
© 2017 Susanne Saminger-Platz et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 License.

Depend. Model. 2017; 5:45–58

Research Article Open Access
Special Issue: Salzburg Workshop on Dependence Models & Copulas

Susanne Saminger-Platz, José De Jesús Arias-García, Radko Mesiar, and
Erich Peter Klement*

Characterizations of bivariate conic, extreme
value, and Archimax copulas
DOI 10.1515/demo-2017-0003
Received December 30, 2016; accepted February 9, 2017

Abstract: Based on a general construction method bymeans of bivariate ultramodular copulas we construct,
for particular settings, special bivariate conic, extreme value, and Archimax copulas. We also show that the
sets of copulas obtained in this way are dense in the sets of all conic, extreme value, and Archimax copulas,
respectively.

Keywords: Ultramodular copula, conic copula, extreme value copula, Archimax copula

MSC: Primary 62H05, Secondary 60E05, 26B25

1 Introduction
In the literature one can �nd a considerable number of constructions of bivariate copulas (for example, in [14,
22, 23, 40]). Recently, some constructions based on ultramodular aggregation functions have been proposed
in [28, 30].

Recall �rst that bivariate copulas can be characterized by supermodularity and their boundary condi-
tions. If we have a construction leading to supermodular functions from the unit square [0, 1]2 to the unit
interval [0, 1], and if we can �nd suitable constraints guaranteeing the validity of the boundary conditions of
a copula then this is a constructionmethod for bivariate copulas. Note that the composition of supermodular
functions by means of an ultramodular function preserves the supermodularity [35] (compare also [13, 29])
of the inner functions. A construction method of bivariate copulas based on ultramodularity was proposed
in [30], generalizing a product-based approach studied in [27, 32, 33].

The aim of this paper is to provide deeper insights into this method. After giving the de�nitions and
notations required for the main part of the paper in Section 2, we recall a particular construction and show
some well-known classes of copulas which are covered by these constructions in Section 3.

In Section 4 we propose an approach leading to a dense subset of the set of all conic copulas [24]. A con-
struction in the context of extreme value copulas [5, 19, 40] (related to Pickands dependence functions [41])
is given in Section 5, again leading to a dense subset of the set of all extreme value copulas. In a similar way
we obtain special Archimax copulas [6] (related to an additive generator of an Archimedean copula and a
Pickands dependence function), the set of which is dense in the set of all Archimax copulas.
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2 Preliminaries
We shall mostly work in the n-dimensional unit cube [0, 1]n, equipped with the componentwise order ≤ in-
duced by the linear order on [0, 1]. For elements of [0, 1]n we shall use the notations x and (x1, x2, . . . , xn)
synonymously, whichever is more convenient.

A function f : [0, 1]n → [0, 1] is 1-Lipschitz (with respect to the L1-norm) if for all x, y ∈ [0, 1]n

|f (x) − f (y)| ≤
n∑
i=1
|xi − yi|.

A function f : [0, 1]n → [0, 1] is called supermodular [3, 29, 35] if for all x, y ∈ [0, 1]n

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y),

(here ∧ and ∨ stand for the lattice operations meet and join in [0, 1]n) and ultramodular [35] if for all x, y, h ∈
[0, 1]n with x ≤ y and x + h, y + h ∈ [0, 1]n

f (x + h) − f (x) ≤ f (y + h) − f (y).

In economics, ultramodular functions f : [0, 1]n → [0, 1] are often said to have non-decreasing incre-
ments [4]. As a consequence of [35, Subsection 3.2], each ultramodular function f : [0, 1]n → [0, 1] is neces-
sarily supermodular.

An n-ary function f : [0, 1]n → [0, 1] is supermodular if and only if each of its two-dimensional sections
is supermodular, and it is ultramodular if and only if it is supermodular and each of its one-dimensional
sections is convex [29, Propositions 2.3, 2.7].

If n ≥ 2 and if all second partial derivatives of an n-ary function f : [0, 1]n → [0, 1] exist, then f is ultra-
modular if and only if all second partial derivatives of f are non-negative [29, Corollary 2.8].

A function A : [0, 1]n → [0, 1] is called an (n-ary) aggregation function [18] if it is monotone non-
decreasing in each component and satis�es the two boundary conditions A(0) = 0 and A(1) = 1.

An n-ary aggregation function A : [0, 1]n → [0, 1] is ultramodular if and only if each of its two-
dimensional sections is ultramodular. Also, A is ultramodular if and only if each of its two-dimensional
sections is supermodular and each of its one-dimensional sections is convex [29, Remark 2.9].

An (n-ary) quasi-copula [2, 10, 16] is a function Q : [0, 1]n → [0, 1] which is 1-Lipschitz, monotone non-
decreasing in each component and which satis�es

Q(x1, x2, . . . , xn) = xj whenever xi = 1 for all i ∈ {1, 2, . . . , n} \ {j}. (B1)

For each n-ary quasi-copula Q : [0, 1]n → [0, 1] the inequality W ≤ Q ≤ M holds, where the Fréchet-
Hoe�ding lower and upper boundsW ,M : [0, 1]n → [0, 1] are given byW(x) = max

(∑n
i=1 xi − (n − 1), 0) and

M(x) = min(x1, x2, . . . , xn), respectively.
An (n-ary) copula [45] (see also [14, 40]) is a function C : [0, 1]n → [0, 1] which satis�es the boundary

conditions (B1) and

C(x1, x2, . . . , xn) = 0 whenever xi = 0 for some i ∈ {1, 2, . . . , n}, (B2)

and which is n-increasing, i.e., for each box B =
∏n
i=1 [ai , bi] ⊆ [0, 1]n its C-volume VC(B) is non-negative:

