocyte vitrification can induce rupture of the oolemma, distortion of the metaphase plate 

in the mature oocyte, and premature extrusion of the cortical granules leading zona hardening, all of 

which prevent normal fertilization of the vitrified-warmed oocytes (Mavrides and Morroll 2005). 

Human ART has circumvented these problems and laboratories have reported obtaining blastocyst 

formation and live births from vitrified oocytes at rates equivalent to those from fresh oocytes (Cobo 

et al. 2008) . However, the development rates of vitrified-warmed bovine oocytes remain low in 

comparison with their fresh counterparts, since bovine oocytes are more sensitive to chilling because 

they contain high amounts of lipids (Martino et al. 1996). 

The success of oocyte vitrification depends on many variables that have been studied for several 

years (Saragusty and Arav 2011). These variables can be divided in two groups: biological variables, 

referring to the presence of cumulus cells or the developmental stage of the oocyte (mature or 

germinal vesicle) and technical variables, referring to different protocols, cryoprotectants (CPAs) and 

cyo-devices used. Although most of these variables have been studied in the last decade, some of 

them, such as the effect of cumulus cells during vitrification still remain unclear. In cattle, it is known 

that the presence of cumulus cells is necessary for a correct maturation, fertilization and 

subsequently embryo development (Zhang et al. 1995, Tanghe et al. 2003). However, it is still 

controversial if the presence of cumulus cells is beneficial during vitrification of bovine mature 

oocytes (Dinnyes et al. 2000, Chian et al. 2004, Zhou et al. 2010). It has been suggested that cumulus 

cells may protect against cryo-injury during vitrification by minimizing the release of cortical 

granules, thus preventing premature zona hardening (Vincent et al. 1990). On the other hand, the 

presence of cumulus cells during cryopreservation could limit the exchange of water and CPAs, which 

could cause inadequate dehydration and/or CPA entry and consecutive ice crystal formation, which 

leads to an inappropriate oocyte protection (Gook et al. 1993) . In cattle, Zhou et al. showed that 

vitrified partially denuded immature oocytes develop at significantly lower rates than vitrified 
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cumulus enclosed oocytes. However, no significant differences were detected when mature oocytes 

were partially denuded before vitrification (Zhou et al. 2010). These authors suggested that cumulus 

enclosed and partially denuded mature oocytes displayed the same survival, cleavage and blastocyst 

rates after vitrification, probably due to the fact that cumulus cells were detrimental during 

vitrification, compromising the benefits of cumulus cells during in vitro fertilization (IVF). The aim of 

our study was to further determine the possible detrimental or beneficial effect of cumulus cells 

during the vitrification of mature bovine oocytes. In particular, we analyzed whether an intact, 

partially removed or completely removed cumulus, or the mere presence of cumulus cells, affects 

survival, fertilization and subsequent embryo development of vitrified and fresh mature bovine 

oocytes. To disentangle effects on fertilization and development respectively, we also studied 

embryo development after parthenogenetic activation.  

 

MATERIALS AND METHODS  

Media and reagents 

Basic Eagle’s Medium, Tissue Culture medium (TCM) 199, Minimal Essential Medium non-essential 

amino acids, kanamycin, and gentamycin were purchased from Life Technologies Europe and all other 

components were obtained from Sigma (Bornem, Belgium).  

 

 Collection and in vitro maturation of oocytes 

Bovine ovaries obtained from a local slaughterhouse were rinsed twice in physiological saline 

supplemented with kanamycin (25 mg/ml). Cumulus-oocyte complexes (COCs) were aspirated from 

2-8 mm follicles with an 18 gauge needle attached to 10 ml syringe and matured in groups of 60 

oocytes in TCM199 supplemented with 50 mg/ml gentamycin and 20 ng/ml epidermal growth factor 

for 22 h at 38.5°C in 5% CO2 in air.  
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  Vitrification and Warming 

Matured oocytes were vitrified as described by (Kuwayama et al. 2005) with some modifications. The 

handling solution (HS) used was TCM199/ Hank’s/ Hepes supplemented with 20% Fetal Bovine Serum 

(FBS, Greiner Bio-one). All the vitrification media were prepared using this HS. Vitrification and 

warming steps were performed at 38.5°C on a heated plate. 

Vitrification was performed in two steps: equilibration and vitrification. Oocytes were equilibrated by 

transferring them sequentially in three drops of 75 µl of equilibration solution (ES) composed of HS 

with 7.5% ethylene glycol (EG) and 7.5% dimethyl-sulfoxide (DMSO). After oocytes regained their 

original volume, they were subsequently transferred into four consecutive 50 µl drops of vitrification 

solution (VS) composed of HS with 15% EG, 15% DMSO and 0.5 M sucrose. Oocytes were exposed to 

equilibration solution for 10-15 min and to vitrification solution for 45-60 sec. Four oocytes were 

loaded to a custom adapted device imitating the Cryotop and within 5 sec submerged in liquid 

nitrogen (LN2). After one week in LN2, oocytes were warmed by transferring them to a warming 

solution composed of HS with 1 M of sucrose. This was followed by a three step wash-out of the 

hyperosmolar sucrose reduced from 1 M to 0.5 M (washing 1, 3 min), 0.25 M (washing 2, 5 min) and 

0 M in HS (washing 3, 5 min). Oocytes were washed in HS three times and then incubated in 

maturation medium for 2 h to allow them to recover. 

 

Fertilization and culture 

Fresh (non-vitrified) and vitrified oocytes were fertilized in the same conditions. Frozen-thawed bull 

spermatozoa were separated using a Percoll gradient (45% and 90%; Pharmacia, GE Healthcare). The 

final sperm concentration of 1x106spermatozoa/mL was adjusted in IVF Tyrode’s albumin-pyruvate–

lactate (TALP), consisting of bicarbonate-buffered Tyrode solution, supplemented with BSA (6 mg/ml) 

and heparin (25 mg/ml). At 21 h post-insemination, presumptive zygotes were vortexed to remove 

cumulus cells, washed and cultured in groups of 25 in 50 μl droplets of synthetic oviductal fluid 

medium (SOF) supplemented with ITS (5 μg/ml Insulin + 5 μg/ml Transferrin + 5 ng/ml Selenium) and 

0.4% BSA. Culture occurred at 38.5°C in 5% CO2, 5% O2 and 90% N2. Cleavage rates were determined 

after 48h post insemination and blastocyst rate after 8 days post insemination.  
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  Parthenogenetic activation 

After maturation, oocytes were denuded by repeated pipetting in TCM199. Oocytes were incubated 

in 5 µM ionomycin for 5 min. Next, they were incubated in SOF medium supplemented with 2 mM 6-

dimethyl-aminopurine (6DMAP) for 4 h. After incubation, presumptive parthenotes were washed 

twice and cultured in SOF medium in the same conditions as fertilized oocytes. Cleavage rates were 

determined at 48h post activation and blastocyst rate at 8 days post activation.  

 

  Assessment of survival and penetration rate 

After fertilization, oocyte survival was evaluated morphologically. The criteria used to classify oocytes 

as surviving or degenerated have been described elsewhere (Chian et al. 2004). Briefly, oocytes with 

intact oolemma, intact zona pellucida and homogenous and dark cytoplasm are considered as 

surviving oocytes. Only surviving oocytes were used for in vitro culture. 

Fertilization rate was determined with the nuclear staining Hoechst 33342 (Molecular Probes, 

Invitrogen, Merelbeke, Belgium) which selectively binds to double stranded DNA. Presumed zygotes 

were fixed in 4% formalin and then stained with Hoechst 10 μg/ml for 10 min. Successful fertilization 

was characterized by the presence of two pronuclei and three or more pronuclei were considered as 

indicative for polyspermy.  

 

 

Experimental design 

In experiment 1 (n= 1161), mature oocytes were randomly divided into two groups; fresh and 

vitrified. Fresh oocytes were subdivided into four groups: cumulus complex oocytes (Fresh COCs), 

corona radiata oocytes (Fresh CRs), denuded oocytes (Fresh DOs) and denuded oocytes 

supplemented with intact COCs during fertilization (Fresh DOscocs). Oocytes in the vitrified group 

were vitrified as COCs, CRs or DOs and subdivided into four groups after warming; cumulus complex 

oocytes (Vitrified COCs), corona radiata oocytes (Vitrified CRs), denuded oocytes (Vitrified DOs), and 

denuded oocytes supplemented with fresh COCs during fertilization (Vitrified DOscoc). For 

distribution see figure 1. DOs and CR oocytes were partially or completely denuded by gently 

pipetting in HS. Intact COCs which were supplemented to vitrified oocytes during fertilization were 

obtained one day before warming and matured in the same conditions as the rest of the oocytes. 

These supplemented COCs were removed by pipetting after fertilization and before assessing 

survival, cleavage and blastocyst rates. In experiment 2 (n= 1073), the experimental design was 

similar, except that presumptive zygotes were not cultured, but were denuded, fixed and stained to 
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study the fertilization rate. In experiment 3 (n= 601), mature oocytes were randomly divided in four 

groups; fresh control, vitrified COCs, vitrified DOs and CR oocytes. Parthenotes were produced by 

parthenogenetic activation and cleavage and blastocyst rates were assed.  

 

Statistical analysis  

Several binary logistic regression models were fit to determine the role of cumulus cells and the 

impact of the treatment on the likelihood of survival, embryo development, fertilization and 

polyspermy in experiment 1 and 2, and on the likelihood of parthenote development in experiment 

3, using SPSS statistics version 22. The models included the likelihood of survival, embryo 

development, fertilization, and polyspermy and parthenote development respectively, as binary 

outcome variables and the oocyte group (COCs, CRs, DOs, and DOscocs), the treatment (fresh and 

vitrified), and the interaction term between the oocyte group and treatment as categorical 

independent variables. Six replicates were performed for experiment 1, five for experiment 2 and 

four for experiment 3. For all outcome variables, the replicate was forced in the model to account for 

clustering of observations within a replicate. Furthermore, each vitrified oocyte was compared with 

its respective fresh counterparts. A Bonferroni´s correction was applied to correct for multiple 

comparisons. Statistical significance was assessed at p< 0.05.  
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Figure 1. Experimental design of experiment 1 and 2. In vitro matured cumulus oocyte complexes 

(COCs) were randomly assigned to three groups: COCs, corona radiata oocytes (CRs), and denuded 

oocytes (DOs). CRs and DOs were created by partial or complete removal of the cumulus cells. Then, 

oocytes in all three groups were randomly assigned to be either vitrified and warmed, or not vitrified. 

The vitrified and not-vitrified DOs were further subdivided in DOs and DOs supplemented with not-

vitrified COCs (DOs+cocs). The thus obtained four vitrified and four not-vitrified groups were 

fertilized in vitro followed by embryo culture (experiment 1) or assessment of fertilization 

(experiment 2). 
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RESULTS 

Experiment 1 

Survival rates of fresh groups were all very close to 100%, with no significant differences between 

groups (Figure 2). However, survival rates of vitrified denuded oocytes in the groups DOs (94%) and 

DOscocs (95%) were higher than vitrified COCs (82.7%), p<0.05. Survival rates of vitrified CR oocytes 

(86.2%) did not differ significantly from those of vitrified denuded oocytes. Vitrified COCs and CR 

oocytes had significantly lower survival rates compared to their fresh counterparts (82.7% and 86.2% 

vs.98 % and 98.6% respectively, p<0.05).  

 

Figure 2. Survival of control and vitrified mature bovine oocytes. COCs: Cumulus complex oocytes, 

CRs: Corona radiata oocytes, DOs: denuded oocytes, DOscocs: Denuded oocytes supplemented with 

cumulus complex oocytes. i,j Different superscripts indicate significant differences between the 

oocyte groups for the vitrified oocytes;*Indication of significant differences between each control 

with its respective vitrified group. Mean ± SEM, n= 1161, p<0.05. 

 

Removing cumulus cells after maturation significantly decreased the number of oocytes that cleaved 

(p<0.05; Figure 3). However, an increase of the cleavage rate was found in DOscocs compared to DOs 

(68.5 % vs. 53.7% respectively, p<0.05). The same effect was observed among the vitrified groups 

(p<0.05). Furthermore, the addition of COCs to vitrified DOs (DOscocs) resulted in cleavage rates 

comparable to those in vitrified COCs (62.8% vs. 54.9%, respectively). Cleavage rates of vitrified COCs 

(54.9%) and DOs (34%) were significantly lower than fresh COCs (82.7%) and fresh DOs (53.6%), 

p<0.05. 
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The chances to become a blastocyst were higher in fresh COCs (42%) and DOscocs (26.7%) compared 

to vitrified COCs (4.9%) and DOscocs (12.7%), p<0.05. Removing cumulus cells among fresh groups, 

decreased the blastocyst development for CR oocytes (20%) and DOs (9.3%) compared to COCs 

(42%), p<0.05. However, the supplementation of the intact COCs to DOs (DOscocs) increased the 

blastocyst development to rates comparable to those of COCs (26.7% vs. 42% respectively). Among 

vitrified groups, we observed that removing the cumulus cells did not have a significant effect on the 

blastocyst development of CR oocytes (7.7%) and DOs (2.7%) compared to COCs (4.9%), but the 

blastocyst rate of DOscocs was significantly higher compared to DOs (12.7% vs. 2.7% respectively, 

p<0.05). 

 

 

Figure 3. Cleavage (A) and blastocyst (B) development of control and vitrified mature bovine oocytes 

after in vitro production. COCs: Cumulus complex oocytes, CRs: Corona radiata oocytes, DOs: 

A 

B 
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denuded oocytes, DOscocs: Denuded oocytes supplemented with cumulus complex oocytes. a,b,c 

Different superscripts indicate significant differences between the oocyte groups for the control 

group; i,j, Different superscripts indicate significant differences between the oocyte groups for the 

vitrified group;*Indication of significant differences between each control with its respective vitrified 

group. Data are given as mean + SEM, n=1161, p<0.05. 

 

Experiment 2 

Removing cumulus cells before fertilization appeared to have a negative effect on fertilization rates 

(Figure 4). For fresh oocytes, fertilization rates of CR oocytes (39.5%) and DOs (24.7%) were 

significantly lower compared to COCs (71.6%), p<0.05. The supplementation of intact COCs to DOs 

could revert the fertilization rate, being not significantly different from COCs (59.3% vs. 71.6% 

respectively). We observed the same effect in vitrified oocytes. Fertilization rate was significantly 

higher for COCs compared to DOs (52.8% vs. 24.3% respectively, p<0.05), and the situation could be 

reverted when DOs were supplemented with intact COCs (DOscocs, 49.6%). Only vitrified COCs 

showed a fertilization rate which was significantly different from that in their fresh counterparts 

(71.6% vs. 52.8%, p<0.05). Polyspermy rates (Figure 4) were also numerically lower in DOs and CR 

oocytes compared with COCs and DOscocs, but none of the differences between groups were 

significant.  

 

Figure 4. Fertilization (A) and polyspermy (B) rates of control and vitrified mature oocytes. COCs: 

Cumulus oocyte complexes, CRs: Corona radiata oocytes, DOs: denuded oocytes, DOscocs: Denuded 

oocytes supplemented with cumulus complex oocytes. Data are given as mean + SEM, n= 1073, five 

replicates. a,b,c Different superscripts indicate significant differences between the oocyte groups for 

the control group; i,j, Different superscripts indicate significant differences between the oocyte 

groups for the vitrified group;*Indication of significant differences between each control with its 

respective vitrified group. Significance was assessed at P<0.05. 

 

A B 
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  Experiment 3 

In figure 5, we observed that fresh groups had higher chances to cleave after parthenogenetic 

activation when compared to vitrified groups (p<0.05). Among the vitrified groups, cleavage rates of 

CR oocytes were significantly higher compared to those of COCs (76.8% vs.39.1% respectively, 

p<0.05). Blastocyst development of vitrified CR oocytes (29.6%) was comparable to that of fresh 

oocytes (41.9%), and significantly higher than that of COCs (7.5%, p<0.05).  

 

Figure 5. Effect of cumulus cells on embryo development of control and vitrified oocytes after 

parthenogenetic activation. COCs: Cumulus oocyte complexes CRs: Corona radiata oocytes, DOs: 

denuded oocytes. Data are given as mean percentages + SEM (four replicates, n=601). Cleavage rates 

with different superscripts (a-c) and blastocyst rates with different superscripts (i-k) differ 

significantly (p<0.05). 

 

DISCUSSION 

The effect of cumulus cells during vitrification has been studied for many years, but discrepant 

results have been found in several species. In human, a beneficial effect of cumulus cells in the 

survival of mature oocytes was observed at first (Imoedemhe and Sigue 1992, Kuwayama et al. 

2005), however (Minasi et al. 2012) reported no differences in the survival of COCs compared to 

denuded oocytes. In equine, the presence of cumulus cells was found to be beneficial during the 

vitrification of mature oocytes (Tharasanit et al. 2009), whilst they were reported to play a 

detrimental role during the vitrification of buffalo oocytes (Gasparrini et al. 2007). On the other 
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hand, no differences were found in the survival rate between cumulus complex oocytes and denuded 

ovine oocytes (Zhang et al. 2009). In cattle, discrepant results have been reported. (Dinnyes et al. 

2000) did not observe any effect when cumulus cells were present during vitrification of bovine 

oocytes. Similarly, (Zhou et al. 2010) did not observe any effect in the survival of mature bovine 

oocytes when they were vitrified with cumulus cells. Nevertheless, (Chian et al. 2004) observed that 

cumulus cells have a detrimental effect on the survival rate of vitrified mature oocytes. Our 

observations agree with the latter study. We observed that oocytes surrounded by cumulus cells 

such as oocytes in the COCs or CRs groups have less chance to survive compared to their fresh 

counterparts, whilst denuded oocytes presented the same survival rate as their fresh counterparts. 

According to the results observed in our study, we think discrepancies with previous reports were 

due to the fact that we analyzed the survival of COCs, CRs and DOs, whereas (Zhou et al. 2010) 

studied the survival of COCs and partially denuded oocytes. Those partially denuded oocytes could 

be considered as a different group than we used in the current study, since they had a different 

amount of cumulus cells with respect to DOs and CR oocytes. We hypothesize that cumulus cells can 

hinder the diffusion of water and CPAs, resulting in an inadequate cell protection. It is also 

remarkable that denuded or corona radiata oocytes were easier to handle when a manufactured 

cryotop was used during vitrification. Moreover, the amount of liquid surrounding these oocytes was 

lower compared to COCs. A lower amount of liquid surrounding the oocyte leads to a higher cooling 

and warming rate (Arav 2014), which could be positive for survival of the DOs and CR oocytes 

compared with COCs. 

It is known that removal of cumulus cells shortly before IVF strongly decreases fertilization rates in 

cattle (Zhang et al. 1995, Tanghe et al. 2003). During fertilization, cumulus cells attract, trap and 

select the spermatozoa (Chian et al. 1996, Cox et al.1993). They are also important to induce sperm 

capacitation, acrosome reaction and penetration (Chian et al. 1996, Cox et al. 1993, Fukui 1990, 

Younis and Brackett 1991) and to prevent zona pellucida hardening (Katska et al. , Downs et al. 

1986). In our study, removal of cumulus cells after maturation decreased the fertilization, cleavage 

and blastocyst rates, as expected. To solve this problem, we supplemented DOs with intact COCs 

during the fertilization. In this way, DOs can restore their developmental capability (Luciano et al. 

