
Model-driven Deployment and Management of Workflows on Analytics Frameworks

Merlijn Sebrechts, Sander Borny, Thomas Vanhove
Gregory Van Seghbroeck, Tim Wauters, Bruno Volckaert and Filip De Turck

Ghent University - imec, IDLab, Department of Information Technology
Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium

Email: merlijn.sebrechts@ugent.be

Abstract—The data science skills shortage means that those
who have the knowledge are under constant pressure to do
more with less. While the data science tools are improving
at a staggering pace, the operational tools around them can
not keep up. Even researchers at Google state that the issue
of automatic configuration and dependency management of
services is still an ”open, hard problem”. This manifests itself
in data scientists either constantly having to solve operational
challenges or having to be in constant close collaboration with
a skilled operations team. This paper addresses the operational
challenges behind deploying and managing workflows on top of
analytics platforms by starting from three key requirements:
data scientists want to model their workflows in a reusable
way, this model should be automatically deployed, managed
and connected to other services, and this solution should be
compatible with existing cloud modeling languages, infrastruc-
ture, analytics platforms and tools. The paper explores where
the state-of-the-art falls short in meeting these requirements,
proposes an architecture to solve the open challenges, and
implements and evaluates this architecture.

I. INTRODUCTION

The amount of digital data is growing at an enormous
pace. Inside this ever-growing jungle of digital data lies the
key to valuable insight that can help both industry players
and society as a whole. Albeit turning the raw data into
useful insight is still a big challenge, and the acute data skills
shortage[1][2] is not helping. 40 percent of companies are
struggling to find and retain data analytics talent according
to the 2015 MIT Sloan Management Review. Due to this,
companies are constantly on the lookout for innovations
that empower their data scientists to do more with less
manpower.

There is an ever-growing set of tools and techniques that
support data scientists, from massively scalable datastores
to new programming concepts and analytics frameworks.
While the software frameworks are evolving rapidly, the
operational tools around them cannot keep up. As a result of
this, data science is not only about analytics, there are also
big challenges related to the deployment and management
of analytics frameworks. These challenges creep up into the
daily life of data scientists when they want to test and run
their algorithms. Data scientists that have the operational
skills necessary to solve these issues lose a lot of time and
data scientists without these skills either cannot use some
of the cutting-edge analytics frameworks or need constant

support of a strong operations team. Even though this chal-
lenge is so pressing, the issue of automatic configuration and
dependency management of services is still an ”open, hard
problem” according to researchers at Google[3]. Solving
these operational challenges allows the data scientists to
achieve more with less time, and helps combat the skills
shortage by empowering people with an analytic skill-set
that do not have operational knowledge.

Further in this Section, the City of Things project is used
to identify three challenges present in current data analytics
solutions. Section II takes a deep-dive into where the state-
of-the-art falls short. A novel architecture that addresses
these shortcomings is proposed in Section III. The concepts
of this architecture are mapped to state-of-the-art cloud
modeling languages in SectionIV. Section V explains some
fundamentals about the preexisting City of Things setup and
its challenges. The proposed architecture is implemented
to solve those challenges in Section VI, and thoroughly
evaluated in Section VII. Finally, Section VIII concludes
this paper.

The City of Things project at IMEC1 aims to transform the
city of Antwerp, Belgium into a smart city. Sensors all over
the city collect data and send it to an analytics platform.
This platform exposes the data in a standardized format
over a REST API. The sensor data entering the platform
is encoded in a number of different ways, depending on
the sensor and the transfer technology. This data needs to
be decoded and standardized before it is stored. The setup
shown in Figure 1 solves this need by using the Apache
Storm2 streaming framework as an ETL tool. WSO2 ESB3

provides an endpoint API for sensors to send data to and puts
that data on the Apache Kafka[4] message broker. Apache
Storm then extracts the data from Kafka, decodes it and
loads it into MongoDB.

