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NOMENCLATURE

Symbols 

B [m2] Effective permeability 

Bi [-] Biot number 

cp [J/(kg·K)] Specific heat capacity 

dC  [-] Drag coefficient 

D [m2/s] Diffusivity 

d [m] Diameter 

e [-] Emissivity 



E  [W/m] Energy rate 

EF [-] Enhancement factor 

sse  [-] Particle-particle restitution coefficient 

E(t) , E( )  [-] RTD function 

F(t) , F( )  [-] Cumulative RTD function 

g [m/s2] Gravity constant 

0,ssg  [-] Radial distribution function 

h [W/(m2·K)] Heat transfer coefficient 

HHV [MJ/kg] Higher heating value 

I  [-] Unit tensor 

2DI  [-] Second invariant of the deviatoric stress tensor 

k [1/s] Reaction rate 

L [m] Characteristic length 

M [wt.%] Moisture content 



Nomenclature 

ii 
 

MD  Mean deviation 

MW [kg/mol] Molecular weight 

n [-] Number of variables 

P [Pa] Pressure 

Py/Py’ [-] Internal/external pyrolysis number 

q [W/m3] Net heat flux at particle surface 

Q [W/m3] Heat source 

r [m] Radius 

 [kg/(m3·s)] Pyrolysis rate 

R [kg/(m3·s)] 
Interphase mass transfer term due to interfacial 
reactions or moisture evaporation 

R2 [-] Coefficient of determination 

Rcons 
[8.314 
J/(mol·K)] 

Universal gas constant 

Re [-] Relative Reynolds number 

S [kg/(m3·s)] Net formation rate of a species 

t [s] Time 

T [K] Temperature 

u [m/s] Velocity 

V [m3] Volume 

w [-] Weight fraction 

X [-] Variable 

Y [-] Mass concentration or mass yield 

z [-] Axial position 

Greek letters 

  [kg/(m3·s)] Interphase momentum exchange coefficient 
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 2  [-] Variance of RTD 


2  [-] Dimensionless variance of RTD 

θ [-] Dimensionless variable 

s  [m2/s2] Granular temperature 

ε [-] Porosity or volume fraction 

ρ [kg/m3] Density 

λ [W/(m·K)] Effective conductivity 

  [Pa·s] Bulk viscosity 

μ [kg/(m·s)] Dynamic or shear viscosity 

σ [W/(m2·K4)] Stefan–Boltzmann constant 

∆H [kJ/kg] Heat of reaction 

v  [-] Sum of the atomic volumes 

η [-] Yield 

  [Pa] Stress tensor 

s  [kg/(m3·s)] 
Collisional dissipation of the fluctuating kinetic 
energy 

  [º] Angle of internal friction 

sg  or gs  [kg/(m2·s2)] 
Interphase momentum exchange due to 
interphase reaction or moisture evaporation 

s
k  [kg/(m·s)] Diffusion coefficient 

gs  [-] 
Interphase fluctuating energy exchange 
coefficient 

  [Hz] Screw rotating frequency 

Subscripts 

0  Initial condition 

2  The second heating stage 
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c or char  Char 

c1  Primary char 

c2  Secondary char 

clearance  Clearance between the flight and the shell 

collision  Collisional term 

convective  Convective heat transfer 

direction  
Parallel to and across grain direction of the 
biomass particle 

eff  Effective parameter 

energy  Energy 

exp  Experimental data 

external  External of the particle 

f  At the end of the pyrolysis or torrefaction 

feedstock  Raw biomass, dry basis 

flight  Flight of the reactor 

friction  Frictional term 

g  Gas phase 

g1  Primary non-condensable gases 

g2  Secondary non-condensable gases 

i,j  Species i or j 

in  Energy flowing into 

inert  Inert gas (N2) 

is  Intermediate solid product 

kinetic  Kinetic term 

m  Mean 

max  Maximum 

mixture  Gas mixture  



Nomenclature 

v 
 

mod  Model results 

n  Species n 

out  Energy flowing out 

p  Particle 

pitch  Pitch of the reactor 

radiative  Radiative heat transfer 

reactor  Pyrolysis reactor 

residual  Solid residual 

s  Solid phase or particle surface 

screw  Rotating screw of the reactor 

shaft  Shaft of the reactor 

shell  Sell of the reactor 

shrink  Particle shrinkage 

solid charry 
product 

 Solid product from biomass pyrolysis 

t  Tarry product 

w  Virgin biomass 

wall  At the shell of the screw reactor 

water  Water  

wave  Thermal wave 

Abbreviation 

BET  Brunauer–Emmett–Teller 

CFD  Computational fluid dynamics 

CPM  Comprehensive particle model 

DEM  Discrete element method 

FC  Fixed carbon 



Nomenclature 
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FEM  Finite element method 

GPC  Gel permeation chromatography 

HHV  Higher heating value 

ODE  ordinary differential equations 

PDE  Partial differential equations 

RTD  Residence time distribution 

SPM  Simplified particle model 

TGA  Thermal gravimetric analysis 

UCM  Uniform conversion model 

USCM  Unreacted-shrinking-core model 

VM  Volatile matter 

3D  Three-dimensional 
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ABSTRACT	

Biomass as a renewable energy source can be converted into gas, liquid and 

char through pyrolysis. Char (biochar or charcoal) produced from biomass pyrolysis 

(particularly slow pyrolysis) has gained increasing interest for its potential 

applications in combustion, as soil amendment and in preparing functional carbon 

materials. Char production from biomass pyrolysis involves complex physical and 

chemical phenomena occurring at different scales (particle and reactor scale) and in 

multiple phases (non-condensable gases, condensable tarry vapors and solids). 

Computational modeling is a useful tool for simulating these complex physical and 

chemical phenomena. In this thesis, a multiscale modeling study was performed to 

investigate the coupled transport phenomena and pyrolysis reactions in producing 

char (and non-condensable gases as well as condensable tarry vapors at the same 

time) at both particle scale and reactor scale. 

At the particle scale, a general kinetic scheme without considering biomass 

composition and a comprehensive kinetic scheme considering biomass composition 

(cellulose, hemicellulose and lignin) were both coupled to the transport phenomena, 

and three-dimensional (3D) comprehensive particle models (CPMs) were then 

established. While the CPM with the general kinetic scheme can describe the 

intraparticle transport phenomena and the production of primary and secondary char, 

the CPM with the comprehensive kinetic scheme considering on biomass 

composition can further describe the char production from the pyrolysis of different 

biomass species/types (e.g. hardwood and softwood). Simulation results from these 

CPMs were extensively compared to experimental data available in the literature, 

and mean deviations (MDs) between modeling results and experimental data were 
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31 K with respect to the intraparticle temperature, 6.0 wt.% with respect to the 

residual solid mass fraction, and 3.6 wt.% with respect to the final char yield, at 

operating temperatures ranging from 623 K to 773 K for a cylindrical wood particle 

with a diameter of 2 cm and a length of 10 cm. Modeling results with respect to the 

intraparticle conversion of tarry vapors (1.8 wt.%, 4.9 wt.% and 6.7 wt.%, feedstock 

dry-based) were comparable to the experimental data (4.6 wt.%, 5.3 wt.% and 7.2 

wt.%, feedstock dry-based) for three wood cylinders with 8 mm in diameter and with 

lengths of 2 mm, 5 mm and 9 mm, respectively, at a heating rate of 30 K/min to a 

temperature of 873 K. These comparisons between the modeling results and 

experimental data demonstrated the accuracy of the models. The models were 

further applied to study the importance of the intraparticle secondary charring 

reactions due to the conversion of the primary volatiles when they are flowing out of 

the biomass particle. Results showed that the secondary char can account for up to 

26 wt.% of the total char for wood cylinders with a diameter of 2 cm and a length of 

10 cm in slow pyrolysis at atmospheric pressure. The effects of parameters, including 

physical properties of the biomass particle (particle size and particle shape), and 

process conditions (heating rate, peak temperature, pressure, and external particle 

concentration of reactive volatiles) on the char production, particularly on the 

secondary char production, were studied with the particle model. Particularly, at 

thermally thin pyrolysis regime (at a heating rate of 30 K/min), a critical particle size 

of 2.5 mm, at which the intraparticle secondary charring reactions start to be relevant, 

was determined with the present models. 

The 3D CPM was further simplified for reducing computational time by only 

considering the dominant intraparticle physical and chemical phenomena in a 1D 

model. A space-time integral method was used in simplifying the 3D CPM, which 
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resulted into a simplified particle model (SPM). In this SPM, the intraparticle heat 

transfer was described by a group of linearized equations, which substantially 

reduces the model complexity compared to the partial differential equations (PDEs) 

in the CPM. The SPM was applied to describe the slow pyrolysis (at torrefaction 

conditions) of biomass. The capability of the SPM in predicting the time evolution of 

the residual solid mass fraction (and hence char production) was demonstrated by 

comparing the modeling results with the experimental data (MD of less than 3.0 wt.%, 

feedstock dry basis) for the pyrolysis of a cylindrical biomass particle with a diameter 

of 2.54 cm and a length of 15.24 cm at operating temperatures ranging from 513 K to 

553 K. In addition, the SPM was found to run over 100 times faster compared to the 

CPM. The applicability of the SPM was further studied to address the limitations of 

this model. Results showed that the SPM can be applied to predict the biomass 

pyrolysis (at torrefaction conditions) for a centimeter-sized or larger cylindrical 

biomass particle with an aspect ratio larger than 3 within the temperature range of 

473~573 K. 

At the reactor scale, a computational fluid dynamics (CFD) model was 

developed based on the Eulerian-Eulerian method for a screw reactor aimed at 

conducting biomass pyrolysis to produce char. A comprehensive kinetic scheme 

considering the biomass composition (cellulose, hemicellulose and lignin) was 

incorporated into the CFD model. The model was validated against experimental 

data from literature (of a 2 kg/hr torrefaction screw reactor unit) with respect to the 

total solids mass holdup in the screw reactor (modeling results of 86.1 g, 65.2 g and 

49.4 g versus experimental data of 109.9 g, 69.5 g and 51.4 g), the degree of fullness 

(modeling results of 0.20, 0.12, and 0.09 versus experimental data of 0.18, 0.13 and 

0.10) and the mean solids residence time (152.4 s, 112.8 s and 84.6 s versus 
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experimental data of 166.7 s, 100.5 s and 77.0 s) at steady-state inside the reactor at 

three corresponding screw rotating frequencies of 0.243 Hz, 0.364 Hz and 0.486 Hz. 

Modeling results were also validated against the experimental data with respect to 

the steady-state axial temperature distribution in the screw reactor (MD of 12.6 K) at 

the operating temperature of 598 K, and the products mass yields (MDs of 7.7 wt.%, 

6.2 wt.% and 1.7 wt.% for the mass yields of solid char, liquid product, and gas 

product, respectively) at three operating temperatures of 598 K, 623 K and 648 K. 

With the CFD model, the flow dynamics, residence time distribution (RTD) and back-

mixing of the solid phase inside the screw reactor were further analyzed. Potential 

mechanisms of solids back-mixing were proposed. Simulation results showed that 

solids back-mixing occurred in two different ways. The first way is solids back-

leakage, which is defined as particles near the bottom shell tending to leak behind 

the main solids stream and underneath the screw, since the solids forward 

transportation velocity in close proximity of the bottom shell is lower than that in the 

bulk of the solids. The second way is solids back-flow, which is defined as particles 

being flung over the shaft and falling down toward the succeeding pitch. 

The CFD model was used to predict the elemental composition (C, H and O) of 

the solid char, which was compared against the experimental data with MDs of 1.6 

wt.%, 0.9 wt.% and 2.5 wt.% for the mass fractions of C, H and O, respectively. The 

predicted elemental information was then used to predict the energy density (higher 

heating value, HHV) and the energy yield of the solid char, which was also compared 

against the experimental data with MDs of lower than 1.0 MJ/kg for the HHV and of 

lower than 9.4% for the energy yield. Simulation results indicate that the CFD-based 

reactor model was capable of predicting the flow dynamics of biomass particles, and 
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the yields (mass and energy) and the quality (in terms of HHV) of the resulting solid 

char in the screw reactor. 

The multiscale modeling study in this thesis investigated some critical physical 

and chemical phenomena (e.g. quantification of intraparticle secondary charring 

reactions, simplification of particle model, prediction of product quality based on CFD 

simulation in a pyrolysis reactor) for char production during biomass pyrolysis at 

particle and reactor scales. The contents addressed in the thesis provide a multiscale 

modeling view for producing char through biomass (slow) pyrolysis. The thesis also 

concludes with directions for future modeling works, which should focus on the 

implementation of more comprehensive and accurate pyrolysis kinetic schemes 

provided that the detailed secondary reaction kinetics can be well established for 

individual components (hydroxyacetaldehyde, glyoxal, etc.) in the condensable 

pyrolysis volatiles. In the long term, the CFD-based reactor model could finally be 

used to guide the design, operation and scale-up of pyrolysis reactors for optimizing 

the production of tailor-made (i.e. with specific quality traits) chars. 
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SAMENVATTING		

Biomassa, als een hernieuwbare bron van energie en materialen, kan omgezet 

worden in een gas, een vloeistof en een vast verkoolde product door middel van 

pyrolyse. Kool (zowel ‘biochar’ als houtskool) vervaardigd via pyrolyse van biomassa 

(voornamelijk trage pyrolyse) heeft aan belang gewonnen omwille van de mogelijke 

toepassingen in verbranding, als een grondverbeteraar en in de aanmaak van 

gefunctionaliseerde koolstofhoudende materialen. De aanmaak van kool in de 

pyrolyse van biomassa houdt complexe fysische en chemische fenomenen in, 

dewelke tegelijkertijd optreden op verschillende schaalgroottes (in de individuele 

biomassadeeltjes en op het niveau van de reactor) en in verschillende 

aggregatietoestanden (gas, vloeistof en vast). Numerieke modellen zijn een 

bruikbaar instrument om deze complexe fysische en chemische verschijnselen te 

simuleren. In deze thesis wordt een multischaal modelstudie uitgevoerd om de 

gekoppelde massa- en warmteoverdrachtsverschijnselen en, pyrolysereacties tijdens 

de productie van kool (en niet-condenseerbare gassen alsook de condenseerbare, 

teerachtige dampen) te bestuderen, zowel op deeltjes- als op reactorniveau. 

Met betrekking tot het deeltjesniveau, werden twee schema’s voor de kinetiek 

van de pyrolysereacties (één algemeen schema waarbij biomassa als een homogene 

component werd beschouwd, zonder verder rekening te houden met de 

samenstelling; en een tweede, uitgebreid schema waarbij biomassa werd opgedeeld 

in lignine, cellulose en hemicellulose en de afzonderlijke deelreacties van deze 

componenten in beschouwing werden genomen) gekoppeld aan de warmte- en 

massa-overdrachtsverschijnselen in een driedimensionaal (3D) uitgebreid 

deeltjesmodel (complex particle model, CPM). Hoewel het CPM met algemeen 
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reactieschema de overdrachtsverschijnselen in één enkel deeltje alsook de vorming 

van primaire en secundaire kool kon voorspellen, kon het CPM met uitgebreid 

reactieschema rekening houden met verschillen in samenstelling van de 

biomassabron en de koolvorming voorspellen in de pyrolyse van verschillende 

biomassasoorten (b.v. hard- en zachthout).  

Simulatieresultaten van beide CPM’s werden uitgebreid vergeleken met 

experimentele data die beschikbaar is in de literatuur, en de gemiddelde afwijking 

(mean deviation, MD) tussen model en experiment bedroeg 31 K voor wat de 

tijdsafhankelijke inwendige deeltjestemperatuur betreft, 6.0 gew.% met betrekking tot 

de tijdsafhankelijke residuele vaste fractie, en 3.6 gew.% voor wat de finale 

koolopbrengst betreft en dit binnen verwerkingstemperaturen van 623 tot 773 K.  

Modelresultaten voor de omzetting van teerachtige dampen binnen het één enkele 

deeltje (respectievelijk 1.8 gew.%; 4.9 gew.% en 6.7 gew.% - op basis van 

drooggewicht) waren vergelijkbaar met de experimentele data (respectievelijk 4.6 

gew.%; 5.3 gew.% en 7.2 gew.% - op basis van drooggewicht) voor de trage 

pyrolyse van drie houten cilinders met een gelijke diameter van 8 mm maar met 

verschillende lengtes, van respectievelijk 2, 5 en 9 mm – en dit bij een 

verhittingssnelheid van 30 K/min tot een maximale verwerkingstemperatuur van 873 

K.  

Deze vergelijking tussen de bekomen modelresultaten en de beschikbare 

experimentele data toont de accuraatheid van de modellen aan. De numerieke 

modellen werden vervolgens aangewend om het belang van de secundaire 

koolvormingsreacties door de omzetting van de uit het deeltje stromende primaire 

pyrolysedampen, aan te tonen. Uit de resultaten bleek dat de secundaire kool tot 26 

gew.% deel uitmaakt van de totale kool gevormd uit houten cilindrische deeltjes met 
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een diameter van 2 cm en een lengte van 10 cm in de trage pyrolyse onder 

atmosferische druk. De invloed van parameters, met inbegrip van de fysische 

eigenschappen van het biomassadeeltje (vorm en grootte) en 

procesomstandigheden (verhittingssnelheid, maximale verwerkingstemperatuur, druk 

en de externe concentratie aan reactieve pyrolysedampen) op de vorming van kool, 

meer specifiek op de vorming van secundaire kool, werden met het huidige 3D model 

bestudeerd. Specifiek kon met het model, in een regime waar de interne 

warmteweerstand in het vaste deeltje te verwaarlozen valt, aangetoond worden dat 

de bijdrage van secundaire koolvormingsreacties niet langer te verwaarlozen valt 

vanaf een kritische partikeldiameter van 2.5 mm.  

Het driedimensionale CPM model werd vervolgens vereenvoudigd met als doel 

de rekentijd te beperken. De vereenvoudiging werd gerealiseerd door enkel de 

relevante fysische en chemische verschijnselen op te nemen in het eendimensionaal 

model. De ruimte-tijd-integraal methode werd gebruikt om dit vereenvoudigd 

deeltjesmodel (simplefied particle model, SPM) op te stellen. In dit SPM, werd de 

inwendige warmteoverdracht beschreven door een set van gelineariseerde 

vergelijkingen, dewelke het model aanzienlijk vereenvoudigen in vergelijking tot het 

gebruik van partiële differentiaalvergelijkingen in het CPM. Het SPM werd toegepast 

om trage pyrolyse van biomassa (milde condities, zoals deze in torrefactie) te 

beschrijven. Het vermogen van het SPM om accuraat de tijdsafhankelijke evolutie 

van de residuele vaste massafractie (en dus de koolfractie) te beschrijven werd 

getoetst aan de hand van beschikbare experimentele gegevens (met een MD van 

minder dan 3.0 gew.% op droge basis) van de pyrolyse van een cilindrisch 

biomassadeeltje met een diameter van 2.54 cm en een lengte van 15.24 cm bij 

verwerkingstemperaturen van 513 tot 553 K. Naast de modelaccuraatheid van het 
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SPM, vergde dit een rekentijd tot 100x korter dan het CPM model. De 

toepasbaarheid van het SPM werd eveneens bestudeerd. Resultaten toonden aan 

dat het SPM biomassapyrolyse van centimeter-grote of grotere biomassadeeltjes met 

een vormfactor gelijk aan of groter dan 3 en in een temperatuurbereik van 473 tot 

573 K nauwkeurig kon voorspellen. 

Op het niveau van de reactor, werd vervolgens een numeriek stromingsmodel 

(CFD) op basis van de Euler-Euler methode ontwikkeld voor een schroefreactor 

waarin biomassapyrolyse wordt uitgevoerd voor de productie van kool. Een 

uitgebreid reactieschema, dewelke rekening hield met de samenstelling van de 

biomassa (op basis van cellulose, hemicellulose en lignine) werd geïntegreerd in het 

CFD-model. Het model werd gevalideerd aan de hand van experimentele data uit de 

literatuur (specifiek van een 2 kg/u torrefactie eenheid op basis van 

schroefreactortechnologie). Met aanvaardbare accuraatheid voorspelde het model de 

vaste stofinhoud in de reactor (86.1 g, 65.2 g en 49.4 g voorspeld versus 

respectievelijk 109.9 g, 69.5 g en 51.4 g gemeten), de vullingsgraad van de schroef 

(0.20, 0.12 en 0.09 voorspeld versus respectievelijk 0.18, 0.13 en 0.10 gemeten), de 

gemiddelde verblijftijd van de partikels in de reactor (152.4 s, 112.8 s en 84.6 s 

voorspeld versus respectievelijk 166.7 s, 100.5 s en 77.0 s gemeten) bij steady-state 

omstandigheden en bij schroefsnelheden van respectievelijk 0.243 Hz, 0.364 Hz en 

0.486 Hz. Model-voorspelde resultaten werden ook vergeleken met experimentele 

data met betrekking tot de steady-state axiale temperatuurverdeling (MD van 12.6 K) 

bij een verwerkingstemperatuur van 598 K, de koolopbrengst (MD’s van 7.7 gew.%, 

6.2 gew.% en 1.7 gew.% voor respectievelijk kool, vloeistof en gas) en dit bij drie 

verwerkingstemperaturen van 598, 623 en 648 K. Met behulp van het CFD model 

werd de stromingsdynamica, de verblijftijdsverdeling en terugvloei van de vaste fase 
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in de schroefreactor verder geanalyseerd. Kandidaat mechanismen, met inbegrip van 

terugvloei van vaste deeltjes door het bewegen van deeltjes over de schroefas en 

het terug lekken van deeltjes met een lage transportsnelheid doorheen de ruimte 

tussen de onderkant van de (horizontale) schroef en de reactorwand, werden 

geïdentificeerd als zijnde invloed hebbende op de axiale menging en verblijftijd.   

Het CFD model werd eveneens gebruikt om de elementaire samenstelling (C, H 

en O) van de kool te voorspellen, dewelke werd vergeleken met experimentele data. 

De MD’s bedroegen 1.6 gew.%, 0.9 gew.% en 2.5 gew.% voor de massafracties van 

respectievelijk C, H en O. De model-voorspelde samenstelling werd vervolgens 

aangewend om de bovenste verbrandingswaarde van de kool te berekenen alsook 

de energieopbrengst in de kool. De MD’s lagen lager dan 1.0 MJ/kg voor de 

bovenste verbrandingswaarde van de kool en lager dan 9.4 % voor de 

energieopbrengst. De modelresultaten bewijzen dat het model met voldoende 

accuraatheid de deeltjesstroming, pyrolyse, massa- en energieopbrengsten en, 

koolkwaliteit (bovenste verbrandingswaarde) kan voorspellen in schroefreactoren. 

De multischaal modelering toegepast in deze thesis bestudeerde een aantal 

cruciale thema’s (o.a. kwantificering van de secundaire koolvormingsreacties, 

modelvereenvoudiging, voorspelling productkwaliteit) met betrekking tot 

koolproductie. Daarnaast sluit de thesis af met een aantal aanbevelingen voor 

toekomstig modelgebaseerd onderzoek, met name de implementatie van meer 

uitgebreide reactieschema’s in de modellen alsook het verder experimenteel afleiden 

van dergelijke reactieschema’s, zeker met betrekking tot de secundaire reacties van 

individuele dampfase componenten (hydroxyacetaldehyde, glyoxal, enz…). Het 

ultieme doel is het komen tot betrouwbare CFD-modellen welke gebruikt kunnen 

worden in het ontwerp, de opschaling en het bedrijven van pyrolysereactoren voor de 
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productie van op maat gemaakte (ttz. voldoende aan specifiek vereiste 

eigenschappen) kool. 
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CHAPTER 1 

Introduction  

In this chapter, a general overview on the world’s energy supply will be given 

first. Problems related to conventional fossil energy and the advantage of biomass as 

a renewable energy resource will be discussed. Current utilization technologies for 

biomass will be reviewed. The application of pyrolysis in producing biochar and 

charcoal will then be discussed. Experimental and modeling studies for biomass 

pyrolysis aiming to produce char at biomass particle scale and at pyrolysis reactor 

scale will be reviewed. Finally the outline of the thesis will be given. 
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1. Biomass as renewable energy source 

1.1 Introduction to energy 

Energy is one of the most basic needs of human life and is extremely crucial in 

driving human development. Human civilization is largely dependent on the 

increasingly efficient and extensive utilization of various types of energy to extend 

human capabilities and ingenuity. It is always essential to provide adequate and 

affordable energy for improving human living standards. The growth of the world 

population (United Nations estimates that the world population will increase by 50 % 

from 7.4 billion in the year 2016 to 11.2 billion in the year 2100) has continuously 

driven us to develop methods of generating and utilizing energy while protecting the 

planet. 

Various forms of energy have been employed worldwide to meet human energy 

needs. Conventionally, fossil fuels, including coal, crude oil and natural gas, have 

been the main energy resources for human requirements, and it was estimated in 

2002 that 80 % of the world primary energy demand was met by fossil fuels.[1] 

Although fossil fuels have greatly promoted world economic development in the past 

two centuries, they have brought several concerns. One concern is that the world’s 

reserves in fossil fuels are limited. By taking crude oil as an example, it is estimated 

that about 1000 billion barrels of oil have already been consumed and only 1000 

billion barrels of proven oil reserves are left in the world.[2] Another concern is the 

close relationship between energy utilization and the environment. It is believed that 

fossil fuels have been the major source of anthropogenic CO2 emissions, which are 

responsible for global warming. Coal for power generation and liquid oil products for 

transportation are largely responsible for severe air pollution (e.g. smog), for instance 

in the northern part of China.[3] In addition, fossil fuels are non-uniformly distributed 
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in the world, and it is estimated that about 70 % of the world’s proven oil and gas 

reserves are concentrated in the “energy strategic ellipse”, an area stretching from 

the Arabian Peninsula to Western Siberia as shown in Fig. 1.1.[4] The non-uniform 

distribution of fossil fuels has increased concerns about energy security. 

 

Figure 1.1 The so-called “energy strategic ellipse” for proven oil and reserves[4] 

These concerns about fossil energy have driven the development of alternative 

or renewable energy sources that are collected from renewable resources, that are 

low in emissions of both greenhouse gas and air pollutants, and that are abundant 

and available worldwide. Renewable energy refers to the energy resources that can 

regenerate and can replenish themselves indefinitely. The five renewable energy 

sources used most often are biomass, wind, solar, hydro and geothermal. Among 

these renewable energy sources, biomass, including wood and woody, herbaceous, 

agricultural, aquatic biomass, etc. is so far the only alternative source for renewable 

carbon.[5] More and more research is driven towards the utilization of CO2 in 

chemical reactions, which may constitute a way of generating carbon-containing 

compounds using energy sources other than biomass. The net CO2 emissions from 
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the utilization (e.g. biofuel) of biomass are considered zero since the released CO2 

during biomass utilization can be captured during photosynthesis.[6] In addition, 

since most biomass has a low content of Sulphur, the combustion of biofuels has 

lower emissions of air pollutants (e.g. SO2) than most fossil fuels.[7] Furthermore, 

biomass is abundant and widespread on the planet. Energy from biomass captured 

by land plants each year is estimated to be 3-4 times greater than human energy 

demands. The potential energy from biomass that is accessible to humans is 

estimated to be 1.9×1020 J per year, which is 35 % of the current global energy 

demand.[8] Consequently, increasing interest has been gained to convert biomass 

into renewable fuels and other value-added renewable products.[9] 

1.2 Biomass utilization 

Biomass can be converted into renewable fuels and products through either 

biochemical processes or thermochemical processes, as shown in Fig. 1.2.  

 

Figure 1.2 Biomass utilization through biochemical and thermochemical processes 
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1.2.1 Biochemical processes 

Biochemical processes apply micro-organisms (yeasts, bacteria,…) or enzymes 

to produce – amongst others – bioethanol and biogas (for further providing energy 

and chemical products).[10] One benefit of biochemical processes is that they require 

limited input of external energy. However, biochemical conversion of biomass is a 

slow process. In addition, biochemical processes require hydrolytic pretreatment 

(thermal, acidic, alkaline or enzymatic) to separate cellulose, hemicellulose and lignin 

(macromolecular components of the biomass, which will be discussed later), and 

efforts are required for overcoming the natural resistance of plant cell walls to 

enzymatic and microbial deconstruction, which inevitably increases the cost of the 

biochemical processes.[11, 12]  

1.2.2 Thermochemical processes 

In contrast, thermochemical processes are usually operated at high 

temperatures and consequently these processes can convert biomass in a fast way 

at the input of external energy. Thermochemical processes include, as shown in Fig. 

1.2, combustion, pyrolysis, gasification, and hydrothermal conversion (liquefaction, 

carbonization and gasification). 

1.2.2.1 Pyrolysis versus combustion, gasification and hydrothermal conversion 

Combustion is the complete oxidation process of biomass in the presence of 

excess oxygen to provide heat for domestic or industrial applications.[13, 14] 

Biomass pyrolysis is the thermal degradation of biomass in the absence or with 

limited supply of an oxidizing agent at temperatures ranging from 470 K to 1020 K to 

produce permanent gas, condensable volatiles (liquid/tar/bio-oil) and char 

(biochar/charcoal).[15-17] Catalytic pyrolysis of biomass[18] is also an important field 
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of biomass pyrolysis, but is beyond the scope of the present work and thus not 

discussed. Gasification of biomass is the thermal conversion of biomass in the limited 

presence of an external supply of an oxidizing agent, including pure oxygen, carbon 

dioxide, air and/or steam, to produce fuel gas and syngas (i.e. mixture of CO and 

H2).[19, 20] Biomass hydrothermal conversion refers to the conversion of biomass in 

the liquid phase (e.g. water) aimed either to produce liquid/oil products (named 

hydrothermal liquefaction, at temperatures of 520~670 K and pressures of up to 20 

MPa), or to produce char (named hydrothermal carbonization, at temperatures of 

450~520 K and saturated pressure), or to produce gas products (named supercritical 

water gasification, at temperatures of about 670 K and at the critical pressure of 

water).[21-25] 

Among these thermochemical processes, combustion is the most commonly 

employed technology. However, combustion of biomass can only provide heat. 

Gasification of biomass requires to be operated at high temperatures (around 1070 K 

or higher). Hydrothermal conversion of biomass requires to be operated at high 

pressures, as discussed above. The harsh operating conditions used for gasification 

and hydrothermal conversion bring challenges for the reactor design. In contrast, 

pyrolysis of biomass can be operated in a wide medium temperature range (from 470 

K to 1020 K) usually around atmospheric pressure.[5, 15-17, 26-30] Pyrolysis of 

biomass can provide both energy, fuels and chemical products (gas, liquid/tar/oil, and 

char), and the formation of each of these products can be optimized depending on 

the operating conditions, which can extend the application of pyrolysis and which 

makes pyrolysis one of the promising thermochemical technologies to process 

biomass.[5, 15-17, 26-30] In addition, pyrolysis itself is also an important sub-process 

in other thermochemical processes (gasification and combustion).[9] The pyrolysis 
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products (i.e. biochar, as discussed later) can also be used for carbon sequestration 

and act as a sink for atmospheric CO2, as shown in Fig. 1.3,  which makes pyrolysis 

a potential, so-called carbon-negative technology.[31] 

 

Figure 1.3 Carbon cycle in biomass pyrolysis products when combining energy production 

with biochar production[5] 

1.2.2.2 Pyrolysis: fast pyrolysis versus slow pyrolysis 

Depending on the operating conditions, distinction can be made between fast 

and slow pyrolysis. It should be mentioned that the terms ‘fast pyrolysis’ and ‘slow 

pyrolysis’ are somewhat arbitrary and the literature does not provide a universal 

reaction time and heating rate for each of these terms.  

Fast pyrolysis is particularly designated for maximizing the yield of bio-oil 

(condensable volatile products) usually at a temperature of 670~870 K with a heating 

rate of 103–104 K/s and whereby the vapors are quenched into bio-oil within 1 to 2 

seconds after their formation. [15, 30, 32] Bio-oil can be further upgraded physically, 

chemically and/or catalytically for downstream applications (e.g. as substitution to 
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fossil fuels).[15, 26] Most researches about biomass pyrolysis were focused on fast 

pyrolysis and bio-oil applications.[15, 26] 

In contrast, slow pyrolysis is a technology targeting the production of char at a 

temperature of 470~1020 K with a heating rate of around or lower than 80 K/min. [5, 

16, 17, 27-30] The increasingly extended applications of the char (its potential 

applications as solid fuels in providing heat through co-combustion with coal, as soil 

amendment, and in preparing functional carbon materials,[33-40] which will be 

discussed later) have facilitated slow pyrolysis being a promising technology for 

biomass conversion. Slow pyrolysis covers both carbonization or conventional slow 

pyrolysis and torrefaction,[5] and the typical operating conditions and product mass 

yields of these two slow pyrolysis processes are shown in Table 1.1.  

Table 1.1 Typical operating conditions and product mass yields obtained from different types 

of slow pyrolysis processes. Data is based from Refs.[5, 15, 17, 41, 42] 

Parameter Carbonization Torrefaction 

Temperature >670 K <570 K 

Heating rate <80 K/min ~10 K/min 

Reaction time Hours ~ days <2 h 

Pressure Atmospheric or elevated up to 1 MPa Atmospheric 

Reaction medium Oxygen-free or oxygen limited Oxygen-free 

Liquid 30 wt.% 5 wt.% 

Gas 35 wt.% 15 wt.% 

Char 35 wt.% 80 wt.% 

Carbonization refers to the conventional slow pyrolysis of biomass aiming to 

produce a highly carbonaceous, charcoal-like material. Carbonization has been 

applied to produce charcoal from woody biomass since long in history.[5] 
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In contrast, torrefaction, also named mild pyrolysis, is a thermal pretreatment 

method of biomass for the purpose of upgrading biomass.[17, 41] Torrefaction of 

biomass aims to produce a char (also named torrefied biomass) that has a number of 

advantages over its parent biomass, e.g. lower moisture content, higher energy 

density (as measured by lower, or higher heating value, LHV or HHV), and improved 

grindability (as measured by the grinding energy per unit heating value).[17, 41] 

2. Biochar and charcoal 

2.1 Definition 

In this work, the char is a general term describing any solid product obtained 

from the thermochemical conversion of biomass. Both biochar and charcoal are the 

solid products from the thermochemical conversion of biomass. The terms “biochar” 

and “charcoal” are used only to distinguish among the intended applications of the 

char. The term “biochar” is used when the char is used as a soil amendment while 

the term “charcoal” is applied when the char is meant to be a solid fuel or as a 

reductant in metallurgical smelting applications.[5] The char for other applications, 

which will be described later, may have specific names in the literature. In general, 

the term biochar is used to designate any char made for an application in which the 

carbon in the char is not (rapidly) oxidized. All types of char, regardless of their 

different applications, are produced in a similar way, and they have some common 

properties, which will be described later. To avoid confusion, a universal term “char” 

will be used in this thesis to describe the solid product from the thermochemical 

conversion of biomass. 

2.2 Applications 
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Traditionally, the char from biomass has been used as solid fuel (hence called 

charcoal) for a long time in human history. Even today, it is still an important 

smokeless solid fuel in developing countries. It is estimated that 30 million metric 

tons of charcoal are produced each year in African countries.[43] In addition, it is still 

frequently used as a valuable reductant for smelting and sintering processes in 

metallurgical industries.[5]  

In addition to its conventional applications as solid fuel and reductant, the char 

from biomass has found its potential applications in a broader range (soil amendment, 

functional carbon material, catalysis, etc.) with the development of human technology. 

For instance, the char from biomass has received increasing attention for its potential 

application as soil amendment (hence called biochar) that can mitigate greenhouse 

gas emissions and improve soil health.[33] The idea of adding the char from biomass 

to soil for improving soil fertility was inspired by the ancient agricultural activities that 

created terra preta soils (black soil).[44] These soils occupy up to 10 % of 

Amazonia[45] and are characterized by higher levels of soil fertility than other soils 

without the historic addition of biochar.[44] Furthermore, biochar can increase the 

capacity of soil in retaining water, which makes biochar promising in dealing with 

climate uncertainty.[44] 

Other applications of char from biomass are briefly described here. The char 

with high electrical conductivity, porosity and stability has been proposed as a 

sustainable electrode material in microbial fuel cells.[46] The char with high content 

of structural bound oxygen groups can be used as fuels for the direct carbon fuel 

cell.[47] Materials prepared from the char have been proposed for environmental 

protection and energy storage.[48] By tuning the surface functionalities of the char 

through oxidation, sulfonation, amination, and recombination, valuable functional 
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carbon materials can be produced.[38] In addition, the char can be applied as 

catalyst for removing the detrimental tarry vapors during biomass gasification.[49]  

2.3 Physicochemical properties 

Char from biomass can be characterized both by its physical properties and by 

its chemical properties. Physical properties include specific surface area, morphology, 

etc.. Chemical properties mainly refer to proximate (moisture, ash, volatile matter and 

fixed carbon) and ultimate analyses (elemental composition including C, H, O, N and 

S), and energy density (higher heating value, HHV).[17, 33] 

Experimental techniques based on Brunauer–Emmett–Teller (BET) theory are 

usually applied to measure the specific surface area of the char. It was reported that 

the char from woody biomass pyrolysis at a reaction temperature ranging from 470 to 

970 K had corresponding BET surface areas ranging from 10 to 500 m2/g,[50] which 

requires to be increased through an activation step to allow for certain of its further 

applications (i.e. as activated carbon).[5] Other experimental techniques to 

characterize the char include Fourier transform infrared (FT-IR), Raman 

spectroscopy, etc., which are beyond the scope of this work. 

As a renewable solid fuel, the char is largely different from its parent biomass 

with respect to contents of ash, volatile matter (VM) and fixed carbon (FC), energy 

density (HHV), and elemental composition (mainly C, H and O). Table 1.2 compares 

some chemical properties of biomass, char and coal. This table shows that the char 

has reduced volatile matter content, increased fixed carbon content and increased 

energy density compared to the raw parent biomass. In addition, this table shows 

that the energy density of the char is comparable to coal, which makes the char a 

promising solid fuel in replacing coal. With the increase of the reaction severity (e.g. 
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longer pyrolysis time and/or higher pyrolysis temperature) during biomass conversion, 

higher contents of fixed carbon and lower contents of volatile matter can be expected 

in the char, as shown in Fig. 1.4. However, these compositional changes under more 

severe reaction conditions are also met by lower char yields. 

Table 1.2 Volatile matter (VM), fixed carbon (FC), and higher heating value (HHV) of raw 

biomass, char from biomass and coal[17] 

Material VM (wt.%) FC (wt.%) HHV (MJ/kg) 

Raw biomass 67-88 0.5-20 15-20 

Char from biomass pyrolysis 34-55 13-45 16-29 

Coal 0.5-50 46-92 25-35 

 

Figure 1.4 Fixed carbon (FC) versus volatile matter (VM) in chars under varying reaction 

severity, adapted from Chen et al.[17] 

Ultimate analysis quantifies the elemental composition in both the raw biomass 

and the char. Biomass mainly contains C, O and H in decreasing order of abundance 
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(weight fraction) and other elements in much lower amounts (N, S, Ca, K, Si, etc.).[7] 

Biomass feedstock (dry basis) has an atomic O/C ratio of 0.4-0.8, and an atomic H/C 

ratio of 1.2-2.0, as shown in Fig. 1.5. During pyrolysis, with the devolatilization of 

biomass, carbon tends to concentrate into the char while hydrogen and oxygen tend 

to evolve into gas and liquid product. As a result, the char has a higher carbon 

content. Fig. 1.5 shows the relationship between the atomic ratio of O/C and the 

atomic ratio of H/C, in the so-called “van Krevelen” diagram, for various carbon-

containing materials. This figure shows that the char (charcoal) has lower atomic 

ratios of H/C and O/C than the raw biomass, indicating that the char has a higher 

carbon-content than the raw biomass. The enrichment of carbon in the char can 

substantially increase the energy density of the char compared to its parent 

biomass.[34] The close relationship between the elemental composition and the 

energy density (HHV) of the char also indicates that the accurate prediction of the 

elemental composition (mainly C, H and O) would allow for the prediction of the 

energy density of the char. 
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Figure 1.5 The van Krevelen diagram for various materials, adapted from van der Stelt et al. 

(2011).[41] 

2.4 Production 

All thermochemical conversion processes of biomass, except combustion can 

produce char. Table 1.3 lists some of the typical thermochemical processes and their 

char yields. Among these thermochemical processes, slow pyrolysis (covering 

carbonization and torrefaction, as discussed in Section 1.2.2.2) is characterized by 

lower heating rates (up to, but often much lower than 100 °C/min) that incur 

maximum yields in char, and therefore it is a suitable technology for char 

production.[5, 29]  
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Table 1.3 Typical reaction conditions and char yields for various thermochemical processes 

of biomass 

Thermochemical 
process 

Temperature (K) Residence time, 
(s/min/h/days) 

Yield of char 
(wt.%) 

References 

Slow pyrolysis 470~1020 Min to days 20~80 [5, 15, 17, 28-
30, 41, 42] 

Fast pyrolysis 670~870 Few seconds 10~20 [15, 30, 32] 

Gasification 1070~1270 5~20 s 10 [51, 52] 

Hydrothermal 
carbonization 

450~520 1~12 h 30~60 [21, 22, 53] 

2.5 Physical and chemical phenomena occurring during biomass pyrolysis for 

char production 

The production of char from slow pyrolysis involves multiscale/level multiphase 

phenomena.[9] From a broad point of view, the multiscale/level phenomena include 

the atomic and molecular level of intrinsic chemical pyrolysis reactions, the particle 

level with the influence of intraparticle transport phenomena, the reactor level with 

the influence of hydrodynamics and mass and heat transfer, the industrial plant level 

with the effect of upstream and downstream operations, and the ecological system 

with the effect of ecological conditions. “Multiphase” refers to the gas phase (inert 

gas being N2 and non-condensable gas product), the liquid phase (condensable 

liquid/tar/bio-oil product) and the solid phase (virgin biomass and char) 

simultaneously present in the system. The in-depth understanding of these multiscale 

and multiphase phenomena is critical in optimizing the production of char.  

