
Journal of Internet Services
and Applications

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4
DOI 10.1186/s13174-016-0047-7

RESEARCH Open Access

Hitch Hiker 2.0: a binding model with
flexible data aggregation for the
Internet-of-Things
Gowri Sankar Ramachandran1*, José Proença1,3, Wilfried Daniels1, Mario Pickavet2,
Dimitri Staessens2, Christophe Huygens1, Wouter Joosen1 and Danny Hughes1

Abstract

Wireless communication plays a critical role in determining the lifetime of Internet-of-Things (IoT) systems. Data
aggregation approaches have been widely used to enhance the performance of IoT applications. Such approaches
reduce the number of packets that are transmitted by combining multiple packets into one transmission unit, thereby
minimising energy consumption, collisions and congestion. However, current data aggregation schemes restrict
developers to a specific network structure or cannot handle multi-hop data aggregation. In this paper, we propose
Hitch Hiker 2.0, a component binding model that provides support for multi-hop data aggregation. Hitch Hiker uses
component meta-data to discover remote component bindings and to construct a multi-hop overlay network within
the free payload space of existing traffic flows. Hitch Hiker 2.0 provides end-to-end routing of low-priority traffic while
using only a small fraction of the energy of standard communication. This paper extends upon our previous work by
incorporating new mechanisms for decentralised route discovery and providing additional application case studies
and evaluation. We have developed a prototype implementation of Hitch Hiker for the LooCI component model. Our
evaluation shows that Hitch Hiker consumes minimal resources and that using Hitch Hiker to deliver low-priority
traffic reduces energy consumption by up to 32 %.

Keywords: Data aggregation, Binding model, Component-based software engineering, Low energy, Component
meta data, Middleware, IoT

1 Introduction
Internet-of-Things (IoT) devices must operate for long
periods on limited power supplies and research has
shown that wireless communication is the primary source
of energy consumption in IoT devices [1]. The life-
time of IoT applications can therefore be increased by
minimising radio communication. Data aggregation has
been widely applied to tackle this problem [2–4]. Data
aggregation is a technique in which multiple messages
are combined in to a single datagram, thus reducing
radio transmissions and hence the energy consump-
tion of IoT devices. Furthermore in CSMA networks,
less frequent transmissions result in fewer collisions and

*Correspondence: gowrisankar.ramachandran@cs.kuleuven.be
1iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
Full list of author information is available at the end of the article

therefore retransmissions. This significantly improves the
performance of IoT devices.
This paper focuses on lossless data aggregation,

through the efficient merging of application traffic flows,
rather than algebraic in-network aggregation. Contem-
porary approaches to lossless data aggregation may be
classified as either application dependent or applica-
tion independent [5]. Application dependent approaches
[6–8] support the creation of optimal network-wide data
aggregation structures, but restrict the topology of the dis-
tributed application. In contrast, application independent
approaches [6, 9] embed generic aggregation functional-
ity in the underlying network stack, but do not consider
the application, and therefore do not achieve optimal
performance.
A new approach is needed that allows developers

to build custom application communication structures,
while providing support for efficient data aggregation. To

© 2016 Ramachandran et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-016-0047-7-x&domain=pdf
mailto: gowrisankar.ramachandran@cs.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 2 of 15

tackle this problem, this paper introduces Hitch Hiker,
a lightweight remote binding model with support for
multi-hop data aggregation. Hitch Hiker uses the same
semantics to configure aggregate data flows as standard
bindings, reducing development overhead.
A component binding model specifies how remote soft-

ware components communicate. Well known examples
include Remote Procedure Call (RPC) [10, 11] and event-
based communication [12, 13]. Hitch Hiker extends bind-
ing models to distinguish between high- and low-priority
bindings. Low-priority bindings use a multi-hop data
aggregation overlay network, built from the free payload
space of high-priority bindings, and therefore avoid addi-
tional radio transmissions between remote components.
Using component meta-data, Hitch Hiker constructs a
multi-hop data aggregation overlay. The Hitch Hiker
binding model allows developers to specify high-priority
remote bindings that generate radio transmissions, or low-
priority remote bindings which communicate exclusively
using the data aggregation overlay and therefore result
in no additional transmissions. By routing low-priority
traffic over this data aggregation overlay, Hitch Hiker
significantly reduces energy consumption. Furthermore,
low-priority bindings provide developers with an elegant
way of configuring data aggregation. To the best of our
knowledge, Hitch Hiker is the first binding model that
provides built-in support for data aggregation.
Our previous short paper on this topic [14] introduced

a centralised version of Hitch Hiker, in which multi-hop
data aggregation is managed by a single network entity.
This paper extends Hitch Hiker [14] by allowing the user
to choose between centralised Hitch Hiker or Ad-hoc
Hitch Hiker. The Ad-hoc variant of Hitch Hiker eliminates
the dependency on the networkmanager, thereby allowing
Hitch Hiker to operate in a fully distributed manner. This
allows for the use of multiple meta-managers as supported
by LooCI. Ad-hoc Hitch Hiker uses an approach inspired
by the well-known Adhoc On-Demand Distance Vector
(AODV) [15] routing approach on top of the aggregation
overlay for discovering data aggregation routes.
A prototype of Hitch Hiker has been implemented for

the LooCI component model [13] running on the Con-
tiki OS [16] and for the OMNeT++ [17] simulator. Our
evaluation using two real-world case studies show that:
(i.) the resource consumption of Hitch Hiker is minimal
and (ii.) by using Hitch Hiker to transmit low-priority
traffic, energy consumption is significantly reduced.
The remainder of this paper is structured as follows.

Section 2 reviews related work. Section 3 introduces the
Hitch Hiker-2.0 binding model. Section 4 explains the
route discovery process of infrastructure Hitch Hiker.
The ad-hoc mode of Hitch Hiker is explained in Section 5.
Section 6 discusses the route maintenance schemes
of Hitch Hiker. Section 7 describes our case study

applications. Section 8 introduces and evaluates proto-
type implementations of Hitch Hiker-2.0. Finally Section 9
concludes and discusses directions for future work.

2 Related work
We draw upon two streams of prior work. Section 2.1
discusses related work in the area of data aggregation.
Section 2.2 discusses contemporary component and bind-
ing models. We then discuss opportunities for applying
data aggregation in component bindings in Section 2.3.

2.1 Data aggregation schemes
He et al. [5] describe two classes of data aggrega-
tion approach: Application Dependent Data Aggregation
(ADDA), which requires knowledge of application-level
traffic flows and Application Independent Data Aggre-
gation (AIDA) which performs aggregation in a generic
fashion without application-specific information. We dis-
cuss both classes of aggregation in Sections 2.1.1 and 2.1.2,
respectively.

2.1.1 Application dependent data aggregation
ADDA approaches use network-wide application infor-
mation to optimise the manner in which information is
collected and routed across the network. These efforts
focus upon the network and application layers of the
communication stack.
At the Network Layer, Intanagonwiwat et al. intro-

duce Directed Diffusion [6], which provides data-centric
routing, in-network caching and aggregation. To realise
these features, Directed Diffusion provides a common
data representation. Entities that request data register
an interest in a particular data type at a certain net-
work location, which causes a conceptual gradient to be
established between sources and requesters, data is then
drawn down these gradients from sources to requesters.
As data travels down these routes, it is aggregated and
cached.
At the Application Layer, Madden et al. contribute the

Tiny AGgregation (TAG) [7] service, which allows users to
specify SQL-like queries, which are multicast to relevant
sensor nodes using a tree that is rooted at the base-station.
As responses travel towards the root, developer-specified
aggregation functions may be applied to data at each hop.
Heinzelman et al. contribute the Low-Energy Adaptive
Clustering Hierarchy (LEACH) protocol [8], which cre-
ates a clustered network structure that provides inherent
support for aggregation and energy balancing during data
collection. SPEED [18] and SPIN [19] extend application
layer aggregation approaches to consider current energy
levels when configuring aggregation and routing function-
ality. Asemani et al. [20] contribute LAG, which aims to
create a data aggregation route towards the sink by tak-
ing into account the energy levels of nodes and their hop