The challenges addressed in this paper manifest them-
selves around the ETL workflow running on top of Storm.
This workflow has to be updated each time the decoding
format of a sensor changes, or a new sensor is added,
which happens frequently in a project that is constantly

1https://www.iminds.be/en/succeed-with-digital-research/
go-to-market-testing/city-of-things

2https://storm.apache.org/
3http://wso2.com/products/enterprise-service-bus/

ESB

Figure 1. The sensors send data to a WSO2 ESB endpoint that puts the
data on Kafka. Storm extracts the data from Kafka, decodes it and loads it
into MongoDB.

testing cutting edge sensor devices, network technologies
and protocols. Updating a workflow running on top of
Storm is no easy task, and connecting that workflow to
other services in the setup requires error-prone manual
configuration and a lot of knowledge about the operational
details of the running setup as further explained in Section
V-A. Moreover, the flexibility of the setup is greatly hindered
by the need for manual configuration. The challenges of the
City of Things project are synthesized in the following three
general requirements that data analytics setups have but the
current state-of-the-art tools cannot fulfill.

a) Data scientists want to easily write workflows that
interface with other services. They want to easily reuse
parts of the workflow code in other deployments.

b) Data scientists want to deploy these workflows and con-
nect the workflows to other services without the need
for operational knowledge and skill-sets. Consequently,
when the operational details of the underlying cluster
or connected services change, the setup reconfigures
automatically.

c) Projects using this solution do not want to lose the ex-
isting investment and encapsulated knowledge of their
setup. Therefore, the solution has to be compatible with
existing cloud modeling languages, their orchestrators
and artifacts created with and for these languages.

II. RELATED WORK

A number of solutions have been proposed to model and
manage workflows running in clouds. One approach has
been to create application-specific modeling languages such
as StormGen[5] and modeling tools such as StreamFlow4.
StreamFlow’s drag and drop topology builder enables non-
developers such as data scientists and analysts to create
processing workflows. There are two drawbacks to the
application-specific approaches. It is not possible to model
a workflow that spans over multiple applications and the
integration between the workflow and other services requires
manual configuration. StreamFlow for example has the abil-
ity to create workflows that interact with a number of dif-
ferent data sources and storage services, but the connection
parameters of that storage provider have to be manually
configured. This means that StreamFlow users need the help
of a system administrator each time they want to use a
new data source or a storage system. System administrators

4https://github.com/lmco/streamflow/wiki

also need to update the StreamFlow configuration when
the infrastructure changes. The drawback of these tools is
addressed in a new generation of high-level dataflow mod-
eling tools such as Apache NiFi5 and StreamSets6. These
languages can be used to model workflows that span over
a number of different data services such as Apache Hadoop
HDFS7 and MongoDB8. However, these tools also have the
issue that they require extensive manual configuration for
each external data service. Having to contact the operations
team for each new datasource and datastore limits the power
of the users of these tools.

A second approach builds on existing cloud modeling
languages to model and manage both the underlying ap-
plications and the workflows on top of them. Qasha et al.
[6] propose the cloud modeling language OASIS Topol-
ogy and Orchestration Specification for Cloud Applications
(TOSCA)[7] as a way to describe both the internal topol-
ogy and deployment process of a scientific workflow. This
approach shows much potential to improve the portability,
automatic deployment and scalability of these workflows.
The proposed solution, however, does not address the issue
of modeling workflows that run on top of existing ana-
lytics frameworks and is highly specific for the TOSCA
cloud modeling language. Juju9 and CloudML[8] are two
cloud modeling languages with runtime model orchestrators
that tackle the challenge of creating vendor- and cloud-
independent models of cloud applications. These languages,
however, do not address the challenge of deploying work-
flows on analytics platforms.

Guerriero et al. [9] propose an architecture supporting
model-driven Big Data design that uses the DICE models
as an abstraction layer on top of existing modeling lan-
guages. That approach allows for deploying and managing
both the workflows and the frameworks by translating the
DICE models into more technology-specific models such
as TOSCA. The extra abstraction layer introduced in their
approach, however, requires complex transformations from
DICE models to technology-specific models and requires a
new metamodel for each data analytics framework. Rather
than creating new abstractions and meta-models we propose
a solution for the challenges described in the introduction
that builds on top of the existing cloud modeling languages.

Going back to the requirements discussed in the intro-
duction, the state of the art has three deficiencies that are
addressed in this paper.

a) Existing solutions do not solve the challenge of model-
ing and deploying workflows that run on top of existing
analytics frameworks.

