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Abstract 

This study presents a framework for process and product development on a continuous direct 

compression manufacturing platform. A challenging sustained release formulation with high content of a 

poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: 

standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation 

component was investigated by deriving feed factor profiles. The maximum feed factor was used to 

estimate the drive command which strongly depended upon the density of the material. Furthermore, the 

shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline 

NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend 

uniformity. Tablet content and weight variability were determined as additional measures of mixing 

performance. For CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an 

impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet 

weight and content uniformity deteriorated under this condition. One can therefore conclude that 

balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the 

direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both 

process and product were significantly more robust to changes in process and design variables. This 

observation underpins the importance of flowability during continuous blending and die-filling. At the 

compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility 

as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved 

using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and 

dissolution. Hence controlling thickness during continuous manufacturing of sustained release tablets was 

crucial to ensure reproducible dissolution.  

  



3 

List of abbreviations 

CI   compressibility index 

Cin (t)   tracer concentration in the inlet stream 

Cout (t)  tracer concentration in the outlet stream predicted by macro-mixing model 

c(t)   concentration profile RTD 

d   tablet diameter 

e(t)   RTD function 

e(θ)   Normalized RTD function 

F   tablet crushing force 

FF316   spray dried lactose (fast flo 316) 

ffc   flow function coefficient 

ffp   flow weighed for bulk density 

ffrho   flow weighed for density under consolidation 

Methocel CR   K4M premium CR hydroxypropyl methylcellulose 

Methocel DC2  K4M premium DC2 hydroxypropyl methylcellulose 

HR   hausner ratio 

IAR   immediate axial recovery 

k   kinetic constant power law model 

MgSt   magnesium stearate 

Mt   amount of drug released at time t (power law model) 

M∞   amount of drug released after infinite time (power law model) 

n   release exponent power law model 

ntanks    number of continuous stirred tank reactors 

NAP   naproxen 

NIRs    near infrared spectroscopy 



4 

p   plug-flow volume fraction 

PLS   Partial Least Square  

Pe   Péclet number 

R2    coefficient of determination	 

RMB   radial mixing blade 

rpm    revolutions per minute 

RSD   residual standard deviation 

RSDCout   residual standard deviation on Cout of macro-mixing model 

RSDcu   residual standard deviation on tablet content 

RSDwv   residual standard deviation on tablet weight 

RSDss   steady state blend uniformity, residual standard deviation predicted NAP content 

RSDif   short term blend uniformity, residual standard deviation in case of ideal feeding 

RTD   residence time distribution 

SiO2   fumed silica 

Starch 1500   partially pre-gelatinized starch 

t20%   time (h) to reach 20% drug release  

t50%   time (h) to reach 50% drug release 

T   tablet thickness 

tm   mean residence time 

tmin   minimum residence time or lag time 

Vscrew    volume dispensed per screw revolution 

Q2   goodness of prediction 

εpowder   powder porosity 

εtablet   tablet porosity 

εfill       screw flight fill fraction 
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ρapp   apparent tablet density 

ρbulk   bulk density 

ρconsolidation  density under consolidation 

ρscrew   density at the screw inlet 

ρtapped   tapped density 

ρtrue   true density 

  variance   2݉ݐߪ

 normalized variance   2�ߪ

Θ   dimensionless time 

ωscrew   screw rotation rate 
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1 Introduction  1 

Interest in continuous processing is gaining momentum for pharmaceutical drug product manufacturing. 2 

Although drug products are traditionally manufactured via a series of batch-wise unit operations (Engisch 3 

and Muzzio, 2015), continuous processing offers several advantages to improve the manufacturing 4 

efficiency of solid dosage forms: reduced costs through faster development and less scale-up, smaller 5 

equipment footprint and elimination of intermediate storage (Vercruysse et al., 2013). Implementation of 6 

in-line process analyzers allows to monitor continuous processes which improves process understanding. 7 

This enables the design of a process control and real-time-release strategy which should ultimately improve 8 

the quality of the end product (Fonteyne et al., 2015; Simonaho et al., 2016).  9 

Although direct compression is an inherently continuous technique, simple unit operations preceding 10 

tableting (i.e. weighing and blending) are historically performed in batches. To enable continuous direct 11 

compression, the integration of continuous powder feeding units, a continuous dry powder mixer and 12 

tablet press is required. A handful of research papers recently described the feeding unit operation 13 

(Cartwright et al., 2013; Engisch and Muzzio, 2014, 2012; W. E. Engisch and Muzzio, 2015; Meier et al., 14 

2016). Feeders can transfer problems of composition and flow rate variability to subsequent unit 15 

operations when their flow rate variability is not well balanced with the amount of axial mixing within 16 

the blender. Therefore, the ability to accurately dose a powder over time is a key challenge within the 17 

overall manufacturing process. Continuous mixing studies previously focused on the influence of process 18 

and design variables on the mixing efficiency and flow behavior within mixers (Pernenkil and Cooney, 19 

2006). Multiple models are available in the literature to describe mixing and transport of particles through 20 

a continuous mixer (Fogler, 2006). The main limitation of using residence time distribution (RTD) as a 21 

predictive tool for mixing performance (Levenspiel, 1999) is its inability to capture micro-mixing. This is 22 

especially important for pharmaceutical blending processes as they combine high product uniformity 23 

requirements with small sample sizes. Studies correlating mixing performance with RTD suggested better 24 

mixing performance when the RTD is broader (Gao et al., 2011) whilst other studies suggested the 25 

performance is governed by the number of revolutions (Vanarase et al., 2010; Portillo et al., 2008). Due 26 

to its importance in batch-wise processing, an impressive number of experimental and conceptual 27 

compaction studies have been presented (Yu et al., 2014). Patel et al. (2006) underpinned the importance 28 

of material properties and tableting speed on compressibility, tabletability and compactibility  29 