2005). Attanasio et al., showed that the cleavage rate of vitrified buffalo oocytes increases when DOs 

are supplemented with intact COCs, but not the blastocyst rate. The data of the present study 

showed that cleavage and blastocyst rates can be improved in denuded vitrified bovine oocytes 

when they are supplemented with intact COCs. 
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Another way to solve the negative effect of cumulus cells during vitrification and to allow a positive 

influence during fertilization involves a partial reduction of cumulus cells before vitrification (Papis et 

al. 2013). Therefore, in the present study, we included a CRs group, which represents the corona 

radiata consisting of a few layers of cumulus cells. We observed that the survival rate of CR oocytes 

after vitrification was comparable to that in DOs, while the fertilization rate tended to be higher. 

Furthermore, vitrified CR oocytes showed similar embryo development than COCs. On the other 

hand, fresh COCs displayed higher fertilization and subsequently embryo development than CR 

oocytes.  

It has been published that the exposition to low temperatures and cryoprotectants can lead to the 

release of cortical granules in oocytes, which can cause zona hardening (Fuku et al. 1995b). In our 

study, this effect may have been small, as the differences in the fertilization rate between fresh and 

vitrified DOs supplemented with fresh COCs (DOscocs) were very similar. On the other hand, 

polyspermic penetration can be related to abnormalities in release and dispersal of cortical granules 

(Fuku et al. 1995a). A proper cortical reaction was probably present, since we could not find 

significant differences in polyspermic penetration between vitrified and fresh oocytes. 

To investigate the effect of cumulus cells during the vitrification of mature oocytes on embryo 

development, avoiding its confounding effect during fertilization, we performed parthenogenetic 

activation of vitrified mature oocytes after warming. We observed a lower developmental capacity of 

the vitrified COCs compared with the CR oocytes. Interestingly, the CR oocytes showed similar 

blastocyst rates as fresh oocytes. This suggests that partial removal of an excess of cumulus cells 

supports developmental competence of mature bovine oocytes after vitrification. This result 

disagrees with the data published by (Dinnyes et al. 2000), who found that the development 

following parthenogenetic activation was reduced in vitrified oocytes compared to fresh oocytes. 

Although the reduction of cumulus cells layers compromises the fertilization and subsequently 

embryo development, our parthenogenetic data proved that this was merely due to a reduced 

fertilization rate since parthenogenetic embryos could reach the blastocyst stage at high rates. 

Hence, the detrimental effect of cumulus cell removal can be mended by adding COCs during 

fertilization of vitrified warmed oocytes, as we showed here, or eventually by intracytoplasmic sperm 

injection (Mavrides and Morroll 2005).  

In conclusion, our data indicate that it is advisable to remove at least a part of the cumulus cells 

before the vitrification of mature bovine oocytes. Denuded oocytes survive vitrification at higher 

rates than COCs, although their fertilization and subsequent embryo development is compromised 
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by the absence of cumulus cells. The supplementation of intact COCs can restore the situation, 

providing DOs with similar fertilization and embryo development rates as in vitrified COCs. On the 

other hand, although vitrified COCs have a higher fertilization rate, their survival and embryo 

development is compromised by the presence of cumulus cells. The use of corona radiata oocyte can 

overcome these two factors, improving the efficiency of vitrified mature bovine oocytes. However, if 

future research could show why COCs vitrify more poorly than DOs, perhaps the vitrification medium 

recipe or the procedures could be optimized for COCs to yield best survival combined with best 

fertilizing and developmental capacity.  
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Summary 

The success rate for vitrification of immature equine oocytes is low. Although vitrified-warmed 

oocytes are capable of growing to maturity, further embryonic development appears to be 

compromised. The aim of this study was to compare two vitrification protocols, and to examine the 

effect of the number of layers of cumulus cells surrounding the oocyte during vitrification of 

immature equine oocytes. Immature equine oocytes were vitrified after a short exposure to high 

concentrations of cryoprotectants (CPAs) or a long exposure to lower concentrations of CPAs. In 

Experiment 1, the maturation of oocytes surrounded by multiple layers of cumulus cells (CC oocytes) 

and oocytes surrounded by only corona radiata cells (CR oocytes) was investigated. In Experiment 2, 

spindle configuration was determined for CR oocytes vitrified using the two vitrification protocols. 

Finally, in Experiment 3, further embryonic development was studied after fertilization and culture. 

Similar nuclear maturation rates were observed for CR oocytes vitrified using the long exposure 

compared to the non-vitrified controls. Furthermore, a lower maturation rate was obtained for CC 

oocytes vitrified with the short exposure compared to control CR oocytes (p < 0.05). Both vitrification 

protocols resulted in significantly higher rates of aberrant spindle configuration than the control 

groups (p < 0.05). Blastocyst development only occurred in CR oocytes vitrified using the short 

exposure, and even though blastocyst rates were significantly lower than in the control group 

(p < 0.05), embryo transfer resulted in a healthy foal. These results indicate that for vitrification of 

immature equine oocytes, the use of (1) CR oocytes, (2) a high concentration of CPAs and (3) a short 

exposure time may be key factors for achieving improved blastocyst development and a foal. 
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INTRODUCTION 

Equine assisted reproductive technologies have evolved rapidly during the last decade and the 

relatively new techniques of cryopreserving immature oocytes may offer further advancement. For 

clinical application, it would allow postponement of the decision on the choice of stallion for 

intracytoplasmic sperm injection (ICSI). For research, it could provide a reliable source of immature 

equine oocytes in countries without access to equine slaughterhouses, such as the United States, 

assuming that such cells could be transported legally. Moreover, oocyte cryopreservation allows the 

preservation of genetics from valuable horses and endangered breeds (Smits et al. 2012b). However, 

the overall success rate of this technique in the horse is low. So far, only two papers report on the 

successful use of vitrified oocytes partially matured in vivo (Maclellan et al. 2002, Maclellan et al. 

2010) while pregnancies obtained after fertilization of in vitro produced immature vitrified-warmed 

oocytes retrieved from slaughterhouse ovaries have not been reported yet. In the first study, oocytes 

were obtained by ovum pick-up after initiation of maturation in vivo, cultured in maturation medium 

for 2–4 h, vitrified-warmed, and then cultured for 10–12 h before subsequent transfer to 

inseminated mares for in vivo fertilization, resulting in two live born foals (Maclellan et al. 2002). The 

same authors also reported four pregnancies obtained from oocytes that were vitrified after 

initiation of maturation in vivo, fertilized by ICSI, in vitro cultured and transferred to recipient mares 

(Maclellan et al. 2010). 

Vitrification is the most commonly used cryopreservation technique for oocytes. It is characterized by 

the use of high concentrations of cryoprotectants (CPAs) and the fast cooling rate (Vajta 2013). 

Oocytes from large domestic species are rich in cytoplasmic lipid droplets causing them to be highly 

sensitive to chilling (Ledda et al. 2001), thus requiring species specific optimization of the exposure 

time and concentration of CPAs. 

Successful vitrification is influenced by different factors that affect oocyte cryotolerance, including 

the presence of cumulus cells surrounding the oocyte at the time of vitrification. While a protective 

effect of cumulus cells during vitrification of immature oocytes has been reported (Tharasanit et al. 

2009, Zhou et al. 2010, Purohit et al. 2012), other studies show that cumulus cells constitute a tight 

multilayer barrier that reduces the entry of CPAs into the oocyte, thereby influencing the exchange 

of water and CPAs (Papis et al. 2013). Removing all cumulus cells before vitrification of immature 

oocytes might result in a lower maturation rate and impaired embryo development (Tanghe et al. 

2002). Therefore, vitrification of oocytes that are surrounded only by corona radiata (CR) cells has 

been proposed as a sound alternative in cattle (Papis et al. 2013), as the CR cells allow an appropriate 
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exchange of water and CPAs, while the developmental capacity of the oocyte is sustained (Papis et al. 

2013, Ortiz-Escribano et al. 2016). 

The aim of the current study was to improve the vitrification protocol for immature equine oocytes. 

To this end, the effect of the number of cumulus cells layers (multiple layers of cumulus cells vs. 

corona radiata only) surrounding immature equine oocytes at the time of vitrification was evaluated, 

and two vitrification protocols were compared: one with a short exposure to a high CPA 

concentration, and one with a longer exposure to a lower CPA concentration. 

MATERIALS AND METHODS 

Media and reagents 

Dulbecco´s Modified Eagle Medium Nutrient Mixture F-12 (DMEM/F12), Dulbecco´s phosphate 

buffered saline (DPBS), Tissue Culture Medium-199 with Hanks’ salts (TCM-199) and Hoechst 33342 

were purchased from Life Technologies Europe. Unless otherwise stated, all other components were 

obtained from Sigma (Bornem, Belgium). 

Maturation medium was composed of DMEM/F12 supplemented with serum replacement (9.4%), 

epidermal growth factor (0.05 µg/ml), follicle stimulating hormone (9.4 µg/ml), luteinizing hormone 

(1.88 µg/ml), glutamine (90 µg/ml), ascorbic acid (68 µg/ml), polyvinyl alcohol (23 µg/ml), 

myoinositol (4.5 µg/ml), Na pyruvate (99.5 µg/ml), insulin (9.5 µg/ml), transferrin (8.6 µg/ml), 

selenium (10 ng/ml), cysteine (0.094 mg/ml), cysteamine (0.046 mg/ml) and lactic acid (9.4 µl/ml). 

 

Experimental design 

In three consecutive experiments, immature equine oocytes were either vitrified with a short 

exposure to a high CPA concentration (further referred to as short vitrification protocol), or vitrified 

with a longer exposure to a lower CPA concentration (further referred to as long vitrification 

protocol), or not vitrified (control). In experiment 1, oocytes surrounded by multiple layers of 

cumulus cells (further referred to as CC oocytes, Figure 1A) or by corona radiata only (further referred 

to as CR oocytes, Figure 1B) were used. Fresh and vitrified-warmed CC and CR oocytes were matured 

in vitro and the nuclear maturation was evaluated. In Experiment 2, fresh and vitrified-warmed CR 

oocytes were matured in vitro, and meiotic spindle configuration was assessed. In Experiment 3, 

fresh and vitrified-warmed CR oocytes were matured in vitro, and the developmental competence to 
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the blastocyst stage was studied after fertilization by ICSI. Blastocysts obtained after vitrification with 

the short vitrification protocol were transferred on day 9 after ICSI to recipient mares. 

Collection of equine immature oocytes 

Equine ovaries were obtained from a local slaughterhouse, and transported in an insulated box to 

the laboratory at room temperature within 1 h. All follicles between 5 and 20 mm were aspirated 

using a 16-gauge needle attached to a vacuum pump (-100 mm Hg), scraped with the aspirating 

needle and flushed with TCM199 (Hanks). 

Recovered oocytes were classified either as CC oocytes, which were surrounded by multiple layers of 

cumulus cells (Figure 1A) or as CR oocytes, which were surrounded by the corona radiata only (Figure 

1B). Most of the recovered oocytes (more than 2/3) were classified as CC oocytes. To increase the 

number of CR oocytes, the excess cumulus cells in cumulus compact CC oocytes were removed by 

repeated pipetting of the oocyte inTCM199 (Hanks). As such, the CR oocytes used in this study were 

either directly collected from the slaughterhouse ovaries (less than 1/3) or obtained after repeated 

pipetting of cumulus compact CC oocytes. Due to our collection aspiration technique, we were 

unable to identify the directly collected CR oocytes as being either expanded or cumulus compact CC 

oocytes. Therefore, all the collected expanded oocytes were assigned to the CC oocytes in order to 

obtain a balanced number of expanded and cumulus compact oocytes in both groups. Denuded and 

partially denuded oocytes were excluded from all experiments. 

Recovered oocytes allocated to the control groups were immediately placed in maturation medium, 

while oocytes in the vitrified groups were first vitrified, then after one week of storage, they were 

warmed and incubated in maturation medium. 

 

 

Figure 1. Representative images of oocytes surrounded by multiple layers of cumulus cells (A) and 

oocytes surrounded by only corona radiata cells (B). 
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Vitrification and warming 

The composition of the vitrification and warming solutions used in the two different protocols is 

given in Table 1. For both protocols, vitrification and warming steps were performed on a heated 

plate at 37°C. A custom-adapted device (see details in figure 4 of chapter 1) was used to store the 

oocytes in liquid nitrogen (LN2). Oocytes were loaded using a 130 µm pipette in order to minimize the 

volume surrounding the oocytes. When oocytes were deposited over the surface of the custom-

adapted device, the excess medium was removed with the pipette by capillarity. 

Protocol with long exposure to low concentration of CPAs 

This vitrification protocol was based on that described by Kuwayama et al. 2005 with some 

modifications, and will be referred to as ‘long vitrification protocol’. Briefly, four oocytes at a time 

were placed into one single 75 µL droplet of handling solution (HSL; long vitrification protocol), 

consisting of TCM199 (Hanks) supplemented with 20% (v/v) fetal bovine serum (FBS, Greiner Bio-

one, Belgium). In order to allow a gradual equilibration of the oocytes, the HSL droplet, containing 

the oocytes, was merged with a first 75 µL droplet of equilibration solution (ES) containing HSL, with 

7.5% (v/v) ethylene glycol (EG) and 7.5% (v/v) dimethyl sulfoxide (DMSO). After 2 min, oocytes were 

transferred to the first ES droplet, which was merged with a second droplet of 75 µL containing ES, 

and oocytes were left there for 2 min. Next, oocytes were transferred to another droplet of 75 µL 

containing ES, and incubated for 6 min. Subsequently, oocytes were transferred into four consecutive 

50 µl droplets of vitrification solution (VS), consisting of HSL with 15% (v/v) EG, 15% (v/v) DMSO and 

0.5 M sucrose for 60 s in total, and then loaded on a custom-adapted device and plunged into LN2 

within 10–20 s (Table 1). 

After one week in LN2, the custom-adapted device containing the four oocytes was introduced into 4 

mL of warming solution (W1) containing HSL supplemented with 1 M sucrose for 1 min. Next, oocytes 

were moved to 4 mL of W2 containing HSL supplemented with 0.5 M sucrose for 3 min, and finally to 

4 mL of W3 containing HSL supplemented with 0.25 M sucrose for 5 min. Finally, oocytes were placed 

in 4 mL of HSL, where they were stored until all oocytes were warmed (Table 1). 
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Protocol with short exposure to high concentration of CPAs 

The second method of vitrification was based on the protocol described by Tharasanit et al. 2006, 

with some modifications, and will be referred to as the ‘short vitrification protocol’. Four oocytes at a 

time were placed in one single 100 µL droplet of handling solution (HSS; short vitrification protocol) 

containing TCM199 (Hanks) supplemented with 0.014% (w/v) bovine serum albumin (BSA) for 1 min. 

The oocytes were then transferred to a 100 µL droplet of ES, consisting of HSs supplemented with 

10% (v/v) EG and 10% (v/v) DMSO. After 25 seconds, the oocytes were transferred to a 100 µL 

droplet of VS containing HSs supplemented with 20% (v/v) EG, 20% (v/v) DMSO and 0.5 M sucrose. 

After 15 s, the oocytes were transferred to a custom-adapted device and plunged into LN2 within 10–

20 s. 

After one week in LN2, the custom-adapted device was transferred into 4 mL of W1 containing HSs 

supplemented with 0.5 M sucrose where oocytes were cultured for 5 min. Next, oocytes were stored 

in HSs until warming of all oocytes was completed (Table 1). 

In vitro maturation 

A maximum of 40 oocytes at a time were transferred to 500 μL of DMEM/F12 based maturation 

medium (Smits et al. 2010) at 38.5°C in a humidified atmosphere of 5% CO2 in air for 28 h. For the 

exact composition of the maturation medium, we refer to the ‘Reagents and Media’ section. After 

maturation, oocytes were completely denuded by gentle pipetting in 0.05% (w/v) bovine 

hyaluronidase diluted in TCM199 (Hanks). 

Table1. Composition of vitrification-warming solutions and time of exposure used in the different 

protocols. 

 Long vitrification protocol  Short vitrification protocol 

 Solution Time  Solution Time 

Handling solution 

(HS) 

TCM199Hanks + 20%FBS 1’  TCM199Hanks + 0.014%BSA 1’ 

Equilibration 

solution (ES) 

HS+ 7.5%EG + 7.5%DMSO 10’  HS + 10%EG + 10%DMSO 25´´ 

Vitrification solution 

(VS) 

HS+15%EG+15%DMSO+ 0.5M 

sucrose 

1’  HS+20%EG+20%DMSO+0.5M 

sucrose 

15’’ 

Warming (W1) HS + 1M sucrose 1’  HS + 0.5 M sucrose 5’ 

Warming (W2) HS + 0.5M sucrose 3’  -  

Warming (W3) HS + 0.25M sucrose 5’  -  

FBS: Fetal Bovine serum, EG: Ethylene Glycol, DMSO: Dimethyl sulfoxide. 
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Evaluation of nuclear maturation (experiment 1) 

For all six groups (CC and CR oocytes vitrified according to the long vitrification protocol, CC and CR 

oocytes vitrified according to the short vitrification protocol and fresh control CC and CR oocytes), 

maturation rates (see above) were determined by nuclear staining with 10 μg/ml Hoechst 33342. 

Oocytes were visualized and classified as metaphase I (MI, characterized by the presence of highly 

condensed chromosomes and the absence of the first polar body, figure 2A), metaphase II (MII, 

characterized by the presence of well-organized chromosomes and the presence of the first polar 

body, figure 2B) or degenerated (characterized by the absence of chromosomes) by epifluorescence 

microscopy using a Nikon TE300 inverted microscope with a 20× objective and equipped with a Nikon 

DS-Ri1 camera (Nikon Benelux, Zaventem, Belgium). 

 

 

Figure 2. Representative images of an immature (A) and mature oocyte (B) stained with Hoechst.  

 

Spindle status assay (experiment 2) 

Oocytes with a visible polar body after in vitro maturation (see above) were fixed in 4% (v/v) 

paraformaldehyde for 25 min, permeabilized with 0.5% (w/v) Triton X-100 for 1 h and blocked with 

PBS containing 10% (v/v) goat serum and 0.5% (w/v) BSA at 4°C overnight. Subsequently, oocytes 

were incubated with anti-α-tubulin monoclonal antibody (Molecular Probes, Paisley, UK; 1:200 

dilution) overnight at 4°C followed by incubation with anti-mouse IgG antibody Alexa Fluor 488 

(Molecular Probes; 1:500) for 1 h at 25°C. Oocytes were counterstained with 10 μg/ml Hoechst 

33342 for 10 min and analysed using a Leica TCS-SP8 X confocal microscope (Leica Microsystems, 

Wetzlar, Germany). Chromosome and microtubule distributions were classified according to 

Tremoleda et al. (Tremoleda et al. 2001). Briefly, the meiotic spindle was defined as normal when it 

was symmetrically barrel-shaped with the two poles and two equal sets of chromosomes aligned at 

A B 
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its centre (Figure 3A). On the other hand, abnormal spindles showed disorganized, clumped, 

dispersed or unidentifiable spindle elements (Figure 3B) with chromosome alignment defects (Figure 

3C). 

 

Figure 3. Confocal images illustrating cytoskeleton morphology in vitrified-warmed oocytes. 