5https://nifi.apache.org/
6https://streamsets.com/
7https://hadoop.apache.org/
8https://www.mongodb.com/
9https://jujucharms.com/

b) Application-specific modeling languages and tools re-
quire manual configuration of operational parameters.
When the operational details of the running setup
change, these values have to be updated manually.

c) Current solutions are either language specific, or require
development of a whole new set of models and tools.
There is a lot of investment in existing cloud modeling
languages. A solution that starts from scratch loses the
knowledge encapsulated in existing languages, tools,
models and artifacts.

III. ARCHITECTURE

This section proposes an architecture to deploy workflows
on analytics frameworks using a cloud modeling language.
This architecture bases itself on the concepts introduced in
the authors’ previous work[10] namely the service agent and
the concept of peer relationships. These two concepts are
defined as follows.

Definition 1 A service agent represents and manages a
single service.

Definition 2 A peer relationship connects two service
agents and allows them to exchange information.

A service agent manages a service such as a MySQL
database. It reasons about the current state and executes
actions to setup, configure and manage that service. Ser-
vice agents collaborate using peer relationships such as the
relationship between a service agent managing a MySQL
database and one managing a webserver that uses the
MySQL database as backend. The peer relationship is used:
to solve service dependencies, such as the dependency that
the webserver can only start after the MySQL database is
online; to exchange operational details, such as IP addresses
and port numbers; and to exchange requests, such as the
webserver requesting the creation of a user account. The
service agent can use configuration management tools such
as Chef10 and Puppet11 for the actual fulfillment of these
requests and configuration of the service.

This paper introduces two new architectural concepts
shown in Figure 2 and defined as follows.

Definition 3 A workflow component represents and man-
ages one step in the workflow.

Definition 4 A deployer assembles the workflow and de-
ploys it onto the data analytics framework.

The workflow component contains the actual workflow
step and reasons about that workflow step and its relations
to other steps and services. Peer relationships between
workflow components represent how the data flows from
one step to the next. A peer relationship between a work-
flow component and another service is used to exchange

10https://www.chef.io/
11https://puppet.com/

Peer
Relation

Data
Destination

Extract Transform Load

Data
Source

Deployer

Framework

1. gather information

Service
Agent

Workflow
Component

2. send state

4. deploy

3. Reconstruct
 topology

Figure 2. The deployer component contains the logic to assemble
the workflow components and deploy the resulting workflow onto the
analytics framework. Workflow components connect to other services to
get configuration values such as port numbers and IP addresses.

configuration information such as the IP address and the
port number of the service.

In cloud modeling languages such as TOSCA and Juju,
a service agent does not have access to the full model.
Instead, it only has access to the information about itself
and its relations. This isolation of scope makes sure that all
dependencies between service agents are explicitly defined
as a relationship. A service agent cannot have an implicit
dependency on the state of another service agent since it
has no way to know what that state is. Just as in program-
ming languages, isolation of scope reduces complexity and
creates reusable components. In this architecture, however,
the deployer has to know about the state of the workflow
components in order to deploy them properly. Giving the
deployer full access to the model means losing the benefits
of scope isolation. To have the best of both worlds, the
deployer is connected to each workflow component using
a peer relationship. The workflow components send their
state, including their relations to each other, to the deployer.
This approach has two advantages: the deployer only has
knowledge about the scope of the connected workflow
components, and the model clearly reflects what components
the deployer knows about.

After receiving the state of each individual workflow
component, the deployer reconstructs the entire workflow
topology by combining the state of each component. At
this stage, the deployer can decide whether or not to de-
ploy the workflow by checking if it is valid. The method
of deployment is also entirely up to the deployer itself.
The deployer can reason about the most optimal way to
deploy the workflow, and use that method. Every time the
cloud model changes, the changes get propagated from the
workflow components to the deployer. The deployer then
decides how this change should be propagated to the running
topology. Simple deployers might stop and redeploy the
workflow each time it changes. More complex deployers
might be able to change a running topology on the fly.

Figure 2 shows an example of how this architecture can be
used to model an ETL pipeline. The workflow components
connect to a datasource and a data destination using a

peer relationship. This relationship is used to exchange
configuration information between the service and the work-
flow components. All workflow components connect to a
deployer that receives the information about each workflow
step, assembles the complete workflow, and deploys it onto
the framework.

