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This paper deals with the selective maintenance problem for a multi-component system performing consecutive missions
separated by scheduled breaks. To increase the probability of successfully completing its next mission, the system components
are maintained during the break. A list of potential imperfect maintenance actions on each component, ranging from minimal
repair to replacement is available. The general hybrid hazard rate approach is used to model the reliability improvement
of the system components. Durations of the maintenance actions, the mission and the breaks are stochastic with known
probability distributions. The resulting optimisation problem is modelled as a non-linear stochastic programme. Its objective
is to determine a cost-optimal subset of maintenance actions to be performed on the components given the limited stochastic
duration of the break and the minimum system reliability level required to complete the next mission. The fundamental
concepts and relevant parameters of this decision-making problem are developed and discussed. Numerical experiments
are provided to demonstrate the added value of solving this selective maintenance problem as a stochastic optimisation
programme.
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1. Introduction

In some businesses such as maritime and airline companies, systems operate according to an alternating sequence of
missions and scheduled breaks. To prepare the system to successfully complete its next mission, its components must be
properly maintained during the scheduled intermission break. Due to the limited duration of the scheduled breaks and scarce
maintenance resources, only a limited set of components can be maintained during the breaks. It is therefore necessary to
identify an optimal subset of components to maintain and the type of maintenance actions to be performed on these components
to meet the predetermined reliability level required for the next mission. In the literature, this kind of maintenance strategy
is known as the selective maintenance.

Selective maintenance was initially introduced by Rice, Cassady, and Nachlas (1998). The authors considered a series–
parallel system in which the subsystems are assumed to be composed of independent and identically distributed (i.i.d )
components each having a lifetime that is also assumed to be exponentially distributed. The replacement of components at
failure is the only maintenance option. To overcome the restrictive hypothesis of identical subsystem components in Rice,
Cassady, and Nachlas (1998), the authors in Cassady, Pohl, and Murdock (2001) developed a more general framework for
selective maintenance of a system whose reliability block diagram may be a combination of series, parallel and bridge
structures.

Cassady, Murdock, and Pohl (2001) studied the selective maintenance problem in a series–parallel system, where the
components have Weibull distributed lifetimes. For each component of the system three maintenance actions are considered:
minimal repair, corrective replacement of a failed component and preventive replacement of a working component. The
resulting selective maintenance problem is solved using an enumeration method. However, enumeration solution methods
become rapidly unusable when the number of the system components increases. To deal with the combinatorial complexity
arising with large-size systems, four improved enumeration procedures are proposed in Rajagopalan and Cassady (2006) to
reduce the computation times. An exact method based on the branch-and-bound procedure and a Tabu search-based algorithm
are proposed in Lust, Roux, and Riane (2009). Khatab, Ait-Kadi, and Nourelfath (2007) proposed two heuristic methods,
adapted from those used to solve the redundancy allocation problem (Aggrawal 1976; Gopal, Aggrawal, and Gupta 1978;
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Sharma and Venkateswaran 1971). Maaroufi, Chelbi, and Rezg (2013) studied the selective maintenance problem for a system
where some components are subject to both global failure propagation and isolation.

Imperfect maintenance in the selective maintenance setting is addressed by Liu and Huang (2010), where the age reduction
coefficient approach (Malik 1979) is used to model imperfect maintenance. The same imperfect selective maintenance model
was studied in Zhu et al. (2011) and applied to a machining line system in the automotive industry. Panday et al. (2013)
also studied the selective maintenance problem for binary systems under imperfect maintenance using the hybrid hazard rate
approach introduced in Lin, Zuo, and Yam (2000). In Liu and Huang (2010) and Panday et al. (2013), a set of maintenance
levels, ranging from minimal repair to replacement, are used to improve the reliability of a system component. Note that in Liu
and Huang (2010) and Zhu et al. (2011), the only parameter that determines the improvement in the component’s health is the
age reduction coefficient. In Panday et al. (2013), however, both the age reduction coefficient and the adjustment coefficient
impact the component’s health. A more recent work, Khatab and Aghezzaf (2016) studied the selective maintenance problem
when the quality of imperfect maintenance is stochastic. A non-linear and stochastic optimisation problem was proposed and
solved for a series–parallel system.

Selective maintenance problem have also been investigated for multi-state systems (MSS) in Chen, Mend, and Zuo
(1999) where system components and the system itself may be in more than two possible states. Liu and Huang (2010)
considered MSS where components are characterised by two operating states and subject to imperfect maintenance that can
bring the condition of a component to an intermediate level. Pandey, Zuo, and Moghaddass (2013) investigated the selective
maintenance problem for a MSS where the functioning of each component is modelled as a continuous-time Markov chain
with more than two states. Dao, Zuo, and Pandey (2014) and Dao and Zuo (2016) studied the selective maintenance problem
while considering economic and stochastic dependencies among MSS components. Such dependency is also considered
when dealing with the maintenance optimisation of MSS. In Zhou et al. (2015), several levels of imperfect maintenance are
considered and the system is composed of multi-state components modelled as in Pandey, Zuo, and Moghaddass (2013). In
a more recent paper, Dao and Zuo (2017) investigated the selective maintenance problem in a MSS setting where structural
relationships between components are accounted for.

Won and Chung (2000) studied a maintenance policy for a system under a random time horizon. The system is minimally
repaired at failure and replaced by a new one whenever its age reaches a specified value. Conditions under which the optimal
age replacement exists are derived for the particular case where the system lifetime is Weibull distributed. This results is
generalised in Khatab, Rezg, and Ait-Kadi (2011a, 2011b), where the authors proposed a maintenance optimisation model
for a system operating under a random time horizon with general lifetime distributions. These papers view the system as
a single units operating continuously over time and the only available imperfect maintenance action is the minimal repair.
Times required toperform either replacement or a minimal repair actions are not accounted for. Consequently, maintenance
resources constraints are not addressed in these papers.