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 3 of 15

depth in the network. LAG uses learning automata to
update the route as the energy levels of the nodes change
during run-time.
Network-flow based data aggregation protocols [21, 22]

take an orthogonal approach, modelling the sensor net-
work as a graph and, based upon application-level traffic
flows, calculating and configuring an optimal aggrega-
tion structure. Kapakis et al. [21] contribute MDLA,
a network-flow based approach to achieving maximum
network lifetime using linear programming and con-
straints. Xue et al. [22] contribute MaxLife, a commod-
ities-inspired algorithm, wherein a commodity models
the data that is generated by a sensor node and deliv-
ered to a base station. MaxLife is capable of calculating
optimal data aggregation structures and thereby extend-
ing network lifetime. Voulkidis et al. [23] contribute a
game-theoretic approach to reduce the number of trans-
missions. This approach estimate the spatial correlation
of the sensor data and optimises the transmissions based
on the spatial relationship. Xiang et al. [24] contribute
a data aggregation approach based on compressed sens-
ing, which uses diffusion wavelets to account for the
spatial and temporal correlations. Network-flow based
approaches offer efficient calculation of an optimal data
aggregation structure, for static networks where network-
wide data flows are known, but these approaches are
unsuitable for dynamic networks which support runtime
reconfiguration.
From the above application dependent data aggregation

approaches, it can be seen that contemporary approaches
are either inherently static as in network flow models
[6], or otherwise restrict developers to a single applica-
tion interaction model [7] or routing topology [21, 22].
In contrast, application-independent approaches provide
a more generic aggregation approach, discussed below in
Section 2.1.2.

2.1.2 Application independent data aggregation
AIDA schemes provide a one size fits all approach to data
aggregation that is independent of application require-
ments. These approaches typically operate at the network
and data link layer.
At the Network Layer, well known approaches to aggre-

gation include the Shortest Path Tree (SPT), wherein a
single, network-wide aggregation tree is centrally calcu-
lated and configured and the Greedy Incremental Tree
(GIT) which approximates a shortest path tree, but is
constructed in an incremental and decentralised fash-
ion [25]. However, these approaches are poorly suited
to Wireless Sensor Networks (WSN) scenarios where
energy resources are unevenly distributed. Aonishi et al.
contribute Adaptive GIT [9] to address this problem.
Intanagonwiwat et al. contribute the Centre at the Nearest
Source (CNS) [6] scheme, wherein the responsibility for

data aggregation is assigned to the node which is a source
of that data type and closest to the destination.
Leandro et al. [26] contribute DRINA, a lightweight

and reliable routing approach for in-network aggrega-
tion. DRINA follows a cluster-based approach and builds
a shortest path tree to sink. Nodes in each cluster for-
ward the sensed data to the cluster head, which then
relays the data to the sink. This solution relies on a dedi-
cated node to perform data aggregation, which means all
nodes in the cluster must transmit the sensed data to the
cluster head. Jongsoo et al. [27] propose Lump to per-
form Quality-of-Service aware aggregation for heteroge-
neous traffic. Lump prioritises packet based on the latency
requirements. Lump maintains a queue for each next-hop
address, where it stores the packets. Lump uses a periodic
send-timer, which raises the priority level of the packets
on each timer event.Whenever the priority is raised to the
highest level, all packets in the queue are aggregated and
transmitted.
At the Data Link Layer, He et al. contribute AIDA [5],

which takes advantage of queuing delay and the broad-
cast nature of wireless media to implement application
independent data aggregation. AIDA aggregates multiple
packets into single frames prior to transmission, result-
ing in significant savings in terms of energy and latency.
While AIDA uses data from the network layer, it treats
the application layer as a black box and therefore cannot
exploit patterns in application traffic flows. Furthermore,
as AIDA operates at the data link layer, it is unable to
perform multi-hop data aggregation.

2.2 Remote component bindingmodels
Hitch Hiker combines aggregation with a lightweight
remote binding model. In this section, we review compo-
nent binding models and discuss opportunities for aggre-
gation. Contemporary remote binding models typically
offer either event-based or Remote Procedure Call (RPC)
semantics.
RPC-based bindingmodels allow remote functionality to

be called using the same semantics as local procedures,
thus lowering the overhead on component developers.
RPC-based models are request-reply and therefore bidi-
rectional in nature. In the case of resource-rich sensing
systems, Remote Method Invocation (RMI) [10] has been
used to provide reliable RPC-based bindings for Java com-
ponent models such as OSGi [28] and RUNES [29]. In a
WSN context, May et al. [11] extend NesC [30] with sup-
port for unicast and anycast RPC calls, wherein exactly
one neighbouring node responds to the call. Where com-
ponent models support remote reconfiguration, bindings
may be modified at runtime.
Event-based binding models provide simple unidirec-

tional communication between software modules. Event-
based approaches are attractive in resource-constrained

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 4 of 15

scenarios, as they are lightweight and do not cause soft-
ware modules to block while waiting for responses as in
RPC. The Active Messages [12] protocol provides remote
bindings for the NesC [30] component model. A unique
reference to an application handler is embedded in each
active message and is used to dispatch incoming messages
to the appropriate handler component. As NesC does not
allow for runtime reconfiguration, bindings are fixed at
development time. The LooCI binding model [13] pro-
vides unreliable event-based binding using a decentralised
publish-subscribe event bus communication medium. In
contrast to Active Messages, LooCI supports multi-model
bindings allowing for the modelling of one-to-one, one-
to-many, many-to-one and many-to-many relationships.
Additionally, unlike ActiveMessages, LooCI bindings may
be remotely modified at runtime in order to enact recon-
figuration.
Considering opportunities for cross-layer optimisation,

all of the binding models discussed above [10, 30] provide
explicit meta-data that can be used to determine traf-
fic flows and therefore optimise aggregation functionality.
Despite this opportunity, current component models typ-
ically treat the network layer and below as a black box,
resulting in suboptimal communication.

2.3 Opportunities for data aggregation
There are a number of advantages to embedding data
aggregation support in a component binding model:
Flexible Network Topologies: ADDA approaches to data

aggregation such as TAG [7] and Directed Diffusion [6]
enforce a single network topology, which may be subop-
timal for some application scenarios. In contrast, compo-
nents can be remotely bound together to form distributed
component graphs with flexible network topologies.
Support for Multiple Applications: WSN are increas-

ingly required to simultaneously support multiple applica-
tions. Contemporary ADDA approaches are poorly suited
to multi-application scenarios as they enforce a single
routing structure across multiple applications with dif-
ferent networking requirements. In contrast, component
bindings can be used to create a specific network topology
for each application.
Appropriate Separation of Concerns: ADDA approaches

require that the lower layers of the network stack be con-
cerned with application-level data flows [5]. This means
that aggregation protocols must be updated whenever
new data types are introduced. In contrast, components
provide externally visible meta-data that describes data
flows via bindings. This allows aggregation functionality
to evolve along with the application components during
software reconfiguration.
Application-Optimised Aggregation: AIDA approaches

such as CNS [6] and AIDA [5] are unaware of application
data flows and therefore would be expected to perform

sub-optimally in comparison to application dependent
approaches. In contrast, component-binding meta-data
provides a means to optimise generic aggregation func-
tionality to suit a specific application.
By using component binding meta-data to build a multi-

hop aggregation network, Hitch Hiker combines the key
benefits of application dependent aggregation (i.e. an opti-
mised aggregation approach) with those of application
independent aggregation (i.e. flexible networking and a
more appropriate separation of concerns). The following
section describes the Hitch Hiker binding model.