Specifically, the following will briefly introduce the char production from biomass 

slow pyrolysis covering the particle and the reactor scale (phenomena at other scales, 

e.g. atomic and molecular scale, industrial plant scale, and ecological system scale, 

as discussed above, are beyond the scope of this thesis).  
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Figure 1.6 Physical and chemical phenomena occurring during biomass pyrolysis at the 

particle scale 

At the particle scale, physical and chemical phenomena occur in the following 

sequences driven by the heat input at the particle surface, as shown in Fig. 1.6. First, 

heat is transferred into the particle from the particle surface, as a result of which the 

particle (from external part to internal part) is heated, which drives the evaporation of 

moisture (for wet biomass particle). The dried biomass particle finally heats up to the 

temperature at which pyrolysis reactions occur to form primary char and primary 

volatiles. While the primary char is left inside the particle, the primary volatiles flow 

out of the particle. During the outflow, the primary volatiles (usually the reactive 

components in primary volatiles) can undergo secondary reactions through 

homogeneous cracking (usually at temperatures higher than 870 K[20, 54]) and 

heterogeneous reactions (by interacting with the mixture of solid biomass and char at 

relatively lower temperatures of around 670 K [55]), which produce secondary char 

and secondary volatiles. At the reactor scale, the coupled transport phenomena and 

pyrolysis reactions occur in a much more complex way and are influenced by many 

factors, which will be described later. In the reactor, the long reaction process for 

slow pyrolysis will provide enough opportunity for the primary volatiles to interact with 
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the solid mixture of biomass and char, which promotes the production of secondary 

char. Therefore, at both particle scale and reactor scale, the char during the slow 

pyrolysis is a mixture of primary and secondary char. It should be mentioned that the 

production of secondary char through the homogeneous and heterogeneous 

conversions of the primary volatiles (named secondary charring reactions) is 

dependent on the biomass species, physical properties of the biomass particle (e.g. 

size and shape) and the operating conditions (e.g. heating rate, temperature, 

pressure and vapor residence time), which will be discussed later. 

3. Pyrolysis kinetics 

Mathematical description of the pyrolysis kinetics coupled with the transport 

phenomena at particle scale and at reactor scale results into advanced 

computational models for predicting biomass pyrolysis at particle scale and at reactor 

scale. The pyrolysis reaction kinetics were proposed by researchers to describe the 

mass loss process of the virgin biomass and to describe the formation process of 

char and volatiles. In this part, the properties of the feedstock (biomass) will be first 

discussed, and then various kinetic schemes proposed in previous literature reports 

will be dealt with. 

3.1 Feedstock characterization 

Lignocellulosic biomass, regardless of its origin, is generally a complex mixture 

of organic matter and, in lower amounts, inorganic matter (salts or minerals) and 

water (bound or hygroscopic water and free or capillary water).[7] In biomass, the 

organic matter refers to the macromolecular substances, including cellulose, 

hemicellulose, lignin and, to a lesser extent, extractives, with cellulose accounting for 
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40-44 wt.%, hemicellulose for 25-30 wt.%, and lignin for 18-35 wt.% depending on 

the type (hardwood or softwood) of the dry biomass.[56]  

The typical chemical structures of cellulose, hemicellulose and lignin are shown 

in Fig. 1.7. As shown in this figure, cellulose is composed of a long (degree of 

polymerization, DP, up to 10000), linear polymer of glucose. On the other hand, 

hemicellulose is a mixture of various polymerized monosaccharides (glucose, 

mannose, galactose, xylose, arabinose, etc.), exhibits a low degree of polymerization 

(DP ~ 200) and is a branched polymer. Finally, lignin is a complex polymer made of 

aromatic (phenolic) structures. 
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Figure 1.7 Chemical structures of cellulose,  hemicellulose and lignin[16] 

The pyrolysis of biomass mainly refers to the thermal conversion of cellulose, 

hemicellulose, and lignin. Therefore, chars as well as volatile products are a complex 

mixture of primary char and volatiles, respectively, from the individual conversions of 

these macromolecular components and secondary char and volatiles (respectively) 

from the homogeneous and heterogeneous conversions of the primary volatiles.[9, 

16] 

The pyrolysis of hemicellulose and cellulose is faster with lower yields of char 

compared to the pyrolysis of lignin.[57] At atmospheric pressure, hemicellulose 

mainly decomposes at temperatures of 490~590 K with char yields ranging from 15 

wt.% to about 40 wt.%, while cellulose pyrolysis occurs at 590~670 K with char yields 

of 3.3-11.3 wt.% depending on the crystallinity of the cellulose.[36, 58-63] The 

pyrolysis of lignin at atmospheric pressure occurs at a wide temperature range of 

430~1170 K with a higher char yield (~40 wt.%) compared to the pyrolysis of 

cellulose and hemicellulose.[57] The higher char yield from lignin is mainly due to the 

fact that lignin is full of aromatic structures, as shown in Fig. 1.7, which can be easily 

to repolymerize into char. In addition, lignin already has a higher carbon fraction 

compared to cellulose and hemicellulose. The mass fraction of carbon in lignin is 

over 60 wt.% (e.g. one typical composition of lignin C15H14O4 with a carbon content of 

70 wt.%), while in cellulose it is about 44 wt.% (C6H10O5) and in hemicellulose it is 

about 45 wt.% (e.g. C5H8O4). Therefore, biomass with higher content of lignin 

normally results in higher char yields during pyrolysis. 

3.2 Reaction kinetics 
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Pyrolysis kinetics for biomass have been extensively investigated, and various 

kinetic models/schemes have been proposed.[9, 64-66] The names of these models 

vary in literature. However, these kinetic models have the similar objective to 

describe the evolution of the residual solid mass and the product distribution during 

biomass pyrolysis.  

3.2.1 Global kinetic model 

The simplest kinetic model for describing biomass pyrolysis is the global kinetic 

model, as shown in Eq. 1.  

ݏݏܽ݉݅ܤ
್ೌೞೞ
ሱۛ ۛۛ ۛۛ ሮ ݎ݄ܽܥ  (1) ݏ݈݁݅ݐ݈ܸܽ

Where ݇௦௦	ሺିݏଵሻ is the reaction rate constant. 

In this kinetic model, the formation rates of char and volatiles are assumed to be 

the same. It was reported that the activation energy for this kinetic model ranges from 

88 to 174 kJ/mol depending on the operating conditions, the experimental techniques, 

and the mathematical calculation methods used in processing the experimental 

data.[17] 

By neglecting the interactions among the components of biomass (cellulose, 

hemicellulose and lignin), the mass loss process of biomass can also be predicted by 

the sum of the mass losses of the individual components using the component-based 

global kinetic, as described in Eq. (2). 

݁ݏ݈ݑ݈݈݁ܥ
ೠೞ
ሱۛ ۛۛ ۛۛ ሮ ݎ݄ܽܥ   ݏ݈݁݅ݐ݈ܸܽ

݁ݏ݈ݑ݈݈݁ܿ݅݉݁ܪ
ೠೞ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ݎ݄ܽܥ   ݏ݈݁݅ݐ݈ܸܽ

݊݅݊݃݅ܮ

ሱۛ ۛۛ ሮ ݎ݄ܽܥ   ݏ݈݁݅ݐ݈ܸܽ

(2)
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Where ݇௨௦ , ݇௨௦ , ݇  are the corresponding reaction rate 

constants for the global conversion of individual components. 

The benefit of the global kinetic model is that it is simple to use in predicting the 

mass loss process of biomass during pyrolysis. However, as this model assumes the 

same formation rates for char and for volatiles, it cannot predict the different product 

distributions for individual biomass components at different heating conditions (e.g. 

lower char yields at higher temperatures).  

3.2.2 One-component competitive model 

In this model, biomass feedstock is regarded as a single component while 

products from biomass pyrolysis are lumped into gas, tar and char. These products 

are formed through competitive reactions with formation rates depending on their 

corresponding kinetic parameters. Secondary reactions of tar are usually considered 

in this kinetic model. Fig. 1.8 shows a typical one-component competitive kinetic 

model considering secondary reactions for pyrolysis of dry biomass.  

 

Figure 1.8 One-component competitive kinetic model considering secondary reactions for 

biomass pyrolysis [67] 



Chapter 1 Introduction 

22 
 

 The benefit of this model is that it allows to predict product distributions at 

different operating conditions (temperature, heating rate, residence time, pressure, 

etc.).[67] The limitation of this model is that it does not distinguish between the 

different components of biomass (cellulose, hemicellulose and lignin) and therefore it 

cannot account for changes in biomass composition. However, it is possible to apply 

this kinetic model to describe the pyrolysis of different biomass species (e.g. 

hardwood and softwood, as described in Section 3.1) on the condition that the kinetic 

parameters of this kinetic model have been correspondingly fitted for a specific 

biomass species. In other words, this kinetic model would have different kinetic 

parameters for describing the pyrolysis of different biomass species, and the kinetic 

parameters resulting from a fit to this kinetic model are only valid for the specific 

biomass species that these kinetic parameters have been tested with. 

3.2.3 Multi-component competitive model 

This model describes the detailed reactions of individual biomass components 

usually by assuming that the interactions in the decomposition of cellulose, 

hemicellulose and lignin are negligible. The detailed mechanistic pyrolysis scheme 

based on biomass pseudo-components (cellulose, hemicellulose, carbon-rich lignin, 

oxygen-rich lignin and hydrogen-rich lignin) originally proposed by Ranzi et al.[68] is 

considered to be one of the most promising kinetic schemes. In this kinetic scheme, 

as shown in Table 1.4, the overall conversion in biomass pyrolysis is regarded as the 

sum of the individual contributions of these biomass pseudo-components. Table 1.5 

shows the detailed information about the components in Table 1.4. 

This reaction scheme uses representative species to describe the composition of 

char and volatiles. Debiagi et al.,[69] Calonaci et al.,[70] and Corbetta et al.,[71] 

performed further adaptation of the original scheme of Ranzi et al.[68] The adaptation 
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of this scheme proposed by Anca-Couce et al.[72, 73] further considered the 

secondary charring reaction. 

Although complex, the multi-component competitive scheme originally proposed 

by Ranzi et al.[68] and its adaptations[69-73] include elemental information (C, H and 

O), which allows to predict the elemental composition of the char and to estimate the 

quality (e.g. higher heating value, or HHV) of the char based on some appropriate 

correlations (e.g. the HHV correlation as a function of the product elemental 

composition from Sheng and Azevedo[74]). In addition, this multi-component 

competitive kinetic model can also be used to describe the different pyrolysis 

behaviors for different biomass species (e.g. hardwood and softwood),[72, 73] which 

extends this model to broader applications than the global kinetic model and the one-

component competitive kinetic model. 

Table 1.4 Detailed multi-component competitive model for pyrolysis of individual biomass 

components from Ranzi et al.[68] 

Reaction 
number 

Reaction 
Kinetic constant [1/s] 
(Activation energy in 
J/mol) 

R1 CELL→CELLA 8 x 1013exp(-192000/RT) 

R2 
CELLA→0.95HAA+0.25GLYOX+0.2CH3CHO+0.2C3

H6O+0.25HMFU+0.2CO2+0.15CO+0.1CH4+0.9H2O
+0.65Char 

1 1010 exp (-126000/RT) 

R3 CELLA→LVG 4T exp (-41800/RT) 

R4 CELL→5H2O+6Char 8107 exp (-134000/RT) 

R5 HCE→0.4HCE1+0.6HCE2 1 1010exp (-130000/RT) 

R6 
HCE1→2.5 H2+0.125H2O+CO+ CO2+0.5CH2O+ 
0.25CH3OH+0.125ETOH+2Char 3109 exp (-113000/RT) 

R7 HCE1→XYL       3T exp (-46000/RT) 

R8 
HCE2→1.5H2+0.125H2O+0.2CO2+0.7CH2O+0.25C
H3OH+0.125ETOH+0.8 G[CO2]+ 0.8 [COH2] +2Char 
   

11010exp (-138000/RT) 

R9 
LIGC→0.35LIGCC+0.1pCOUMARYL+0.08PHENOL
+1.49H2 +H2O +1.32G[COH2]+7.05Char                      41015exp(-203000/RT) 

R10 LIGH→LIGOH+C3H6O 2 1013 exp(-157000/RT) 

R11 LIGO→LIGOH+ CO2                                                     1109 exp(-107000/RT) 
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R12 

LIGCC→0.3pCOUMARYL+0.2PHENOL+0.35 
C3H4O2+1.2 
H2+0.7H2O+0.25CH4+0.25C2H4+1.3G[COH2]+0.5G[
CO]+7.5Char  

5106 exp(-132000/RT) 

R13 
LIGOH→LIG+0.5H2+H2O+CH3OH+1.0G[CO] 
+1.5G[COH2]+5Char  11013 exp(-207000/RT) 

R14 LIG→FE2MACR                                                      8101T exp(-50000/RT) 

R15 
LIG→0.7 H2+H2O+0.2CH2O+0.5CO+0.4 
CH3OH+0.2 CH3CHO +0.2 C3H6O2++0.4 
CH4+0.5C2H4+GCO+0.5G[COH2]+6Char  

1.2 109 exp(-126000/RT) 

R16 G[CO2]→CO2 1105 exp(-100000/RT) 

R17 G[CO]→CO 11013 exp(-209000/RT) 

R18 G[COH2]→CO+H2 51011 exp(-272000/RT) 

 

Table 1.5 The list of components in the kinetic scheme (Table 1.4) from Ranzi et al. [68]) 

Abbreviation Molecular name 
Atomic 
composition 

Reactant   
CELL Cellulose C6H10O5 
HCE Hemicellulose C5H8O4 
LIG-C Carbon-rich lignin C15H14O4 
LIG-H Hydrogen-rich lignin C22H28O9 
LIG-O Oxygen-rich lignin C20H22O10 

Solid product   
CELLA Activated cellulose C6H10O5 
HCE1 Activated hemicellulose 1 C5H8O4 
HCE2 Activated hemicellulose 2 C5H8O4 
LIGCC Carbon-rich lignin 2 C15H14O4 
LIG Lignin C11H12O4 
LIGOH OH-rich lignin C19H22O8 
G[CO2] Trapped CO2 CO2 
G[CO] Trapped CO CO 
G[COH2] Trapped COH2 CH2O 
Char Char C 

Volatile products   
Condensable volatiles   

HAA Hydroxyacetaldehyde C2H4O2 
GLYOX Glyoxal C2H2O2 
C3H6O Propanal (acetone) C3H6O 
C3H4O2 Propanedial C3H4O2 
HMFU 5-Hydroxymethylfurfural C6H6O3 
LVG Levoglucosan C6H10O5 
XYL Xylose monomer C5H8O4 
pCOUMARYL Paracoumaryl alcohol C9H10O2 
PHENOL Phenol C6H6O 
FE2MACR Sinapaldehyde C11H12O4 
CH2O Formaldehyde CH2O 
CH3OH Methanol CH4O 
CH3CHO Acetaldehyde C2H4O 
ETOH Ethanol C2H6O 
H2O Water vapor H2O 

Non-condensable volatiles   
H2 Hydrogen H2 
CO Carbon monoxide CO 
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CO2 Carbon dioxide CO2 
CH4 Methane CH4 
C2H4 Ethylene C2H4 

3.2.4 Other kinetic models 

There are also other kinetic models, including the distributed activation energy 

(DAE) model, the chemical percolation devolatilization (CPD) model, etc.[64, 75]  

In the DAE model, biomass pyrolysis is described by a large number of 

independent parallel reactions (assumed to be first-order or nth-order). These 

reactions are assumed to have different activation energies that can be represented 

by a continuous distribution function (e.g. Gaussian distribution function) to reflect 

variations in the bond strengths of species.[75]  

The CPD model, which was originally proposed to describe coal pyrolysis,[76] 

has been extended to describe biomass pyrolysis.[77] In this model, parallel and 

competitive reactions are assumed to happen considering a chain structure for the 

biomass.[77] 

Both DAE model and CPD models can be used to describe the evolution of the 

residual solid mass fraction during biomass pyrolysis and to predict product yields. 

However, it is difficult to use these two models to predict the detailed elemental 

composition (C, H and O) of the pyrolysis products. 

4. Experimental study of biomass pyrolysis for char production 

As discussed in Section 2.4, char production from biomass pyrolysis involves 

coupled multiscale and multiphase transport phenomena and chemical reactions. 

Plenty of experimental studies have been performed to understand the transport 

phenomena and chemical reactions of biomass pyrolysis occurring at particle scale 

and reactor scale. In this part, the particle scale and reactor scale experimental 
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studies are first discussed, and then the experimental results with respect to 

parameters that can affect char production in biomass pyrolysis will follow. 

4.1 Particle scale experiments 

As discussed in Section 2.4, the char from biomass pyrolysis is potentially a 

mixture of primary and secondary char at the particle scale. The importance of 

secondary char production through intraparticle homogeneous and heterogeneous 

conversion of primary volatiles (named intraparticle secondary charring reactions), 

despite being known for long, has not been well understood.[9] 

Particle scale experimental studies indicated that the intraparticle secondary 

charring reactions can influence both the product yields and the reaction enthalpy. 

[55, 78-80] 

 Zobel and Anca-Couce[78] conducted experiments for the slow pyrolysis of dry 

spherical beech wood particles with a diameter of 25 mm at a heating rate of 18 

K/min to a temperature of 770 K. They found that the intraparticle secondary 

reactions can promote the production of char and are responsible for the exothermic 

global heat of reaction. 

Pattanotai et al.[55] experimentally compared the pyrolysis of wood sawdust 

(particle size < 1 mm) and wood cylinders (8 mm in diameter and 9 mm in length) at 

a  heating rate of 30 K/min. They found that the char yield was higher and the tar 

yield was lower for the wood cylinder compared to the wood sawdust (Fig. 1.9), 

which, as they concluded, was due to the intraparticle heterogeneous conversion of 

tarry vapors (or intraparticle secondary charring reactions) at temperatures ranging 

from 670 to 770 K.  
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Figure 1.9 Total tar and char yields for the pyrolysis of sawdust (particle size < 1 mm) and 

wood cylinders (8 mm in diameter and 9 mm in length) at a  heating rate of 30 K/min to a 

temperature of 873 K. [55] 

Depending on the operating conditions and the types of raw biomass, some 

experimental studies reported that char could be exclusively a secondary product 

resulting from the conversion of tarry vapors for the pyrolysis of pure cellulose 

particles (one macromolecular component of biomass).[79] 

Sadhukhan et al.[81] performed experiments to study the pyrolysis of a spherical 

wood particle (with a diameter of 20 mm) and a cylindrical wood particle(with a 

diameter of 20 mm and length of 100 mm) at the reaction/operating temperature of 

593 K. They observed a temperature peak (higher than the reaction/operating 

temperature), as shown in Fig. 1.10, at the center of these two particles during their 

pyrolysis, which was due to exothermic intraparticle secondary charring reactions, as 

they concluded. Similar findings with respect to the exothermicity of the intraparticle 

secondary charring reactions were also reported by Ahuja et al.[80] and by 

Koufopanos et al.[82] The extent to which the exothermicity of the secondary 

charring reactions can influence the overall reaction enthalpy, resulting from both 
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primary pyrolysis reactions and secondary charring reactions, is dependent on 

operating conditions and biomass properties (e.g. biomass species, particle size, 

etc.).[81, 83] 

 

Figure 1.10 Temperature at the center of a spherical wood particle (with a diameter of 20 

mm) and a cylindrical wood particle(with a diameter of 20 mm and length of 100 mm) during 

their pyrolysis at the reaction/operating temperature of 593 K, adapted from Sadhukhan et 

al.[80] 

4.2 Reactor scale experiments 

Various reactors, including batch reactors (traditional pit and mound kilns, steel 

and brick kilns, and retorts) and continuous reactors (multiple-hearth kilns, rotary 

kilns and screw reactors), have been used for char production.[5] The screw reactor, 

which is shown in Fig. 1.3, is one of the promising reactors that can continuously 

produce char from slow pyrolysis of biomass. In the screw reactor, biomass is 

transported through a heated zone by means of either a single rotating screw or two 

counter-rotating screws or multiple rotating screws. Driven by mechanical force, the 

screw reactor is advantageous in processing biomass particles with various shapes, 

sizes and morphological characteristics (e.g. from fine sawdust, to lumpy, sticky and 
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fibrous biomass particles).[5] The screw reactor for char production also has its 

limitations. It was reported that a single screw reactor is only limited to a processing 

capacity of a few tons per hour, beyond which the screw reactor may be too large to 

withstand the high temperatures without considerable deformation.[84]  

Some studies have focused on the volumetric throughput in a screw reactor. It 

was reported that the volumetric throughput is theoretically influenced by the reactor 

geometry, the rotating speed and the filling degree (the bulk volume fraction of solids 

inside the screw reactor), as shown in the following theoretical equation,[85, 86]  

ܩ ൌ ߙ
ߨ
4
ሺሺܦ௦௪  ሻଶܮ2 െ ௦௧ܦ

ଶሻሺܮ௧ െ ௧ሻ݊ܮ ൈ 60 (3) 

Where ܩ is the volumetric throughput (m3/h), ߙ is the filling degree, ܦ௦௪ is the 

screw diameter (m), ܮ is the clearance between the screw and the shell (m), 

 ௧ is the flightܮ ,௧ is the screw pitch length (m)ܮ ,௦௧ is the shaft diameter (m)ܦ

thickness (m), and n is the screw rotational speed (rpm). A typical geometry and the 

dimensions of the screw reactor is shown in Fig. 5.1 in Chapter 5. 

As can be seen from Eq. (3), for a certain geometry at a constant filling degree, 

the volumetric throughput of the screw reactor increases with the increase of the 

screw rotational speed. However, the filling degree is actually influenced by both the 

material properties and the screw rotational speed. For the case in which the feed 

rate at the inlet of the screw reactor cannot match the potential conveying capacity, a 

reduction of filling degree occurs. The net result would be that the volumetric 

throughput of the screw reactor reaches a limiting value, as illustrated in Fig. 1.11. 
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Figure 1.11 Volumetric throughput of a screw reactor.[85] 

 

 Considering that the materials morphological properties may vary greatly from 

fine powders to larger (regular and irregularly shaped) particles, the volumetric 

throughput is more difficult to estimate. Nachenius et al.[87] reported that larger 

biomass particles were affected more dramatically by the geometric limitations, 

resulting into lower volumetric throughput for larger biomass particles. 

 Researchers have studied the residence time distribution of biomass particles 

and the slow pyrolysis (torrefaction) of biomass inside the screw reactor.[87, 88] Fig. 

1.12 shows the mean residence time of biomass particles in a screw reactor with a 

length of 1.64 m at different screw rotating frequencies and different feeding rates.[87] 

This figure shows that the residence time of biomass decreases with the increase of 

the screw rotating frequency, while it is influenced in only a limited way by the rate of 

biomass feeding into the screw reactor. 
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Figure 1.12 Comparison of mean residence times for different particles (Pine A, Pine B, Rice 

and Sand) inside a screw reactor at different combinations of feed screw (ߥௗ) and screw 

conveyor rotational frequencies(ߥ௦௪)[87] 

Experimental studies found that the quality (i.e. energy density) of the char was 

influenced by both the operating temperature and the residence time of the biomass 

particles inside the screw reactor.[88] Longer residence time and higher operating 

temperature for the slow pyrolysis of biomass in the screw reactor can increase the 

energy density of the char, which is desired considering that the char can be used as 

a solid fuel. However, at longer residence times and higher operating temperatures 

the char yield will diminish.[88] Therefore, experiments and models are needed to 

find the optimized operating conditions, which should be a result of the compromise 

between the quality (energy density) and the yield of the char. 

4.3 Factors influencing char production 

Through particle scale and reactor scale experimental studies, various 

parameters that can affect char production have been recognized. As discussed in 
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Section 2.4, char production from biomass pyrolysis involves multiscale and 

multiphase phenomena. Any parameter related to these multiscale and multiphase 

phenomena can affect the char production. These parameters mainly include: (1) 

biomass species/type, (2) physical properties of the biomass particle (particle size, 

particle shape, grain orientation inside particle) and (3) operating conditions 

(temperature, heating rate, residence time, pressure). 

4.3.1 Biomass species 

Different biomass species (e.g. hardwood and softwood) usually have different 

amounts of macromolecular components (cellulose, hemicellulose, and lignin). For 

instance, hemicellulose usually accounts for 28 wt.% of the dry mass in softwood, 

and 35 wt.% of the dry mass in hardwood on average, and lignin can account for 23-

33 wt.% of the dry mass in softwood and 16-25 wt.% of the dry mass in hardwood.[16]  

As discussed in Section 3.1, different macromolecular components exhibit 

different pyrolysis behavior and produce different amounts of primary char. It was 

reported that higher amounts of lignin in biomass will lead to higher primary char 

yields.[57] Therefore, the type of biomass species can affect the production of 

primary char during biomass pyrolysis. 

In addition, the primary volatiles from cellulose, hemicellulose and lignin have 

different properties (e.g. content of reactive components[89]), and the secondary 

reactions of the primary volatiles from cellulose, hemicellulose and lignin are different. 

It was reported that the primary volatiles from lignin are more aromatic and are more 

prone to produce secondary char compared to the primary volatiles from cellulose 

and hemicellulose.[89] Therefore, different amounts of cellulose, hemicellulose and 

lignin in different biomass species will affect the production of secondary char. 
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Therefore, different contents of macromolecular components in different biomass 

species affect the production and yields of both primary and secondary char. 

4.3.2 Physical properties of the biomass particle 

 (1) Particle size 

Pyrolysis can process biomass particles with a wide size range from 

micrometers to centimeters.[16, 17, 71] The residence time of volatiles inside larger 

particles can be expected to be longer, which is beneficial for secondary char 

production.[51, 90]  

Larger particles tend to result into larger temperature gradients inside the 

particle (i.e. temperature at the internal of the particle is lower than that at the 

external of the particle), indicating that more (primary) pyrolysis reactions at the 

internal of the particle occur at temperatures lower than the operating temperature. 

Since the primary char production is favored at lower temperatures (as will be 

described later in Section 4.3.3), the pyrolysis of larger biomass particles tends to 

have higher yields of primary char. However, this conclusion is valid on the condition 

that the overall (global) pyrolysis reactions are endothermic or neutral in reaction 

heat. When the overall pyrolysis reactions are exothermic (e.g. when more 

exothermic secondary charring reactions occur,[81, 83] as discussed in Section 4.1), 

the influence of the particle size on the production of primary char would be complex, 

which requires further study. 

 (2) Particle shape 

In reality, biomass particles commonly have irregular shapes with typical aspect 

ratios (ratio of the longest dimension to the smallest dimension of the biomass 

particle) ranging from 2 to 15.[91] For the same biomass species/types at the same 
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particle mass/volume, spherical particles have the lowest external surface area to 

volume ratio compared to other particle shapes (cylindrical, cubic and other irregular 

shapes). As the external surface area to volume ratio determines the available area 

per unit mass for heat exchange of the particle with the surroundings,[92] spherical 

biomass particles tend to exhibit lower conversion rates and higher char yields 

compared to particles with other shapes, which was also addressed by Lu et al. [91] 

The difference between the pyrolysis of spherical particles and the pyrolysis of 

particles with other shapes was observed to increase with increasing particle size.[91] 

In addition, the shape of the particle is closely related to the vapor residence time 

inside the particle (intraparticle mass transfer), which can affect the conversion of the 

tarry vapors in producing secondary char inside the particle.[67] 

(3) Grain orientation 

Raw biomass particles are physically anisotropic. The permeability (determining 

the outflow of volatiles inside the particle) parallel to the grain is almost 103 times 

larger than across the grain, and the thermal conductivity parallel to the grain is about 

2.5 times the one across the grain.[93] The different permeability and thermal 

conductivity indicate that the pyrolysis reactions parallel to and across the grain 

orientation proceed at different rates.[94]  

4.3.3 Operating conditions 

(1) Temperature 

As a thermochemical conversion process, biomass pyrolysis is significantly 

influenced by the operating temperature.[17, 33, 34] The basic role of a high 

temperature is to provide heat for the decomposition of macromolecular biomass 

components. Temperature can influence both the char yield and the elemental 
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composition and hence the quality (e.g. energy density) of the char.[17] Lower 

temperature favors char production but usually at the expense of longer processing 

duration. The atomic ratios of O/C and H/C decrease with the increase of 

temperature. With the increase of temperature, char will lose the hydroxyl more 

easily, which means that the char loses hydrogen and oxygen preferentially through 

dehydration with the temperature increases. As a result, the char produced at higher 

operating temperatures is more carbon-concentrated and hence higher in energy 

density.[17] However, higher temperature at the same duration (reaction time) also 

leads to lower energy yield or more energy loss for the char.[17, 88] Therefore, 

optimized pyrolysis temperature should be searched for in order to maximize the 

social and economic advantage of char production from biomass pyrolysis at the 

compromise between the quality and the energy yield of the char. 

(2) Heating rate 

Heating rate is an important factor determining the decomposition of biomass. 

Faster heating rate can cause quick fragmentation of biomass, thus can enhance the 

volatiles formation.[95] Therefore, lower heating rates are preferred for increasing the 

production of char. [90] However, lower heating rates also imply that the process 

lasts for a longer time. Therefore, it is simply not practical to apply very low heating 

rates. 

(3) Residence time 

Char is usually a mixture of primary char from the devolatilization of biomass and 

secondary char from the homogeneous and heterogeneous conversion of primary 

volatiles.[9, 67, 90] It was reported that the secondary char can be as reactive (e.g. 

during gasification with carbon dioxide and steam) as the primary char.[96] The 



Chapter 1 Introduction 

36 
 

production of primary char is related to the particle/solid residence time inside the 

reactor, while the production of secondary char is influenced by both the particle/solid 

residence time and the volatiles residence time inside the particle/reactor.[90] Longer 

particle/solid residence time, indicating stronger reaction severity, will lead to more 

extensive devolatilization, and thus will reduce the yield of the residual solid 

(considered as primary char).[88] 

Fig. 1.13 shows the effect of gas flow (thus volatiles residence time) at various 

operating pressures on the yield of the total char during pyrolysis of cellulose,[90, 97] 

one of the macromolecular components in biomass. 

 

Figure 1.13 Effect of gas flow rates (and hence gas residence time) on the yield of char at 

different pressures [90, 97] 

As can be seen from this figure, lower gas flow rates, thus longer residence 

times of volatiles, lead to higher char yields. Longer residence time for volatiles will 

provide more opportunity for the reactive volatiles (e.g. tarry vapors from pyrolysis of 
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lignin[89]) to interact with the solid residue from biomass pyrolysis, which can 

enhance the production of secondary char and hence can improve the total char yield. 

Due to the different effects of residence time on the production of primary and 

secondary char, the residence time of particles inside the pyrolysis reactor and the 

residence time of volatiles inside the particle should be separately optimized to 

maximize the production of char. 

(4) Pressure 

Pressure is an important factor influencing the production of char from biomass 

pyrolysis by affecting the conversion of volatiles to produce secondary char. Antal 

and his collaborators have contributed leading researches in this area.[90, 98] 

Generally, elevated pressure can enhance the production of char from biomass 

pyrolysis. From the view of particle scale phenomena, more char production at higher 

pressures is mainly due to the increased significance of the conversion of the 

reactive volatiles within the biomass particle at higher pressures. At higher pressure, 

the mass concentration of reactive volatiles will be higher and the specific volume of 

the volatiles will be lower, which results into a lower velocity for the volatiles to flow 

out of the biomass particle. Therefore, reactive volatiles will have longer residence 

times to produce secondary char inside the biomass particle at higher pressures. The 

combination of higher mass concentration and longer residence time for the reactive 

volatiles within the biomass particle at higher pressures will further enhance the 

conversion of the reactive volatiles to produce secondary char and hence increase 

the total char yield.[67] At the reactor scale, higher pressures can increase the 

concentration (partial pressure) of the reactive volatiles, and therefore can increase 

the conversion rate of reactive volatiles to form secondary char.[99] However, the 

current understanding about the pressure effect on the char production through 
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conversion of reactive volatiles is largely qualitative, and to the best of our knowledge, 

no kinetic models that combine the complex effects of operating pressure and 

residence time of reactive volatiles have been reported in the literature. Quantitative 

and mechanistic researches are still required to reveal the role of the homogeneous 

and heterogeneous conversion of reactive volatiles on the secondary char and hence 

the total char production during biomass pyrolysis.[9, 51, 90] 

4.4 Benefits and limitations of experimental studies 

Experimental studies have obtained valuable information on the char production 

through biomass pyrolysis at both particle scale and reactor scale. Factors 

influencing the char production in biomass pyrolysis have been recognized through 

experiments. The intraparticle physical (e.g. intraparticle heat transfer) and chemical 

(e.g. primary and secondary reactions) phenomena, particularly the intraparticle 

secondary charring reactions, have been revealed by experiments at the particle 

scale. Reactor scale experiments have provided valuable data for designing, 

operating and optimizing the performance of pyrolysis reactors for producing char. In 

addition, experimental studies have provided plenty of useful data that are necessary 

for validating computational models at both particle scale and reactor scale. However, 

experimental studies also have limitations. 

Experimental studies are expensive considering the materials and equipment 

that are employed. The volatile products from biomass pyrolysis contain harmful 

components (e.g. aromatics), and their potential leakage during experiments can be 

dangerous. In addition, experimental studies can only provide limited information on 

the complex and transient coupled transport phenomena and chemical reactions at 

particle scale and reactor scale, which brings challenges in designing, operating and 

optimizing the performance of the pyrolysis reactors for char production. 
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Specifically, at the particle scale, the study of the coupled physical and chemical 

phenomena related to the intraparticle secondary charring reactions, which are 

essential for understanding the transient processes occurring inside the biomass 

particle, is beyond the capability of experimental techniques.  

At the reactor scale, the transient particle flow dynamics inside the reactor (e.g. 

screw reactor), of which the knowledge thereof is essential for optimizing the 

performance of the screw reactor, has seldom been reported in experimental works. 

In addition, previous experimental studies were mainly focused on the 

characterization (yield, elemental composition, energy density, etc.) of the products 

(char and volatiles).[88] Little was known about the complex coupled physical and 

chemical phenomena occurring inside the reactor, which is usually beyond the 

capability of the current experimental techniques. 

5. Modeling study of biomass pyrolysis for char production 

With the development of computational sciences, computational (or numerical) 

models have been applied to study the coupled transport phenomena and pyrolysis 

reactions for biomass pyrolysis at particle scale and at reactor scale.[9] Compared to 

the experiments, modeling studies are safe (e.g. without worry about leakage of 

harmful gases). In addition, modeling studies are able to obtain in-depth knowledge 

about the transient and complex flow dynamics, heat transfer, mass transfer and 

chemical reactions occurring at particle scale and at reactor scale, which is essential 

for designing and optimizing the pyrolysis reactor for char production. It should be 

stressed that experimental data should be applied to validate the computational 

models. The following will discuss some previous particle scale and reactor scale 

modeling studies. 
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5.1 Particle scale modeling 

The computational model can be used to give mathematical descriptions for the 

coupled transport phenomena and chemical reactions during the pyrolysis of a single 

biomass particle. The complexity of the computational model at the particle scale 

(named particle model) depends on the possible physical and chemical phenomena 

that the particle model can include (or neglect). The most complex particle model 

should consider (1) the realistic boundary conditions including the real geometry of 

the particle (typically far from spherical or cylindrical), the shrinkage or fragmentation 

and the realistic instantaneous temperature and volatiles distribution at the particle 

surface, (2) the pore structure and the anisotropic characteristics inside the particle, 

(3) the residual solid mass loss kinetics and the secondary conversion kinetics of 

reactive volatiles, (4) the heats of reaction, (5) the pressure build-up due to volatiles 

formation within the particle, (6) the outflow of volatiles. However, the most complex 

particle model also indicates that all physical and chemical information, some of 

which may be unnecessary for practical applications, would also be predicted. 

Practically, assumptions will first be made before performing the particle modeling, 

and such model assumptions should guarantee that the particle model can describe 

the dominant intraparticle physical and chemical phenomena. Usually, these 

dominant phenomena can be preliminarily estimated from the analysis of non-

dimensional numbers, e.g. Biot number, pyrolysis number, etc.[9] While some works 

have tried to describe the realistic geometry of the biomass particle in particle 

modeling,[92, 100] most modeling works (three-dimensional, two-dimensional and 

one-dimensional models) assume a spherical, cylindrical or cubic geometry for the 

biomass particle and the ensuing modeling results are still within acceptable 

errors.[71, 81, 83, 91, 94, 101-112] Although plenty of modeling works have been 
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performed at the particle scale, most of these works have mainly focused on the 

accurate prediction of product yields and the temperature evolution inside the particle. 

[71, 81, 83, 91, 94, 101-112] Only very limited modeling works have considered and 

validated the potential homogeneous and heterogeneous conversion of reactive 

volatiles inside the particle,[67, 81] which makes the role of the secondary char in the 

total char largely unknown. In addition to model accuracy, another research direction 

of previous modeling studies at particle scale is to save computational time by 

deriving simplified particle models for biomass pyrolysis. The ultimate aim of these 

so-called simplified particle models is to be integrated into complete reactor models. 

In the literature, some simplified particle models have been developed, e.g. uniform 

conversion model (UCM), unreacted-shrinking-core model (USCM) and others.[65, 

107, 113, 114] However, these simplified particle models usually follow two extreme 

assumptions of either homogeneous heating and reactions across the whole particle 

or an infinitely thin moving reaction front separating the pyrolyzing particle into one 

layer of virgin biomass and another layer of hot char.[115-122] The actual pyrolysis 

conditions that are far from these two extreme conditions (for instance, biomass slow 

pyrolysis in this thesis) may introduce more errors when predicting the char 

production compared to the actual pyrolysis of a biomass particle. Therefore, a 

simplified particle model that is suitable for describing the slow pyrolysis of biomass 

in producing char remains to be developed. 

5.2 Reactor scale modeling 

As discussed above, biomass pyrolysis involves both solids (biomass particles) 

and gas phases (inert gas and volatile products). In a pyrolysis reactor (e.g. screw 

reactor), it is important to understand the complex coupled physical (gas-solids flow 

dynamics including gas-solids, solids-solids and solids-wall interactions, and heat 
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and mass transfer) and chemical (pyrolysis reactions) phenomena. With the 

development of computer science, the computational fluid dynamics (CFD) method 

has been widely applied to study such kind of multiphase systems involving chemical 

reactions. Both Eulerian-Lagrangian modeling method and Eulerian-Eulerian 

modeling method have been applied to perform CFD simulations for such kind of 

multiphase systems. 

5.2.1 Eulerian-Lagrangian modeling method 

The combined computational fluid dynamics and discrete element model (CFD-

DEM) is a typical Eulerian-Lagrangian modeling method. In CFD-DEM, the gas 

phase is treated as a continuum described by the local averaged Navier–Stokes 

equations, and the particles are tracked individually by solving Newtonian equations 

of the motion. The motions of gas and particles are coupled through an interphase 

interaction term. The DEM model can accurately predict the exchange of mass, 

momentum and energy at the intra- and interparticle level, and between gas phase 

and particles in the pyrolysis reactor. Therefore, trajectories, temperature, chemical 

composition (pyrolysis reaction rates) and any other additional phenomena on an 

individual particle level can be obtained with this Eulerian-Lagrangian modeling 

method. The Eulerian–Lagrangian modeling method has clearer physical meanings 

by considering the particle-scale physical and chemical phenomena in a discrete 

manner which is different than in an Eulerian–Eulerian model in which the particle 

phase is assumed as a continuous medium (described later in detail). The 

information on the particle level from the Eulerian–Lagrangian modeling method is 

essential to study effects like pyrolysis reactions, particle shrinkage, particle 

breakage, particle segregation, mixing and entrainment. 
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Orefice and Khinast[123] studied the volume flow rate of particles in a horizontal 

screw system with DEM simulations, and they found that the volumetric flow rate of 

particles increased with the increase of the screw rotating speed (or rotating 

frequency). Owen and Cleary[124] performed DEM simulations for a screw reactor, 

and they systematically studied particle flow dynamics inside a screw reactor with 

different screw inclinations, rotating speeds and filling levels. Hou et al.[125] studied 

the flow of cohesive particles in screw systems with DEM simulations, and they 

addressed the importance of the cohesive interactions among particles on the 

performance of screw systems. From these modeling studies, it can be seen that 

DEM based on the Eulerian-Lagrangian approach can obtain valuable information on 

the particle flow dynamics inside the screw reactor (or screw systems). Detailed 

information on the particle’s trajectory inside the reactor, which is currently extremely 

difficult, if not impossible, to obtain with experimental measurements[126], can be 

solved with Eulerian-Lagrangian approaches.  

However, current CFD-DEM models based on Eulerian-Lagrangian approach 

are normally limited to small numbers of particles due to computational 

limitations,[127] which restrict their application in simulating full-scale pyrolysis 

reactors (e.g. screw reactors) containing millions or billions of biomass particles.  

5.2.2 Eulerian- Eulerian modeling method 

CFD models based on the Eulerian-Eulerian approach (two-fluid model, or TFM) 

assume gas and solid phases to be interpenetrating continua. The TFM has its 

limitations. Since Eulerian formulations are based on spatial averaging techniques 

with strong simplifications made on the particle kinematics and chemical reactions, 

information about the phenomena on an individual particle scale is less reliably and 

less naturally included in the Eulerian-Eulerian modeling method compared to the 
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Eulerian-Lagrangian modeling method. Furthermore, no information can be obtained 

from TFM about the residence time of an individual reacting particle, which is highly 

important for assessing the overall pyrolysis process in a pyrolysis reactor. However, 

the Eulerian-Eulerian based CFD models are computationally efficient and are 

capable of handling multiphase systems (e.g. screw reactors) containing large 

numbers of particles. [128] Some Eulerian-Eulerian simulation works have been 

reported for the screw reactor. Aramideh et al.[129] applied the Eulerian-Eulerian 

method to study a screw reactor at conditions of fast pyrolysis for maximizing the 

production of liquid/oil product. Further works (e.g. particle flow dynamics, residence 

time distribution, particle back-mixing, product distributions, and quality and energy 

yield of the char) about biomass pyrolysis inside the screw reactor still remain to be 

studied based on CFD simulations using the Eulerian-Eulerian approach.  

6. Thesis objective and outline 

6.1 Thesis objective 

6.1.1 Summary of problems to be solved 

Pyrolysis is one of the promising thermochemical technologies for biomass 

conversion. Char, as one of the pyrolysis products, gains increasing attention for its 

potential applications in energy, fuels and functional carbon materials. The 

production of char from slow pyrolysis of biomass involves complex physical and 

chemical phenomena occurring at different scales (multiscale) and phases 

(multiphase). Char is usually a mixture of primary char from biomass devolatilization 

and secondary char from the conversion of reactive volatiles. Any factors from the 

multiscale and the multiphase can have potential influences on the biomass pyrolysis 

and hence the primary and secondary char production. Computational modeling is an 
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important approach to study the coupled physical and chemical phenomena during 

biomass pyrolysis at multiscale and in multiphase, which is essential in designing and 

optimizing pyrolysis reactors for char production. 

While other researchers have performed extensive experimental and modeling 

works for biomass pyrolysis at both particle scale and reactor scale, many problems 

still remain to be solved for char production. The following questions are still largely 

to be answered. 

At the particle scale: 

(1) To what extent the primary volatiles can be converted into secondary char 

and secondary volatiles inside a single biomass particle?  

(2) What is the critical particle size above which secondary char production 

starts to be relevant? 

(3) How to develop a simplified particle model that can describe the dominating 

physical and chemical phenomena during biomass slow pyrolysis (including 

torrefaction) for saving computational time? 

 At the (screw) reactor scale: 

(4) How are the particle flow dynamics and back-mixing behavior in a screw 

reactor? 

(5) How to develop a CFD model including chemical reaction kinetics in order to 

characterize the performance of a screw reactor in producing char (mass yield, 

elemental composition, quality and energy yield) through biomass pyrolysis? 