The selective maintenance problems addressed up until now assume that the durations of the breaks and missions
are deterministic and are known in advance. This assumption may however not be valid in many real-world situations,
where it is difficult to estimate the exact duration of the following missions. The duration of a mission may indeed be
impacted by the occurrence of unexpected events causing the system to either abort the mission or continue operating at
lower (higher) speed/rate hence increasing (decreasing) the mission duration. For example, weather conditions can randomly
change favourably or unfavourably causing a ship to take less or more time than expected before returning to the dock.
In addition to the density of water on which the displacement is performed, vessel and ship motion also varies depending
on the type and quantity of the freight being transported. This may increase or shorten the duration of the mission. Also,
unexpected events such as air-traffic jams, weather, strikes at airports may cause the rerouting of aircraft thus resulting in
possible increase or decrease the flight duration. The duration of a break is also difficult to estimate. Adverse sudden changes
in the weather conditions may lead to the delaying of an aircraft take-off or the departure of ships from the port. In freight
transport, the departure of a ship may be impacted by the traffic density and infrastructure (river locks and hydroelectric
dams) management. It is probably more realistic to consider that missions as well as breaks durations are not usually known
in advance, but are rather random variables governed by some appropriate probability distributions. The only existing works
that the authors are aware of appeared in Djelloul et al. (2015) and Khatab et al. (2016). In Djelloul et al. (2015), the mission
duration of the system is uncertain and modelled as a random variable while the break is considered deterministic with a
constant duration. The selective maintenance model in Khatab et al. (2016) extends the model proposed in Djelloul et al.
(2015) and considers the durations of both the mission and the break to be stochastic. The resulting selective maintenance
optimisation formulations are therefore non-linear and stochastic.

This paper extends the shorter preliminary work presented at a conference Khatab et al. (2016). In addition to the stochastic
durations of missions and break, the present paper considers that the times spent on maintenance actions are also stochastic.
Furthermore, the more general hybrid hazard rate model is used to characterise the reliability improvement for the system
components. We have also established a relationship between the cost induced by a maintenance action and the level of that
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maintenance action. The same relationship is developed to relate the time spent on a maintenance action and the level of that
maintenance action. These relationships are formally defined as functions of the mean residual useful lifetimes of the system
components. More details are also provided and additional numerical experiments are conducted to demonstrate the added
value and the validity of the proposed approach. The selective maintenance problem to be solved consists first in selecting
a subset of components to be maintained and then choosing the level of maintenance to be performed on each component.
The problem is formulated as a non-linear stochastic optimisation problem where probability distributions assigned to
durations of the maintenance actions, the missions and the breaks are fully accounted for. The objective function is either to
maximise the reliability for the next mission while taking the maintenance budget and duration of the break into account, or
to minimise the total maintenance cost subject to required reliability level and maintenance duration during the break, or to
minimise the total maintenance duration subject to the required reliability level and maintenance budget. This paper focuses
on the second objective function and presents an elegant and comprehensive formulation for this selective maintenance
optimisation problem.

The following assumptions are considered in this paper:

(1) The system consists of multiple, repairable binary components (the components and the system are either functioning
or failed).

(2) During the break, system components do not age, i.e. the age of a component is operation-dependent.
(3) No maintenance activity is allowed during the mission. Maintenance activities are allowed only during the break.
(4) After a replacement, a component becomes as good as new.
(5) After a minimal repair, a component becomes as bad as old.
(6) A list of imperfect maintenance levels are also available. An imperfect maintenance action when performed on a

component brings its health condition back between as good as new and as bad as old.
(7) All required limited resources (budget, repairman and time) are available when needed for maintenance activities,

and they are known and fixed. Here, only one repairman is available.

The remainder of the paper is organised as follows. Section 2 describes the system under consideration and defines its
mission profile. Section 3 gives a brief background on the hybrid hazard rate approach for modelling imperfect maintenance.
Section 3 describes the maintenance levels and defines the maintenance duration and cost functions. The expression of the
probability of mission completion is developed in Section 4. Sections 5 present a formulation of the stochastic selective
maintenance optimisation problem (SSMOP) and discuss some of its major properties. Numerical experiments are provided
in Section 6 to show how the stochasticity of the durations of the mission, the break and the maintenance actions impact the
maintenance decisions. Conclusions are drawn and future extensions are discussed in Section 7.

2. Description of the system under consideration

Without loss of generality, the selective maintenance problem addressed in the present work concerns a series–parallel system
S composed of n series subsystems Si (i = 1, . . . , n) each of which is composed of Ni s-independent, and possibly, non-
identical components/parts Pi j ( j = 1, . . . , Ni ) arranged in parallel. The system is assumed to have just finished a mission
and then, turned off during the scheduled break of finite length and becomes available for possible maintenance activities.
The system is thereafter used to execute the next mission of a given duration. The duration of the scheduled break is denoted
as D and the duration of the next mission is denoted by U. In the present work, these duration are considered stochastic rather
than deterministic. Therefore, durations D and U are modelled as random variables governed by their respective probability
density functions (pdf) and the cumulative distribution functions (cdf). The pdf and cdf corresponding to duration D are,
respectively, denoted as fD(t) and FD(t) and defined on the support [Dmin, Dmax]. The pdf and cdf assigned to duration U
are defined on the support [Umin, Umax] and, respectively, denoted as fU (t) and FU (t).

At the end of the current mission, the state variable Xi j describes the status of the component Pi j . Similarly, the state
variable Yi j describes the status Pi j at the beginning of the next mission. These two state variables are then formally defined
as:

Xi j =
{

1, if Pi j is functioning at the end of the current mission,

0, otherwise.
(1)

Yi j =
{

1, if Pi j is functioning at the beginning of the next mission,
0, otherwise.