3 The Hitch Hiker 2.0 bindingmodel
Hitch Hiker 2.0 extends the previous version of Hitch
Hiker, which is reported in [14]. In Hitch Hiker, the bind-
ings are classified as either high or low priority bindings.
This classification allows Hitch Hiker to support data
aggregation by appending low-priority data in the over-
lay network created using the unused payload space of
high-priority transmissions. Hitch Hiker uses meta data
provided by component bindings to create a multi-hop
data aggregation overlay. To support end-to-end rout-
ing of low-priority traffic, Hitch Hiker performs route
discovery on multi-hop overlay network using a central
meta-manager.
Hitch Hiker 2.0 expands the previous version of Hitch

Hiker [14] with Ad-hoc Hitch Hiker, which does not rely
on central meta-manager to discover the data aggregation
overlay. Ad-hoc Hitch Hiker uses an approach inspired by
AODV for route discovery.
This section describes the design of the Hitch

Hiker binding model and its associated network stack.
Section 3.1 provide background on LooCI, which is
extended with Hitch Hiker. Section 3.2 introduces pri-
oritised bindings. Section 3.3 describes how route infor-
mation is extracted from bindings. Sections 3.4 and 3.5
describe the Hitch Hiker network stack.

3.1 The loosely-coupled component infrastructure
The Loosely-coupled Component Infrastructure (LooCI)
[13] is a platform-independent component model and
supporting middleware targeting networked embedded
systems. The LooCI middleware is open-source and ports
are available for embedded operating systems such as
Contiki [16], Squawk [31] and Android. LooCI is a repre-
sentative example of a runtime reconfigurable component
model for the IoT, with which we have extensive expe-
rience. Hitch Hiker extends the basic LooCI component
model to support priority-based multi-hop data aggrega-
tion. The remainder of this subsection provides a basic
overview of the relevant features of LooCI.

Components LooCI components are individually
deployable units of functionality. They are managed by

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 5 of 15

creating an instance of the basic LooCI meta-model,
described in [13], using a simple component declaration
and communication API consisting of required and
provided interfaces. LooCI is language-agnostic and
components may be implemented in C or Java, allowing
developers to exploit language-specific features while pro-
viding standardised encapsulation, discovery and lifecycle
management. All messages that travel across component
interfaces are hierarchically typed as described in [32].
Components may also declare properties that allow for
inspection and customisation of component behaviour
through externally accessible name/value tuples.

Communication All LooCI components communicate
over a fully distributed ‘event bus’ spanning the entire
network. The event-bus is an asynchronous event-based
communication medium that follows a decentralised
topic-based publish-subscribe model. Local and remote
bindings are established by creating new subscription
relationships, supporting one-to-one, many-to-one, and
one-to-many bindings (as specified in [13]). Hitch Hiker
extends the binding model of LooCI with support for
data aggregation. Hitch Hiker classifies LooCI bindings
as high-priority and low-priority, and this classifica-
tion allows Hitch Hiker to support data aggregation by
appending low-priority data in the overlay network cre-
ated using the unused payload space of high-priority
transmissions.

Reconfiguration LooCI components are connected
to the middleware runtime installed on every device.
Each component declares its human-readable name, its
required interfaces (i.e. services) and provided interfaces
(i.e. dependencies). A reconfiguration engine manages
the basic meta-model and supports reflective operations
using both local or remote API calls.

Meta Manager LooCI applications are deployed,
inspected, and configured by manager nodes. In prin-
ciple, any LooCI node may serve as a manager and a
network may have multiple managers. The manager inter-
acts with the nodes by using the reflection API to inspect
and reconfigure LooCI’s meta-model. Hitch Hiker uses
a single meta manager in infrastructure mode for the
creation of data aggregation overlay, which is a major

restriction. Hitch Hiker 2.0 supports Ad-hoc Hitch Hiker,
which operates with either multiple or no manager at all.

3.2 Prioritised bindings
Figure 1 shows a small part of the smart building case
study, evaluated later in this paper. Here, a temperature
component, deployed on sensor node N1, samples tem-
perature data once every 30 s and sends the data to
the comfort level component. The comfort level compo-
nent on N2, analyses sensor data, and sends the result to
a manager located on N3 every 30 s. These three com-
ponents communicate via standard bindings, depicted
as . For the remainder of this paper, we refer the
standard bindings as high-priority bindings. LooCI pro-
videsbindTo andbindFrom calls to create high-priority
bindings.
HitchHiker introduces the concept of low-priority bind-

ings, depicted as in Fig. 1. Low-priority bindings
are used by non-critical applications, the definition of
which is left to the developer. In principle, the developer
should use low-priority bindings for traffic that can toler-
ate long latencies. Hitch Hiker provides bindHHTo and
bindHHFrom calls to create low-priority bindings. In our
example, a node monitor component deployed on N1 is
connected to a node alert component deployed on N3 via
a low-priority binding. The use of a low-priority binding
indicates that the developer is willing to trade commu-
nication performance for energy efficiency. Low-priority
bindings are realised in Hitch Hiker by routing messages
via the data aggregation overlay network, referred to as
Hitch Hiker network.

High-Priority Bindings Hitch Hiker extends the event-
based LooCI binding model described in Section 3.1.
LooCI bindings are: event-based, unidirectional, and
unreliable. Conceptually, a LooCI binding is a connec-
tion between a source and a destination component, with
an associated data type and a reference to the network
link that connects the nodes hosting the two components.
Table 1 shows the list of well-known LooCI binding types
and their payload sizes.

Definition 1 (Binding). A binding is a tuple b =
〈Cs,Cd,Type, Link〉, where Cs is the source component, Cd
is the destination component, Type is the type of the events
sent through the binding, and Link is the remote connection

Fig. 1 Application view of a deployed application

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 6 of 15

Table 1 List of LooCI binding types and their payload sizes

Components Binding type Payload size (in bytes)

Temperature sensor TEMP 5

Light sensor LIGHT 3

Moisture sensor MOISTURE 3

Air quality sensor AIRQUALITY 8

PIR sensor PIR 4

RFID reader RFID 8

Door sensor DOOR 3

Buzzer BUZZER 3

between the nodes where the binding is deployed, defined
below.

Definition 2 (Remote Connection). A remote connec-
tion is a tuple � = 〈Ns,Nd,MTU ,Bw,D〉 describing
the communication channel between two network nodes,
where Ns is the source node, Nd is the destination node,
MTU is the maximum transmission unit between Ns and
Nd, Bw is the bandwidth of the remote connection, and D
is the expected delay of the remote connection.

A LooCI binding is realised as an outgoing binding entry
on the sending node and an incoming binding entry on the
receiving node, which is established by issuing bindTo
and bindFrom calls to the sender and receiver, respec-
tively. These bindings are stored in a binding table which
is used to dispatch events. LooCI bindings are created
at runtime after the deployment of the involved compo-
nents. High-priority binding is mediated by the trans-
mission of a event using the network stack of the host
operating system.
The binding from the temperature component

is formally represented as 〈Temperature,Comfort
Level,Temp,�〉, where the associated remote connection
� = 〈N1,N2, 127 B, 250 kbps, 0.1 s〉.

Low-Priority Bindings Hitch Hiker introduces the
concept of a low-priority binding, depicted as
in Fig. 1. In our example, a node monitor component
gathers the local node status and transmits this data
to a node alert component running on a server. We
selected node monitoring as an example of a low-priority
application because this functionality is less important
than the core WSN mission of gathering environmen-
tal data and this application data can tolerate delay.
However, it should be noted that developers are free
to define which components are high-priority and low-
priority in their application context. In our example
(Fig. 1), the low priority binding that connects the node

monitor to the node alert component is formally rep-
resented as 〈Node Monitor,Node Alert,Status, �status〉,
where Status is the event type containing node status
information and �status is the remote connection of the
overlay network.
High-priority and low-priority bindings have an iden-

tical set of artefacts: a source component, destination
component, data type (Definition 1) and a remote connec-
tion (Definition 2). Low-priority bindings are realised in
LooCI by adding a separate set of binding tables to each
node.
The overlay routes necessary to support low-priority

bindings are established reactively, as it required to sup-
port low-priority bindings.

3.3 Component model probe extracts network data
The component model probe extracts data from the high-
priority application to create the remote connections of
theHitchHiker network. It intercepts binding acknowledg-
ment messages containing the source component Cs, the
source node Ns, the destination node Nd, and the bind-
ing Type, and builds a remote connection for the Hitch
Hiker network. Recall that a remote connection is for-
mally a tuple 〈Ns,Nd,MTU ,Bw,D〉 (Definition 2). The
MTU is calculated based on the event type, which has an
associated payload size, as shown in Table 1. Hitch Hiker
extracts periodicity information by querying source com-
ponents for their periodicity property using the standard
LooCI API. Hitch Hiker distinguishes between periodic
and non-periodic components: the former send values at
a fixed rate (e.g., a temperature reading every 10 s), and
the latter exhibit unpredictable behaviour (e.g., an alert
generated when a window is opened).
Formally, we write �(C) to denote the periodicity of a

component C, defined below, which returns the special
symbol ⊥ when C is non-periodic.