This work is an extension of previous studies as experimental and/or conceptual knowledge was applied 30 

to each unit operation of an integrated continuous direct compression process. Reports on 31 

characterization of integrated from-powder-to-tablet continuous manufacturing platforms remain limited 32 
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(Ervasti et al., 2015; K. Järvinen et al., 2013; M. A. Järvinen et al., 2013; Simonaho et al., 2016; Vercruysse 33 

et al., 2013). Moreover, none of the described systems utilized an automated hopper refill system which is 34 

a critical point within the manufacturing process (W. E. Engisch and Muzzio, 2015). Continuous direct 35 

compression of an immediate release formulation was first reported by Järvinen et al. (2013). Tablets with 36 

good mechanical properties were produced although pharmacopeial uniformity requirements were not 37 

met under some conditions. The continuous manufacturing of extended release tablets via continuous 38 

direct compression was up to now exclusively investigated by Ervasti et al. (2015). They mainly investigated 39 

the impact of particle size (active and HPMC), drug load and mixer speed on product quality. HPMC 40 

particle size was a critical material attribute as it impacted the quality attributes of sustained release tablets 41 

such as weight variability and tablet strength (Ervasti et al., 2015). Tablet properties were more robust 42 

when a better flowing HPMC was incorporated as hydrophilic matrix former although drug release 43 

remained prone to mixer settings. Moreover, tablet quality showed significant variability over time as well 44 

as within one grab sample. In addition, the mixing performance was not related to the powder flow 45 

behavior within the mixer. Furthermore, a low system flow rate was selected (3.5 kg/h) throughout their 46 

study. Clearly, significant challenges need to be overcome to enable continuous direct compression of 47 

sustained release formulations. Among them, in depth characterization of the continuous mixing stage, 48 

improving product quality and exploring the impact of operating at flow rates relevant for pharmaceutical 49 

manufacturing. 50 

This paper is organized as follows: the employed continuous direct compression manufacturing platform 51 

is introduced in section 2. The used materials and applied methods are described in sections 3 and 4, 52 

respectively. The obtained results are discussed in section 5. First, the properties of each material and 53 

blend are elucidated (5.1). Second, the results of a fundamental loss-in-weight feeder characterization 54 

procedure are interpreted (5.2). Third, an experimental design was conducted with HPMC CR grade to 55 

understand the impact of impeller configuration and speed on process and product (5.3). Next, the impact 56 

of drug load on the mixing performance was verified and related to the blend properties and consecutive 57 

powder flow within the mixer and (5.4). Finally, the impact of HPMC grade and flow rate on was assessed 58 

(5.5). Conclusions of this work are presented in section 6.  59 

2 Continuous direct compression equipment 60 

The CDC-50 (GEA APC Pharma Solids, Wommelgem, Belgium) combines material handling, loss-in-weight 61 

feeding, two stage continuous blending, compression and in-line NIRs to monitor blend uniformity in an 62 

integrated manufacturing system (figure 1).  63 
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The individual materials are transferred to dedicated top up systems through vacuum conveying or gravity. 64 

The vacuum top up system consists of a conical hopper (3.2 L) with level sensor to regulate pneumatic 65 

powder supply. The gravity feed system consists of a cylindrical feed tube and is used when powders 66 

undergo triboelectric charging during vacuum transfer. Both systems are connected to a rotating top-up 67 

valve (0.4, 0.8, 1.2 or 1.6 L) which allows consistent hopper refill of the screw feeder at optimal fill level.  68 

Up to 6 GEA compact twin screw feeders can be integrated on the manufacturing system. The feeders can 69 

be distributed over two feeding stations positioned at the inlet of the first and second continuous mixer 70 

which holds a maximum of 6 and 2 feeders, respectively. The powder pump rests on top of the load cell 71 

(2 kg range) and consists of a 2 L hopper connected with a twin screw feeding system. An impeller rotates 72 

horizontally above the twin screws to ensure consistent screw flight filling and prevent bridging.  73 

The blending process is conducted by two consecutive GEA continuous dry powder blenders which 74 

separate the blending process into two distinct stages: the first blender is used for intensive mixing, 75 

whereas shear-sensitive materials are introduced in the second blender. The GEA continuous dry powder 76 

blender consists of a cylindrical processing chamber in which an impeller is rotating. The impeller is a shaft 77 

which holds 60 mixing blades that have a fixed tolerance with the upwards tilted (15°) processing chamber. 78 

Each blade can be positioned as a transport blade or a radial mixing blade (RMB) oriented respectively at 79 

45° or 0° along the axis of the shaft. The mixer has a rotation rate that ranges from 45 to 450 rpm.  80 

The blend is collected at the outlet of the second blender and guided via a borosilicate feed tube into the 81 

feed frame of the tablet press (MODUL™ S, GEA APC Pharma Solids, Halle, Belgium). A level sensor 82 

detects the fill level of the feed tube, which is maintained at its target during manufacturing by modulating 83 

the turret speed via a proportional-integral-derivate controller. A fiber optic contact probe (Lighthouse™ 84 

probe, GEA APC Pharma Solids, Wommelgem, Belgium) is connected to an NIR spectrometer (Tidas P 85 

analyzer, J&M Analytik, Essingen, Germany) and implemented in the feed tube just before the inlet of the 86 

feed frame. Spectra are recorded every second during tablet production. The MODUL™ S is equipped 87 

with moving rollers at the pre-compression station and fixed rollers at the main compression station.  88 