6.1.2 Thesis objective 
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The objective of the present thesis is to study the char production during 

biomass pyrolysis with a methodology of multiscale modeling (particle scale and 

reactor scale with multiphase phenomena involved). The research questions listed 

above will be dealt with in this thesis. 

6.2 Thesis outline 

The thesis outline is shown in Fig. 1.14.  

 

Figure 1.14 Thesis outline 

Chapter 2 deals with the modeling of char production at the biomass particle 

scale. In this chapter, a finite element comprehensive particle model will be 
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developed for the pyrolysis of a three-dimensional biomass particle. The model will 

consider the relevant physical and chemical phenomena, including intraparticle 

conductive, convective and radiative heat transfer, intraparticle volatiles flow, 

intraparticle mass transfer of different volatile components (inert gas of N2, gaseous 

and tarry products), the pyrolysis reactions, and the anisotropic characteristics of the 

biomass particle. A general kinetic scheme (one-component competitive kinetic 

scheme) without considering the biomass composition will be incorporated into the 

model. The kinetic scheme considers both the primary char formation from biomass 

devolatilization and the secondary char production from the homogeneous and 

heterogeneous conversion of primary volatiles (tarry vapors). The model will be 

validated against experimental data from literature. Parameters, including physical 

properties of the biomass particle (particle shape, size shrinkage and particle 

fragmentation), operating conditions (temperature, heating rate, pressure) and the 

extra-particle concentration of tarry vapors will be studied using the model, and with 

respect to their effects on the production of char (primary and secondary char). 

In Chapter 3, a comprehensive pyrolysis kinetic scheme, which considers the 

primary pyrolysis of biomass pseudo-components (cellulose, hemicellulose, and 

lignin) and the secondary charring reactions due to the heterogeneous conversion of 

the primary volatiles, will further be incorporated into the comprehensive particle 

model that is developed in Chapter 2. This comprehensive pyrolysis kinetic scheme 

is able to deal with differences in biomass composition (e.g. dealing with both 

softwood and hardwood), and therefore can be expected to be more applicable than 

the general kinetic scheme in Chapter 2 that does not consider the biomass 

composition. In this chapter, the model will be validated against available 

experimental data. The importance of the intraparticle secondary char production at 
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different particle sizes will be addressed. A critical particle size, at which the 

intraparticle secondary charring reactions start to be relevant, will be determined for 

the pyrolysis of a cylindrical biomass particle.  

For saving computational time, the comprehensive particle models that are 

developed in Chapter 2 and Chapter 3 will be further simplified in Chapter 4. In this 

chapter, a space-time integral method will be applied to linearize the partial 

differential equations (PDEs) in the comprehensive particle models in describing the 

intraparticle heat transfer, which will result into a simplified particle model. This 

simplified particle model will be applied to study the slow pyrolysis of a biomass 

particle at torrefaction conditions. The accuracy of the model will be discussed by 

comparing with either the experimental data or the comprehensive particle model 

(Chapter 2 and Chapter 3) whenever the experimental data is not available. The 

applicability of the simplified particle model will be further examined to determine the 

limitations of this simplified particle model. 

In Chapter 5, a CFD cold flow model based on the Eulerian-Eulerian method will 

be developed for a screw reactor for processing biomass particles. The flow 

dynamics, residence time distribution (RTD) and back-mixing behavior of the solid 

phase (biomass) inside the screw reactor will be studied with this CFD model. The 

model results will be compared to the experimental data with respect to the solid 

mass flow rate at the reactor outlet, the total solid mass inside the reactor at steady 

flow conditions, the degree of fullness of the solid phase inside the reactor, and the 

mean solid residence time inside the reactor. Mechanisms leading to solids back-

mixing inside the screw reactor will be discussed. 

Chapter 6 further incorporates the biomass composition-based (cellulose, 

hemicellulose, and lignin) pyrolysis kinetic scheme (multi-component competitive 
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kinetic scheme), which considers the detailed elemental composition of both biomass 

and its pyrolysis products, into the CFD cold model developed in Chapter 5. Model 

results, with respect to the temperature distribution inside the reactor, the product 

yields and the elemental composition of the products (gas, liquid/oil and char) will be 

compared to the experimental data. The energy density (higher heating value, or 

HHV) and the energy yield of the char will then be calculated with the predicted 

elemental composition. The capability of the CFD-based reactor model in predicting 

the quality (e.g. energy density) of the product will be addressed in this chapter. 

The thesis ends with a summary of the main conclusions and some 

recommendations for future works. 
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CHAPTER 2 

 Modeling of pyrolysis of a biomass particle with a 

general kinetic scheme 

In this chapter, a three-dimensional (3D) comprehensive particle model (CPM) 

will be developed for the pyrolysis of a centimeter-sized biomass particle based on 

finite element method. A general kinetic scheme, without considering biomass 

composition, will be incorporated into the CPM to describe the primary biomass 

devolatilization and the intraparticle secondary charry reactions (secondary reactions 

of tarry vapors to produce secondary char). The model will be validated against 

experimental data from literature. Effects of process conditions (heating rate, peak 

temperature, pressure of the gas phase surrounding the particle and extra-particle 

concentration of the tarry vapors) and particle properties (particle shape, particle 

shrinkage and particle attrition or splitting) on pyrolysis of a single biomass particle 

will be discussed. 

 

This chapter was published in a modified form as: 

Xiaogang Shi, Frederik Ronsse, Jan G. Pieters. Finite element modeling of 

intraparticle heterogeneous tar conversion during pyrolysis of woody biomass 

particles. Fuel Processing Technology, 2016, 148: 302–316. 
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1. Introduction 

The formation of char is generally believed to be the result of both the primary 

pyrolysis of the feedstock biomass (hence labeled as primary char) and the 

secondary charry reactions (secondary char resulting from the secondary conversion 

of the tarry vapors).[35, 51, 90, 130] Secondary char formation can be achieved both 

by homogeneous tar cracking and by heterogeneous interactions between the tarry 

vapors and the hot char.[54, 89, 131-133] The char formation from homogeneous tar 

cracking is found to be limited even at high temperatures ranging from 770 to 1070 

K.[54] On the contrary, the heterogeneous conversion of the tarry vapors induced by 

contact with primary char can occur at lower temperatures and plays a key role in the 

formation of the secondary char.[55, 80, 90] Mok and Antal[79] concluded that the 

secondary heterogeneous reactions of the tarry vapors are effectively the only source 

of char in the pyrolysis of pure cellulose. Qualitative studies of the heterogeneous 

reactions of the tarry vapors suggest that high concentration and prolonged vapor-

phase residence time of the tarry vapors in the reaction zone as well as high 

temperatures are beneficial to the secondary char formation.[51] However, the 

quantitative understanding of the secondary heterogeneous reactions of the tarry 

vapors (reactions outside and inside the biomass particle) is still limited.[51, 66, 90, 

134] Boroson et al.[89] experimentally studied the heterogeneous tar reaction over 

fresh wood char surfaces (tar conversion outside the biomass particle) and found that 

14±7% of the tarry vapors undergo heterogeneous conversion. Anca-Couce et al.[72, 

73] considered the secondary heterogeneous reactions of the tarry vapors in a 

comprehensive pyrolysis reaction scheme for mechanistic description of biomass 

pyrolysis, and promising results have been obtained. The tarry vapors primarily 

produced inside the biomass particle can also experience heterogeneous reactions 
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as the vapors pass the decomposing biomass.[51, 55, 80, 135] It is generally 

believed that larger biomass size is favorable to the heterogeneous conversion of the 

tarry vapors due to the prolonged residence time of the tarry vapors in large-sized 

particles.[51, 55, 80, 82, 90, 136, 137] Pattanotai et al.[55] found that about 5% of the 

tarry vapors undergo heterogeneous secondary conversion in a centimeter-sized 

wood particle. Due to the limitations of experimental set-ups, current experimental 

studies of the pyrolysis of centimeter-sized biomass particles mainly provide the 

product distributions and the intraparticle temperature histories [55, 110, 136-138] 

without any information on the transient reaction and transport behavior of the tarry 

vapors inside the biomass particle, although this kind of information is critical in 

characterizing the intraparticle heterogeneous tar conversion.[51] A modeling study 

by coupling the pyrolysis kinetics and transport phenomena can provide detailed 

information on the pyrolysis process of a centimeter-sized biomass particle and 

hence the intraparticle conversion of the tarry vapors for producing secondary 

char.[65] However, only limited modeling studies have focused on the intraparticle 

heterogeneous conversion of the tarry vapors. Koufopanos et al.[82] developed a 

model for the pyrolysis of centimeter-sized biomass particles by coupling the heat 

transfer and pyrolysis kinetics. Their kinetic scheme considered the heterogeneous 

tar reaction. A parameter, coefficient of deposition, was introduced to account for the 

residence time of the volatiles inside the biomass particle. Ahuja et al.[80] also 

considered the intraparticle heterogeneous volatiles conversion. Babu and 

Chaurasia[139-143] used the kinetic scheme of Koufopanos et al.[82] to simulate the 

pyrolysis of a biomass particle and they further studied the particle shrinkage effects, 

the sensitivity analysis, and the optimum parameters for the pyrolysis. Sadhukhan et 

al.[81, 144] modeled the pyrolysis of large spherical and cylindrical wood particles 
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with a similar kinetic scheme as Koufopanos et al.[82] Basu et al.[145] simulated the 

torrefaction of a large wet wood particle by assuming that part of the primary volatiles 

were deposited on the char surface and experienced secondary reaction. In 

reviewing these previous modeling efforts, comprehensive results for the pyrolysis of 

single large biomass particles have been found. However, to our knowledge, few 

models have considered the factors influencing the heterogeneous conversion rate of 

the tarry vapors when contacting the hot char fraction. For a three-dimensional 

biomass particle, little is known when the model accounts for the diffusive/convective 

mass transport and conductive/convective heat transport. In addition, the biomass 

particle was usually regarded as an isotropic particle in previous modeling works, 

which could not describe the actual anisotropic characteristics occurring during the 

pyrolysis of the biomass particle.[136, 137] Moreover, efforts are still needed to study 

the extent to which the process conditions (peak temperature, heating rate, pressure 

of the gas phase surrounding the biomass particle and extra-particle tarry vapor 

concentration), particle shape and particle size reduction (particle shrinkage and 

particle splitting) can affect the production of the primary and secondary char. 

In this chapter, a three-dimensional comprehensive particle model (3D CPM) 

that couples pyrolysis reactions and transport processes is developed. The pyrolysis 

reactions are described with a general kinetic scheme, which considers the primary 

conversion of virgin biomass into char, tarry vapors and non-condensable gases and 

the formation of the secondary char resulting from the secondary reaction of the tarry 

vapors. A characteristic time scale analysis is first performed to identify the dominant 

physical and chemical phenomena occurring during pyrolysis of a single particle. 

Then the mathematical formulation of the 3D CPM is presented. Finally, the CPM is 

used to examine the effects of process conditions (peak temperature, heating rate, 
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pressure of the gas phase surrounding the biomass particle and extra-particle tarry 

vapor concentration), particle shape and particle size reductions (shrinkage and 

splitting). 

2. Methods 

2.1. Theoretical background 

2.1.1. Characteristic time analysis 

Complex physical and chemical phenomena occur during the pyrolysis of a 

single biomass particle. The particle (e.g. dry biomass particle) absorbs heat from the 

hot surroundings, which evokes pyrolysis reactions to produce char in solid phase 

and volatiles in gas phase. While the char is left inside the particle, the volatiles will 

flow out of the particle driven by the pressure difference between the interior and the 

exterior of the particle, which arises from the production and accumulation of volatiles 

within the biomass particle during pyrolysis. 

It is important to judiciously consider the most relevant physical and chemical 

processes to formulate the representative model. The analysis of the characteristic 

time can aid in the understanding of the dominating and rate-controlling processes 

during biomass pyrolysis.[9, 83, 106, 112, 146] The characteristic times of five major 

different physical and chemical phenomena occurring during the pyrolysis process 

were calculated for a centimeter-sized particle (with a length scale of 10-2m) and a 

fine particle (with a length scale of 10-3m), separately: (1) mass transfer rate by 

molecular diffusion in the gas phase, (2) mass transfer rate by intraparticle fluid flow 

(due to the outflow of volatiles formed inside the particle), (3) internal conductive heat 

transfer rate, (4) external convective heat transfer rate, and (5) apparent pyrolysis 

reaction rate. Temperatures range from 500 to 900 K with a heating rate of 10~30 
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K/min,[27] which characterizes slow pyrolysis. The calculated results of these 

characteristic times and the related parameters are listed in Table 2.1.  

In this calculation, the value of the effective diffusivity (Deff) was estimated using 

the correlation described in Section 2.2.2 by choosing phenol as a typical and 

representative component of the intraparticle tarry products. The pressure gradient 

(∆p/∆x) in the biomass, i.e. pine wood, was estimated to be about 300 Pa/cm.[147] 

The permeabilities (B) along and across the wood’s grain direction and the dynamic 

viscosity of the gas mixture (μ) were taken from Di Blasi.[93] The biomass density 

was taken from the experimental work of Pattanotai et al.[55] based on which the 

present model was developed. The thermal conductivities along and across the grain 

direction of the biomass were estimated with the correlation described in Section 

2.2.2. The specific heat capacities for the virgin biomass, char, gas and tar (cp) were 

obtained from Grønli and Melaaen.[148] 

Table 2.1 Calculated characteristic times for the physical and chemical processes 

during slow pyrolysis 

Parameters 

Characteristic times (s) in slow pyrolysis, (heating rate ≤ 30K/min, 
temperature range is 500~900 K) 

Centimeter-sized particles,  

L = 10-2 m 
Fine particles,  L = 10-3m 

Diffusion, L2/Deff 101 10-1 

Intraparticle fluid flow,  

μ L2/(∆P·B) 

100 (along the grain direction) 10-1 (along the grain direction) 

103 (across the grain direction) 102 (across the grain direction) 

Conductive heat transfer, 
(ρcp)s L2/ λ 

102 (along the grain direction) 100 (along the grain direction) 

103 (across the grain direction) 101 (across the grain direction) 

External heat transfer, 
(ρcp)sL/hext 

102 (at 500 K) ~ 101 (at 900 K) 101 (at 500 K) ~ 100 (at 900 K) 

Apparent pyrolysis mass 
loss kinetics, 1/kapparent 

105 (at 500 K) ~ 10-2 (at 900 K) 105 (at 500 K) ~ 10-2 (at 900 K) 
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Calculated using following assumptions,  

Deff ≈ 10-5 m2/s μ ≈ 10-5 kg/(m·s) 

∆p ≈ 102 Pa (for L = 10-2 m), 101 

Pa (for L =10-3m), 
B ≈ 10-11 m2(along the grain direction), 10-14 m2(across the 
grain direction) 

(ρcp)s ≈ 106 J/(m3·K) hext ≈ 5×101 W/(m2·K) (500K), 2×102 W/(m2·K) (900K) 

(ρcp)g ≈ 103 J/(m3·K) 
λ ≈ 0.3 W/(m·K) (along the grain direction), 0.1 W/(m·K) 
(across the grain direction) 

The calculated values for specific heats of char and pyrolysis vapors were close 

to 0.02 kJ mol-1K-1(on a carbon mole basis) as reported by Yang et al.[149] The 

density of the gas mixture was estimated using the ideal gas law. The biomass 

apparent pyrolysis rates (kapparent) were estimated with the kinetics from Park et 

al.[110] The external heat transfer coefficient (hext), including both convection and 

radiation, was calculated with the correlation,[65] 

3
convectiveext 4 Tehh s  (1)

The calculated characteristic times for the centimeter-sized and fine particles, as 

shown in Table 2.1, show that the characteristic time of the mass transfer via 

diffusion is comparable to that via the intraparticle fluid flow along the grain direction 

of the biomass, indicating that the mass transfer along the grain direction is 

contributed both by diffusion and by convective intraparticle fluid flow. Across the 

grain direction of the biomass, however, the intraparticle fluid flow takes more time 

than the diffusion process, indicating that the mass transfer across the grain happens 

mainly by diffusion. It should be mentioned that the role of the diffusion may be 

reduced considering that the concentration of vapor species outside the particle is 

not zero. Since slow pyrolysis occurs at low temperature and low heating rate, the 

pressure drop/gradient across the centimeter-sized particle was low, which indicates 

that the intraparticle fluid flow process took longer time. Therefore, the intraparticle 
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diffusive mass transfer is comparable to (or dominate over) the convective mass 

transfer in magnitude, and this was consistent with the work of Grønli,[150] who 

described that the diffusive mass transfer played an important role during biomass 

pyrolysis at low heat fluxes and low temperatures.  

Besides, the conductive heat transfer along the grain direction is faster than that 

across the grain direction of the biomass particle. The distinct transport phenomena 

along and across the grain direction of the biomass indicate that the modeling of the 

biomass particle pyrolysis process should consider the anisotropic characteristics of 

the particle. For a centimeter-sized particle, the characteristic time of the external 

heat transfer is slightly shorter than that of the internal conductive heat transfer, 

which indicates that a mild temperature gradient will be built inside this particle. For 

the fine particle, a negligible temperature gradient will be present inside the particle 

as indicated in Table 2.1.  

2.1.2. Model assumptions 

The formulation of the pyrolysis model on the particle scale is based on the 

following assumptions: 

(1) The particle is a homogeneous porous matrix with a continuous gas phase 

inside the particle pores. Biomass is composed of macromolecular compounds 

(cellulose, hemicellulose and lignin) and smaller amounts of low molecular weight 

organic components (extractives) and inorganics (salts or minerals). Biomass 

consists of cells and has a porous structure. In a typical lignified cell, the cellulose is 

the important structural element, which is surrounded by other compounds 

functioning as the matrix (hemicellulose) and the encrusting (lignin) material.[150, 

151] Since the exact porous structure of the biomass is very difficult to establish in a 
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numerical model, the biomass particle is usually modeled as a homogeneous porous 

matrix.[93, 150] 

(2) The biomass particle initially contains inert gas (N2) in its pores; 

(3) The extra-particle concentrations of non-condensable gases and tarry vapors 

are both substantially lower than the concentration of the extra-particle inert gas (N2); 

(4) Local thermal equilibria exist between the gas mixture (containing inert gas 

N2, non-condensable gases and tarry vapors) and the solids (virgin biomass and 

char); 

(5) The gas mixture behaves as an ideal gas; 

(6) The biomass particle is anisotropic and the geometry of the biomass is three-

dimensional. 

2.2 Model development 

2.2.1 Kinetic model 

During the pyrolysis of large biomass particles, it is generally difficult to 

experimentally measure the yields of primary and secondary products separately. In 

experimental work, the secondary conversion of the tarry vapors inside large 

particles (centimeter-sized or larger) is often indirectly indicated by comparing the 

products distributions between fine and large biomass particles since fine particles 

are generally believed to only experience primary reactions.[65, 136, 137] In the 

modeling study, however, the primary and secondary products from the pyrolysis of 

large biomass particles can be calculated separately. 

A general kinetic scheme was used to study the intraparticle secondary tar 

conversion for a centimeter-sized biomass particle. This general kinetic scheme 
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consists of primary reactions (virgin biomass to primary char and volatiles which 

consist of tar and non-condensable gases) and secondary conversion of the tar 

homogeneously (in the vapor phase) and heterogeneously (vapors reacting onto the 

primary char) yielding secondary non-condensable gases and secondary char, as 

shown in Fig. 2.1. Each reaction rate was described by a first order Arrhenius 

function.  

 

Fig. 2.1 General kinetic scheme of biomass pyrolysis. 

(1) Kinetics for primary reaction 

The kinetic constants from Di Blasi and Branca[152] were adopted in describing 

the formation of volatiles (consisting of tar and primary non-condensable gases) and 

primary char. The volatiles are assumed to consist of 62.6 wt.% of tar and 37.4 wt.% 

of non-condensable gases. This composition of volatiles primarily produced from 

biomass pyrolysis is in accordance with the experimental work of Pattanotai et al.,[55] 

who measured the product distribution in the pyrolysis of biomass sawdust (fine 

particles with size <1mm) at a low heating rate of 30 K/min. 

(2) Kinetics for secondary reaction 
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 For the secondary homogeneous tar reactions, the kinetic constants describing 

the homogeneous tar cracking are from Liden et al.[153] (for the conversion of tar to 

secondary non-condensable gases) and Di Blasi[154] (for the conversion of tar to 

secondary char). 

Although previous experimental works have quantitatively analyzed the 

heterogeneous conversion of tarry vapors,[89, 133] so far and to our knowledge, little 

to nothing has been experimentally reported on the kinetic constants in describing 

the heterogeneous tar conversion. The extent of the heterogeneous tar conversion 

within the biomass particle depends on the heterogeneous reaction kinetics and the 

residence time of the tarry vapors within the particle.[89] The kinetic constants for the 

heterogeneous tar conversion were obtained by calibrating the model with the 

experimental data from Pattanotai et al.,[55] who found that about 5% of the tarry 

vapors primarily produced within a wood cylinder (8 mm in diameter and 9 mm in 

length) are converted into secondary char (54 wt.% on tar mass basis, indicating that 

54 wt.% of the tarry vapors was heterogeneously converted into secondary char) and 

secondary non-condensable gases (46 wt.% on tar mass basis, indicating that 46 wt.% 

of the tarry vapors was heterogeneously converted into secondary non-condensable 

gases) at a heating rate of 30 K/min and to a final temperature of 873 K. In the review 

work from Mohan et al.,[16] the elemental composition of the tarry vapors (or bio-oil) 

was presented for typical biomass. It indicated that the carbon content of the tarry 

vapors ranged from 48 to over 70 wt.% depending on the type of raw biomass and 

pyrolysis conditions. The hydrogen content of the tarry vapors was around 7 wt.% 

while the remaining (ranging from 45 to 23 wt.%) can be regarded as the oxygen 

content. As such, pyrolysis vapors range in composition from CH1.75O0.70 to 

CH1.20O0.25. Assuming that only CO is coproduced as non-condensable gas together 
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with the formation of solid C (char) in the secondary reaction, then the maximum 

(calculated) yield of secondary char – based on stoichiometry – ranges from 14.4 to 

52.3 wt.% (on a primary volatile weight basis). Assuming a coproduction of CO2 

instead of CO alters the maximum yield of secondary char to a range from 31.2 to 

61.0 wt.%. However, as shown by Crombie and Masek,[155] the CO2-to-CO ratio 

from pine chip slow pyrolysis can range from about 1.8 to 2.8 depending on the 

temperature and, considering that part of the oxygen bound to the primary volatiles 

will get removed through dehydration rather than decarbonylation/decarboxylation 

type reactions, it is reasonable to assume a secondary char yield of 54 wt.%, 

calculated as an upper average. One drawback with assigning a secondary char 

yield resulting from heterogeneous conversion of the primary vapors in the current 

model is that the primary vapors are considered as a single species. The model does 

not discern between tar species originating from different biomass constituents and 

the differences in secondary char yield amongst them. For instance, primary volatiles 

from cellulose mostly consist of anhydrosugars, like levoglucosan (C6H10O5),[131] 

which can have a maximum theoretical secondary char yield of 44 wt% (assuming 

dehydration yielding pure carbon only) whereas pinewood lignin tar (CH1.22O0.29 [156]) 

could potentially yield 67 wt% of secondary char. 

The calibration was performed by simulating the pyrolysis of a wood cylinder 

with the same properties (particle size and density) and at the same pyrolysis 

conditions (heating rate and final temperature) as in the work of Pattanotai et al.[55] 

To simplify the calibration process, it was assumed that the heterogeneous formation 

of secondary char and secondary non-condensable gases within the cylinder are 

sharing the same activation energy but with different pre-exponential factors. A value 

of 92.4 KJ/mol was adopted for the activation energy, and this value was from the 
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work of Sadhukhan et al.,[81, 144] who obtained this value in characterizing the 

interaction between volatiles and char by fitting a kinetic model to experimental data 

obtained from pyrolysis of a large biomass particle. The kinetic parameters from the 

literature and from the calibration are summarized in Table 2.2. 
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Table 2.2 Kinetic constants for the primary and secondary pyrolysis reactions 

Reactions Frequency factor, s-1 
Activation energy, 
kJ/mol 

Primary reactions   

Biomass Volatiles* 1.45×1010 a 148.6 a 

BiomassPrimary char 4.40×106 a 111.7 a 

Homogeneous secondary reactions   

Tar Secondary non-condensable gases 4.28×106 b 108 b 

Tar Secondary char 1.00×105 c 108 c 

Heterogeneous secondary reactions   

Tar Secondary non-condensable gases 46 % × 4.14×108 e 
92.4 d 

Tar Secondary char  54 % × 4.14×108 e 

a Di Blasi and Branca[152] 

b Liden et al.[153] 

c Di Blasi[154] 

d Sadhukhan et al.[81, 144] 

e Through calibration with the experimental data of Pattanotai et al.[55] 

* The volatiles primarily produced from biomass are consisting of 62.6 wt.% of tar and 37.4 wt.% of non-

condensable gases, which is in accordance with the experimental work of Pattanotai et al.[55] 

 

2.2.2. Particle model description 

The mass balances were developed first. The instantaneous concentration of the 

virgin biomass was expressed by w (kg/m3, density of biomass calculated with the 

mass of the particle and its volume), the primary char by c1, the secondary char by 

c2, the gas mixture by mixture, the inert gas by inert, the tar by t, and the primary and 

secondary non-condensable gases by g1 and g2, respectively. The secondary char 
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concentration (c2) is the sum of the concentration of secondary char formed by 

homogenous tar conversion (c21) and by heterogeneous tar cracking (c22). 

The mass balances for the solid phase are, 

Virgin biomass:    wc1g1t
w 

kkk
t





 (2)

Primary char:  wc1
c1 

k
t





 (3)

Secondary char:  tc22tc21
c2 

kk
t





 (4)

It was assumed that the reaction rate for the heterogeneous tar reaction is 

proportional to the mass fraction of char in the solid phase and the mass 

concentration (density) of the tarry vapors inside the particle. In Eq. (4) ε is the 

particle’s porosity (see further) and  is the mass fraction of char and is expressed as: 

c2c1w

c2c1








  (5)

The mass balances for the gas mixture (including the tarry vapor, the non-

condensable gases and the inert gas) are,  

     
        termsource   termconvective

on termaccumulati

c22tc21wgtmixturemixture
mixture 

kkkk
t





u  

(6)

The transport equations for the tarry vapors and non-condensable gases inside 

the particle pores are, 
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Where Deff,i (i = t, g) (m2/s) is the effective diffusivity of tar and non-condensable 

gases in the particle pores, and Deff,i (i = t, g) is expressed in Eq. (9) according to the 

theory of Millington and Quirk,[157] 

 gi,i
3

4
iinert,ieff,  DD   (9)

where Dinert,I (i = t, g) is the diffusivity of tar and non-condensable gases in the 

inert gas (N2). Due to the complexity of the components in tar and non-condensable 

gases, model compounds were chosen as being representative of both the tar and 

the non-condensable gas fraction and whose diffusivity in inert gas was calculated. 

The diffusion coefficients of CO2 (model compound representative of the non-

condensable gases) and phenol (model compound representative of the tar) in N2 

were separately calculated according to the following correlation:[158] 

      2231

i

31

inert

5.0
iinert,

75.1
4

iinert, CO phenol,i
00143.0

10 







vvPM

T
D  (10)

where T is the temperature (K), P is the absolute pressure (bar), 

  1
iinertiinert, 112  MMM is the mean molecular weight (g/mol) of inert gas (N2) and 

tar (phenol) or non-condensable gases (CO2), and v  is calculated for each 

component by summing atomic diffusion volumes, which can be found in Table 11-1 
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in the work of Poling et al.[158] This correlation is valid at lower and moderate 

pressure (up to 5 ~ 6 MPa). Even though the pyrolysis vapors are complex mixtures 

and contain many compounds (beyond phenol as model component), assuming an 

average chemical composition of the pyrolysis vapors of CH1.4O0.6 and with a mean 

molecular weight of ~100 amu (based on GC-MS) or a mean molecular weight of ~ 

350 amu (based on GPC, including heavier tars)[159] and recalculating the diffusion 

coefficients (Eq. (10)), the order of magnitude of the characteristic times (i.e. for the 

intraparticle diffusion process, 10-5 m2·s-1) remained unaffected compared with using 

phenol as model compound to represent the pyrolysis vapors. 

ε is the porosity, 

 w0
w0

c2c1w 11 


 


  (11)

Darcy’s Law was used to describe the momentum transfer of the gas mixture in 

porous media. The superficial velocity of the gas mixture is defined as, 

P
B

u 

eff

mixture
 (12)

where Beff is the effective permeability (m2) defined by the internal resistance of 

the particle to the bulk flow of the gas mixture, μ is the dynamic viscosity (kg/(m·s)) 

and P is the pressure (Pa). The effective permeability Beff results from contributions 

by three parts: virgin biomass, primary char and secondary char. Due to the 

anisotropic properties of the particle, the effective permeability across and parallel to 

the grain direction was expressed as, 
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   parallelcross,j
c2c1w

jc,c2c1jw,w
jeff, 






 BB

B  (13)

The state equation was applied to describe the ideal behavior of the gas mixture, 

mixture

consmixture

MW

TR
P


  (14)

The energy conservation equation incorporates the production/consumption of 

thermal energy due to exo/endothermic reactions. The energy conservation equation 

in Eq. (15)(15) includes the accumulation of energy (the first term on the left of Eq. 

(15)), the convective heat transfer due to the bulk flow of the gas mixture inside the 

particle pore (the second term on the left of Eq. (15)), the conductive heat transfer in 

the particle (the first term on the right of Eq. (15)) and the heat source (the second 

term on the right of Eq. (15)). 

  

   

p,w w p,c c1 c2 p,t t p,g g p,inert inert

p,t t p,g g p,inert inert mixture eff
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c c c T T Q

        

   


    



       u



 
ource term

 (15)

 where the heat source term, Q (W/m3), is composed of the enthalpies of the 

primary and secondary reactions as shown in Fig. 2.1: 

 
g22tg22c22tc22g21g21

c21tc21c1c1tg1ttw

HkHkHk

HkHkHkHkQ

t 






 (16)

In the energy conservation equationeff is the effective thermal conductivity 

(W/(m·K)), which was calculated at any instant as the weighted sum of the thermal 

conductivities of virgin biomass, char (an average of primary and secondary char) 
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and gas mixture and also accounting for the radiative heat transfer through the 

pores:[94] 

   parallel cross,j
5.13

radiation  toduegas mixture  toduephase solid  todue

eff
3

mixture
c2c1w

jc,c2c1jw,w
ieff, 







   e

dT



  

(17)

For the virgin biomass, the thermal conductivity across the grain was calculated 

according to,[160]  

 01864.0004064.01941.0crossw,  MG  (18)

where G  waterw0  is the specific gravity based on the oven dry weight and 

volume at a given moisture content M (wt.%) (for the pyrolysis of a dry particle, the 

moisture content is zero). The thermal conductivity of virgin biomass parallel to the 

grain was assumed to be equal to 2.8 times of that across the grain 

 crossw,parallelw, 8.2   .  

The last term in Eq. (17) represents the radiative component and deff in this term 

is the effective pore diameter (m), which is calculated as, 

 
c2c1w

c2c1ww
eff 





 cdd
d  (19)

2.2.3. Initial and boundary conditions 

Initially, the virgin biomass had a density of ρw0, and the densities of the products 

(char, tar, and non-condensable gases) were zero. The pores of the biomass particle 

was filled with inert gas with a density of ρinert0. The particle had an initial temperature 

of T0, and was exposed to the ambient pressure (P0). Initially, the velocity of the gas 

mixture inside the particle pores was zero. The initial conditions are as follows, 
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ρw= ρw0, ρc = ρt = ρg= 0; ρinert= ρinert0 ; ρmixture= ρinert0;  

T=T0; umixture= 0 m/s ; P = P0 

(20)

The boundary conditions at the particle surface were defined by external 

conditions of pressure, constant mass concentration for the gas mixture and heat flux 

(convective and radiative heat flux), and they are expressed as follows: 
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where hconvective is the external convective heat transfer coefficient (W·m-2K-1), 

Treactor is the reactor temperature (K) and Ts is the surface temperature of the particle 

(K). cleextraparti-g  and cleextrapartit  are the extra-particle concentrations (kg·m-3) of non-

condensable gases and tarry vapor, respectively. Parameters in the model are listed 

in Table 2.3. 

Table 2.3 Material properties for the model 

Property  Value  Unit Source  

cp,w 1500 + 1.0 T  J/(kg·K) Gronli and Melaaen [148] 

cp,c 420 + 2.09 T + 6.85×10-4 T2 J/(kg·K) Gronli and Melaaen [148] 

cp,t –100 + 4.4 T – 1.57×10-3 T2 J/(kg·K) Gronli and Melaaen [148] 

cp,g 770 + 0.629 T – 1.91×10-4 T2 J/(kg·K) Gronli and Melaaen [148] 

cp,inert 950 + 0.188 T J/(kg·K) Gronli and Melaaen [148] 

dw 4×10-5  m Di Blasi [161] 

dc 4×10-4  m Di Blasi [161] 

e 1 - Park et al. [110] 

es 0.95 - Bates and Ghoniem [83] 

λc 0.105 (along grain), 0.071 W/(m·K) Di Blasi [93] 
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(across grain) 

λmixture 0.0258 W/(m·K) Gronli and Melaaen [148] 

σ 5.67×10-8  W/(m2·K4) Gronli and Melaaen [148] 

Bw  
1×10-11 (along grain), 1×10-14 
(across grain) 

m2 Di Blasi [93] 

Bc 
5×10-11 (along grain), 5×10-12 
(across grain) 

m2 Di Blasi [93] 

μ 3×10-5  kg/(m·s) Di Blasi [93] 

Minert 0.028  kg/mol  

Mg 0.038 kg/mol Gronli and Melaaen [148] 

Mt 0.11 kg/mol Gronli and Melaaen [148] 

Mphenol 0.094 kg/mol  

MCO2 0.044 kg/mol  

hconvective 5 W/(m2·K) Gronli and Melaaen [148] 

Rcons 8.314  J/(mol·K)  

ε0 0.4 - Park et al. [110] 

ρwater 1000 kg/m3  

ρinert0 P0MWinert/(RconsT0) kg/m3  

ρw0 
398 kg/m3 Pattanotai et al.[55, 136] 

650 kg/m3 Koufopanos et al.[82] 

T0 
383.15 K Pattanotai et al.[55, 136] 

293.15 K Koufopanos et al.[82] 

 
inertv  18.50 - Poling et al. [158] 

 
phenov  97.07 - Poling et al. [158] 

 
2COv  26.90 - Poling et al. [158] 

2.3. Model implementation 

The models for the chemical and physical processes during particle pyrolysis 

were implemented into the commercial software of COMSOL Multiphysics® 5.0, 

which is a finite element analysis software package. This software was used to solve 

the ordinary differential equations (ODEs) and partial differential equations (PDEs) 

involved in the kinetic and particle models. Considering the anisotropic structure of 

the wood biomass, the geometry of the particle was represented as a three-

dimensional object in COMSOL Multiphysics®. The size of the three-dimensional 

object in the simulation was the same as the biomass particle size in the 

experimental work against which the model was validated The unstructured grid was 
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adopted for the three-dimensional biomass particle, as shown in Fig. 2.2 for a 

cylindrical particle with a diameter of 8 mm and a length of 9 mm (grids for other 

particles are similar). Mesh details are summarized in Table 2.4 

 

Fig. 2.2 Geometry and mesh for a cylindrical particle with a diameter of 8 mm and a 

length of 9 mm 

Since the particle was assumed as a continuum porous matrix, porosity was 

used to describe the effect of internal structure on the intraparticle transport of gas 

mixtures. For simulating particle shrinkage as described in Section 2.5.2 and Section 

3.4, the method of Deformed Geometry in COMSOL Multiphysics® was used. With 

the method of Deformed Geometry, the geometry of the biomass particle shrinks with 

a radial (diameter)/axial (length) size reduction rate proportional to the conversion 

process of the virgin biomass, as described in Section 2.5.2. 
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Table 2.4 Mesh details for simulating the pyrolysis of a biomass particle 

 For validation against Pattanotai et al. [55, 136]  
For validation against 
Koufopanos et al. [82] 

Cylinder 
dimensions

, d × L 

Fine 
spherical 
particle 

with 1mm 
in diameter

8mm × 
2mm 

8mm × 
5mm 

8mm × 
9mm 

Fine 
spherical 

particle with 
0.3mm in 
diameter 

20mm × 100mm 

Number of 
domain 

elements 
8311 76479 194666 247289 8349 530769 

Number of 
boundary 
elements 

840 5410 7732 8500 840 16364 

Number of 
edge 

elements 
96 212 256 276 96 528 

Minimum 
element 
size, m 

1.80×10-5 1.20×10-5 1.20×10-5 1.35×10-5 5.40×10-6 1.00×10-4 

Maximum 
element 
size, m 

1.00×10-4 2.80×10-4 2.80×10-4 3.15×10-4 3.00×10-5 1.00×10-3 

Maximum 
element 

growth rate 
1.50 1.35 1.35 1.35 1.50 1.35 

 

2.4. Model validation 

2.4.1. Comparison with Pattanotai et al.[55, 136]  

To validate the primary reaction kinetics, the char yield from the pyrolysis of dry 

Japanese cypress sawdust (fine particles with size <1 mm) in the experimental work 

of Pattanotai et al.[55] was compared with the modeling results. The heating rate was 

30 K/min and the final temperature was 873 K. The cypress sawdust particles were 

modeled as spherical particles with a diameter of 1 mm in the model, which coupled 

the primary reaction kinetics (Section 2.2.1) and the particle model (Section 2.2.2). 

To validate the simultaneous reaction kinetics and the particle model for 

centimeter-sized particles, the experimental results from different works of Pattanotai 

et al.[136] were used. Pattanotai et al.[136] performed pyrolysis on dry Japanese 

cypress sawdust (with particle size <1 mm) and dry Japanese cypress wood 
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cylinders with a diameter of 8mm and lengths of 2, 5, and 9 mm at the same heating 

rate of 60 K/min and to the same final temperature of 1173 K. The differences of the 

product yields (mainly tar yield and char yield ) between the sawdust and the wood 

cylinders at this low heating rate were believed to be due to the conversion of the 

tarry vapors within the wood cylinder.[136] Therefore, the observed amount of tar 

experiencing secondary conversion and the amount of secondary char formed within 

these cylinders were adopted for validating the model, which couples the primary and 

secondary reaction kinetics (Section 2.2.1) and the particle model (Section 2.2.2). 

In the simulation, the reaction heat was assumed to be endothermic for the 

primary reactions (Ht = Hg1 = Hc1 = 68 KJ·kg-1 [110]]) and exothermic for the 

secondary reactions. More specifically, the reaction heat for the homogeneous tar 

cracking was equal to Hc21 = Hg21 = –42 KJ·kg-1,[110] and for the heterogeneous 

tar conversion, it was equal to Hc22 = Hg22 = –245 KJ·kg-1 [144]). 

2.4.2. Comparison with Koufopanos et al.[82]  

The pyrolysis of both fine (0.30~0.85 mm in diameter) and centimeter-sized 

(cylindrical particle with a diameter of 2 cm and a length of 10 cm) wood particles 

was conducted in the experimental work of Koufopanos et al.[82] In order to examine 

the ability of the model in predicting the primary product (mainly char) yields, the 

experimental results of the isothermal pyrolysis of dry fine wood particles at operating 

temperatures of 623, 673 and 873 K were used for comparison. The fine particle was 

assumed as a spherical particle with a diameter of 0.30 mm in the model, in which 

the primary reaction kinetics (Section 2.2.1) and the particle model (Section 2.2.2) 

were coupled. The predicted char yields were also compared with the experimental 

data for the isothermal pyrolysis of centimeter-sized wood cylinders at 623 and 773 K, 

respectively. The model for the centimeter-sized wood cylinder coupled the primary 
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and secondary reaction kinetics (Section 2.2.1) and the particle model (Section 2.2.2). 

Besides, the experimental temperature profiles at the center (for the case at the 

operating temperature of 623 and 773 K) and at a distance of rp/2 (for the case at the 

operating temperature of 673 K) of these centimeter-sized particles were also 

compared using the model.  

In order to capture the temperature profile inside the centimeter-sized cylindrical 

particles, both the primary reactions and the secondary tar conversion were assumed 

to be exothermic with a reaction heat for the primary reactions being equal to Ht = 

Hg1 = Hc1 = –100 KJ·kg-1. The latter value was obtained through calibration of the 

model. For the secondary reaction, the reaction heats were equal to Hc1 = Hg21 = –

42 kJ·kg-1
 [110] for the homogeneous tar cracking, and Hc22 = Hg22 = –245 kJ·kg-1

 

[144] for the heterogeneous tar conversion. The remaining model parameters were 

the same as those in modeling the case of Pattanotai et al.[55] The heat of reaction 

in Koufopanos et al.[82] was different from that of Pattanotai et al.[55, 136] Generally, 

the heat of reaction is difficult to assess, and it is usually regarded as an adjustable 

parameter by calibrating the simulation results with the experimental data.[162] The 

heat of reaction depends on the experimental setup and the heating conditions.[110, 

147] Since the experimental conditions in Koufopanos et al.[82] were quite different 

from the work of Pattanotai et al.,[55, 136] the model used different heats of reaction 

for comparing with the experimental data from these two different research groups. 

Additionally, a factor contributing to the variability in the reaction heats after 

calibrating to different experimental datasets is that the current model treats both the 

biomass as well as the ensuing primary volatiles as two single species. However, the 

individual heats of reaction for the decomposition of the biomass constituents 

(cellulose, hemicellulose and lignin) as well as for the secondary reactions involving 
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the resulting volatiles are different.[78, 163] Consequently, differences in biomass 

feedstock composition result in variability of the overall heats of reaction for which the 

current model can only calibrate rather than relying upon underlying (i.e. more 

detailed) reaction kinetics. 

2.4.3. Model error quantification 

For each validation, the performance of the model was determined by calculating 

the mean deviation (MD) by using Eq. (22) for time-dependent variables such as 

mass and temperature, and using Eq. (23) for variables which are only quantified 

upon termination of the pyrolysis reaction such as char yield and fraction of tar 

converted. 

   



n

i
itXtX

n
MD

1
modiexp

1
 (22)

   nmodnexp tXtXMD   (23)

In Eqs. (22) and (23) Xmod(t) is the model-predicted variable, Xexp(t) is the 

experimental variable and n is the number of times at which an observation or model-

prediction has been made. 