The workflow components and the deployer created for
this architecture successfully address the shortcomings of
the state of the art discussed in Section II.

a) The usage of workflow components makes it possible
to model the workflow as a set of interconnected steps.
Each step is an isolated entity, making it possible to re-
combine the steps into a new workflow, and interchange
one step for another one.

b) Workflow components can have peer relationships to
other services, and reason about those relationships.
This gives them the ability to gather operational infor-
mation about the service, and configure the workflow
step using that information. The deployer uses its peer
relationship to the framework to gather operational
information about the framework, and uses that infor-
mation to change the deployment process accordingly.
The deployer also reasons about whether and how to
update the running topology when either the workflow
or operational details change.

c) All the knowledge about how to deploy and man-
age a workflow is contained in the deployer. As a
consequence, this architecture does not require any
changes either in cloud modeling or their orchestra-
tors. Moreover, because the deployer poses as a proxy
between the workflow and the framework, the artifact
managing the framework also does not require any
changes, making the adoption of this architecture easier
and limiting the complexity of the artifact managing the
framework. The deployer also has the advantage that it
hides the operational complexity of the framework from
the workflow: the workflow components connect to a
single deployer regardless of whether the underlying
framework is a single service or a cluster of services
working together.

IV. MAPPING

This section elaborates on how the concepts of this
architecture can be mapped to concepts in popular cloud
modeling languages. OASIS TOSCA and Ubuntu Juju are
studied more in-depth because they are the state of the art
in cloud modeling languages and gather interest both in
academia and in the industry.

The two new concepts created for this architecture can be
seen as specialized versions of the concepts explained in the
authors’ past work[10].

• The workflow component is a service agent that
represents a step in a workflow and manages the
configuration of that step. The workflow component

Table I
MAPPING OF ARCHITECTURE CONCEPTS TO CONCEPTS IN POPULAR

CLOUD MODELING LANGUAGES

Term TOSCA Juju
Service agent Node template Charm
Peer relation Dependency Relation
Workflow component Node template Charm
Deployer Node template Charm

reconfigures the workflow step in the same way as a
service agent reconfigures a service.

• The deployer is a service agent that gathers information
from all workflow components, assembles the entire
workflow and deploys it onto the framework.

This leads to the conclusion that this architecture can
be implemented in any cloud modeling language that has
concepts that map to a service agent and a peer relationship.
Table I shows the mapping of these concepts to concepts in
two popular cloud modeling languages, TOSCA and Juju.
The following two sections will elaborate on this mapping.

A. OASIS TOSCA

The OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) is a cloud modeling language
and orchestrator specification. The service agent concept
maps well to TOSCA’s node templates since a node template
represents a single service and contains the logic to deploy
and configure that service. The TOSCA specification is
highly focused around managing services using lifecycles.
Each node template has a lifecycle with operations such as
start, stop and configure. Each operation brings the service
into a new state. Previous work[10] discussed the pain points
of lifecycle-based management of services and proposed
that service agents include an event-based service engine
to reduce complexity and increase flexibility. It is possible
to use TOSCA’s lifecycle to drive a service engine by
interpreting each lifecycle operation as an event instead of
a transition from one state to another.

Node templates can specify which other node templates
they need using a requirement. A node template specifies
what requirements it can fulfill using a capability. Require-
ments and capabilities of the same type can be connected by
a dependency. This concept maps to the first part of the peer
relationship definition (1): ”A peer relationship connects two
service agents”.

Node templates are able to query information from an-
other node that is connected using a dependency. For exam-
ple a web server node template can query the IP address of
the connected database node template. This information can
be properties such as IP addresses or attributes. Attributes
are special in that they can be changed at run-time from an
operation. An example of this is a database password that is
automatically generated during configuration of the database
node template. It is possible to run an operation when an

attribute changes by using the dependency lifecycle or more
specifically, the target changed operation. This means that
attributes can be used to implement the second part of the
peer relationship definition: ”A peer relationship allows two
service agents to exchange information”. Communication
between two node templates is made possible by connecting
the target changed operation to the service engine and using
attributes as communication medium.