VC(B) =
∑

z∈Ver(B)

(−1)#S(z)C(z) ≥ 0, (n-increasing)

where Ver(B) =
∏n
i=1{ai , bi} denotes the set of vertices of B and #S(z) stands for the cardinality of the set

S(z) = {i ∈ {1, 2, . . . , n} | zi = ai}.
It is easy to see that each copula is monotone non-decreasing in each component and 1-Lipschitz, but

not necessarily symmetric. Also, each copula is a quasi-copula, but not vice versa.
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An n-ary copula C : [0, 1]n → [0, 1] is called Archimedean [34, 40] if there exists a continuous, strictly
decreasing function φ : [0, 1]→ [0, +∞] satisfying φ(1) = 0 such that for all x ∈ [0, 1]n

C(x) = φ−1
(
min

( n∑
i=1

φ(xi), φ(0)
))

. (1)

In this case,φ is called an additive generator of C, and it is uniquely determined by C up to a positive constant.
Observe that a continuous, strictly decreasing function φ : [0, 1] → [0, +∞] satisfying φ(1) = 0 is an

additive generator of a bivariate Archimedean copula if and only if it is convex [44, Theorem 6.3.2], and of an
n-ary Archimedean copula if and only if it is n-monotone [37, Theorem 2.2].

In this paperwemostly shall be concernedwith bivariate copulas. Note that a function C : [0, 1]2 → [0, 1]
is a bivariate copula if and only if it is supermodular and satis�es the boundary conditions (B1) and (B2).

Bivariate Archimedean copulas C : [0, 1]2 → [0, 1] are also triangular norms (t-norms for short) [31, 42,
44], i.e., they are symmetric, associative operations on [0, 1] which are monotone non-decreasing in each
component and satisfy (B1). In general, each associative bivariate copula is a t-norm and each 1-Lipschitz
t-norm is a bivariate copula.

Quite often we shall require a copula to be ultramodular [29, 30]. Ultramodular copulas describe the
dependence structure of stochastically decreasing random vectors, and thus they are negative quadrant de-
pendent (NQD) [40]. Moreover, they are useful in some constructions [28], as will be seen also in this paper.

Each ultramodular copula C : [0, 1]n → [0, 1] satis�esW ≤ C ≤ Π, where the independence (or product)
copulaΠ : [0, 1]n → [0, 1] is given byΠ(x) = x1x2 · · · xn, and the set of ultramodular copulas forms a compact
and convex subset of [0, 1][0,1]

n
.

A copula C : [0, 1]n → [0, 1] is ultramodular if and only if each of its horizontal and vertical sections is
convex [30].

AnArchimedean copula C : [0, 1]n → [0, 1]with a two times di�erentiable additive generatorφ : [0, 1]→
[0, +∞] is ultramodular if and only if its derivative φ′ is constant or 1

φ′ is a convex function (for n = 2 this was
shown in [30, Theorem 3.1], see also [7]).

3 Basic constructions
The following result which is a consequence of Theorem 3.1 in [29] and which generalizes [13, Theorem 5.2]
will play a key role in our constructions:

Theorem 3.1. Let A : [0, 1]k → [0, 1] be an ultramodular k-ary aggregation function and assume that the n-ary
functions B1, B2, . . . , Bk : [0, 1]n → [0, 1]are supermodular,monotone non-decreasing in each component and
satisfy the properties A

(
B1(0), B2(0), . . . , Bk(0)

)
= 0 and A

(
B1(1), B2(1), . . . , Bk(1)

)
= 1. Then the composite

function C : [0, 1]n → [0, 1] de�ned by

C(x) = A
(
B1(x), B2(x), . . . , Bk(x)

)
is a supermodular n-ary aggregation function.

Proof. From [29, Theorem 3.1] it follows that C is a supermodular function. The additional hypotheses con-
cerning 0 and 1 guarantee that C satis�es the boundary conditions of aggregation functions. Finally, because
of themonotonicity of the functions A and B1, B2, . . . , Bk, the composite C is alsomonotone non-decreasing
in each component.

The following construction leads to n-ary ultramodular quasi-copulas.

Proposition 3.2. Let C : [0, 1]2 → [0, 1] be an ultramodular bivariate copula, put C[2] = C, and de�ne for n ≥ 2
an n-ary extension C[n] : [0, 1]n → [0, 1] of C inductively by

C[n+1](x1, x2, . . . , xn+1) = C[2]
(
C[n](x1, x2, . . . , xn), xn+1

)
.
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Then C[n] is an n-ary ultramodular quasi-copula for each n ≥ 2.

Proof. To prove this assertion by induction, note �rst that it holds for n = 2 and assume that it holds for some
n ≥ 2. De�ne the functions B1, B2 : [0, 1]n+1 → [0, 1] by

B1(x1, x2, . . . , xn+1) = C[n](x1, x2, . . . , xn) and B2(x1, x2, . . . , xn+1) = xn+1

which are both supermodular aggregation functions. Then, because of Theorem 3.1, C[n+1] is a supermodular
(n + 1)-ary aggregation function and it satis�es the boundary condition (B1) of an (n + 1)-ary quasi-copula.
Supermodularity and boundary conditions imply that C[n+1] is 1-Lipschitz, i.e., it is a supermodular (n + 1)-
ary quasi-copula. Finally, each section of B1 and B2 is convex, and hence, because of the ultramodularity of
C[2], this fact holds also for each section of C[n+1], showing that C[n+1] is an ultramodular (n + 1)-ary quasi-
copula.