2.5. Model adaptations 

2.5.1. Sensitivity analysis  

The sensitivity analysis was performed to study the effects of various process 

conditions, including heating rate, peak temperature, the gas phase pressure 

surrounding the particle and the extra-particle concentration of the tarry vapor, on the 

pyrolysis of the wood cylinder with a similar configuration as used in Pattanotai et 

al.[55] Peak temperature refers to the highest reactor temperature reached during the 
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pyrolysis of the wood cylinder (also called highest treatment temperature). The 

studied peak temperatures ranged from 573 to 873K (at a heating rate of 30 K/min) 

and the studied heating rates ranged from 3 to 30 K/min (with a peak temperature of 

873K). At each peak temperature, the effects of pressure (absolute pressure of 1, 2, 

5, 10, and 25 atm) for the gas phase surrounding the wood cylinder were compared 

by particularly focusing on the secondary heterogeneous reactions of the tarry vapors 

inside the wood cylinder.  

Practically, the gas phase surrounding the biomass particle is a mixture of non-

condensable gases, tarry vapors and inert gas, among which the tarry vapors are 

reactive. The extra-particle concentration of the tarry vapors can affect the product 

yields by influencing the diffusion of the tarry vapors depending on their 

concentration difference between the internal and the external of the particle. At 

atmospheric pressure with a heating rate of 30K/min and a peak temperature of 873K, 

the effect of the extra-particle concentration of the tarry vapors (the extra-particle 

concentration of the non-condensable gases in Eq. (21) is always assumed to be 

zero since this parameter exerts negligible influence on the pyrolysis process) was 

studied by changing the value from 0 to 0.9 mol/m3, which implies that in the latter 

case, the extra-particle volume fraction of the tarry vapors is about 1 % of the gas 

mixture (inert gas and tarry vapor) surrounding the particle according to the ideal gas 

law. 

2.5.2. Study of particle shape and size reduction 

Since pyrolysis units often treat biomass particles with various geometries and 

shapes, a parameter, aspect ratio (for a cylinder, the aspect ratio is defined as the 

ratio of length to diameter), is often introduced to characterize the effect of particle 

geometry.[91, 136, 137] Biomass particles have typical aspect ratios between 2 and 
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15.[91] Aspect ratios ranging from 0.1 (flake-like) to 14 (needle-like) were studied (at 

atmospheric pressure with a heating rate of 30 K/min and a peak temperature of 

873K) and particles with different aspect ratios share the same volume and mass as 

the wood cylinders used in the experimental work of Pattanotai et al.[55] 

It is frequently reported that size reduction of biomass particles happens during 

the thermochemical conversion, which is mainly due to particle shrinkage and particle 

attrition, splitting or fragmentation.[110, 136, 161, 164, 165] It is also reported that 

biomass particles suffer size shrinkage during the pyrolysis process with a size 

reduction of 20~30% .[161] In another work of Pattanotai et al.,[136] they found that 

the diameter and the length of the wood cylinder shrunk about 40% and 30%, 

respectively, during the pyrolysis process at a relatively low heating rate. The effect 

of particle shrinkage (with diameter shrinking 40% and length shrinking 30% during 

the pyrolysis process) was studied at various pressures (absolute pressure of 1, 2, 5, 

10, and 25 atm) with a heating rate of 30 K/min and a peak temperature of 873 K. It 

was assumed that the wood cylinder from Pattanotai et al.[55] shrinks with a radial 

(diameter)/axial (length) size reduction rate proportional to the conversion process of 

the virgin biomass, 
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Where fradial is the radial shrinking percentage (fradial = 0.4), faxial is the axial 

shrinking percentage (faxial = 0.3). Furthermore, dp0 and lp0 are the initial values of the 

diameter (0.008m) and length (0.009m) respectively. The term of 
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the volume-averaged conversion rate of the virgin biomass. 
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With respect to particle splitting, it was believed that the biomass particle retains 

its original morphology during pyrolysis conditions, and the biomass particle can 

break into a number of fragments with a broad range of sizes.[166] It is still unclear to 

what extent the particle splitting will affect the biomass pyrolysis process, especially 

under different heating conditions. A spherical biomass particle with an initial 

diameter of 1cm and a density of 398 kg/m3 was simulated under two different 

reactor temperatures (Treactor = 573 K and 873 K) in order to investigate the effect of 

particle splitting. Normally, the biomass particle would break into a smaller fragment 

and a larger fragment. While the smaller fragment can be quickly converted, the 

larger one needs more time to be fully converted, and the conversion process of the 

larger fragment contributes more to the final residual mass fraction (char yield) and 

the conversion time due to its larger weight than the smaller fragment. As a special 

case, the biomass particle may break into two equal parts. It was assumed that the 

spherical particle breaks into two equal parts (two half-spherical daughter particles). 

Even though the particle may not exactly break into two equal parts as described 

earlier, this assumption allows for a relatively simple and concise analysis of the 

splitting effect. Since the time at which the particle splitting (indicated as ‘splitting-

time’) happens is uncertain, two cases were compared: one case without particle 

splitting, and another case with particle splitting at two different splitting-times (one at 

the beginning of the pyrolysis and one at the time at which the total solid mass 

fraction is 0.80). In COMSOL Multiphysics®, the particle splitting can be achieved by 

regarding the particle’s instantaneous parameters at the time when the particle 

splitting happens as the initial conditions for the subsequent numerical study of the 

daughter particles after the splitting.  
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In order to simulate the particle splitting occurring at the beginning of the 

pyrolysis, the spherical biomass particle was assumed to be cut into two equal half-

spherical parts, and only one half-spherical part was further simulated. The half-

spherical biomass particle was initially exposed to the given heating conditions, and 

the pyrolysis process was simulated until the virgin biomass was completely 

converted. For the case with particle splitting occurring at the time when the total 

solid mass fraction was 0.80, the whole spherical biomass particle was simulated to 

undergo pyrolysis at given initial and boundary conditions before the particle splitting 

happened. Once the total solid mass fraction reached the value of 0.80, the spherical 

particle was assumed to be cut into two equal half-spherical parts, and only one half-

spherical particle was simulated to undergo further pyrolysis. In COMSOL 

Multiphysics®, when the particle splitting happens, the boundary conditions including 

the instantaneous parameters (spatial distributions of temperature, virgin biomass 

fraction, primary and secondary char fraction, and all other pyrolysis parameters) 

recorded in the whole spherical particle simulation were copied to the initial 

conditions of a new simulation case (i.e. of the half-spherical particle).  

3. Results and discussion 

3.1. Model validation 

3.1.1. Comparison with Pattanotai et al. [55, 136] 

The predicted char yield for the pyrolysis of Japanese cypress sawdust (at a 

heating rate of 30 K/min and a final temperature of 873 K) was 0.25, which is close to 

the experimental value of 0.245 in the work of Pattanotai et al.,[55] demonstrating the 

reliability of the kinetics for the primary pyrolysis reaction. 
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Table 2.5 summarizes the comparison between the modeling results and the 

experimental data of the amount of tar experiencing secondary conversion and 

secondary char formed within the cylinder from another work of Pattanotai et al.[136] 

Table 2.5 Comparison between the model prediction and the experimental data from 

Pattanotai et al. [136] for tar conversion and secondary char formation in wood cylinders; 

results expressed as percentage relative to dry feedstock weight. 

 Tar conversion Secondary char yield 

Cylinder 
dimensions, d × 
L 

8mm × 
2mm 

8mm × 
5mm 

8mm × 
9mm 

8mm × 
2mm 

8mm × 
5mm 

8mm × 
9mm 

Experimental 
data, wt.% 

4.6 ± 2.7 5.3 ± 2.5 7.2 ± 2.4 0.6 ± 0.6 1.5 ± 0.5 2.0 ± 0.5 

Model prediction, 
wt.% 

1.8 4.9 6.7 1.0 2.7 3.7 

 

Table 2.5 indicates that the predicted values were in good agreement with the 

experimental data. The mean deviation (MD) between experiment and model for the 

secondary tar conversion was 1.2 wt.% and for the secondary char yield 1.1 wt.%. 

The heterogeneous reaction rate of the tarry vapors was found to be significantly 

faster than the homogeneous reaction rate, and most of the tarry vapors experienced 

heterogeneous conversion within the particle. The modeling results show that more 

tar is converted within the particle as the length of the biomass cylinder increases (at 

the same diameter), which was also observed in the experiments described by 

Pattanotai et al.[136] The predicted amount of secondary char formed within the 

biomass cylinder was over-predicted slightly compared to the experimental results. 

One possible explanation can be the omission of particle shrinkage in the model as in 

the experiments[136] shrinkage of the biomass particle was indeed observed. The 
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exclusion of particle shrinkage in the model tended to over-predict the conversion of 

the tarry vapors within the particle (hence higher amount of secondary char), which 

has also been addressed in the literature[161] and will be further discussed in 

Section 3.4. 

3.1.2. Comparison with Koufopanos et al. [82]  

Table 2.6 shows the comparison between the modeling results and the 

experimental data for the pyrolysis of fine wood particles at various operating 

temperatures. Table 2.6 indicates that the present model can reasonably predict the 

char (primary char) yield at different temperatures with a MD of 3 wt.%. Furthermore, 

it was predicted that char yield for the wood sawdust decreases when the operating 

temperature increases. This trend is in accordance with previous experimental 

results.[34, 90] Table 2.6 indicates that the model can predict to an acceptable extent 

the qualitative trends with respect to the char yield, despite that some quantitative 

differences were present. 

Table 2.6 Comparison between the model predicted and experimental char yield of fine 

wood particles, results expressed in weight percentage (on feedstock dry basis).  

Experimental data from Koufopanos et al. [82] 

Pyrolysis temperature, K 623 673 873 

Experimental char yield, wt% 20 20 14 

Model predicted char yield, wt% 28 20 13 

 

Fig. 2.3(a) and Fig. 2.3(b) further compare the predicted solid mass and 

temperature profiles with the experimental data for the pyrolysis of centimeter-sized 

cylindrical particles. Fig. 2.3(a) shows that the predicted evolution of solids mass 

matched well with the experimental data. The MD of the dynamic solid mass 
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throughout the pyrolysis process was 6.0 wt.% (with the MD on final char mass yield 

being 3.6 wt%). Fig. 2.3(b) shows that the present model could capture the main 

characteristics of the temperature profile inside the cylindrical particle, with a mean 

deviation (MD) between model and experiment of 30.6 K, with the largest 

discrepancies found when nearing the peak temperature in biomass pyrolysis. The 

model predicts that the peak temperature inside the particle surpasses the operating 

temperature at the final stage of the pyrolysis, which is due to the strong exothermic 

primary and secondary reactions, and this temperature behavior was also observed 

in the experiments, albeit with a minor misalignment of the process time at which this 

peak temperature occurs in the case of pyrolysis at 623 K.  

 

(a) 
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(b) 

Fig. 2.3 Comparison of residual solid mass fraction at 623 and 773 K (a) and 

temperature profiles at centre and half-centre position at 623, 673 and 773 K (b) between the 

model results and the experimental data of Koufopanos et al.[82] (atmospheric pressure, 

  cleextrapartitleextrapartcg   0 kg/m3). 

3.2. Instantaneous pyrolysis behavior of a wood cylinder 

Fig. 2.4(a) shows the model-predicted evolution of solid mass including its 

fraction in primary and secondary char in a wood cylinder undergoing pyrolysis at 

873 K. Fig. 2.4(a) to Fig. 2.4(h) show the pyrolysis behavior along the radial and axial 

directions of a wood cylinder at a simulated time of 640s. Fig. 2.4(b) shows that the 

temperature (at t = 640 s specifically) at the center of the cylinder is 5 to 10 K lower 

than the temperature near the surface, due to which the decomposition of the virgin 

biomass and the formation of the primary char are relatively lower at the particle 

center, resulting in higher content of virgin biomass and a lower content of primary 

char at the particle center, as shown in Fig. 2.4(c) and Fig. 2.4(d), respectively. Fig. 

2.4(e) shows that the content of the secondary char is higher near the particle center. 
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As expressed in Eq. (4), the formation of secondary char is a function of temperature, 

residence time and concentration of the tarry vapors and the mass fraction of char in 

the solid phase. Longer residence time and higher concentration of the tarry vapors 

near the center of the wood cylinder are responsible of the formation of the 

secondary char, which is in accordance with previous statements.[51, 65] As the 

volatiles (tarry vapors and non-condensable gases) form within the wood cylinder, 

the concentration of the volatiles is higher at the particle center, building a higher 

pressure (Fig. 2.4(f)), which pushes the volatiles to flow out of the particle with a 

velocity as shown in Fig. 2.4(g). Fig. 2.4(g) shows that the volatiles find their way to 

leave the particle with a velocity much higher along the axial direction than along the 

radial direction of the cylinder, which is due to the higher permeability of the virgin 

biomass and the char along the axial direction. Pattanotai et al.[137] in their 

experimental work also indicated that the volatiles tend to be transported 

predominantly along the axial direction. Besides, part of the volatiles move to the 

particle surface due to diffusion (Fig. 2.4(h)). As the tarry vapors are transported 

towards the particle surface, they will contact the hot char, inducing the 

heterogeneous conversion of the tarry vapor, which produces secondary non-

condensable gases and secondary char. The tarry vapors near the particle center 

experience longer residence times within the particle than those near the particle 

surface, which contributes to the higher secondary char yield at the inner part of the 

particle, as shown in Fig. 2.4(e).  

The simulations assumed zero concentration for non-condensable gases and 

tarry vapors outside the biomass particle, which could potentially overestimate the 

diffusive flux as in practice, the concentrations of non-condensable gases and tarry 

vapors outside the biomass particle are not zero (which depends on the pyrolysis 
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reactor type used, whether an inert sweep gas is used to remove volatiles, etc.). The 

accuracy of the simulation results of an actual pyrolysis process may be improved if 

the transient concentration distributions of species including non-condensable gases 

and tarry vapors outside the biomass particle were implemented into the particle 

model, which was beyond the scope of the present study. 

 
(a) 

 
(b) (c) (d) (e) 

  
(f) (g) (h) 

Fig. 2.4 Model-predicted evolution of solid mass (including primary and secondary char) 

(a) and instanteneous spatial distrubtions of temperature, K (b), virgin biomass mass fraction 

(c), primary (d) and secondary char mass fraction (e), gauge pressure, Pa (f), velocity field, 

m/s (g) and mass flux of the tarry vapors, kg/(m2s) (h) during the pyrolysis of the wood 
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cylinder at the simulated time of 640s (heating rate = 30 K/min, peak temperature = 873 K, 

atmospheric pressure,   cleextrapartitleextrapartcg  0 kg/m3). 

3.3. Effect of process conditions  

Fig. 2.5 shows the effects of pyrolysis peak temperature and pressure on the 

pyrolysis of the wood cylinder.  

 

 
(a) 

 
(b) 
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(c) 

Fig. 2.5 Model results of the effect of peak temperature at various pressures on total 

char yield (a), heterogeneous tar conversion (b) and primary char yield (c) (heating rate = 30 

K/min,   cleextrapartitleextrapartcg  0 kg/m3). 

Fig. 2.5(a) shows that with the decrease of peak temperature and the increase of 

pressure, the total char yield increases. This trend is in qualitative agreement with the 

previous experimental observations.[34, 90] The increased total char yield is mainly 

due to the increased yield of the primary char when peak temperature decreases (Fig. 

2.5(c)). Under atmospheric pressure (0.1MPa), the predicted total char yield changes 

from 42 to 27 wt.% as the peak temperature increases from 573 to 723 K. Above 723 

K, the predicted char yield is constant, which was due to the fact that the pyrolysis 

process has already been finished under the slow heating rate of 30K min-1 when 

temperature is higher than 700K. Ronsse et al.[34] experimentally studied the slow 

pyrolysis of several types of biomass with sizes of several millimeters, and they also 

observed that the char yield reduced from about 40 to around 30 wt.% as the peak 

temperature increased from 573 to 723 K, above which the char yield almost 

remained unchanged with increasing peak temperature. 

When the pressure increased from 0.1 to 2.5 MPa, Fig. 2.5(a) shows that the 

total model-predicted char yield increased by about 5 wt.% at 573 K while at 873 K, it 
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increased by about 11 wt.%, which indicates that the pressure effect is more 

important at higher peak temperature since the heterogeneous conversion of the 

tarry vapors is favored at higher peak temperatures, as shown in Fig. 2.5(b). The 

higher total char yield at higher pressure is due to the significant heterogeneous 

conversion of the tarry vapors within the particle, as shown in Fig. 2.5(b). Under 

higher pressure, the mass concentration of the tarry vapors is higher and the specific 

volume of the volatiles (tar and non-condensable gases) is lower, building a lower 

pressure difference between the core and the outer area of the particle, which 

creates a lower velocity for the volatiles moving out of the particle resulting in longer 

residence times. The diffusivity of the tarry vapors is also lower at higher pressure 

according to Eq. (10). Both the decreased volatile velocity and tarry vapors diffusivity 

prolong the residence time of the tarry vapors within the particle. The combined 

results of longer residence time and higher mass concentration of the tarry vapors 

within the biomass particle at higher pressure contribute to the heterogeneous 

conversion of the tarry vapors to form secondary char (and secondary non-

condensable gases).  

Fig. 2.6 compares the effects of heating rate on the pyrolysis of the wood 

cylinder. It can be observed that the total char yield increases as the heating rate 

decreases, which is mainly due to the increased yield of primary char, as shown in 

this figure. This trend was also found in previous works.[90] It was also predicted that 

the production of secondary char increased with the increase of the heating rate.  
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Fig. 2.6 Model results of the effect of heating rate on total char yield, heterogeneous tar 

conversion and primary char yield (peak temperature = 873 K, atmospheric pressure, 

  cleextrapartitleextrapartcg   0 kg/m3). 

As for the effect of the extra-particle concentration of the tarry vapors, Fig. 2.7 

indicates that the secondary char yield proportionally increases as the extra-particle 

tarry vapor concentration increases. At a higher extra-particle tarry vapor 

concentration, the concentration difference of the tarry vapors between the internal 

and the external of the particle becomes smaller, resulting in a lower driving force for 

the tarry vapors produced inside the particle to diffuse outward, which increases the 

residence time of the tarry vapors inside the particle, promoting their heterogeneous 

reaction with the hot char. Besides, the tarry vapors outside the particle can diffuse 

into the particle at the initial and final stage of the pyrolysis process when the 

concentration of the tarry vapors produced inside the particle is lower than the extra-

particle concentration, which indicates that the concentration of the tarry vapors 

inside the particle will increase with the extra-particle concentration, and this can also 

facilitate the heterogeneous conversion of the tarry vapors inside the particle. 
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Modeling results are qualitatively consistent with previous conclusions that high 

concentration and prolonged vapor-phase residence time of the tarry vapors in the 

reaction zone favor the secondary char formation.[51] 

 

Fig. 2.7 Model results of the effect of the extra-particle tarry vapor concentration on 

secondary char yield (heating rate = 30 K/min, peak temperature = 873 K, atmospheric 

pressure,  leextrapartcg = 0 kg/m3). 

3.4. Effect of particle shape and particle size reduction 

Fig. 2.8 shows the effects of aspect ratio on the pyrolysis of wood cylinders that 

share the same initial volume and mass. The model-predicted results show that the 

primary char yield is not affected by the aspect ratio, which is due to the similar 

uniform temperature distribution inside particles with different aspect ratios at the 

slow heating rate used (30 K/min). However, Fig. 2.8 indicates that the aspect ratio 

influences the heterogeneous conversion of the tarry vapors and hence the 

production of the secondary char, which further alters the total char yield.  
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Fig. 2.8 Model results of the effect of particle aspect ratio on total char yield, 

heterogeneous tar conversion and primary char yield (heating rate = 30 K/min, peak 

temperature = 873 K, atmospheric pressure,   cleextrapartitleextrapartcg  0 kg/m3). 

Fig. 2.8 also shows that as the aspect ratio increases from about 0.1 to 0.9, the 

amount of tarry vapors that experience heterogeneous conversion increase slightly. 

Since the detailed porous structure inside the particle was unknown, it had been 

assumed (Section 2.1.2) that the porous structure was homogeneously distributed 

across the whole particle. However, to describe the anisotropic characteristics of the 

particle, different physical properties (permeability and thermal conductivity) were 

assumed along (or parallel to) and across the grain of the particle. It has been 

experimentally reported that the gas mixture flows out of the particle preferentially 

along the grain of the biomass particle.[137] As shown in Eq. (12), the outflow 

velocity of the gas mixture inside the particle was proportional to the permeability. To 

describe the preferential flow of gas mixture along the grain of the particle, the 

permeability (Table 2.3) along (or parallel to) the grain direction was set to be higher 

than that across the grain direction. As a result, prolonged residence time for the 
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tarry vapors at higher aspect ratio was predicted since the convective transport of the 

tarry vapors occurs mainly along the axial direction (along the grain) of the wood 

cylinder. These simulation results were in qualitative accordance with the previous 

experimental results of Pattanotai et al.,[137] who found increased secondary tar 

conversion when the particle aspect ratio increased. It was found that, at a much 

higher (higher than 0.9) aspect ratio, the diffusive transport of the tarry vapors along 

the radial (across the grain) direction becomes the dominant transport mechanism. 

As the transport of the tarry vapors at the radial direction is predominantly by 

diffusion as discussed in Section 2.1.1, and the distance over which the vapors need 

to diffuse is reduced at higher aspect ratios (> 0.9), the residence time of the tarry 

vapors is reduced, hindering their heterogeneous conversion within the particle. 

Therefore, an aspect ratio of 0.9 tends to be an optimal value for the char formation 

at the current condition (atmospheric pressure with a heating rate of 30 K/min and a 

peak temperature of 873 K). It should be mentioned that zero concentration for the 

tarry vapors outside the particle was assumed, which could affect the optimal value 

found for the aspect ratio (i.e. the optimal value found here is not universally 

applicable). 

Fig. 2.9 compares the model results with and without the consideration of 

particle shrinkage during the biomass pyrolysis process. Fig. 2.9(a) shows that the 

incorporation of particle shrinkage in the model led to a lower predicted total char 

yield due to the hindered heterogeneous conversion of the tarry vapors within the 

particle. As the particle shrinks, the residence time of the tarry vapors is shorter than 

in the particle without shrinkage since the particle with shrinkage provides a shorter 

distance for the tarry vapors to travel, which results in a lower heterogeneous 

conversion of the tarry vapors within the particle.[161] Fig. 2.9(b) indicates that 
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particle shrinkage exerts a consistent effect in terms of lower solid residue yield 

during the pyrolysis process which becomes more observable near the end of the 

pyrolysis process. 

 

 
(a) 

 
(b) 

Fig. 2.9 Comparison of the model results with and without the consideration of particle 

shrinkage: (a) effect on secondary char yield and heterogeneous tar conversion at various 

pressures, (b) effect on residual solid mass fraction at atmospheric pressure, (heating rate = 

30 K/min, peak temperature = 873 K,   cleextrapartitleextrapartcg  0 kg/m3). 
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(a) 

 

(b) 

Fig. 2.10 Simulated particle splitting effect on the evolution of the residual solid mass 

fraction under different reactor temperatures: (a) Treactor = 573 K, (b) Treactor = 873 K 

(atmospheric pressure, 
  cleextrapartitleextrapartcg 

0 kg/m3). 

Fig. 2.10 compares two cases with particle splitting and the case without particle 

splitting at two different reactor temperatures. According to the model results, particle 
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splitting exerts limited effects on the pyrolysis process at lower temperature and 

significant effects at higher temperature. At lower reactor temperature, the 

temperature gradient inside the particle is lower for both the spherical particle and the 

split half-spherical particles, and the biomass conversion tends to be controlled by 

the reaction kinetics, indicating that the particle conversion processes for different 

particle sizes are similar provided they are at the same lower reactor temperature. At 

higher temperature, Fig. 2.10(b) shows that the particle splitting at the beginning of 

the process reduced the conversion time (at which the biomass is fully converted) by 

about 40% and the char yield by about 20% compared with the case without particle 

splitting. Fig. 2.10(b) also shows that the particle splitting at the moment when the 

total residual solid mass fraction equals 0.80 reduced the conversion time by about 

20% and the char yield by about 17% compared with the case without particle 

splitting. It can be seen that the particle splitting-time exerts more important effects 

on conversion time than on char yield. Besides, due to particle splitting, the tarry 

vapors will experience decreased residence time within the particle, which will reduce 

the heterogeneous conversion of the tarry vapors inside the particle. Fig. 2.10 also 

shows that the later the particle splitting happens, the smaller the effect on the 

pyrolysis process will be. Practically, the particle splitting can occur at any time 

throughout the pyrolysis process and the particle can break into a larger number 

(i.e. >2) of fragments depending on the particle properties and the operating 

conditions. Since the particle splitting significantly influences the conversion time and 

the char yield, it was indicated that the particle splitting can add uncertainty when 

experimentally measuring the conversion time and char yield of biomass pyrolysis. 

This can be a reasonable explanation for the wide ranges of conversion times and 

char yields reported in the literature even under similar heating conditions.[27] 
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The modeling results demonstrate that fragmentation of particles during 

pyrolysis could negatively impact the char yield. In slow pyrolysis systems, 

purposefully-built to have a high yield of char (i.e. for use as charcoal or biochar), this 

may be a significant phenomenon if the particles are subjected to a high degree of 

attrition. Reactor types which use mechanical energy for particle transport and mixing, 

such as the rotating drum and rotating screw retorts fall under this category, whereas 

in fixed-bed pyrolysis retorts or kilns, mechanically induced attrition and wear is 

nearly absent. The impact of particle fragmentation on char yield will furthermore be 

determined by factors such as the onset of fragmentation, as virgin biomass particles 

are less likely to break down considering their tensile strength as opposed to brittle 

near or fully pyrolyzed particles. Also fragmentation patterns other than splitting, such 

as the continuous removal of the outer surface (chipping) and the fragmentation into 

multiple, unequally sized daughter particles are more likely to occur. 

4. Conclusions 

A three-dimensional comprehensive particle model (3D CPM) was developed for 

the pyrolysis of a biomass particle by coupling the three-dimensional transport 

phenomena and a general kinetic scheme considering the primary pyrolysis of virgin 

biomass and the intraparticle secondary charry reactions (i.e. homogeneous and 

heterogeneous reactions of the tarry vapors). The characteristic time scale analysis 

was performed to identify the dominant processes for consideration in the model. The 

model results were compared to the experimental data in literature from two different 

research groups. The comparison shows that the model can well predict the trends 

with respect to the evolutions of temperature (MD of 31 K) and mass loss (MD of 6.0 

wt%; MD on final char mass yield of 3.6 wt%) as well as with respect to the 

heterogeneous secondary tar conversion (MD of 1.2 wt%).  
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Further analyses of the effects of the process conditions (heating rate, peak 

temperature, pressure of the gas phase surrounding the particle and extra-particle 

concentration of the tarry vapors) indicate that lower heating rate, lower peak 

temperature, and higher pressure are favorable for the production of total char, while 

higher pressure and higher extra-particle concentration of the tarry vapors are 

particularly beneficial to the formation of secondary char. It was found that the 

particle shape (aspect ratio) highly affects the secondary char formation. In addition, 

the size reduction phenomena (particle shrinkage and particle splitting) during 

pyrolysis of biomass particles significantly affect the particle’s conversion process. It 

was found that the particle shrinkage exerts consistent char yield reducing effects on 

the biomass pyrolysis during the whole pyrolysis process and that the inclusion of the 

particle shrinkage in the model decreased the predicted total char yield due to the 

lower amount of secondary char produced from the heterogeneous conversion of the 

tarry vapors within the particle. With the model, it was also indicated that the particle 

splitting highly influences conversion time, char yield and conversion process of the 

tarry vapors inside the particle. The time at which the particle splitting occurs also 

affects the conversion process to a large extent. As such, particle splitting can add 

uncertainty when experimentally measuring the conversion time and char yield during 

the biomass pyrolysis process. 
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CHAPTER 3 

Modeling of pyrolysis of a biomass particle with a 

comprehensive kinetic scheme 

In the previous chapter (Chapter 2), the pyrolysis of a single biomass particle 

was studied by incorporating a general kinetic scheme, which did not consider 

biomass composition (cellulose, hemicellulose, and lignin), into a comprehensive 

particle model (CPM). In this chapter 3, a comprehensive kinetic scheme, which will 

consider biomass composition, will be incorporated into the CPM to study the 

pyrolysis of a single biomass particle. This comprehensive kinetic scheme describes 

the primary pyrolysis of biomass pseudo-components (cellulose, hemicellulose, and 

lignin) and the secondary charring reactions due to the heterogeneous conversion of 

the primary volatiles. The model results will be compared against experimental data. 

With this model, the effects of particle size on the intraparticle secondary charring 

reactions will be quantified and a critical particle size, at which the intraparticle 

secondary charring reactions start to be relevant, will be determined at thermally thin 

pyrolysis regime.  

 

This chapter was redrafted after: 

Xiaogang Shi, Frederik Ronsse, Andrés Anca-Couce, Zuoyi Yan, Jan G. Pieters. 

Simulation of intraparticle secondary charring reactions during biomass pyrolysis by 

considering biomass composition. To be submitted to Energy & Fuels. 
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1. Introduction 

Industrial production of char through biomass pyrolysis usually handles 

woodchips and pellets with a large size in the range of several centimeters.[167] 

During slow pyrolysis or carbonization of biomass, char is usually regarded as a 

primary product  along with the competitive formation of volatiles.[65, 148] Recent 

evidence indicate that secondary charring reactions can occur through 

heterogeneous volatile-char interactions when volatiles, which were primarily formed 

inside the biomass particle during its pyrolysis, are diffusing/flowing out of the porous 

biomass particle.[9, 35, 54, 72, 73, 89, 90, 130-133, 168] The homogeneous thermal 

cracking of volatiles in the gas phase can also produce secondary char. However, 

the secondary char produced from this thermal cracking of volatiles is very limited 

even at its favorable temperatures higher than 870 K.[54, 169] Therefore, this study 

will not consider the secondary char produced from the homogeneous conversion of 

volatiles. The production of secondary char from the heterogeneous conversion of 

volatiles can occur at relatively lower temperatures (around 670 K or lower).[55, 89] 

Several research groups have addressed the heterogeneous conversion of volatile 

compounds as an important source of char formation during biomass pyrolysis.[55, 

79, 80, 90] Therefore, the char is a mixture of primary and (heterogeneous) 

secondary char from biomass pyrolysis. Knowledge about the individual contribution 

of primary and secondary char formation to the total char yield is important in 

optimizing the production of char through biomass pyrolysis.  

Extensive research has been performed to characterize the primary char 

formation with thermal gravimetric analysis (TGA), fixed bed reactors and other types 

of reactors.[65, 90] It is generally accepted that lower heating rates and lower 

temperatures are in favor of primary char production.[34, 65] In addition, the biomass 
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composition (cellulose, hemicellulose and lignin) can also influence the production of 

primary char. Biomass feedstocks with higher lignin content will offer higher primary 

char yields.[72, 90]  

Compared to the already comprehensive results about the production of primary 

char from biomass pyrolysis, knowledge about the secondary charring reactions due 

to the heterogeneous conversion of volatiles within large biomass particles (i.e. 

centimeter-sized or larger particle) is still limited.[9, 51, 78, 90, 170] This is mainly 

due to the difficulty in characterizing the complex coupled physical and chemical 

phenomena inside the biomass particle, including the intraparticle heat transfer, the 

intraparticle diffusion and flow of volatiles and the intraparticle secondary charring 

reactions.[51, 67] Some researchers[78, 170] have identified the secondary charring 

reactions in slow pyrolysis of biomass at low temperatures and they explored the 

effect of intraparticle secondary charring reactions on the heat of reaction during 

biomass pyrolysis. Other researchers have identified the factors (including particle 

size, reactor temperature, operating pressure, biomass composition, etc.) that can 

affect the intraparticle physical and chemical phenomena and hence the intraparticle 

secondary charring reactions.[9, 51, 55, 65, 67, 72, 73, 79, 89, 168, 171-176] In 

these previous works, the final solid product (char) was usually a mixture of primary 

and secondary char, and the amount of secondary char in the total char mixture was 

seldom quantified. Anca-Couce et al.[72, 73] tried to quantify the intraparticle 

secondary charring reactions with a comprehensive pyrolysis reaction scheme. 

Pattanotai et al.[55] experimentally studied the pyrolysis of a centimeter-sized wood 

particle and determined the amount of secondary char. However, the intraparticle 

physical and chemical phenomena during biomass pyrolysis remain largely unknown. 

These phenomena are critical to provide fundamental information in characterizing 
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the secondary charring reactions.[51] With the development of computational science, 

mathematical simulation has become an efficient and reliable tool in studying coupled 

transport phenomena and chemical reactions involved in energy conversion 

processes including biomass pyrolysis.[65, 67, 71, 83, 103, 128, 145, 161, 177-180] 

Some researchers have used advanced models coupling the transport phenomena 

and chemical reactions to study the intraparticle conversion of volatiles.[81, 82, 139-

144, 181] However, these modeling studies seldom report on the amount of 

secondary char that was produced from the heterogeneous conversion of volatiles. 

The individual contributions of primary char and secondary char to the total char 

remains largely unknown. Besides, the industrial production of char from pyrolysis of 

biomass is usually at slow heating rates[90], which tend to give rise to the thermally 

thin pyrolysis regime. The thermally thin pyrolysis regime refers to the regime that the 

internal heat transfer in the particle and chemical reactions are faster than the 

external heat transfer to the particle, and, therefore, external heat transfer controls 

the process, but no intra-particle gradients are present. At this thermally thin pyrolysis 

regime, the effect of particle size on the intraparticle secondary charring reactions is, 

however, still unknown. 

The objective of this chapter is to study the pyrolysis of a single biomass particle 

by incorporating a comprehensive kinetic scheme, which considers biomass 

composition (cellulose, hemicellulose and lignin), into the three-dimensional 

comprehensive particle model (3D CPM) that has been developed in Chapter 2. With 

the model in this chapter, the intraparticle secondary charring reactions are quantified. 

The particle size effect on the secondary charring reactions is quantified and in 

addition, the particle size, at which the influence of the secondary charring reactions 
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start to be relevant, is determined for the pyrolysis of cylindrical biomass particles at 

the thermally thin regime. 

2. Methods 

2.1 Reaction kinetics 

The primary pyrolysis of biomass produces primary volatiles and primary char, 

and the subsequent secondary charring reactions produce secondary char and 

lighter gases (CO2, H2, water vapor[73, 171, 182]) through heterogeneous conversion 

of primary volatiles when they are flowing out of the hot and porous biomass particle. 

Since the primary char and the secondary char (as well as the primary volatiles and 

the secondary lighter gases) usually mix together within the centimeter-sized particle, 

it is difficult in experiments to discern between the primary products and the 

secondary products. It is usually accepted that only primary pyrolysis occurs (to 

produce primary char and volatiles) in a fine biomass particle (with a size of one 

millimeter or smaller) and that the primary volatiles do not experience further 

conversion due to the limited residence time of volatiles inside this small biomass 

particle. Previous experiments usually addressed the conversion of the primary 

volatiles within a large (i.e. centimeter-sized) biomass particle by comparing the 

product yields between the small particle (assuming no conversion of primary 

volatiles) and the centimeter-sized particles (with conversion of primary volatiles).[65, 

136, 137] In contrast, a coupled physical-chemical model can obtain detailed 

information about the primary and secondary products during the pyrolysis of a 

centimeter-sized biomass particle.[67] 

2.1.1 Primary pyrolysis kinetics 
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To describe the primary pyrolysis of biomass, several authors have proposed 

various kinetic schemes,[9, 65] among which the detailed mechanistic reaction 

scheme of the biomass pseudo-components (cellulose, hemicellulose, carbon-rich 

lignin, oxygen-rich lignin and hydrogen-rich lignin) originally proposed by Ranzi et 

al.[68] is considered to be one of the most promising. In this reaction scheme, the 

overall progression of the biomass pyrolysis process is the sum of the reactions 

involving individual biomass components. This reaction scheme considers 

representative species to describe the composition of char and volatiles. The 

research group of Ranzi[69-71, 183] and other research groups[72, 73] have 

extended the application of this original kinetic scheme from Ranzi et al.[68]. The 

kinetic scheme of Ranzi et al.[68] was also applied in this chapter to describe the 

primary pyrolysis reactions in producing primary char and primary volatiles, as shown 

in Fig. 3.1(a). All reaction rate coefficients were described by the Arrhenius function, 

and the detailed kinetic parameters are listed in Table 3.1.  

The reaction rate equation is expressed as ݎ ൌ  ሾ݇/݉ଷሿ is the densityߩ where ,ߩ݇

of the reactant. ݇ሾ1/sሿ is the kinetic constant as calculated by ݇ ൌ ሺିாೌ݁ܣ
ோ்
ሻ (Arrhenius 

function), where ܣሾ1/sሿ  is the pre-exponential factor, ܧሾ݈݉/ܬሿ  is the activation 

energy, ܴሾܬ/ሺ݈݉ ∙  .ሿ is the temperatureܭሻሿ is the gas constant and ܶሾܭ

In Fig. 3.1(a), the percentages represent the weight fractions of various gaseous 

(at the pyrolysis condition, all the condensable and non-condensable volatiles are in 

gas phase) and solid products. The gas and solid species in Fig. 3.1(a) are 

separately grouped, as can be seen in Table 3.2. In Fig. 3.1(a), the original scheme 

of Ranzi et al.[68] was interpreted by lumping the gaseous products from cellulose as 

VolCELL, the gaseous products from hemicellulose as VolHCE, the gaseous products 

from carbon-rich lignin as VolLIGC, the gaseous products from hydrogen/oxygen-rich 
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lignin as VolLIGH-LIGO, and the gaseous products from the successive conversion of 

some primary char (CharB, CharC and CharD, as shown in Table 3.2) as VolChar. 

Volatiles from different biomass components were separately lumped in order to 

define the secondary charry reactions resulting from the heterogeneous conversion 

of different volatiles from different biomass components, as described in the following 

section.  
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(a) 

 

(b) 

Fig. 3.1 Pyrolysis scheme  of (a) primary pyrolysis reactions, (b) secondary charring reactions, (values in weight percentage) adapted from 

Ranzi et al.[68]
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Table 3.1 Pyrolysis kinetics of biomass for the multiple reactions adapted from Ranzi et 

al.[68] 

Reaction number 
Kinetic constant [1/s]  
(Activation energy in J/mol) 

∆H [kJ/kg] 

R1 8 x1013exp(-192500/RT) 0 a 

R2 1 109exp (-125600/RT) 620 a 

R3 4T exp(-41900/RT) 364 a 

R4 8107 exp(-133900/RT) -1913 a 

R5 1 1010exp(-129800/RT) 100 a 

R6 3109 exp (-113000/RT) -92 a 

R7 3T exp (-46000/RT) 588 a 

R8 11010exp (-138100/RT) 212 a 

R9 41015exp(-203000/RT) -490 a 

R10 2 1013 exp(-157000/RT) 100 a 

R11 1109 exp(-106700/RT) 446 a 

R12 5106 exp(-131900/RT) -503 a 

R13 11013 exp(-207200/RT) -120 a 

R14 8101T exp(-50200/RT) 686 a 

R15 1.2 109 exp(-125600/RT) -470 a 

R16 1105 exp(-100500/RT) -1814 a 

R17 11013 exp(-209300/RT) -2000 a 

R18 51011 exp(-272100/RT) 6778 a 

R19 b ߠ ൈ 1.24 ൈ 10݁ݔሺെ92400/ܴܶሻ -42 c 

R20 b ߠ ൈ 1.24 ൈ 10݁ݔሺെ92400/ܴܶሻ -42 c 

R21 b ߠ ൈ 1.24 ൈ 10݁ݔሺെ92400/ܴܶሻ -42 c 

R22 b ߠ ൈ 1.24 ൈ 10݁ݔሺെ92400/ܴܶሻ -42 c 
a From the work of Ranzi et al..[71] 

b Through calibration with the experimental data of Pattanotai et al..[55] ࣂ is a parameter, as defined in our 

previous work,[67] indicating that the reaction rate for the heterogeneous conversion of volatiles is proportional 

to the weight fraction (ࣂ ൌ ࢚ࢇ࢚ࢉࢇࢋ࢘	ࢊ࢙࣋ሺ/࢘ࢇࢎࢉ	࢟࢘ࢇ࢘࣋   ሻ of the primary char in the total solid࢚ࢉ࢛ࢊ࢘	ࢊ࢙࣋

species as shown in Table 3.2. 

c From the work of Park et al.[110] 
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Table 3.2 The list of gas and solid species in the reaction kinetics adapted from Ranzi et 

al.[68] 

Abbreviation 
The corresponding 
term in Ranzi et al. 
[68] 

Name 

Solid species   
Solid reactant   

CELL CELL Cellulose 
HCE HCE Hemicellulose 
LIGC LIG-C Carbon-rich lignin 
LIGH LIG-H Hydrogen-rich lignin 
LIGO LIG-O Oxygen-rich lignin 

Primary solid product   
CELLA CELLA Activated cellulose 
HCE1 HCE1 Activated hemicellulose 1 
HCE2 HCE2 Activated hemicellulose 2 
LIGCC LIGCC Carbon-rich lignin 2 
LIG LIG Lignin 
LIGOH LIGOH OH-rich lignin 
CharA Char Primary Char 
CharB [CO2] Primary Char 
CharC [CO}] Primary Char 
CharD [COH2] Primary Char 
Secondary solid product   
Secondary char -- Secondary char 
   

Gas species   
Reactive volatiles   

VolCELL -- Primary reactive volatiles from cellulose 
VolHCE -- Primary reactive volatiles from hemicellulose 

VolLIGC 
-- Primary reactive volatiles from carbon-rich 

lignin 

VolLIGH-LIGO 
-- Primary reactive volatiles from hydrogen-rich 

lignin and oxygen-rich lignin  
Unreactive volatiles   

VolChar 
-- Primary unreactive volatiles from CharB, CharC, 

and CharD 
Inert gas   

N2 -- Nitrogen 
Secondary gas product   

Secondary lighter gases -- Secondary lighter gas 

2.1.2 Secondary charring reactions kinetics 

Kinetics on the secondary charring reactions due to the heterogeneous 

conversion of primary volatiles within centimeter-sized or larger biomass particles are 

very scarce in literature, which can be due to the difficulty of real-time measurement 

of the heterogeneous reaction parameters of primary volatiles consisting of various 

compounds including non-condensable gases, carbonyls and alcohols, phenolics, 

sugars, heterocylic compounds and water vapor.[9]  
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For simplicity, the complex secondary charring reactions of individual 

compounds (e.g. non-condensable gases, carbonyls and alcohols, phenolics, sugars, 

heterocylic compounds and water vapor[9]) in the primary volatiles were not explored. 

Instead, the lumped conversion of the primary volatiles (VolCELL, VolHCE, VolLIGC, and 

VolLIGH-LIGO as shown in the above Section 2.1.1) from the corresponding biomass 

components were modeled. Fig. 3.1(b) shows the secondary charring reactions of 

each group of primary volatiles. In Fig. 3.1(b), the composition of the secondary 

products (the weight ratio of secondary char to secondary lighter gases) were 

obtained from Anca-Couce et al.[72, 73] The scheme of secondary charring reactions 

in Fig. 3.1(b)  indicates that the primary volatiles from lignin have higher tendency to 

form secondary char than the primary volatiles from cellulose and hemicellulose, 

which was also addressed in the experiments of Boroson et al.[89] In Fig. 3.1(b), the 

amount of secondary char in the secondary products ranged from 40.7 wt.% to 67.4 

wt.%. And this range covered the experimental value of Pattanotai et al.,[55] who 

experimentally determined that about 54 wt.%, of the tarry vapors (a heavy fraction of 

primary volatiles) were converted into secondary char (and 46 wt.% of tarry vapors to 

secondary lighter gases) during biomass pyrolysis. 