(2)

When running the current mission, the failure rate of the component Pi j is denoted as hi j (t). At the end of the current
mission, the age of each component Pi j is denoted by Ai j . We also denote by Bi j , the age of Pi j at the beginning of the next
mission. If maintenance is not performed on Pi j , then Ai j = Bi j , according to assumption (2).
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Figure 1. Profile of the system’s failure rate evolving under the hybrid hazard rate model

3. Imperfect maintenance model, cost and duration functions

In production and service systems, it is often required to minimise interruptions due to machine failures. Maintenance
actions are performed on systems in order to avoid failures and costly downtime. As noted in Lin, Zuo, and Yam (2000),
traditional maintenance models assume that the system after a maintenance is either as good as new (i.e. perfect maintenance
or replacement) or as bad as old (i.e. minimal repair). The more realistic and generalised approach is to assume that the system
after maintenance lies somewhere between as good as new and as bad as old, which is called imperfect maintenance. For
example, opening a machine to repair one component may result in damaging other components leading to an increase of the
slope of the failure rate function. Another reason is that lack of resources or time may not permit to maintain the system as best
as possible. As a consequence, maintenance actions occur at an increased frequency (i.e. the intervals between consecutive
maintenance actions reduce as time passes as shown in Figure 1). At one point, these maintenance actions are so frequent
that it becomes better to replace the system rather than continuing to carry out maintenance. The authors in Pham and Wang
(1996) and Wang (2002) provided a review of early existing imperfect maintenance models. Among these models are the age
reduction model of Malik Malik (1979), the adjustment coefficient model of Nakagawa Nakagawa (1988), Nakagawa and
Mizutani (2009) where the hazard rate is increased after each maintenance action, the hybrid hazard rate model of Lin, Zuo,
and Yam (2000) which is later used in Lin, Zuo, and Yam (2001), El-Ferik and Ben-Daya (2006), Khatab (2015), Sheu and
Chang (2009), the quasi-renewal process model (Park and Pham 2010; Wang and Pham 1999, the geometric process model
(Lam 1988), and the Kijima’s model based on the generalised renewal process (Kijima, Murimura, and Suzuki 1988; Kijima
1989). More details on models and methodologies available to deal with imperfect maintenance can be found in Nakagawa
(2008) and Wang and Pham (2006). An extensive review of Kijima’s model and its applications can be found in Tanwar, Rai,
and Bolia (2014).

In the present work, the imperfect maintenance model used is based on the hybrid hazard rate approach initially proposed
by Lin, Zuo, and Yam (2000) and later used by Khatab (2015), El-Ferik and Ben-Daya (2006), Sheu and Chang (2009) and
many others. The hybrid hazard rate approach proposed by Lin, Zuo, and Yam (2000) combines failure rate adjustment and
age reduction approaches. It is a more general and realistic case as it allows the maintenance action to reduce the effective
age to a certain value but also to change the slope of the hazard rate function. Indeed, if the hazard rate function of the system
was h(t) just before performing a maintenance at time t, then it becomes ξh(θ t + x) right after the maintenance, where
ξ ≥ 1, is the hazard rate adjustment coefficient, 0 ≤ θ ≤ 1 is the age reduction coefficient and x ≥ 0 represents the time
elapsed from the instant of the maintenance completion. When ξ = 1, the hybrid model reduces to age reduction model,
while it reduces to hazard rate adjustment model when θ = 0. The age reduction and the adjustment coefficients are usually
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estimated from subject matter experts suggestion or from reliability and maintenance historical data (Malik 1979; Canfield
1986; Wu and Clements-Croome 2005).

3.1 Maintenance levels and their costs

To perform maintenance activities, a list of Li j + 1 potential maintenance levels/options l, l ∈ {0, 1, . . . , Li j }, are available
for each component Pi j . Level l = 0 corresponds to the “Do nothing" case, i.e. no maintenance is performed on Pi j . Level
l = 1 corresponds to the minimal repair maintenance action which, when performed, brings the component to an as bad
as old condition. Level l = Li j corresponds to the replacement case, after which the component becomes as good as new.
Other intermediate values of 1 < l < Li j represent imperfect maintenance actions such that when performed they bring the
component’s condition between the as good as new and as bad as old conditions. Each maintenance level l ≥ 1 available
for component Pi j is assigned two coefficients: the age reduction coefficient θi jl and a failure rate adjustment coefficient ξi jl .
According to the hybrid hazard rate model, when a maintenance action of level l ≥ 1 is performed on Pi j , at the end of the
current mission, it reduces its age from Ai j , to θi jl Ai j and its failure rate becomes ξi jl hi j (t + θi jl Ai j ), for t ≥ 0.

For the two particular maintenance levels l = 1 and l = Li j , the age reduction and the adjustment coefficients are such
that θi j1 = 1, θi j,Li j = 0, and ξi j1 = ξi j,Li j = 1. In the present work, both corrective maintenance (CM) and preventive
maintenance (PM) are modelled according to the hybrid hazard rate model, i.e. both maintenance types can be imperfect.

3.2 Maintenance cost model

The maintenance cost Ci jl induced by a maintenance action of level l ∈ {1, . . . , Li j } when performed on component Pi j is
a PM cost C p

i jl if Pi j is still functioning at the end of the current mission, or is a CM cost Cc
i jl if Pi j has failed at the end of

the current mission with a common assumption that Cc
i jl > C p

i jl . This maintenance cost is then defined as:

Ci jl =
{

C p
i jl , if Xi j = 1 and l > 1,

Cc
i jl , if Xi j = 0.