�(C) =
{
r if C is periodic with rate r;
⊥ otherwise.

Based upon the information intercepted in the binding
acknowledgment—the source component Cs, the source
node Ns, the destination node Nd, and the source Type—
and the periodicity�(Cs), the probe calculates the remote
connection for the Hitch Hiker network as follows.

1. Get the payload size ps associated with the Type.
2. Get the MTU m of the remote connection between

the source (Ns) and destination (Nd).
3. Define hd to be the size of the headers used by the

data-link, network and transport layers of the host
protocol stack.

4. DefineMTUHH to be the unused payload size,
calculated asm − ps − hd.

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 7 of 15

5. If �(Cs) = ⊥ then return the remote connection 〈Ns,
Nd,MTUHH ,⊥,⊥〉, otherwise return the remote
connection
〈Ns , Nd , MTUHH , MTUHH/�(Cs) , �(Cs)〉.

The component model probe reveals the remote con-
nection between a source node Ns and a destination node
Nd with a free payload space of MTUHH . The probe also
reveals the delay or the time-interval between two succes-
sive transmissions as �(Cs). For the example application
shown in Fig. 1, the remote connection between node N1
andN2 has a free payload space of 75 B (excluding the tem-
perature data and the overhead added by the other layers)
with a delay of 30 s. This connection meta data is used
for the configuration of Hiker routing protocol and it is
discussed in Section 3.5.

3.4 Hitch medium access control (MAC) protocol
Figure 2 shows the Hitch Hiker network stack for a single
embedded sensor node, with each layer numbered accord-
ing to the 5-layer Tanenbaum reference model [33]. The
Hitch Hiker protocol stack is composed of two protocols
the Hitch MAC protocol and the Hiker routing proto-
col. The former is described below and the latter in the
following subsection.
Hitch is a virtual MAC protocol that manages and pro-

vides access to the data aggregation overlay links. The
Hitch MAC protocol is implemented as an independent

module, which allows Hitch to be used with third-party
routing protocols at the aggregation overlay level.

Link Data Structures Hitch manages the set of virtual
data links that are available on each sensor node. Each
virtual data link maps to a remote overlay connection
(Definition 2) that may be multi-hop and is composed of:
a destination address, MTU, delay and bandwidth. Vir-
tual links are created by the probe and may be accessed
through the HitchAPI, available online: http://goo.gl/
7m2nwN.
A First In First Out (FIFO) queue is maintained per link

where packets are buffered until they can be aggregated
with high-priority traffic and dispatched. If the buffer
reaches its capacity, the oldest frame in the queue is dis-
carded, resulting in packet loss. Hitch is a best-effort
protocol, which provides no reliability guarantees. Where
reliability is required, it should be implemented by the
upper layers.

Aggregation The Hitch protocol intercepts outgoing
packets as they are passed to the host MAC protocol, and
this protocol does not violate the security requirements
of the host MAC protocol. If the virtual link queue asso-
ciated with the destination of an intercepted packet is
not empty, the available payload size is filled with pack-
ets from the queue, until either the available payload
space is exhausted or the buffer is empty. The modified

Fig. 2 Architecture of a Hitch Hiker node: Infrastructure Hitch Hiker (left) and Ad-hoc Hitch Hiker (right)

http://goo.gl/7m2nwN
http://goo.gl/7m2nwN

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 8 of 15

packet is then returned to the host MAC protocol to be
transmitted.

Disaggregation The Hitch protocol intercepts incom-
ing frames in the host MAC protocol, and disaggre-
gates all encapsulated Hitch packets. The disaggregated
packets are then passed to the network layer, while the
original frame is passed back to the host data link pro-
tocol. And, it operates within boundary of the host
MAC protocol.

3.5 Hiker network protocol
Hiker is a multi-hop routing protocol that operates effi-
ciently with the Hitch data link protocol.

Route Data Structures Hiker maintains a minimalist
routing table on each node. This routing table begins
empty, and routes are reactively configured by the net-
work manager to support low-priority bindings. Each
route is comprised of a remote destination, the virtual link
that represents the next hop on the route to this address
and a route-MTU which denotes the maximum packet
size that can traverse the complete route.

Routing When an incoming Hiker packet is received,
the destination field of the packet is checked. If the
destination is the local sensor node, it is passed to
the transport layer. If the destination matches a known
route, it is transmitted on the appropriate link using
the transmit(frame,link) method of Hitch. If no
route is known, the packet is discarded. Sections 4 and
5 explains the route discovery process of Hitch Hiker in
infrastructure and ad-hoc mode, respectively.

Definition 3 (Route). A route is amulti-hop remote con-
nection (Definition 2) obtained by composing a non-empty
sequence of remote connections, such that for every consec-
utive remote connections � and �′ the destination node of �
matches the source node of �′. Given a sequence of n remote
connections:

〈Ns,1,Nd,1,MTU1,Bw1,D1〉, . . . ,
〈Ns,n,Nd,n,MTUn,Bwn,Dn〉

its composition yields the route 〈Ns,Nd,MTU ,Bw,D〉,
where

Ns = Ns,1
Nd = Nd,n

MTU = minn
i=1MTUi

Bw = minni=1 Bwi
D =

∑n

i=1
Di.

Hiker Packet Encapsulation Figure 3 shows a host
packet that is aggregated with multiple Hitch Hiker (HH)
packets. Each encapsulated HH packet has a 2a+1 byte
header, where a is the length of a network address. One
additional byte is used to represent the length of the pay-
load that follows.We use 6LowPAN IPv6 address shorten-
ing [34], resulting in 2 B addresses in our case-studies.

4 Infrastructure Hitch Hiker
In infrastructure mode, Hiker assumes that a single LooCI
network manager is running for the entire network, as
shown in Fig. 2. This network manager enacts all manage-
ment and reconfiguration. This information is exploited
to create the data aggregation overlay network as follows:

1. Overlay links are discovered based upon extended
binding acknowledgements. This information is
provided by the component model probe as
described in Section 3.3.

2. The network manager assembles discovered overlay
links to form a network graph, wherein each link is
labelled with its associated delay, MTU and
bandwidth.

3. When the user requests the establishment of a
low-priority binding b :

(a) The graph is pruned to remove all links which
have an insufficient MTU to support the
specified data type.

(b) The Dijkstra algorithm is used to calculate the
shortest path between the source and
destination, using either delay or bandwidth
as the link cost. Our evaluation uses delay as
the link cost.

(c) The network manager configures the shortest
path overlay route, or responds with an
exception where no overlay route is possible.

(d) Finally, the network manager configures the
route required by the low-priority binding b,
by sending route-creation messages to all
involved nodes.

Fig. 3 Hiker packet; darker background captures the low-priority aggregated data

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 9 of 15

Figure 4 shows the networked interactions that are
required to create both the high-priority and low-priority
bindings for the running example shown in Fig. 1. In the
interests of clarity and brevity, binding and route data
shows only the network end-points.

Steps (1)–(5) The network manager receives a request to
establish high-priority bindings to connect the Tempera-
ture, Comfort Level, and Manager components. The net-
workmanager then enacts this request by issuing standard
LooCI bindTo and bindFrom commands that establish
the required binding table entries. The associated binding
acknowledgements inform the network manager of newly
available overlay routes.
Steps (6)–(8) The network manager receives a request
to establish a low-priority binding to connect the Node
Monitor and the Node Alert components. To support this
binding, Hitch Hiker configures an overlay route between
the nodes N1 and N3 (Definition 3).
Steps (9)–(10) The network manager establishes the low-
priority binding by issuing the required bindHHTo and
bindHHFrommethod calls, which establish the necessary
entries in the Hitch Hiker wiring tables.