Observe that Proposition 3.2 always leads to an n-ary quasi-copula for n ≥ 2, but in general not to an n-ary
copula (the Fréchet-Hoe�ding lower boundW is a well-known counterexample).

As an immediate consequence of Theorem 3.1 and [35] we get:

Corollary 3.3. Let D1, D2, . . . Dn : [0, 1]2 → [0, 1] be bivariate copulas and assume that D : [0, 1]n → [0, 1]
is an ultramodular n-ary quasi-copula. If f1, . . . , fn , g1, . . . , gn : [0, 1] → [0, 1] are monotone non-decreasing
in each component, then the function C : [0, 1]2 → [0, 1] given by

C(x, y) = D
(
D1
(
f1(x), g1(y)

)
, D2

(
f2(x), g2(y)

)
, . . . , Dn

(
fn(x), gn(y)

))
is supermodular and monotone non-decreasing in each component.

Nowwe are ready to state and prove the following result which will be fundamental for most of the construc-
tions and characterizations in the rest of the paper:

Theorem 3.4. Let D1, D2, . . . , Dn : [0, 1]2 → [0, 1] be bivariate copulas and assume that D : [0, 1]n → [0, 1]
is an ultramodular n-ary quasi-copula. Let f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1] → [0, 1] be monotone non-
decreasing in each component such that for all x ∈ [0, 1]

D
(
f1(x), f2(x), . . . , fn(x)

)
= D
(
g1(x), g2(x), . . . , gn(x)

)
= x. (2)

Then the function C : [0, 1]2 → [0, 1] given by

C(x, y) = D
(
D1
(
f1(x), g1(y)

)
, D2

(
f2(x), g2(y)

)
, . . . , Dn

(
fn(x), gn(y)

))
(3)

is a bivariate copula.

Proof. Since (2) holds in particular for x = 1 and D ≤ M we obtain fi(1) = gi(1) = 1 for each i ∈ {1, 2, . . . , n}.
Then for all x ∈ [0, 1] we get

C(x, 1) = D
(
D1
(
f1(x), g1(1)

)
, D2

(
f2(x), g2(1)

)
, . . . , Dn

(
fn(x), gn(1)

))
= D
(
D1
(
f1(x), 1

)
, D2

(
f2(x), 1

)
, . . . , Dn

(
fn(x), 1

))
= D
(
f1(x), f2(x), . . . , fn(x)

)
= x

and, in complete analogy, C(1, x) = x. This implies 0 ≤ C(0, x) ≤ C(0, 1) = 0 and, similarly, C(x, 0) = 0 for
each x ∈ [0, 1], i.e., C satis�es the boundary conditions (B1) and (B2) of a bivariate copula. As a consequence
of Corollary 3.3, C is a bivariate copula.
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In the constructions and representations to follow we often use weight vectors (α, β) ∈ [0, 1]n × [0, 1]n with
α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) satisfying

n∑
i=1

αi =
n∑
i=1

βi = 1.

In Sections 4–6 we also will require that weight vectors (α, β) ∈ [0, 1]n × [0, 1]n have these two additional
properties:

(α1, β1), (α2, β2), . . . , (αn , βn) are pairwise linear independent vectors; (WV1)
α1
β1

> α2β2
> · · · > αnβn

(where we use the convention αi0 = +∞). (WV2)

Although these technical constraints (WV1) and (WV2) at �rst glance seem to be rather strong, it will turn out
that they have no impact on the generality of our results.

Example 3.5. Let us keep the same notations as in Theorem 3.4, choose D = Π and de�ne the functions
f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1] → [0, 1] by fi(x) = xαi , gi(x) = xβi for some weight vectors (α, β) ∈
[0, 1]n × [0, 1]n. Then we obtain the bivariate copula C : [0, 1]2 → [0, 1] given by

C(x, y) =
n∏
i=1
Di
(
xαi , yβi

)
,

which was �rst shown to be a copula in [32, 33] (in an attempt to construct multivariate asymmetric copulas).
As a special case, with n = 2 and D = D1 = Π, this reduces to the bivariate copula obtained in [27]:

C(x, y) = xα1yβ1D2(xα2 , yβ2 ).

Example 3.6. If D = Π and D1 = D2 = · · · = Dn = W and, for weight vectors (α, β) ∈ [0, 1]n × [0, 1]n, the
functions f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1]→ [0, 1] are de�ned by fi(x) = xαi and gi(x) = xβi , respectively,
then the copula C : [0, 1]2 → [0, 1] according to (3) in Theorem 3.4 is given by

C(x, y) = Π[n]
(
W
(
f1(x), g1(y)

)
,W
(
f2(x), g2(y)

)
, . . . ,W

(
fn(x), gn(y)

))
=

n∏
i=1

max
(
xαi + yβi − 1, 0

)
.