(3)

For l = 1 (minimal repair), the minimal repair cost is denoted by Cmr
i j . Similarly, for a failed component, the replacement

cost (level l = Li j ) is denoted by Cc
i j,Li j

. In case the component is still functioning at the end of the current mission,

the cost to preventively replace it with a new one (level l = Li j ) is denoted by C p
i j,Li j

. It should be noted that minimal
repair (level l = 1) is not available for PM actions. induced by preventive replacement of component Pi j is defined as

MC
p,Li j
i j = RC p

i j , while MC p,1
i j is not eligible (i.e. minimal repair is admissible as a maintenance option only for a failed

component). Maintenance costs Cmr
i j , Cc

i j,Li j
, and C p

i j,Li j
are assumed to be constant and known. However, the maintenance

costs of intermediate maintenance level 1 < l < Li j are defined in terms of the maintenance costs these extreme cases.
Hence, we have:

C p
i jl = C p

i j · (1 − θi jl
)δi j (Ai j ) , (4)

Cc
i jl = Cc

i j · (1 − θi jl
)δi j (Ai j ) . (5)

In the above cost structures, the parameter δi j (Ai j ) is introduced as a characteristic function to establish a relationship
between the maintenance cost and the age Ai j of the component Pi j at the end of a mission. In line with the idea discussed
in Khatab and Aghezzaf (2016), the formulation of δi j (Ai j ) is proposed to reflect the relationship between the reliability of a
component and its effective age. Equations (4) and (5) enable the modelling of the fact that for the same maintenance level,
the maintenance cost of a younger system is less than that of an older system. Thus, δi j (Ai j ) is a function of the age Ai j and
defined as the ratio of the mean residual lifetime MRUL(Ai j ) of component Pi j and its age Ai j :

δi j (Ai j ) = MRUL(Ai j )

Ai j
. (6)

The mean residual useful lifetime MRUL(Ai j ) of the component Pi j whose failure rate hi j (t) is then given by:

MRUL(Ai j ) =
∫ ∞

Ai j

exp

(
−
∫ t

Ai j

hi j (x)dx

)
dt. (7)
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Figure 2. The ratio
Cc

i jl
Cc

i j
vs. the age reduction coefficient θi jl

The characteristic function δi j (Ai j ) is then defined as:

δi j (Ai j ) =
∫∞

Ai j
exp

(
− ∫ t

Ai j
hi j (x)dx

)
dt

Ai j
. (8)

If the component’s age Ai j is less than its MRUL(Ai j ), it is said to be relatively younger, then its corresponding δi j (Ai j ) is
high and because 0 ≤ θi jl < 1, its induced maintenance cost from Equations (4) and (5) is smaller. Similarly, if component’s
age Ai j is higher than its MRUL(Ai j ), its corresponding maintenance cost will be significantly higher. As stated above,
Equations (4) and (5) enable the modelling of the fact that for the same maintenance level, the maintenance cost of a younger
system is less than that of an older system.

To show how the characteristic function δi j (Ai j ) impacts the maintenance cost of a component Pi j , let us assume that
the lifetimes of the components follow a Weibull distribution with shape and scale parameters set, respectively, to 2.3 and

10. For different values of the initial age Ai j , Figure 2 gives the ratio
Cc

i jl
Cc

i j
vs. the age reduction θi jl . From this figure, one

may indeed observe that for a fixed value of the age reduction coefficient, the maintenance cost increases as the initial age
Ai j increases. This observation supports the assumption according to which the cost resulting from maintenance performed
on a younger component is cheaper than the same maintenance level performed on an older component.

3.3 Expected maintenance durations

By analogy to the component maintenance cost, the maintenance duration Ti jl of a component Pi j is defined by:

Ti jl =
{

T p
i jl , if Xi j = 1 and l > 1,

T c
i jl , if Xi j = 0.

(9)

Similar to the maintenance cost, particular values of maintenance durations are also defined for l = 1 (minimal repair) and
l = Li j (replacement). For a failed component, the duration of a minimal repair is T mr

i j when the duration of a replacement
is T c

i j,Li j
. In the case where the component is working at the end of the mission, the duration of the replacement is T p

i j,Li j
while there is no minimal repair.

As pointed out in our previous discussion, time spent to perform maintenance activities is always subject to variability
due, for example, to the operating environment, maintenance operator experience, etc. For accurate modelling and reliability
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assessment, this variability should be accounted for in the maintenance modelling process in general, and in selective
maintenance in particular. In the present work, times spent performing maintenance actions are considered as random
variables governed by appropriate probability distributions. Therefore, durations T c

i jl and T p
i jl are random variables and their

cdfs are denoted by Gc
i jl(t) and G p

i jl(t), respectively.
The expected duration of maintenance of level l (1 < l < Li j ) on component Pi j is also function of both the age reduction

coefficient assigned to l and the MRUL of the component. Formally, the expected durations of an intermediate maintenance
action of level 1 < l < Li j are therefore defined as:

E[T p
i jl ] = E

[
T p

i j

] (
1 − θi jl

)δi j (Ai j ) , (10)

E[T c
i jl ] = E

[
T c

i j

] (
1 − θi jl

)δi j (Ai j ) , (11)

where δi j (Ai j ) is defined as in Equation (8).

4. Reliability during the next mission

According to the hybrid hazard rate imperfect maintenance model, if a maintenance action with an eligible level l ∈
{1, . . . , Li j } is performed on component Pi j at the end of the current mission, the effective age Bi j of Pi j at the beginning
of the next mission is Bi j = θi jl Ai j , and its corresponding failure rate becomes:

hi jl(t) = ξi jl hi j (θi jl Ai j + t), for t ≥ 0. (12)

At the end of the current mission, the operating state Xi j as well as the age Ai j are known for every component Pi j .
Depending on the maintenance action performed on component Pi j , its corresponding operating state variable Yi j at the
beginning of the next mission is updated according to Equation (2). Let Rc

i j be the conditional reliability that component
Pi j successfully completes, the next mission given that it received a maintenance action of level l at the end of the current
mission. This reliability depends on both effective age Bi j of Pi j at the beginning of the next mission as well as on the
duration U of this mission. From Equation (12) and taking into account the fact that duration U is stochastic and governed
by the cdf FU (t) on the support [Umin, Umax], the conditional reliability Rc

i j is given by:

Rc
i j =

∫ Umax

Umin

exp

[
−
∫ u

0
hi jl(t)dt

]
dFU (u) (13)

=
∫ Umax

Umin

exp

[
−ξi jl

∫ θi jl Ai j +u

θi jl Ai j

hi j (t)dt

]
dFU (u).