Since this mode of Hitch Hiker operate with a sin-
gle network manager, the creation of Hitch Hiker bind-
ings require binding meta data from the entire appli-
cation network. In principle, any Hitch Hiker node in
the network can create or remove bindings. In order
to increase the flexibility of Hitch Hiker and to allow
Hitch Hiker to operate with either multiple managers
or no managers, we extend Hitch Hiker with support
for decentralised route discovery, which is explained in
Section 5.

5 Ad-hoc Hitch Hiker
In ad-hoc mode, Hiker routes are discovered in a fully
decentralised manner. This allows Hiker to operate in
networks with multiple managers or no managers at all,
as shown in Fig. 2. The binding request can come from
any node in the application network, and the Hiker of
the source node self-discovers a overlay route, unlike

Infrastructure Hitch Hiker. To realise this, Hiker reimag-
ines the well-known Ad-hoc On-Demand Distance Vector
(AODV) routing approach [15]. To find overlay routes on
top of bindings as opposed to at the network layer. In this
mode, Hiker discovers the route as follows:

1. When the user requests the establishment of a
low-priority binding b, a route-discovery message is
flooded across the data aggregation overlay as shown
in Fig. 5.

2. The source node broadcasts a discovery message
containing the destination address, required MTU, a
sequence number and a Time to Live (TTL) on all
links provided by the Hitch MAC protocol, as
indicated in Fig. 5. And, the source node waits for
NET_TRAVERSAL_TIME seconds for route-
creation message. If the route-creation message is
not received within NET_TRAVERSAL_TIME, then
the source node notifies the developer that there is
no route between the source and destination, and the
low-priority binding is not accepted. Section 6
explains the error handling schemes of Hitch Hiker.

3. All nodes receiving a route-discovery message
decrement the TTL, add the sequence number and
source link to their cache and re-broadcast the
discovery message, discarding the message when the
TTL reaches zero, or the available MTU is
insufficient, or if the sequence number was
previously observed.

4. When the destination node receives the
route-discovery message as presented in Fig. 5, it
establishes a route r by responding with a
route-creation message as follows:

(a) The first route-discovery message received by
the destination denotes the shortest path
between the source and the destination nodes.
The destination node forwards a route-
creation message back to the link on which the
discovery message was received. This message
contains the matching sequence number and
the address of the destination node.

Fig. 4 Network view - configuration of bindings and routes for Infrastructure Hitch Hiker

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 10 of 15

(b) On receipt of a route-creation message, each
intermediate node adds a routing table entry
mapping the specified destination address to
the link on which the route-creation message
was received.

(c) Following the creation of a routing table
entry, the intermediate node checks its cache
and forwards the route creation message on
the link via which the original route-discovery
was received. Step 2 repeats until the route is
fully established.

As can be seen from the process described above, in ad-
hoc mode, Hitch Hiker requires no supporting infrastruc-
ture. However, the use of flooding increases the overhead
and latency of route discovery in comparison to infras-
tructure mode. Figure 5 shows the networked interactions
that are required to create low-priority bindings for the
running example shown in Fig. 1 using AODV routing
approach.

6 Route errors andmaintenance
Whenever a user creates a Hitch Hiker binding as
described in Section 3, route discovery executes as
described in Sections 4 and 5. If a low priority route was
successfully created, Hitch Hiker returns true together
with the performance properties of the route as listed
in Definition 3, i.e. route MTU, latency and band-
width. If the route was not created, Hitch Hiker returns
false and the performance properties of the best avail-
able route, if one exists. Based upon this information,
the developer may choose to (i.) abandon the binding,
(ii.) modify the binding to work within available Hitch

Hiker network capacity or (iii.) establish a high-priority
binding.

6.1 Impact of reconfiguration
Hitch Hiker-2.0 builds on top of LooCI component
model, which provides support for run-time recon-
figuration of application. Such run-time reconfigura-
tions may result in deployment of new components
or the removal of existing components. In addition,
the reconfiguration may also change the existing bind-
ings in the application network. These reconfigura-
tions disrupts the existing data aggregation overlay
and might invalidate the existing routes of low-priority
bindings.
In infrastructure mode, when the manager receives

a reconfiguration command that invalidates a route, it
removes the old route and then execute the route discov-
ery process to find a replacement route. If no replacement
route exists, an exception is generated. In adhoc mode,
a mote that receives a reconfiguration command, which
impacts a Hitch Hiker route will flood a route-remove
message with the sequence number of the matching route.
All motes that receive this message will remove the route,
causing the source node to re-run the route discovery
process.

7 Case study applications
We validate the performance of Hitch Hiker-2.0 in two
representative application scenarios that are realised using
the LooCI component model and prioritised bindings.
Section 7.1 describes a low data rate multi-hop static
smart office sensor network, while Section 7.2 describes
a high data rate one-hop mobile robot sensor network.

Fig. 5 Network topology of the application presented in Fig. 1. Each box represents the node in the network. The shaded nodes are new recipients.
The dashed lines show possible reverse routes, while the solid lines show the discovered route. 1 Node N1 receives a low-priority binding request.
2 N1 broadcasts a route discovery message, N2 and Nx receive it. 3 N2 and Nx are not the intended destination. N2 and Nx make an entry in their
node and forwards the request to their neighbours. 4 The intended destination N3 has been found. N3 sends out a route reply message along the
reversed path of the request. This route reply message configures all the intermediate nodes and the source node

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 11 of 15

Themobile robot application provides the greatest oppor-
tunities for data aggregation due to its high data rate
and one-hop network structure, while the smart office
application is more challenging. In reality, we expect the
characteristics of most WSN applications to fall some-
where between those of these two applications. The smart
office and the mobile robots applications are overlaid
with a non-critical node health monitoring application,
which uses low-priority Hitch Hiker bindings, described
in Section 7.3.

7.1 Smart office application
The smart office application aims to ensure employee
comfort, while reducing energy consumption by sensing
environmental conditions and controlling relevant appli-
ances. Sensor nodes (N2, N3 and N4) monitor: tempera-
ture, light and whether the window is open or closed every
30 s. This sensor data is transmitted to a comfort level
component running on the cluster-head node (N1) which
aggregates the sensor information and forwards the aggre-
gated data to a manager component running on a server
(N0), once every 30 s. Based upon the observed sensor
data and configured comfort levels, a management com-
ponent running on the server (N0) issues commands to
a control component running on the cluster-heads (N1),
which then activate or deactivate relay switches running
on nodes N2 to N4 that control: lighting, ventilation and
an audio alarm, which indicates that the window should
be closed. The smart office application is realised using
high-priority (i.e. standard) LooCI bindings. The payload
size of all sensor data is 4 bytes, the payload size of aggre-
gated data is 12 bytes and the payload size of relay control
commands is 4 bytes.
Figure 6 shows the application composition and all rel-

evant binding and properties information. In terms of
network topology, the scenario is comprised of 25 offices.

Each office contains three sensor nodes, and a cluster-
head node. Sensor nodes communicate with cluster heads,
which in turn communicate with a single server for man-
agement of comfort level. This approximates a 101-node
tree topology rooted at the server.

7.2 Mobile robot application
The mobile robot application coordinates a set of mobile
robots to detect chemical spills. Each robot (N1 to N100)
runs a chemical sensor and a location sensor which sam-
ple every 10 s and transmit the data to a coordination
component running on the server (N0). The coordination
component then calculates a set of navigation instructions
every 10 s and transmits these to the navigation com-
ponent running on each mobile robot (N1 to N100). The
mobile robot application is realised using standard LooCI
bindings. The payload size of location data is 6 bytes, the
payload size of chemical sensor data is 4 bytes and the
payload size of navigation commands is 5 bytes. Figure 6
shows the application composition and all relevant bind-
ing and properties data. In terms of network topology,
the scenario contains 100 mobile robots, all of which
communicate directly with the coordinating server. This
approximates a 101-node star topology.