B. Ubuntu Juju

Ubuntu Juju is a cloud modeling language and orchestra-
tor developed by Canonical12. The Service Agent concept
maps very well to a Juju Charm. Just like with TOSCA,
Juju Charms operate using a lifecycle. Juju specifies a
number of lifecycle actions called hooks that execute code to
move the service from one state to another. An event-based
service agent can be implemented using a service engine that
interprets each hook as an event. Peer relationships map to
normal relationships in Juju since Juju relationships can be
used to send information from one Charm to another. Each
change in this relationship information triggers the config-
changed hook. The service engine can interpret this hook as
an event.

V. BACKGROUND ABOUT CITY OF THINGS
AND RELATED TECHNOLOGIES

A. Technology background

Apache Storm is a distributed streaming analytics frame-
work. It is focused on high-bandwidth and low-latency
analysis on continuous streams of data. Datastreams start
in a Spout. The Spout pulls the stream from a messaging
broker, or generates the stream itself. Data processing is
done in Storm Bolts. A Bolt takes a number of input streams,
processes them, and emits the resulting output streams. A
Bolt can have a number of tasks that can process multiple
streams in parallel. Stream Groupings define which streams
a Bolt receives as input by connecting the output stream of
a Bolt or Spout to the input of a Bolt. Stream grouping also
define how streams are partitioned over a bolt’s tasks. A
Bolt can also choose to send a stream to an external service
such as a datastore. The combination of Bolts and Spouts
connected by Stream Groupings is called a Storm Topology
as shown in Figure 3.

This Storm topology is deployed onto the Storm Cluster.
A Storm Cluster consists of a master called Nimbus, a set
of workers and an Apache Zookeeper13 cluster that Storm
uses for coordination. New topologies are submitted to the
nimbus, who then distributes the Bolts and Spouts over the
workers.

Apache Storm is a very powerful tool for stream analysis,
making it popular for low-latency real-time processing of

12http://www.canonical.com/
13https://zookeeper.apache.org/

Spout Bolt

Stream
grouping

Stream
grouping

A Storm topology

Figure 3. Spouts pulls data from an external datasource and send it to
bolts for processing. The bolts at the end of the topology either send the
data to an external datastore or discard the data. Stream groupings are used
to send the data from spouts and bolts to other bolts.

data streams, but it has some disadvantages that halter
its adoption. Deploying and managing Apache Storm is
a complex and time-consuming task, especially since a
Storm cluster also requires a correctly configured Zookeeper
cluster. It is common to use some form of automation
to setup and configure such a solution. Cloud modeling
languages are one of the appropriate tools used for this
since they provide a great way to manage the complexity
of such a deployment. Another issue with using Storm is
that deploying and updating Storm topologies is not trivial.
It requires copying the topology onto the Nimbus server,
acquiring CLI access to the server and running a series of
commands with a complex syntax. This process is complex,
time-consuming, error-prone and requires CLI access to the
server.

Storm provides a read-only web-interface that can be used
to check the state of a running topology, but this web-
interface does not reflect how that topology communicates
with external services. As a streaming tool, Storm is just
one link in a bigger analytics pipeline, although Storm’s UI
only shows the Storm part of that pipeline. Neither the other
components in that pipeline, nor Storm’s relations to those
components are shown in this UI.

The options for code reuse in Storm are limited. Storm’s
bolt and spout paradigm lends itself nicely to code sharing
and reuse but there is no way to encapsulate a bolt or spout
in a way that it can be reused without having to refactor
code.

B. Preexisting City of Things setup and limitations

This section further elaborates on the preexisting setup
of the City of Things back-end and its limitations. These
limitations are addressed by implementing the architecture
proposed in this paper.