The reliability Rc of the whole system during the next mission is evaluated from components reliabilities Rc
i j according

to the system’s reliability block diagram. In our case, components are arranged in a series–parallel configuration. Hence, the
conditional reliability of subsystem Si (i = 1, . . . , n) and that of the system S, respectively, denoted by Rc

i and Rc for the
next mission are given by:

Rc
i = 1 −

Ni∏
j=1

[
1 − Rc

i j · Yi j

]
, and (14)

Rc =
n∏

i=1

Rc
i . (15)

To illustrate how the stochasticity of the mission duration impacts the system reliability, we consider the following single
component Pi j , for which the corresponding age Ai j , at the end of the current mission, is measured and assumed to be

Ai j = 10 units of time. The failure rate hi j (t) =
(

βi j
ηi j

) (
t

ηi j

)βi j −1
of component Pi j is assumed to be derived from a Weibull

distributed lifetime with shape and scale parameters, respectively, equal to βi j = 1.5 and ηi j = 15. Let us consider the case
where the duration U of the next mission is governed by a normal distribution defined on the truncated support [7,12]. That
is, the system will operate the next mission for an interval of time which is normally distributed and lies between Umin = 7
and Umax = 12 units of time. The reliability to successfully perform the next mission is evaluated in two cases. In the
first case, the distribution governing the duration U is assumed to be truncated from N (8,1.5) whose pdf curve is drawn in
Figure 3. The second case is the deterministic case where the next mission duration is assumed to be of constant duration
and equal to 8 units of time.
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Figure 3. Truncated normal distribution: pdf of the next mission duration.

Let us assume that component Pi j is still functioning at the end of the current mission (i.e. Xi j = 1). If it is assumed,
without loss of generality, that no maintenance is performed on Pi j during the break, then in the deterministic case (i.e. U = 8)
Rc

i j = 46.29%. However, in the stochastic case, (U is normal truncated from N (8,1.5)), Rc
i j = 43.45%, which is 2.84%

less than the reliability value obtained with the deterministic approach. We conclude that the deterministic approximation of
the mission duration overestimates the real value of the system reliability. This result show that assuming mission durations
to be deterministic rather than stochastic may lead to undesirable economic consequences and safety issues. The reliability
computed using the deterministic duration may be either smaller or greater than the reliability obtained with the stochastic
duration. In the first case, i.e. when the reliability based on the deterministic assumption is small, the actual reliability of
the system obtained by considering stochastic duration is underestimated. This means that the maintenance plan suggested
in the deterministic case, calls for unnecessary and more expensive levels of maintenance, thus unreasonably increasing the
expected total cost of maintenance. However, if the reliability based on deterministic durations is higher, the actual reliability
of the system is overestimated. This means that the maintenance plan suggested in the deterministic case may result in a high
risk of not completing the next mission with the required minimum reliability level.

5. The SSMOP

Considering that the system has just survived the current mission, components may undergo maintenance activities. However,
not all components may possibly be maintained due to the limitation on both maintenance budget and duration. Consequently,
a selective maintenance problem must be solved. The objective is then to minimise the expected total maintenance cost taking
into account, on one hand, the required minimum system reliability R0 to successfully completing the next mission, and
the limited duration of the break, on the other hand. The probability of completing the next mission is obtained from the
conditional reliability Rc computed in the previous section. To evaluate the total cost induced by maintenance actions and
the corresponding total maintenance duration, the following decision variable zi jl is defined.

zi jl =
{

1, if maintenance level l is performed on Pi j

0, otherwise.
(16)

The total cost of maintenance during the break is denoted by TMC and computed as:

T MC = P MC + C MC, (17)



International Journal of Production Research 9

where PMC and CMC denote the total cost induced by, respectively, PM and CM actions performed during the break. The
total cost of PM actions is given by:

P MC =
n∑

i=1

Ni∑
j=1

Li j∑
l=2

C p
i jl · Xi j · zi jl , (18)

where a PM action of level l > 1 is allowed to be performed on component Pi j only if Pi j is still functioning at the end of
the current mission, i.e. Xi j = 1. By analogy, the total cost induced by CM actions is obtained from:

C MC =
n∑

i=1

Ni∑
j=1

Li j∑
l=1

Cc
i jl · (1 − Xi j

) · zi jl , (19)

where
(
1 − Xi j

)
states that the CM actions are available only for failed components.

The total time required to perform maintenance actions during the break is also composed of PM an CM durations
denoted, respectively, by PMT and CMT. These quantities are:

P MT =
n∑

i=1

Ni∑
j=1

Li j∑
l=2

T p
i jl · Xi j · zi jl , (20)

C MT =
n∑

i=1

Ni∑
j=1

Li j∑
l=1

T c
i jl · (1 − Xi j

) · zi jl . (21)

Hence, the total time spent in maintenance during the break denoted by TMT is the sum of the PM and CM durations: TMT
= PMT + CMT.

The SSMOP is formulated as:

Min

⎛
⎜⎜⎜⎝

n∑
i=1

Ni∑
j=1

Li j∑
l=1

Cc
i jl

(
1 − Xi j

)
zi jl

+
n∑

i=1

Ni∑
j=1

Li j∑
l=2

C p
i jl Xi j zi jl)

⎞
⎟⎟⎟⎠ (22)

Subject to:

Rc ≥ R0, (23)

Pr (TMT ≤ D) > τs, (24)
Li j∑
l=1

(
1 − Xi j

)
zi jl +

Li j∑
l=2

Xi j zi jl ≤ 1, (25)

zi j1 ≤ 1 − Xi j , (26)

Yi j = Xi j +
Li j∑
l=1

(
1 − Xi j

)
zi jl , (27)