3 Materials  89 

Naproxen sodium was selected as a freely soluble cohesive model drug. The formulation contained 30% 90 

w/w naproxen sodium (‘NAP’, Zhejiang Charioteer Pharmaceutical Company, Tongyuanxi, China), 30% 91 

w/w hydroxypropyl methylcellulose (Methocel K4M premium CR, ‘CR’, Dow, Michigan, USA), 29% w/w 92 

spray dried lactose (Fast Flo 316, ‘FF316’, Kerry, Naas, Ireland), 10% w/w partially pre-gelatinized starch 93 

(‘Starch 1500’, Colorcon, Harleysvile, USA), 0.5% w/w fumed silica (CAB-O-SIL M-5P, ’SiO2’, Cabot, 94 
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Amersfoort, The Netherlands) and 0.5% w/w magnesium stearate (Ligamed MF-2-V, ‘MgSt’, Peter Greven, 95 

Venlo, The Netherlands). Methocel CR grade was compared to its Methocel DC2 equivalent to study the 96 

impact of HPMC particle size and flow.  97 

4 Methods  98 

4.1 Raw material characterization 99 

4.1.1 Particle size distribution 100 

The particle size distribution of raw materials was measured in triplicate by laser diffraction (Mastersizer 101 

S long bench, Malvern Instruments, Worcestershire, UK). The measurements were done via the dry 102 

dispersion method in volumetric distribution mode using a 300 RF lens combined with a dry powder feeder 103 

(Malvern Instruments, Malvern, UK) at a feeding rate of 3.0 G and a jet pressure of 2.0 bar. The particle 104 

size distribution was analyzed via the Mastersizer 2000 software and reported as d10 and d50 values.  105 

4.1.2 Density and porosity 106 

The bulk (ρbulk) and tapped density (ρtapped) were determined in a 100 ml graduated cylinder (n=3) mounted 107 

on a tapping device (J. Engelsmann, Ludwigshafen am Rhein, Germany). An exact mass of powder was 108 

gently poured into the graduated cylinder. The initial volume and volume after 1250 taps were recorded 109 

to calculate the bulk and tapped density, respectively. These values were used to calculate the Hausner 110 

ratio (HR) and Compressibility index (CI): 111 

	݋݅ݐܽݎ	ݎ݁݊ݏݑܽܪ ൌ 	
ூ௡௜௧௜௔௟	௩௢௟௨௠௘

௏௢௟௨௠௘	௔௙௧௘௥	ଵଶହ଴	௧௔௣௦
       (1) 112 

ሺ%ሻ	ݔ݁݀݊݅	ݕݐ݈ܾ݅݅݅ݏݏ݁ݎ݌݉݋ܥ ൌ 	100 ൈ	
ூ௡௜௧௜௔௟	௩௢௟௨௠௘	ି	௏௢௟௨௠௘	௔௙௧௘௥	ଵଶହ଴	௧௔௣௦

ூ௡௜௧௜௔௟	௩௢௟௨௠௘
   (2) 113 

The true density of all raw materials and blends were measured using helium pycnometry (AccuPyc 1330, 114 

Micrometrics, Norcross, U.S.A.) at an equilibration rate of 0.0050 psig/min with the number of purges set 115 

to 10. The powder porosity, εpowder, was calculated (3) where ρtrue denotes true density (g/ml).  116 

௣௢௪ௗ௘௥ߝ ൌ 1 െ
ఘ್ೠ೗ೖ
ఘ೟ೝೠ೐

          (3) 117 

4.1.3 Flowability of powders 118 
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Powder flowability was measured in triplicate using a ring shear tester (Type RST-XS, Dietmar Schulze 119 

Schüttgutmesstechnik, Wolfenbuttel, Germany). The applied normal load at pre-shear was 1000 Pa, 120 

afterwards the powders were sheared under three different consolidation stresses: 400, 600 and 800 Pa. 121 

The density under consolidation at pre-shear (ρconsolidation) was recorded. Powder cohesion (тc) was 122 

determined using the yield locus to estimate the shear stress at zero normal load. The flow function 123 

coefficient (ffc) was used to evaluate flowability. Furthermore, the density-weighed flow was calculated to 124 

assess the flow under gravity and expressed as ffp (4) and ffrho (5). 125 

݂ ௣݂ ൌ ݂݂ܿ	 ൈ  ௕௨௟௞          (4) 126ߩ

݂ ௥݂௛௢ ൌ ݂݂ܿ	 ൈ  ௖௢௡௦௢௟௜ௗ௔௧௜௢௡          (5) 127ߩ

4.2 Loss in weight feeding 128 

4.2.1 Experimental set up 129 

The feeding behavior of materials included in this study was verified on the compact feeder (GEA, 130 

Wommelgem, Belgium). First, screws were primed prior to each run. Subsequently, the hopper was gently 131 

filled up to 2L. The corresponding weight (g) was recorded and considered as maximal. The hopper was 132 

run completely empty while the operation mode (volumetric or gravimetric), screw speed (rpm), net 133 

weight (g), feed factor (g/screw revolution) and feedrate (g/s) were logged every second. The drive 134 

command (%) was calculated by normalizing the screw speed with the max screw speed (462 rpm).  135 