To the author’s knowledge, no data can be found in the literature about the 

kinetics of the secondary charring reactions resulting from individual components of 

the primary volatiles. Therefore, a single reaction kinetic constant was applied to all 

the secondary charring reactions, which should be considered as providing a mean 

conversion rate for all the primary volatiles. The procedure to obtain the kinetic 

parameters for the secondary charring reactions was based on the pyrolysis of the 

wood cylinder in the experimental work of Pattanotai et al.[55] The wood cylinder had 

a diameter of 8 mm and a length of 9 mm. An activation energy (in the Arrhenius 
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equation) of 92.4 kJ/mol, which was usually applied in predicting the heterogeneous 

conversion of volatiles within a centimeter-sized biomass particle,[67, 81, 144] was 

applied to describe the formation rate of the secondary products. The pre-exponential 

factor in the Arrhenius equation for describing the formation rate of the secondary 

products, as shown in Reaction 19 to Reaction 22 in Table 3.1,  was determined after 

calibrating with the experimental values from Pattanotai et al.[55] with respect to the 

amount of secondary char formed within this particle. 

2.2 Coupled physical-chemical model 

The 3D CPM coupling the physical and chemical phenomena describes the 

mass balance of reactants and products, the heat transfer within the particle and the 

outflow of the gas phase (including inert gas N2, primary volatiles and secondary 

lighter gases) in the porous particle. This model considered the anisotropic 

characteristics of the 3D particle, which means that the transport processes (mass, 

heat and momentum transfer) across the grain direction (in the radial direction of the 

cylindrical particle in the following text) of the biomass particle were different from 

those parallel to the grain direction (in the axial direction of the cylindrical particle in 

the following text).[109, 111] In the present model, it was assumed that no shrinkage 

(particle size) or distortion (particle shape) occurs during the pyrolysis of the biomass 

particle. The detailed description of the 3D CPM can be found in Chapter 2. Only the 

governing equations, the initial conditions and the boundary conditions are described 

here. 

2.2.1 Governing equations 

The mass balance for the solid species is: 
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ߩ߲
ݐ߲

ൌ ܵ (1)

Where ߩ (݇݃/݉ଷ) is the density of the solid species ݅ (Table 3.2); (ݏ) ݐ is time; ܵ 

(݇݃/ሺ݉ଷ ∙  solid component resulting from the ݄ݐ݅ is the net formation rate of the (ݏ

reaction kinetics described. 

The mass balance for the total gas is: 

ߩߝ߲
ݐ߲

  ∙ ሺߩݑሻ ൌ ܵ (2)

Where ߝ is the particle’s porosity; ߩ (݇݃/݉ଷ) is the density of the gas phase 

including the inert gas N2, the primary volatiles, and the secondary lighter gases, as 

shown in Table 3.2; ݑ  (݉/s) is the velocity of the gas phase within the porous 

particle; ∑ܵ݃ (݇݃/ሺ݉ଷ ∙  is the net formation of the all gas species resulting from the (ݏ

reaction kinetics. 

The species transport equation for primary volatiles and secondary lighter gases 

within the porous particle is: 

ߩߝ߲
ݐ߲

  ∙ ሺߩݑሻ ൌ  ∙ ൫ܦ,ߩ൯  ܵ (3)

Where ߩ  is the density of the gas species ݆ (Table 3.2); 	ܦ,  (݉ଶ/s) is the 

effective diffusivity of gas species ݆ in particle pores; ܵ is the net formation of the gas 

species ݆ from the reaction kinetics. 

The momentum transfer of the gas phase in the porous particle was described 

using the Darcy Law: 

ݑ ൌ െ
,ௗ௧ܤ

ߤ
(4) ܲ
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Where ܤ,ௗ௧, ሺ݀݅݊݅ݐܿ݁ݎ ൌ ,ݏݏݎܿܽ ሻ݈݈݈݁ܽݎܽ  ( ݉ଶ ) is the effective 

permeability (defined by the internal resistance of the particle to the bulk flow of the 

gas phase) across and parallel to the grain direction of the 3D particle; ߤ (kg/ሺm ∙  (ሻݏ

is the dynamic viscosity of the gas phase;  ܲ (ܲܽ) is the pressure. 

The energy conservation equation is: 

ቀܿߩ  ቁߩܿߝ
߲ܶ
ݐ߲

 ሺܿߩݑሻ ∙ ܶ ൌ  ∙ ൫ߣ,ௗ௧ܶ൯  ܳ (5)

Where ܿ (ܬ/ሺ݇݃ ∙  ሻ) is the heat capacity for the ݅௧ solid species; ܿ is the heatܭ

capacity of the gas phase; ߣ,ௗ௧, ሺ݀݅݊݅ݐܿ݁ݎ ൌ ,ݏݏݎܿܽ ሻ (ܹ/ሺ݈݈݈݉݁ܽݎܽ ∙  ሻ) isܭ

the effective thermal conductivity across and parallel to the grain direction of the 3D 

particle; ܳ (ܹ/݉ଷ) is the heat source term. Details of the model parameters are listed 

in Table 3.3. 

Table 3.3 Material properties for the model 

Property  Value  Unit Source  

1 ߝ െ
௦ௗߩ ௧௧  ௦ௗߩ ௗ௨௧

௧௧,	௦ௗߩ
ሺ1 െ  ሻ - Shi et al.[67]ߝ

 ,ௗ௧ܤ
ሺܤߩሻ௦ௗ ௧௧,ௗ௧  ሺܤߩሻ௦ௗ ௗ௨௧,ௗ௧

௧௧	௦ௗߩ  ௦ௗߩ ௗ௨௧
- Shi et al.[67] 

 ,ௗ௧ߣ

ሺߣߩሻ௦ௗ ௧௧,ௗ௧  ሺߣߩሻ௦ௗ ௗ௨௧,ௗ௧
௧௧	௦ௗߩ  ௗ௨௧	௦ௗߩ

 ௦	௦ߣߝ 
ଷ݀ܶߪ13.5

݁
 

- Shi et al.[67] 

݀ 
ሺ݀ߩሻ௦ௗ ௧௧  ሺ݀ߩሻ௦ௗ ௗ௨௧

௦ௗߩ ௧௧  ௗ௨௧	௦ௗߩ
 - Shi et al.[67] 

ܿ௦ௗ	௧௧ 1500+1.0T  J/(kg·K) Gronli and Melaaen[148] 

ܿ௦ௗ	ௗ௨௧ 420+2.09T+6.85×10-4T2 J/(kg·K) Gronli and Melaaen[148] 

ܿ௦	௦ -100+4.4T-1.57×10-3T 2 J/(kg·K) Gronli and Melaaen[148] 

݀௦ௗ	௧௧ 4×10-5  M Di Blasi[93] 

݀௦ௗ	ௗ௨௧ 4×10-4  M Di Blasi[93] 

 ௧௧ 1×10-11 (parallel to grain), 1×10-14 (across grain) m2 Di Blasi[93]	௦ௗܤ

 ௗ௨௧ 5×10-11 (parallel to grain), 5×10-12 (across grain) m2 Di Blasi[93]	௦ௗܤ
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 , 1×10-5   m2/s Shi et al.[67]ܦ

݁ 0.95 - Bates and Ghoniem[83] 

݄௩௧௩ 5 W/(m2·K) Gronli and Melaaen[148] 

ܯ ௩ܹ 0.076 kg/mol Park et al.[110] 

ܴ௦ 8.314  J/(mol·K)  

௦௦	௧௧	௦ௗߣ
ሺ
௧௧,	௦ௗߩ

௪௧ߩ
ሻሺ0.1941  0.114064  Moisture

 0.01864ሻ
W/(m·K) Shi et al.[67] 

	௧௧	௦ௗߣ 2.8 ∙ ௦ௗߣ ௧௧	௦௦ W/(m·K) Shi et al.[67] 

 ௗ௨௧ 0.105 (parallel to grain), 0.071 (across grain) W/(m·K) Di Blasi[93]	௦ௗߣ

 ௦ 0.0258 W/(m·K) Gronli and Melaaen[148]	௦ߣ

σ 5.67×10-8   W/(m2·K4) Gronli and Melaaen[148] 

  0.4 - Park et al.[110]ߝ

μ 3×10-5  kg/(m·s) Di Blasi[93] 

 ௧௧,	௦ௗߩ

398 (Pattanotai) kg/m3 Pattanotai et al.[55, 136] 

650 (Koufopanos) kg/m3 
Koufopanos et al.[82, 
184]   

2.2.2 Initial and boundary conditions 

Initially, the biomass feedstock has a density of ߩ, and the initial density of the 

individual component was ߩ, ൌ ݅) ߩ,ݓ ൌcellulose, hemicellulose, carbon-rich lignin, 

oxygen-rich lignin and hydrogen-rich lignin). Initially, the gas phase only contains 

inert gas (N2), and it has an initial density of ߩ,ୀߩ௧,. The biomass particle has an 

initial temperature ܶ and is exposed to the ambient pressure (absolute pressure of 

P0 = 0.1MPa). The initial velocity of the gas phase is ݑ, ൌ 0	݉/s. 

The biomass particle was assumed to be surrounded by inert gas (the 

concentration of volatiles outside the particle was assumed to be negligible[67]) with 

constant pressure. The particle was considered to be heated by convective and 

radiative heat flux. At the particle surface, the boundary conditions were defined by:  

ܲ൫ݐ, ݎ ൌ ൯ݎ ൌ ܲ (6)

,ݐ൫ߩ ݎ ൌ ൯ݎ ൌ
ܲܯ ܹ௧

ܴ௦ ௦ܶ
 (7)
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െ ∙ ൫െߣܶ൯ ൌ ݄௩௧௩ሺ ܶ௧ െ ௦ܶሻ  ሺ݁ߪ ܶ௧
ସ െ ௦ܶ

ସሻ (8)

where ݄ܿ݁ݒ݅ݐܿ݁ݒ݊	ሺܹ/ሺ݉ଶ  ሻሻܭ  is the convective heat transfer coefficient at the 

particle surface, ܶݎݐܿܽ݁ݎ  is the reactor (operating) temperature and ܶݏ  is the 

temperature at the particle surface.  

2.3 Model implementation 

The finite element based solver COMSOL Multiphysics® 5.2 was applied to 

solve the set of equations. The three-dimensional spherical (for spherical biomass 

particle)/cylindrical (for cylindrical biomass particle) geometry of the biomass particle 

was drawn in COMSOL Multiphysics®. Free tetrahedral grids were used for 

discretization. Mesh-independency has been checked and the mesh details are listed 

in Table 3.4.  

Table 3.4 Mesh details for simulating the pyrolysis of biomass particle 

 For validation against Pattanotai et al.[55, 136] 

For validation 
against 

Koufopanos 
et al.[82, 

184] 

Cylinder dimensions, 
diameter × length 

8mm × 
2mm 

8mm × 
5mm 

8mm × 
9mm 

8mm × 
15mm 

8mm × 
40mm 

20mm × 
100mm 

Number of domain 
elements 

76479 194666 247289 475516 269994 530769 

Number of boundary 
elements 

5410 7732 8500 13016 10764 16364 

Number of edge 
elements 

212 256 276 368 424 528 

Minimum element size, 
m 

1.20×10-5 1.20×10-5 1.35×10-5 3.00×10-5 3.60×10-5 1.00×10-4 

Maximum element 
size, m 

2.80×10-4 2.80×10-4 3.15×10-4 3.00×10-4 5.00×10-4 1.00×10-3 

Maximum element 
growth rate 

1.35 1.35 1.35 1.30 1.40 1.35 
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2.4 Model validation 

2.4.1 Comparison with Pattanotai et al.[55, 136]  

Pattanotai et al.[55] experimentally conducted the pyrolysis of dry Japanese 

cypress sawdust (fine particles with size < 1 mm) and the pyrolysis of a dry wood 

cylinder (also from Japanese cypress) with a diameter of 8 mm and a length of 9 mm 

from an initial temperature of ܶ ൌ to a final temperature of ܶ ܭ	383 ൌ  at a ܭ	873

heating rate of 30 K/min. Other physical properties of the cypress sawdust and 

cylinder are listed in Table 3.3. Pattanotai et al.,[55] found that the difference in char 

yield between the sawdust and the wood cylinder was a result of the secondary 

charring reactions within the wood cylinder (the secondary charring reactions in a 

sawdust particle were considered negligible).[55] Their experimental findings with 

respect to the secondary charring reactions were used in the calibration procedure in 

determining the kinetic parameters for the secondary charring reactions, as 

described in Section 2.1.2. The pyrolysis of sawdust was modeled with the primary 

pyrolysis kinetics (Section 2.1.1). The predicted evolution of residual solids mass 

during the pyrolysis of sawdust was compared with the experimental data. The 

pyrolysis of the wood cylinder was simulated with the coupled physical-chemical 

model considering both the primary pyrolysis kinetics and the secondary charring 

reaction kinetics. In the experiments, Pattanotai et al. also measured the temperature 

evolution at various radial positions of the wood cylinder and they observed very 

limited intraparticle temperature gradients. The predicted temperature evolutions at 

the center and surface of the wood cylinder were validated against their experimental 

data. 

Another experimental work of Pattanotai et al.[136] studied the pyrolysis of dry 

cylinders (also from Japanese cypress). Three cylindrical particles with the same 
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diameter of 8 mm and different lengths of 2, 5, and 9 mm were examined in their 

experiments at a heating rate of 60 K/min from an initial temperature of ܶ ൌ  to ܭ	383

a final temperature of Tf=1173 K with holding time of 5 min. The cylindrical particles 

were simulated with the coupled physical-chemical model taking into account both 

the primary pyrolysis kinetics and the intraparticle secondary charring reaction 

kinetics. The secondary char yield of the cylindrical particles were predicted and 

compared with the experimental data. 

Pattanotai et al.[55, 136] conducted experiments with Japanese cypress, which 

is a type of softwood. This type of softwood was composed of 44 wt.% in cellulose, 

26 wt.% in hemicellulose, 17.5 wt.% in carbon-rich lignin, 9.5 wt.% in hydrogen-rich 

lignin and 3 wt.% in oxygen-rich lignin, which were calculated using atomic 

balances[68] according to the experimental data with respect to the elemental 

composition of the Japanese cypress consisting of 51.5 wt.% in C, 6.2 wt.% in H and 

42.2 wt.% in O[55, 136]. 

2.4.2 Comparison with Koufopanos et al.[82, 184]  

Koufopanos et al.[82, 184] studied the pyrolysis of dry sawdust (beech wood 

with diameters in the range of 0.30~0.85 mm) and a dry biomass cylinder (beech 

wood with a diameter of 2 cm and a length of 10 cm). The physical properties of the 

beech wood sawdust and cylinder are listed in Table 3.3. Initially, both sawdust and 

cylinder were at ܶ ൌ ܭ	293 . They performed isothermal pyrolysis at 773 K and 

obtained evolutions of residual solids mass for both sawdust and cylindrical particles. 

The primary pyrolysis kinetics were applied to simulate the pyrolysis of the sawdust. 

For the cylindrical particle, the coupled physical-chemical model was applied taking 

into account both the primary pyrolysis kinetics and the intraparticle secondary 

charring reactions kinetics. 
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 Beech wood is a type of hardwood, and Koufopanos et al.[82, 184] provided the 

detailed composition (cellulose, hemicellulose, lignin, extractives and ash) for this 

hardwood. The extractives and ash in the composition of beech wood in their 

experiments were neglected in the simulation. The experimental weight fractions of 

the three main components (cellulose, hemicellulose and lignin) were normalized 

(dry-based, ash-free and extractives-free) in the simulation, and the initial 

composition of beech wood was 54 wt.% in cellulose, 14 wt.% in hemicellulose, 32 

wt.% in lignin. The 32 wt.% of lignin in beech wood consists of 8.7 wt.% of carbon-

rich lignin, 10.3 wt.% of hydrogen-rich lignin and 13.0 wt.% of oxygen-rich lignin, 

according to the representative composition for the lignin in hardwood as described 

in the work of Anca-Couce and Obernberger.[72] 

2.5 Non-dimensional numbers 

In literature various pyrolysis regimes (pure kinetic regime, thermally thin regime, 

thermal wave regime and thermally thick regime[9, 65]) for the pyrolysis of a single 

biomass particle have been defined. The definition of pyrolysis regime was usually 

based on the analysis of two dimensionless numbers that describe the main 

controlling factors: the thermal Biot number (݅ܤ) and the pyrolysis number (ܲݕ and 

  ᇱ).[185]ݕܲ

݅ܤ ൌ
݄௫௧ܮ
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Where ݄௫௧ (ܹ/ሺ݉ଶ   ሻ) is the external heat transfer coefficient consideringܭ

convective and radiative external heat transfer, and it is calculated by  

݄௫௧ ൌ ݄௩௧௩  ௦௨ሺ݁ߪ	 ܶ௧  ௦ܶሻሺ ܶ௧
ଶ  ௦ܶ

ଶሻ (12)

ሺܹ/ሺm	ߣ ∙ ሻሻܭ  is the thermal conductivity of the particle, ܮ  ( ݉ ) is the 

characteristic length, ݎሶ 	ሺ݇݃/ሺ݉ଷ ∙   (݇݃/݉ଷ) is theߩ , is the pyrolysis reaction rate	ሻሻݏ

density of the particle, and ܿ	ሺܬ/ሺ݇݃ ∙   .ሻሻ is the heat capacity of the particleܭ

For the Biot number, a value of 1 represents that the heat transfer resistance 

inside of and at the surface of the biomass particle are equally important. When Bi<1, 

the internal heat transfer is rapid compared to the external heat transfer to the 

particle, and the internal heat transfer is no longer a rate limiting factor. How fast the 

particle reaches the reactor temperature will depend on the external heat transfer. 

Under these conditions, the rate-controlling process during the pyrolysis of a biomass 

particle can be identified by calculating the relative rates of the external heat transfer 

to the particle and the pyrolysis reaction kinetics with the external pyrolysis number  

'Py . In contrast, when Bi>1, the internal heat transfer is slow compared to the 

external heat transfer. The key question will be the relative rates of the internal heat 

transfer and the pyrolysis reaction kinetics. Therefore, the internal pyrolysis number  

Py , which defines the relative rates of the internal heat transfer and the pyrolysis 

reaction kinetics, is applied to identify the rate-controlling process in between the 

pyrolysis reaction and the internal heat transfer. 

Previous works[9, 65] usually analyzed the above dimensionless numbers at the 

assumption of steady conditions, while the pyrolysis of a single particle is practically 

unsteady. Unsteady conditions refer to the fact that the above dimensionless 

numbers will change with the time during the pyrolysis of the biomass particle, since 
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all the parameters (except the characteristic length of ܮ) in Eq. 9 to Eq. 12 are 

dynamically changing with time. The evolutions of the above dimensionless numbers 

during the pyrolysis of the particle were calculated with the present physical-chemical 

model in Section 2.2. 

3. Results and discussion 

3.1 Model validation against experiments of Pattanotai et al.[55, 136] 

The intraparticle/internal temperature evolution characterizes the intraparticle 

heat transfer. The temperature evolutions at the center and surface of the wood 

cylinder (with a diameter of 8 mm and a length of 9 mm at  a heating rate of 30 K/min 

from Pattanotai et al.[55]) were predicted and compared with the experimental data, 

as shown in Fig. 3.2(a). Fig. 3.2(a) shows that the predicted temperature evolutions 

were in good agreement with the experimental data considering the complex physical 

and chemical phenomena within the cylindrical particle during its pyrolysis. It was 

predicted that the intraparticle temperature gradients (with a maximum temperature 

difference between the surface and the center of around 10 K) were very small, 

which was also addressed in the experiment. The small intraparticle temperature 

gradients indicated that the heat transfer inside the wood cylinder was rapid as 

compared to the extraparticle/external heat transfer to the particle. The good 

agreement between the simulation results and the experimental data with respect to 

the intraparticle temperature profile indicates that the present model can be applied 

to predict the heat transfer process of the biomass particle during its pyrolysis.  

Fig. 3.2(b) shows the evolutions of the predicted average particle temperature 

and of the predicted production of secondary char. As seen from Fig. 3.2(b), it was 

predicted that the secondary charring reactions mainly progress between 640 K and 
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800 K. This range was in reasonable agreement with the experimental observation of 

Pattanotai et al.[55], who concluded that the intraparticle heterogeneous conversion 

of primary volatiles mainly progressed between 670 K and 770 K. The comparison of 

the secondary charring reactions between the present model and the experiments 

indicates that the present model can be applied to study the intraparticle secondary 

charring reactions. In the following sections, further validations of the present model 

were conducted. 

 

 

(a) 
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(b) 

Fig. 3.2 Evolutions of temperature and of intraparticle secondary char production (a) 

comparison of the temperature at the center and surface of the cylindrical particle between 

model and experiment from Pattanotai et al. [55]; (b) the predicted evolutions of average 

particle temperature and the predicted production of secondary char (weight percentage 

based on the initial mass of biomass). 

The pyrolysis of individual biomass components with the primary pyrolysis 

kinetics at a heating rate of 30 K/min was simulated to evaluate the results of the 

primary pyrolysis kinetics. 
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(a) 

 
(b) 

Fig. 3.3 Simulated pyrolysis behavior of individual biomass components, (a) 

decomposition rate, (b) residual solids mass fraction, at a heating rate of 30 K/min. 

 

Fig. 3.3 shows the decomposition rates and the residual solid weight fractions of 

individual biomass components. The simulation results showed that the main 

decomposition stage of hemicellulose occurred at a temperature range from 500 K to 

650 K, and the temperature corresponding to maximum decomposition rate was 590 

K. These simulation results were in agreement with the experimental observations 

from Quan et al.,[63] who found that the weight loss of hemicellulose mainly happens 
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at 480 - 640 K and the maximum decomposition rate occurs at 590 K. In the 

simulation, there was about 26 wt.% of solid residuals left upon the termination of the 

hemicellulose decomposition at 850 K. The predicted yield of residual solids for 

hemicellulose decomposition was in the range of the experimental results, which 

ranged from about 15 wt.% [63] to about 40 wt.%.[62] In the simulation, the main 

decomposition stage of cellulose occurred at a higher but narrower temperature 

range from 570 K to 680 K with maximum decomposition rate at 645 K. These 

simulation results were consistent with the experimental results of Yang et al.,[57] 

who observed that the decomposition of cellulose mainly occurs at 590 – 670 K with 

a maximum decomposition rate at 630 K. The predicted yield of residual solids for 

cellulose decomposition was 3.0 wt.%, which was also close to the experimental 

range of 3.3-11.3 wt.% depending on the crystallinity of the cellulose.[58-61] The 

predicted decomposition of various lignin components occurred slowly over a broad 

temperature range from 450 K to over 850 K, which was in good agreement with the 

experimental results (from around 400 K to over 900 K).[57] In the predictions, yields 

of residual solids from the decomposition of various lignin components ranged from 

26 wt.% to 67 wt.%, which also covered the experimental observations (45.7 

wt.%[57]). Fig. 3.3 (b) indicates that the commonly reported higher yield of residual 

solids for the decomposition of lignin in the literature[57, 63] can be mainly due to the 

presence of the carbon-rich component in lignin.  

The residual solids mass evolution of the sawdust with the biomass composition 

(Section 2.4.1) from Pattanotai et al.[55] was also predicted. The simulation result 

was compared with the experimental data from Pattanotai et al.,[55] as shown in Fig. 

3.4. Fig. 3.4 shows that the primary pyrolysis kinetics can reasonably predict the 

evolution of the residual solids mass for the sawdust. The above comparison 
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between the simulation results and the experimental results indicates that the primary 

pyrolysis kinetics of individual biomass components were reliable in predicting the 

primary pyrolysis of biomass. 

 

Fig. 3.4 Comparison of the residual solids evolution for biomass sawdust between the 

model predictions and the experimental data from Pattanotai et al..[55] 

Table 3.5 shows the comparison of the primary and the secondary char yields 

predicted by the present model, and by the model (Chapter 2) using a general kinetic 

scheme[67], and the experimental data from Pattanotai et al. [55, 136] Table 3.5 

shows that the modeling results with the present model were in good accordance 

with the experimental results. Table 3.5 also indicates that the present model was 

more accurate in predicting the intraparticle secondary charring reactions than the 

model using general kinetics, in which the biomass was simply regarded as a single 

reactant species (see Chapter 2).[67] As can be seen from Table 3.5, it was 

predicted that the secondary char yield increased with the increase of the particle 

size (length of the cylinder), since larger particle size can provide longer retention 
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time for volatiles to be heterogeneously converted into secondary char.[9, 51, 65, 67, 

79, 171-175]. 

Table 3.5 Comparison between the model prediction and the experimental data from 

Pattanotai et al.[55, 136] Results expressed as weight percentage relative to dry feedstock 

weight. 

Terms 
Primary char 

(experiment [55]) 

Secondary char yield from cylinders 

(experiment [136]) 

Cylinder dimensions, 
d × L 

Sawdust 8mm × 2mm 8mm × 5mm 8mm × 9mm 

Experiment, wt.% 24.5 0.6 ± 0.6 1.5 ± 0.5 2.0 ± 0.5 

Present simulation 
results, wt.% 

24.2 0.8 1.8 2.5 

Model in Chapter 2 25.0 1.0 2.7 3.7 

3.2 Model validation against experiments of Koufopanos et al.[82, 184]  

The evolution of the residual solids mass for beech sawdust and a centimeter-

sized beech cylinder were predicted and the predicted results were compared with 

the experimental data, as shown in Fig. 3.5. This figure shows that the simulation 

results were in good agreement with the experimental data, indicating that the 

present model was also reliable in predicting both the primary pyrolysis and the 

secondary charring reactions during the pyrolysis of hardwood (beech wood). Upon 

the termination of the pyrolysis, the yields of the primary char, the secondary char 

and the total char (sum of the primary and secondary char) of the beech cylinder 

were predicted as 20.7 wt.%, 7.4 wt.% and 28.1 wt.%, respectively. The total char 

(only primary char) yield of the beech sawdust upon the termination of the pyrolysis 

was predicted as 18.2 wt.%. These results show that the total char yield of the beech 

cylinder was higher than that of the beech sawdust at the same isothermal pyrolysis 

temperature of 773K. The higher total char yield of the beech cylinder compared to 
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that of the beech sawdust can be explained by (1) the higher heat transfer resistance 

inside the beech cylinder (resulting into higher primary char yield of the beech 

cylinder than that of the beech sawdust), and (2) the formation of secondary char in 

the beech cylinder. Upon termination of the pyrolysis of the beech cylinder, the 

secondary char accounted for 26 wt.% of the total char, which indicates that the 

secondary char represents an important fraction of the total char.  

 

Fig. 3.5 Comparison of the residual solids mass evolution from the isothermal pyrolysis 

of sawdust and of a cylindrical particle at 773 K between the model predictions and the 

experimental data from Koufopanos et al..[82, 184]  

3.3 Effects of particle size at the thermally thin pyrolysis regime 

Effects of particle size on the intraparticle secondary charring reactions were 

further studied by simulating the pyrolysis of wood cylinders with different lengths (2 

mm, 5 mm, 9 mm, 15 mm, and 40 mm) and with the same diameter (8 mm) and at 

the same heating rate (30 K/min) as used in Pattanotai et al.[55] First, the pyrolysis 

regime was characterized based on the analysis of the dimensionless numbers. The 

evolutions of the dimensionless numbers were calculated with the coupled physical-
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chemical model for the cylinder with a length of 9 mm (conclusions were the same for 

cylinders with other lengths), as shown in Fig. 3.6.  

 

Fig. 3.6 Evolutions of the thermal Biot number and the pyrolysis numbers. (For the 

wood cylinder with a diameter of 8 mm and a length of 9 mm at a heating rate of 30 K/min) 

The characteristic length for this cylinder was 4 mm (radius of the cylinder). As 

shown in Fig. 3.4, the (primary) pyrolysis of the Japanese cypress from Pattanotai et 

al.[55] mainly occurred at the time from 400 to 700 s. At this time range, Fig. 3.6 

shows that the Biot number was small (around 1 or smaller). A small Biot number 

(around 1 or smaller) indicates that the internal heat transfer was rapid as compared 

to external heat transfer and that the temperature gradients inside the particle were 

not significant, which had also been addressed in Fig. 3.2(a). At a small Biot number, 

the key question would be the relative rates of the external heat transfer to the 

particle and the pyrolysis reactions, as characterized by the external pyrolysis 

number (ܲݕᇱ). Fig. 3.6 shows that the external pyrolysis numbers were lower than 1, 

indicating that the pyrolysis reactions were fast compared to the external heat 

transfer. [185] The above analysis indicated that the external heat transfer to the 
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particle controlled the overall pyrolysis of the wood cylinder, which, according to the 

definition in the literature,[9] was in the thermally thin regime (with low ݅ܤ and low 

  .(ᇱݕܲ

Fig. 3.7 shows the production of the secondary char during the pyrolysis of these 

wood cylinders. It was predicted that longer cylinders produced higher amounts of 

secondary char upon the termination of pyrolysis (and hence higher amounts of total 

char since the primary char yields for all cylinders upon their termination of pyrolysis 

were the same, namely 22.6 wt.%), which is due to the increased retention time of 

primary volatiles inside the particle since they are mainly diffusing/flowing out of the 

particle along the direction parallel to the grain of the cylinder.[55, 136] Model results 

showed that the length of the cylinder significantly influenced the secondary charring 

reactions. Upon the termination of the pyrolysis, the secondary char accounted for a 

higher fraction in the total char as the length of the cylinder increased.  

 

Fig. 3.7 The simulated production of secondary char (weight percentage based on the 

initial mass of biomass) for various wood cylinders at the thermally thin regime. 
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It is considered, in the present work, that the intraparticle secondary charring 

reactions are relevant when the amount of secondary char is higher than 5.0 wt.% of 

the amount of total char upon the termination of the pyrolysis. When the cylinder was 

longer than 5 mm, the predicted weight percentage of the secondary char in the total 

char was higher than 6.3 wt.% upon termination of the pyrolysis. Therefore, it is 

regarded in the present work that for the pyrolysis of wood cylinders with a diameter 

of 8 mm and at a heating rate of 30 K/min (at the thermally thin regime), the 

intraparticle secondary charring reactions start to be relevant when the length of the 

wood cylinder was longer than 5 mm (corresponding to a characteristic length of 2.5 

mm). For the pyrolysis of cylinders shorter than 5 mm, the intraparticle secondary 

charring reactions were very limited, and the mass loss evolution of these short 

cylinders can thus be predicted only considering the external heat transfer and the 

primary pyrolysis kinetics without the need to solve the intraparticle transport 

phenomena[9]. However, when cylinders were longer than 5 mm, the intraparticle 

secondary charring reactions start to be relevant and the intraparticle transport 

phenomena should be calculated in order to quantify the intraparticle secondary 

charring reactions. 

4. Conclusions 

In this chapter, the pyrolysis of a single biomass particle with a comprehensive 

particle model, including a comprehensive kinetic scheme considering biomass 

composition, was studied. The intraparticle secondary charring reactions due were 

modelled. The model results were in good agreement with the experimental data 

from two independent research groups, indicating that the present model can be 

applied to study the pyrolysis of the biomass particle and the intraparticle secondary 

charring reactions. Results show that the secondary char yield can account for a 
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substantial amount of the total char yield and that the intraparticle secondary charring 

reactions are increasingly important for larger biomass particles. In addition, the 

intraparticle secondary charring reactions were quantified for the pyrolysis of 

cylindrical biomass particles at the thermally thin regime, where external heat transfer 

to the particle controls the pyrolysis of the particle. At thermally thin regime, a critical 

length, being 5 mm (corresponding to a characteristic length of 2.5 mm) for which the 

intraparticle secondary charring reactions start to be relevant was determined. This 

obtained value is valid for the pyrolysis of cylindrical biomass particles with a 

diameter of 8 mm at a heating rate of 30 K/min. 
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CHAPTER 4 

Space-time integral method for simplifying the modeling of 

pyrolysis of a biomass particle 

In previous chapters (Chapter 2 and Chapter 3), biomass pyrolysis at particle 

scale was studied with three-dimensional comprehensive particle models (3D CPMs), 

in which mathematical equations for the detailed transport phenomena and pyrolysis 

reactions were solved. Since the 3D CPM is computationally expensive (i.e. time 

consuming), the 3D CPM will be further simplified (resulting into a model named 

simplified particle model, or SPM) in this chapter for saving computational time by 

only considering the dominant intraparticle physical and chemical phenomena. The 

application of the SPM will be discussed by modeling the torrefaction (a subpart of 

slow pyrolysis) of a single biomass particle. 

 

 

 

This chapter was published in a modified form as: 

Xiaogang Shi, Frederik Ronsse, Jan G. Pieters. Space-time integral method for 

simplifying the modeling of torrefaction of a centimeter-sized biomass particle. 

Journal of Analytical and Applied Pyrolysis, 2017, Accepted for publication. 
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1. Introduction 

As described in Chapter 1, slow pyrolysis covers both carbonization (or 

conventional slow pyrolysis) and torrefaction. Carbonization refers to the 

conventional slow pyrolysis of biomass aiming to produce a highly carbonaceous, 

charcoal-like material at temperatures higher than 650 K. In contrast, torrefaction is a 

thermal pretreatment method at a milder temperature of 470~570 K for the purpose 

of upgrading biomass, which results into a solid product with lower moisture content, 

higher energy density, and improved grindability compared to the raw biomass. In a 

sense, torrefaction can be considered as a mild and partial slow pyrolysis process. In 

previous chapters (Chapter 2 and Chapter 3), carbonization has been generally 

focused on. In the following chapters, torrefaction will be focused on, as one of the 

aims of this thesis is to study the torrefaction of biomass in the screw reactor. 

Torrefaction at the particle scale will be dealt with in this chapter. The methodology 

for studying biomass torrefaction in this chapter (and in the following chapters) may 

be extended to the study of carbonization by coupling carbonization kinetics and 

transport phenomena. 

It was reported that the solid end product (char) of biomass torrefaction has a 

higher gravimetric energy density while at the same time it is more uniform, stable 

(doesn’t rot), hydrophobic and has improved grindability compared to the original 

biomass feedstock, which makes the char from biomass torrefaction a promising 

energy substitute for solid fossil fuels (i.e. coal).[41, 83, 186] A substantial amount of 

experimental and numerical studies have been conducted on biomass 

torrefaction.[17, 72, 83, 145, 166, 186-194] Detailed kinetic schemes have been 

developed.[72] Torrefaction technology usually treats biomass with large particle 

sizes of around 1 cm or larger,[193, 195-197] and after torrefaction, these biomass 
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particles can be easily grinded for further applications including combustion or co-

combustion with coal, gasification, etc.[187, 195, 198-203] Temperature gradients 

tend to develop within these large-sized biomass particles during torrefaction.[83, 

145] In fact, as Peng et al.[204] indicated, the overall reaction rate during torrefaction 

is still influenced by the particle size even for particles smaller than 1 mm. The non-

uniform distribution of temperature coupled to the thermochemical reaction kinetics 

across the biomass particle renders the torrefaction process difficult to be 

experimentally studied on the individual particle level. Therefore, researchers have 

developed computational models to study the physical and chemical processes 

during the torrefaction of a single biomass particle.[65, 67, 71, 81-83, 91, 93, 94, 102, 

103, 105, 106, 108-110, 145, 146, 148, 181, 185, 205-215] Granados et al.[216] 

compared the torrefaction behavior of large and small biomass particles with two-

dimensional particle models. Basu et al. [145] developed a one-dimensional particle 

model for the torrefaction of a centimeter-sized biomass particle, and their model 

considered the primary and secondary torrefaction reaction kinetics, drying, diffusive, 

convective and radiative heat transfer and particle shrinking. Bates and Ghoniem [83] 

developed a one-dimensional particle model by coupling heat and mass transfer, 

chemical reaction kinetics and drying for the torrefaction of a centimeter-sized 

biomass particle. These comprehensive particle models (CPMs) usually solved 

intraparticle transport (heat, mass and momentum) equations with partial differential 

equations (PDE) coupled with chemical reaction kinetics, which were capable to 

describe the spatial and temporal torrefaction characteristics including density of 

virgin/reacted biomass and solid/gas phase products, intraparticle temperature 

distribution, etc. These CPMs can allow to have an in-depth understanding of the 

physical and chemical processes during torrefaction of a single biomass particle. 
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However, it would require large computational resources and programming efforts to 

integrate these CPMs in models to simulate industrial-scale torrefaction reactors (i.e. 

screw reactor[87, 88]) containing large amounts of particles. Practically, the design of 

industrial torrefaction reactors usually depends on some major physical and chemical 

characteristics at the particle scale, such as the average particle temperature, 

biomass mass loss rate, heating time of the biomass particle to reach the designed 

operating temperature, product yields, etc.[113] To obtain these physical and 

chemical characteristics at the particle scale with optimized computational efficiency, 

it is important to reduce the complexity of the computational models (e.g. CPM) while 

maintaining a desired level of model accuracy. 

Some works have been dedicated to search for a less complex model (simplified 

particle model, or SPM) predicting the physical-chemical processes during the 

pyrolysis of a single biomass particle.[115-121] These SPMs mainly follow one of two 

extremes: uniform conversion model (UCM) or unreacted-shrinking-core model 

(USCM).[65, 113, 114] In UCM, the pyrolysis process is assumed to happen 

homogeneously across the whole biomass particle. In USCM, the pyrolysis of a 

biomass particle is considered to occur at an infinitely thin surface, which is a moving 

reaction front separating the biomass particle into two layers with one layer of virgin 

biomass and another layer of char.[115-122] The application of UCM and USCM is 

strictly dependent on the rate-controlling process during the pyrolysis of a biomass 

particle. The UCM is applicable when the pyrolysis of a biomass particle can be 

assumed to be purely kinetically controlled, while the USCM is appropriate when the 

pyrolysis of a biomass particle can be assumed to be controlled by the internal heat 

transfer. However, neither the UCM nor the USCM is applicable in predicting the 

torrefaction of a centimeter-sized biomass particle, since the internal heat transfer 
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and the torrefaction reaction can play comparable roles in affecting the particle’s 

torrefaction.[83, 145] 

The purpose of this chapter is to develop a simplified particle model (SPM) that 

is applicable for modeling the torrefaction of a centimeter-sized biomass particle. 

Non-dimensional numbers are applied to briefly analyze the possible rate-controlling 

processes that can be assumed in developing the SPM. These assumptions are 

further validated by comparison of the model predicted data against the 3D CPM 

which is adapted from Chapter 2 and Chapter 3 and which is experimentally 

validated. Then, the space-time integral method is applied to derive the SPM. The 

accuracy of the SPM is then studied by comparing to the experimental data and to 

the CPM when experimental data are not available. Finally, the applicability of the 

SPM is discussed. 

2. Methods 

2.1 Analysis of non-dimensional numbers 

The analysis of non-dimensional numbers (e.g. Biot number, pyrolysis number) 

has been usually applied to identify the rate-controlling processes that can be 

assumed in developing simplified particle models (SPMs) for the thermochemical 

conversion of biomass particles.[57] The analysis of non-dimensional numbers 

(details in Appendix A) indicates that both the internal heat transfer resistance and 

the chemical reactions need to be accounted for in the SPM for biomass torrefaction. 

It should be mentioned that the non-dimensional numbers only provide limited 

information about the intraparticle physical and chemical phenomena. Therefore, the 

CPM, in which detailed transport phenomena and torrefaction reactions can be 

predicted, was further applied to aid the development of the SPM. 
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2.2 Torrefaction kinetics 

The kinetic scheme as shown in Fig. 4.1 was applied to describe the torrefaction 

reactions of biomass. This kinetic scheme was originally proposed by Di Blasi and 

Lanzetta,[217] and was later applied by other authors to describe the mass loss of 

various types of biomass up to 573 K [83, 218, 219]. In this kinetic scheme, the 

torrefaction process involves five lumped components, with biomass first 

decomposing into volatile 1 and an intermediate solid product. The solid intermediate 

then undergoes subsequent reaction into char and volatile 2. Each reaction rate in 

the torrefaction kinetics was described with a first order Arrhenius function. The 

drying process during biomass torrefaction was modeled as a first order reaction [83]. 

The kinetic rate parameters for torrefaction and for drying are listed in Table 4.1. 

 

Fig. 4.1 Reaction kinetic scheme for the torrefaction and the drying process. 
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Table 4.1 Kinetic parameters for the torrefaction reaction and for the drying process. 

 Reaction Reaction rate Reference 

kv1 [1/s] 3.23×107exp(-114,214/RconsT)  [219] 

kis [1/s] 2.48×104exp(-75,976/RconsT)  [219] 

kv2 [1/s] 1.59×1010exp(-151,711/RconsT)  [219] 

kc [1/s] 1.1×1010exp(-151,711/RconsT)  [219] 

km [1/s] 4.5×103exp(-45,000/RconsT)  [219] 

2.3 Particle model 

2.3.1 Comprehensive particle model (CPM) 

Detailed characteristics for the torrefaction of a centimeter-sized biomass 

particle can be obtained from the CPM, which, in this chapter, is a modification of the 

CPMs in Chapter 2 and Chapter 3. The modification consisted of including 

appropriate torrefaction and drying kinetics as described in Section 2.2. The 

modification was made since the kinetics in previous chapters were not applicable to 

torrefaction (details are discussed in the Appendix B). 

After it is validated against experimental data, the CPM will be applied to assess 

the importance of several physical and chemical phenomena and to validate the 

assumptions and simplifications that were made for developing the SPM for the 

torrefaction of a centimeter-sized biomass particle. In addition, the CPM will also be 

applied to provide a parameter, the torrefaction temperature (
ontorrefactiT ), for use in 

developing the SPM. The torrefaction temperature is a parameter characterizing the 

temperature at which the torrefaction reactions are assumed to occur in the SPM. 

The torrefaction temperature is determined with the CPM by averaging the 

decomposition-rate-weighted temperature over the entire particle volume and over 

the entire torrefaction process[117], as calculated by the following equation: 
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w is char
torrefaction 0 0

0

( )1 1
( , , )

(1 )  

et V

residual w

T T r z t dV dt
V t

  
 

          (1) 

where the term 0(1 )residual w   (kg/m3) denotes the total density loss of the 

biomass particle over the entire torrefaction process. residual  is the solid yield at the 

end of the torrefaction process, 
0w  (kg/m3) is the initial particle density, et (s) is the 

termination time of the torrefaction process, and V  (m3) is the particle volume. 