The City of Things setup discussed in the introduction
is deployed and managed using Juju. Juju was chosen for
the reason that it has a battle-tested orchestrator, has a large
community around it, and because all of the components
required for this setup are readily available as Juju Charms.
The Juju community maintains Charms for MongoDB and

Apache Kafka. The Apache Kafka Charm is split up into two
Charms that setup two different components: Apache Kafka
itself and Apache Zookeeper. All three Charms implement a
number of relationship interfaces that allow other Charms
to connect to them by either requiring or providing the
relationship. The Apache Zookeeper Charm provides the
zookeeper interface. This interface allows clients to connect
to and use Apache Zookeeper. The Apache Kafka charm
is an example of a Charm consuming this interface. This
interface is also very useful for the Apache Storm Charm,
which was created as part of an earlier project of the authors’
research group. Apache Storm also uses Apache Zookeeper
as a coordination service and the zookeeper interface al-
lowed us to reuse the Apache Zookeeper Charm for Apache
Storm, significantly reducing the development effort of the
Apache Storm Charm. Similarly, the WSO2 ESB Charm,
also created as part of an earlier project, uses the kafka-
client interface to setup a connection between WSO2 ESB
and Apache Kafka. The WSO2 ESB Charm configures the
ESB as an API endpoint that sends all messages it receives
to Kafka.

As with all cloud modeling languages, Juju falls short in
the relationship between Apache Kafka and Apache Storm,
and the relationship between Apache Storm and MongoDB.
These two relationships are not actually relationships be-
tween services. Apache Storm requires no knowledge about
both Kafka and MongoDB. These relationships are actually
between the workflow running on Storm and Kafka, and
between the workflow running on Storm and MongoDB.
Creating such a relationship in Juju is not possible since Juju
only models the services and not the workflows running on
top of those services. This has a couple of disadvantages
that stem from the open challenges in the state of the art as
described in Section II.

a) The workflow is a monolithic entity that is specific to
the setup. Reusing parts of the workflow is not possible
without manually re-factoring the code each time.

b) Deployment and configuration of the workflow has
to be done manually. This requires CLI access to
the Storm cluster, and is a manual, complicated and
error-prone process. Because of this, the system cannot
reconfigure itself when configuration details such as
the IP addresses of Apache Kafka and MongoDB
change. This has an adverse effect on the flexibility
of all concerned services and the stability of the entire
system.

c) Current state of the art solutions for these challenges
are not compatible with the existing model, artifacts,
and the currently running infrastructure.

Having an easy way to update the workflow is important
for this scenario since the workflow has to be changed each
time a new sensor is added or the encoding format of an
existing sensor changes.

Kafka

Kafka
Spout

MongoDBStorm
Nimbus

Mongo
BoltBolt Bolt

INTERFACES
 a) storm (container)
 b) storm-element
 c) stormtopology
 d) kafka-client
 e) mongodb

bb b

ed

Storm
Topology

a

c ccc

Figure 4. The implementation of the architecture in Juju. The labels on the
relationships denote the relationship interface type. Interface types denote a
common protocol. Only components that implement the same interface can
be connected to each other. This makes sure that components connected to
each other actually know how to talk to each other.

This is where the architecture proposed in this paper
comes in. The existing model is extended with a workflow
and a deployer. This makes it possible to automatically de-
ploy and manage the workflows using the Juju orchestrator.
Cloud modeling concepts such as isolation and relationships
enable the workflow model to be modular and reusable.
The cloud modeling language poses as an abstraction layer
between the user and the actual running infrastructure. A
user can update the workflow without having to be con-
cerned about the operational details of the setup and without
having to come in contact with servers where the cluster is
actually running. The actual implementation of this solution
is explained further in the next section

VI. IMPLEMENTATION OF ARCHITECTURE

As explained in Section V-B, the preexisting setup is
deployed and managed using Juju. To enable continuity
and not lose the investment and knowledge contained in
the model and artifacts, we chose Juju as the language to
implement this architecture in.

Figure 4 shows a model using the final implementation.
The storm-topology Charm is an implementation of the
deployer. It has a relationship to the Storm Charm. A
number of Bolt and Spout Charms connect to both the
Storm Topology and the Storm charm. These Bolt and Spout
Charms are workflow components representing the workflow
running on top of Storm. The Spout Charms can connect
to a data source and the Bolt Charms can connect to a
data store. The next Subsections go into greater detail about
these Charms and their relationships. Figure 5 shows an
ETL workflow modeled using this implementation in the
Juju GUI.

A. Bolts and Spout Charms

The Bolt and Spout Charms are workflow components.
The topology of the workflow is specified by a set of
Bolts and Spouts connected with storm-element relation-
ships. Each Bolt and Spout specifies the Java code of that
specific step in the class configuration option, which points
to a Java class file that contains all the code for that Bolt or
Spout.