Microtubules are stained in red and chromatin in blue. (A) shows a normal MII oocyte with its typical 

barrel-shaped metaphase II spindle configuration and the chromosomes perfectly aligned in blue. (B) 

shows an oocyte with a extruded polar body (PB), smaller spindle and aligned chromosomes.(C) 

shows oocyte with a disrupted spindle and dispersed chromosomes. Scale bar 10 μm. 

 

Intracytoplasmic injection and embryo culture (experiment 3) 

Oocytes showing an extruded polar body after in vitro maturation (see above) were fertilized by ICSI 

as described by Smits et al. (Smits et al. 2012a). Semen was collected of one stallion of proven 

fertility, and spermatozoa were selected using 45%–90% Percoll (GE Healthcare, Belgium) density 

gradient centrifugation for 40 min at 750 x g at 26°C. After removal of the supernatant, the sperm 

pellet was washed in 5 ml of Ca2+-free Sperm-TALP (tyrode´s albumin-lactate-pyruvate) using 

centrifugation for 10 min at 400 x g at 26°C. The supernatant was removed again and the sperm 

pellet was re-suspended in 300 µl of Ca2+-free Sperm-TALP and kept at room temperature until used 

for ICSI. Immediately before ICSI, a small volume of sperm suspension was added to the left side of a 

5 µl droplet of 9% polyvinylpyrrolidone in PBS and the spermatozoa were allowed to swim out to the 

right side of the droplet where they were picked up for ICSI. 

All manipulations were performed on the heated stage (37°C) of an inverted microscope. A 

progressively motile spermatozoon was aspirated with its tail first into a blunt piezo pipet of 6 µm 

(Origio, Vreeland, The Netherlands) and immobilized by applying a few pulses of a piezo drill (Prime 

Tech, Ibaraki, Japan, speed: 4, intensity: 3) to its tail. Oocytes were held in separate 5 µL droplets of 
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TCM199 (Hanks) containing 10% (v/v) FBS under mineral oil. The oocyte was fixed by aspiration with 

a holding pipet with an inner diameter of 15–20 µm (Origio, Vreeland, The Netherlands) keeping the 

polar body at 12 o’clock or 6 o’clock. The zona pellucida was drilled using the piezo (speed: 4, 

intensity: 3), a piece of zona was removed and after penetration of the oolemma with the piezo 

(speed: 3, intensity: 2), the spermatozoon was injected into the cytoplasm of the oocyte. Injected 

oocytes were cultured in groups of 10 to 20 in 20 μL droplets of DMEM/F12 with 10% (v/v) FBS at 

38.2°C in a humidified atmosphere of 5% CO2, 5% O2 and 90% N2. Cleavage rate was determined on 

day 2.5 after fertilization and blastocyst development on day 9 post-fertilization. 

 

Embryo transfer 

Blastocysts were washed twice in preheated Emcare Holding Medium (ICPbio Reproduction, USA) 

and placed in a 2 mL tube filled with preheated Emcare Holding Medium. During transport to the 

embryo transfer centre (2 h), the tube was kept in 50 mL of preheated PBS in an insulated box. Upon 

arrival, blastocysts were again washed in Emcare Holding Medium and transferred transvaginally to 

the uterus of a recipient mare at day 4 or 5 post ovulation. 

 

Statistical analyses 

Statistical analyses were conducted using the Statistical Package for the Social Sciences (IBM® SPSS® 

Statistics 23.0, Chicago, IL). Two-way analysis of variance (ANOVA) was performed in order to 

evaluate the maturation rate outcome (MI and MII) and the proportion of degenerated oocytes 

(dependent variables). Fixed effects (independent variables) were classified according to the number 

of layers of cumulus cells (CC and CR), and the vitrification treatment (control, long vitrification 

protocol or short vitrification protocol), and their respective first degree interactions. Variables 

obtained from embryo development analysis, and spindle and chromosome alignment were 

evaluated using one-way ANOVA. The models included the likelihood of maturation, cleavage, 

blastocyst rate, spindle and chromosome configuration as dependent variables. The treatment 

(control, long vitrification protocol and short vitrification protocol) was set as the categorical 

independent variable. For all outcome variables, the replicates were forced into the model to 

account for clustering of observations within a replicate. Results are expressed as mean ± standard 

error of the mean (SEM). For all the models, statistical significance level was set at p < 0.05. 
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RESULTS 

Effect of the number of layers of cumulus cells and vitrification protocol on 

the maturation rate of vitrified equine oocytes (experiment 1). 

Equine immature oocytes were used to evaluate the effect of the number of cumulus cell layers (CC 

vs. CR, Figure 1A–B) and the two vitrification protocols (long protocol vs. short protocol, Table 1) on 

the maturation rate of vitrified-warmed equine oocytes (Table 2). A strong association was observed 

between the number of cumulus cell layers and the vitrification treatment on maturation and 

degeneration rates. 

The maturation rate of CR oocytes vitrified with the long vitrification protocol did not differ 

significantly from control oocytes. However, the maturation rate of CC oocytes vitrified with the 

short vitrification protocol (25.3%) was lower (p < 0.05) compared with control CC oocytes (53.4%), 

and with control CR oocytes (58.1%). Also the maturation rate of CR oocytes vitrified with the short 

vitrification protocol (34.4%) was lower (p<0.05) compared with control CR oocytes (58.1%). 

Furthermore, the maturation rate of CR oocytes vitrified with the long vitrification protocol was 

significantly higher when compared to CC oocytes vitrified with the short vitrification protocol (48.4% 

vs. 25.3%, p < 0.05). 

Degeneration rate was numerically higher in vitrified oocytes when compared with control groups, 

but the differences with the respective control were not significant. However, when comparing CC 

oocytes vitrified with the short vitrification protocol with CR control, the difference was significant 

(p < 0.05). 

No association between the number of cumulus cells layers and treatment was observed when 

analysing MI. Therefore, MI was analysed as main effect, and a higher MI rate was demonstrated in 

oocytes vitrified with the short vitrification protocol compare to fresh oocytes (p < 0.05). 
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Table 2. Overview of the in vitro maturation rates of control and vitrified immature equine oocytes 

surrounded by multiple layers of cumulus cells (CC) and by corona radiata cells only (CR) using two 

different vitrification protocols. 

Treatment Group n Undefined MI(%) MII(%) Degenerated (%)   

Control CC 88 13 12(13.6±3.6) 47(53.4±9.7)
a,b

 16(18.2±3.4)
 a,b

   

 
CR 86 16 9(10.5±1.9) 50(58.1±4)

 a

 11(12.8±2.2)
 a

   

Long vitrification 
protocol 

CC 93 9 20(21±3.4) 32(34.4±4.7)
b,c

 32(34.4±7.5)
a,b

   

 CR 122 13 16(13.1±2.6) 59(48.4±6.3)
a,b

 34(27.9±8.5)
 a,b

   

Short vitrification 
protocol 

CC 99 12 21(21.2±3.2)      * 25(25.3±4.1)
c
 41(41.4±6.3)

b
   

 
CR 122 20 25(20.5±6.2) 42(34.4±2.5)

b,c

 35(28.7±5.7)
 a,b

   

For MI, main effects were analyzed, and differences were only observed between the treatments. * 

The control group was significantly different from the group vitrified with the short vitrification 

protocol (p<0.05).a,b,c Groups with different superscripts within the same column are significantly 

different (p<0.05). Data are given as mean percentages ± SEM (five replicates, n=610). 

 

Effect of vitrification on spindle morphology of equine immature oocytes 

(experiment 2) 

We observed fewer oocytes with a normal spindle in vitrified oocytes compared with control oocytes 

(53.3%–68.4% vs. 81.3%, p < 0.05; Figure 4). Furthermore, a lower percentage of a correct alignment 

of chromosomes was observed in vitrified oocytes compared with control oocytes (66.7%–68.4% vs. 

87.5%, p < 0.05, Figure 4). However, no significant differences were observed in the spindle 

morphology and chromosome alignment between vitrified groups (Figure 4). 
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Figure 4. Percentage of normal microtubule and chromosome alignment of control and vitrified 

oocytes. a,b, Groups with different superscripts are significantly different (p < 0.05). Three replicates, 

n = 50. 

 

Effect of vitrification protocol on embryo development of vitrified equine 

immature oocytes (experiment 3) 

In a pilot experiment (n=583), control and vitrified oocytes used in Experiment 1 were fertilized by 

ICSI and cultured for 9 d. Preliminary results showed that only CR oocytes vitrified with the short 

vitrification protocol had the potential to develop into a blastocyst (data not shown). According to 

the results from Experiment 1 and the pilot study, we decided to use only CR oocytes to investigate 

the effect of both vitrification protocols on embryo development (Table 3). Vitrification significantly 

decreased the number of cleaved oocytes in both methods (p < 0.05). Furthermore, embryo 

development was significantly impaired after vitrification in both protocols (p < 0.05), but only the 

oocytes vitrified with the short vitrification protocol showed potential to develop into a blastocyst 

(6.9%, p<0.05). 

All blastocysts obtained after vitrification of immature oocytes based on the short vitrification 

protocol were transferred on day 9 after ICSI to recipient mares at day 4 or 5 after ovulation. Initially, 

two blastocysts were transferred to two mares, but no pregnancies were observed. Next, two 

blastocysts were transferred to one mare, and ultrasound revealed one embryonic vesicle, though no 

embryonic heartbeat could be detected at day 21 after transfer, so the pregnancy was lost. After 

transferring another blastocyst to a recipient mare, an embryonic vesicle was detected 9 days after 

transfer and a heartbeat was confirmed at 21 days after transfer (20% pregnancy rate). The 

pregnancy resulted in a healthy male foal, born on May 12th 2017 (Figure 5). 
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Table 3. Overview of the maturation rate and embryo development of control and vitrified-warmed 

equine immature oocytes surrounded only by corona radiata cells, using two vitrification protocols 

(long vitrification protocol vs. short vitrification protocol). 

Group n MII oocytes (%) Cleavage (%) Blastocyst (% of 

injected oocytes) 

Blastocyst (% of 

cleaved zygotes) 

Control 145 80 ( 54.8±3.7)
a

 61 (76.3±4.2)
a

 16 (20±3.5)
a

 16 (26.2±0.8)
a

 

Long 

vitrification 

protocol 

141 56 (39.7±5)
b

 17 (30.3±3.5)
b

 0
b

 0
b

 

Short 

vitrification 

protocol 

179 72 (40.2±1.7)
b

 30 (41.6±8.9)
b

 5 (6.9±2.6)
c

 5 (16.7±7.7)
a

 

a,b,c Groups with different superscripts within the same column are significantly different (p<0.05). 

Data are given as mean percentages ± SEM (four replicates, n=465). 

 

DISCUSSION 

In this study, we have demonstrated that immature CR equine oocytes can be vitrified successfully 

using a high concentration of CPAs and a short time of exposure to the equilibration and vitrification 

solutions. Vitrified oocytes generally showed lower maturation rates compared with control, and the 

cleavage rate and blastocyst formation were significantly compromised. Nevertheless, we obtained 

an improved blastocyst development, and to the best of our knowledge, for the first time, a foal after 

transferring an in vitro produced (IVP) blastocyst, which was derived from a vitrified immature 

equine oocyte. 

In a first experiment, we observed that the maturation of vitrified immature equine oocytes was 

strongly influenced by the number of cumulus cell layers surrounding the oocyte. In horses, a 

protective effect of cumulus cells during vitrification of immature oocytes has been suggested 

(Tharasanit et al. 2009), but in that study, vitrification of cumulus-intact oocytes was compared with 

that of denuded oocytes, from which the cumulus cells had been removed completely. As the 

presence of cumulus cells is indispensable for maturation (Tanghe et al. 2002), the low maturation 

rate observed after vitrification of denuded oocytes might be a consequence of the total absence of 

cumulus cells, rather than the effect of the vitrification process. Therefore, CR oocytes were used in 

this study to evaluate the effect of the number of cumulus cell layers, as described previously in 

cattle (Ortiz-Escribano et al. 2016). We observed no significant difference in maturation rate 
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between control fresh CC and CR oocytes, indicating that corona radiata cells have the capacity to 

support the oocyte reaching MII as adequately as intact CC oocytes. In our study, the presence of 

multiple layers of cumulus cells surrounding the oocyte combined with the use of a short vitrification 

protocol, i.e. less than one min., negatively affected survival and further maturation. We presumed 

that this effect was related to the layers of cumulus cells surrounding the oocyte, and not to the 

potential difference between CC and CR oocytes, because both expanded and compact oocytes were 

equally assigned to CC and CR oocytes. Cumulus cells may impair the movement of CPAs into the 

oocyte leading potentially to an inappropriate intracellular CPA concentration, as the efflux of water 

from oocytes occurs quickly, within 20 s, whereas the influx of CPAs takes longer (Jin et al. 2011). 

 

Figure 5. A healthy male foal was born at term, here depicted at 3 days of age. 

Exposing oocytes to CPAs during vitrification induces osmotic volume changes due to the migration 

of water and CPAs. In mature oocytes, these volume changes might cause a disruption of the spindle 

while in immature oocytes, microfilament organization might be disturbed (Joly et al. 1992, Heo et al. 

2011). In our study, vitrification resulted in significantly higher percentages of oocytes with abnormal 
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spindle structures associated with disorganized microtubules when compared to control oocytes. No 

significant differences were observed amongst the vitrified groups, even though oocytes vitrified 

with the short vitrification protocol were exposed to more extreme osmotic changes as a 

consequence of the higher concentration of CPAs used. 

Vitrification of immature oocytes is generally associated with a significant decrease in blastocyst 

development in mammalian species (Tharasanit et al. 2006, Zhou et al. 2010, Somfai et al. 2014), 

because cryopreservation can induce a rupture of the oolemma (Arav et al. 1996, Men et al. 2002) 

and cytoskeletal disorganization (Saragusty and Arav 2011). In our study, cleavage and blastocyst 

rates were indeed severely reduced in vitrified oocytes when compared to control oocytes. Although 

oocytes vitrified with both protocols showed not a significantly different cleavage rate, blastocyst 

development was only observed in oocytes vitrified with the short vitrification protocol. Almost 7% 

of the injected oocytes developed into a blastocyst, i.e. 16% of the cleaved embryos. 

The short vitrification protocol used in this study, was previously described by Tharasanit et al. 

(Tharasanit et al. 2006). These authors reported 1% blastocyst formation after vitrification of 

immature equine oocytes. The higher blastocysts rate obtained in this study (7%) may be the result 

of the two modifications included. Besides the fact that we used CR oocytes, a custom adapted 

device similar to the cryotop was used as an alternative to the open pulled straw (OPS) that was used 

in the other study. Using this device, oocytes are loaded in a minimum volume of vitrification 

solution (<1 μl), resulting in faster cooling-warming rates than with the OPS, which in other species 

was demonstrated to lead higher cleavage and blastocyst rates (Liu et al. 2008, Morato et al. 2008, Li 

et al. 2012). 

Surprisingly, we observed that CR oocytes vitrified with the long vitrification protocol appeared to 

have not very strongly reduced maturation rates (no significant difference with control fresh 

oocytes), but were not able to develop into blastocysts. High blastocyst rates (11%, 1/9) have been 

recently published by Canesin et al. 2016 using this long protocol for vitrification of equine oocytes. 

However, these authors used a different device to load the oocytes and different concentrations of 

sucrose during warming, which may explain in part, the disparate results. 

More interestingly, Canesin et al. 2016 reported that the concentration and time of exposure (more 

than 10 min) to CPAs used in the long vitrification protocol were detrimental for the developmental 

competence of immature equine oocytes. Indeed, CPA toxicity is considered as the most limiting 

factor when developing a successful vitrification protocol. The toxicity of penetrating CPAs 

consistently increases with higher CPA concentrations, higher exposure temperature, and/or longer 
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exposure time (Szurek and Eroglu 2011). Although higher concentrations of CPAs were used in the 

equilibration and vitrification solutions of the short vitrification protocol, the very strongly reduced 

time of exposure could have resulted in the successful cryopreservation, as previously reported in 

bovine oocytes (Yamada et al. 2007). 

The ultimate goal of oocyte vitrification is to preserve developmental capacity to the blastocyst 

stage, resulting in a successful pregnancy and a live foal. Live births have been reported after 

vitrifying immature bovine (Vieira et al. 2008) and porcine (Somfai et al. 2014) oocytes; however, as 

far as we know, no pregnancies or foals born from vitrified immature oocytes after complete IVP 

have been reported. In the current study, we report a successful equine pregnancy resulting in a 

healthy foal (Figure 5) which is a major achievement in the field of equine assisted reproduction, and 

of equine oocyte cryopreservation in particular. 

In conclusion, we developed an improved method for the vitrification of immature equine oocytes. 

Although the blastocyst rate was compromised, blastocyst development using our vitrification 

protocol was enhanced and did result in a healthy foal. Nevertheless, further research is needed to 

reduce the ultrastructural spindle alterations observed in vitrified oocytes and, concurrently, to 

improve normal resumption of meiosis and subsequent blastocyst development.   
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Summary 

The presence of serum during oocyte maturation and embryo culture influences the cryotolerance of 

blastocysts in a negative way. It is also known that bovine embryos produced in serum-free media 

contain fewer lipids and are more tolerant to vitrification. However, a drawback of such serum-free 

procedure is that it may induce zona pellucida hardening. The aims of this study were to compare the 

effect of maturation of oocytes in the presence of serum on vitrification outcome by investigating (1) 

the possible zona hardening effect in oocytes and (2) fertilization and blastocyst development rate. 

Collected oocytes were matured in serum-free medium (EGF) or serum containing medium (FBS). For 

every condition half of the oocytes were vitrified in 15% ethylene glycol, 15% dimethyl sulfoxide and 

0.5 M sucrose and the other half were used as control (fresh oocytes). In a first experiment solubility 

of the zona pellucida was investigated by pronase digestion. We could not observe any increase in the 

zona digestion time when oocytes were cultured in serum-free medium or when oocytes were 

vitrified. When fertilization rate was investigated, no differences were observed between oocytes 

matured in both conditions. However, vitrification decreased the fertilization rate (p<0.05). Further 

studies showed that the cleavage rate of vitrified oocytes was also reduced, but interestingly, 

maturation in serum led to a significantly lower cleavage rate compared to oocytes matured in a 

serum-free medium (p<0.05). No differences were observed when blastocysts development was 

analyzed in both conditions, probably due to the fact that vitrification drastically reduced blastocysts 

formation (p<0.05). In conclusion, vitrification impaired the fertilization and development of mature 

oocytes. Moreover, although zona hardening did not occur and there were not differences in the 

fertilization rate when oocytes were matured in serum, its presence might compromise the further 

embryo development.  
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INTRODUCTION 

Vitrification is one of the most promising techniques used in assisted reproductive technology 

(ART) since ice formation can be avoided by establishing a vitreous state during cooling (Liebermann 

2012). In animals, successful oocyte vitrification would allow preserving the genetic material from 

females that died accidentally, the creation of a gene bank and providing a repeatable supply of 

oocytes for research. However, while vitrification of embryos has been successfully conducted, 

oocytes are notoriously difficult to preserve. Oocytes have shown a low cryotolerance to vitrification 

due to their membrane characteristics, their low surface-to-volume ratio, and their high lipid 

content, which make them particularly sensitive to chilling injury and intracellular ice formation 

(Nagashima et al. 1994, Pollard and Leibo 1994). During the last decade, considerable efforts have 

been made in order to increase the cryotolerance of oocytes. One of the important factors linked to 

the oocyte cryotolerance is their lipid content (Pereira and Marques 2008). In general, farm animals 

such as cattle and pig, are rich in lipid content compared to human or murine oocytes. Moreover, 

lipid content can be influenced by the culture medium, and some authors have confirmed that the 

presence of serum during culture produces a significant increase in the lipid droplets (Abe et al. 