For special choices of the weight vectors (α, β) ∈ [0, 1]n × [0, 1]n this leads to some well-known copulas:
(i) if α = β = ( 1n ,

1
n , . . . ,

1
n ) then we get

C(x, y) =
(
max( n√x + n

√y − 1, 0)
)n ,

i.e., the Clayton copula [8, 17] with parameter − 1n , see (4.2.1) in [40, Table 4.1] (note that the family of
Clayton copulas with parameters λ ∈ [−1, +∞] is a subfamily of the continuous Schweizer-Sklar t-norms
(TSSλ )λ∈]−∞,+∞] given by

TSSλ (x, y) =
(
max

(
(x−λ + y−λ − 1), 0

))− 1
λ

whenever λ ∈ ]−∞, 0[∪ ]0, +∞[, with the limit cases TSS0 = Π, and TSS+∞ = M, whichwas originally studied
in [42, 43], see also [31, 44]);

(ii) if n = 2, α = (α, 1 − α) and β = (1, 0) then C is a DUCS copula [38, 39] given by

C(x, y) = max
(
xα + y − 1, 0

)
· x1−α = x · max

(
1 − 1 − y

xα , 0
)
.

Example 3.7. Put D = W, D1 = D2 = · · · = Dn = Π and let (α, β) ∈ [0, 1]n × [0, 1]n be weight vectors. De�ne
the functions f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1]→ [0, 1] by

fi(x) = 1 − αi + αix and gi(x) = 1 − βi + βix.
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Then the function C : [0, 1]2 → [0, 1] given by

C(x, y) = W [n](f1(x)g1(y), f2(x)g2(y), . . . , fn(x)gn(y)) = max
(( n∑

i=1
αiβi

)
xy +

(
1 −

n∑
i=1

αiβi
)
(x + y − 1), 0

)
is a member (with parameter λ =

∑n
i=1 αiβi) of the one-parameter family of bivariate copulas given in (4.2.7)

in [40, Table 4.1], which is actually a subfamily (with parameters λ ∈ [0, 1]) of the continuous Sugeno-Weber
t-norms (TSWλ )λ∈]−∞,1] [26, 46, 48] given by

TSWλ (x, y) = max(λxy + (1 − λ)(x + y − 1), 0).

Note also that each parameter λ ∈ [0, 1[ of this family can be attained by our construction: put n = 2 and
choose α1 = λ, α2 = 1− λ, β1 = 1, and β2 = 0, in which case we have α1β1 + α2β2 = λ. For the parameter λ = 1
it su�ces to choose n = 1 and α1 = β1 = 1.

In Theorem 3.4 and in Examples 3.5–3.7 we always started with an ultramodular copula D. If we try to do the
same with a copula which is not ultramodular then we sometimes obtain a copula, and sometimes not:

Example 3.8. Consider the family of continuous Hamacher t-norms (THλ )λ∈]−∞,1] [20, 21] (see also [31]) given
by

THλ (x, y) =

0 if λ = 1 and x = y = 0,
xy

1−λ(1−x)(1−y) otherwise.

The subfamily of Hamacher t-norms with parameters λ ∈ [−1, 1] forms the family of Ali-Mikhail-Haq copulas
(see [1] and (4.2.3) in [40, Table 4.1]).

Now put D = TH1 (sometimes referred to as Hamacher product) and notice that this bivariate copula is
obviously not ultramodular.
(i) If D1 = D2 = W and if f1, f2, g1, g2 : [0, 1]→ [0, 1] are chosen as follows

f1(x) = f2(x) = g1(x) = g2(x) =
2x
x + 1 ,

then (3) leads to the copula C : [0, 1]2 → [0, 1] given by

C(x, y) = max
(
3xy + x + y − 1
−xy + x + y + 3 , 0

)
which is the member with parameter 2 of the family of copulas given by (4.2.8) in [40, Table 4.1].

(ii) If D1 = D2 = Π and if f1, f2, g1, g2 : [0, 1] → [0, 1] are chosen as in (i) then (3) leads to the copula
C : [0, 1]2 → [0, 1] given by C(x, y) = 2xy

1+x+y−xy which is the Ali-Mikhail-Haq copula with parameter 0.5.
(iii) If we put again D1 = D2 = Π and if f1, f2, g1, g2 : [0, 1] → [0, 1] are given by f1(x) = g1(x) = max(12 , x)

and f2(x) = g2(x) = min( x
1−x , 1), then the function C : [0, 1]2 → [0, 1] obtained via (3) is given by

C(x, y) =



xy
1−x−y+4xy if (x, y) ∈ [0, 0.5]2 ,

xy
2x+y−2xy if (x, y) ∈ [0, 0.5] × ]0.5, 1] ,

xy
x+2y−2xy if (x, y) ∈ ]0.5, 1] × [0, 0.5] ,
xy otherwise.

This function is not a copula (e.g., the C-volume of the square [0.4, 0.5]2 ⊆ [0, 1]2 equals − 1
252 ), but only

a proper quasi-copula.

4 How to obtain conic copulas
In [24] (see also [15, 25]) a bivariate copula C : [0, 1]2 → [0, 1]was called a conic copula if it is linear on any line
segment in [0, 1]2 connecting the point (1, 1) with an undominated element (u, v) of the zero-set C←({0})
of C, i.e., a point (u, v) with C(u, v) = 0 and C(x, y) > 0 whenever x > u and y > v.
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A conic copula is characterized by a continuous convex function kC : [0, 1] → [0, 1] whose graph is
contained in the set of all undominated elements of the zero-set C←({0}) of C (and which forms a subset of
the boundary of C←({0}), see [24]).

Keep the notations of Theorem 3.4 and choose the bivariate copulas D = W and D1 = D2 = · · · =
Dn = M. Consider weight vectors (α, β) ∈ [0, 1]n × [0, 1]n satisfying (WV1) and (WV2), and the functions
f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1]→ [0, 1] given by

fi(x) = 1 − αi + αix and gi(x) = 1 − βi + βix.