Figure 5. An ETL workflow running on Apache Storm shown in the Juju
GUI. The workflow, the Storm cluster and the services are deployed using
the cloud modeling framework Juju.

Bolts have a few additional configuration options. The
groupings configuration option specifies how the incoming
data should be distributed over the Bolt’s tasks. Techni-
cally, this configuration is a property of the relationship
of a Bolt, and not the Bolt itself. However, Juju does not
support relationship properties at the moment, only Charm
properties. Therefore each Bolt specifies the properties of its
incoming relationships. Note that a Spout does not specify
these properties since a Spout does not have incoming
relationships. All Bolt and Spout Charms have a relationship
to the Storm Topology Charm. This interface is used to send
information about the Bolt’s or Spout’s relationships and the
Java class to the Storm Topology Charm.

The classes in Bolt and Spout Charms can specify certain
dependencies.

B. Storm Topology Charm

The Storm Topology Charm gathers information about
the connected workflow and its code classes. The Charm
rebuilds workflow as a Flux14 topology. The Charm then
evaluates whether the topology is deployable. A Storm topol-
ogy without a Spout cannot be deployed. If the topology is
deployable, the Charm compiles the classes it received from
the Bolt and Spout Charms, and deploys the topology using
the Storm command-line tools.

Because the Storm Topology Charm uses the Storm
command-line tools, it has to have access to the Storm
Nimbus node. For this reason, the Storm Topology Charm
has a subordinate relationship with Nimbus. A subordinate
relationship is like a hosted-on relationship in TOSCA. It
denotes that both Charms are co-located.

The deployer gets notified each time one of the con-
nected bolts and spouts change. The topology charm then
rebuilds the topology, recompiles if a class has changed,
and redeploys the topology. This redeploying of the topology
does not present any problems to our setup because Apache

14https://storm.apache.org/releases/2.0.0-SNAPSHOT/flux.html

Kafka acts as a buffer between the web API and the Storm
topology.

Bolt and Spout Charms are also co-located with the Storm
Topology Charm to facilitate moving large files from the
Bolt and Spout Charms to the Storm Topology Charm. This
co-location is done indirectly by making the Bolt and Spout
Charms a subordinate of the Nimbus Charm. This indirect
approach is due to a limitation in Juju: subordinate Charms
cannot host other subordinate Charms.

VII. EVALUATION

Based on the challenges this paper addresses, a number
of evaluation parameters have been chosen to determine the
quality of this solution. This section evaluates the level of
code reuse that this architecture enables, the possibility of
automatic reconfiguration of the workflow and the advan-
tages of integrating with an existing deployment tool such
as Storm Flux.

By separating a monolithic Storm topology jar into a set
of self-configuring Bolt and Spout Charms, the possibility
of code reuse is greatly increased. Take the use-case of the
creation of another Smart Cities project in a new city. This
city uses a new set of sensors that need their own decoding
algorithms. The creators of these sensors are tasked to write
the decoders that run in a low-latency highly distributed
fashion on top of Storm. Table II compares two approaches.
In the first approach these developers use a monolithic
Storm topology JAR that includes both the ingestion from
Apache Kafka, the decoding, and the storage into MongoDB.
The developers use the implementation of the architecture
created in this paper for the second approach, giving them
the opportunity to reuse both the Kafka Spout, the MongoDB
bolt, and the Generic Bolt Charms from the original City
of Things project. For the second approach they write the
decoder as a Storm Bolt Class and attach that class to the
Generic Bolt Charm using the class config option.

Table II clearly shows the benefit of the code reuse that
the implementation of the architecture created in this paper
gives the developers. Only 59 lines of code have to be setup-
specific in the Bolt Charm approach, compared to the 219
lines of code for the JAR approach. The communication to
other components happens using Storm tuples, which means
that developers writing setup-specific code only have to use
the Storm Bolt API, instead of the complete Storm API
together with the Apache Kafka and the MongoDB API. As
a final note, the initialization and building of the topology is
something that is handled by the Charms in the Storm Bolt

Table II
BENEFITS OF CODE REUSE IN LINES OF CODE AND APIS USED.