2002). Fortunately, culture in serum-free medium has shown to reduce the accumulation of 

cytoplasmic lipid droplets and increased the cryotolerance of bovine blastocysts (Abe and Hoshi 

2003, Rizos et al. 2003, Gómez et al. 2008). Most studies have focused on investigating the 

cryotolerance of blastocysts, but as far as we know, there is no data about the direct effect of serum-

maturation on the vitrification of bovine oocytes. Therefore, the aim of our study was to compare 

the cryotolerance of oocytes matured in two different conditions (one supplemented with serum, 

glutamine and pyruvate and the other medium supplemented with Epidermal Growth Factor).  

 

MATERIALS AND METHODS 

  Media and reagents 

Basic Eagle’s Medium, Tissue Culture medium (TCM) 199, Minimal Essential Medium non-essential 

amino acids, kanamycin, and gentamycin were purchased from Life Technologies Europe and all other 

components were obtained from Sigma (Bornem, Belgium), unless otherwise stated.  
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Collection and in vitro maturation of oocytes 

Bovine ovaries were obtained from a local slaughterhouse and rinsed twice in physiological saline 

supplemented with kanamycin (25 mg/ml). Cumulus-oocyte complexes (COCs) were aspirated from 

2-8 mm follicles and matured in groups of 60 in 500 μL of bicarbonate-buffered TCM199 medium 

supplemented with two different formulations for 22 h at 38.5°C in 5% CO2 in air. The first 

formulation (further referred to as FBS condition) was based on serum supplementation with 20% 

Fetal Bovine serum (FBS, Greiner Bio-one), 50 mg/ml gentamycin, 0.4 mM L-glutamine and 2 mM Na-

pyruvate. In the second condition (further referred to as EGF condition), the medium was 

supplemented with 50 mg/ml gentamycin and 20 ng/ml epidermal growth factor (EGF). From every 

condition half of the oocytes were used fresh (control EGF and control FBS) and the other half were 

vitrified-warmed (vitrified EGF and vitrified FBS). Fertilization rate (experiment 1) and blastocyst 

development (experiment 2) were studied in the different groups. 

 

  Vitrification and Warming 

Mature oocytes were vitrified as described by Kuwayama et al. 2005 with some modifications (Figure 

1). The handling solution (HS) used was TCM199/ Hank’s/ Hepes supplemented with 20% FBS. All the 

vitrification media were prepared using this HS. Vitrification and warming steps were performed at 

38.5°C on a heated plate. 

Vitrification was performed in two steps: equilibration and vitrification. Oocytes were equilibrated by 

transferring them sequentially in three drops of 75 µl of equilibration solution (ES) composed of HS 

with 7.5% ethylene glycol (EG) and 7.5% dimethyl-sulfoxide (DMSO). After oocytes regained their 

original volume, they were subsequently transferred into four consecutive 50 µl drops of vitrification 

solution (VS) composed of HS with 15% EG, 15% DMSO and 0.5 M sucrose. Oocytes were exposed to 

equilibration solution for 10-15 min and to vitrification solution for 45-60 sec. Four oocytes were 

loaded to a manufactured-cryotop and within 5 sec submerged in liquid nitrogen (LN2). After one 

week in LN2, oocytes were warmed by transferring them to a warming solution composed of HS with 

1 M of sucrose. This was followed by a three step wash-out of the hyperosmolar sucrose reduced 

from 1 M to 0.5 M (washing 1, 3 min), 0.25 M (washing 2, 5 min) and 0 M in HS (washing 3, 5 min). 

Oocytes were washed in HS three times and then incubated in maturation medium for 2 h to allow 

them to recover. 
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Figure 1. Schematic overview of the in vitro maturation in EGF and FBS conditions and vitrification-

warming protocol.  

 

Fertilization and culture 

Control (fresh) and vitrified oocytes were fertilized in the same conditions. Frozen-thawed bull 

spermatozoa were separated using a Percoll gradient (45% and 90%; Pharmacia, GE Healthcare). The 

final sperm concentration of 1x106spermatozoa/mL was adjusted in IVF Tyrode’s albumin-pyruvate–

lactate (TALP), consisting of bicarbonate-buffered Tyrode solution, supplemented with BSA (6 mg/ml) 

and heparin (25 mg/ml). At 21 h post-insemination, presumptive zygotes were vortexed to remove 

cumulus cells, washed and cultured in groups of 25 in 50 μl droplets of synthetic oviductal fluid 

medium (SOF) supplemented with ITS (5 μg/ml Insulin + 5 μg/ml Transferrin + 5 ng/ml Selenium) and 

0.4% BSA, at 38.5° C in 5% CO2, 5% O2 and 90% N2.  

Assessment of fertilization (Experiment 1) 

Fertilization rate was determined with the nuclear staining Hoechst 33342 (Molecular Probes, 

Invitrogen, Merelbeke, Belgium) which selectively binds to double stranded DNA. Presumed zygotes 

were fixed in 4% formalin and then stained with Hoechst 10 μg/ml for 10 min. The evaluation of the 

fertilization parameters was performed under a Leica DMR fluorescence microscope (Leica 

microsystems). Successful fertilization was characterized by the presence of two pronuclei (Figure 

2A) and three or more pronuclei were considered as indicative for polyspermy. 
 
 

Assessment of embryo development (Experiment 2) 

After 48h post insemination, the embryo development was based on the cleavage rate (Figure 2B) 

visualized under stereo microscope. The cleavage rate was calculated based on the number of 

cultured zygotes. Blastocyst rate (Figure 2C) was determined after 8 days post insemination and 

calculated based on the number of cultured zygotes as well.  
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Figure 2. Development after vitrification. A) Fertilized oocyte B) Cleaved embryo and C) Blastocyst. 

Scale bar 20μm. 

 

Statistical analysis 

Statistical analyses were determined using Statistical Package for the Social Sciences (SPSS 23). 

Binomial variables obtained from the fertilization and embryo development studies were analyzed 

using a binary logistic regression model. A Bonferroni´s correction was applied to correct for multiple 

comparisons. The level of statistical significance level was set for P < 0.05. All data are expressed as 

mean ± standard error of the mean (SEM). 

 

RESULTS AND DISCUSSION 

The aim of this experiment was to compare the effect of two maturation media (one supplemented 

with serum, glutamine and pyruvate and other supplemented with EGF) on the cryotolerance of 

vitrified bovine oocytes. When fertilization rate was assayed, not differences were observed between 

oocytes matured in the two different media (Figure 3). However, vitrification drastically reduced the 

fertilization rate in both conditions (p<0.05, Figure 3). The low fertilization rate observed might be a 

consequence of meiotic spindle disorganization that occurs in vitrified mature oocytes (Aman and 

Parks 1994, Shaw et al. 2000, Men et al. 2002, Prentice et al. 2011). 
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Figure 3. Fertilization and polyspermy rates of control and vitrified oocytes matured in EGF and FBS 

conditions. a,b Different superscripts indicate significant differences between the groups (p<0.05), 

n=359, 3 replicates. 

 

Blastocyst development was further investigated in fresh and vitrified oocytes matured in FBS or EGF 

conditions, and we observed a reduction in the cleavage rate after vitrification (p<0.05, Figure 4). 

More interestingly, we observed that the presence of serum, glutamine and pyruvate during 

maturation significantly decreased the cleavage rate of vitrified oocytes (p<0.05, Figure 4), whereas it 

did not have an effect in control oocytes. For us, it was not possible to observe similar effects when 

blastocyst rate was analysed (Figure 5), because vitrification reduced drastically the blastocyst 

formation. However, we think that studies on parthenogenetic activation would allow us to gain 

more insights about the effect of such a component as serum on blastocyst formation.  

 

We previously showed that the presence of certain fatty acids, like palmitic and stearic acid during 

oocyte maturation could lower cryotolerance of the resulting blastocysts (Shehab-El-Deen et al. 

2009). Similarly, in this study we observed that the supplementation of serum in combination with 

glutamine and pyruvate has also a direct effect on the cryotolerance of vitrified oocytes. It has been 

reported that the serum produces the accumulation of lipids and induce the neosynthesis of 

tryaglicerides (Abe 2002). Moreover, in our study this effect may have been intensified by the 

addition of glutamine and pyruvate that serve as a source of energy for the oocyte.  
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Figure4. Cleavage rate of control and vitrified oocytes matured in EGF and FBS conditions. a,b,c 

Different superscripts indicate significant differences between the groups (p<0.05), n=406, 3 

replicates. 

 

Although in our study we could not distinguish if the negative effect observed in oocytes matured in 

FBS condition was only due to the presence of serum or promoted by the presence of glutamine and 

pyruvate, we showed that oocyte cryotolerance is directly affected by the composition of the 

maturation medium.  
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Figure 5. Blastocyst rate of control and vitrified oocytes matured in EGF and FBS conditions. a,b 

Different superscripts indicate significant differences between the groups (p<0.05), n=406, 3 

replicates. 
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Summary 

Connexins (Cxs) are required for normal embryo development and implantation. They form gap 

junctions (GJs) connecting the cytoplasm of adjacent cells and hemichannels (HCs), which are 

normally closed but open in response to stress conditions. Excessive HC opening is detrimental for 

cell function and may lead to cell death. We found that hatching of in vitro produced bovine 

embryos, matured in serum-containing conditions, was significantly improved when 

vitrification/warming was done in the presence of Gap26 that targets GJA1 (Cx43) and GJA4 (Cx37). 

Further work showed that HCs from blastocysts produced after oocyte maturation in the presence of 

serum, were open shortly after vitrification/warming and this was prevented by Gap26. Gap26, 

applied for the exposure times used, inhibited Cx43 and Cx37 HCs while it did not have an effect on 

GJs. Interestingly, Gap26 had no effect on blastocyst degeneration or cell death. We conclude that 

blocking HCs protects embryos during vitrification and warming by a functional effect not linked to 

cell death. 
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INTRODUCTION 

Intercellular communication is of utmost importance during mammalian embryo development, and is 

established by direct cell-to-cell contact through clusters of channels formed by connexin (Cx) 

proteins that are present in the plasma membrane (Houghton 2005). Connexins belong to a large 

family of proteins with 21 isoforms being identified in humans that are named according to their 

corresponding molecular weight. Each Cx consists of four transmembrane segments, two 

extracellular loops, one intracellular loop, and an N- and C-terminal ending projecting into the 

cytoplasm. Six Cx proteins gather into a hemichannel (HC) configuration and two HCs belonging to 

the membrane of adjacent cells connect and create gap junctions (GJs). Gap junctions serve as direct 

passageways that allow the movement of ions (e.g. Na⁺, K⁺, Ca²⁺), small molecules (e.g. ATP/ADP, 

glucose, glutamate), and second messengers (e.g. inositol trisphosphate [IP₃], cAMP) between 

neighboring cells, providing them with a crucial role in the synchronization of cellular functions and 

tissue homeostasis (Alexander and Goldberg 2003, Saez et al. 2003). In contrast to GJs, free HCs 

(further referred to as HCs) display a low open probability in normal physiological conditions, but 

they may be activated in response to stimuli that are primarily associated with cellular stress. 

Triggers that open HCs include a strong depolarization of the membrane potential, a decrease in 

extracellular Ca2+ concentration, an increase in intracellular Ca2+ concentration, alterations in the 

phosphorylation status, oxidative stress, ischemic conditions, exposure to pro-inflammatory 

cytokines and mechanical stress (Wang et al. 2013b). Upon opening, these channels form large 

poorly selective pores between the intracellular and extracellular environment that mediate the 

entry or escape of ions (Na⁺, Ca2⁺, K+), and molecules (NAD⁺, ATP, glutamate, prostaglandins, 

glutathione, IP3) with a MW generally lower than 1.5-2 kDa (Wang et al. 2013a). While several 

physiological roles have been proposed, most of the current knowledge points to a detrimental role 

of HCs that may result in cellular dysfunction and may lead to cell death (Decrock et al. 2009, Eugenin 

et al. 2012, Xu and Nicholson 2013). 

Cryopreservation is widely applied in gametes (oocytes and semen) and embryos for assisted 

reproductive technologies in animals and humans. In cattle breeding, the cryopreservation of 

blastocysts allows to optimize embryo transfer by enhancing genetic selection processes and 

facilitating intercontinental exchange of genetic material. Vitrification is a cryopreservation 

technique characterized by extremely fast cooling rates inducing solidification without ice crystal 

formation. Successful vitrification depends on these high cooling and warming rates, and high 

viscosity of the solutions, achieved by using high concentrations of cryoprotective agents (CPAs), and 

a small volume of the sample to be vitrified (Arav 2014). However, vitrification is a dynamic process 
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during which a number of physical (pH, temperature, osmolarity) and chemical factors fluctuate over 

a wide non-physiological range, which results in extensive cell damage (Kopeika et al. 2015). 

Moreover, it causes physical cell stress due to strong dehydration, rapid cell shrinkage in high 

osmolarity solutions, and cellular toxicity by the relative high CPA concentrations (Kaur et al. 2013). 

Successful vitrification is influenced by different factors that affect embryo cryotolerance. It is known 

that bovine embryos cultured in the presence of serum are less tolerant to vitrification compared to 

embryos cultured in serum-free medium (Abe et al. 2002, Gómez et al. 2008). Also oocyte 

maturation conditions affect embryo freezability, as we have demonstrated earlier, with the addition 

of palmitic or stearic acid to the maturation medium leading to reduced cryotolerance in bovine 

blastocysts (Shehab-El-Deen et al. 2009). In this study, we compared two different oocyte maturation 

conditions, one with serum and the other serum free, containing only epidermal growth factor (EGF) 

as maturation inducing factor, whereas the resulting embryos were cultured in serum-free medium. 

As such, we hypothesized to obtain embryos with different cryotolerance, with lesser cryotolerance 

being present in the group matured in the presence of serum.  

Adapting oocyte maturation or embryo culture conditions can influence embryo freezability, but fine-

tuning technical factors, such as the carrier system, can also increase cryosurvival of embryos. 

Alternative approaches aim to increase embryo resistance to cryopreservation by applying high 

hydrostatic pressure (Pribenszky et al. 2005, Siqueira Filho et al. 2011, Trigal et al. 2013), by 

artificially collapsing the blastocyst (Choi et al. 2009, Min et al. 2014), by assisted hatching (Kung et 

al. 2003, Hershlag and Feng 2005, Taniyama et al. 2011) or by removing cytoplasmic lipid droplets 

(Nagashima et al. 1994, Accorsi et al. 2016). Interestingly, attempts have also been undertaken to 

target specific membrane proteins like aquaporins (AQPs), which form channels that facilitate water 

movement across the plasma membrane. Thus, overexpression of AQP3 in zebra fish embryos was 

used to dampen osmotic stress and facilitate the passage of CPAs to enhance cellular tolerance 

against rapid freezing (Hagedorn et al. 2002).  

Vitrification is a chemically stressful process that may potentially lead to HC opening. In contrast to 

AQPs, HCs do not allow the passage of water (Hansen et al. 2014), but as pointed out above, they 

rather act as toxic pores that may impair embryo development. As such, they facilitate ion flow that 

consequently may impact water flow. This contrasts to the well-known physiological roles of GJs that 

are essential for embryo and blastocyst development (Houghton 2005). In previous work, we 

demonstrated that blocking Cx channels with the Cx-targeting peptide Gap27 (which mimics a 

sequence of the second extracellular loop of the Cx protein), protected human blood vessels against 

freezing/thawing induced cell death of endothelial and smooth muscle cells (Bol et al. 2013). We 
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here set out to investigate whether blocking Cx channels, in particular HCs, with Gap26, which 

mimics a sequence of the first extracellular Cx loop, could improve the outcome for bovine 

blastocysts undergoing the vitrification/warming process.  

MATERIALS AND METHODS 

Reagents and Media 

Culture medium (TCM) 199, basal medium eagle, minimal essential medium, Dulbecco Modified 

Eagle medium (DMEM), Hanks balanced salt solution (HBSS), TCM199/Hanks/HEPES, RNAse-free PBS, 

gentamycin, penicillin, streptomycin, fungizone, anti-Cx37 antibody, secondary antibody Alexa 488, 

fetal bovine serum (FBS) used in cells, propidium iodide (PI) and 4’,6-diamidino-2-phenylindole (DAPI) 

were purchased from Life Technologies Europe. Dextran-fluorescein was obtained from Invitrogen. 

Anti-Cx43 antibody, FBS used in embryo production was obtained from Greiner Bio-One (Belgium), 

and all other components were obtained from Sigma (St. Louis, MO). The Cx channel inhibitor 

peptides Gap26 (VCYDKSFPISHVR), Gap26 tagged with fluorescein isothiocyanate (FITC) at its 

carboxy-terminal end (Gap26-FITC), and Gap19 (KQIEIKKFK) were synthesized by Pepnome Limited 

(Jida Zhuhai, China) at >90% purity. 

Hepes-TALP contained (in mM) NaCl (114), KCl (3.1), NaH2PO4 (0.3), CaCl2 (2.1), MgCl2 (0.4), NaHCO3 

(2), sodium pyruvate (0.2), sodium lactate (10), HEPES (10) and further supplemented with 10 µg/ml 

gentamycin sulfate and 3 mg/ml bovine serum albumin (BSA). The final pH of this medium was set at 

7.4. Phosphate-buffered saline (PBS) contained (in mM): NaCl (137), KCl (2.68), CaCl2 (0.90), 

MgCl2.6H2O (0.334), KH2PO4 (1.47), and Na2HPO4.2H2O (6.46) at a final pH of 7.4. Fert-TALP consisted 

of HEPES-TALP solution, supplemented with 6 mg/ml BSA and 4 mM NaHCO3. Synthetic oviduct fluid 

(SOF) consisted of (in mM): myo-inositol (2.8), sodium citrate (0.3), NaCl (107.6), KCl (7.2), KH2PO4 

(1.2), MgSO4 5H2O (1.5), Na lactate (7.1), NaHCO3 (28.4), Na pyruvate (0.7), CaCl2.2H2O (1.8), 

glutamine (0.4), and supplemented with 50 µg/ml gentamycine, 0.4 % (W/v) BSA, 5 µg/ml insulin, 5 

µg/ml transferrin, 5 ng/ml selenium (Wydooghe et al. 2014). 

The media used during the vitrification were as follows: handling medium (HM) consisting of 

TCM199/Hanks/HEPES (cat no. 22350-029) supplemented with 20% (v/v) FBS, equilibration solution 

(ES) consisting of HM supplemented with 7.5% (v/v) ethylene glycol (EG) and 7.5% (v/v) dimethyl 

sulfoxide (DMSO), and the vitrification solution (VS) consisted of HM supplemented with 15% (v/v) 

EG, 15% (v/v) DMSO and 0.5 M sucrose. 

Divalent-free (DF) ion solution (used for HC dye uptake studies) contained (in mM) NaCl (137), 

Na₂HPO₄.2H₂O (0.18), KCl (5.36), KH₂PO₄ (0.44), D-glucose (5.55) and HEPES (25). Solution for scrape-
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loading and dye transfer (SLDT solution) contained (in mM): NaCl (137), KCl (5.36), MgCl₂ (0.81), D-

glucose (5.55), HEPES (25) at a final pH of 7.4. 