7.3 Node health monitoring application
The node health monitoring application [35] is a low-
priority application, inspired from real world deploy-
ments such as Great Duck Island [36]. We consider it
low-priority because it adds value, but (i.) the data is
not critical and (ii.) it should not reduce the lifetime
of the base application. This component monitors bat-
tery level, memory use and the radio link quality. The
application consists of a health monitor component that
runs on all sensor nodes (N1 to Nn) and sends node
health information to an alert component running on

Fig. 6 Component bindings of the smart building (top), mobile robot (bottom-left) and monitoring (bottom-right) applications

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 12 of 15

the server node (N0). Node health monitoring is over-
laid on the smart building and mobile robot application
using low-priority bindings. The payload size of node
health monitor data is 18 B. The composition is shown in
Fig. 6.

8 Implementation and evaluation
We have developed prototypes of Hitch Hiker-2.0 for the
OMNeT++ simulator [17] and the Zigduino mote [37].
Simulation is used to study the performance of the three
case-study applications described in Section 7. The Zig-
duino implementation validates node-local memory and
energy characteristics for a concrete hardware/software
stack.
OMNeT++ settings: The physical layer is a CC2420 IEEE

802.15.4 radio [38]. We use B-MAC [39] as a representa-
tive Low Power Listening (LPL) protocol. Simulation set-
tings are based on prior experiments by Polastre et al. [39].
Table 2 shows the configuration settings of OMNeT++.
Zigduino configuration: Zigduino is an Arduino-

compatible mote based on the ATmega128RFA1 [40],
which offers a 16MHz MCU, 16 KB of RAM, 128 KB of
Flash and an IEEE 802.15.4 radio. We use ContikiOS v2.6,
Contiki X-MAC (CX-MAC) [41] and LooCI v2.0 [13]
extended with Hitch Hiker 2.0. The parameterisation of
CX-MAC uses the default Contiki values. In the case of
themobile robot case-study the Zigduino is extended with
a ShieldBot mobile robot base [42]. Table 2 shows the con-
figuration settings of Zigduino. We compare Hitch Hiker
against (i.) transmission of standard messages (referred
as Standard binding) and (ii.) an optimally configured
one-hop data aggregation scheme using an optimal aggre-
gation buffer size of 3 (referred as One-hop aggregation).
Values reported below represent averages taken over one
week.
All source code and simulation material are available at:

http://goo.gl/7m2nwN.

8.1 OMNET++ simulation results
Latency Figure 7 shows the results of our latency simula-
tion. The x-axis shows the sampling frequency of the node
health monitoring app, which was set to a consistent frac-
tion of the case study application frequency (from left to
right from 10 to 50 % of the base app frequency). The y-
axis shows the latency of message transmission in seconds

Table 2 Configuration of the OMNeT++ simulation and the
Zigduino implementation

Radio OMNet Zigduino MAC protocol OMNet Zigduino

Transmit current 17mA 18.6mA Check interval 0.1 s 0.125 s

Receive current 16.2mA 16.6mA Slot duration 1.0 s 2.0 s

Sleep current 0.02mA 4.1 mA Queue length 10 15

for low-priority Hitch Hiker bindings, standard bindings
and one-hop data aggregation.
As expected, the node health monitoring app exhibited

a higher latency when using low-priority bindings than
with standard bindings due to packets waiting for aggre-
gation at each hop. However, the latency of low-priority
bindings is lower than the one-hop aggregation scheme
due to the exploitation of multi-hop routes. For themobile
robot app (right of Fig. 7) the latency of Hitch Hiker falls
as high-priority traffic is transmitted at a higher rate and
thus, there are increased opportunities for aggregation.

Energy Figure 8 shows the results of our energy simula-
tion. As with our latency experiments, the sampling fre-
quency of the node health monitoring app was set to 10 to
50 % of the base application frequency. The y-axis shows
the power consumption low-priority Hitch Hiker bind-
ings, standard bindings and one-hop data aggregation.
The results shown in Fig. 8 confirm the expected sav-

ings when using Hitch Hiker to route low-priority traffic.
Energy consumption is reduced by up to 15 % in the smart
building scenario and up to 32 % in the mobile robot
scenario compared to standard bindings. The energy con-
sumption of Hitch Hiker is also lower than that of one-hop
data aggregation. The greatest savings are achieved for the
mobile robot application as more low-priority transmis-
sions are aggregated.

8.2 Zigduino/Contiki implementation results
This section reports the performance timings of route
configuration and message transmission as well as
energy consumption and memory overhead for the Con-
tiki/Zigduino implementation. Configuration timings are
dependent upon the type of route being configured. We
therefore report average timings based upon the smart
building application, as this has the most complex routing
structure.

Route Creation The Hitch Hiker 2.0 provides two
approaches for route creation. Infrastructure Hitch Hiker
requires approximately 86ms to configure a single low-
priority binding. Each additional hop that must be con-
figured adds 30ms to the configuration overhead. Route
configuration is thus lightweight; creating all of the Hitch
Hiker bindings required for the smart building takes less
than 3 s. However, this generates three transmissions per
Hitch Hiker binding, which costs 36.5mJ.
In contrast, Ad-hoc Hitch Hiker, takes more time to

configure a route since it uses data aggregation overlay
itself to flood route discovery messages. For the smart
building application, in the worst case, Ad-hoc Hitch
Hiker requires 65 s to configure a single low priority bind-
ing. Each additional hop that must be configured adds 30 s

http://goo.gl/7m2nwN

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 13 of 15

Fig. 7 Latency of the health monitoring app. overlaid on the smart building (left) and mobile robot (right), with Hitch Hiker-2.0, one hop aggregation
and standard bindings

to the configuration time, and the complete smart build-
ing app takes less than an hour to configure. However,
Ad-hoc Hitch Hiker generates only two transmissions per
Hitch Hiker binding, which costs 23mJ – significantly less
than infrastructure mode.

Message Transmission Enqueueing, dequeueing and
encapsulating a single Hitch Hiker packet within a host
frame requires on average of 12.27mJ, while a standard
frame transmission using CX-MAC requires 21.41mJ, a
saving of 57.4 % compared to standard transmission.

Memory Hitch Hiker introduces minimal memory over-
head in comparison to the basic LooCI component model.
As shown in Table 3, the implementation of Infrastruc-
ture Hitch Hiker adds 3 % of ROM and 8 % of RAM to the
LooCI component model. This implementation consists
of component model probe along with Hitch and Hiker
protocols, as presented in Section 3.
For Ad-hoc Hitch Hiker, the ROM and RAM overhead

is approximately 6 and 8 % respectively. Ad-hoc Hitch
Hiker consumes more memory than Infrastructure mode
as each node must embed route discovery logic. Each
routing table entry uses an additional 6 B of memory. We
believe that this low overhead is reasonable in light of the
energy savings reported in Section 8.1.

9 Conclusions and future work
This paper introduced Hitch Hiker 2.0, a novel remote
bindingmodel for IoTwhich supports prioritised bindings
and multi-hop data aggregation. This prioritised binding
model provides developers with a low-effort mechanism
to manage data aggregation. Unlike prior work in the
area of aggregation, Hitch Hiker uses component bind-
ing meta-data to construct a multi-hop overlay network
for data aggregation. Hitch Hiker provides support for
routing on multi-hop overlay network. To the best of our
knowledge, Hitch Hiker is both the first generic and yet
application aware data aggregation approach. Further-
more, Hitch Hiker is the first remote binding model to
provide built-in support for data aggregation.
Hitch Hiker 2.0 extended our previous work [14] and

provides a decentralised routing approach. Hitch Hiker
2.0 allows the user to choose between centralised and
decentralised routing approach, making it a flexible bind-
ing model.
We have simulated the Hitch Hiker protocol in

OMNeT++ for two case-study application scenarios. Our
results show that using Hitch Hiker to route low-priority
traffic reduces energy consumption and, for applications
with a high data rate, latency. We also implemented
a prototype of Hitch Hiker for the LooCI component
model running on the Contiki OS and the Zigduino
mote. Our evaluation of the prototype implementa-
tion shows that Hitch Hiker consumes minimal mem-
ory, introduces limited overhead and that transmitting

Fig. 8 Energy consumption of health monitoring overlaid on the smart building (left) and mobile robot (right), with Hitch Hiker-2.0, one-hop
aggregation and standard bindings