LoC Files APIs
Storm topology JAR 219 4 3
Bolt Charm 59 1 1

Figure 6. Analysis of time to change the deployed topology.

approach, while this is something that the developers have
to do themselves in the Storm Topology JAR approach.

Seamless integration of the architecture with existing
cloud modeling languages and tools, a feature that is lacking
in the state-of-the-art, is shown to be very advantageous in
Section VI since the architecture can seamlessly integrate
with the existing cloud models, artifacts and tools used in
the City of Things project. Moreover, the advantages of the
possibilities of deep integration with analytics frameworks
and deployment tools becomes clear when one looks at the
time needed to change a running topology as shown in
Figure 6. The benefits that the integration with the very
useful but very specialized Storm Flux framework offer,
are clearly visible. Storm Flux makes it possible to detect
whether a Bolt or Spout has already been compiled, and
compile only when it is necessary. The time needed to
change the class of a Bolt into one that has already been
compiled is significantly smaller than the time needed to
update the topology if that class is not already compiled.
The results also show that the time needed to switch the
destination database of the workflow is close to twice the
time needed to update the topology with a compiled class.
This is because changing the database happens in two steps:
first the connection with the old database is severed and then
the connection with the new database is created, causing the
workflow to be rebuild twice.

VIII. CONCLUSION

The architecture proposed, implemented and evaluated in
this paper fulfills the requirements as stated in the introduc-
tion.

a) Code reuse is possible by providing a framework to
divide a monolithic workflow into a series of steps
connected using standardized interfaces.

b) The evaluation shows that the system can automatically
reconfigure when underlying operational details are
changed.

c) Having an architecture that allows for seamless integra-
tion with existing cloud modeling languages, analytics
frameworks and deployment tools provides great bene-

fits by reusing existing infrastructure and encapsulated
knowledge, and using highly specialized but highly
efficient tools to deploy workflows.

This architecture goes beyond the state of the art with
its ability to model, deploy and manage workflows running
on analytics frameworks and their connections to other
services, and its seamless integration with both existing
cloud modeling languages and existing deployment tools.

ACKNOWLEDGMENT

Part of this work has been funded by the iFest project,
cofunded by imec and VLAIO.

REFERENCES

[1] Gartner, Gartner Survey Highlights Challenges to Hadoop
Adoption. [Online]. Available: https://www.gartner.com/
newsroom/id/3051717

[2] TEKsystems, Lowered Expectations for IT
Budgets 2015 TEKsystems. [Online]. Avail-
able: https://www.teksystems.com/en/resources/news-press/
2014/teksystems-annual-it-forecast-2015?&year=2014

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes,” vol. 14, no. 1, pp.
70–93. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2898442.2898444

[4] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a distributed
messaging system for log processing.”

[5] S. Santurkar, A. Arora, and K. Chandrasekaran, “Stormgen - a
domain specific language to create ad-hoc storm topologies,”
in 2014 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1621–1628.

[6] R. Qasha, J. Cala, and P. Watson, “Towards automated work-
flow deployment in the cloud using TOSCA,” in 2015 IEEE
8th International Conference on Cloud Computing, pp. 1037–
1040.

[7] OASIS. TOSCA simple profile in YAML
version 1.0. [Online]. Available: https:
//docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

[8] N. Ferry, F. Chauvel, H. Song, and A. Solberg, “Continous
deployment of multi-cloud systems,” in Proceedings of
the 1st International Workshop on Quality-Aware DevOps,
ser. QUDOS 2015. ACM, pp. 27–28. [Online]. Available:
http://doi.acm.org/10.1145/2804371.2804377

[9] M. Guerriero, S. Tajfar, D. A. Tamburri, and E. Di Nitto,
“Towards a model-driven design tool for big data
architectures,” in Proceedings of the 2Nd International
Workshop on BIG Data Software Engineering, ser.
BIGDSE ’16. ACM, pp. 37–43. [Online]. Available:
http://doi.acm.org/10.1145/2896825.2896835

[10] M. Sebrechts, T. Vanhove, G. Van Seghbroeck, T. Wauters,
B. Volckaert, and F. De Turck, “Distributed service orchestra-
tion: Eventually consistent cloud operation and integration,”
in proceedings of the 2016 IEEE International Conference on
Mobile Services (MS 2016). IEEE.