All media were filtered through a sterile 0.22 µm filter (Millipore Corporation, New Bedford, MA) 

prior to use. 

 

 

Cells 

Wild-type (WT) and HeLa cells stably transfected with murine GJA1 (further referred to as Cx43) and 

GJA4 (further referred to as Cx37) were used for HC dye uptake and SLDT studies, and were kindly 

provided by Dr. Klaus Willecke (Molecular Genetics and Cell Biology, University of Bonn, Bonn, 

Germany). Cells were grown in DMEM supplemented with 10% (v/v) FBS, 10 U/ml penicillin, 10µg/ml 

streptomycin and 2.5 µg/ml fungizone in 10% CO2 at 37°C. HeLa-Cx43 culture medium additionally 

contained puromycin (1µg/ml). 

 

Embryo production 

In vitro produced bovine blastocysts were derived from immature oocytes that were collected from 

slaughterhouse ovaries (Figure 1). Cumulus oocytes complexes (COCs) were recovered from follicles 

with a diameter of 2-8 mm using an 18 gauge needle attached to a 10 ml syringe. Oocytes with 

homogeneous dark cytoplasm and compact cumulus cells were selected, and matured in groups of 

60 in 500 μL of bicarbonate-buffered TCM199 medium supplemented with two different 

formulations. The first formulation was based on serum supplementation with 20% (v/v) FBS, 50 

mg/ml gentamycin, 0.4 mM L-glutamine and 2 mM Na-pyruvate; this condition is further referred to 

as the FBS condition. In the second, serum-free condition, further referred to as EGF condition, the 

medium was supplemented with 50 mg/ml gentamycin and 20 ng/ml EGF. In both conditions, 

oocytes were matured for 22 h at 38.5°C in 5% CO2 in air. For fertilization, frozen-thawed bovine 

sperm was separated over a Percoll gradient (45% and 90%; GE Healthcare), washed, and diluted in 

Fert-TALP to a final sperm concentration of 1x106 spermatozoa/ml. The matured COCs were washed 

in 500 ml Fert-TALP and co-incubated with sperm for 21 h. After fertilization, presumptive zygotes 

were first vortexed to remove the excess of the sperm and cumulus cells, and then cultured in groups 

of 25 in 50 µl droplets of SOF medium (Wydooghe et al. 2014) at 38.5 °C in 5% CO2, 5% O2, and 90% 

N2.  
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Blastocyst vitrification, storage, and warming 

In vitro produced bovine blastocysts were vitrified on days 7 and 8 post insemination with a slightly 

modified protocol published earlier (Kuwayama et al. 2005). Vitrification was performed at room 

temperature (RT, 22-26°C) in two steps: an equilibration step and a vitrification step. For 

equilibration, blastocysts were set in 70 μl of HM solution, and this droplet was merged with a 

second 70 μl droplet also containing ES (for HM and ES composition see the section ‘Reagents and 

media’). After 2 min, blastocysts were transferred to a second and third 70 μL ES droplet (each 2 min) 

and then kept for 6 min in a fourth ES droplet (Figure 1). The vitrification steps included sequential 

transfer to five 50 µl droplets of VS composition (see the section ‘Reagents and media’). Incubation in 

the last droplet was 30 s, and this droplet contained Gap26 (200 µM) in the Gap26 treatment 

condition. Finally, two to three blastocysts surrounded by a small volume (< 1 µl) were placed in a 

custom-adapted device and then transferred to liquid nitrogen (LN2). The custom-adapted device 

consisted of a 0.25 mL straw, with the end was cut, creating a surface that allows loading blastocysts 

with a minimal volume (<1 μL). At the opposite end, a metal wire was inserted to avoid floating of the 

device in LN2 (Figure 1). 

After one week of storage in LN2, the custom-adapted device containing blastocysts was warmed by 

transferring it quickly into a 38.5°C warm HM solution supplemented with 1 M sucrose, and the 

blastocysts were further incubated for 1 min. This was followed by a three steps sucrose wash-out 

procedure (3, 5, and 5 min). In the Gap26 treatment condition, the peptide concentration was 

gradually diluted, halving the concentration with each transfer step: 200 µM; 100 µM, 50 µM (Figure 

1). Hereafter, blastocysts were washed three times in HM and then cultured individually in 20 µl SOF 

droplets overlaid with mineral oil at 38.5 °C in 5% CO2, 5% O2, and 90% N2. Blastocyst staging was 

determined after 1 and 2 days of individual culture, and classified as non-hatching, hatching, hatched 

and degenerated (Figure 5A). For the non-vitrified controls, blastocysts were selected at day 7 and 8 

and individually transferred to 20 µl of SOF droplets at the same conditions that vitrified groups. 

Non-vitrified blastocysts produced after oocyte maturation in EGF or FBS conditions were cultured 

with Gap 26 dissolved in HM at the same concentration, and for the same duration of exposure as 

vitrified ones. Then, blastocysts were cultured individually in 20 μL of SOF droplets and further 

development (to hatching) was determined after 1 and 2 days of individual culture.  
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Figure 1. Schematic overview of in vitro production of bovine embryos and subsequent treatment. 

(1) Slaughterhouse ovaries were punctured to obtain immature oocytes. (2) Immature oocytes were 

matured in EGF or FBS medium for 22 hours. (3) Oocytes were co-incubated with spermatozoa for 21 

hours and (4) subsequently cultured in SOF for 7-8 days (group culture). Normal and expanded 

blastocysts were randomly divided into control and vitrified groups. (5) Control blastocysts were 

immediately cultured in individual drops, and vitrified blastocysts were first vitrified-warmed and 

then cultured in the same condition as the control group. (6) Hatching/hatched rates were assessed 

after one and two days of individual culture. (7) For vitrification, blastocysts were exposed to 

equilibration solution for a period of 10 minutes and then to vitrification solution for 20 sec (4 x 5 

sec) plus 30 sec (last droplet). In the treated group, Gap26 was added in the last droplet. (8) Two or 

three embryos were loaded into a custom-adapted device in a small volume (< 1µl) of vitrification 

solution and stored in liquid nitrogen (LN2) for one week. (9) Blastocysts were warmed and washed in 

decreasing concentrations of sucrose. Exposure to Gap26 was also gradually decreased. (10) Vitrified 

blastocysts were cultured in individual drops and (11) hatching/hatched rates were assessed as for 

the controls (6). All steps were performed at room temperature except the first warming step which 

was performed on a heated plate at 38.5°C. 
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Reverse transcription polymerase chain reaction 

Blastocysts were produced as described above, either after oocyte maturation in FBS or in EGF 

medium. Twenty blastocysts from each condition were washed three times in 3 ml of RNAse-free 

PBS, transferred to 20 µl of lysis buffer consisting of 5 mM DTT (Dithiothreitol; Promega, The 

Netherlands), 4 U/μL RNasinPlus RNase inhibitor (Promega), and 0.64 μM Igepal in RNase free water, 

and immediately stored at −80 °C. RNA was extracted using the RNeasy Micro kit (Qiagen, Belgium) 

following the manufacturer´s instructions, including a genomic DNA removal step. The extracted RNA 

was dissolved in 14 μL RNase-free water. A minus RT control was performed with GAPDH primers 

(119pb) (sense) 5’-TTCAACGGCACAGTCAAGG-3’ and (antisense) 5’-ACATACTCAGCACCAGCATCAC-3’ 

to check for contamination of genomic DNA (Goossens et al. 2005). Reverse transcription was 

performed with oligo-dT primers on the total amount of RNA using the iScriptcDNA synthesis kit 

(BioRad, Belgium) according to the manufacturer's instructions and cDNA was diluted 2.5-fold for 

downstream PCR. 

The oligonucleotide sequences to amplify the GJA1 (Cx43) used were (sense) 5’-

TGGCATTGAAGAGCACGGCA-3’ (anti-sense) 5’-TCAGCAAGAAGGCCACCTCGA-3’. For GJA4 (Cx37) the 

following sequences were used (sense) 5’-AGCCCGTGTTTGTGTGCCAG-3’ and (antisense) 5’-

ACCAGGGAGATGAGTCCGACCA-3’. The primers were designed using Primers3Plus (Untergasser et al. 

2007) based on their conserved bovine mRNA sequences (GJA1; Acc. No.: NM_174068.2, 104 bp and 

GJA4; Acc. No.: NM_001083738.1, 121bp), avoiding secondary structures as indicated by MFold 

(Zucker 2003). BiSearch software was used to confirm specificity (Arányi et al. 2006).  

All PCR reactions were performed in a volume of 10 µl containing 0.5 U FastStartTaq DNA Polymerase 

and 1 µl 10x reaction buffer (Roche, Belgium), 200 µM dNTPs (Bioline Reagents, UK), 500 nM of each 

primer (IDT, Belgium) and 2 µl cDNA. The PCR program consisted of initial denaturation at 95°C for 4 

min, followed by 40 cycles of 20 s at 95°C, 20 s at 64°C and 40 s at 72°C, with a final 2 min elongation 

at 72°C. The PCR products were verified by electrophoresis.  
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 Immunofluorescence microscopy 

In vitro produced blastocysts derived from EGF or FBS maturation conditions were fixed in 4% 

paraformaldehyde (PFA) for 20 min at RT. Blastocysts were permeabilized with 0.5 % Triton X-100 for 

1 h and blocked with a solution consisting of 10% goat serum and 0.5% BSA prepared in PBS, at 4°C 

overnight. Blastocysts were then incubated with primary antibody, anti-Cx43 polyclonal AB (1:500) or 

anti-Cx37 polyclonal (1:250) diluted in blocking solution at 4°C overnight. Blastocysts were rinsed 

three times with PBS and incubated for 1 h at RT, with the appropriate secondary antibody 

conjugated with Alexa-488 (1:500). Next, blastocysts were rinsed three times in PBS, counterstained 

with DAPI 10 μg/ml for 10 min and mounted with DABCO mounting medium. Images were obtained 

using a Nikon C1si confocal microscope (Nikon BeLux, Brussels, Belgium), with a Plan Apo VC 20x-63x 

oil immersion objective (Nikon).  

 

Gap26-fluorescein isothiocyanate uptake measurements  

For blastocyst Gap26-FITC uptake measurements, blastocysts were incubated with Gap26-FITC (200 

µM) for 1 h at RT. Next, blastocysts were counterstained with DAPI 10 μg/ml for 10 min, mounted 

with DABCO mounting medium, and visualized with a Leica TCS-SP8 X confocal microscope (Leica 

Microsystems, Wetzlar, Germany) with a 63x1 water immersion objective with 1.2 NA. 

 

Hemichannel dye uptake studies 

Hemichannel dye uptake studies were performed on HeLa cells and blastocysts. For HeLa cells, cells 

were seeded at 40,000 cells per cm² density in cell culture treated, polystyrene, 4-well culture dishes 

(SPL Life Sciences, Korea); the assay was performed the next day. Cultures were rinsed once in HBSS 

followed by three times in DF solution (see the section ‘reagents and media’). Cells were 

subsequently incubated for 10 min in DF solution containing the HC-permeable dye PI (668.4 Da; 1 

mM), after which cells were washed three times with HBSS, fixed for 15 min with 4% PFA and stained 

with 1 µg/ml DAPI. All manipulations were carried out at RT. Images were acquired with a Nikon 

TE300 epifluorescence microscope equipped with a 10 objective (Plan APO, NA 0.45; Nikon), and a 

Nikon DS-Ri1 camera (Nikon Belux, Zaventem, Belgium). In each culture, nine images were taken at 

fixed locations across the well. The number of PI-positive cells was determined using ImageJ version 

1.48 (plugin: Analyze Particles) after applying a threshold that corresponds to the upper level of the 

background signal, and was expressed relative to the total number of DAPI-positive nuclei. 
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For blastocyst dye uptake studies, blastocysts were washed three times in HEPES-TALP medium and 

subsequently incubated for 25 min at RT with PI solution (1 mM). PI is also taken up by dead cells, 

and we therefore performed additional studies with a HC-impermeable dextran-fluorescein dye (10 

kDa; 200 µM). After 25 min, blastocysts were washed in HEPES-TALP and fixed for 25 min in 4% PFA. 

Nuclei were counterstained with DAPI 10 μg/ml for 10 min and mounted with DABCO mounting 

medium. Three dimensional images were reconstructed from the blastocyst after acquiring Z-stack 

images using a Leica TCS-SP8 X confocal microscope (Leica Microsystems, Wetzlar, Germany). The 

number of PI-positive and dextran-negative cells was expressed relative to the total number of cells 

per blastocyst. The number of PI-positive cells was determined using ImageJ version 1.48 (plugin: 

Analyze, Cell Counter) and was expressed relative to the total number of DAPI-positive nuclei. 

 

 

 Scrape-loading and dye transfer studies 

SLDT studies were done on confluent HeLa cell cultures seeded on four-well dishes. Cultures were 

rinsed two times with SLDT solution and then exposed for 1 min to SLDT buffer containing the GJ-

permeable dye 6-carboxy fluorescein (6-CF, 0.4mM, Life Technologies), after which a linear scratch 

was made through the cell culture with a syringe needle. After 1 min, cells were washed with HBSS-

HEPES and left for 15 min in the dark to allow the dye to spread to neighboring cells. Sixteen images 

were acquired from each well, along the right and left side of the scrape with a Nikon TE300 

epifluorescence microscope equipped with a 10 objective (Plan APO, NA 0.45; Nikon) and a Nikon 

DS-Ri1 camera. Gap junctions communication was quantified by fitting the fluorescence diffusion 

profile to a mono-exponentially decaying function. A spatial constant of dye spread reflecting the 

degree of GJ coupling was determined with GraphPad Prism 6 (GraphPad Software, San Diego, CA).  

 

 

Blastocyst cell death studies 

For cell death assays, blastocysts were fixed in neutral buffered 4% PFA, and then permeabilized with 

0.5% Triton X-100 at RT for 5 min. Cell death was detected by in situ terminal 

deoxynucleotidyltransferase (TdT)-mediated deoxyuridine triphosphate nick end-labeling (TUNEL), 

using a commercial In Situ Cell Death Detection Kit (Roche, Belgium). Blastocysts were incubated with 

the TUNEL reaction mixture for 1 h at 37 °C. Blastocysts treated with DNase for 10 min were used as 

a positive control, and blastocysts not exposed to TdT enzyme as a negative control. Thereafter, 

blastocysts were rinsed three times in PBS and stained with DAPI 10 μg/ml for 10 min. Slides were 

examined by epifluorescence microscopy using a Nikon TE300 inverted microscope with a x10 

objective and equipped with a Nikon DS-Ri1 camera (Nikon Belux, Zaventem, Belgium).  
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Statistical analysis 

Statistical analysis was determined using Statistical Package for the Social Sciences (SPSS 23). 

Binomial variables obtained from the embryo development studies were analyzed using a binary 

logistic regression model. A Bonferroni´s correction was applied to correct for multiple comparisons.  

In order to compare the means between groups an ANOVA test was performed (cell death and dye 

assay studies). A non-parametric, Kruskal-Wallis test was used to analyze dye uptake in blastocysts, 

since the results were not normally distributed. The level of statistical significance level was set for P 

< 0.05. All data are expressed as mean ± standard error of the mean (SEM).The number of blastocysts 

used in each experiment and condition, as well as the number of replicates is given in Table 1. 

 

Table 1. Overview of the number of blastocysts and replicates used for the experiments in this study.  

Experiment Condition Number of blastocysts Number of replicates 

Imunofluorescence EGF 8 3 

FBS 12 

RT-PCR EGF 60 3 

FBS 60 

Scrape-loading Transfer study - - 4-5 

HC dye uptake study in cells HeLa Cx43 - 6 

HeLa Cx37 7 

Blastocyst vitrification EGF 504 10 

FBS 367 8 

Blastocyst HC dye uptake study EGF 118 3 

FBS 137 

Blastocyst cell death study EGF 92 4 

FBS 105 

 

 

RESULTS 

Characterization of connexin expression in bovine blastocysts 

We used in vitro bovine blastocysts derived from oocytes matured under FBS or EGF conditions in 

order to study the Cx expression at mRNA and protein level. We found evidence for Cx37 and Cx43 at 

the messenger RNA level in the blastocysts derived from both FBS and EGF conditions (Figure 2A). 

Immunohistochemical analysis further confirmed the presence of both Cxs at the protein level 

(Figure 2B). 
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Figure 2.Expression and localization of Cx37 and Cx43 in in vitro produced bovine blastocysts. A. PCR 

amplifications of Cx37 and Cx43 from cDNAs sample showing that Cx37 and Cx43 are expressed in in 

vitro produced blastocysts which were matured in EGF or FBS conditions. Genomic DNA was used as 

positive control. B. Confocal images of connexin protein localization in bovine blastocysts (FBS 

condition) shown in green with nuclear DAPI staining in blue. Representative images for both FBS and 

EGF conditions. Scale bar 50 µm. 
 

 

Gap26 effects on Cx43 and Cx37 channels 

We tested the effect of Gap26 on the function of channels composed of the two Cxs found in the 

blastocysts. To this end, we used HeLa cells stably transfected with Cx43 and Cx37 (HeLa-Cx43 and 

HeLa-Cx37 cells respectively). We first investigated the effect on GJ channels, making use of SLDT 

assays with the GJ-permeable low molecular weight dye 6-CF (376 Da, charge:-2). Dye spread to 

neighboring cells was observed in HeLa-Cx43 cells and was absent in HeLa WT cells. The presence of 

Gap26 (200 µM; 1 h pre-incubation and inclusion of the peptide during the 16 min of the SLDT 

procedure) did not influence GJ-mediated dye transfer (Figure 3). By contrast, 24 h pre-incubation 

did significantly inhibit dye transfer, as previously observed with Gap27 (Decrock et al. 2009) . We did 

not test Gap26 effects on Cx37 GJs because HeLa-Cx37 cells showed little dye spread with 6-CF, as 

reported by others (Weber et al. 2004, Kameritsch et al. 2005, Ek-Vitorin and Burt 2013). Exposure of 

the blastocysts to Gap26 in the vitrification/warming experiments described below was ~10 min (see 

Figure 1). As 1 h and 16 min Gap26 incubation did not affect GJ coupling in HeLa-Cx43, we can 

confidently conclude that shorter Gap26 exposure times will not have any effect on coupling. 
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Figure 3.Effect of Gap26 on GJ coupling in HeLa-Cx43 cells measured with SLDT. A. Representative 

example images showing no dye (6-CF) spread in HeLa WT, dye spread over several cell layers in 

HeLa-Cx43 (arrow shows direction of dye spread from the scrape), no effect on dye spread of 1 h 

exposure to Gap26 and reduction of dye spread with 24 h Gap26 exposure. Scale bar 25 µm. B. 

Summary data after quantification of experiments as illustrated in A, demonstrating that only 24 h 

incubations with Gap26 inhibit dye spread but not 1 h incubation. Dye spread is expressed as the 

spatial constant of exponential decrease of 6-CF fluorescence intensity. n=4-5, *** P<0.001 

 

We next tested the effect of Gap26 on HCs based on dye uptake studies with the HC-permeable dye 

PI (MW 668 Da). Exposure of HeLa-Cx43 cells to a nominally Ca2+- and Mg2+-DF solution that triggers 

HC opening, induced cellular PI uptake that was significantly inhibited by Gap26 (200 µM; 1 min pre-

incubation and inclusion of the peptide during the 10 min of DF stimulation, Figure 4A). Gap19 (200 

µM), a specific blocker of HCs composed of Cx43 (Wang et al. 2013c), also inhibited dye uptake in an 

equally strong way. Non-specific dye uptake via larger pores or disrupted membranes was 

determined in dye uptake experiments with 10 kDa Dextran FITC, which showed one or two cells per 

inspected field (0.3604 µm²); because of the very low counts, these were not further quantified. We 

next performed PI uptake studies in HeLa-Cx37 cells and found that DF-triggered dye uptake was, as 

observed for Cx43, also significantly inhibited by Gap26 (Figure 4B). 