Bi j = Ai j

[
Li j∑
l=1

θi jl zi jl +
(

1 −
Li j∑
l=1

zi jl

)]
, (28)

zi jl ∈ {0, 1}; i ∈ {1, . . . , n}; j ∈ {1, . . . , Ni }; l ∈ {1, . . . , Li j }.
In the above optimisation model, Equations (23) and (24) are, respectively, the required reliability level and the mainte-

nance duration constraints. Constraint (24) is a chance constraint requiring careful treatment. Given that both the durations of
maintenance actions and the break are stochastic, there will always be a risk that the expected total duration of all maintenance
activities may exceed the duration of the break. Hence, a service level ratio τs is introduced to quantify the proportion of
times (or probability) that the maintenance actions are completed within the break. The risk corresponding to the inability to
perform a selected maintenance plan is then assessed at 1 − τs . For each component Pi j , Equations (25) states that only one
maintenance level can be selected if the component is to be maintained. Constraint (26) states that minimal repair is eligible
only on a failed component. Constraint (27) updates the operating ages of components. If a level l (1 ≤ l ≤ Li j ) maintenance
is selected then the age of the component is reduced by the corresponding θi jl . If no level l maintenance is selected, then the
age does not change. For a given system configuration, this stochastic optimisation problem can be solved using the usual
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stochastic optimisation techniques (see e.g. Birge and Louveaux 1997; Spall 2005). In the following section, we provide two
experiments and fully discuss how the stochasticity of the mission and break durations as well as maintenance durations may
impact the maintenance level selection decisions.

6. Numerical experiments

To perform the subsequent experiments, we consider that PM and CM durations T p
i jl and T c

i jl (l = 1, . . . , Li j ) are governed

by Gamma distributions Gam(α
p
i jl , ζ

p
i jl) and Gam(αc

i jl , ζ
c
i jl), respectively. Their respective pdfs are g p

i jl(t) = dG p
i jl(t)

d
and

gc
i jl(t) = dGc

i jl(t)

d
such that:

g p
i jl(t) = tα

p
i jl−1



(
α

p
i jl

) (
ζ

p
i jl

)α
p
i jl

exp

(
− t

ζ
p

i jl

)
, (29)

gc
i jl(t) = tα

c
i jl−1



(
αc

i jl

) (
ζ c

i jl

)αc
i jl

exp

(
− t

ζ c
i jl

)
, (30)

where α
p
i jl and αc

i jl are the shape parameters, ζ
p

i jl and ζ c
i jl are the scale parameters, and 
(s) = ∫∞

0 xs−1 exp(−x)dx is the
Gamma function. The cdfs G p

i jl(t) and Gc
i jl(t) are then obtained as:

G p
i jl(t) =




(
α

p
i jl ,

t

ζ
p

i jl

)



(
α

p
i jl

) , (31)

Gc
i jl(t) =




(
αc

i jl ,
t

ζ c
i jl

)



(
α

c,l
i j

) . (32)

where 
(u, v) = ∫ v

0 xu−1 exp(−x)dx is the lower incomplete Gamma function. The expected durations E[T p
i jl ] and E[T c

i jl ]
are evaluated to E[T p

i jl ] = α
p
i jlζ

p
i jl and E[T c

i jl ] = αc
i jlζ

c
i jl . In what follows, for i ∈ {1, . . . , n}; j ∈ {1, . . . , Ni } and

l ∈ {1, . . . , Li j }, we assume that ζi jl = 1 and therefore combining Equations (10) and (11) together with the fact that
T c

i j1 = T mr
i j , we have that:

αc
i j1 = E

[
T mr

i j

]
, and (33)

α
p
i jl = E

[
T p

i j

] (
1 − θi jl

)δi j (Ai j ) (34)

αc
i jl = E

[
T c

i j

] (
1 − θi jl

)δi j (Ai j ) . (35)

Accordingly, we would like to note that for two random variables W1 and W2 each governed by a Gamma distribution
Gam(α1, ζ ) and Gam(α1, ζ ), the sum W1 + W2 is also governed by a Gamma distribution Gam(α1 + α2, ζ ).

Using the above assumptions and observations, the chance constraint (Equation (24) in the SSMOP of Section 5) can be
evaluated by determining the cdf of the total maintenance time T MT = P MT + C MT incurred during the break by both
PM and CM. To do so, let us first observe that from Equations (20) and (21), it follows that PMT and CMT both follow,
respectively, the Gamma distributions Gam(αp, 1) and Gam(αc, 1) such that:

αp =
n∑

i=1

Ni∑
j=1

Li j∑
l=2

α
p
i jl · Xi j · zi jl , (36)

αc =
n∑

i=1

Ni∑
j=1

Li j∑
l=1

αc
i jl · (1 − Xi j ) · zi jl . (37)
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Table 1. Maintenance levels and their respective age reduction and adjustment coefficients values: case of Experiment #1.

l 1 2 3 4 5 6 7 8

θi jl 1 0.35 0.3 0.25 0.2 0.15 0.1 0
ξi jl 1 1.35 1.3 1.25 1.2 1.15 1.1 1

From the result of Equations (33)–(35), the above equations become:

αp =
n∑

i=1

Ni∑
j=1

Li j∑
l=2

E

[
T p

i j

] (
1 − θi jl

)δi j (Ai j ) · Xi j · zi jl , and (38)

αc =
n∑

i=1

Ni∑
j=1

E

[
T mr

i j

]
· (1 − Xi j ) · zi j1, (39)

+
n∑

i=1

Ni∑
j=1

Li j∑
l=2

E

[
T c

i j

] (
1 − θi jl

)δi j (Ai j ) · (1 − Xi j ) · zi jl .

Finally, since T MT = P MT + C MT , it follows that TMT is also governed by a Gamma distribution Gam(α, 1) where
α = αp + αc and the corresponding pdf and cdf are denoted, respectively, by g(t) and G(t):

g(t) = tαp+αc−1


(αp + αc)
exp(−t), (40)

G(t) = 
(αp + αc, t)


(αp + αc)
.

6.1 Experiment # 1: Analysis of a single component system

This experiment shows how the stochasticity of the break, mission and maintenance durations impact the selective mainte-
nance decisions. First, the case of a single component Pi j is considered. The lifetime of this component is assumed to be
Weibull distributed with shape and scale parameters set, respectively, to βi j = 1.5 and ηi j = 25. For this component, a list
of 9 maintenance levels l ∈ {0, 1, . . . , 8} are available. Let us recall that the first maintenance level corresponds to the“Do
nothing" case, that the seconds maintenance level l = 1 corresponds to a minimal repair action whose age reduction and
adjustment coefficients are θi j1 = 1 and ξi j1 = 1, that the highest level l = Li j = 8 is the replacement action whose age
reduction and adjustment coefficients are θi j8 = 0 and ξi j8 = 1. The value corresponding to the age reduction and adjustment
coefficients θi jl and ξi jl assigned to each intermediate maintenance level l are given in Table 1.