4.2.2 Feed factor decay 136 

The volumetric feedrate (mL/s) of any screw feeder can be calculated (Engisch and Muzzio, 2014): 137 

	݁ݐܽݎ݂݀݁݁	ܿ݅ݎݐ݁݉ݑ݈݋ܸ ൌ ௦ܸ௖௥௘௪ ൈ ௙௜௟௟ߝ ൈ ߱௦௖௥௘௪	   (6) 138 

Where Vୱୡ୰ୣ୵ (mL/revolution), ε୤୧୪୪, ωୱୡ୰ୣ୵ (revolutions/s) denote the volume dispensed per screw 139 

revolution, screw flight fill fraction and screw rotation rate, respectively. The volume dispensed per screw 140 

revolution is 4.861 or 2.401 mL for screws with a pitch of 20 or 10 mm, respectively. The fill fraction 141 

accounts for incomplete screw flight filling due to poor powder flow in the screw flights or screw layering. 142 

In order to calculate the gravimetric feed rate (g/s) one should multiply volumetric feedrate with the 143 

density (g/mL) of the material at the screw inlet, 	ρୱୡ୰ୣ୵: 144 

	݁ݐܽݎ݂݀݁݁	ܿ݅ݎݐ݁݉݅ݒܽݎܩ ൌ ௦௖௥௘௪ߩ 	ൈ  145 (7)   	݁ݐܽݎ݂݀݁݁	ܿ݅ݎݐ݁݉ݑ݈݋ݒ
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At a fixed screw speed, the gravimetric feedrate over time (8) is solely related to the feed factor over time 146 

(9). If one assumes that εfill remains constant during steady state feeding, ρୱୡ୰ୣ୵ሺtሻ need to be determined 147 

in order to predict the gravimetric feedrate over time. Furthermore, a theoretical feed factor value is 148 

calculated by substituting ρscrew with ρbulk in equation 9 and assuming complete screw flight filling. It was 149 

then evaluated if the theoretical feed factor provides a good estimate  of the actual value.  150 

ሻݐሺ	݁ݐܽݎ݂݀݁݁	ܿ݅ݎݐ݁݉݅ݒܽݎܩ ൌ ሻݐሺ	ݎ݋ݐ݂ܿܽ	݂݀݁݁ ൈ ߱௦௖௥௘௪      (8) 151 

ሻݐሺ	ݎ݋ݐ݂ܿܽ	݀݁݁ܨ ൌ ሻݐ௦௖௥௘௪ሺߩ ൈ 	 ௦ܸ௖௥௘௪ ൈ  ௙௜௟௟       (9) 152ߝ

The feed factor versus weight profiles, further referred to as feed factor profiles, indicate the feed factor 153 

and hence also the density at screw inlet decay with a decreasing net weight in the hopper. To compare 154 

the feeding behavior of materials with different density, the variable hopper fill level (10)  is introduced to 155 

normalize the net hopper weight for the maximum weight in the hopper. The maximum feed factor is 156 

typically observed at higher fill levels where the feed factor remains relatively stable. It can be used to 157 

estimate the feeding capacity for a particular material. Normalized feed factor profiles were constructed 158 

by normalizing the feed factor for the maximum feed factor (11). These normalized feed factor profiles 159 

allow to study the shape of the feed factor decay in case of absolute differences in the maximum feed 160 

factor.  Hence normalized feed factor profiles allow to define a minimum fill level and select a suitable refill 161 

regime for each material.  162 

ሻݐሺ	݈݁ݒ݈݁	݈݈݅ܨ ൌ
ே௘௧	௪௘௜௚௛௧	ሺ௧ሻ

ெ௔௫௜௠௨௠	௪௘௜௚௛௧
ൈ 100        (10) 163 

ሻݐሺݎ݋ݐ݂ܿܽ	݂݀݁݁	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
௙௘௘ௗ	௙௔௖௧௢௥ሺ௧ሻ

ெ௔௫௜௠௨௠	௙௘௘ௗ	௙௔௖௧௢௥
ൈ 100     (11) 164 

4.3 Continuous blending 165 

4.3.1 Experimental set-up 166 

At the first blending stage, the impact of impeller rotation rate and configuration was investigated according 167 

to a full factorial design of experiments where each factor was tested at three levels. The impeller 168 

configuration (figure 2) was considered as a quantitative factor by extending the shear zone in the middle 169 

of the impeller with RMB (8, 12 or 16). The impeller speed was set at 200, 300 and 400 rpm for each 170 

impeller configuration. The flow rate (25 kg/h), second blender settings and formulation (CR grade) 171 

remained fixed during this experimental design. The investigated responses were flow behavior within the 172 

continuous mixer (fill level, strain, RTD analysis and modeling), mixing performance (BU) and tablet quality 173 



7 

(content uniformity and weight variation). Additional experiments were performed to evaluate the impact 174 

of HPMC grade. Finally, the feasibility of operating at high flow rates (50 and 75 kg/h) was explored for 175 

the better flowing Methocel DC2-based formulation. For these trials tablet quality characterization was 176 

extended with tensile strength and dissolution.  177 

4.3.2 Development and verification of NIR blend uniformity models  178 

NIR-based Partial Least Square (PLS) regression models were constructed during in-line monitoring of 179 

NAP content. Data analysis was performed using SIMCA 14 (Umetrics AB, Umeå, Sweden). The PLS 180 

models were developed by regressing 2750 (11 calibration standards x 250 spectra/standard) inline 181 

collected and pre-processed NIR spectra with their corresponding concentration of NAP. Spectra were 182 

collected in the spectral region from 1091 to 2107 nm with a pixel dispersion of 3.97 nm. Each 183 

spectrum was collected with an integration time of 60 ms and averaged over seven scans such that 184 