),,( tzrT  (K) is the temperature at time t within the three-dimensional particle, r (m) is 

the radial position and z (m) is the axial position (for cylindrical particle). The term of 

t
 )( charisw 

(kg/(m3·s)) is the mass loss rate of the residual solid. 
w , 

is , 

char  are the instantaneous densities of biomass, intermediate solid product and char. 

2.3.2 Simplified particle model (SPM) 

The SPM was developed for a dry centimeter-sized cylindrical biomass particle 

by taking into account its main pyrolysis characteristics including intraparticle heat 

transfer and torrefaction reactions. In the simplified model, it is assumed that the 

reaction heats are zero and that only conductive heat transfer occurs inside the 

particle, and that volatiles formed during torrefaction leave the particle instantly. 

These assumptions will be validated with the CPM (in Section 3.2). The conductive 

heat transfer is further assumed to occur one-dimensionally in the radial direction for 

the cylindrical biomass particle since the cylindrical particle has a large aspect ratio 

of 6.0.[220] The shrinkage of the particle size in the radial direction is neglected, as 

the shrinkage has only a minor influence on the torrefaction of a biomass particle.[67]  

Based on the detailed results from the CPM, the present work decoupled the 

intraparticle heat transfer and torrefaction reactions in developing the SPM for the dry 

centimeter-sized cylindrical biomass particle. In the SPM, the particle is assumed to 
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first experience internal heating (particle heating-up, no reaction) until the 

instantaneous volume-averaged particle temperature predicted by the SPM reaches 

the torrefaction temperature (Ttorrefaction), as defined in Eq. (1), and then the 

torrefaction reactions are assumed to be initiated at this temperature until the 

reaction is terminated at the end.  

The SPM was developed with the space-time integral method[107, 113], and a 

one-dimensional finite control volume, as shown in Fig. 4.2, in the radial direction of 

the cylindrical particle was applied to describe the movement of the thermal front (at 

the position of )(trr wave , as shown in Fig. 4.2) from particle surface towards center. 

Since heat was transferred from the surface to the center, to define r=0 at the particle 

surface is more convenient to deduce the heat transfer equations. 

 

 

Fig. 4.2 The control volume for simplifying the torrefaction process of a cylindrical 

biomass particle. 
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As the particle heats up, the instantaneous volume-averaged particle 

temperature is calculated. If the instantaneous volume-averaged particle temperature 

has reached Ttorrefaction before the thermal front reaches the particle center, the 

particle is assumed to only experience the first heating stage as described below. 

Otherwise, the particle is assumed to experience the subsequent second heating 

stage after its first heating stage until the instantaneous volume-averaged particle 

temperature reaches Ttorrefaction. With the space-time integral method, the intraparticle 

heat transfer can be described with a set of linearized equations, which are 

presented in the following 

(1) First heating stage 

The energy conservation on the finite control volume (Fig. 4.2, a thermal wave 

with a thickness of )(trwave  at time t (s)) is stated as, 



 EEE outin  (2)

Where 


inE  (W/m) is the energy added at the particle surface (r=0), 

)(2
),0(

)0(2 tRq
dr

trdT
REin  





 (3)

Where   (W/(m·K)) is the thermal conductivity of the biomass, R  (m) is the 

radius of the particle, )(tq  (W/m2) is the net heat flux at the surface of the particle at 

time t; ),0( trT   (K) is the temperature at the surface of the particle at time t. 

The energy flow out of the finite volume is 0 (


outE =0) at )(trr wave , and 


E  is 

the rate of change of energy inside the finite control volume, 
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Where 
0w  (kg/m3) is the density of the biomass, 

wC  (J/(kg·K)) is the heat 

capacity of the biomass, )),(( ttrrT wave  is the temperature at )(trr wave  at time t. 

From the above, the following equation is obtained, 
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 (5)

It was assumed that a quadratic distribution of temperature is developed inside 

the finite control volume at time t. 

CBrArtrT  2),(  (6)

and the constants of A, B and C can be obtained with the following boundary 

conditions, 

0
)),((



dr

ttrrdT wave  

(7)
)(

),0(
tq

dr

trdT



   

0)),(( TttrrT wave   

With the above boundary conditions, the temperature distribution at time t is 

expressed as, 

2
0

( ) ( ) ( )
( , ) ( )

2 ( ) 2 wave
wave

q t q t q t
T r t r r T r t

r t  
     (8)
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With the assumed temperature distribution inside the control volume, the 

following equation can be obtained, 

dttq
C

R
trtRr

tq
d

ww
wavewave )()])()(4(

24

)(
[

0

32


  (9)

The initial conditions are (at time of st 0 ), 

   
0)0(

)0(

)0,(
4

0
4

reactor0reactorconvective0

0






tr

TTeTThqtq

TtrT

wave

  (10)

Where convectiveh  (W/(m2·K)) is the convective heat transfer coefficient,  reactorT  is the 

reactor (or operating) temperature, and   and e are Stefan-Boltzmann constant and 

emissivity, respectively. 

By integrating Eq. (9) from time of 0 to time of t , the following equation 

describing the relationship between the thickness of the thermal wave ( )(trwave ) and 

the time t is obtained, 

)
)(

1(12

)()(4

0

0

32

tq
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trtRr
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ww

wavewave









 
(11)

The temperature at the surface of the particle at time t is, 

)(
2

)(
),0( 0 tr

tq
TtrT wave

  (12)

The heat flux at the particle surface at time t is, 

   44
reactorreactorconvective ),0(),0( )( trTTetrTThtq    (13)
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And the instantaneous volume-averaged temperature of the particle at time t can 

be obtained, 

0
23

2
)(

3

)(
)(

12

)(
)( Ttr
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tq
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tT wavewavem 





 (14)

The time for the thermal front to reach the center of the particle ( Rtrwave )( ) is, 

)
)(

1(4 0

0
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(15)

And the instantaneous volume-averaged temperature of the particle at time 

Rtt   is, 

R
ttq

TttT R
Rm 4

)(
)( 0


  (16)

The above instantaneous volume-averaged particle temperature is calculated to 

check whether it has reached Ttorrefaction. If the instantaneous volume-averaged 

particle temperature is still lower than Ttorrefaction, the second heating stage was 

calculated according to the procedure presented in the following section. 

(2) Second heating stage 

The initial condition for the surface temperature for the second stage of heating, 

starting at Rtt   is, 

R
ttq

TttrT R
R 2

)(
),0( 02


  (17)

Where )( Rttq   can be calculated in the first heating stage. 



Chapter 4 Space-time integral method for simplifying the modeling of pyrolysis of a biomass particle 

144 
 

And the initial temperature distribution inside the particle for the second heating 

stage is, 

r
ttq

r
R

ttq
R

ttq
TttrT RRR
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The boundary conditions at time )( Rttt   are, 

0
),(2 


dr

tRrdT
 

(19))(
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)(),0(2 tTtrT s  

Where )(2 tq  is the net heat flux at the surface of the particle at time )( Rttt  ,  

   44
reactorreactorconvective2 )()( )( tTTetTThtq ss    (20)

And initially, )(2 tq  is expressed as )()(2 RR ttqttq  , which can be calculated 

in the first heating stage. )(tTs  is the surface temperature at time  )( Rttt   and its 

initial value is R
ttq

TttrTttT R
RRs 2

)(
),0()( 02


 , as described in Eq. (17). 

With the above boundary condition, the temperature distribution within the 

particle is, 

222
2 2

)()(
)(),( r

R

tq
r

tq
tTtrT s 

  (21)

With the energy conservation, the following equation can be obtained, 
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Integrating the above equation from Rtt   to t, the following equation describing 

the temperature at the particle surface is obtained, 
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 (23)

And the instantaneous volume-averaged particle temperature at time t can be 

obtained as 

R
tq

tTtT sm 4

)(
)()( 2

2   (24)

In the second heating stage, when the instantaneous volume-averaged particle 

temperature is heated up to Ttorrefaction, the torrefaction reactions were assumed to be 

triggered at this Ttorrefaction until the torrefaction reactions were terminated. 

With the SPM, the time evolution of heat transfer (e.g. intraparticle temperature 

distribution) during the torrefaction of a biomass particle can be predicted with a 

group of linearized equations, which indicates that the model complexity can be 

significantly reduced compared to the set of partial differential equations (PDEs) in 

the CPM. From the above equations, it can be seen that the time evolution of heat 

transfer can be calculated with variables including the operating conditions (reactor 

temperature), the physical properties of the biomass particle (initial density, size, heat 

capacity, and thermal conductivity) and some model parameters (external convective 

heat transfer coefficient, Stefan-Boltzmann constant and emissivity).  

2.4 Model validation and accuracy 
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2.4.1 Validation and accuracy of the CPM 

To validate the CPM (with the specific torrefaction kinetics rather than the 

pyrolysis kinetics used in Chapters 2 and 3), the experimental data from Basu et 

al.[145] and from Van der Stelt[221] were used. 

In the experimental work of Basu et al.[145] the torrefaction of a cylindrical 

biomass particle with a diameter of 2.54 cm and a length of 15.24 cm was studied. 

The ratio of length-to-diameter was 6. The particle had a moisture content of θ=6.4 

wt.% and a density of 500 kg/m3. They obtained evolutions of the residual solid mass 

and the temperature at the particle center at two reactor (or operating) temperatures 

of 513 K and 553 K.  

The experimental work of Van der Stelt[221] dealt with the torrefaction process 

of a cylindrical biomass particle with a diameter of 2.8 cm and a length of 10cm. The 

particle had a moisture content of approximately θ=6 wt.% and a density of 700 

kg/m3. [83] The particle was initially at ambient temperature, and then it was heated 

with a heating rate of about 10 K/min to the final operating/reactor temperatures of 

508 K and 553 K, respectively.  

For each validation, the accuracy of the CPM was determined by calculating the 

mean deviation (MD) between the modeling results from the CPM and the 

experimental data. 

   



n

i
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n
MD

1
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1
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2.4.2 Validation and accuracy of the SPM 

The validation of the SPM was conducted by comparing the time evolutions of 

the residual solid mass fraction predicted from the SPM with those from the 
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experimental work of Basu et al.[145], as described in Section 2.4.1, for the 

cylindrical biomass particle (feedstock dry basis) at two reactor temperatures of 513 

K and 553 K. The MD value was also calculated to characterize the quantitative 

difference between the SPM and the experimental data. 

The accuracy of the SPM was further assessed by comparing the time 

evolutions of the volume-averaged particle temperature, the temperature at the 

particle surface, and the temperature distribution inside the particle predicted by the 

SPM with those from the CPM for the dry cylindrical particle with the same size as in 

the experiments of Basu et al.[145].  

The accuracy of the SPM was also studied for the particle with the same size as 

in the work of Van der Stelt[221] (feedstock dry basis). The predicted temperature at 

the particle surface and the predicted temperature distribution inside the particle 

using the SPM were compared to those from the CPM developed for the particle with 

the same size as in the work of Van der Stelt.[221]. 

3. Results and discussion 

3.1 Validation of the comprehensive particle model (CPM) 

3.1.1 Validation of the CPM against experimental results from Basu et al.[145] 

Fig. 4.3 shows the comparison between the predicted time evolution of the 

residual solid mass fraction, using the CPM, and the experimental data from the work 

of Basu et al.[145] In Fig. 4.3, the mean deviations (MD) between experiment and 

model are 1.7 wt.% and 4.3 wt.% (feedstock wet basis) at reactor temperatures of 

513 K and 553 K, respectively.  
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Fig. 4.3 Comparison of residual solid mass fraction evolution between the CPM and the 

experiment of Basu et al.[145] at two reactor temperatures of 513K and 553K. 

 

Fig. 4.4 compares the predicted time evolution of the temperature at the particle 

center with the experimental data. In Fig. 4.4, the MD between experiment and model 

are 10 K and 14 K at reactor temperatures of 513 K and 553 K, respectively.  
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Fig. 4.4 Comparison of temperature at the particle center between the CPM and the 

experiment of Basu et al.[145] at two reactor temperatures of 513 K and 553 K. 

Fig. 4.3 and Fig. 4.4 indicate that the CPM can reasonably predict the evolutions 

of the residual solid mass fraction and the temperature at the particle center, despite 

some quantitative differences being present. 

3.1.2 Validation of the CPM against experimental results from Van der Stelt[221] 

Fig. 4.5 shows the comparison of the time evolution of the particle center-

temperature and the particle surface-temperature between the simulation results 

from the CPM and the experimental data from Van der Stelt.[221]  
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(a) 

 
(b) 

Fig. 4.5 Comparison of temperature at the particle center and surface between the CPM and 

the experiment of Van der Stelt[221] at the reactor temperature of (a) 508 K and (b) 553 K. 

Fig. 4.5 (a) shows the comparison at the reactor temperature of 508 K. The 

center-temperature shows a plateau at around 15 minutes. Moisture evaporation 

occurs at around 100 °C. At this stage, the heat absorbed by the particle is mainly 

used to evaporate the moisture in the particle. Therefore, at this evaporation stage, 

temperature at the particle center will show a plateau. The MD between the model 

and the experiment is 7 K for the center-temperature and also 7 K for the surface-

temperature. Fig. 4.5(b) shows the comparison at a reactor temperature of 553 K. 
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This figure shows a temperature-peak, which overshoots the reactor temperature, at 

the center of the particle, which has also been reported in many experimental and 

modeling works for centimeter-sized or larger biomass particles.[71, 81, 83] Fig. 

4.5(b) shows that the predicted peak temperature at the center of the particle is in 

good agreement with the experiment. The MD between the model and the 

experiment is 11 K for the center-temperature and 6 K for the surface-temperature. It 

should be mentioned that a slight temperature-peak is also present in Fig. 4.4 at a 

reactor temperature of 553 K for the work of Basu et al.[145], which is less obvious 

than the one in Fig. 4.5(b), and this difference can be due to the larger size (diameter) 

of the biomass particle in the work of Van der Stelt.[221] Bates and Ghoniem[83] also 

reported that larger particles tend to exhibit stronger exothermicity during torrefaction, 

which leads to a more obvious temperature-peak at the center of a larger particle. 

From the above validations, it can be concluded that the CPM was accurate to 

predict the intraparticle heat transfer and the torrefaction process of a centimeter-

sized biomass particle. CPM-generated data, being more extensive than available 

experimental data in literature, was then used to develop the simplified particle model 

(SPM), by validating the assumptions made in the simplified particle model (SPM) 

and by assessing the accuracy and the computational efficiency of the SPM. 

 3.2 Validation of the assumptions of the simplified particle model (SPM) 

The CPM was used to study the validity of the assumptions made in developing 

the SPM. The detailed torrefaction characteristics on a dry cylindrical particle with the 

same size as in the work of Basu et al.[145] (and the conclusions are similar for the 

particle with the same size as in the work of Van der Stelt.[221]) were first analyzed 

with the CPM. Fig. 4.6 shows the torrefaction behavior predicted by the CPM for the 

dry cylindrical biomass particle at the reactor temperature of 553 K. Fig. 4.6(a) shows 
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the time evolutions of the residual solid mass fraction and of the volume-averaged 

particle temperature. Fig. 4.6(b-f) shows the instantaneous torrefaction behavior at 

several planes in radial and axial directions of the 3D particle at the simulated time of 

600 s. Fig. 4.6(b) shows that the temperature at the center of the particle is about 

40K lower than that near the particle surface, indicating that heat transfer resistance 

inside the particle is not negligible during the torrefaction of a centimeter-sized 

biomass particle. Therefore, it is necessary for the SPM to account for the 

intraparticle heat transfer resistance that builds the intraparticle temperature gradient. 

Due to the temperature difference between particle center and surface, the mass loss 

rate of the residual solid is higher near the particle surface and lower near the particle 

center, as shown in Fig. 4.6(f), which leads to a lower concentration for the reactant 

(virgin biomass) and higher concentrations for the solid product (intermediate solid 

product and char) near the particle surface (Fig. 4.6(c-e)). 

 
(a) Simulation of the temperature and solid 

mass profiles 
(b) Temperature, K 
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(c) Virgin biomass, 
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Fig. 4.6 Instantaneous torrefaction behavior predicted from the CPM for a dry cylindrical 

biomass particle at the time of 600s at a reactor temperature of 553K. 

 

At the reactor temperature of 553 K, as shown in Fig. 4.6, the Ttorrefaction in Eq. (1) 

was calculated as 548 K. The solid mass that is lost before the instantaneous 

volume-averaged particle temperature reaches 548 K is about 20% of the total loss 

of the solid mass. At another reactor temperature of 513 K (not shown in the figures), 

the Ttorrefaction was calculated as 510 K, and the solid mass that was lost before the 

instantaneous volume-averaged particle temperature reached 510 K was about 16% 

of the total loss of the solid mass. These numerical results from the CPM show that a 

majority of the solid mass still remains inside the particle before the instantaneous 

volume-averaged particle temperature reaches Ttorrefaction. These numerical results 

indicate that it is reasonable to assume that the particle experiences heating until the 

instantaneous volume-averaged particle temperature reaches Ttorrefaction at which the 

torrefaction reactions are triggered until their termination, an assumption which was 

made in the SPM for the torrefaction of a centimeter-sized particle. 
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The necessity of the assumption of including the intraparticle convective and 

radiative heat transfer, and the intraparticle convective mass transfer was examined 

by comparing the results predicted by the CPM in the base case to those by the CPM 

in which these assumptions were omitted. For the biomass particle from the 

experiment of Basu et al. [145] at two reactor temperatures of 513 K and 553 K, the 

evolutions of the temperature at the particle center and of the residual solid mass 

fraction from these two models were compared with those from the experiment, as 

shown in Fig. 4.7. This figure shows that the modeling results from both models are 

in reasonable agreement with the experimental data. Consequently, intraparticle 

convective and radiative heat transfer as well as the intraparticle convective mass 

transfer only have minor influence on the modeling results and can thus be assumed 

to be negligible in order to develop the SPM. 

 
(a) 
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(b) 

Fig. 4.7 Comparison of (a) temperature at particle center and (b) residual solid mass fraction 

between the experiment of Basu et al.[145] and the two models (the CPM in the base case 

and the CPM neglecting the porous structure) at reactor temperatures of 513 K and 553 K. 

Torrefaction can be either endothermic or exothermic depending on type of the 

biomass, particle size and operating conditions.[9, 110, 162, 163, 222] Therefore, the 

necessity of the heats of the torrefaction reactions in the CPM was examined by 

comparing the results from the CPM in the base case to those from the CPM in which 

the heats of reaction were assumed to be zero. For the biomass particle from Basu et 

al. [145] at two reactor temperatures of 513K and 553K, Fig. 4.8 compares the 

evolutions of the temperature at the particle center and of the residual solid mass 

fraction resulting from these two models and those from the experiment. Fig. 4.8 

shows that the modeling results from both these models were in good agreement 

with the experiments and that the heats of the torrefaction reaction only had minor 

influence on the modeling results. Therefore, the heat of reaction was assumed to be 

negligible in developing the SPM.  
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(a) 

 

(b) 

Fig. 4.8 Comparison of (a) temperature at particle center and (b) residual solid mass 

fraction between the experiment of Basu et al.[145] and the two models (the CPM in the base 

case and the CPM with zero reaction heat) at two reactor temperatures of 513K and 553K,. 

3.3 Accuracy of the simplified particle model (SPM) 

3.3.1 Comparison to the experimental data of Basu et al.[145] and to the CPM 
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As discussed above, Ttorrefaction calculated from the CPM was 510 K and 548 K at 

the reactor temperature of 513 K and 553 K, respectively, for the work of Basu et 

al.[145]. Fig. 4.9 shows the comparison of the volume-averaged particle temperature 

(Fig. 4.9(a)), the temperature at the particle surface (Fig. 4.9(b)) and the temperature 

distribution inside the particle (Fig. 4.9(c)) predicted with the SPM and with the CPM.  

 

(a) 

 

(b) 
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(c) 

Fig. 4.9 Comparison of (a) the volume-averaged particle temperature, (b) the 

temperature at the particle surface and (c) the temperature distribution inside the particle 

between the SPM and the CPM for the process conditions in the work of Basu et al.[145]. 

 

Fig. 4.9(a) shows that the instantaneous volume-averaged particle temperature 

predicted by the simplified model was overall in good agreement with the CPM. The 

instantaneous volume-averaged particle temperature from the simplified model was 

slightly higher than that from the CPM after about 8.5 minutes, and then it was 

calculated to be constant in the SPM when it reached the value of Ttorrefaction, under 

which the present work assumed that the torrefaction reactions are triggered.  

Fig. 4.9(b) shows that the predicted surface-temperature from the SPM 

increases fast at the beginning (0~2 minutes), and then approaches the reactor 

temperature, which is in good agreement with the results from the CPM. The fast 

increase of surface-temperature is due to the large temperature difference between 

the particle surface and the reactor at the beginning.  
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With the SPM, it was calculated that the time, tR in Eq. (15), for the thermal front 

to reach the center of the particle is 93 s at the reactor temperature of 553 K and 96 s 

at the reactor temperature of 513 K. Fig. 4.9(c) shows the predicted intraparticle 

temperature distribution for the case at the reactor temperature of 553 K (with similar 

conclusions for the case at the reactor temperature of 513 K) at two different times: 

one at 60 s before the thermal front reaches the particle center, and another at 150 s 

after the thermal front has reached the particle center. As can be seen from Fig. 

4.9(c), at 60 s, the SPM predicted that the temperature near the particle center is still 

at its initial value of 293 K while the temperature near the particle surface is elevated. 

At the time of 150 s, the temperature at any position has been increased to higher 

values than the initial 293 K. Fig. 4.9(c) shows that the results from the SPM are in 

good agreement with those from the CPM. Fig. 4.9(c) also indicates that it is 

appropriate to assume a quadratic distribution for the intraparticle temperature profile 

in Eq. (6), Eq. (8) and Eq. (21), in developing the SPM. 

Fig. 4.10 compares the evolutions of residual solid mass fraction (feedstock dry 

basis) between the SPM and the experimental data for the work of Basu et al.[145]. 

This figure shows that the predicted residual solid mass fraction is constant before 

the instantaneous volume-averaged particle temperature reaches the value of 

Ttorrefaction. Once the value of Ttorrefaction is reached, the torrefaction reactions are 

assumed to be triggered and the predicted residual solid mass decreases with time 

at this torrefaction temperature. At the reactor temperature of 513 K and 553 K, the 

MD values evaluating the difference between the SPM and the experiment were 2.0 

wt.% and 3.0 wt.% (feedstock dry basis), respectively, indicating that the modeling 

results from the SPM were in good agreement with the experiment. 
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Overall, Fig. 4.9 and Fig. 4.10 show that the present SPM is capable to predict 

both the heat transfer and the torrefaction reactions for the torrefaction of a 

centimeter-sized biomass particle. While it took more than one hour for the three-

dimensional CPM (with our Windows computer with Intel® CoreTM i7 CPU, 2.93 GHz 

and 8 processors) to calculate the torrefaction process of a centimeter-sized biomass 

particle, the prediction results with the SPM, which solves intraparticle heat transfer 

with a group of linearized equations, was instantly (<1s) obtained. Therefore, the 

SPM is computationally cheaper compared to the CPM. 

 

Fig. 4.10 Comparison of residual solid mass fraction evolution between the SPM and 

the experiment (dry-based) of Basu et al.[145] at two reactor temperatures of 513K and 553K. 

3.3.2 Comparison to the CPM using torrefaction conditions applied by Van der 

Stelt [221] 

The accuracy of the SPM was assessed by comparing the temperature evolution 

at the particle surface (Fig. 4.11(a)) and the temperature distribution inside the 

particle (Fig. 4.11(b)) predicted by the SPM to those from the CPM using the process 
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conditions as applied by Van der Stelt[221] (reactor temperature of 553 K). Fig. 

4.11(a) shows that the predicted evolution of the surface temperature from the SPM 

is in good agreement with that from the CPM (which was validated for the conditions 

as applied by Van der Stelt in Section 3.1.2). In the SPM, it was calculated that the 

time for the thermal front to reach the center of the particle was 150 s at the reactor 

temperature of 553 K. Fig. 4.11(b) shows the intraparticle temperature profiles at two 

different times: one at 100 s before the thermal front reached the particle center, and 

another at 300 s after the thermal front has reached the particle center. This figure 

shows that the predicted intraparticle temperature profiles from the SPM and CPM 

were in good agreement. 

 

(a) 
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(b) 

Fig. 4.11 Comparison of (a) temperature evolution at the particle surface and (b) 

intraparticle temperature distribution between the SPM and the CPM for the process 

conditions applied by Van der Stelt [77] at the reactor temperature of 553 K. 

3.4 Applicability of the SPM 

As discussed above, the SPM can predict comparable results to the CPM for 

biomass particles with different densities and sizes. In the following, the applicability 

of the SPM was further examined with respect to the operating conditions (reactor 

temperature covering the torrefaction range of 473-573 K), and the physical 

properties of the biomass particle (initial moisture content of  = 0.1 ~ 10 wt.%, 

varying particle size at constant aspect ratio of 6.0, and varying particle aspect ratio 

at constant particle diameter of 2.54 cm). The applicability study was performed by 

comparing the results of the SPM with those of the CPM that itself had been 

experimentally validated in Section 3.1. The base case was for a dry cylindrical 

particle with a diameter of 2.54 cm, a length of 15.24 cm and an aspect ratio of 6.0 

(similar to the work of Basu et al. [16]).   
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3.4.1 Reactor temperature 

Biomass torrefaction is usually operated at a temperature ranging from 473 to 

573 K. Fig. 4.12 compares the predicted evolution of particle surface temperature 

and residual solid mass fraction between the SPM and the CPM at a reactor 

temperature of 473 K and 573 K.  

 

(a) 
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(b) 

Fig. 4.12 Comparison of (a) temperature evolution at the particle surface and (b) 

residual solid mass fraction evolution predicted by the SPM and the CPM at two reactor 

temperatures of 473K and 573K. 

Fig. 4.12(a) shows that both the SPM and the CPM predict a faster temperature 

increase at the particle surface at a higher reactor temperature. The higher reactor 

temperature also resulted in higher solid mass loss rate and lower yield of solid 

product (char) upon termination of the torrefaction process, as shown in Fig. 4.12(b). 

Fig. 4.12 shows that the prediction results from the SPM agreed well with those from 

the CPM at both reactor temperatures, indicating that the SPM can predict 

comparable results to the CPM over the whole temperature range (473-573 K) for 

biomass torrefaction. The applicability of the SPM was not examined beyond this 

temperature range, as the torrefaction kinetics applied in the present model were 

developed for this temperature range [74] and may not be appropriate to be 

extrapolated to a lower or a higher reactor temperature. 

3.4.2 Moisture content (θ) 
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As the SPM was developed for a dry biomass particle, we assessed the validity 

of the model for particles with a specific initial moisture content by comparing the 

mass loss evolution of a dry particle predicted by the SPM with the mass loss 

evolution of the dry biomass fraction predicted by the CPM in wet particles with 

moisture contents of θ = 0.1 wt.% and θ = 10 wt.%, respectively.  

The simulation results in Fig. 4.13 show that, at the beginning of the process (at 

10~70 minutes), the results from the SPM agree better with the results from the CPM 

with a moisture content of θ = 0.1 wt.%. The mass loss of the dry biomass fraction in 

the wet particle, as predicted by the CPM, occurred later at the higher initial moisture 

content of θ = 10 wt.%, which is due to water evaporation initially taking place. Upon 

termination of the torrefaction reaction (at about 150 minutes), the predicted yield of 

the solid product (char) from the SPM is similar to that from the CPM, indicating that 

the initial moisture content has limited influence on the final predicted yield of the 

solid product (on feedstock dry basis).  

 
(a) 
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(b) 

Fig. 4.13 Comparison of solid mass evolution between the SPM and the CPM at 

different initial moisture contents at the reactor temperature of (a) 513K and (b) 553K. 

These results also indicate that the SPM can still be reasonably valid in 

predicting the yield of the solid product (on feedstock dry basis) for a wet biomass 

particle, despite some quantitative differences are present with respect to the solid 

mass loss rate at the initial stage of the torrefaction process. The applicability of the 

SPM was not performed for moisture contents higher than 10 wt.%, since naturally 

dried biomass particles usually contain a moisture content less than 10 

wt.%.[16,60,77]  

3.4.3 Particle size at constant aspect ratio 

For the cylindrical biomass particle with an aspect ratio of 6.0, the intraparticle 

heat conduction can be assumed to occur one-dimensionally in the radial direction, 

and the diameter of the cylindrical particle is one of the factors affecting the 

intraparticle heat transfer. As temperature gradients are less important in cylindrical 

particles with smaller diameters, the applicability of the SPM was only performed for 
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a larger cylindrical particle with a diameter of 5.08 cm and a length of 30.48 cm 

(aspect ratio = 6.0), which is twice as large as the particle in the base case. 

Fig. 4.14 compares the model predicted evolutions of the temperature at the 

particle surface (Fig. 4.14(a)) and the residual solid mass fraction (Fig. 4.14(b)) 

between the SPM and the CPM at a reactor temperature of 553 K. These figures 

indicate that the SPM can still predict comparable results to the CPM when the 

particle size is doubled at a constant aspect ratio of 6.0. The applicability of the SPM 

was not performed for even larger biomass particles, as the current reported 

torrefaction reactors (e.g. screw reactor [60]) do not treat such large biomass 

particles. 

 

 

(a) 
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(b) 

Fig. 4.14 Comparison of (a) the model predicted temperature evolution at the particle 

surface and (b) the residual solid mass fraction evolution between the SPM and the CPM for 

a particle with d = 5.08 cm at a reactor temperature of 553 K. 

3.4.4 Particle aspect ratio at constant diameter 

The SPM was developed with the assumption that the heat transfer occurs one-

dimensionally in the radial direction of the cylindrical particle. At a constant diameter 

(2.54 cm), the heat transfer in the axial direction becomes increasingly important with 

the decrease of the particle length (and hence the decrease of the aspect ratio). 

Consequently, the one-dimensional heat transfer assumption in the SPM will be less 

valid. The effect of varying the aspect ratio was studied by comparing the evolution of 

the residual solid mass fraction predicted from the SPM with those from the CPM at 

ratios of 0.5, 1.0 and 3.0 (at constant particle diameter of 2.54 cm) and at a reactor 

temperature of 553 K.  

Fig. 4.15. shows that the prediction results from the SPM deviate more from the 

CPM with a decreasing aspect ratio. The SPM is reasonably valid for an aspect ratio 
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of 3.0; for lower values, the difference between the SPM and the CPM cannot be 

neglected.  

 

Fig. 4.15 Comparison of the evolutions of the residual solid mass fraction predicted from 

the SPM with those from the CPM with various aspect ratios at a constant particle diameter 

of 2.54 cm at a reactor temperature of 553 K. 

4. Conclusions 

In this chapter, a method has been proposed to develop a simplified particle 

model (SPM) for the torrefaction of a centimeter-sized biomass particle. The method 

contains steps of (1) validation of the model assumptions in developing the SPM with 

the CPM that itself was experimentally validated, (2) derivation of the SPM based on 

the space-time integral method, (3) assessment of the accuracy of the SPM by 

comparing either to the experimental data or to the CPM when experimental data 

were not available, and (4) study of the applicability of the SPM with respect to the 

operating conditions (reactor temperature), and the physical properties of the 

biomass particle (initial moisture content, particle size, and particle shape). 
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Results show that it was reasonable to neglect the intraparticle convective and 

radiative heat transfer, the intraparticle convective mass transfer and the reaction 

heat in developing the SPM. The SPM was reasonably accurate to predict the time 

evolution of the residual solid mass fraction (mean deviation of lower than 3.0 wt.% 

between the SPM and the experiment, feedstock dry basis). Results also showed 

that the SPM was applicable for predicting the torrefaction of centimeter-sized 

biomass particles with an aspect ratio larger than 3 with moisture content up to 10 wt.% 

at a temperature range of 473-573 K. In addition, the SPM can predict comparable 

results (e.g. intraparticle temperature profile and residual solid mass fraction) to the 

CPM but runs over 100 times faster than the CPM.  
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CHAPTER 5 

3D Eulerian-Eulerian simulations of solids flow dynamics 

and back-mixing in a screw reactor 

In previous chapters (Chapter 2 to 4), the modeling of the physical and chemical 

phenomena for biomass pyrolysis at the particle scale was studied. In the following 

two chapters (Chapter 5 and Chapter 6), the modeling of the physical and chemical 

phenomena for biomass pyrolysis at the reactor (i.e. screw reactor) scale will be 

discussed. Specifically, in Chapter 5, the physical phenomena (solids flow dynamics 

and solids back-mixing) occurring at the reactor scale will be studied with three-

dimensional (3D) computational fluid dynamics (CFD) simulations based on the 

Eulerian-Eulerian method, while in Chapter 6, pyrolysis reaction kinetics will be 

further incorporated into the CFD model to study biomass pyrolysis at the reactor 

scale. 

 

 

 

This chapter was redrafted after: 

Xiaogang Shi, Frederik Ronsse, Jelle Roegiers, Jan G. Pieters. 3D Eulerian-

Eulerian simulations of solids flow dynamics and back-mixing in a screw reactor. To 

be submitted to Fuel Processing Technology. 
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1. Introduction 

Rotating screw systems are widely applied to transport granular materials in 

industries like chemical, agricultural, food, etc.[86, 223] Much research has been 

focused on the overall volumetric throughput and power requirements of screw 

systems.[87] Recently, the rotating screw system as a novel reactor (and hence 

called screw reactor, or auger reactor) has found potential applications in 

thermochemical processing of biomass, for instance in fast and slow pyrolysis (the 

latter including both torrefaction and carbonization).[88, 129, 224-229] The reaction 

extent and the product (being non-condensable gases, condensable vapors (or oil) 

and char) distribution of biomass pyrolysis are highly dependent on the flow 

dynamics and the residence time of biomass particles in a reactor.[65, 228, 230] 

Therefore, in-depth understanding of the particle flow dynamics and particle 

residence time in the screw reactor is necessary to target reactor conditions that 

favor the production of desired products (e.g. desired products of oil for fast pyrolysis, 

and char for carbonization). 

Biomass particles can pass through the screw reactor at the mechanical action 

of the rotating screw. In addition, carrier gas is usually injected from the reactor inlet 

to remove the pyrolysis products in the gas phase out of the screw reactor.[87, 88, 

129] The reactor wall (screw shell) is usually used to provide heat for the biomass 

pyrolysis process, and sometimes, an additional heating medium, such as hot sand, 

is fed along with the biomass particles to enhance heat transfer among solids, gases, 

and the reactor wall.[88] As a result, complex interactions exist among phases, and 

between the solid phase and the physical structure of the screw reactor. Due to these 

complex interactions, the experimental method has difficulty in capturing the transient 

behavior of the particle flow dynamics, the particle RTD and the degree of solids 
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back-mixing in the screw reactor.[86-88, 129, 223, 231] In contrast, the CFD 

approach can describe, by means of modeling, the complicated transient profiles of 

the multiphase fluid dynamics in a multiphase reactor (e.g. screw reactor) by solving 

the related conservation laws and equations,[128, 232-234] and can help in-depth 

understanding of the complex solids flow dynamics in the screw reactor.  

Both Lagrangian models and Eulerian multi-fluid models have been applied to 

study the multiphase flow inside the screw reactor.[124, 125, 129, 235-238] In the 

Lagrangian approach, like the Discrete Element Method (DEM), the motion of 

particles is described by Newton's laws of motion. Detailed information on the forces 

acting on each individual particle and the information on the particle’s dynamic 

trajectory, which is currently extremely difficult, if not impossible, to obtain with 

experimental measurements may be calculated by DEM.[126] However, current DEM 

models are normally limited to relatively small numbers of particles due to 

computational limitations,[127] which makes it difficult to simulate a full-scale screw 

reactor containing millions or more of particles. The Eulerian multi-fluid model, on the 

other hand, treats gas and solid phases as interpenetrating continua and 

consequently is able to handle multiphase systems containing large numbers of 

particles at a relatively large scale.[128] Some researchers have tried to study the 

multiphase flow in a screw reactor based on the Eulerian-Eulerian model. Aramideh 

et al.[129] simulated biomass pyrolysis in a screw reactor based on an Eulerian-

Eulerian model, and they analyzed the solids distributions inside the reactor. 

However, still little is known about the detailed solids flow dynamics in the axial 

(forward transportation) and the radial directions of the reactor. The overall 

distribution of solids residence time, as well as the solids back-mixing behavior 

remain largely unknown. 
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The purpose of this chapter is to study the solids flow dynamics and to discuss 

the possible effects of the solids flow dynamics on the solids back-mixing behavior 

inside a screw reactor based on 3D simulation with the Eulerian-Eulerian model. The 

model is validated against experimental results from Nachenius et al.[87] The solids 

RTD is obtained using the virtual tracing method. The reasons for solids back-mixing 

are analyzed based on the predicted solids flow dynamics. The effect of operating 

conditions (e.g. screw speed) on the degree of solids back-mixing is further 

discussed.  

2. Model development 

The Eulerian-Eulerian two-fluid approach, which is widely used to model dense 

gas-solid systems,[239-241] was applied to simulate the gas-solid flow in the screw 

reactor. The detailed governing equations and their constitutive equations are shown 

in the following.  

2.1 Governing equations 

Mass conservation for the two phases was described as,[239]  

   g g g g g 0
t
   

   


u
 

(1) 

   s s s s s 0
t
   

   


u
 

(2) 

where g  and s represent the volume fractions of the gas phase and the solid 

phase, respectively. g   and s are the density (kg/m3) of the gas phase and the solid 

phase, respectively. gu (m/s) and su  are the velocity of the gas phase and the solid 

phase, respectively. Each computational cell is occupied by the two inter-penetrating 
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phases in the Eulerian-Eulerian model, and their overall volume fraction in the 

computational cell equals unity:[239]  

  g s 1 (3) 

Momentum conservation is derived by balancing the momentum accumulation 

for each phase with the convective momentum flux and other forces related to gravity, 

drag force, stress tensor and pressure. The mathematical expressions of the 

momentum conservation for the two phases are:[239]  

     pg g g g g g g g g g g s gg
t
       

           


u u u u u
 

(4) 

            
             


p pu u u u us s s s s s s s s s s s g sg

t
  (5) 

Where p  (Pa) is the pressure shared by the gas phase and the solid phase. ps 

(Pa) is the solids pressure. g  (Pa) and s  represent the stress tensors of the gas 

phase and the solid phase, respectively. The symbol g  (m/s2) stands for the 

gravitational constant while   (kg/(m3·s)) represents the interphase momentum 

exchange coefficient. 

The conservation of fluctuating kinetic energy for the solid phase is based on the 

kinetic theory of granular flow:[239] 
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where s (m2/s2) is the granular temperature, s
k  (kg/(m·s)) is the diffusion 

coefficient of the fluctuating kinetic energy, 
s  (kg/(m3·s)) is the collisional 

dissipation of the fluctuating kinetic energy, and gs  is the fluctuating energy 

exchange between phases. 

The species transport equation for tracer particles was used for calculating the 

solids residence time distribution:[242]  

         
      

 s s tracer s s s tracer s s s traY Y D Y
t

u

 
(7) 

Where tracerY  is the mass concentration of the tracer particle in the solid phase. 

2.2 Constitutive equations 

Constitutive equations are used to close the governing equations in order to 

facilitate the solving process. The following summarizes the required constitutive 

equations. 

The stress tensor for the gas phase is[242] 

   
 u u u IT

g g g g g g g g g

2
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  The stress tensor for the solid phase is[242] 
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  Where g  (Pa·s) and s are the shear viscosities of the gas phase and the solid 

phase, respectively. g  (Pa·s) and s  are the bulk viscosities for the gas phase and 

the solid phase, respectively. I  is the unit tensor. 

In a screw system, particles tend to be conveyed in a state of dense packing, 

and the frictional stress between particles is an important factor influencing the flow 

of the solid phase.[243] It is assumed that the frictional stress starts to be relevant 

when the solids volume fraction exceeds a critical value (friction packing limit) of 

s,max,friction 0.28  , which is slightly smaller than the maximum packing limit 

( s,max 0.30  ). The maximum packing limit was determined by the ratio of the bulk 

density (165.4 kg/m3) to the tapped density of pine wood (551 kg/m3), being the 

material used in the experiments of Nachenius et al.[87] against which the model 

predicted results are compared in this chapter.  

The solids pressure is composed of a kinetic term ( ,s kineticp ), a second term due to 

particle collisions ( ,s collisionp ), and a third term due to friction ( ,s frictionp ):[242] 

  , , ,s s kinetic s collision s frictionp p p p  (10) 

  , s ss kineticp  (11) 

    2
, s s s ss 0,ss2 1 e gs collisionp  (12) 

Where sse is the particle-particle restitution coefficient, and 0,ssg  is the radial 

distribution function, which modifies the probability of particle collisions when the 

solid phase becomes dense,[244]  
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The derivation of the frictional pressure ( ,s frictionp ) is mainly semi-empirical, and the 

model from the work of Ding and Gidaspow[239] was applied to calculate ,s frictionp . The 

frictional pressure starts to be relevant when the solids volume fraction exceeds the 

friction packing limit, before which the solids pressure is mainly contributed by the 

kinetic term and the collisional term. When the solids volume fraction is higher than 

the friction packing limit (0.28) but lower than its maximum packing limit (0.30), the 

particle collisions are less important, and therefore the solids pressure is mainly 

contributed by the kinetic term and the frictional term. 

The shear viscosity of the solid phase is expressed below[242] 

     s s,kinetic s,collision s,friction  (14) 

Where s,kinetic ,[239] s,collision ,[239] and s,friction [242] represent the kinetic viscosity, 

the collisional viscosity and the frictional viscosity of the solid phase, respectively. 
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where sd  (m) is the diameter of the particle,   is the angle of internal friction 

(45º), and 2DI  is the second invariant of the stress deviatoric tensor. 

Similarly, the shear viscosity of the solid phase is mainly contributed by the 

frictional viscosity and by the kinetic viscosity when the solids volume fraction is 

between the friction packing limit and the maximum packing limit. Otherwise, the 

shear viscosity of the solid phase is mainly contributed by the kinetic viscosity and by 

the collisional viscosity. 