The single component Pi j is considered to have survived the mission that just ended (i.e. Xi j = 1) with an age Ai j = 10.
The duration U of the next mission is a truncated Normal distribution N (8,1.5) defined on the support [7, 12] with its
corresponding pdf drawn in Figure 3. The required minimum reliability level R0 for the next mission is set to R0 = 70%.

Since the component is still functioning at the end of the current mission, only preventive replacement cost C p
i j and

corresponding preventive replacement duration T p
i j are computed. The preventive replacement cost is set to C p

i j = 10. Hence,
the cost C p

i jl for each intermediate maintenance level l = 2, . . . , 8 are obtained according to Equation (4). The preventive
replacement duration T p

i j is a random variable governed by a Gamma distribution Gam(α
p
i jl , 1) and its corresponding expected

value E[T p
i j ] = α

p
i jl is set to E[T p

i j ] = 2.5. The expected duration values E[T p
i jl ] for intermediate maintenance levels can be

derived from Equation (10). The maintenance level l = 1 corresponding to a minimal repair action is not eligible since the
component under consideration is still functioning at the end of the current mission.

In what follows, we compare and analyse the results of the optimisation problem obtained in the deterministic case
(average durations) and stochastic case (full distribution of the durations).

Let us first evaluate the reliability of the component to complete the next mission in terms of each maintenance level. The
results obtained are given in Table 2 for both the deterministic and random (stochastic) mission duration. In the stochastic
case, the reliability values are computed according to Equation (13). In this table, maintenance level l = 0 corresponds to the
‘Do nothing’ case. This table also displays the difference in reliability between the deterministic and stochastic approaches.
One may indeed observe that the reliability error rises beyond 2% for the instance considered.
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Table 2. Component reliability results obtained from deterministic and stochastic cases of mission duration U : case of Experiment #1.

Maintenance
level l

Reliability in %
(deterministic)

Reliability in (%
(stochastic)

Error in
Reliability%

0 69.91 67.77 2.14
1 – – –
2 70.44 68.08 2.36
3 72.23 69.93 2.30
4 74.03 71.81 2.22
5 75.85 73.70 2.15
6 77.69 75.62 2.07
7 79.55 77.57 1.98
8 83.44 81.63 1.81

Given the required minimum reliability level R0 = 70%, the no maintenance level (l = 0) results in a reliability which
is not feasible in both stochastic and deterministic cases. This leads to the absolute need to improve the component reliability.
In the deterministic case, selecting maintenance level l = 2 is sufficient to meet the required reliability for the next mission.
Indeed, performing a maintenance of level 2 results in a reliability value of 70.44% which is greater than the minimum
required reliability of 70%. However, with a maintenance level 2, the resulting reliability value in the stochastic case is only
68.08%, which is rather insufficient to meet the required minimum reliability level. The stochastic case suggests to perform a
PM action with level at least equal to l = 4. This minimum maintenance level results in a component reliability improvement
of 4.04% when compared to the level 0 option. Once again, this small case demonstrates the fact that it is more effective to
consider the more realistic stochastic aspect of mission durations when dealing with maintenance optimisation problem in
general, and in selective maintenance optimisation problem in particular.

Let us now consider the additional chance constraint represented by Equation (24) in the SSMOP. Let us assume that the
pdf fD(t) and cdf FD(t) of the stochastic break duration D are defined on a support [Dmin, Dmax] = [1, 4] meaning that
the break duration lies between Dmin = 1 and Dmax = 4. In the present example, we also assume that D is governed by a
truncated Normal distribution N (1.4,0.5), its corresponding pdf is drawn in Figure 4. The average value of the break duration
is E[D] = 1.58 which is greater than the average maintenance duration E[T p

i jl ] = 1.53 required to carry out the PM action
of level l = 4. On average, the PM action of level 4 can be executed during the break. However, if the stochastic approach
is considered, the chance to carry out this PM action is computed as the probability Pr(D ≥ T p

i jl) where l = 4 such that:

Pr(T p
i jl ≤ D) =

∫ Dmax

Dmin

G p
i jl(t) fD(t)dt. (41)

Using Equation (31), we then have:

Pr(T p
i jl ≤ D) = 1



(
α

p
i jl

) ∫ Dmax

Dmin



(
α

p
i jl , t

)
fD(t)dt. (42)

The above integral is evaluated to 61.17%, meaning that the maintenance action of level l = 4 is a feasible solution of the
stochastic selective optimisation problem if and only if the service ratio level τs is set to a value less than or equal to 61.17%
(τs ≤ 61.17%). There still exists a 38.83% risk that the maintenance action will not be performed. Once again, this simple
example clearly demonstrates how the stochasticity of the break duration may also impact the maintenance decisions.

6.2 Experiment # 2: Analysis of a multi-component system

In this second experiment, the impact of stochastic mission and break durations as well as that of the maintenance times on
selective maintenance decisions is studied for a series–parallel system S. This system is composed of two series subsystems Si ,
where the first is composed of N1 = 3 parallel components P1 j ( j = 1, 2, 3), while the second contains N2 = 2 components
P2 j ( j = 1, 2) in parallel. The failure times of the system component Pi j follow a Weibull distribution whose shape and
scale parameters are, respectively, given by βi j and ηi j (i = 1, 2 and j = 1, . . . , Ni ). Values of these parameters are shown
in Table 3. This table shows also the value of Ai j corresponding to the age of components Pi j at the end of the current
mission, in addition to the value of the state variables Xi j corresponding to the operating state (functioning or failed) of
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Figure 4. Plot of the pdf of the break duration: case of Experiment #1.