NIRs samples approximated the weight of unit dose (i.e. 400 mg). Spectra were recorded every second. 185 

The verification set consisted of 11 independent verification standards which each contained 50 spectra. 186 

At nominal concentration (30.5 %), three independent calibration and verification runs were performed. 187 

The NAP level of each standard is depicted in table 3.  188 

Two spectral regions specific for NAP were selected for analysis (1130-1230 and 1404-1739 nm). These 189 

spectral regions were standard normal variate corrected and mean-centered before PLS was performed. 190 

Three PLS components were chosen as the goodness of prediction of the model did not significantly 191 

improved (Q² = 0.99) when adding extra components. The scores and loading plot of the first component 192 

confirmed this component represents the variation in NIR spectra caused by the difference in NAP 193 

concentration. Positive peaks in the loading of the first component corresponds to spectral peaks of NAP 194 

which confirmed thereby the specificity of the method. A higher score for component 1 therefore indicates 195 

a higher NAP concentration.  196 

Standard cross-validation was applied by dividing the dataset in 7 groups. The root mean squared error of 197 

cross validation of this three component PLS model was 0.52 % (w/w). The predictive performance of this 198 

model was subsequently evaluated by predicting the concentration for all verification standards (table 3). 199 

This resulted in an overall root mean squared error of prediction value of 0.51% (w/w). A linear relation 200 

between target concentration and model predicted concentration was found (R² = 0.99).  201 

4.3.3 RTD estimation and analysis 202 
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The RTD was estimated by performing an impulse response test: a pulse of NAP was introduced at the 203 

inlet of the first blender whilst its concentration was monitored via in-line NIRs as a function of time at 204 

the system outlet (feed tube of the tablet press). The response is the concentration as a function of time 205 

(s), i.e. the concentration profile c(t). The amount of tracer (max 25 g) was selected such that the system 206 

response was detectable with near infrared spectroscopy and within the calibrated range (section 4.3.2). 207 

Furthermore, the pulse size was limited to ensure the steady state of the process was not disturbed. The 208 

c(t) curve was used to calculate the RTD function e(t) with equation (12). Note that e(t) normalizes the 209 

concentration profile c(t) by the total amount of tracer ׬ ܿሺݐሻ݀ݐ
ஶ
଴ . 210 

݁ሺݐሻ ൌ
௖ሺ௧ሻ

׬ ௖ሺ௧ሻௗ௧
ಮ
బ

          (12) 211 

The RTD function e(t) and mean residence time (tm) were used to obtain the normalized residence time 212 

which is calculated as eሺθሻ ൌ eሺtሻ ൈ t୫ and where θ is the dimensionless time, i.e. θ	 ൌ
	୲

୲ౣ
. The variance 213 

θߪ) and normalized variance (2݉ݐߪ)
2) are measures of the spread of the RTD and normalized RTD curve, 214 

respectively. The RTDs were quantitatively assessed by calculating tm, 2݉ݐߪ and ߪ�2 (equation 13 – 15) 215 

(Fogler, 2006). By treating the boundary condition of the mixer as a closed system with no axial or radial 216 

variation in upstream and downstream concentrations to axial dispersion model, Péclet number (Pe) was 217 

calculated using equation 16 (Kumar et al., 2014). The dimensionless Péclet number is the ratio of the rate 218 

of convection and dispersion. Further interpretation of these RTD measures is described in section 5.3.1.  219 

݉ݐ ൌ
׬ ௧∙௘ሺ௧ሻௗ௧
ಮ
బ

׬ ௘ሺ௧ሻௗ௧
ಮ
బ

           (13) 220 

݉ݐߪ
ଶ ൌ

׬ ሺ௧ି௧௠ሻమ∙௘ሺ௧ሻௗ௧
ಮ
బ

׬ ௘ሺ௧ሻௗ௧
ಮ
బ

         (14) 221 

ఏଶߪ ൌ
ఙ௧೘

మ

௧೘
మ 	           (15) 222 

ఙ௧೘
మ

௧೘
మ ൎ

ଶ௉௘ିଶାଶ∙௘షು೐

௉௘మ
          (16) 223 

4.3.4 RTD Modeling  224 

A non-ideal flow model has been used to describe the powder flow inside the continuous mixer: the tanks 225 

in series model with plug-flow volume fraction was selected to fit the normalized RTDs, e(θ). The model 226 

(17) is a three parameter flow model (Levenspiel, 1999).  227 
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݁ሺߠሻ ൌ
௕ሾ	௕ሺఏି௣ሻሿ೙షభ

ሺ௡ିଵሻ!
expሾെܾሺߠ െ  ሻሿ        (17) 228݌

Where ݊ ൌ ݊௧௔௡௞௦ 	ൌ ݌ ,ݏݎ݋ݐܿܽ݁ݎ	݇݊ܽݐ	݀݁ݎݎ݅ݐݏ	ݏݑ݋ݑ݊݅ݐ݊݋ܿ	݂݋	ݎܾ݁݉ݑ݊	 ൌ
௧௠௜௡
௧௠

 and ܾ ൌ 	
௡

ଵି௣
 (18) 229 

Where tmin is the minimum residence time and p is the volume fraction of the continuous mixer that is 230 

assumed to correspond to plug-flow. The parameters defining e(ɵ) are the number of tanks in series and 231 

the minimum and mean residence time. The mean residence time was calculated (13) whereas the number 232 

of tanks and minimum residence time were estimated by minimizing the residual sum of squares (19) 233 

between experimental and fitted data as described by Kumar et al. (2015). The coefficient of determination 234 