The bulk viscosity for the solid phase represents the resistance of particles due 

to expansion and compression, and it is expressed as:[245]  

   



  s
s s s s 0,ss ss

4
d g 1 e

3
 (18) 

The diffusion coefficient of the solids fluctuating kinetic energy is,[239]  
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The collisional dissipation of solids fluctuating kinetic energy is,[245] 
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The exchange of fluctuating energy between phases is,[239]  

   gs s3
 (21) 

The interphase drag model developed by Gidaspow[239] was adopted. This 

drag model is suitable for dense gas-solid systems, and it is expressed as below, 
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Where dC  is the drag coefficient defined as, 
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Where sRe  is the relative Reynolds number expressed as,[239] 
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2.3 Residence time distribution model 

The RTD curve can give an indication on the flow behavior of a fluid phase and 

can characterize the intensity of the mixing process in the reactor. In ideal plug-flow, 

all fluid elements leave the reactor with the same residence time, and the RTD curve 

is a vertical line after the injection time. In contrast, in ideal mixing-flow, the fluid is 

completely mixed inside the reactor and its RTD curve at the outlet would increase 

abruptly in an instantaneous rise at the injection time and then decay exponentially 

with time thereafter.[246]  

The numerical virtual tracing method,[247, 248] which is similar to the 

experimental tracing method,[231] was applied to derive the solids RTD. The virtual 

tracer, which has the same physical properties as the solid phase in the simulation, 

was introduced in the modelled reactor geometry from the inlet after steady-state flow 
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had been achieved. At the outlet, the tracer concentration was monitored. The solids 

RTD function, E(t) , is calculated as, 




n

n0

Y (t)
E(t)

Y (t)dt
 (25) 

The cumulative solids RTD function, F(t) , is, 

 
t

0
F(t) E(t)dt  (26) 

The mean solids residence time is calculated from the CFD simulation by, 


 m,CFD 0

t tE(t)dt  (27) 

The E(t)  and F(t)  function can also be described using a dimensionless time 

variable ( ), 

 
m,CFD

t

t
 (28) 

  m,CFDE( ) t E(t)  (29) 


   0F( ) E( )d  (30) 

The variance characterizing the width of solids RTD is, 




 2 2
m,CFD0

(t t ) E(t)dt  (31) 

And the dimensionless variance characterizing the degree of solids back-mixing 

is, 
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2.4 Theoretical mean solids residence time 

For screw systems, the mean solids residence time can be theoretically 

determined from the length of the screw, the screw rotating frequency and the 

pitch.[86, 87, 231] Ideally, the forward movement of a particle per complete rotation 

of the screw is equal to the pitch. The theoretical calculation is based on the 

assumption that all particles spend the same amount of time inside the screw system 

(ideal plug flow), and potential axial solids back-mixing is neglected. Considering that 

the thickness of the flight (the helical blade) cannot be ignored, the theoretically ideal 

mean solids residence time can be determined by, 

   
 


 

screw
m theoretical

pitch flight

L
t

L L
,  

  

(33) 

Where, as shown in Fig. 5.1, screwL  (m) is the length of the screw, pitchL  is the 

length of the pitch, flightL  is the thickness of the flight and   is the screw rotating 

frequency (Hz). 
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Fig. 5.1 Geometry of the screw reactor in the CFD simulation 

3. Simulation set-up 

3.1 Simulation system 

The model was based on the experimental apparatus in the work of Nachenius 

et al.[87] The screw reactor is composed of a shell, flight (helical blade), and shaft, 

and the total length of the screw reactor from the inlet to the outlet was 1.640 m. The 

3D geometry of the reactor and its detailed dimensions are shown in Fig. 5.1. 

Nachenius et al.[87] performed cold flow experiments, and their experimental data 

were used to validate the model in this study. The gas used was air (air was used in 

this model only for cold flow, and inert gas, N2, would be used in real thermochemical 

process involving biomass). Particles were pine wood with an average size of 2 mm, 

as the material used in the experiments of Nachenius et al.[87] The physical 
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properties of gas and solids, and other simulation parameters are listed in Table 5.1. 

The operating conditions, including the screw rotating frequency, the inlet gas and 

solids mass flow rate, for three distinct simulation cases were set similar to the 

experiments of Nachenius et al.[87] and are listed in Table 5.2. The inlet solids/gas 

mass flow rates were almost identical for all three simulation cases. 

Table 5.1 Physical properties of the gas phase and the solid particles and other 

simulation parameters used. 

Parameter Values 

Particle diameter 0.002 m 

Particle density 551 kg/m3 

Gas density 1.225 kg/m3 

Gas dynamic viscosity 1.7×10-5 kg/(m·s) 

Maximum solids packing limit 0.30 

Solids friction packing limit 0.28 

Particle–particle restitution coefficient 0.90 

Angle of internal friction  45º 

Time step 0.001 s 

Table 5.2 Operating conditions for various cases 

Case 
number 

Screw rotating frequency, 
Hz 

Inlet solids mass 
flow rate, g/s 

Inlet gas mass flow 
rate, g/s 

1 0.243 0.62 2.72×10-3 

2 0.364 0.61 2.72×10-3 

3 0.486 0.61 2.72×10-3 

 

The unstructured mesh with different mesh resolutions was constructed for the 

3D geometry of the screw reactor, and a grid independency study was performed as 

described in Section 4.1. The commercial CFD package of ANSYS Fluent 16.2 was 
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used to solve the governing and constitutive equations in Section 2. A time step of 

0.001s was used. The moving mesh method was applied to simulate the rotating 

screw. 

3.2 Boundary and initial conditions 

The mass flow rates of the gas phase and of the solid phase at the inlet were set 

according to Table 5.2. Atmospheric pressure was assumed at the outlet for both gas 

and solid phases. At the wall (shell, shaft and flight), no-slip boundary conditions 

were assumed for the gas and the solid phases. Initially, no solids were present 

inside the reactor. The initial velocities of the gas and solid phases were set at zero. 

4. Results and discussion 

4.1 Grid independency study  

To assess whether the simulation results were mesh-independent, a grid 

independency analysis was performed using three different mesh resolutions (coarse 

mesh, medium mesh and fine mesh, as shown in Table 5.3).  

Table 5.3 Simulation results with respect to the mean solids residence time, the 

dimensionless variance of the solids RTD and the total solid mass inside the reactor at 

steady-state at three different mesh resolutions (Case 3) 

Mesh 
resolutions 

Number of 
cells 

Mean solids 
residence time 

(tm,CFD), s 

Dimensionless 
variance (σθ2) 

Total solid mass 
at steady state, g 

Fine mesh 306120 84.5 0.0019 49.3 

Medium mesh 248352 84.6 0.0019 49.4 

Coarse mesh 156627 84.2 0.0018 49.1 

Fig. 5.2 shows the predicted solids RTD function E(t) and the cumulative 

function F(t) at different mesh resolutions at a screw rotating frequency of 0.486 Hz 
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(Case 3). This figure shows that the predicted solids RTD function E(t) and the 

cumulative function F(t) using the medium mesh were close to those using the fine 

mesh, while the results using the coarse mesh deviated, to some extent, from the 

results using the medium mesh and the fine mesh. Table 5.3 shows the predicted 

mean solids residence time, the dimensionless variance of the solids RTD and the 

total solid mass inside the reactor at steady-state at different mesh resolutions. This 

table shows that the simulation results using the medium mesh, compared to the one 

using the coarse mesh, were closer to those using the fine mesh. These simulation 

results in Fig. 5.2 and in Table 5.3 indicate that the medium mesh size was already 

sufficiently fine for providing mesh independent results. Therefore, the medium mesh 

was applied throughout the rest of this chapter. 

 

Fig. 5.2 Simulation results with respect to the solids RTD function of E(t) and the 

cumulative function of F(t) at different mesh resolutions (Case 3) 

4.2 Particle flow dynamics 

Fig. 5.3 shows a front view of the model predicted, steady-state spatial 

distribution of solids volume fraction in a short section of the reactor for Case 1 and 

Case 3 that were operated at different screw rotating speeds. This figure shows that 
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more solids are present in the reactor when the screw rotating speed is lower (Case 

1). This figure also shows that in both cases solids tend to cluster towards the bottom 

of the reactor, which is the result of gravity. While solids were mainly present in the 

lower part of the reactor between the bottom shell and the shaft in both cases, some 

solids were present, as shown by the slightly blue color for Case 3, above the shaft at 

the front face of the flight. The presence of solids above the shaft indicates that the 

solids can be lifted up by the rotating screw, which is due to the frictional force 

between the solid phase and the rotating screw. In contrast, much less particles can 

be found above the shaft in Case 1, which is lower in rotating speed and hence 

smaller in frictional interaction between the solid phase and the rotating screw 

compared to Case 3. This trend of more particles appearing above the shaft at a 

higher rotating speed was also demonstrated in the DEM simulation of a screw 

reactor in the work of Owen and Cleary.[124]  

 

Fig. 5.3 Spatial distribution of solids volume fraction in a short section of the reactor 

(Case 1 and Case 3) 
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Fig. 5.3. also shows that in both cases the spatial distribution of the solids 

volume fraction in each pitch (also in other pitches of the reactor that were not shown 

in this picture) is similar, which is, in each pitch, the height of the surface of the solids 

phase slightly decreasing along the forward transportation direction. Reasons for the 

elevated height of the surface of the solid phase at the front of the flight can be 

explained by the fact that (1) solids at the front of the flight can experience forward 

pushing from the rotating screw, which can gather a portion of particles at the front of 

the flight, and by the fact that (2) solids near the front of the flight can be lifted up due 

to the friction between the solid phase and the rotating screw. 

In addition, Fig. 5.3 shows that the solids volume fraction in the bottom 

clearance underneath the screw (the space with a size of 1 mm as shown in Fig. 5.1 

between the flight and the bottom shell) is lower (about 0.10 in Case 3 compared to 

0.25 in Case 1) at a higher screw rotating speed, indicating that less solids can flow 

through the bottom clearance, which can be explained by the fact that the solids can 

be carried/transported more efficiently by the screw at a higher screw rotating 

speed.[243] It should be mentioned that the Eulerian-Eulerian two-fluid model, in 

which the solid phase was assumed to be continuous, predicted the solids flow at the 

bottom clearance underneath the screw, while in reality the particles may be too 

large to pass through the bottom clearance underneath the screw, since most of the 

biomass particles in the experiments of Nachenius et al.[87] were larger than the size 

of this clearance. 

Fig. 5.4 shows the volume fraction and velocity vectors of the solids phase in 

selected parts of the screw reactor for Case 3 at a flow time of 80 s. From this figure, 

it can be seen that the solid phase experiences both rotational flow (radially) and 

forward transportation flow (axially).  
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(a) 

  

(b) 
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(c) 

Fig. 5.4 Volume fraction and velocity vectors of the solid phase, (a) 3Dfront view in four 

pitches, (b) 3D back view in four pitches and (c) at various radial cross-sections in one pitch 

for Case 3 

The rotational flow of the solid phase is due to the frictional interaction between 

the solid phase and the rotating screw, as indicated by the velocity vectors at the 

surface of the flight in Fig. 5.4(a) and Fig. 5.4(b). The frictional interaction between 

the solid phase and the rotating screw was also demonstrated in this simulation 

particularly when the rotating screw was predicted to contact with the solid phase at 

the bottom part of the reactor, where most particles are accumulating, as shown by 

the cross-sectional view in Fig. 5.4(c). Particles being lifted by the rotating screw can 

be classified among two groups. One group of the lifted particles do not acquire 

enough kinetic energy to be propelled over the shaft and will fall/slide down due to 

gravity,[223] as can be seen at the front side of the reactor in Fig. 5.4 (a) and also 

can be seen in the cross-sectional view in Fig. 5.4(c). Another group of the lifted 

particles are flung over the shaft, and they will fall down toward the succeeding pitch 
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with a rather high velocity magnitude, which is the combined result of friction 

(between the solid phase and the rotating screw) and gravity, at the back side of the 

reactor as shown in Fig. 5.4 (b) and in Fig. 5.4(c). Solids back-mixing occurs when 

this portion of particles being flung over the shaft falls down toward the succeeding 

pitch, which was also demonstrated in the experiments of Waje et al.[223, 231] For 

cases at lower screw rotating speeds (Case 1 and Case 2, not shown in Fig. 5.4), the 

amount of lifted particles being flung over the shaft is smaller compared to that for 

Case 3, which is due to the smaller frictional interaction between the solid phase and 

the rotating screw at lower screw rotating speeds. Considering the lower height for 

the surface of the solid phase (and lower filling degree and less total solid mass 

inside the reactor at steady-state, which is discussed later in Section 4.3) at a higher 

rotating speed (Case 3), as shown in Fig. 5.3, the simulation results indicated that a 

higher portion of particles can be flung over the shaft at a higher rotating speed. Fig. 

5.4(a) and Fig. 5.4(b) also show that, at the reactor bottom, where most particles are 

accumulating, particles mainly experience forward transportation flow due to the 

mechanical push of the flight. 

Fig. 5.5 (a) (front view) shows the spatial distribution of the gradients of solids 

forward transportation velocity (or Z-direction velocity) at the plane of Y=0 m for Case 

3 (conclusions are similar for Case 1 and Case 2).  

 

(a) 



Chapter 5 3D Eulerian-Eulerian simulations of solids flow dynamics and back-mixing in screw reactor 

192 
 

 

(b) 

 

(c) 

Fig. 5.5 Spatial distributions (for Case 3) of, (a) gradient of solids transportation velocity 

at plane of Y=0 m (front view), (b) solids transportation velocity at plane of Y=0 m (front view), 

and (c) solids transportation velocity at plane of X= -0.0255 m (bottom view). 

Fig. 5.5 (a) shows that, at the bottom part (between the shaft and the bottom 

shell, where most particles are gathering) of each pitch, the solids forward 

transportation velocity increases at the front of the flight, which is due to the 

mechanical push by the rotating screw. At the backside of the flight, negative 

gradients are present, indicating that the solids forward transportation velocity 

decreases, which is due to the friction between the solid phase and the bottom shell. 

As a result, the corresponding spatial distribution of the solids forward transportation 

velocity at this plane of Y=0 m in Fig. 5.5 (b) (front view) shows that, at the bottom 

part of each pitch, the solids forward transportation velocity is higher away from the 

physical structure of the screw reactor. Fig. 5.5 (b) also indicates that the solid 
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forward transportation velocity near the bottom shell is about one order of magnitude 

lower than that near the center of the bottom of each pitch. The spatial distribution of 

the solids forward transportation velocity at the bottom plane of X= -0.0255 m (in the 

middle of the clearance between the flight and the shell) in Fig. 5.5 (c) (bottom view) 

further shows that the solids forward transportation velocity right under the flight is 

even lower, which can result into solids back-leakage, and this phenomenon is an 

important reason of solids back-mixing, as reported by Waje et al.[231] The 

experiments of Nachenius et al.[87] did not provide any information on the extent to 

which biomass particles can flow through the clearance between the flight and the 

shell. It should be mentioned that, while the Eulerian-Eulerian two-fluid model with 

the continuous assumption for the solid phase predicted the solids back-leakage at 

the clearance, in their experiments,[87] only very few particles (3 wt.%) had a 

diameter smaller than the size of the clearance (i.e. 1 mm), indicating that the solids 

back-leakage at the clearance was likely to occur to a smaller extent in their 

experiments. 

4.3 Model validation 

In their original experiment, Nachenius et al.[87] introduced a negative step 

change (stopping the inlet flow of biomass particles) for the system after the system 

had reached steady-state flow conditions. They monitored the solids mass flow rate 

at the outlet from the time they stopped the inlet flow of biomass particles until all 

particles had flowed out of the reactor. In the simulation, a similar negative step 

change was performed after steady-state flow conditions had been reached for the 

three simulation cases. The solids mass flow rate was monitored from the time that 

the inlet flow of the solid phase was set to zero. Fig. 5.6 shows the simulation and the 

experimental results for the solids mass flow rate at the outlet of the reactor for the 
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three cases. As can be seen from this figure, the predicted solids mass outflow rates 

fluctuated around an average of 0.6 g/s (as shown in Table 5.2) before they finally 

dropped to zero, which is in good agreement with the experimental results. In the 

simulation, the time (around 170 s in Case 1, 100 s in Case 2 and 75 s in Case 3), at 

which the solids mass flow rate at the outlet started to drop, decreased with the 

increase of the screw rotating frequency (from Case 1 to Case 3), which is the result 

of the more rapid pushing of the screw at higher rotating frequencies. These 

simulation results agree well with the experimental results (around 177 s in Case 1, 

105 s in Case 2 and 75 s in Case 3).  

 

(a) 
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(b) 

 

(c) 

Fig. 5.6 Comparison of the solids mass flow rate at the outlet for (a) Case 1, (b) Case 2, 

and (c) Case 3 between the simulations and the experiments. 

Fig. 5.6 also indicates that the tapering off (from around an average of 0.6 g/s to 

finally 0 g/s) of the solids mass flow rate was predicted to take a longer time in the 

simulations than in the experiments. This difference between the simulation and the 
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experiment can be explained by the fact that the model predicted solids back-leakage 

to take place as the continuous solid phase (in the Eulerian model) would flow 

through the clearance between the flight and the shell, while in the experiments of 

Nachenius et al.,[87] wood particles were used with a certain particle size distribution 

(97 wt.% of wood particles in their experiments are larger than the size of the 

clearance, i.e. 1 mm) and the solids back-leakage at the clearance was likely to 

occur to a smaller extent in the experiments. Fig. 5.6 also shows that the predicted 

solids outflow had a periodic pattern. This periodic pattern of the solids outflow is a 

result of the non-uniform distribution of the solid phase in each pitch, as shown by the 

decreased height for the surface of the solids phase along the Z-direction in each 

pitch (Fig. 5.3). Nachenius et al.[87] in their experiment also observed that the solids 

left the reactor in periodic pulses. As the original experimental set-up was not 

transparent, the authors were not able to provide information regarding the flow 

behavior of the biomass particles inside the reactor. Their observations of the 

periodic pulse of the solids outflow indicates that the solids were not uniformly 

distributed inside the experimental screw reactor, which further demonstrates the 

reasonability of the simulation results with respect to the non-uniform distribution of 

the solid phase inside the screw. 

Table 5.4 shows the comparison of the total solids mass and the filling degree 

(or solid hold-up defined as the bulk volume fraction of solids inside the screw 

reactor) inside the reactor at steady state between the simulation and the 

experimental results. The predicted solids mass (86.1 g to 49.4 g from Case 1 to 

Case 3) and filling degree (0.18 to 0.10 from Case 1 to Case 3) decreased with the 

increase of the screw rotating frequency (0.243 Hz to 0.486 Hz from Case 1 to Case 

3). Similar trends have been frequently reported in previous experimental works.[87, 
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231] From this table, it can be seen that the deviations between the simulation and 

the experiment were less than 5 g on average for the solids mass, and less than 0.01 

on average for the filling degree inside the reactor at steady state for Case 2 and 

Case 3, indicating that the simulation results were in good agreement with these 

experimental cases. Large differences between the simulation and the experiment for 

Case 1 were present with respect to the solids mass and filling degree, which may be 

due to the continuous treatment for the solid phase in the Eulerian model and due to 

some possible systematic errors in the experiments, which are, however, difficult to 

quantify. 

Table 5.4 Solid mass and filling degree  inside the screw reactor at steady-state 

Case 
Solid mass, g Filling degree 

Experiment Simulation Deviation Experiment Simulation Deviation 

Case 1 109.9 ± 2.5 86.1 23.8 0.20± 0.00 0.18 0.02 

Case 2 69.5 ± 5.0 65.2 4.3 0.12 ± 0.01 0.13 0.01 

Case 3 51.4 ± 0.7 49.4 2.7 0.09± 0.00 0.10 0.01 

Overall, the above comparisons between the simulation and experimental results 

indicate that the model was capable of predicting the solids flow behavior inside the 

screw reactor, despite some quantitative differences. 

4.4 Mean solids residence time 

Fig. 5.7 compares the mean solids residence time from the prediction, the 

experimental value and the theoretical value (assuming ideal plug flow). This figure 

shows that the predicted mean solids residence time is in good agreement with the 

experiment (mean deviation of 11.4 s), while the theoretical calculation 

underestimates the solids residence time. Waje et al.[86, 231] also reported that the 

theoretical mean solids residence time was lower than the experimental value. The 
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mean theoretical solids residence time was calculated with the assumption that 

particles are pushed forward by the rotation of the screw and that particles are in 

ideal plug flow, which does not take into account the axial solids back-mixing. In 

contrast, the Eulerian-Eulerian simulation, despite some quantitative differences from 

the experimental results as discussed in Section 4.3, can predict the solids flow 

dynamics in the reactor in a more detailed way, and thus the back-mixing behavior of 

the solid phase can be accounted for. Fig. 5.7 also shows that the mean solids 

residence time decreases with the increase of the screw rotating frequency, which is 

due to the more rapid forward pushing of the rotating screw at higher screw rotating 

frequencies. 

 

Fig. 5.7 Comparison of mean solids residence time among the simulation, the 

experimental value and the theoretical value 

4.5 Solids residence time distribution and axial back-mixing 

Fig. 5.8 shows the curves of the model predicted solids RTD E(t) and the curves 

of the corresponding cumulative function F(t). The results were averaged on a 

sampling time interval of 0.1 s. It can be seen that the RTD curves fluctuate, 
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indicating that the outflow of the solid phase is in periodic pulse and that the solid 

phase is not uniformly distributed inside (in each pitch, as shown in Fig. 5.3) the 

reactor, as discussed above. Fig. 5.8 also shows that all solids RTD curves exhibit 

tails, indicating back-mixing of the solid phase along the forward transportation 

direction of the reactor.  

 

(a) 

 

(b) 
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(c) 

Fig. 5.8 Model-predicted solids RTD functions, E(t), and their cumulative functions, F(t), 

for (a) Case 1, (b) Case 2, and (c) Case 3 

Fig. 5.9 shows the dimensionless cumulative function, F(θ), of the solids 

residence time. It can be seen that all the F(θ) curves in these three cases deviate 

from the plug flow curve, indicating the existence of solids back-mixing in the forward 

transportation direction of the reactor. The F(θ) curve deviates more from the plug 

flow curve with the decrease of the screw rotating frequency, which means that the 

degree of solids back-mixing is stronger at lower screw rotating frequency. Tsai and 

Lin[243] also experimentally reported that the degree of particle back-mixing 

increased by decreasing the screw rotating speeds. 
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Fig. 5.9 Model-predicted dimensionless cumulative functions, F(θ), of solids RTD for 

three cases 

To quantitatively characterize the back-mixing behavior of the solids inside the 

screw reactor, the variance (σ2) and the dimensionless variance (σθ2) of the solids 

RTD were calculated, as listed in Table 5.5.  

Table 5.5 Model-predicted variance and dimensionless variance of solid RTD 

Case number Variance (σ2, s2) Dimensionless variance (σθ2) 

Case 1 132.4 0.0057 

Case 2 28.0 0.0022 

Case 3 13.6 0.0019 

This table shows that the variance decreases with the increase of the screw 

rotating frequency, indicating a narrower RTD curve at a higher screw rotating 

frequency. Narrower solids RTD curve is beneficial for more uniform treatments of 

particles, for instance in thermal conversion processes carried out in a screw 

reactor.[88] Table 5.5 also shows decreased dimensionless variance with the 

increase of the screw rotating frequency, which indicates that the solids back-mixing 
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in the forward transportation direction of the screw reactor is reduced at higher 

rotating speeds, which was also experimentally reported by Tsai and Lin.[243] As 

analyzed in Section 4.2, back-mixing refers to the mixing between particles at 

different locations along the forward transportation direction or z-direction. Back-

mixing occurred in two different ways. The first way is solids back-leakage, which is 

defined as particles near the bottom shell tending to leak behind the main solids 

stream and underneath the screw, since the solids forward transportation velocity in 

close proximity of the bottom shell is lower than that in the bulk of the solids. The 

second way is solids back-flow, which is defined as particles being flung over the 

shaft and falling down toward the succeeding pitch. As discussed in Section 4.2, a 

higher portion of solids tend to be flung over the shaft due to the lift of the rotating 

screw at a higher screw rotating speed, resulting into more intense solids back-

mixing. However, higher screw rotating speeds can also lead to less solids back-

leakage, as inferred from the lower solids concentration at the clearance at higher 

screw rotating speeds (Fig. 5.3). The overall decreased degree of solids back-mixing 

(as characterized by the decreased dimensionless variance of the solids RTD) at 

higher screw rotating speeds means that the effect of the decreased solids back-

leakage (resulting into less extent of solids back-mixing) can counteract the effect of 

the increased flow of solids being flung over the shaft (resulting into greater extent of 

solids back-mixing). The simulation results indicated that the solids back-leakage at 

the clearance plays a more important role than the flow of solids being flung over the 

shaft in affecting the solids back-mixing in the screw reactor. 

It should be mentioned that the predicted curves with respect to the functions of 

E(t), F(t) and F(θ) were not validated against the experiment, since the experimental 

work of Nachenius et al.[87] did not provide such kind of information. Therefore, the 
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conclusions with respect to the solids back-mixing, which were calculated from these 

functions, are rather theoretical. However, these simulation results can be helpful in 

assessing the role of solids back-leakage at the clearance in affecting the solids 

back-mixing in the screw reactor, considering that more particles that are sufficiently 

fine to flow through the clearance are expected to be produced due to particle 

attrition during the thermal treatment (e.g. torrefaction[88]) of biomass in the screw 

reactor. Besides, the real biomass particles in the screw reactor are typically non-

spherical or rather flat,[87] and these kind of shaped particles (e.g. chopped grassy 

or straw material) may easily fit in the clearance between screw and shell. In 

addition, during the torrefaction or pyrolysis in the screw reactor, biomass particles 

will become gradually fragile when a portion of hemicellulose in the biomass 

composition is gradually removed and the cell walls in biomass are gradually 

destroyed.[17] This fragility due to torrefaction or pyrolysis treatment can intensify the 

production of sufficiently fine particles (with sizes smaller than the size of the 

clearance) through abrasion and fragmentation, though not mentioned by Nachenius 

et al.,[87, 88] which can intensify the extent of solids back-leakage (solids back-

mixing) and hence can be detrimental to the product uniformity.   

5. Conclusions 

In this chapter, a 3D CFD model for the screw reactor in processing biomass 

particles was developed using the Eulerian-Eulerian method. The solids flow 

dynamics and the solids RTD were predicted and were compared with experimental 

results. The simulation results with respect to the solids mass flow at the outlet, the 

total solids mass and filling degree at steady-state inside the reactor, and the mean 

solids residence time were compared with the experimental data (mean deviation of 

about 0.01 for the filling degree and of 11.4 s for the mean solids residence time 
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between the simulation and the experiment). The solids’ rotational flow due to the lift 

of the rotating screw and the solids’ forward transportation flow due to the forward-

push of the screw were demonstrated in the simulation. The simulation results show 

that the solids back-mixing in the forward transportation direction is mainly 

contributed by the back-flow of solids being flung over the shaft and falling down 

toward the succeeding pitch, and by the back-leakage of solids with low forward 

transportation velocity at the clearance between the flight and the bottom shell. With 

the increase of the screw rotating speed, the degree of solids back-mixing can be 

intensified by the increased flow of solids being flung over the shaft. However, it can 

be reduced by the decreased solids back-leakage through the clearance. Simulation 

results show that the overall degree of solids back-mixing decreases with the 

increase of the screw rotating speed, indicating that the solids back-leakage at the 

clearance plays a more important role than the flow of solids being flung over the 

shaft in affecting the solids back-mixing in the screw reactor. These simulation results 

are helpful for the operation of screw reactors considering that the thermal treatment 

(e.g. torrefaction) of typically non-spherical biomass particles can potentially produce 

sufficiently fine particles that can experience back-leakage (back-mixing) at the 

clearance. 
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CHAPTER 6 

Numerical study of biomass slow pyrolysis for char 

production in a screw reactor 

In the previous chapter (Chapter 5), a CFD model was developed for studying 

the particle flow dynamics in a lab-scale screw reactor. In this chapter, pyrolysis 

reaction kinetics will be further incorporated into the CFD model to study biomass 

slow pyrolysis in this screw reactor. It should be mentioned that, the particle models 

in Chapter 2, Chapter 3 and Chapter 4 were conducted for centimeter-sized biomass 

particles, in which intraparticle transport phenomena were relevant. The CFD model 

at the reactor scale in Chapter 5 and Chapter 6 will be developed for a lab-scale 

screw reactor, in which pine wood particles with an average size of around 2 mm are 

processed. Intraparticle transport phenomena for such a small size of pine wood 

particles are not relevant under slow pyrolysis conditions, therefore will not be 

considered in the present simulation.  In this chapter, simulation results with respect 

to temperature profiles in the reactor, products yields, and elemental composition of 

the char will be validated against experimental data. The energy density and energy 

yield of the char will be studied with the model. 

This chapter was redrafted after: 

Xiaogang Shi, Frederik Ronsse, Robert Nachenius, Jan G. Pieters. Numerical 

study of biomass pyrolysis for char production in a screw reactor using a 

comprehensive kinetic scheme. To be submitted to Fuel Processing Technology. 
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1. Introduction 

Char production through biomass pyrolysis can be conducted in various 

reactors, and the screw reactor is one of the reactors that can continuously produce 

char through biomass pyrolysis.[5, 35, 88, 225, 249] Screw reactors are usually 

composed of a stationary shell and a rotating screw.[87] The rotating screw can 

provide mechanical force to transport the biomass through the reactor. Usually, the 

screw reactor is heated, either electrically (lab and small scale) or by using 

combusted pyrolysis gases and vapors (larger scale), to provide heat for driving the 

pyrolysis of biomass.[5, 88] Screw reactors have a number of advantages for 

producing char through biomass pyrolysis. For instance, the flow of biomass particles 

inside the screw reactor can be flexibly adjusted by manipulating the rotational speed 

(or frequency) of the rotating screw. In addition, the mechanical force from the 

rotating screw makes the screw reactor advantageous when processing biomass 

feedstocks with various particle shapes, sizes and morphological characteristics 

(from fine sawdust, to lumpy, sticky and fibrous biomass particles).[5] Researchers 

have shown that the energy density of the char produced in the screw reactor may be 

comparable to that of coal.[88] 

The yield and the quality of the char in a screw reactor are highly dependent on 

the transport phenomena and chemical reactions occurring at multiscale (particle to 

reactor scale) and in multiphase (char, condensable and non-condensable volatiles). 

Although experimental investigations have been performed to study the flow 

dynamics and pyrolysis reactions of biomass in the screw reactor,[87, 88] the 

complex physical and chemical phenomena occurring inside the screw reactor, which 

are essential for reactor design and scale-up, are largely beyond the capabilities of 

typical experimental set-ups to reveal. With the rapid development of computational 
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sciences, CFD has evolved as a useful tool to study the coupled transport 

phenomena and chemical reactions in multiphase reactors (e.g. screw reactor) by 

solving the related conservation laws and equations (mass, momentum and 

energy).[128, 232-234, 250, 251] Plenty of modeling works based on CFD 

simulations have been reported for biomass pyrolysis in fluidized bed reactors.[249-

255] In contrast, only a limited amount of works based on CFD simulations have 

been reported in the literature for biomass pyrolysis in screw reactors. Aramideh et 

al.[129] performed CFD simulations for biomass pyrolysis in a screw reactor, and 

they predicted the effects of operating conditions (operating temperature, feed rate of 

biomass feedstocks, etc.) on the yields of char, condensable volatiles and non-

condensable gas. While CFD simulations on particle flow dynamics and product 

yields from biomass pyrolysis in the screw reactor have been reported,[129] the 

elemental composition (C, H and O), the quality (e.g. energy density) as well as the 

energy yield (characterizing the energy loss of the biomass during pyrolysis) of the 

char from biomass pyrolysis in screw reactors are seldomly reported based on CFD 

simulations.  

The purpose of this chapter is to demonstrate the development of a working 

CFD model to predict the elemental composition, the energy density and the energy 

yield of the char from the pyrolysis of biomass in a screw reactor. In the previous 

chapter (Chapter 5), a (cold flow) CFD model based on the Eulerian-Eulerian 

approach has been developed and validated against available experiments, and the 

flow dynamics, residence time distribution (RTD) and back-mixing behavior of 

biomass particles inside the screw reactor have been obtained with the CFD model. 

In the present chapter, a comprehensive pyrolysis reaction scheme based on the 

biomass compositions (cellulose, hemicellulose and lignin) with detailed elemental 
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information is further incorporated into this CFD model. The axial temperature 

distribution in the screw reactor and the mass yields of the pyrolysis products are 

predicted and compared against available experimental data to address the model 

accuracy. The elemental composition of the char is predicted, and the predicted 

elemental composition is then used to calculate the energy density and the energy 

yield of the char, and these simulation results are also compared with available 

experimental results. 

2. Model development 

2.1 Eulerian-Eulerian model 

Based on the previous work in Chapter 5, a CFD model based on the Eulerian-

Eulerian approach was applied to simulate the flow dynamics and heat transfer in the 

screw reactor. Governing equations for mass, momentum and energy conservation 

of the gas and solid phases are summarized in Table 6.1, 
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Table 6.1 Governing equations for mass, momentum and energy conservations 

Gas phase 

Continuity equation: 

      
   

 g g g g g gR
t

u  

Momentum equation: 

             
            


pu u u u ug g g g g g g g g g g s g gsg

t
  

Energy equation: 

          
           

 gug g pg g g g pg g g gs s g g wall wall gC T C T q h T T H h T T
t

 

Conductive heat flux: 

  g g g gq T  

Species equation: 

          
       


ug g gk g g gk g g g gk gk gkY Y D Y R

t
 

Solid phase 

Continuity equation: 

      
   

 s s s s s sR
t

u  

Momentum equation: 

             
              


p pu u u u us s s s s s s s s s s s g s sgg

t
  

Energy equation: 

          
           


us s ps s s s ps s s s gs g s s wall wall sC T C T q h T T H h T T

t
 

Conductive heat flux: 

  s s s sq T  

Species equation: 

      
   


us s sk s s sk s skY Y R

t
 

 

2.2 Reaction kinetics 

A comprehensive multi-component, multi-step kinetic scheme, as shown in 

Table 6.2, which was modified (hence named modified kinetic scheme) from the work 

of Ranzi et al. [68] was incorporated into the CFD model to describe the biomass 

pyrolysis reactions in the screw reactor. Modifications were made to the original 
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kinetic scheme of Ranzi et al.[68] considering that this original kinetic scheme of 

Ranzi et al.[68] was not balanced in mass (or elements). The following modifications 

were made in the present modified kinetic scheme compared to the original one from 

Ranzi et al.[68] 

For the modified kinetic scheme in the present work, the elements were 

balanced by adding 0.3 G[COH2] to reaction R6 in the original kinetic scheme of 

Ranzi et al.,[68] by subtracting 0.8 [COH2] from reaction R8 in the original kinetic 

scheme, by changing 1.0 G[CO] to 0.5 [CO] for reaction R13 in the original kinetic 

scheme, and by changing 0.2 C3H6O2 to 0.2 C3H6O for reaction R15 in the original 

kinetic scheme, as shown in Table 6.2. All pyrolysis reactions (R1 to R18) in Table 

6.2 were assumed to be first order. In addition, the evaporation of moisture in wet 

biomass feedstock was included in this modified kinetic scheme, and the evaporation 

of moisture was also assumed to be a first order reaction, as shown in reaction R19 

in Table 6.2.  

 

 

 

 

 

 

 

 

Table 6.2 Reaction kinetics (Modified from Ranzi et al. [68]) 
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Reaction 
number 

Reaction 
Kinetic constant [1/s] 
(Activation energy in J/mol) 

∆H 
[kJ/kg] 

R1 CELL→CELLA 8 x 1013exp(-192000/RT) 0 a 

R2 
CELLA→0.95HAA+0.25GLYOX+0.2CH3CHO+0.
2C3H6O+0.25HMFU+0.2CO2+0.15CO+0.1CH4+
0.9H2O+0.65Char 

1 1010 exp (-126000/RT) 620 a 

R3 CELLA→LVG 4T exp (-41800/RT) 364 a 

R4 CELL→5H2O+6Char 8107 exp (-134000/RT) -1913 a 

R5 HCE→0.4HCE1+0.6HCE2 1 1010exp (-130000/RT) 100 a 

R6* 
HCE1→2.5 H2+0.125H2O+CO+ CO2+0.5CH2O+ 
0.25CH3OH+0.125ETOH+2Char+0.3G[COH2] 

3109 exp (-113000/RT) -92 a 

R7 HCE1→XYL       3T exp (-46000/RT) 588 a 

R8* 
HCE2→1.5H2+0.125H2O+0.2CO2+0.7CH2O+0.2
5CH3OH+0.125ETOH+0.8 G[CO2]+2Char 
   

11010exp (-138000/RT) 212 a 

R9 
LIGC→0.35LIGCC+0.1pCOUMARYL+0.08PHE
NOL+1.49H2 +H2O +1.32G[COH2]+7.05Char         41015exp(-203000/RT) -490 a 

R10 LIGH→LIGOH+C3H6O 2 1013 exp(-157000/RT) 100 a 

R11 LIGO→LIGOH+ CO2                                               1109 exp(-107000/RT) 446 a 

R12 

LIGCC→0.3pCOUMARYL+0.2PHENOL+0.35 
C3H4O2+1.2 
H2+0.7H2O+0.25CH4+0.25C2H4+1.3G[COH2]+0.
5G[CO]+7.5Char  

5106 exp(-132000/RT) -503 a 

R13* 
LIGOH→LIG+0.5H2+H2O+CH3OH+0.5G[CO] 
+1.5G[COH2]+5Char  11013 exp(-207000/RT) -120 a 

R14 LIG→FE2MACR                                                     8101T exp(-50000/RT) 686 a 

R15* 
LIG→0.7 H2+H2O+0.2CH2O+0.5CO+0.4 
CH3OH+0.2 CH3CHO +0.2 C3H6O++0.4 
CH4+0.5C2H4+G[CO] +0.5G[COH2]+6Char  

1.2 109 exp(-126000/RT) -470 a 

R16 G[CO2]→CO2 1105 exp(-100000/RT) -1814 a 

R17 G[CO]→CO 11013 exp(-209000/RT) -2000 a 

R18 G[COH2]→CO+H2 51011 exp(-272000/RT) 6778 a 

R19 H2O (water in biomass)→ H2O (vapor) 4.5103exp(-45000/RT)a 2257b 

* Modifications were made to the original kinetic scheme of Ranzi et al. [68] 

a Prins, et. al. [219] 

b Michael Jones[256] 

In the present modified kinetic scheme, the biomass was described as a mixture 

of pseudo-components (cellulose, hemicellulose, carbon-rich lignin, oxygen-rich 

lignin and hydrogen-rich lignin). It was assumed that there were no interactions 

among these pseudo-components, and therefore the overall progression of biomass 

pyrolysis was considered to be the sum of the individual contributions of the biomass 

pseudo-component pyrolysis reactions. The composition of the biomass feedstock 
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and its pyrolysis products are listed in Table 6.3. In the present Eulerian-Eulerian 

based CFD model, the components in Table 6.3 were grouped into two phases: the 

solid phase and the gas phase. The solid phase refers to the solid mixture of the 

reactant (wet biomass feedstock) and the solid product, as shown in Table 6.3. The 

gas phase refers to all volatile products, including the condensable volatiles (named 

liquid product), non-condensable volatiles (named gas product) and the inert gas 

(nitrogen). Condensable volatiles refer to the volatile components in Table 6.3 that 

can be condensed into liquid phase at room temperature, while non-condensable 

volatiles refer to the components in Table 6.3 that are still in gas phase at room 

temperature. At pyrolysis conditions (temperature of 598 K or higher, as will be 

described later), all these condensable and non-condensable volatiles are in the gas 

phase. 

 

 

 

 

 

 

 

 

 

 

Table 6.3 The list of gas and solid species (Modified from Ranzi et al. [68]) 
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Abbreviation Molecular name 
Atomic 

composition 
Solid phase   
Solid reactant   

CELL Cellulose C6H10O5 
HCE Hemicellulose C5H8O4 
LIG-C Carbon-rich lignin C15H14O4 
LIG-H Hydrogen-rich lignin C22H28O9 
LIG-O Oxygen-rich lignin C20H22O10 

H2O 
Water inside the wet biomass 
feedstock 

 

Solid product   
CELLA Activated cellulose C6H10O5 
HCE1 Activated hemicellulose 1 C5H8O4 
HCE2 Activated hemicellulose 2 C5H8O4 
LIGCC Carbon-rich lignin 2 C15H14O4 
LIG Lignin C11H12O4 
LIGOH OH-rich lignin C19H22O8 
G[CO2] Trapped CO2 CO2 
G[CO] Trapped CO CO 
G[COH2] Trapped COH2 CH2O 
Char Char C 

Gas phase   
Condensable volatiles (liquid 

product) 
  

HAA Hydroxyacetaldehyde C2H4O2 
GLYOX Glyoxal C2H2O2 
C3H6O Aacetone C3H6O 
C3H4O2 Propanedial C3H4O2 
HMFU 5-Hydroxymethylfurfural C6H6O3 
LVG Levoglucosan C6H10O5 
XYL Xylose monomer C5H8O4 
pCOUMARYL Paracoumaryl alcohol C9H10O2 
PHENOL Phenol C6H6O 
FE2MACR Sinapaldehyde C11H12O4 
CH2O Formaldehyde CH2O 
CH3OH Methanol CH4O 
CH3CHO Acetaldehyde C2H4O 
ETOH Ethanol C2H6O 
H2O Water vapor H2O 

Non-condensable volatiles (gas 
product) 

  

H2 Hydrogen H2 
CO Carbon monoxide CO 
CO2 Carbon dioxide CO2 
CH4 Methane CH4 
C2H4 Ethylene C2H4 

Inert gas N2 N2 

 

One benefit of the modified kinetic scheme is that it includes the elemental 

information (C, H and O) for all components, as shown in Table 6.3, which allows to 

predict the elemental composition and hence the energy density and the energy yield 

of the char, as will be discussed later. Despite that the secondary conversion of the 
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condensable volatiles into additional char and additional gas during biomass 

pyrolysis have long been known,[9] the detailed secondary reaction kinetics for 

individual components (hydroxyacetaldehyde, glyoxal, etc.) in the condensable 

volatiles in Table 6.3 are still not available.[9] Therefore, in the present modified 

kinetic scheme, the secondary conversion of individual components in the 

condensable volatiles was not considered, a limitation of the present modified kinetic 

scheme. In previous chapters (Chapter 2 and Chapter 3), secondary reaction kinetics 

for the condensable volatiles were explored. However, the condensable volatiles 

were treated as a single lumped component in these two chapters without 

distinguishing among the secondary conversion of individual components in the 

condensable volatiles. 

2.3 Modeled reactor geometry 

As the model-predicted simulation results are validated against the experimental 

results from Nachenius et al.[88] in which pine wood particles were torrefied (at 

temperatures ranging from 598 K to 648 K) in a screw reactor, identical reactor 

geometry and process conditions were applied in the CFD model. The schematic 

geometry of the reactor and its detailed dimensions are shown in Fig. 6.1. The screw 

reactor is composed of a stationary shell and a rotating screw. In the experiments of 

Nachenius et al.[88], due to practical requirements of reducing the installation size, 

the screw reactor was split into two equal sections, which were operated in series, as 

shown in Fig. 6.1(a). The two equal sections were combined into a single reactor in 

the simulation. In this figure, T301-T309 indicate the position of the thermocouples 

which were fixed to the surface of the screw and which measured the local 

temperature of the solids in the experiments. Similarly, in the simulation, the 
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temperature of the solids at these positions was also computed for comparison with 

the experimental results.  