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 14 of 15

Table 3 Memory overhead of Hitch Hiker-2.0 (HH)

Memory LooCI Infrastructure HH Ad-Hoc HH

ROM 56534 B 1882 B (+3.3 %) 3244 B (+5.7 %)

RAM 8998 B 722 B (+8.0 %) 756 B (+8.4 %)

messages with Hitch Hiker consumes a small fraction
of the energy that is required for a standard radio
transmission.
Our future work will focus on four fronts: improving

the performance of Hitch Hiker for non-periodic com-
ponents, adding support for virtual circuits, extending
Hitch Hiker to support variable component payloads and
realising a RPC version of the Hitch Hiker binding model.
Non-periodic components: The current design of Hitch

Hiker tends to avoid aggregation with non-periodic bind-
ings, where the source component not specify the rate
property, due to the unpredictability performance of those
links. This is a potential source of inefficiency in cases
where non-periodic components transmit frequently. We
plan to address this inefficiency by extending the Com-
ponent Model Probe with support for monitoring the
transmission timings of non-periodic components and
extracting timing data.
Virtual circuits: In the current model, it is possible

for the Hitch Hiker overlay to become congested and
for buffers to overflow. In our future work, we will
explore how resource reservation can be used to cre-
ate virtual circuits on top of the Hitch Hiker overlay
with associated Quality of Service assurances. We envis-
age that this could be achieved by extending the role of
the network manager to include remote configuration of
Hitch buffer sizes and admission control on low-priority
bindings.
Variable component payloads: The current design

of Hitch Hiker supports only fixed sized data types.
While we believe that this covers the vast major-
ity of WSN traffic, it is interesting to explore how
Hitch Hiker could be extended to support variable
sized payloads such as compressed images or micro-
phone captures. As with non-periodic components this
would necessitate extension of the Component Model
Probe to support the monitoring of previous trans-
missions and maintenance of historic payload size
data.
Remote Procedure Call: As Hitch Hiker extends LooCI,

it supports only unidirectional event-based bindings. It
would be interesting to extend Hitch Hiker with sup-
port for Remote Procedure Call (RPC) bindings. As
RPC method calls are inherently request-reply and there-
fore bidirectional, this would result in a much more
densely connected data aggregation overlay and therefore
improved performance for Hitch Hiker.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GSR worked on the design, implementation and the evaluation of Hitch Hiker.
JP worked on the design and modeling. WD helped with the implementation
on Zigduino hardware platform. MP,DS,CH and WJ were involved in the
discussions during the design phase. DH supervised and played a critical role
in the entire work. In addition, all authors read and approved the work.

Acknowledgements
This research is partially supported by the Research Fund, KU Leuven and
iMinds (a research institute founded by the Flemish government), and by the
Portuguese FCT grant SFRH/BPD/91908/2012. The research is conducted in
the context of FWO-RINAiSense project.

Author details
1iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium. 2iMinds-IBCN, Ghent
University, 9000 Gent, Belgium. 3HASLab/INESC TEC, Universidade do Minho,
Braga, Portugal.

Received: 2 September 2015 Accepted: 23 April 2016

References
1. Raghunathan V, Schurgers C, Park S, Srivastava M, Shaw B.

Energy-aware wireless microsensor networks. In: IEEE Signal Processing
Magazine. IEEE; 2002. p. 40–50.

2. Rajagopalan R, Varshney PK. Data-aggregation techniques in sensor
networks: A survey. IEEE Commun Surv Tutor. 2006;8(4):48–63.
doi:10.1109/COMST.2006.283821.

3. Tan HO, Körpeoǧlu I. Power efficient data gathering and aggregation in
wireless sensor networks. SIGMOD Rec. 2003;32(4):66–71.
doi:10.1145/959060.959072.

4. Kalpakis K, Dasgupta K, Namjoshi P. Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks.
Comput Netw. 2003;42(6):697–716. doi:10.1016/S1389-1286(03)00212-3.

5. He T, Blum BM, Stankovic JA, Abdelzaher T. Aida: Adaptive application-
independent data aggregation in wireless sensor networks. ACM Trans
Embed Comput Syst. 2004426–457. doi:10.1145/993396.993406.

6. Intanagonwiwat C, Govindan R, Estfin D, Heidemann J, Silva F. Directed
diffusion for wireless sensor networking. IEEE/ACM Trans Networking.
2003;11:2–16.

7. Madden S, Franklin MJ, Hellerstein JM, Hong W. Tag: A tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper Syst Rev. 2002131–146.
doi:10.1145/844128.844142.

8. Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-efficient
communication protocol for wireless microsensor networks. In: 33rd
Annual Hawaii Int. Conf. on System Sciences; 2000. p. 10.
doi:10.1109/HICSS.2000.926982.

9. Aonishi T, Matsuda T, Mikami S, Kawaguchi H, Ohta C, Yoshimoto M.
Impact of aggregation efficiency on git routing for wireless sensor
networks. In: Int. Conf. on Parallel Processing Workshops; 2006. p. 8–158.
doi:10.1109/ICPPW.2006.41.

10. Birrell AD, Nelson BJ. Implementing remote procedure calls. ACM Trans
Comput Syst. 1984. 39–59. doi:10.1145/2080.357392.

11. May TD, Dunning SH, Dowding GA, Hallstrom JO. An RPC design for
wireless sensor networks. Int J Pervasive Comput Commun. 2007;2(4):
384–397.

12. von Eicken T, Culler DE, Goldstein SC, Schauser KE. Active messages: A
mechanism for integrated communication and computation. In: 19th
Annual Int. Symposium on Computer Architecture; 1992. p. 256–266.
doi:10.1145/139669.140382.

13. Hughes D, Thoelen K, Maerien J, Matthys N, Del Cid J, Horre W,
Huygens C, Michiels S, Joosen W. Looci: The loosely-coupled
component infrastructure. In: IEEE Symposium on Network Computing
and Applications; 2012. p. 236–243. doi:10.1109/NCA.2012.30.

14. Ramachandran GS, Daniels W, Proença J, Michiels S, Joosen W, Hughes
D, Porter B. Hitch hiker: A remote binding model with priority based data

http://dx.doi.org/10.1109/COMST.2006.283821
http://dx.doi.org/10.1145/959060.959072
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1145/993396.993406
http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.1109/HICSS.2000.926982
http://dx.doi.org/10.1109/ICPPW.2006.41
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1145/139669.140382
http://dx.doi.org/10.1109/NCA.2012.30

Ramachandran et al. Journal of Internet Services and Applications (2016) 7:4 Page 15 of 15

aggregation for wireless sensor networks. In: Proceedings of the 18th
International ACM SIGSOFT Symposium on Component-Based Software
Engineering. CBSE ’15. New York: ACM; 2015. p. 43–48.
doi:10.1145/2737166.2737179. http://doi.acm.org/10.1145/2737166.
2737179.

15. Perkins CE, Royer EM. Ad-hoc on-demand distance vector routing. In:
Mobile Computing Systems and Applications; 1999. p. 90–100.
doi:10.1109/MCSA.1999.749281.

16. Dunkels A, Gronvall B, Voigt T. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In: 29th Annual IEEE Int.
Conf. on Local Computer Networks; 2004. p. 455–462.
doi:10.1109/LCN.2004.38.

17. Chen K. Performance Evaluation by Simulation and Analysis with
Applications to Computer Networks. NJ, USA: Wiley; 2015.

18. He T, Stankovic JA, Lu C, Abdelzaher T. Speed: a stateless protocol for
real-time communication in sensor networks. In: Distributed Computing
Systems, 2003. Proceedings. 23rd Int. Conf. On; 2003. p. 46–55.
doi:10.1109/ICDCS.2003.1203451.

19. Heinzelman WR, Kulik J, Balakrishnan H. Adaptive protocols for
information dissemination in wireless sensor networks. In: 5th Annual
ACM/IEEE Int. Conf. on Mobile Computing and Networking.
New York: ACM; 1999. p. 174–185. doi:10.1145/313451.313529.

20. Asemani M, Esnaashari M. Learning automata based energy efficient data
aggregation in wireless sensor networks. Wirel Netw. 2015;21(6):
2035–2053. doi:10.1007/s11276-015-0894-3.