(R2) was used to assess model performance.  235 

	ݏ݁ݎܽݑݍݏ	݂݋	݉ݑݏ	݈ܽݑ݀݅ݏܴ݁ ൌ 	∑ሺ ݁ሺߠሻ௘௫௣ െ	݁ሺߠሻ௦௜௠ሻଶ     (19) 236 

One can calculate the fitted RTD using the fitted normalized RTD, 
ୣሺ஘ሻ

୲୫
ൌ eሺtሻ    (20) 237 

4.3.5 Model based macro-mixing evaluation 238 

Axial mixing describes the transport and back mixing  in the system and is characterized by estimating the 239 

RTD. The design and process variables of the continuous blender must be carefully selected such that its 240 

RTD has sufficient macro-mixing ability to filter out feeder fluctuations. Levenspiel (1999) illustrated one 241 

can predict the concentration of the active in the outlet stream of a continuous mixer Cout(t). Therefore, 242 

the fitted RTD and concentration of the active in the inlet stream (Cin) have to be determined using 243 

equations 20 and 21, respectively. Subsequently, these signals were convoluted (22) in Matlab R2015b 244 

(Mathworks, Natick, Massachusetts, USA). 245 

ሻݐሺ	݊݅ܥ ൌ 	
ிோಿಲುశೄ೔ೀమሺ௧ሻ

ிோಿಲುశೄ೔ೀమሺ௧ሻାிோಷಷయభలሺ௧ሻାிோಹುಾ಴	ሺ௧ሻାிோೄ೟ೌೝ೎೓ሺ௧ሻାிோಾ೒ೄ೟ሺ௧ሻ
ൈ 100   (21) 246 

Where FR(t) is the gravimetric flow rate over time for the component specified.  247 

ሻݐሺ	ݐݑ݋ܥ ൌ ׬	 ݐሺ	݊݅ܥ െ ᇱݐ݀	ᇱሻݐሺܧ	ᇱሻݐ ൌ ׬	 ݐሺ	݊݅ܥ
ᇱሻ	ܧሺݐ െ 	ᇱݐ݀	ᇱሻݐ

௧
଴ 	

௧
଴      (22) 248 

The residual standard deviation on the tracer concentration in the outlet stream (RSD_Cout) was 249 

determined as an indicator of macro-mixing performance.  250 

4.3.6 Fill level measurement 251 
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The fill level or residence mass is defined as the amount of material in the mixer. During start-up, the fill 252 

level increases with time before a plateau is reached. The mixer operating under constant fill level is 253 

considered to be operating at steady state conditions. The fill level in the mixer determines the residence 254 

time and thus the strain experienced by the powder inside the mixer. The fill level in the blender was 255 

determined by stopping the steady state process instantaneously. The powder inside the blender was then 256 

collected pneumatically. In the absence of dead volumes inside the continuous mixer, fill level measurement 257 

is complementary to mean residence time calculation from RTD estimation (Vanarase and Muzzio, 2011). 258 

ሻݏሺ	݁݉݅ݐ	݁ܿ݊݁݀݅ݏ݁ݎ	݈݇ݑܤ ൌ
ி௜௟௟	௟௘௩௘௟	ሺ௚ሻ

ி௟௢௪	௥௔௧௘	ቀ
೒
ೞ
ቁ
       (23) 259 

4.3.7 Strain measurement 260 
In convective continuous mixers, energy input is provided by the rotating impeller. The impeller speed 261 

influences the fill level and mean residence time. Strain is thereby proportional to the product of speed 262 

and mean residence time which reflects the number of blade passes in the mixer (Vanarase et al., 2013b).  263 

ݏ݁ݏݏܽ݌	݈ܾ݁݀ܽ	݂݋	ݎܾ݁݉ݑܰ ൌ ሻݏሺ	݁݉݅ݐ	݁ܿ݊݁݀݅ݏ݁ݎ	݊ܽ݁ܯ ∗
ூ௠௣௘௟௟௘௥	௦௣௘௘ௗ	ሺ௥௣௠ሻ

଺଴
  (24) 264 

4.4 Tableting 265 

4.4.1 Experimental set-up 266 

The Modul S press was equipped with an overfill cam of 14 mm and 38 punches (euro B, 10 mm diameter, 267 

concave) to produce tablets with a target weight of 400 mg. The press operated in an automatic mode 268 

where the pre-compression displacement signal was used to monitor tablet weight which was controlled 269 

by adjusting fill depth. The standard paddles were installed in the forced feeder and their speeds were kept 270 

constant at 30 and 60 rpm for the first and second paddle feeder, respectively. The turret speed was set 271 

to ensure that the theoretical flow rate of the press matched the total flow rate of the feeders. This 272 

corresponded to a speed of 27, 55 and 82 rpm for a flow rate of 25, 50 and 75 kg/h, respectively. During 273 

start-up the feed tube level initiated turret rotation at its target (50%). The turret speed was modulated 274 

during processing to maintain this target. Below 20% feed tube level, the press was stopped to allow filling 275 

of the feed tube, whereas at 100% feed tube level the mixer and feeders were stopped. Pre-compression 276 

force was set at 15.2 MPa. The pre-compression height, i.e. the distance between the punches at pre-277 

compression, was regulated with 0.01 mm adjustments such that a minimal pre-compression displacement 278 

of 0.1 mm at the rollers was maintained. The main compaction height was set at 2.252 mm whilst the main 279 

compression pressure was monitored. At each flow rate, tabletability, compressibility and compactibility 280 
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profiles were constructed by tableting at a main compaction pressure of 127, 190, 229, 254, 318 and 381 281 