The physical properties of gas and particles in the simulation, and other 

simulation parameters are listed in Table 6.4. According to the experiments of 

Nachenius et al.[88], the screw rotating frequency was 0.292 Hz, and the operating 

temperature was 598 K, 623 K and 648 K for three different cases. In the CFD model, 

the medium mesh size from Chapter 5, in which the grid independency had been 

examined, was applied in this chapter. The commercial CFD package ANSYS Fluent 

16.2 was applied to solve the governing equations in Table 6.1. A time step of 0.002s 

was used, and the moving mesh method was used to model the rotation of the screw. 
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(a)

 

(b) 

Fig. 6.1 Geometry of the screw reactor, (a) the actual geometry in the experiment of 

Nachenius et al.[88] with the locations of the screw-mounted thermocouples indicated and (b) 

the detailed geometry of the screw with dimensions
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Table 6.4 Physical properties of gas and particles and other simulation parameters 

Parameter Values Source 

Particle diameter 0.002 m Nachenius et al.[88] 

Density of biomass feedstock 551 kg/m3 Nachenius et al.[88] 

Density of water  998.2 kg/m3 ANSYS Fluent[257] 

Density of char 2333 kg/m3 Xiong et al.[258] 

Specific heat of biomass feedstock (1500+T/[K]) J/(kg·K) Gronli and Melaaen[148] 

Specific heat of water  4182 J/(kg·K) ANSYS Fluent[257] 

Specific heat of char 1100 J/(kg·K) Xiong et al.[258] 

Thermal conductivity of biomass 
feedstock 

0.3 W/(m·K) 
Koufopanos et al.[82] 

Thermal conductivity of water 0.6 W/(m·K) ANSYS Fluent[257] 

Thermal conductivity of char 0.1 W/(m·K) Xiong et al.[258] 

Gas density Equation of state for ideal gas ANSYS Fluent[257] 

Gas viscosity 1.72×10-5 kg/(m·s) ANSYS Fluent[257] 

Gas specific heat (601+2.262T/[K]) J/(kg·K) Bates and Ghoniem[259] 

Gas thermal conductivity 0.02577 W/(m·K) Xiong et al.[258] 

Gas mass diffusivity 10-5 m2/s Shi et al.[67] 

Maximum solids packing limit 0.30 Chapter 5 

Solids friction packing limit 0.28 Chapter 5 

Particle-particle restitution  0.90 Chapter 5 

Angle of internal friction  45º Chapter 5 

Time step 0.002 s  

 

2.4 Boundary and initial conditions 

According to the experiments of Nachenius et al.[88] at the inlet, the mass flow 

rate of the inert gas was set to 2.72×10-6 kg/s, the temperature was set to 300 K and 

the inert gas was pure nitrogen. For the solid phase at the inlet, the mass flow rate 
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was 6.89×10-4 kg/s, the temperature was set to 300 K, and the initial solid phase 

consisted of pine wood with a composition of 50.3 wt.% in cellulose, 29.7 wt.% in 

hemicellulose, 10.5 wt.% in carbon-rich lignin, 6.5 wt.% in hydrogen-rich lignin and 

3.0 wt.% in oxygen-rich lignin (these values were feedstock dry-based and were 

calculated using atomic balances[68] according to the elemental composition of the 

pine wood, consisting of 48.8 wt.% in C, 6.1 wt.% in H and 45.1 wt.% in O, as 

reported in the experiments of Nachenius et al.[88]) and of 11.9 wt.% (feedstock wet-

based) in moisture.[88] At the outlet, atmospheric pressure was assumed for both 

gas phase and solid phase. At the wall (shell, shaft and flight), no-slip boundary 

conditions were assumed for the gas and the solid phases. The temperature at the 

shell was set as the operating temperature (598 K, 623 K and 648 K in three different 

cases). Initially, no solids were present inside the reactor, and the initial gas velocity 

and solid velocity were both set to zero. 

2.5 Modeling energy density and energy yield of the char 

(1) Energy density 

With the predicted elemental composition (C, H and O) of the char, the energy 

density (characterized by the higher heating value, or HHV, MJ/kg) of the char was 

calculated with the correlation from Sheng and Azevedo,[74] 

ܸܪܪ ൌ െ1.3675  0.3137 ൈ Cௗ  0.7009 ൈ ௗܪ  0.0318 ൈ ܱௗ 
 

(1)

Where Cௗ, ௗ and ܱௗܪ  represent the predicted mass fractions (wt.%) 

of C, H, and O in the char on dry basis. 

The correlation of Tillman[260], which only considered the contribution of C to 

the HHV, was also used for comparison, 
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ܸܪܪ ൌ 0.4373 ൈ ௗܥ െ 1.6701 
 

(2)

It should be mentioned that other researchers have proposed many other HHV 

correlations (see the review of Sheng and Azevedo[74]) based on the elemental 

composition of the material. In this chapter, the HHV correlations from Sheng and 

Azevedo[74] and from Tillman[260] were adopted to demonstrate the potential 

difference of the HHV value calculated from different correlations. In the present 

model, the HHV of the biomass feedstock (dry basis) was also calculated with either 

Eq. (1) or Eq. (2) based on the known elemental composition of the biomass 

feedstock (48.8 wt.% in C, 6.1 wt.% in H and 45.1 wt.% in O, as described in Section 

2.4). In their experiments, Nachenius et al.[88] measured the HHV of the biomass 

feedstock (dry basis) and the HHV of the char (dry basis) with bomb calorimetry. 

A parameter, named enhancement factor (EF), was introduced to characterize 

the HHV ratio between the char and the biomass feedstock,[17, 261, 262] and was 

calculated as, 

 

ܨܧ ൌ
ܪܪ ௦ܸௗ ௬ ௗ௨௧

ܪܪ ܸௗ௦௧
 

 

(3)

In Eq. (3), ܪܪ ௦ܸௗ	௬	ௗ௨௧ is the calculated (or experimental) HHV of the 

char, and ܪܪ ܸௗ௦௧ is the calculated (or experimental) HHV of biomass feedstock, 

the latter is either directly determined by bomb calorimetry or calculated using known 

elemental composition. 

(2) Energy yield 



Chapter 6 Numerical study of biomass slow pyrolysis for char production in a screw reactor 

220 
 

The energy yield ߟ௬, defined as the fraction of the energy contained within 

the biomass feedstock that is recovered in the char, was calculated by, 

௬ߟ ൌ ௦ܻௗ	௬	ௗ௨௧ܨܧ 
 

(4)

Where ௦ܻௗ	௬	ௗ௨௧  is the calculated (or experimental) mass yield of the 

char (feedstock dry basis), and EF is the calculated (or experimental) enhancement 

factor, as calculated by Eq. (3). 

2.6 Model accuracy 

During model validation, the accuracy of the simulation results (temperature, 

product mass yields, elemental composition, energy density and energy yield of the 

char) were characterized by the mean deviation (MD) between the simulation and the 

experimental results  

MD ൌ
1
݊
หܺ௫௧, െ ܺௗ,ห



ୀଵ

 (5)

Where n is the number and X is the value of the variable. 

2.7 Processing of experimental data 

The experimental data from Nachenius et al.[88] with respect to the sum of the 

mass yields of solid, gas and liquid products were not 100 wt.% (not mass balanced), 

which may be due to condensation of the condensable volatiles (named liquid 

product) at the wall of the screw reactor and at the condenser (for condensing and 

quantifying the liquid product) inlet piping in their experiments.[88] The potential 

condensation of volatiles outside the condenser indicated that their measured mass 

yield for the liquid product may be lower than actually produced. Therefore, the 
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experimental data with respect to the mass yields of the char and gas product were 

directly read from the publication of Nachenius et al.,[88] while the mass yield of the 

liquid product was assumed by closing the mass balance (i.e. the sum of all products 

should yield 100 wt.%) for comparing against the present simulation results. 

3. Results and discussion 

3.1 Temperature distribution 

Fig. 6.2 shows the temperature distributions of the solid phase along the axial 

direction of the screw reactor for the simulations and the experiment[88] at the 

operating temperature of 598 K. The simulation results indicate that biomass was first 

heated from ambient temperature when it was introduced into the reactor at the 

reactor inlet, and then its temperature approached the operating temperature after a 

distance of about 2 m from the inlet, which shows the same trend as the 

experimental results. While the predicted solids temperature gradually increased to 

the operating temperature along the axial position of the reactor, in the experiments a 

temperature drop between the axial position of 1.42 m and 1.86 m was observed. 

This temperature drop in the experiments, as clarified by Nachenius et al.,[88] was 

due to the heat loss in the (thermally non-insulated) connection between the two 

identical screw reactor sections (Fig. 6.1(a)).  
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Fig. 6.2 Comparison of the solids temperature inside the reactor between the simulation 

and the experimental results of Nachenius et al.[88] at an operating temperatures of 598 K. 

For the reactor temperatures of 623 K and 648 K, no experimental data were available. 

The MD between the simulation and the experimental results was 12.6 K, 

indicating that the model was capable of predicting the temperature distribution inside 

the reactor with an acceptable error margin. Fig. 6.2 also shows the predicted 

temperature distributions of the solid phase at higher operating temperatures. The 

experimental data[88] with respect to the temperature distribution of the solids was 

not available at operating temperatures of 623 K and 648 K. At a higher operating 

temperature, solids temperature was predicted to be higher at each axial position, 

which was expected as the biomass can be heated faster at a higher operating 

temperature than that at a lower operating temperature. 

3.2 Product mass yields  

Fig. 6.3 shows the mass yields (feedstock dry basis) of the char, the gas product 

(non-condensable volatiles, as shown in Table 6.3) and the liquid product 
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(condensable volatiles, as shown in Table 6.3) for the simulations and the 

experiments at operating temperatures of 598 K, 623 K and 648 K.  

 

Fig. 6.3 Comparison of the product mass yields (feedstock dry basis) between the 

simulation and the experimental results of Nachenius et al.[88] at different operating 

temperatures. 

As can be seen from this figure, with the increase in the operating temperature, 

the predicted mass yield of the char decreased while the mass yields of the gas and 

liquid products increased, and these trends were also demonstrated by Nachenius et 

al.[88] The predicted mass yield of the char was systematically lower and that of the 

liquid product was systematically higher compared to the experimental results. 

Several reasons, as listed in the following, may explain these differences between 

the simulation and the experimental data.  

The first reason is that the secondary conversion of the condensable volatiles 

(ultimately accounted for as liquid product, as shown in Table 6.3) into secondary 

char was not considered in the present modified kinetic scheme, since the detailed 

reaction kinetics of individual components (hydroxyacetaldehyde, glyoxal, etc.) in the 
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condensable volatiles in Table 6.3 are still not available. Some researchers have 

proposed lumped kinetic models for describing the secondary conversion of the 

condensable volatiles by assuming these condensable volatiles to be represented as 

a single component with a single elemental (i.e. C, H, O) composition.[67, 94] This 

approach does not require information about the individual volatile components 

(hydroxyacetaldehyde, glyoxal, etc.) and does not consider the elemental 

composition of these individual condensable volatiles. As the comprehensive kinetic 

scheme used in this study requires to be balanced in each individual element (C, H, 

O), the approach of lumping all volatile species for a single secondary char-forming 

reaction is thus not compatible. 

Another reason is the potential systemic errors in the experiment. As described 

above, a temperature drop at the middle of the reactor was observed in the 

experiment. Such a temperature drop can have an influence, however difficult to 

quantify, on the experimentally measured product yields. 

Overall, MDs between the simulation and the experimental results at these three 

different operating temperatures were 7.7 wt.%, 6.2 wt.% and 1.7 wt.% for the mass 

yields of the char, the liquid product, and the gas product, respectively, indicating that 

the model can predict the product yields at different operating conditions, despite 

some quantitative differences being present.   

3.3 Elemental composition of char 

Fig. 6.4 shows the experimental and the simulation results for the elemental 

composition (C, H, and O, dry basis) of the char at different operating temperatures. 

At all operating temperatures, the char was predicted to have a higher content of C 

and lower contents of O and H compared to the biomass feedstock (the latter being 
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48.8 wt.% in C, 6.1 wt.% in H and 45.1 wt.% in O, dry basis), indicating that C was 

predicted to be concentrated into the char, while O and H were predicted to be 

devolatilized into the volatile products (gas and liquid), and similar trends have been 

frequently reported by experimental studies.[5, 17, 88]  

 

Fig. 6.4 Comparison between the simulation and the experimental results of Nachenius 

et al.[88] with respect to the elemental composition of the char at different operating 

temperatures. 

This figure shows that, with the increase in the operating temperature, the 

predicted mass fraction of C increased, while those of O and H decreased in char, 

which follows similar trends as the experimental observations of Nachenius et al.[88] 

This trend of higher content of C in char at higher operating temperatures has also 

been frequently demonstrated in other experimental studies.[5, 17, 263] 

Quantitatively, MDs between the simulation results and the experimental data were 

1.6 wt.%, 0.9 wt.% and 2.5 wt.% for the mass fraction of C, H and O, respectively, in 

the char. The above comparison between the simulation results and the experimental 

data indicates that the present model was capable of predicting the elemental 
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composition of the char at different operating conditions (i.e. different operating 

temperatures). The capability of the model in predicting the elemental composition 

allows to predict the energy density (HHV) and the energy yield of the char with 

appropriate correlations (i.e. HHV correlation as a function of elemental composition, 

as shown in Eq. (1) and Eq. (2)) from literature, as will be discussed in detail in 

Section 3.4. 

3.4 Energy density and energy yield of char  

While Nachenius et al.[88] directly measured the energy densities (i.e. HHVs) of 

the biomass feedstock and the char with bomb calorimetry in their experiments, in 

the present simulation, the HHV of the char was calculated based on the above 

predicted elemental composition  by correlations from the literature (for comparison 

within the model-predicted results, the HHV of the biomass feedstock in the 

experiment was also calculated in a similar way based on its elemental composition). 

In the literature, various correlations have been proposed to calculate the HHV based 

on the materials’ elemental composition, as reviewed by Sheng and Azevedo.[74] 

The HHV correlations in Eq. (1) and Eq. (2) are two typical correlations from the 

literature.  

Fig. 6.5 shows the HHV of the char and of the biomass feedstock (dry basis) for 

the simulation and the experiment. As can be seen from this figure, the HHVs of the 

char at all operating temperatures were predicted to be higher than the HHV of the 

feedstock (dry basis). Experimental studies have also reported that the char obtained 

from biomass pyrolysis has a higher energy density than its parent biomass.[5, 17, 

264]  
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Fig. 6.5 Comparison between the simulation and the experimental results of Nachenius 

et al.[88] with respect to the energy density (higher heating value, HHV) of the char and of 

the biomass feedstock (dry basis) at different operating temperatures. 

As shown in this figure, with the HHV correlation from both Sheng and 

Azevedo[74] in Eq. (1) and Tillman[260] in Eq. (2), the HHV of the char was predicted 

to increase with the increase in the operating temperature. The predicted trend of 

higher HHV of the char at higher operating temperatures was also demonstrated by 

experimental works in the literature.[5, 17, 88, 264] Quantitatively, the MD was 3.3 

MJ/kg between the simulation results, when predicting the HHV of the char with the 

HHV correlation of Sheng and Azevedo[74], and the experimental data. For 

comparison, the HHV correlation of Tillman[260] resulted into a MD of 1.0 MJ/kg for 

the HHV of the char between the simulation and the experiment. It can be seen from 

this comparison that the selection of the HHV correlation from the literature 

influences the deviation of the simulation from the experiment with respect to the 

HHV of the char. Overall, the present model was capable of predicting the HHV of 

the char at different operating conditions (i.e. different operating temperatures) based 

on the predicted elemental composition of the char. 
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The predicted enhancement factor (EF), as defined in Eq. (3), was calculated to 

be 1.02, 1.05 and 1.11 when using the HHV correlation of Sheng and Azevedo[74], 

and was calculated to be 1.07, 1.14 and 1.30 when using the HHV correlation of 

Tillman[260], at the operating temperature of 598 K, 623 K and 648 K, respectively. 

In comparison, the experimental EF at these three operating temperatures was 1.07, 

1.14 and 1.33, respectively. It can be seen that the HHV correlation of Tillman[260] 

would result into a slightly lower predicted EF than the experimental EF only at the 

operating temperature of 648 K, while the HHV correlation of Sheng and Azevedo[74] 

would lead to much lower predicted EFs than the experimental EF at all operating 

temperatures. 

The predicted energy yields (feedstock dry basis) of the char were obtained with 

Eq. (4) for different operating temperatures, and were compared to the experimental 

data, as shown in Fig. 6.6. As can be seen from this figure, the predicted energy yield 

of the char decreased with the increase of the operating temperature, and similar 

trends were also experimentally reported.[17, 88, 264]  

 

 



Chapter 6 Numerical study of biomass slow pyrolysis for char production in a screw reactor 

229 
 

 

Fig. 6.6 Comparison between the simulation and the experimental results of Nachenius 

et al.[88] with respect to the energy yield (feedstock dry basis) of the char at different 

operating temperatures. 

This figure also shows that the simulation results were lower than the 

experimental data with respect to the energy yield of the char at all three operating 

temperatures. As can be seen from Eq. (4), both the EF and the yield of the char can 

influence the energy yield. Therefore, the lower simulation results compared to the 

experimental data with respect to the energy yield of the char can be explained by 

the following two reasons: 

The first reason is that, the predicted EF, which was calculated to be lower using 

either HHV correlations (Eq. (1) or Eq. (2)) as discussed above, can partly contribute 

to the lower predicted energy yield of the char compared to the experimental data. 

The HHV correlation of Tillman,[260] compared to that of Sheng and Azevedo,[74] 

resulted into predicted EF that was better comparable to the experimental EF. As a 

result. the HHV correlation of Tillman,[260] compared to that of Sheng and 
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Azevedo,[74] resulted in a lower MD (9.4 wt.% versus 14.9 wt.%) between the 

simulation and the experiment with respect to the energy yield of the char. 

Another reason is that the yield of the char was predicted to be lower than the 

experiment, as discussed in Section 3.2, which also contributes to the lower energy 

yield of the char in the simulation compared to that in the experiment. 

Overall, the above results showed that, with the increase of the operating 

temperature, the energy density of the char can be improved, however at the loss of 

the mass yield and the energy yield of the char, which indicates that a compromise 

should be made between the energy density and the mass/energy yield of the char in 

selecting appropriate operating conditions for char production through biomass 

pyrolysis. 

3.5 The relevance of including secondary reactions in the model 

As discussed above, not including the secondary conversion of the condensable 

volatiles into additional char in the model was partly responsible for the higher 

predicted mass yield of the liquid product and the lower predicted mass yield (and 

hence lower predicted energy yield, as discussed in Section 3.4) of the char 

compared to the experimental results. However, the detailed kinetic parameters for 

the secondary conversion of individual components in condensable volatiles, as 

listed in Table 6.3, are still not available. To demonstrate the potential of including 

secondary conversion of the condensable volatiles into the modeled reaction kinetics, 

a simplified CFD model was developed. The CFD model adopted a simple kinetic 

reaction scheme, where components were lumped into virgin biomass, char, gas and 

condensable volatiles, and which can account for the secondary reaction kinetics of 

the condensable volatiles. A shorter screw reactor with a length of 0.49 m (other 
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dimensional parameters, including shell diameter, shaft diameter, etc., were similar to 

those in Section 2.3) was simulated. A shorter screw reactor was simulated since (1) 

general conclusions with respect to the secondary conversion of condensable 

volatiles, as described later, for a shorter screw reactor would be similar to those for 

a longer screw reactor (e.g. the one in Section 2.3), and (2) a shorter simulated 

screw reactor (indicating less computational grids) can save computational time. An 

isothermal condition at an operating temperature of 648 K was assumed in the 

simulation. Details about the development of the CFD model are described in 

Appendix C. 

Two cases, with (Case 1) and without (base case, Case 2) including the 

secondary reaction kinetics of the condensable volatiles were simulated for 

comparison. Fig. 6.7 shows the predicted normalized product mass yields 

(
,ೌೞ	భ		
,ೌೞ	మ

, ݅ ൌ ,ݎ݄ܽܿ ,ݏ݈݁݅ݐ݈ܽݒ	݈ܾ݁ܽݏ݊݁݀݊ܿ  when the secondary reaction kinetics (ݏܽ݃

of the condensable volatiles were accounted for. This figure indicates that, compared 

to the base case (Case 2) where the secondary reaction kinetics of the condensable 

volatiles were not included, the case (Case 1) including the secondary reaction 

kinetics of the condensable volatiles predicted a lower mass yield of condensable 

volatiles and higher mass yields of solid (char) and gas, which was due to the 

secondary conversion of condensable volatiles into additional char and additional gas. 

It was predicted that the secondary conversion of condensable volatiles tended to 

produce more gas and less char, which was due to the fact that the formation rate of 

gas was 2.6 times the formation rate of char in the secondary conversion of 

condensable volatiles, as shown in the kinetic parameters in Table C1 in Appendix 

C.  
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Fig. 6.7 Predicted product mass yields (feedstock dry basis), which were normalized by 

the product mass yields in the base simulation case only considering the primary pyrolysis of 

virgin biomass, for the simulation case including both the primary reaction kinetics of the 

virgin biomass and the secondary reaction kinetics of the lumped condensable volatiles. 

It should be mentioned that the simulation in this section was a preliminary 

analysis on the secondary conversion of the condensable volatiles inside the 

simulated screw reactor. From the above simulation results, it can be inferred that the 

consideration of the secondary reaction kinetics of individual components in 

condensable volatiles, as listed the comprehensive kinetic scheme in Table 6.3, with 

additional production of secondary char, can be expected to improve the accuracy of 

the CFD model (Section 2) in predicting the mass yields for products (char, gas and 

condensable volatiles) and in predicting the energy yield for the char. However, this 

can only be done on the condition that the detailed secondary reaction kinetics of 

individual components in condensable volatiles in Table 6.3 are well established. 

4. Conclusions 

In this chapter, biomass pyrolysis in a lab-scale screw reactor using CFD 
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simulations based on the Eulerian-Eulerian method was studied. A multi-component, 

multi-step kinetic model with detailed elemental information (C, H and O) was 

incorporated into the CFD model to predict the pyrolysis reactions. The model was 

validated against the experimental data with respect to the axial temperature 

distribution inside the reactor, the product (char, liquid product and gas product) 

mass yields, and the elemental composition of the char. Results showed that the 

model can well predict the temperature distribution along the axial direction of the 

screw reactor, despite some quantitative differences being present (with a MD of 

12.6 K between the simulation and experiment at the operating temperature of 598 

K). The predicted product yields were in reasonable agreement with the experimental 

data (with MDs of 7.7 wt.%, 6.2 wt.% and 1.7 wt.% for the mass yields of the char, 

the liquid product, and the gas product, respectively) at different operating 

temperatures. The elemental composition (C, H and O) of the char was predicted and 

was compared with the experimental data (with MDs of 1.6 wt.%, 0.9 wt.% and 2.5 

wt.% for the mass fractions of C, H and O, respectively). Based on the simulation 

results with respect to the elemental composition of the char, the energy density 

(HHV, depending on the literature source for the HHV correlation as a function of the 

elemental composition), the enhancement factor (EF) of the HHV, and the energy 

yield of the char were subsequently predicted and were compared against the 

experimental results. The use of HHV correlation of Tillman[260] resulted into a MD 

of 1.0 MJ/kg for the HHV and a MD of 9.4 wt.% for the energy yield. This HHV 

correlation of Tillman[260] resulted into predicted EF of increasing from 1.07 to 1.30 

compared with experimental EF of increasing from 1.07 to 1.33 when the operating 

temperature increased from 598 K to 648 K. Results also showed that the simulation 

case including the secondary reaction kinetics of the condensable volatiles predicted 
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a lower mass yield for the condensable volatiles and higher mass yields for the char 

and the gas compared to the simulation case that did not account for the secondary 

reaction kinetics of the condensable volatiles. 
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MAIN CONCLUSIONS AND FUTURE PERSPECTIVES 

(1) Main conclusions 

Biomass resources can be processed to generate renewable energy and 

chemical products through various thermochemical technologies. Pyrolysis is one of 

the promising thermochemical technologies to convert biomass into gas, liquid/tar/oil 

and char. Char produced from biomass pyrolysis (particularly slow pyrolysis) can be 

used either as a solid fuel or as a carbon-rich material for further applications in 

improving soil health, preparing functional carbon materials, making contaminant 

adsorbents, etc.. Char production from biomass pyrolysis involves multiscale (e.g. 

atomic and molecular scale, particle scale, reactor scale, etc.) and multiphase (virgin 

biomass and its char in the solid phase and its volatile products in the gas phase) 

phenomena. Many factors, including biomass type, physical properties of the 

biomass particles and operating conditions in the pyrolysis reactor, can influence the 

char production during biomass pyrolysis in terms of yield and physicochemical 

properties of the resulting char. Computational modeling is therefore a potential tool 

for studying the complex physical and chemical phenomena occurring at the 

multiscale for char production. In this thesis, the multiscale modeling of the slow 

pyrolysis of biomass in producing char was performed. The physical and chemical 

phenomena at both the particle scale and the reactor scale were addressed.  

To study the physical and chemical phenomena at the particle scale, three-

dimensional comprehensive particle models (3D CPMs) were developed by coupling 

the transport phenomena and either a general pyrolysis kinetic scheme (treating 

biomass as a whole, without accounting for the composition) or a comprehensive 

pyrolysis kinetic scheme (treating biomass as a mixture of its components including 
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cellulose, hemicellulose, and lignin). For saving computational time, the 3D CPM was 

further simplified based on the space-time integral method, resulting into a simplified 

particle model (SPM) that was then applied to study the slow pyrolysis of a biomass 

particle (i.e. at torrefaction conditions). With these particle models, the effects of 

operating conditions (e.g. temperature, heating rate, etc.) and physical properties of 

biomass particles (size, shape, etc.) on the char production were explored.  

For analyzing the physical and chemical phenomena at the reactor scale, the 

CFD-based reactor model using the Eulerian-Eulerian method was developed for a 

lab-scale pyrolysis reactor (screw reactor). With the CFD model, the flow dynamics 

and back-mixing of biomass particles inside the screw reactor were studied. The 

mass yield of char and its qualities (i.e. elemental composition and energy density) 

under different operating conditions were analyzed. 

The operation and optimization of biomass slow pyrolysis in producing char are 

highly dependent on the in-depth understanding of the related physical and chemical 

phenomena. The particle and reactor models developed in this thesis can provide 

multiscale views on understanding these physical and chemical phenomena. The 

multiscale modeling was achieved by simultaneously solving the conservation 

equations for heat, mass and momentum and equations for pyrolysis reaction 

kinetics at both particle scale (particle models) and reactor scale (reactor models). 

Results from the multiscale modeling have been validated against available 

experimental results. From the study in this thesis, it can be seen that the multiscale 

modeling can provide detailed information, which are difficult to experimentally 

determine, on the intraparticle phenomena (e.g. intraparticle secondary charry 

reactions, intraparticle temperature distribution, etc.) and on the phenomena 

occurring in the reactor (e.g. flow and mixing behaviors of biomass particles in the 
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screw reactor, mass yield of pyrolysis products, elemental composition and energy 

density of char, etc.). This information is helpful in guiding the design, operation and 

optimization of biomass slow pyrolysis reactors in producing char. 

It should be mentioned that the present models have their limitations. In the 

present particle model, a homogeneous porous distribution across the whole 

biomass particle was assumed, while in real biomass, the porosity is not uniformly 

distributed inside the particle. Large pores formed from vessels along the grain of 

biomass will serve as conduits for vapors and gases, while flow of vapors and gases 

across the grain will be through smaller pores and cracks formed in and in-between 

cell walls. The physical porous structure of an actual biomass particle indicates that 

there will be a preferential flow of vapors and gases along the grain of biomass 

particle during biomass pyrolysis. To achieve the ability of the particle model in 

accounting for the preferential flow of vapors and gases along the sample grain, it 

had been assumed in the particle model that the permeability (defined by the internal 

resistance of the particle to the bulk outflow of the vapors and gases) along the grain 

was higher than that across the grain. Since the outflow velocity of the gas mixture 

was proportional to the permeability, it was possible to predict the preferential 

volatiles flow along the sample grain with such treatment in the particle model. 

However, the permeability is actually a function of material properties. Such kind of 

treatment in the model was only reasonable when revealing the preferential flow of 

vapors and gases (and hence their secondary conversions) along the grain of 

biomass. The most reasonable treatment in the model would be that the detailed 

porous structure across the whole biomass particle is incorporated into the particle 

model once such kind of porous structure has been experimentally obtained. 

However, new problems would again emerge if the detailed porous structure is 
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implemented into the particle model as the actual deformation of the porous structure 

during biomass pyrolysis would be extremely difficult to predict with the model (i.e. 

extremely detailed grids with a large number of cells would be required in the 

simulation resulting in huge demands in computational capacity). Maybe the present 

treatment (i.e. homogeneous porous assumption but different physical properties 

along and across the grain of biomass) is currently a reasonable choice to both 

achieve model accuracy within an acceptable computational time. 

The methodology of the model in the present work is helpful for guiding future 

modeling studies. The possible applications of the methodology in the present work 

are discussed in the following three aspects: feedstock type, thermochemical 

conversion and reactor type. (1) Feedstock type: while the present work mainly 

focused on woody biomass, the pyrolysis of other biomass types (non-woody 

biomasses), including biomass wastes, microalgae, herbaceous biomass, etc., can 

also be tackled with the methodology in the present work. By adopting a 

comprehensive chemical reaction kinetic scheme considering the woody biomass´ 

main components (cellulose, hemicellulose and lignin), it was shown that in the 

present work the pyrolysis of different woody biomasses (i.e. softwood and hardwood) 

can be handled. The methodology indicates that if the chemical composition (e.g. 

protein, lipid, carbohydrate and mineral content) and their corresponding pyrolysis 

reaction kinetics are known for these non-woody biomass constituents, it is possible 

by adopting the methodology in the present work to simulate the pyrolysis of these 

non-woody biomasses. (2) Thermochemical conversion. In addition, if the reaction 

kinetics of thermochemical conversion processes other than pyrolysis are known (e.g. 

gasification and combustion), the present methodology is still expected to be feasible 

to tackle these thermochemical conversion processes of biomass. (3) Reactor type. 
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At the reactor scale modeling, the present work focused on the screw reactor. The 

Eulerian-Eulerian method coupling pyrolysis reaction kinetics in the reactor scale 

modeling can also be extended to other types of reactors in which multiphase 

reaction flows are present. For example, the fluidized bed reactors are widely applied 

for biomass pyrolysis as well as for other thermochemical conversions. In fluidized 

bed reactors, the dominant phenomena are the complex interactions with respect to 

gas-solids, solids-solids and solids-walls, which are fully coupled with heat and mass 

transfer and chemical reactions. Such kind of complex physical and chemical 

phenomena occurring in fluidized bed reactors for biomass thermochemical 

conversion can also be tackled with the present Eulerian-Eulerian method coupling 

chemical reaction kinetics. Therefore, the methodology in the present work can be 

extended for wider applications in biomass thermochemical conversion processes. 

(2) Future perspectives 

Based on this work, it can be concluded that the multiscale modeling is capable 

of revealing the physical and chemical phenomena during biomass pyrolysis in 

producing char at both the particle scale and the reactor scale. Despite that some 

key phenomena (e.g. intraparticle secondary char production, solids flow and back-

mixing and biomass pyrolysis inside the screw reactor) have been investigated in this 

work aiming to produce char from biomass pyrolysis, this work needs to be further 

improved in future research by addressing, but not limited to, the following aspects: 

 At the particle scale, the detailed three-dimensional intraparticle 

microstructure (e.g. pores) should be included into the particle model to 

better describe the intraparticle volatiles outflow and hence the secondary 

char production from the conversion of the volatiles. The detailed 

intraparticle microstructure can be first obtained by, e.g., image analysis 
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or microtomography in the experiments and then can be implemented into 

the particle model for particle scale modeling. Such more detailed particle 

models should allow the prediction of more advanced physicochemical 

properties (i.e. BET-surface area) whose control is essential in certain 

applications, like in preparing functional carbon materials. 

 Simplified models for biomass particles with other geometries (e.g. cubic 

and spherical geometry, and finally any other abnormal geometries) have 

to be developed by applying the approach of developing the simplified 

model for a cylindrical biomass particle in this thesis. 

 It is still required to get a consensus on what exactly occurs in the 

chemical pyrolysis reactions (e.g. the secondary conversion of 

condensable pyrolysis volatiles, including levoglucosan, 

hydroxyacetaldehyde, glyoxal, etc., into secondary char), and to get 

accurate kinetic rate parameters for further applications in particle and 

reactor models. Experiments should be first performed to study the 

detailed chemical reactions occurring in biomass pyrolysis, and kinetic 

parameters should then be derived based on these experimental results. 

These kinetic parameters can then be applied in particle and reactor 

models.  

 At the reactor scale, the particle size distribution (PSD) should be 

considered, which may substantially increase the computational load but 

is necessary considering that the PSD may influence the char production 

during biomass pyrolysis.  

 The multiscale modeling approach developed in this thesis can be further 

applied to study various factors (e.g. reactor geometries) that can 
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influence char production in slow pyrolysis reactors. This information 

would be useful for designing, controlling and optimizing char production 

in slow pyrolysis reactors. 

 Work is still needed for developing a combined particle-reactor model for 

the industrial slow pyrolysis reactors which handle centimeter-sized or 

larger biomass particles where intraparticle phenomena are relevant. 

Such kind of a combined particle-reactor model can be achieved by 

implementing the (simplified) particle model into the CFD-based (Eulerian-

Eulerian or Eulerian- Lagrangian methods) reactor models. This combined 

particle-reactor model should be validated against the experiment that 

itself should be first performed in the future. Applicability of this combined 

particle-reactor model should be examined under various operating 

conditions and for various types of biomass. 
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APPENDIX A 

Analysis of non-dimensional numbers 

Torrefaction of a biomass particle involves three main physical/chemical 

processes: external (convective and radiative) heat transfer to the particle, 

(conductive) heat transfer within the particle, and the torrefaction reactions. Three 

non-dimensional numbers proposed by Pyle and Zaror[185] were applied to 

characterize the relative importance of the above-mentioned three processes: 

Biot number: 
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where R  (m) is the characteristic length,   (W/(m·K)) is the thermal conductivity 

of the biomass. The overall solid mass loss rate during biomass torrefaction, k  (1/s), 

was adopted from the work of Peng et al.[265] ( 82.9 10 exp( 130,690 / )consk R T   ). It 

should be mentioned that Peng et al.[265] obtained this value with the assumption 

that the biomass is converted into volatiles and char in one step, which is a simple 

and convenient method in calculating the overall solid mass loss rate constant during 

biomass torrefaction. However, the mass loss kinetic from the work of Peng et al.[265] 

provides very limited compositional information with respect to the torrefaction 

products, and a more complex multi-step torrefaction kinetics from Prins et al.[219] 

was applied in developing the models (CPM and SPM) in this work.  
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0w  (kg/m3) is the biomass density, 
wC  (J/(kg·K)) is the heat capacity of the 

biomass and 
exth  (W/(m2·K)) is the external heat transfer coefficient. The external heat 

transfer coefficient (
exth ), including both convection and radiation, was calculated by  

2 2
ext convective ( )( )s sh h e T T T T     (A-4a)

The external heat transfer coefficient is variable since the surface temperature sT  

(K) is practically a function of time. However, the external heat transfer coefficient can 

be evaluated at steady conditions by assuming, for simplicity, that the 

torrefaction/reactor temperature T  and the surface temperature sT  are coincident. 

The external heat transfer coefficient can then be evaluated by the expression[65]: 

3
convectiveext 4 eThh   (A-4b)

where 
convectiveh  is the external convective heat transfer coefficient,   is the 

Stefan-Boltzmann constant and e  is the emissivity. 

For the Biot number, a value of 1 represents that the heat transfer resistance 

inside of and at the surface of the biomass particle are equally important. When Bi<1, 

the internal heat transfer is rapid compared to the external heat transfer to the 

particle, and the internal heat transfer is no longer a rate limiting factor. How fast the 

particle reaches the torrefaction/reactor temperature will depend on the external heat 

transfer. Under these conditions, the rate-controlling process during the torrefaction 

of a biomass particle can be identified by calculating the relative rates of the external 

heat transfer to the particle and the torrefaction reaction kinetics with the external 
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pyrolysis number 'Py .[185] In contrast, when Bi>1, the internal heat transfer is slow 

compared to the external heat transfer. The key question will be the relative rates of 

the internal heat transfer and the torrefaction reaction kinetics. Therefore, the internal 

pyrolysis number Py , which defines the relative rates of the internal heat transfer and 

the torrefaction reaction kinetics, is applied to identify the rate-controlling process in 

between the torrefaction reaction and the internal heat transfer.[185] 

For a typical biomass particle with a density of 500 kg/m3, a thermal conductivity 

of 0.15 W/(m·K) and a heat capacity of 2000 J/(kg·K), the three non-dimensional 

numbers at two typical torrefaction/reactor temperatures of 473 K and 573 K for 

various characteristic lengths were calculated, as shown in Fig. A1. It was calculated 

that the torrefaction of a biomass particle with a characteristic length at millimeter 

scale (or smaller) is characterized by a low Biot number (Bi<1) and a high external 

pyrolysis number (Py’>100), which indicates that the torrefaction of this small 

biomass particle (with a characteristic length of 3.5 mm at the reactor temperature of 

473 K, and a characteristic length of 2.5 mm at the reactor temperature of 573 K) 

tends to be kinetically controlled. And this characteristic length is the dimension up to 

which the kinetic model can be valid. However, for particles at the centimeter scale, 

the torrefaction process has a moderate Biot number (Bi~3) and a moderate internal 

pyrolysis number (Py~10), which indicates that the internal heat transfer and the 

torrefaction reactions play comparable roles in affecting the torrefaction of a 

centimeter-sized biomass particle (with a characteristic length of 10.5 mm at the 

reactor temperature of 473 K, and a characteristic length of 7.5 mm at the reactor 

temperature of 573 K). And at this condition, the combined model of heat transfer 
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and reaction kinetics are necessary to predict the torrefaction of this (or larger) 

biomass particle.  

 

Fig. A1 Analysis of non-dimensional numbers (in logarithmic scale) 
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APPENDIX B 

Selection of appropriate torrefaction kinetics 

Fig. B1 shows the kinetic scheme in Chapter 2. It should be mentioned that the 

kinetic parameters describing the biomass conversion into tar, gas and primary char, 

which dominate the residual solid mass loss rate, in this kinetic scheme were 

originally proposed by Blasi and Branca.[152] They obtained this group of kinetic 

parameters at heating rates of 1000 K/min and final reactor temperatures in the 

range of 573−708 K, which is largely different from the torrefaction conditions (at 

heating rates in the range of 10-15 K/min and to reactor temperatures in the range of 

473-573 K).  

 

Fig. B1 The kinetic scheme in Chapter 2 

Fig. B2 compares the predicted evolution of the residual solid mass fraction 

using the kinetics in Fig. B1 and the torrefaction kinetics used in Chapter 4. 

Compared to the experimental data of Basu et al.,[145] this figure shows that the 

pyrolysis kinetics in Fig. B1 significantly underestimate the residual solid mass loss 
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rate. In contrast, the prediction results with the torrefaction kinetics in Chapter 4, 

which is originally proposed for biomass torrefaction, are in good agreement with the 

experimental data. Therefore, the CPM in Chapter 4 was adapted with the 

torrefaction kinetic model in this chapter. 

 

Fig. B2 Comparison of the evolutions of residual solid mass fraction with the kinetic 

scheme in Chapter 2 and with the torrefaction kinetic model in the Chapter 4. 
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APPENDIX C 

The potential of including the secondary conversion of the condensable volatiles 

(lumped into a single component) into the modeled kinetic scheme was analyzed with 

a simplified CFD model. A shorter screw reactor with a length of 0.49 m was 

simulated. Conclusions for a longer screw reactor would be similar. An isothermal 

condition at a temperature of 648 K was assumed. The screw rotating frequency was 

the same as that in the main context. 

At the inlet, solid mass flow rate (dry basis) was set to be 6.07×10-4 kg/s, which 

was equal to the mass flow rate of the dry biomass in the main context according to 

Eq. (C1) 

݁ݐܽݎ	ݓ݈݂	ݏݏܽ݉	݈݀݅ݏ	ݕݎܦ ൌ ݐܹ݁ ݈݀݅ݏ ݏݏܽ݉ ݓ݈݂ ݁ݐܽݎ ൈ ሺ1 െ  ሻ (C1)݁ݎݑݐݏ݅ܯ

Where ܹ݁ݐ	݈݀݅ݏ	ݏݏܽ݉	ݓ݈݂	݁ݐܽݎ ൌ 6.89 ൈ 10ିସ	݇݃/ݏ , and ݁ݎݑݐݏ݅ܯ ൌ

 .as described in the main context ,%.ݐݓ	11.9

Similarly, at the inlet, the gas mass flow rate was set to be 8.47×10-5 kg/s, which 

was determined from Eq. (C2) and Eq. (C3), 

ݓ݈݂	ݏݏܽ݉	ݏܽܩ ݁ݐܽݎ ൌ 	 ଶܰ	݉ܽݏݏ ݓ݈݂ ݁ݐܽݎ  ݁ݎݑݐݏ݅ܯ ݓ݈݂  (C2) ݁ݐܽݎ

݁ݐܽݎ	ݓ݈݂	݁ݎݑݐݏ݅ܯ ൌ ݐܹ݁ ݈݀݅ݏ ݏݏܽ݉ ݓ݈݂ ݁ݐܽݎ ൈ  (C3) ݁ݎݑݐݏ݅ܯ

Where ଶܰ	݉ܽݏݏ	ݓ݈݂	݁ݐܽݎ ൌ 2.72 ൈ 10ି	݇݃/ݏ, as described in the main context. 
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Two simulation cases were performed. In Case 1, both the primary pyrolysis 

reaction kinetics of virgin biomass and the secondary reaction kinetics of the 

condensable volatiles were included into the CFD model, while in Case 2, only the 

primary pyrolysis reaction kinetics of virgin biomass were included into the CFD 

model. The reaction scheme for Case 1 is shown in Fig. C1(a), and for Case 2 in Fig. 

C1(b). In the reaction schemes in Fig. C1, the virgin biomass was regarded as a 

single component and products were lumped into char, condensable volatiles and 

gas. The kinetic parameters are shown in Table C1. 

 

(a) 

 

(b) 

Figure C1 A simple kinetic scheme (a) with secondary reactions in Case 1 and (b) without 

secondary reactions in Case 2 



Appendix C 

251 

Table C1 Kinetic parameters for primary and secondary reactions 

Parameters Expression Reference 

Primary reaction   

kc 3.27 ൈ 10expሺെ111700/ܴܶሻ Blasi and Branca[152] 

kcv 1.08 ൈ 10ଵexpሺെ148000/ܴܶሻ Blasi and Branca[152] 

kg 4.38 ൈ 10ଽexpሺെ152700/ܴܶሻ Blasi and Branca[152] 

Secondary reaction   

kc2 1.00 ൈ 10expሺെ108000/ܴܶሻ CD Blasi[94] 

kg2 2.60 ൈ 10expሺെ108000/ܴܶሻ CD Blasi[94] 
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