Table 3. Components’ lifetimes parameters and their corresponding current operating states and age: case of Experiment #2.

Pi j βi j ηi j Xi j Ai j

P11 3 22.5 1 5
P12 2.8 30 0 7.5
P13 2.5 30 0 5
P21 1.75 22.5 1 5
P22 1.8 30 0 7.5

Table 4. Maintenance levels and their respective age reduction and adjustment coefficients values: case of Experiment #2.

l 1 2 3 4 5 6 7 8

θi jl 1 0.35 0.3 0.25 0.2 0.15 0.1 0
ξi jl 1 1.25 1.2 1.15 1.1 1.05 1.02 1

components. According to this table, only components P11 and P21 survived the current mission (X11 = X21 = 1) while the
other components are in the failed state.

In this experiment, all components are assigned in the same list of nine potential maintenance levels {0, 1, . . . , 8}. The
values corresponding to the age reduction and adjustment hazard rate coefficients θi jl and ξi jl corresponding maintenance
level l ≥ 1 are given in Table 4. Table 5 gives the time T mr

i j and the cost Cmr
i j of a minimal repair as well as the durations T p

i j ,
T c

i j , and the costs C p
i j and Cc

i j of preventive and corrective replacements, respectively. Costs corresponding to the intermediate
maintenance levels are obtained via Equations (3)–(5), while their durations are derived from Equations (9)–(11).

For the analysis below, we assume that the duration U of the next mission is stochastic and governed by a truncated
Normal distribution N (16, 2.5) on the support [14,24] (its pdf is drawn in Figure 5). The duration D of the break is assumed
to follow a truncated Normal distribution N (8, 0.5) on the support [4,10] (its pdf is drawn in Figure 6).We also set the
required minimum level of the system reliability R0 for the next mission to R0 = 82%. We also require that the optimal
maintenance plan should be completed with a minimum required probability of τs = 75%.
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Table 5. Values of times and costs of minimal repair and that of preventive and corrective replacements: case of Experiment #2.

Pi j E[M RTi j ] M RCi j E[RT p
i j ] RC p

i j E[RT c
i j ] RCc

i j

P11 0.8 5 0.8 70 2.4 80
P12 0.8 6 0.8 75 2.4 85
P13 1.2 6 0.4 50 3.2 70
P21 1.2 6 0.4 60 3.2 70
P22 1.2 5 0.41 60 3.2 70

Figure 5. The pdf corresponding to the duration of the next mission: case of Experiment #2.

If no maintenance is performed on the system components, the probability of the system successfully completing the
next mission is evaluated to Rc = 16.85% in the stochastic case and equal to Rc = 19.86% in the deterministic case. In
both cases, reliability values are indeed lower than that required to execute the mission. Solving the selective maintenance
problem is therefore needed to improve the system reliability.

Given the required minimum reliability level R0 together with the limited stochastic time D of the break, if the selective
maintenance problem is solved by assuming the deterministic duration of the next mission (i.e. the next mission duration is
set to 16 which is the deterministic value of U ), in this case the optimal solution suggests the following selective maintenance
plan. All system components, except component P11, are selected to receive a maintenance action. A minimal repair is carried
out on component P12. Components P13 and P22 are selected to undergo CM actions of levels 4 and 7, respectively, while
component P21 receives a PM of level 7. This maintenance plan is likely to be completely performed during the break
with probability 85.11%. The resulting system reliability and the expected total cost induced by maintenance actions are,
respectively, Rc = 82.04% and T MC = 120.51.

Applying the above maintenance plan in the case where the duration of the next mission is stochastic leads to a system
reliability equal to 78.63% which is indeed less than the required minimum reliability level R0 = 82%. In the stochastic
case, this selective maintenance plan is unfortunately unable to allow the system reliability to reach the required minimum
level for the next mission. Thus, if for some reason, the mission duration is extended, there will be then a high risk to operate
the mission with the required reliability level.

If this same selective maintenance problem is now solved while considering the duration of the next mission to be
stochastic, the following selective maintenance plan is obtained according to which components P11 is selected to receive
a PM of levels 5. Furthermore, a preventive replacement is performed on component P21, a minimal repair is executed on
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Figure 6. The pdf corresponding to the break duration: case of Experiment #2.

component P13, while CM of levels 5 and 7 are, respectively, carried out on components P12 and P22. This maintenance plan
could be achieved with probability τs = 76.07%. The resulting system reliability is 82.05%. The total cost induced by this
selective maintenance plan is T MC = 200.84.

7. Conclusion

This paper addressed the selective maintenance optimisation problem for a multi-component system. For each component
of the system, a list of maintenance actions is available from minimal repair to replacement through imperfect maintenance
actions. The more general imperfect maintenance model, namely the hybrid hazard rate model is used to characterise the
reliability improvement for the components in the system. The system performs several missions separated by scheduled
breaks during which maintenance activities can take place. Durations of both breaks and missions are considered as
random variables governed by appropriate probability distributions. Furthermore, maintenance durations are also considered
stochastic and follow given probability distributions. All these distributions are fully accounted for and integrated in the
selective maintenance formulation resulting in a non-linear stochastic optimisation programme.

We demonstrated the importance of solving the selective maintenance problem as a stochastic optimisation programme and
illustrated this approach on a series–parallel system. Experiments are conducted and their results are discussed. Comparisons
are provided between the proposed approach and earlier approaches where both break and mission durations are assumed
deterministic. The proposed stochastic selective maintenance problem provides more effective solutions in terms of risks
related to the execution of the selected maintenance plan. Furthermore, considering mission durations as stochastic rather than
deterministic allows efficient and accurate evaluation of the system probability to successfully complete the next mission.

Future extensions include the investigation of new exact and heuristics approaches to solve the large-scale version of
the problem investigated in this paper. Additional extensions should target more complex multi-component configurations
such as the k-out-of-n structures. Studying trade-off between several objectives while considering multiple repair resources
is also a major importance issue to deal with for selective maintenance.
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