MPa.  282 

4.4.2 Tablet characterization 283 

4.4.2.1 Weight variability 284 

Tablets (n=10) were randomly selected from grab samples collected at an interval of 10 s. Tablet weight 285 

variability was expressed as the residual standard deviation on the tablet weight (RSDWV).  286 

4.4.2.2 Tablet strength and porosity 287 

Tablets (n=20) were weighed and their hardness, thickness and diameter was determined (Sotax HT 10, 288 

Basel, Switzerland). The tablet tensile strength (MPa) was calculated using equation 25 where F, d and T 289 

denote the crushing force (N), tablet diameter (mm) and tablet thickness (mm), respectively. 290 

	݄ݐ݃݊݁ݎݐݏ	݈݁݅ݏ݊݁ܶ ൌ
ଶி

గௗ்
         (25) 291 

The porosity of the formed compacts was calculated using equation 26 where ρapp denotes the apparent 292 

tablet density (g/mL) which was calculated by dividing the tablet mass by its volume.  293 

௔௕௟௘௧்ߝ ൌ 1 െ
ఘೌ೛೛
ఘ೟ೝೠ೐

          (26) 294 

4.4.2.3 Immediate axial recovery (IAR) 295 

Axial recovery of tablets after ejection was calculated via equation 27 (Armstrong and Haines-Nutt, 1972): 296 

Immediate	axial	recovery	%	 ൌ
୲ୟୠ୪ୣ୲	୦ୣ୧୥୦୲	౗౜౪౛౨	౛ౠ౛ౙ౪౟౥౤	ି	୲ୟୠ୪ୣ୲	୦ୣ୧୥୦୲	౫౤ౚ౛౨	ౣ౗౟౤	ౙ౥ౣ౦౨౛౩౩౟౥౤

୲ୟୠ୪ୣ୲	୦ୣ୧୥୦୲	౫౤ౚ౛౨	ౣ౗౟౤	ౙ౥ౣ౦౨౛౩౩౟౥౤
	ൈ 100  (27) 297 

4.4.2.4 Content uniformity 298 

Tablets (n=30) were randomly selected from a grab sample collected during steady state processing. Each 299 

tablet was homogenized in 400 mL phosphate buffer with a pH of 7.4 (USP monograph) using an automated 300 

tablet preparation workstation (TPW™, Sotax, Basel, Switzerland). Subsequently, 10.0 mL of homogenate 301 

was filtered and the NAP content derived from the absorbance of the filtrate at 332 nm using a UV 302 

spectrophotometer with 0.5 cm cell (Agilent 8453, Agilent technologies, Santa Clara, USA). Content 303 

uniformity (CU) was expressed as the residual standard deviation on the NAP content (RSDcu). 304 

4.4.2.5 Dissolution 305 

Dissolution tests were performed (n=6) in pH 7.4 phosphate buffer using the paddle method with sinkers 306 

(USP monograph for NAP tablets). The temperature of the dissolution medium was maintained at 37 ± 307 
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0.5 °C, while the rotation speed was set at 100 rpm. Samples of 9 mL were withdrawn after 0.5, 1, 2, 4, 6, 308 

8, 10, 12 and 16 h. The drug content in these samples was derived from the absorbance of the samples at 309 

332 nm using a UV spectrophotometer (1 cm cells).  310 

The percent drug released versus time profiles were used to investigate the mechanism of drug release 311 

and evaluate the influence of process settings. The power law was used as a simple semi-empirical equation 312 

(28) to describe the drug release from the polymeric systems (Siepmann and Peppas, 2012):  313 

ெ೟

ெಮ
ൌ  ௡           (28) 314ݐ݇

Where, Mt is the amount of drug released at time t, M∞ is the amount of drug released after infinite time, 315 

k is a kinetic constant incorporating structural and geometric characteristics of the tablet, and n is the 316 

release exponent, indicative for the drug release mechanism. The model was fitted using the curve fitting 317 

toolbox in Matlab R2015b. For matrix tablets, a release exponent of 0.5 indicates diffusion-controlled drug 318 

release whereas 1.0 indicates erosion or swelling-controlled release. Intermediate values suggest that 319 

diffusion and erosion contribute to the overall release mechanism (Levina and Rajabi-Siahboomi, 2004; 320 

Siepmann and Peppas, 2012). The time to reach 20% and 50% release were also included as responses. 321 

5 Results and discussion 322 

5.1 Raw material characterization 323 

Individual materials and blends were characterized extensively to compile a multivariate dataset 324 

(complementary data). Subsequently, principal component analysis was applied on this dataset (SIMCA 14). 325 

The score plot was used (figure 3, left) to identify how individual materials and blends are situated with 326 

respect to each other whereas the loading plot (figure 3, right) was used to reveal how variables are related 327 

to each other. The score and loading plots were observed simultaneously to reveal the physical meaning 328 

of these components. Materials with a specific location on the score plot have high values for variables 329 

with similar position on the loading plot (positively correlated) and low values for variables at the opposite 330 

side of the loading plot (negatively correlated). To evaluate a variable, one can draw a straight line through 331 

the origin and project other variables of interest on that line to assess their correlation. Additionally, the 332 

correlation matrix (complementary data) was used to verify their magnitude of correlation. 333 