Then the copula C : [0, 1]2 → [0, 1] de�ned in (3) turns out to be

C(x, y) = max
( n∑
i=1

min(fi(x), gi(y)) − (n − 1), 0
)
.

Now we can prove the following result:

Proposition 4.1. Let (α, β) ∈ [0, 1]n × [0, 1]n be weight vectors satisfying (WV1) and (WV2). Then the function
C : [0, 1]2 → [0, 1] given by

C(x, y) = max
( n∑
i=1

min(1 − αi + αix, 1 − βi + βiy) − (n − 1), 0
)

(4)

is a bivariate conic copula.

Proof. Writing ψi = αi
βi , property (WV2) implies 1 − ψi+1 + ψi+1x ≥ 1 − ψi + ψix for all x ∈ [0, 1]. Moreover, if

βi > 0 then the equation 1 − αi + αix = 1 − βi + βiy can be rewritten as y = 1 − ψi + ψix, implying that

min
(
1 − αi + αix, 1 − βi + βiy

)
=
{
1 − αi + αix if y ≥ 1 − ψi + ψix,
1 − βi + βiy otherwise.

If we write ξi =
∑i

j=1 αj, ϑi =
∑i

j=1 βj then the copula C in (4) can be expressed as:

C(x, y) =


y if y ∈ [0, 1 − ψ1 + ψ1x] ,
max

(
ϑi − ξi + ξix + (1 − ϑi)y, 0

)
if y ∈ ]1 − ψi + ψix, 1 − ψi+1 + ψi+1x] ,

x if y ∈ ]1 − ψn + ψnx, 1] .

It is evident that the copula C is linear on any line segment in [0, 1]2 connecting the points (1, 1) and (u, v),
where (u, v) is an undominated element of the zero-set C←({0}) of C, i.e., C is a conic copula.

It should be mentioned that the properties (WV1) and (WV2) of the weight factors (α, β) ∈ [0, 1]n × [0, 1]n

are no real restrictions. The copula C in (4) does not change if we delete all the coordinates i ∈ {1, 2, . . . , n}
with αi = βi = 0 of both α and β. Further, the commutativity of the addition implies that C in (4) remains
unchanged if the coordinates of both α and β undergo the same permutation. And �nally, if ψi = ψi+1 for
some index i ∈ {1, 2, . . . , n − 1}, we may replace the two components αi and αi+1 of α by αi + αi+1 and,
simultaneously, the two components βi and βi+1 of β by βi + βi+1.

Evidently, for the conic copulas C constructed in Proposition 4.1 the corresponding continuous convex
function kC : [0, 1]→ [0, 1] is piecewise linear, and it is determined by the points

(1, 0),
(
1 − 1

ξ1 + ψ1(1 − ϑ1)
, 1 − ψ1

ξ1 + ψ1(1 − ϑ1)

)
, . . . ,

(
1 − 1

ξn + ψn(1 − ϑn)
, 1 − ψn

ξn + ψn(1 − ϑn)

)
.

Example 4.2. Here are two examples of conic copulas obtained by means of Proposition 4.1.
(i) For n = 3choose α = (0.3, 0.5, 0.2) and β = (0.1, 0.4, 0.5). Thenweobtain (ψ1, ψ2, ψ3) = (3, 1.25, 0.4),

(ξ1, ξ2, ξ3) = (0.3, 0.8, 1), and (ϑ1, ϑ2, ϑ3) = (0.1, 0.5, 1). The conic copula C given by (4) is related to the
piecewise linear function (for a visualization see Figure 1) connecting the points (0, 35 ),(

17
57 ,

7
57 ), (

2
3 , 0),

and (1, 0).
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(ii) Example 9 in [24] introduces a family of conic copulas (discussed also in [11]) which is related to piecewise
linear functions connecting the points (0, c), (c, 0), and (1, 0) with c ∈ ]0, 1[. In our notation this means
n = 2 and

(c, 0) =
(
1 − 1

α1 + ψ1
(
1 − β1

) , 1 − ψ1
α1 + ψ1

(
1 − β1

)),
(0, c) =

(
1 − 1

1 + ψ2 · 0
, 1 − ψ2

1 + ψ2 · 0

)
,

i.e., we obtain (ψ1, ψ2) =
( 1
1−c , 1 − c

)
, α =

( 1
2−c ,

1−c
2−c
)
, and β =

(1−c
2−c ,

1
2−c
)
.

Following the construction given in [24] we get

C(x, y) = 1
2 − c min

(
2x − cx, 2y − cy, max(x + y − c, 0)

)
, (5)

while our approach leads to the equivalent formula

C(x, y) = 1
2 − c max

(
c + min(x − c, y − cy) + min(x − cx, y − c), 0

)
. (6)

The equivalence of the two formulas (5) and (6) canbe checked case by case. If, for example, y ≥ c+(1−c)x,
then y ≥ x and also x + y − c ≥ x + c + (1 − c)x − c = 2x − cx, and thus (5) yields C(x, y) = x. On the other
hand, we have y − cy ≥ c + (1 − c)x − cy = x − c(x + y − 1) ≥ x − c and y − c ≥ x − cx, i.e., also in (6) we
obtain C(x, y) = x. The other cases are checked in a similar way.