Chapter 5.2 
 

102 
 

 

Figure 4.Effect of Gap26 on HC dye uptake in HeLa-Cx43 and HeLa-Cx37 cells. A-B. Representative 

images of PI dye uptake experiments in HeLa-Cx43 and HeLa-Cx37 cells. PI is red; blue represents 

nuclear DAPI staining. Scale bar 25µm. C-D. Summary data of experiments as illustrated in A-B, 

demonstrating significant Gap26 inhibition of PI uptake in both HeLa-Cx43 (n=6) and HeLa-Cx37 

(n=7). *comparison to baseline, P<0.05; # comparison to DF, P<0.05.  

 
 

Effects of Gap26 treatment on embryo development of 

vitrified/warmed blastocysts 

In vitro produced blastocysts were collected and vitrified on day 7 and 8 post-insemination (see 

Figure 5A for the blastocyst formation rate from both conditions). At day 7, blastocysts and expanded 

blastocysts of code 1 (excellent and good according to IETS criteria 1998), were selected for this 

study. Embryos of this quality have a symmetrical and spherical mass with individual blastomeres 

that are uniform in size, color and density (Bo and Mapletoft 2013). Early blastocysts were kept an 

additional day in culture and collected on day 8. Overall, less than 2% finally remained at the early 

blastocyst stage (see Figure 5B for the percentages of early blastocysts, blastocysts and expanded 

blastocysts obtained at day 7 and 8).  
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Figure 5. (A) Percentage of blastocysts at day 7 and 8 post insemination, produced from oocytes 

matured in serum containing (FBS) or serum-free (EGF) medium (mean ± SEM; n = 1174, three 

replicates). (B) Distribution of different blastocysts stages (according to IETS code) derived from EGF 

and EFBS conditions at day 7 and 8 post-insemination (n=1174, three replicates). 

 

Selected blastocysts were randomly allocated into six different groups: two control groups (non-

vitrified EGF and FBS) and four vitrified groups (EGF, EGF + Gap26, FBS and FBS + Gap26, Table 1). 

Non-vitrified groups were cultured in individual droplets of SOF for two days and the development to 

hatching was assessed on days 1 and 2. Vitrified groups were first warmed, and then analyzed for 

hatching/hatched rate on day 1 and day 2, as for the non-vitrified condition. Figure 6A illustrates the 

different outcomes, while the repartition between these different classes is shown in Figure 6B. In 

the presence of Gap26, blastocyst degeneration rate appeared to be decreased in the FBS group, but 

this visible difference did not attain statistical significance as compared to the other groups (p=0.07), 

(Figure 7A). We next compared hatching/hatched rates on day 1 but no significant differences were 

observed at that stage (Figure 7B). However, significantly higher hatching/hatched rates were 

observed on day 2 in the vitrified FBS + Gap26 group as compared to vitrified FBS (p<0.05). Gap26 did 

not have any effect in the EGF + Gap26 group as compared to the EGF group. Interestingly, the 

hatching/hatched rate in the FBS + Gap26 group was significantly higher than in the EGF + Gap26 

group and also exceeded the hatching/hatched rates in the non-vitrified FBS or EFG groups 

significantly (Figure 7B). Importantly, Gap26 had no effect on the hatching/hatched rate of non-

vitrified blastocysts (Figure 7C). 
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Figure 6.Various blastocyst stages after two days of individual culture. A. Representative images 

depicting (a) an expanded non-hatched blastocyst, (b) a hatching blastocyst, (c) a hatched blastocyst 

and (d) a degenerated blastocyst. Arrows indicate zona pellucida and asterisks indicate the inner cell 

mass (scale bar 20 µm). B. Repartition of the various blastocyst stages in the different experimental 

groups used. 

 

 

We further tested the possibility that Gap26 protection in the vitrified FBS group was the result of 

better Gap26-uptake in the blastocysts as compared to the EGF group. Experiments with fluorescent 

Gap26-FITC however demonstrated no differences of Gap26 uptake in the EGF group compared to 

FBS conditions (Figure 8). 
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Figure 7. Effect of Gap26 on degeneration and hatching/hatched rates of FBS and EGF derived 

blastocysts. A. Percentage of degenerated blastocysts after day 1 and day 2 of individual culture. B. 

Percentage of hatching/hatched blastocysts after day 1 and day 2 of individual culture (EGF = 504, 10 

replicates and FBS = 367, 8 replicates). * P<0.05. C. Percentage of hatching/hatched rates of non-

vitrified blastocysts derived from EGF and FBS conditions, and further cultured for 1 and 2 days in 

individual culture (n=165, 4 replicates).  

 

 

 
Figure 8. Gap26 accumulation in blastocysts derived from EGF or FBS conditions.  

A-B. Representatives confocal images after incubation of blastocysts derived from EGF (A) and FBS 

(B) conditions. Gap 26-FITC stains green while nuclear DAPI staining is blue. Scale bar is 15 µm. C. 

Average data of experiments as shown in panels A and B. The bar chart shows the relative 

fluorescence intensity of Gap26-FITC signal; there were no significant differences (n = 13).  
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Gap26 treatment does not influence cell death in vitrified/warmed 

blastocysts 

In order to test if Gap 26 reduces cell death in blastocysts, we performed TUNEL staining in non-

vitrified and vitrified blastocysts after two days of individual culture in SOF, (Table 1). Blastocysts 

qualified as degenerated were not used for TUNEL staining. Cell death was always in the range of 5%-

10% (relative to the number of DAPI positive nuclei) and was not different between the different 

groups (Figure 9).  

 

Vitrification/warming of blastocysts induces hemichannel opening that 

is inhibited by Gap26 

We tested whether vitrification/warming triggers the opening of HCs in the blastocyst cells by making 

use of dye uptake studies with HC-permeable PI and HC-impermeable 10 kDa Dextran FITC. 

Blastocysts derived from EFG and FBS conditions were divided into three groups: non-vitrified, 

vitrified and vitrified + Gap26 (Table 1). Immediately after warming, blastocysts were exposed to PI 

and 10 kDa Dextran FITC for dye uptake experiments. Strikingly, the percentage of PI-positive and 10 

kDa dextran-FITC-negative cells was significantly higher in vitrified blastocysts from the FBS group 

compared to those kept in non-vitrified conditions (p<0.05, Figure 10). Additionally, Gap26 (also 

present during the assay) significantly reduced the number of PI-positive/dextran-negative cells. In 

contrast to this, blastocysts from the EGF group did not show increased PI uptake after 

vitrification/warming, and there were no differences with the Gap26 treatment condition (Figure 10). 

In the FBS group, the number of dextran-positive cells was low (non-vitrified: 0.2% ± 0.09, vitrified: 

0.5% ± 0.1 and vitrified + Gap26: 0.3% ± 0.07; n=43-47), pointing to low levels of non-HC linked 

membrane leakage. None of the dextran-positive cell counts were different from each other, 

indicating that membrane disruption linked to cell death was not affected by Gap26, in line with the 

conclusions regarding cell death based on TUNEL staining.  
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Figure 9.TUNEL staining of non-degenerated blastocysts in the different experimental groups.A. 

Representative example image showing TUNEL-positive DNA fragmentation in green and nuclear 

DAPI staining in blue. Image representative for both EGF and FBS conditions. B. Percentage of TUNEL 

positive and negative cells after two days of individual culture (EGF, n=92; FBS n=105, 4 replicates).  

 

DISCUSSION 

This study demonstrates that inclusion of the Cx channel-inhibiting peptide Gap26 during 

vitrification/warming of blastocysts, improves the blastocyst outcome by promoting the hatching 

process. The effect was only observed in blastocysts derived from oocytes matured in FBS conditions, 

but not in those from oocytes matured in EGF conditions. The protective effect of Gap26 on 

blastocysts from the FBS group exposed to vitrification/warming was linked to an inhibitory effect on 

Cx HCs. Indeed, HCs opened in response to vitrification/warming in blastocysts from the FBS group, 

and this response was inhibited by Gap26. By contrast, blastocysts from the EGF group did not show 

HC opening after vitrification/warming. The exposure to Gap26 during vitrification/warming was too 

short (~10 min) to have effects on GJs, pointing to an involvement of HCs rather than GJs. Blocking 

HCs did not significantly inhibit cell death (TUNEL assays) or plasma membrane disruption (10 kDa 

Dextran FITC assays), indicating that the protective effect of Gap26 is not linked to cell injury/cell 

death, but rather results from functional effects that do not kill the blastocyst cells but hamper their 

developmental progress towards hatching.  
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Figure 10. Hemichannel-mediated dye uptake in blastocysts after vitrification/warming. A. 

Representative images of PI (red) and dextran-FITC (green) uptake in blastocysts derived from the 

different conditions (non-vitrified, vitrified and vitrified + Gap26); blue represents nuclear DAPI 

staining. Scale bar 25µm. B. Summary data of the percentage of PI-positive cells/dextran-negative 

cells relative to the total number of nuclei per blastocysts (n=137, 3 replicates). C. Blastocysts from 

the EGF condition did not show PI uptake after vitrification/warming and Gap26 had no effect 

(n=118, 3 replicates). *comparison to control, P<0.05; # comparison to vitrified, P<0.05. 

 

 

Connexins proteins that assemble into HCs and GJs, are abundantly expressed in the cytoplasm 

during early embryo development and in the plasma membrane after compaction of blastomeres at 

the morula stage (De Sousa et al. 1993). Cxs play an important role during preimplantation 

development and embryo implantation as shown in rodents (Houghton et al. 2002) and humans 

(Bloor et al. 2004). Various Cxs have been described at different stages of development in rodent 

embryos (Cx30, Cx30.3, Cx31.1, Cx31, Cx36, Cx40, Cx43, Cx45 and Cx57; Davies et al. 1996, Houghton 

et al. 2002), in human embryos (Cx26, Cx31, Cx32 Cx43 and Cx45; (Hardy et al. 1996, Bloor et al. 

2004), and in bovine embryos (Cx30, Cx31, Cx32, Cx36, Cx43 and Cx45; Wrenzycki et al. 1996, Rizos et 

al. 2002, Balasubramanian et al. 2008). Cx43 is the most prevailing Cx and its aberrant expression or 

channel function may affect embryo survival (Bloor et al. 2004). Here, in bovine blastocysts, we 
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found evidence for Cx37 that is present at both messenger and protein level; immunohistochemical 

analysis demonstrated Cx43 and Cx37 in the cytoplasm and the plasma membranes of blastocysts 

matured in EGF or FBS. The importance of the currently reported presence of Cx37 is that HCs 

composed of this Cx have a single channel conductance of ~620 pS, which is the highest single 

channel conductance of all Cxs (see table 6 in Harris 2001; HC conductance is twice the single channel 

conductance of GJs). Thus, Cx37 and Cx43 form the building blocks of two high conductance leakage 

pathways characterized by a single channel conductance of ~620 and ~220 pS respectively, 

potentially contributing to significant complications when open during the vitrification/warming 

process. Recent works in embryonic neurons and smooth muscle cells have demonstrated that even 

the opening of a single HC per cell is sufficient to alter cell function (Moore et al. 2014, Bol et al. 

2016).  

Vitrification has evolved into the most commonly used method for preservation of cells and tissues. 

It involves exposure to high osmolarity CPA solutions, combined with an extremely fast temperature 

drop to -196 °C (Saragusty and Arav 2011). The high extracellular osmolarity extracts water from the 

cell and concentrates the permeated CPAs, together with the millisecond temperature drop, this 

limits ice crystal formation. Intracellular ice crystallization, however can still occur during the 

warming process. This is a major toxic event as it is associated with mechanical, chemical, and 

osmotic stresses induced by the expelling of ions from the water crystals (Watson 2000, Arav 2014). 

This is collectively leading to cellular stress, in combination with fluctuations over a wide non-

physiological range of physical and chemical parameters such as osmotic and hydrostatic pressure, 

ionic composition, pH and temperature (Kopeika et al. 2015). Cellular stress induce HCs opening that 

can be inhibited by Gap26 or Gap27 mimetic peptides (Evans and Boitano 2001, De Wit and Griffith 

2010, De Bock et al. 2011, Desplantez et al. 2012, Wang et al. 2013a) and these peptides improve the 

survival of cells and tissues when exposed to stress conditions (Decrock et al. 2009, Hawat et al. 

2012, Wang et al. 2012, Davidson et al. 2013, Decrock et al. 2015). 

To test the effect of peptide Gap26 during vitrification/warming, bovine blastocysts were produced 

from oocytes matured in serum-containing medium (FBS condition) or serum-free medium (EGF 

condition). Serum is routinely used in the field for oocyte maturation (Ahn et al. 2002, Shirazi et al. 

2012) or embryo culture (Leibo and Loskutoff 1993, Gómez et al. 2008), although it is known to 

reduce the cryo-tolerance. The reduced cryo-tolerance of blastocysts produced in serum conditions 

has been explained to result from a higher amount of cytoplasmic lipid droplets that accumulate 

during the culture period (Abe et al. 2002). In the present work, FBS exposure was limited, with FBS 

only present during oocyte maturation, and not during embryo culture, which took place in SOF 
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medium supplemented with BSA and ITS (Wydooghe et al. 2014). While embryos cultured in serum-

free media showed higher survival and hatching rates after post-thaw culture than those cultured 

with serum (Abe and Hoshi 2003, Gómez et al. 2008), limited exposure to FBS during oocyte 

maturation leads to hatching/hatched rates that are comparable to those from blastocysts derived 

from EGF condition. In line with this, the data in Fig. 6 show that hatching/hatched rates after 

vitrification/warming were not different between FBS and EGF conditions. Most notably, 

hatching/hatched rates were not significantly below the rates in non-vitrified blastocysts, indicating a 

well optimized cryopreservation procedure.  

Most interestingly, significantly higher hatching/hatched rates were observed when Gap26 was 

supplemented to blastocysts derived from oocytes matured with FBS while no effect was observed 

for the corresponding EGF condition. This was not due to impaired Gap26 penetration into EGF-

derived blastocysts, but because HCs did not open in response to vitrification/warming in the EGF 

condition while they opened in blastocysts derived from FBS condition. Thus, inclusion of Gap26 

protects against cryopreservation stress and improves embryo development in culture leading to 

significantly higher hatching/hatched rates in FBS compared to EGF conditions. Of note, 

hatching/hatched rates in FBS + Gap26 were also higher than in control non-vitrified blastocysts. This 

may be related to the fact that the non-vitrified groups were cultured in total for 10 days, which is 

the maximum period in vitro. The reason why vitrification/warming gives distinct HC responses in FBS 

versus EGF conditions is not clear at this moment; it may be linked to differences in the intracellular 

Ca2+ concentration, the redox status or the phosphorylation state. Hemichannel opening is induced 

by slight elevation of the intracellular Ca2+ concentration (De Vuyst et al. 2006, Bol et al. 2016), 

oxidizing conditions and dephosphorylation, (reviewed in Sáez et al. 2005, Pogoda et al. 2016)). 

We previously reported that the protective effect of Cx channel-blocking peptides against cryo-injury 

in human blood vessels is mediated by a reduction of cell death (Bol et al. 2013). We thus looked at 

several markers of embryonic injury/cell death, including blastocyst degeneration, TUNEL stainings 

and 10 kDa FITC-dextran dye uptake. Figure 7A illustrates that the percentage of blastocysts 

degenerated on day 2 fluctuated around ~20%, with the exception of the FBS + Gap26 condition 

where a ~10% degeneration was observed; however, this difference did not attain statistical 

significance. In a next step, we verified cell TUNEL positivity and 10 kDa FITC-dextran dye uptake in 

non-degenerated blastocysts. Figure 9 illustrates that 5-10% of the cells were TUNEL-positive, in line 

with reports of others (Morató et al. 2010). The flat TUNEL positivity rates over all groups probably 

results from a highly optimized vitrification protocol including a very reduced volume of the solution 

surrounding the blastocyst (< 1 µl), which facilitates fast cooling and warming rates. Moreover, there 
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were no significant differences between groups, including the FBS + Gap26 group. Apart from the 

TUNEL assay which mainly reports apoptosis, we also evaluated cell membrane integrity by assessing 

10 kDa FITC-dextran uptake, which reflects cell injury or necrosis. We observed that ≤ 0.5 % of the 

blastocyst cells had taken up 10 kDa FITC-dextran, meaning they had disrupted plasma membranes; 

and then again, no differences with the Gap26 treated group were observed. Taken together, these 

results indicate that Gap26 did not inhibit cell death in the blastocysts. Gap26 non-significantly 

reduced the number of degenerated blastocysts in the FBS + Gap26 group but the bar chart in Figure 

5B demonstrates that most of the protective effect of Gap26 results from the increased 

hatching/hatched rates. Collectively, we conclude from these observations that Gap26 protection is 

not mediated by protection against cell death but results from a functional effect of Gap26 during 

the vitrification/warming of blastocysts, which improves their hatching success. The vitrification 

process is a well optimized and extremely fast procedure; by contrast, more stress is to be expected 

from the warming phase during which ice crystal formation may occur. In line with this, we found 

evidence for HC opening in the blastocyst cells shortly after warming. Inhibiting HC opening with 

Gap26 may prevent the dissipation of transmembrane ionic gradients and the excessive entry of 

calcium ions, and may counteract the loss of important metabolites from the embryonic cells. Taken 

together, these actions of Gap26 may promote the physiology of cell function and signaling thereby 

promoting the hatching process and further embryo development.  

 

This study is one of the few studies that investigated specific plasma membrane protein targets to 

determine their contribution and protective potential for improving cellular outcome following 

exposure to cryopreservation stress and injury. Most of the attempts in this field have been directed 

to fine tuning the composition of the solutions while targeting specific proteins or channels has been 

unsolicited. The only other plasma membrane channel that has been investigated in relation to 

cryopreservation is the family of the AQP channels (Hagedorn et al. 2002). These channels facilitate 

fast water movement and are highly specific for ions and small molecules. Aquaporins play important 

roles in follicle development, fertilization, blastocyst formation, and implantation (Huang et al. 2006). 