21. Kalpakis K, Dasgupta K, Namjoshi P. Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks.
Comput Netw. 2003;42(6):697–716. doi:10.1016/S1389-1286(03) 00212-3.

22. Xue Y, Cui Y, Nahrstedt K. Maximizing lifetime for data aggregation in
wireless sensor networks. Mob Netw Appl. 2005;10(6):853–864.
doi:10.1007/s11036-005-4443-7.

23. Voulkidis AC, Anastasopoulos MP, Cottis PG. Energy efficiency in wireless
sensor networks: A game-theoretic approach based on coalition
formation. ACM Trans Sen Netw. 2013;9(4):43–14327.
doi:10.1145/2489253. 2489260.

24. Xiang L, Luo J, Rosenberg C. Compressed data aggregation:
Energy-efficient and high-fidelity data collection. IEEE/ACM Trans Netw.
2013;21(6):1722–1735. doi:10.1109/TNET.2012.2229716.

25. Krishnamachari B, Estrin D, Wicker S. The impact of data aggregation in
wireless sensor networks. In: 22nd Int. Conf. on Distributed Computing
Systems Workshops; 2002. p. 575–578.
doi:10.1109/ICDCSW.2002.1030829.

26. Villas LA, Boukerche A, Ramos HS, de Oliveira HABF, de Araujo RB,
Loureiro AAF. Drina: A lightweight and reliable routing approach for
in-network aggregation in wireless sensor networks. IEEE Trans Comput.
2013;62(4):676–689. doi:10.1109/TC.2012.31.

27. Jeong J, Kim J, Cha W, Kim H, Kim S, Mah P. A qos-aware data
aggregation in wireless sensor networks. In: Advanced Communication
Technology (ICACT), 2010 The 12th International Conference On. IEEE;
2010. p. 156–161.

28. Tavares ALC, Valente MT. A gentle introduction to OSGi. SIGSOFT Softw
Eng Notes. 2008;33(5):8–185. doi:10.1145/1402521.1402526.

29. Costa P, Coulson G, Mascolo C, Picco GP, Zachariadis S. The runes
middleware: a reconfigurable component-based approach to networked
embedded systems. In: IEEE 16th Int. Symposium on Personal, Indoor and
Mobile Radio Communications; 2005. p. 806–8102.
doi:10.1109/PIMRC.2005. 1651554.

30. Gay D, Levis P, von Behren R, Welsh M, Brewer E, Culler D. The nesc
language: A holistic approach to networked embedded systems. In: ACM
Conf. on Programming Language Design and Implementation; 2003. p.
1–11. doi:10.1145/781131.781133.

31. Simon D, Cifuentes C. The squawk virtual machine: Java™ on the bare
metal. In: Companion to the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications.
OOPSLA ’05. New York: ACM; 2005. p. 150–151.
doi:10.1145/1094855.1094908. http://doi.acm.org/10.1145/1094855.
1094908.

32. Thoelen K, Preuveneers D, Michiels S, Joosen W, Hughes D. Types in
their prime: Sub-typing of data in resource constrained environments In:
Stojmenovic I, Cheng Z, Guo S, editors. Mobile and Ubiquitous Systems:
Computing, Networking, and Services. Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications
Engineering. New York: Springer; 2014. p. 250–261.

33. Tanenbaum AS. Computer Networks (4. Ed.) NJ, USA, Prentice Hall; 2002.
pp. –1891.

34. Shelby Z, Bormann C. 6LoWPAN: The Wireless Embedded Internet. NJ,
USA: Wiley Publishing; 2010.

35. Werner-Allen G, Lorincz K, Ruiz M, Marcillo O, Johnson J, Lees J, Welsh
M. Deploying a wireless sensor network on an active volcano. IEEE
Internet Comput. 2006;10(2):18–25. doi:10.1109/MIC.2006.26.

36. Szewczyk R, Mainwaring A, Polastre J, Anderson J, Culler D. An analysis
of a large scale habitat monitoring application. In: 2nd Int. Conf. on
Embedded Networked Sensor Systems. SenSys ’04; 2004. p. 214–226.
doi:10.1145/1031495.1031521.

37. Logos Electromechanical. Zigduino Manual. 2014. Logos
Electromechanical. Rev. 2. http://www.logoselectro.com/
documentation/.

38. Texas Instruments. CC2420 Datasheet. 2014. Texas Instruments. http://
www.ti.com/product/CC2420.

39. Polastre J, Hill J, Culler D. Versatile low power media access for wireless
sensor networks. In: 2nd Int. Conf. on Embedded Networked Sensor
Systems. SenSys ’04. New York: ACM; 2004. p. 95–107.
doi:10.1145/1031495.1031508.

40. Atmel Corporation. ATmega128RFA1 Datasheet. 2012. Atmel
Corporation. http://www.atmel.com/devices/atmega1284.aspx.

41. Buettner M, Yee GV, Anderson E, Han R. X-MAC: A short preamble MAC
protocol for duty-cycled wireless sensor networks. In: 4th Int. Conf. on
Embedded Networked Sensor Systems; 2006. p. 307–320.
doi:10.1145/1182807.1182838.

42. Seeedstudio. Shield Bot. 2014. Seeedstudio. http://www.seeedstudio.
com/wiki/Shield_Bot.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1145/2737166.2737179
http://doi.acm.org/10.1145/2737166.2737179
http://doi.acm.org/10.1145/2737166.2737179
http://dx.doi.org/10.1109/MCSA.1999.749281
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1109/ICDCS.2003.1203451
http://dx.doi.org/10.1145/313451.313529
http://dx.doi.org/10.1007/s11276-015-0894-3
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1007/s11036-005-4443-7
http://dx.doi.org/10.1145/2489253.2489260
http://dx.doi.org/10.1145/2489253.2489260
http://dx.doi.org/10.1109/TNET.2012.2229716
http://dx.doi.org/10.1109/ICDCSW.2002.1030829
http://dx.doi.org/10.1109/TC.2012.31
http://dx.doi.org/10.1145/1402521.1402526
http://dx.doi.org/10.1109/PIMRC.2005.1651554
http://dx.doi.org/10.1109/PIMRC.2005.1651554
http://dx.doi.org/10.1145/781131.781133
http://dx.doi.org/10.1145/1094855.1094908
http://doi.acm.org/10.1145/1094855.1094908
http://doi.acm.org/10.1145/1094855.1094908
http://dx.doi.org/10.1109/MIC.2006.26
http://dx.doi.org/10.1145/1031495.1031521
http://www.logoselectro.com/documentation/
http://www.logoselectro.com/documentation/
http://www.ti.com/product/CC2420
http://www.ti.com/product/CC2420
http://dx.doi.org/10.1145/1031495.1031508
http://www.atmel.com/devices/atmega1284.aspx
http://dx.doi.org/10.1145/1182807.1182838
http://www.seeedstudio.com/wiki/Shield_Bot
http://www.seeedstudio.com/wiki/Shield_Bot

	Abstract
	Keywords

	Introduction
	Related work
	Data aggregation schemes
	Application dependent data aggregation
	Application independent data aggregation

	Remote component binding models
	Opportunities for data aggregation

	The Hitch Hiker 2.0 binding model
	The loosely-coupled component infrastructure
	Components
	Communication
	Reconfiguration
	Meta Manager

	Prioritised bindings
	High-Priority Bindings
	Low-Priority Bindings

	Component model probe extracts network data
	Hitch medium access control (MAC) protocol
	Link Data Structures
	Aggregation
	Disaggregation

	Hiker network protocol
	Route Data Structures
	Routing
	Hiker Packet Encapsulation

	Infrastructure Hitch Hiker
	Ad-hoc Hitch Hiker
	Route errors and maintenance
	Impact of reconfiguration

	Case study applications
	Smart office application
	Mobile robot application
	Node health monitoring application

	Implementation and evaluation
	OMNET++ simulation results
	Latency
	Energy

	Zigduino/Contiki implementation results
	Route Creation
	Message Transmission
	Memory

	Conclusions and future work
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