Note that, by using similar arguments as in the proof of Proposition 8 in [24], it can be shown that also the
opposite claim is valid, i.e, we can formulate the following remarkable result:

Proposition 4.3. A bivariate conic copula C : [0, 1]2 → [0, 1] is singular with a support consisting of �nitely
many line segments if and only if there are an n ∈ N and weight vectors (α, β) ∈ [0, 1]n × [0, 1]n satisfying
(WV1) and (WV2) such that for all (x, y) ∈ [0, 1]2

C(x, y) = max
( n∑
i=1

min(1 − αi + αix, 1 − βi + βiy) − (n − 1), 0
)
.

Note that the set of bivariate conic copulas which can be constructed by means of Proposition 4.3 is a dense
subset of the set of all bivariate conic copulas.

Proposition 4.4. For each bivariate conic copula C : [0, 1]2 → [0, 1] and for each n ∈ N there are weight
vectors (α, β) ∈ [0, 1]4n × [0, 1]4n satisfying (WV1) and (WV2) such that for all (x, y) ∈ [0, 1]2∣∣∣∣C(x, y) − max

( 4n∑
i=1

min(1 − αi + αix, 1 − βi + βiy) − (4n − 1), 0
)∣∣∣∣ < 1

n .

Proof. Let C : [0, 1]2 → [0, 1] be a conic copula and kC : [0, 1]→ [0, 1] a continuous convex function whose
graph is contained in the set of all undominated elements of the zero-set C←({0}) of C.

Fix n ∈ N and choose weight vectors (α, β) ∈ [0, 1]4n × [0, 1]4n satisfying (WV1) and (WV2) such that the
conic copula C(4n) : [0, 1]2 → [0, 1] given by

C(4n)(x, y) = max
( 4n∑
i=1

min(1 − αi + αix, 1 − βi + βiy) − (4n − 1), 0
)

is related to the piecewise linear function connecting the points contained in the intersections of the graph
of kC with the 4n lines, each of which passes through (1, 1) and one of the following points:(

0, kC(0)
)
,
(
0, 2n−12n kC(0)

)
, . . . ,

(
0, 1

2n kC(0)
)
,
( 1
2n , 0

)
,
( 2
2n , 0

)
, . . . ,

(2n−1
2n , 0

)
,
(
1, 0

)
.
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Sinceon theboundaryof [0, 1]2 all copulas (and, inparticular, C and C(4n)) coincide, it su�ces to consider
the following two cases.

Case 1: (x̂, ŷ) ∈ ]0, 1[2 and x̂ ≥ ŷ:
then the line connecting the points (1, 1) and (x̂, ŷ) also contains the point ( x̂−ŷ1−ŷ , 0) on the x-axis. Now put

i* = inf
{
i ∈ N

∣∣∣ i
2n ≥

x̂ − ŷ
1 − ŷ

}
and x̃ = 2n − i*

2n ŷ + i*
2n .

Observe that |x̂ − x̃| ≤ 1
2n and that the point (x̃, ŷ) is an element of the line segment connecting the two points( i*

2n , 0
)
and (1, 1) on which the conic copulas C and C(4n) coincide by construction.

Therefore C(x̃, ŷ) = C(4n)(x̃, ŷ) which, together with the 1-Lipschitz property of C and C(4n), implies∣∣C(x̂, ŷ) − C(4n)(x̂, ŷ)∣∣ ≤ ∣∣C(x̂, ŷ) − C(x̃, ŷ)∣∣ + ∣∣C(4n)(x̃, ŷ) − C(4n)(x̂, ŷ)∣∣ ≤ 1n .
Case 2: If (x̂, ŷ) ∈ ]0, 1[2 with x̂ < ŷ:

if ŷ ≥ kC(0) + (1 − kC(0))x̂ then we have C(x̂, ŷ) = C(4n)(x̂, ŷ) = x̂, otherwise this case can be handled in a
similar way as Case 1.

5 Extreme value copulas
Recall that a bivariate copula C : [0, 1]2 → [0, 1] is called an extreme value copula (see [5, 19, 40]) if for all
(x, y) ∈ [0, 1]2 and for all constants λ ∈ ]0, +∞[ we have

C
(
xλ , yλ

)
=
(
C(x, y)

)λ . (7)

According to [22], a bivariate copula C is an extreme value copula if and only if there exists a Pickands
dependence function [41, 47], i.e., a convex function A : [0, 1] → [0.5, 1] satisfying max(1 − u, u) ≤ A(u) ≤ 1
for each u ∈ [0, 1], such that for all (x, y) ∈ [0, 1]2

C(x, y) = exp
(
log(xy) · A

( log x
log(xy)

))
,

where the convention 0
0 = −∞

−∞ = 1 will be used.

Proposition 5.1. Let (α, β) ∈ [0, 1]n × [0, 1]n be weight vectors satisfying (WV1) and (WV2). Then the function
C : [0, 1]2 → [0, 1] given by

C(x, y) =
n∏
i=1
M
(
xαi , yβi

)
(8)

is an extreme value copula, and the Pickands dependence function Aα,β : [0, 1] → [0.5, 1] corresponding to it
is given by

Aα,β(x) =


1 − x if x ∈

[
0, β1

α1+β1

]
,( i∑

j=1
αj
)
x +
( n∑
j=i+1

βj
)
(1 − x) if x ∈

]
βi

αi+βi ,
βi+1

αi+1+βi+1

]
,

x if x ∈
]

βn
αn+βn , 1

]
.