Moreover, they permit faster exchange of water and CPAs like EG, propylene glycol and glycerol 

during embryo cryopreservation that enhance tolerance against freezing/thawing stress (Edashige et 

al. 2007, Jin et al. 2011). Furthermore, the alteration of AQP3 genes improved the cryopreservation 

process in zebra fish embryos (Hagedorn et al. 2002). Although this seems to be a good strategy for 

cryopreservation in fish, induction of AQP expression in mammalian embryos would involve an 

extensive pre-treatment procedure that might prove difficult to implement because the oocytes and 

embryos are also aging in culture. 
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In conclusion, we demonstrate here for the first time that the vitrification/warming of blastocysts 

that were exposed earlier in development to serum during oocyte maturation, leads to opening of 

the HCs that impair subsequent embryo development. The inclusion of a Cx channel targeting 

peptide during vitrification/warming alleviates this event and improves the functional embryo 

outcome. Thus, targeting Cx channels provides a novel strategy to optimize the functionality of the 

embryo and improve its subsequent development.  
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Although vitrification is a promising technique for application in assisted reproductive technologies 

(ART), the competence of vitrified oocytes and embryos is compromised after warming. A lot of work 

has been performed in order to gain a better understanding of some aspects of fundamental 

cryobiology. However, as previously described in the introduction, different variables affecting the 

cryobiology of both oocytes and embryos need to be addressed before vitrification results can be 

improved. The research described in this dissertation was conducted with the purpose to study two 

of these variables: (1) the effect of cumulus cells surrounding the oocyte during vitrification and their 

influence on the vitrification protocol (Chapter 3 and 4), and (2) the effect of maturation in the 

presence of serum on the vitrification of oocytes and blastocysts (Chapter 5).  

 

Effect of cumulus cells on vitrified oocytes and their influence on the 

vitrification protocol 

As previously described in the introduction, the effect of cumulus cells surrounding the oocyte during 

vitrification needs further investigation. Even though cumulus cells are necessary for maturation, 

fertilization and embryo development (Zhang et al. 1995), we hypothesized that they might decrease 

the ‘vitrifyability’ of oocytes by reducing the entry of cryoprotectants (CPAs). We have investigated 

the effect of cumulus cells on the vitrification of bovine mature oocytes (Chapter 3) and equine 

immature oocytes (Chapter 4).  

Our first finding was that the survival and developmental competence were compromised when 

bovine (Chapter 3) and equine (Chapter 4) oocytes were surrounded by multiple layers of cumulus 

cells during vitrification. Our results corroborated the reports of Chian et al. 2004, but did not 

confirm the findings of Dinnyes et al. 2000, Tharasanit et al. 2009 and Zhou et al. 2010. This 

discrepancy may be due by the fact that these research groups used different materials and methods 

for the vitrification. Firstly, in all our studies, we have used a modified method in which oocytes are 

gradually exposed to CPAs, which might result in smaller osmotic volume changes. Secondly, whereas 

we have used a custom adapted device imitating the Cryotop with an extremely fast cooling rate 

(Figure 1), Tharasanit et al. 2009 used the Open Pulled Straw (OPS) for vitrified equine oocytes. As we 

previously described in the introduction, the use of different cryo-devices leads to different cooling 

and warming rates and different results (Figure 1, Saragusty and Arav 2011). Although the 

Leidenfrost effect might still occur when the custom adapted device is used, the higher cooling and 

warming rates obtained during the vitrification may be key for the observed improvement.  
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 Open Pulled Straw Custom-adapted device 

Volume 1.5μL 0.1μL 

Cooling 

rate 

20,000°C/min 23,000°C-42,000°C/min 

 

  

Figure 1. Comparison of Open Pulled Straw vs. the adapted device imitating the Cryotop used in this 

study. 

 

We observed that bovine mature oocytes vitrified without any cumulus cells showed similar survival 

rates compared to their fresh counterparts (Chapter 3). However, the removal of cumulus cells 

drastically reduced the fertilization rate and developmental competence of vitrified bovine oocytes 

(Chapter 3), as it occurs in fresh oocytes (Tanghe et al. 2003, Luciano et al. 2005). Therefore, in our 

study, we used three different approaches to solve the confounding of effect on ‘fertilizability’ and 

‘vitrifyability’ in bovine oocytes (Chapter 3). Firstly, vitrified denuded oocytes were fertilized with 

fresh COCs, because it is known that in this way their fertilization and blastocyst development can be 

restored (Tanghe et al. 2003, Luciano et al. 2005). Secondly, vitrified corona radiata (CR, Figure 2) 

oocytes were used as a compromise between COCs and denuded oocytes. Finally, oocytes were 

parthenogenetically activated taking the fertilization out from the equation, since fertilization was 

compromised in denuded/cumulus poor oocytes. 

In the first experiment, we observed that the fertilization rate of vitrified denuded oocytes could be 

reverted when they were fertilized in presence of intact COCs. Thus, denuded oocytes are sufficiently 

protected during vitrification because CPAs may have easier access to the oocyte, and possibly enter 

at adequate concentrations into the oocyte (Figure 2). However, denuded oocytes still display a low 

embryonic developmental capacity as an indirect consequence of the absence of cumulus cells 

during the fertilization process. In the second experiment, we observed that the mere act of 

removing the outer cumulus cells was already reducing the fertilization rate of bovine fresh oocytes 

compared to the ones surrounded by multiple layers of cumulus cells. Human ART has reported 

successful fertilization after vitrification of CR oocytes (Tong et al. 2014). Interestingly, in our study, 

we could not find differences in the fertilization and blastocyst development rate between vitrified 

CR oocytes compared to COCs. Moreover, in the third experiment, we observed that vitrified CR 
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oocytes had a similar capacity to become blastocysts compared to fresh oocytes after 

parthenogenetic activation. As far as we know, it is the first time that the embryonic development of 

vitrified CR oocytes has been studied after parthenogenetic activation; this allowed us to observe 

that the developmental competence was not affected by vitrification, only fertilization was 

decreased as a consequence of cumulus cell removal.  

These experiments allowed us to gain insight in the role of cumulus cells during vitrification, and two 

theories might explain the negative effect observed when oocytes were surrounded by multiple 

layers of cumulus cells during the vitrification. Firstly, cumulus-oocyte-complexes were more difficult 

to load over the custom adapted device compared to denuded or corona radiata oocytes. Therefore, 

a larger volume of medium was surrounding the specimen, and lower cooling and warming rates 

were achieved, as described in the introduction. Secondly, even though we have not measured 

permeability for water and CPAs, or measured flows of water and CPAs, or even compared shrinking 

and swelling curves of COCs vs. denuded oocytes, it seems a probable assumption that the layers of 

cumulus cells pose a significant extra barrier (Figure 2) to the exchange of water and CPAs between 

the ooplasm and the outside medium. 

 

 

Figure 2. Diagram representing the contact of the cryoprotectants in a denuded oocyte (A), in a 

corona radiata oocyte (B) and in a cumulus oocyte complex (B). 
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The permeability of the plasma membrane is a very important variable that needs to be considered 

during cryopreservation, particularly during vitrification. This is due to the fact that during 

vitrification, a high concentration of CPAs is used, producing a potential toxic effect in cells. 

Therefore, it is recommendable to limit the time of exposure to high concentrations of CPAs. 

However, if the time of exposure is not long enough to produce the permeation, CPAs might not 

enter in the oocytes. This brings us to put forward two main questions: (1) how do CPAs act to 

protect the oocyte and (2) is the entry of permeable CPAs into the oocyte necessary during 

vitrification. Firstly, the addition of CPAs leads to an increase in the extracellular total solute 

concentration. As a consequence, the ‘concentration’ of water (the chemical potential of water) 

inside the cells is much higher than outside. This difference drives the water out of the cells. At the 

same time, membrane permeable CPAs will flow inside the cells, driven by the concentration 

difference. As the water movement is much faster than that of CPAs, cells will shrink until the water 

‘concentration’ inside the cells equals that outside the cells. That means that at that point, the ice 

forming tendency inside the cells has become as low as that in the extracellular medium. Allowing 

time for entry of the membrane-permeable CPAs and the re-entry of most of the water brings the 

cells back to their original cell volume, which contributes to their survival after subsequent 

vitrification. On the other hand, if we do not allow the entry of CPAs, dehydration would occur that 

may be sufficient for intracellular vitrification, but might lead to structural and mechanical damage.  

Therefore, we can assume that a certain amount of permeable CPAs need to enter into the oocyte 

during vitrification. Certainly, the permeability of oocytes and embryos of various species differs for 

different CPAs, and its relevance to vitrification was recently reviewed by (Edashige 2016) . This 

allows scientists and practitioners to choose the most appropriate CPA for each cell and species. If 

oocyte permeability for a given CPA is low, the shrinking and swelling cycle may not be finished in 

time and may lead to damage of the oocyte as a consequence of excessive shrinking. In the present 

study, we applied two of the most commonly used CPAs, dimethyl sulfoxide (DMSO) and ethylene 

glycol (EG), both of which are quickly penetrating into the cytoplasm. Especially in bovine oocytes, 

ethylene glycol shows high permeability (35 μm/min) whereas its permeability in mice is quite low (6 

μm/min) compared to other CPAs such as propylene glycol (17 μm/min) at 25°C (Edashige 2016).  

Ethylene glycol is considered a good CPA for oocytes because of its penetrating capacity and its low 

toxicity (Bautista and Kanagawa 1998). However, it does not seem to be appropriate for preservation 

of cumulus cells (Lindley et al. 2001). The use of EG as a sole CPA leads to a high percentage of dead 

cumulus cells after cryopreservation (Lindley et al. 2001). Moreover, if cumulus cells are damaged, 

this would influence the survival of oocytes (Lindley et al. 2001). This occurs because oocytes are 
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connected with cumulus cells via gap junctions. These connections are fundamental for growth and 

maturation of the oocyte (Feng et al. 2013). However, under apoptotic conditions, physiological 

messengers such as inositol 1,4,5 trisphosphate (IP3), can pass through gap junction channels, and 

may act as a cell death- messenger (Decrock et al. 2012) between cumulus cells and oocyte. We 

hypothesised that a higher concentration of CPA could help speeding up the entry of CPAs into the 

cumulus cells, thus allowing a complete protection of the oocyte and the cumulus cells. Therefore, in 

chapter 4, the variable related to the number of cumulus cell layers (COCs and CRs) was addressed 

together with the concentration of CPAs for vitrified equine immature oocytes. The duration of 

exposure was also taken into account, as the CPA toxicity increases with its concentration.  

We showed that there is a strong association between the number of cumulus cells layers and the 

time of exposure to CPAs. Firstly, we observed a low maturation competence in COCs when they 

were vitrified after a short exposure time to a high concentration of CPAs (<1min). As previously 

described, we presume that the presence of multiple layers of cumulus cells surrounding the oocyte 

did not allow a correct movement of CPAs (Figure 2), even though higher concentrations of CPAs 

were used. Whereas the efflux of water was produced immediately after CPA addition, there was not 

enough time to allow the entry of the CPAs into the oocyte. The presumed lower concentration of 

CPAs inside the COCs, and the consequent reduced reswelling, i.e. the stronger shrinking of the cells, 

may have led to cell damage.  

Secondly, we observed that the situation could be reversed with the use of CR oocytes or with the 

exposure of COCs to CPAs for a longer period of time. These findings were indirectly confirming our 

hypothesis that the presence of multiple layers of cumulus cells surrounding the oocyte prevents the 

movement of CPAs and water, thus requiring longer time of exposure for a correct protection. 

However, we could not demonstrate that higher concentrations of CPAs may protect COCs. In our 

study, we did not investigate cell death in cumulus cells, but another study in equine reported that it 

is mainly detected in peripheral cumulus cells (Tharasanit et al. 2009). Cells in the external layers are 

less attached to the cumulus oocyte complex unit, being more sensitive to vitrification. Therefore, 

removing those external cells can only lead to better results due to the fact that (1) if they die, they 

do communicate a signal for cell death and (2) when they are gone, a better exchange of water and 

CPAs is possible.  

The use of CR oocytes might thus explain in part, the improved results that we showed in our 

research (Chapter 4). When we started our investigation, there were just a few reports about the 

vitrification of immature equine oocytes and only one blastocyst (1% of injected oocytes) had been 

reported (Tharasanit et al. 2006). Although we did use the same protocol as Tharasanit and 
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colleagues, the inclusion of two modifications, such as the use of an adapted device imitating the 

cryotop and the vitrification of CR oocytes may have been key for an improvement of this method, 

leading to 7% blastocyst formation in injected vitrified-warmed immature oocytes. As well as the 

blastocysts development improvement, our study in the horse represents a breakthrough in equine 

oocyte cryopreservation, because we have achieved a first live foal after in vitro production of a 

blastocyst from vitrified immature equine oocytes. 

In our study, using the long protocol, we also observed that a higher number of vitrified oocytes 

matured in a similar rate compared to fresh oocytes, but were not able to become a blastocyst. 

These results are in agreement with those of Canesin et al. 2016 who reported that exposure of 

oocytes to CPAs without freezing (toxicity experiment) reduced the developmental competence of 

oocytes, while no effect was detected on maturation rate. On the other hand, using the short 

vitrification protocol resulted in a lower maturation rate, but in similar blastocyst development 

compared to fresh oocytes. Therefore, it seems that the use of high concentration of CPAs and/or 

long exposure to CPAs may have led to toxic effects as suggested by several studies (Arav et al. 1993, 

Yamada et al. 2007, Tharasanit et al. 2009). Certainly, toxicity is considered as the most limiting 

factor when developing a successful vitrification protocol (Szurek and Eroglu 2011). Similar to our 

study, it was reported that the toxicity effect could not be detected after warming, but was 

intensified with in vitro culture (Men et al. 2003). It is possible that besides the toxicity that CPAs 

cause at a molecular and protein level, they also have an effect at DNA level as was reported in 

spermatozoa (Yildiz et al. 2007). Therefore, when the embryonic genome is activated, it may result in 

failed development.  

 

Effect of the vitrification process on oocytes and blastocysts previously 

matured in presence of serum 

Not only the toxicity caused by CPAs reduces the embryonic development, but vitrification itself is 

also considered as a stress process that induces an abnormal increase in reactive oxygen species 

(ROS) activity (Gupta et al. 2010, Zhao et al. 2011). An increase in the ROS level results in 

mitochondrial permeability transition, which consequently reduces the mitochondrial membrane 

potential (Liu et al. 2000). This reduction could induce rupture of the mitochondrial membrane, 

which may facilitate the release of some proteins that activate the caspase cascade (Suen et al. 

2008).  

Moreover, vitrification might induce opening of hemichannels (Bol et al. 2013, Wang et al. 2013b). 

Hemichannels can be forming gap junctions, which contribute to allow passage of cell death-
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messengers to the oocyte and surrounding cumulus cells during vitrification, as previously discussed. 

Moreover, we can find them also as unapposed hemichannels in cell membranes. These 

hemichannels are normally closed (under resting conditions, Figure 3), but a stress process induces 

opening of hemichannels, allowing the escape of important ions (Na⁺, Ca2⁺, K+), and molecules (NAD⁺, 

ATP, glutamate, prostaglandins, glutathione, IP3) (Wang et al. 2013a). These molecules are 

fundamental for the cells and their loss may compromise cell survival (Bol et al. 2013). Fortunately, 

hemichannels can be closed by using mimetic peptides (Evans and Boitano 2001, Desplantez et al. 

2012, Wang et al. 2013a), which bind to domains in the extracellular loops of connexins. A recent 

study showed that the inclusion of mimetic peptide during cryopreservation increases cell viability of 

blood cells (Bol et al. 2013). We hypothesized that (1) vitrification may induce opening of 

hemichannels in vitrified blastocysts, and (2) the use of a mimetic peptide can alleviate this problem. 

Therefore in Chapter 5.2, the effect of vitrification was studied in blastocysts previously matured in 

presence of serum or epidermal growth factor (EGF). Moreover, we investigated if the inclusion of a 

mimetic peptide, Gap26, during the vitrification improved the embryonic development of these 

blastocysts.  

 

 

Figure 3. Diagram representing the hemichannels activity in a resting /Gap26 condition (A) and in a 

stress condition (B).  
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Firstly, we showed that vitrification induces the opening of hemichannels in blastocysts previously 

matured as oocytes in serum medium (Chapter 5.2). Studies in somatic cells showed that opening of 

hemichannels may lead to apoptosis in connected cells (Bol et al. 2013). Apoptosis is a cellular 

response to stress in suboptimal conditions and the index of apoptotic cell is usually determined in 

order to know the embryo viability and developmental potential after vitrification (Morató et al. 

2010). However, in our study, vitrified blastocysts did not show an increase in the number of 

apoptotic cells when compared to fresh blastocysts. 

We further observed that the inclusion of a mimetic peptide, Gap 26 during vitrification/warming 

improved the hatching rate of vitrified blastocysts previously matured as oocytes in serum medium 

as compared to the ones not treated with the mimetic peptide (Chapter 5.2). Probably the opening 

of hemichannels did not lead to cell death, but it compromised the developmental potential of these 

blastocysts compared to control ones (not treated with the mimetic peptide).  

Surprisingly, we also observed that opening of hemichannels could be alleviated when oocytes were 

matured in presence of EGF instead of serum because the vitrification did not open hemichannels in 

those blastocysts. This brings us to an important question: What is the effect of EGF on the activity of 

hemichannels? The answer is still uncertain, but a recent publication showed that EGF modifies 

calcium levels, which may have an effect on hemichannel activity (Hao et al. 2016). Therefore, 

further studies are needed to elucidate this topic, because this finding opens new challenges for 

improving vitrification.  

It is also remarkable that until now, the low cryotolerance observed in embryos cultured in serum 

containing media was attributed to the accumulation of lipids, and the resulting changes in the lipid 

composition of the cell membranes (Abe et al. 2002, Abe and Hoshi 2003). However, the loss of 

functionality that might occur when hemichannels are open is also a possible explanation for the 

lower developmental competence observed in blastocysts matured as oocytes in serum. A carry-over 

effect was thus demonstrated, like in our other study where we showed lower cryosurvival of 

blastocysts matured as oocytes in the presence of palmitic or stearic acid (Shehab-EL-Deen et al. 

2009). 

In our study, we also investigated the competence of vitrified oocytes matured in presence of serum 

or epidermal growth factor (Chapter 5.1). Our data showed that the maturation in presence of 

serum, glutamine and pyruvate compromises the embryonic development of vitrified oocytes. 

However, further research would be needed in order to elucidate if vitrification induces opening of 
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hemichannels in oocytes and if the use of the mimetic peptide or culture in EGF can alleviate this 

effect.  

In conclusion, this thesis has contributed to gain more insights in some of the variables that influence 

the vitrification process. Firstly, the critical role of cumulus cells during the vitrification of oocytes has 

been elucidated. Secondly, we have showed that other variables such as permeability, concentration 

and/or time exposure to CPAs need to be addressed in order to achieve a correct protection. Finally, 

our study demonstrated that vitrification can induce, depending on the culture conditions, opening 

of hemichannels, and that the use of a mimetic peptide or the presence of EGF during maturation 

can alleviate this problem.  
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Future perspectives 

It can be concluded that the use of CR oocytes leads to a better vitrification compared to COCs or 

denuded oocytes. Although the fertilization of fresh bovine CR was compromised, we showed that, 

after parthenogenetic activation, these oocytes have the capacity to become blastocysts in a similar 

rate than the fresh ones. To date, major efforts have been made in order to develop a repeatable 

and simple method for fertilizing denuded oocytes. However, as far as we know, no such attempts 

were made for CR oocytes. Our results open new challenges for developing a system that supports 

the fertilization of CR oocytes.  

Moreover, from a practical point of view, the use of CR shows also some advantages over COCs. We 

observed that CR oocytes are easier to manipulate, allowing us to load a higher number of them in a 

lower volume. Its application in clinical laboratories might lead to a more efficient vitrification 

process, brought about by the increase in the cooling/warming rate.  