(9)

Proof. IfD = Π,D1, D2, . . . , Dn = M, if (α, β) ∈ [0, 1]n×[0, 1]n areweight vectors satisfying (WV1) and (WV2),
and if we de�ne the functions f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1] → [0, 1] by fi(x) = xαi and gi(x) = xβi ,
respectively, then the function C : [0, 1]→ [0, 1] de�ned by (8) is a bivariate copula because of Theorem 3.4.
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Figure 1: The conic copula in Example 4.2(i) (left), and the extreme value copula in Example 5.3(i).

Obviously, C satis�es (7) and, therefore, is an extreme value copula. Because of property (WV2) we obtain

C(x, y) =



y if y ∈
[
0, x

α1
β1

]
x

i∑
j=1
αj
y

n∑
j=i+1

βj
if y ∈

]
x
αi
βi , x

αi+1
βi+1

]
,

x if y ∈
]
x
αn
βn , 1

]
.

(10)

Clearly, for all (x, y) ∈ [0, 1]2 and all µ, ν ∈ [0, 1] we have

xµyν = exp
(
log(xy)µ log x + ν log ylog(xy)

)
and, putting log x

log(xy) = u, we obtain µ log x+ν log y
log(xy) = µu + ν(1 − u).

Now consider the function Aα,β given in (9) which is convex since its left derivatives in the intervals] βi
αi+βi ,

βi+1
αi+1+βi+1

]
(here we put β0

α0+β0 = +∞ and βn+1
αn+1+βn+1 = 0) are monotone non-decreasing with respect to the

index i.
From (WV2) we see that for each x ∈

] βi
αi+βi ,

βi+1
αi+1+βi+1

]
we have αi+1

βi+1 ≤
1−x
x < αi

βi . Therefore

i∑
j=1

αj =
i∑
j=1

αj
βj
βj ≥

αi
βi

i∑
j=1

βj ≥
i∑
j=1

βj
1 − x
x

which implies

Aα,β(x) =
( i∑
j=1

αj
)
x +
( n∑
j=i+1

βj
)
(1 − x) =

( i∑
j=1

αj
)
x +
(
1 −

i∑
j=1

βj
)
(1 − x) ≥ 1 − x.

Similarly,

1 −
i∑
j=1

αj =
n∑

j=1+1
αj =

n∑
j=1+1

ψjβj ≤ ψi+1.
n∑

j=1+1
βj ≤

n∑
j=1+1

βj
1 − x
x ,

which yields

Aα,β(x) =
( i∑
j=1

αj
)
x +
( n∑
j=i+1

βj
)
(1 − x) ≥ x.

The two remaining cases are trivial: if x ≤ β1
α1+β1 then we have Aα,β(x) = 1 − x = max(1 − x, x) because of

β1
α1+β1 ≤ 0.5. Similarly, if x > βn

αn+βn then x ≥ 0.5, i.e., Aα,β(x) = x = max(1 − x, x).
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This shows that the function Aα,β de�nes a Pickands dependence function, and it is only a matter of
computation to show that it is the Pickands dependence function associated to the copula in (10).

Again the properties (WV1) and (WV2) of the weight factors (α, β) ∈ [0, 1]n × [0, 1]n do not reduce the gener-
ality of the result. If αi = βi = 0 for some i ∈ {1, 2, . . . , n} then the pair (αi , βi) has no in�uence on C and we
can delete it. If αiβi =

αj
βj for some i ≠ j then

M
(
xαi , yβi

)
·M
(
xαj , yβj

)
= M

(
xαi+αj , yβi+βj

)
,

and the symmetry of Π allows us to rearrange the indices such that (WV2) holds.
Observe that each extreme value copula related to a piecewise linear Pickands dependence function (de-

termined by �nitely many points) can be obtained by the construction given in the proof of Proposition 5.1
using formula (10).

Moreover, the set of piecewise linear Pickands dependence functions is a dense subset of the set of all
Pickands dependence functions, i.e., the construction (10) allows us to approximate each extreme value cop-
ula.

Corollary 5.2. If A : [0, 1] → [0.5, 1] is a Pickands dependence function then, for each n ∈ N, also the
piecewise linear function A(n) : [0, 1] → [0.5, 1] whose graph connects the n + 1 points (0, 1), ( 1n , A(

1
n )), . . . ,

( n−1n , A( n−1n )), and (1, 1) is a Pickands dependence function, and we have limn→∞ A(n)(x) = A(x) for each x ∈
[0, 1]. Also for the corresponding extreme value copulas CA , CA(n) : [0, 1]2 → [0, 1]wehave limn→∞ CA(n) (x, y) =
CA(x, y) for all (x, y) ∈ [0, 1]2.

Example 5.3. Here are two concrete examples of extreme value copulas.
(i) Take the same parameters as in Example 4.2(i), i.e., n = 3, α = (0.3, 0.5, 0.2) and β = (0.1, 0.4, 0.5).

The corresponding extreme value copula C given by (10) is visualized in Figure 1(right).
(ii) For n = 3 and λ ∈ ]0, 1[ choose α = (1 − λ, λ, 0) and β = (0, λ, 1 − λ). The corresponding extreme value

copula C given by (10) is themember with parameter λ of the family of Cuadras-Augé copulas [9] (see [40,
Exercise 2.5]), i.e.,

C(x, y) =
{
xy1−λ if x ≤ y,
x1−λy otherwise.

6 Archimax copulas
Archimax copulas were introduced as a joint generalization of Archimedean copulas (generated by some
additive generator φ : [0, 1] → [0,∞]) and extreme value copulas (related to some Pickands dependence
function A : [0, 1]→ [0.5, 1]).