Our findings also indicate that a successful vitrification can be achieved providing that the protocol is 

optimized and taking into account the influencing variables. We have demonstrated the necessity for 

adjusting the presence of cumulus cells in combination with variables such as the time of exposure 

and concentration of CPAs. However, other variables such as the temperature or the permeability to 

CPAs also need to be addressed in further research. In our study, we used two of the CPAs with 

higher permeability for bovine oocytes (Edashige 2016), but further studies on altering the 

membrane permeability are needed in order to improve the exchange of water and CPAs and to 

reduce the concentration or time of exposure to CPAs (Clark and Swain 2013), as our results indicate 

that toxicity of CPAs is one of the most critical steps when a protocol is optimized. Moreover, studies 

would be necessary to investigate the effect of CPAs on embryonic genome activation or signal 

transduction pathways in order to understand the causes of failure in embryonic development 

observed in vitrified oocytes (Xu et al. 2014). 

Previous reports on oocytes and embryos pointed out that vitrification drastically reduces their 

competence after warming. In our study, we observed that vitrification induces opening of 

hemichannels under certain conditions. This is an important discovery in vitrification, which opens 

new challenges to improve the process. Further studies are needed to gain more insight in this topic 

in order to avoid the conditions that lead to opening of hemichannels. Moreover, research on 

elucidating the mechanism behind EGF would help us minimize the damage produced after warming 

and improve the vitrification. 
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Finally, we have proved that the inclusion of a mimetic peptide improves embryo development of 

blastocysts matured in serum. However, further research is needed to investigate its application in 

practice because it may also lead to a better pregnancy rate not only in cattle but also in other 

species. Likewise, the inclusion of a mimetic peptide could improve the vitrification of oocytes by 

increasing their embryonic development.  
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Cryopreservation of gametes and embryos is an important part of assisted reproductive 

technologies, since it can be used to preserve genetic material for a longer time. The introduction of 

vitrification resulted in a promising technique for oocyte and embryo cryopreservation. However, the 

developmental competence of the oocytes and embryos is compromised after warming. An overview 

of the difficulties encountered in the vitrification process and a description of the different variables 

influencing the vitrification process and the cryotolerance of oocytes and embryos is given in Chapter 

1.  

The general aim of this thesis was to increase the effectiveness of vitrification for oocytes and 

embryos in cattle and horses (Chapter 2). To this purpose, we investigated two variables influencing 

the vitrification: (1) the presence of cumulus cells surrounding the oocyte during vitrification and 

their influence on the vitrification protocol and (2) the effect of maturation in the presence of serum 

on the vitrification of oocytes and blastocysts. 

In chapter 3, specific attention was given to the role of cumulus cells surrounding mature bovine 

oocytes during their vitrification. It is already known that cumulus cells play a fundamental role 

during maturation, fertilization and blastocyst development. However, they might decrease the 

exchange of water and cryoprotectants (CPAs), which leads to an inadequate protection of the 

oocyte during vitrification. Our results showed that the presence of multiple layers of cumulus cells 

surrounding the oocytes compromised their survival after vitrification. On the other hand, we 

observed that total removal of cumulus cells led to similar survival rates in vitrified denuded oocytes 

compared to their fresh counterparts.  

In bovine, it is known that removal of cumulus cells decreases the fertilization rates of the oocytes. 

Therefore, in our study, we used three different approaches in order to distinguish ‘vitrifiability’ from 

‘fertilizability’. Firstly, vitrified denuded oocytes were fertilized in the presence of intact fresh 

cumulus complex oocytes (COCs). Secondly, we used corona radiata (CR) oocytes as a compromise 

between COCs and denuded oocytes. Finally, vitrified oocytes were activated parthenogenetically. 

Our results showed that removal of cumulus cells before vitrification reduced the fertilization in 

vitrified denuded oocytes. Interestingly, this situation could be reverted when vitrified denuded 

oocytes were fertilized in the presence of fresh COCs. Secondly, we observed that the mere act of 

removing only the outer cumulus cells (CR oocytes) was already reducing the fertilization of fresh 

oocytes compared to the ones surrounded by multiple layers of cumulus cells. Such an effect was not 

detected in vitrified CR oocytes, which showed similar fertilization and embryonic development 

compared to vitrified COCs. Surprisingly, vitrified CR oocytes showed similar capacity to become 

blastocysts compared to fresh COCs after parthenogenetic activation.  
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Together, these results clearly show that the presence of cumulus cells might reduce the entrance of 

CPAs, compromising the vitrification of mature bovine oocytes and therefore it is advisable to 

remove some of the external layers of cumulus cells.  

If cumulus cells reduce the exchange of CPAs, the use of high concentrations of CPAs could help 

speeding up their entry into the cells. Therefore, in Chapter 4, two protocols were evaluated (high 

concentrations of CPAs for a short time of exposure and lower concentrations of CPAs for a long time 

of exposure) for the vitrification of immature equine oocytes surrounded by some (CR) or multiple 

layers of cumulus cells (COCs). In our study, we observed a low maturation competence when COCs 

were vitrified in high concentrations of CPAs for a short time of exposure. Fortunately, this situation 

could be reverted with the use of CR oocytes or with the exposure of COCs to CPAs for a longer 

period of time. These findings support our observation in Chapter 3, where the presence of multiple 

layers of cumulus cells surrounding the oocytes prevent the movement of CPAs and water, implying 

the need for a longer time of exposure for a correct protection.  

Consequently, COCs were discarded from our following studies and only CR oocytes were used to 

investigate the effect of the two different protocols on the spindle configuration and the embryonic 

development of vitrified immature equine oocytes (Chapter 4). Our data showed that both 

vitrification protocols resulted in higher rates of aberrant spindle configuration in vitrified oocytes 

compared to fresh ones in the horse. More interestingly, we observed that blastocyst development 

only occurred in oocytes vitrified in high concentrations of CPAs for a short time of exposure. 

Pregnancies were established after transfer of such blastocysts, and a healthy male foal was born on 

May 12, 2017, a wordl’s first. The longer time of exposure to CPAs used in the other protocol might 

lead to toxic effects, which impaired the further embryonic development of vitrified oocytes. 

These findings strongly indicate that the presence of cumulus cells might be adjusted with other 

variables, such as the concentration of CPAs and time of exposure, which are critical for the 

development of a successful vitrification protocol.  

In Chapter 5, another variable, which influences the vitrification of oocytes and embryos, was 

evaluated. It is known that the presence of serum during culture reduces the cryotolerance of 

oocytes and blastocysts. In a first part of our study, we investigated the vitrification of bovine oocytes 

matured in two conditions: in presence of serum, glutamine and pyruvate or in absence of serum but 

with epidermal growth factor (EGF, Chapter 5.1). Our results showed that fertilization is not 

influenced by the maturation condition, but it was drastically decreased after vitrification. When 
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embryonic development was studied in a second experiment, we observed how the presence of 

serum reduced the cleavage rate of vitrified oocytes. 

Vitrification is considered a stressful process that leads to hemichannels opening in cells. This 

produces the loss of different molecules and ions that are important for cell survival. It has been 

demonstrated that the inclusion of a mimetic connexin peptide closes these hemichannels, improving 

cells cryopreservation. In analogy with the previous study, we further investigated if such an effect 

also occurred in vitrified blastocysts resulting from oocytes matured in serum or EGF conditions, and 

we included a mimetic peptide in order to improve the vitrification of blastocysts (Chapter 5.2). We 

observed that vitrification induces opening of the hemichannels in blastocysts derived from oocytes 

matured in the presence of serum. Although opening of hemichannels is related to increased 

apoptotic cell rates, we could not observe such an effect when hemichannels were opened. 

Interestingly, the inclusion of the mimetic peptide closed hemichannels during vitrification, improving 

the embryonic development of vitrified blastocysts matured in the serum condition. On the other 

hand, vitrification did not result in hemichannels opening in blastocysts matured in EGF condition. 

Apparently, EGF might have an effect on hemichannels by modifying their activity. Additional 

experiments are required to confirm this effect and to investigate the opening of hemichannels 

under different conditions.  

Finally, in chapter 6, the main results of this thesis are summarized and discussed. Research was 

focussed on the optimization of the vitrification conditions for bovine mature oocytes, equine 

immature oocytes and bovine blastocysts. Our results indisputably demonstrated that the presence 

of cumulus cells impaired the vitrification of oocytes in both cattle and horses and that their effect 

needs to be addressed with other variables such as the concentration and time of exposure to CPAs. 

Therefore, partial removal of the cumulus cells (CR) is advised for the vitrification of bovine mature 

oocytes in order to allow penetration of CPAs, while maintaining fertilization potential. In the horse, 

blastocyst development was achieved in immature CRs vitrified by short exposure to high 

concentrations of CPAs. Finally, vitrification induced opening of hemichannels in bovine blastocysts 

matured in the presence of serum, impairing their competence. This could be alleviated by the use of 

a mimetic peptide or by replacing serum by EGF during maturation.
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Cryopreservatie van gameten en embryo’s vormt een belangrijk onderdeel van de geassisteerde 

voortplantingstechnieken omdat het kan gebruikt worden om genetisch materiaal voor langere tijd 

te bewaren. De introductie van vitrificatie resulteerde in een veelbelovende techniek voor de 

cryopreservatie van eicellen en embryo’s. De capaciteit van eicellen en embryo’s om verder te 

ontwikkelen is echter aangetast na het opwarmen. In Hoofdstuk 1 wordt een overzicht gegeven van 

de moeilijkheden die bij de vitrificatieprocedure komen kijken, evenals een beschrijving van de 

verschillende variabelen die deze procedure en de invriesbaarheid van eicellen en embryo’s 

beïnvloeden. 

De algemene doelstelling van deze thesis was om de effectiviteit van de vitrificatie van eicellen en 

embryo’s te verbeteren bij het rund en het paard (Hoofdstuk 2). Daartoe hebben we twee variabelen 

onderzocht die de vitrificatie beïnvloeden: (1) de aanwezigheid van cumuluscellen rondom de eicel 

gedurende de vitrificatie en hun invloed op de invriesprocedure en (2) het effect van eicelrijping in de 

aanwezigheid van serum op de vitrificatie van eicellen en blastocysten. 

In Hoofdstuk 3 werd specifieke aandacht gegeven aan de rol van cumuluscellen rondom de rijpe 

rundereicel tijdens de vitrificatie van deze eicel. Het is reeds geweten dat cumuluscellen een 

fundamentele rol spelen tijdens de eicelrijping, de bevruchting en de ontwikkeling van blastocysten. 

Ze zouden echter de uitwisseling van water en cryoprotectanten (CPAs) kunnen verhinderen, wat zou 

leiden tot onvoldoende bescherming van de eicel tijdens de vitrificatie. Onze resultaten toonden aan 

dat de aanwezigheid van meerdere lagen cumuluscellen rondom de eicel een nadelig effect had op 

de overleving van deze eicel na vitrificatie. Anderzijds werden na totale verwijdering van de 

cumuluscellen gelijkaardige overlevingspercentages geobserveerd bij de gevitrificeerde, 

gedenudeerde eicellen en hun verse tegenhangers. 

Bij het rund is het geweten dat het verwijderen van cumuluscellen de bevruchtingspercentages van 

de eicellen vermindert. Daarom hebben we in onze studie drie verschillende benaderingen gebruikt 

om onderscheid te maken tussen ‘vitrificeerbaarheid’ en ‘bevruchtbaarheid’. In eerste instantie 

werden gevitrificeerde, gedenudeerde eicellen bevrucht in de aanwezigheid van intacte cumulus-

eicel-complexen (COCs). In tweede instantie werden eicellen met een corona radiatia (CR) gebruikt 

als compromis tussen COCs en gedenudeerde eicellen. Tenslotte werden gevitrificeerde eicellen 

parthenogenetisch geactiveerd. Onze resulaten toonden aan dat het verwijderen van cumuluscellen 

voor vitrificatie leidde tot een verminderde bevruchting van de gevitrificeerde, gedenudeerde 

eicellen. Een interessante bevinding hierbij was dat deze situatie hersteld kon worden wanneer de 

gevitrificeerde, gedenudeerde eicellen bevrucht werden in de aanwezigheid van verse COCs. Ten 

tweede zagen we dat het verwijderen van de buitenste cumuluslagen op zich (CR eicellen) reeds 
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resulteerde in een verminderde bevruchting van verse eicellen in vergelijking met eicellen die 

omgeven worden door meerdere lagen cumuluscellen. Zo’n effect werd niet gedetecteerd bij de 

gevitrificeerde CR eicellen, waarbij de bevruchting en de embryonale ontwikkeling gelijkaardig waren 

aan deze van de gevitrificeerde COCs. Verrassend genoeg was de capaciteit om tot blastocyst te 

ontwikkelen van gevitrificeerde CR eicellen gelijkaardig aan deze van verse eicellen na 

parthenogenetische activatie. 

Over het geheel bekeken, tonen onze resultaten duidelijk aan dat de aanwezigheid van 

cumuluscellen het binnendringen van CPAs kan verminderen met een minder goede vitrificatie van 

rijpe rundereicellen tot gevolg en daarom is het aan te raden om de buitenste lagen cumuluscellen te 

verwijderen. 

Als cumuluscellen de uitwisseling van CPAs verminderen, zou het gebruik van hogere concentraties 

CPAs het binnendringen in de cellen kunnen versnellen. Daarom werden in Hoofdstuk 4 twee 

protocollen geëvalueerd (korte blootstelling aan hoge concentraties CPAs en lange blootstelling aan 

lagere concentraties CPAs) voor de vitrificatie van onrijpe paardeneicellen, omgeven door enkele 

(CR) of meerdere lagen cumuluscellen (COCs). In onze studie zagen we een verminderde eicelrijping 

wanneer COCs werden gevitrificeerd door korte blootstelling aan hoge concentraties CPAs. Gelukkig 

kon deze situatie hersteld worden door het gebruik van CR eicellen of door blootstelling van COCs 

aan lagere concentraties CPAs voor langere tijd. Deze bevindingen ondersteunen onze observaties 

van Hoofdstuk 3, waarbij de aanwezigheid van meerdere lagen cumuluscellen rondom de eicel de 

beweging van CPAs en water verhindert, waardoor een langere blootstelling nodig is voor een 

correcte bescherming. 

Bijgevolg werd in de volgende studies niet verder gewerkt met COCs en werden enkel CR eicellen 

gebruikt om het effect van twee verschillende protocollen op de spoelfiguur en de embryonale 

ontwikkelin van gevitrificeerde onrijpe paardeneicellen na te gaan (Hoofdstuk 4). Onze gegevens 

toonden aan dat beide protocollen voor vitrificatie resulteerden in hogere percentages abnormale 

spoelfiguren bij de gevitrificeerde eicellen dan bij de verse. Een interessantere bevinding was dat de 

ontwikkeling tot blastocyst enkel plaatsvond bij de eicellen die gevitrificeerd waren door middel van 

korte blootstelling aan hoge concentraties CPAs. De transplantatie van dergelijke blastocysten 

resulteerde in drachten, met uiteindelijk de geboorte van een gezond hengstveulen tot gevolg, op 12 

mei 2017, een wereldprimeur. De langere blootstelling aan CPAs die werd gebruikt in het andere 

protocol zou kunnen leiden tot toxische effecten die de verdere embryonale ontwikkeling van de 

gevitrificeerde eicellen verhinderden. 
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Deze bevindingen wijzen erop dat naast de aanwezigheid van cumuluscellen ook andere variabelen, 

zoals de concentratie CPAs en de blootstellingstijd, van kritiek belang zijn bij de ontwikkeling van een 

succesvol protocol voor vitrificatie. 

In Hoofdstuk 5 werd nog een andere variabele die de vitrificatie van eicellen en embryo’s beïnvloedt 

bestudeerd. Het is geweten dat de aanwezigheid van serum tijdens de cultuur de invriesbaarheid van 

eicellen en blastocysten vermindert. In het eerste deel van onze studie hebben we de vitrificatie 

onderzocht van rudereicellen na rijping onder twee verschillende omstandigheden: in aanwezigheid 

van serum of in afwezigheid van serum maar na toevoeging van epidermale groeifactor (EGF, 

Hoofdstuk 5.1). Onze resultaten toonden aan dat bevruchting niet beïnvloed door de 

omstandigheden voor eicelrijping, maar was ze drastisch gedaald na vitrificatie. Wanneer de 

embryonale ontwikkeling werd bestudeerd in een tweede experiment, zagen we hoe de 

aanwezigheid van serum de deling van de gevitrificeerde eicellen verminderde. 

Vitrificatie wordt beschouwd als een stressvol proces dat leidt tot de opening van ‘hemichannels’ in 

cellen. Hierdoor gaan verschillende moleculen en ionen verloren die van belang zijn voor het 

overleven van de cel. Er werd aangetoond dat de toevoeging van een mimetisch connexin peptide 

deze ‘hemichannels’ kan sluiten met een betere invriesbaarheid van cellen tot gevolg. Naar analogie 

hiermee hebben we verder onderzocht of zo’n effect ook optreedt bij gevitrificeerde blastocysten die 

voortkomen uit eicellen gerijpt met serum of EGF en we hebben hierbij gebruik gemaakt van een 

mimetisch peptide om de vitrificatie van de blastocysten te verbeteren (Hoofdstuk 5.2). We zagen 

dat vitrificatie leidt tot de opening van de ‘hemichannels’ bij blastocysten die voortkomen uit eicellen 

die gerijpt werden in aanwezigheid van serum. Hoewel opening van ‘hemichannels’ gerelateerd werd 

aan hogere percentages apoptotische cellen, hebben wij dit effect niet geobserveerd. Interessant 

was dat de toevoeging van het mimetisch peptide resulteerde in de sluiting van de ‘hemichannels’ 

tijdens de vitrificatie, met een verbeterde embryonale ontwikkeling van de gevitrificeerde 

blastocysten na rijping in serum tot gevolg. Anderzijds leidde de vitrificaite van blastocysten na 

rijping in EGF niet tot de opening van de ‘hemichannels’. Blijkbaar zou EGF de activiteit van de 

‘hemichannels’ kunnen beïnvloeden. Verder onderzoek is nodig om dit effect te bevestigen en om de 

opening van ‘hemichannels’ onder verschillende omstandigheden te onderzoeken. 

Tenslotte worden de belangrijkste resultaten van deze thesis samengevat en bediscussieerd in 

Hoofdstuk 6. Het onderzoek was gericht op de optimalisatie van de omstandigheden voor vitrificatie 

van rijpe rundereicellen, onrijpe paardeneicellen en runderblastocysten. Onze resultaten tonen 

duidelijk aan dat de aanwezigheid van cumuluscellen de vitrificatie van eicellen nadelig beïnvloedde 

bij zowel het rund als het paard en dat bij dit effect ook rekening moet gehouden worden met 
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andere variabelen zoals de concentratie CPAs en de duur van de blootstelling hieraan. Daarom wordt 

geadviseerd om de cumuluscellen gedeeltelijk te verwijderen (CR) voor de vitrificatie van rijpe 

rundereicellen omdat op die manier de CPAs de eicel kunnen binnendringen, terwijl ook de 

bevruchtingscapaciteit behouden blijft. Bij het paard werd de ontwikkeling van blastocysten 

bekomen na vitrificatie van onrijpe CRs door korte blootstelling aan hoge concentraties CPAs. 

Tenslotte leidde vitrificatie van runderblastocysten na rijping in aanwezigheid van serum tot de 

opening van ‘hemichannels’, met een verminderde ontwikkeling tot gevolg. Dit effect kon 

tegengegaan worden door gebruik te maken van een mimetisch peptide of door serum te vervangen 

door EGF tijdens de eicelrijping. 
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