More precisely, it was shown in [6, Appendix A] that for each additive generator φ : [0, 1] → [0,∞]
of an Archimedean copula C and each Pickands dependence function A : [0, 1] → [0.5, 1] the function
Cφ,A : [0, 1]2 → [0, 1] de�ned by

Cφ,A(x, y) = φ−1
(
min

((
φ(x) + φ(y)

)
· A
( φ(x)
φ(x) + φ(y)

)
, φ(0)

))
(11)

is a bivariate copula, and it is called the Archimax copula related to φ and A.

Proposition 6.1. Let (α, β) ∈ [0, 1]n ×[0, 1]n beweight vectors satisfying (WV1) and (WV2). Then there exists a
Pickands dependence function A : [0, 1]→ [0.5, 1] such that, for each Archimedean copula C : [0, 1]2 → [0, 1]
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with additive generator φ : [0, 1]→ [0,∞] the function D : [0, 1]2 → [0, 1] given by

D(x, y) =


y if φ(y)φ(x) ∈

[ α1
β1 , +∞

]
,

φ−1
(
min

(( i∑
j=1
αj
)
φ(x) +

( n∑
j=i+1

βj
)
φ(y), φ(0)

))
if φ(y)φ(x) ∈

[ αi+1
βi+1 ,

αi
βi

[
,

x if φ(y)φ(x) ∈
[
0, αnβn

[
,

(12)

is an Archimax copula with respect to φ and A.

Proof. Let C : [0, 1]2 → [0, 1] be an Archimedean copula and φ : [0, 1]→ [0, +∞] an additive generator of C,
i.e., (1) holds for all (x, y) ∈ [0, 1]2.

Consider weight vectors (α, β) ∈ [0, 1]n × [0, 1]n satisfying (WV1) and (WV2) and observe that the func-
tions f1, f2, . . . , fn , g1, g2, . . . , gn : [0, 1]→ [0, 1] de�ned by

fi(x) = φ−1
(
αiφ(x)

)
and gi(x) = φ−1

(
βiφ(x)

)
are monotone non-decreasing in each component and continuous.

Because of the associativity of C its n-ary extension C[n] is unique, so we may use the same notation for
it, i.e., C : [0, 1]n → [0, 1] de�ned by (1). Note that C

(
f1(x), f2(x), . . . , fn(x)

)
= C
(
g1(x), g2(x), . . . , gn(x)

)
= x

for all x ∈ [0, 1] and consider the function D : [0, 1]2 → [0, 1] given by

D(x, y) = C
(
M
(
f1(x), g1(y)

)
,M
(
f2(x), g2(y)

)
, . . . ,M

(
fn(x), gn(y)

))
. (13)

Since fi(x) ≥ gi(y) is equivalent to φ(y)
φ(x) ≥

αi
βi , we can conclude that the functions given by (12) and (13) coincide.

Putting φ(x)
φ(x)+φ(y) = u, it is not di�cult to see that, for an arbitrary function f : R→ R, the equality

( i∑
j=1

αj
)
φ(x) +

( n∑
j=i+1

βj
)
φ(y) = (φ(x) + φ(y)) · f

(
φ(x)

φ(x) + φ(y)

)

is equivalent to
( i∑
j=1
αj
)
u +
( n∑
j=i+1

βj
)
(1 − u) = f (u).

Using similar arguments as in the proof of Proposition 5.1, we can show that the function Aα,β : [0, 1]→
[0.5, 1] given by (9) is a Pickands dependence function. Finally, the proof in [6, Appendix A] tells us that the
function D given by (13) is an Archimax copula with respect to φ and Aα,β.

Also in this case there is no loss of generality when assuming the validity of the properties (WV1) and (WV2)
for the weight vectors (α, β) ∈ [0, 1]n × [0, 1]n.

Observe that Proposition 6.1 allows us to approximate any Archimax copula with arbitrary precision:
given a Pickands dependence function A : [0, 1] → [0.5, 1] then, using the sequence (A(n))n∈N of Pickands
dependence functions converging pointwise to A in Corollary 5.2, for each additive generator φ : [0, 1] →
[0, +∞] of an Archimedean copula C : [0, 1]2 → [0, 1], the sequence (Cφ,A(n) )n∈N converges pointwise to the
Archimax copula Cφ,A.

7 Concluding remarks
Based on Theorem 3.4, we have presented constructions and representations of certain bivariate conic, ex-
treme value, and Archimax copulas.

In Proposition 6.1 we have used the result in [6, Appendix A] to show that the function D constructed
there is a copula for each Archimedean copula C. If the Archimedean copula C is also ultramodular then
Theorem 3.4 tells us that D is a copula also without using [6]. This means that we have given an alternative
proof for the functions represented by (11) to be copulas, provided the Archimedean copula C we start with
is ultramodular.
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Observe also that from [12] it follows that the set of conic copulas coincides with the set of Archimax
copulas based on the additive generator of the Fréchet-Hoe�ding lower boundW, and our results in Section 4
can be seen as an alternative proof of this fact.

As an interesting topic for further research in the directions of the construction and characterization of
bivariate copulas as realized in this paper, one can consider the approach to construct n-ary copulas (with n >
2) proposed and studied in [36] based on the product copulaΠ and binary copulasD1, D2, . . . , Dm : [0, 1]2 →
[0, 1] distorted by functions f1, f2, . . . , fm , g1, g2, . . . , gm : [0, 1] → [0, 1], and applied to pairs (xi , xj) ∈
[0, 1]2 such that {i, j} ⊆ {1, 2, . . . , n} and i < j.
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