Three components were fitted in the model explaining 96 % of the variation in the dataset. The first, 334 

second and third component explained 74, 16 and 6 %, respectively. The first component corresponds to 335 

density-weighed flow as these variables have high positive loadings for the first component but relatively 336 
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low loadings for the second component. Materials with high scores for component 1 flow well under 337 

gravity and usually consist of larger particles. Furthermore, the different densities are correlated as they 338 

cluster in the right top corner and are negatively correlated with porosity which is located in the left 339 

bottom corner. Powder flow and fines are positioned in the right bottom corner of the loading plot (figure 340 

3, right) and are negatively correlated with cohesion (left top corner). Powder flow deteriorated when the 341 

powder bed contained more fine particles due to their high cohesiveness. The variation in the dataset for 342 

density, flow, cohesion and porosity is clearly described by the second principal component. However, 343 

there is no single property which truly describes this second component as these variables are not 344 

completely independent from the first component (i.e. density-weighed flow). The variability in 345 

compressibility and cohesion of the powder bed is described by component 3 (not shown). 346 

The key properties of each individual material are depicted in table 1. The score plot reveals Starch 1500 347 

is situated in the top right corner: the powder combined easy flow with high density and flowed as a 348 

consequence well under gravity. Spray dried lactose (FF316) combined better flow with similar density 349 

which explains why its density-weighed flow was even higher. FF316 had a remarkably lower tapped density 350 

(0.71 g/mL) compared to Starch 1500 (0.80 g/mL) and has therefore lower scores for component 2. MgSt 351 

is situated in the left bottom corner of the score plot due to its poor density-weighed flow (ffp = 0.42) 352 

combined with its specifically low true density  (1.04 g/mL) and high porosity (0.82). Compared to MgSt, 353 

NAP is situated slightly more to the right side but significantly higher along the axis of component 2. NAP 354 

flows also poor under gravity (ffp = 0.34) but is significantly denser. Pre-blending NAP with SiO2 improved 355 

powder flow although SiO2 made the powder bed more compressible. Both HPMC grades had a unique 356 

location on the score plot: low positive scores for component 1 and high negative scores for component 357 

2. The HPMCs combine easy flow with relatively low density. The Methocel DC2 grade was plotted to the 358 

right of Methocel CR grade. The direct compression grade has a higher particle size which improves 359 

powder flow and reduces the cohesiveness and compressibility of the powder bed.  360 

Two placebo sustained release platform formulations (section 3), composed of either Methocel CR or 361 

Methocel DC2 as matrix former, were characterized to evaluate the impact of HPMC grade on blend 362 

properties. The Methocel DC2 blend was positioned to the right of the Methocel CR blend on the score 363 

plot. This was attributed to the improved flow (flow function coefficient of 6.80 compared to 5.75) and 364 

slightly higher bulk density (0.46 vs 0.44 g/mL) of the Methocel DC2 blend. Both placebo blends shifted to 365 

the left on the score plot when 30% NAP was incorporated in the formulations. The high level of NAP 366 

reduced the density and deteriorated the flow. However, the Methocel DC2-based blend clearly retained 367 

the most favorable blend properties as it had higher scores for component 1 and 2. The score plot also 368 

revealed the impact of drug load on blend properties. An increase in NAP content gradually reduced the 369 
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density and deteriorated the flow: a drug load increase from 21 to 40% reduced the flow function 370 

coefficient from 2.15 to 1.53 and the bulk density from 0.41 to 0.29 g/mL.  371 

This principal component model functions as a dynamic raw material property database that reveals in 372 

which properties materials differ. Loading new samples in the model allows to situate them among 373 

materials for which process knowledge is already established. Moreover, characterizing materials enabled 374 

correlation and modeling of their properties with process and product responses. In other words the key 375 

material properties at the loss-in-weight feeding (section 5.2), continuous blending (section 5.4 and 5.5) 376 

and tableting (section 5.5.2) unit operation could be revealed. 377 

5.2 Loss-in-weight feeding 378 

All feed factor profiles showed a similar trend: the feed factor was initially near its maximum when the 379 

hopper of the feeder was completely full (Figure 4). The feed factor remained then relatively stable during 380 

emptying until a material specific hopper fill level was reached. Subsequently the feed factor decreased 381 

gradually towards a minimal feed factor (figure 4, left). One can assume that the actual weight of the 382 

powder bed regulates the compression of powder at the screw inlet over time. The powder bed is 383 

densified as a function of the gravitational pressure exerted by its own weight. Hence the compressive 384 

pressure decreased when feeders emptied their hopper. The resulting decrease in density at the screw 385 

inlet is hypothesized to cause this feed factor decay.  386 

The maximum feed factor was correlated with bulk density (R2 = 0.85) (figure 4, right). Twin screws act as 387 

a pump by displacing a fixed volume, i.e. the volumetric feed factor, every screw revolution. Therefore, a 388 

higher density at the screw inlet yields theoretically a higher feed factor. This theoretically predicted feed 389 

factor-bulk density relation (calculations and assumptions described in section 4.2.2) corresponds relatively 390 

well with the experimentally derived feed factor-bulk density relation. However, flow properties clearly 391 

confounded the bulk density-feed factor correlation. Two materials deviated from the theoretical curve 392 

which indicated that bulk density is not the only property governing the transport capacity. NAP is classified 393 

as a very cohesive material and has a significantly lower feed factor compared to slightly better flowing 394 

materials with similar density (i.e. NAP+SiO2). This might be attributed due to screw layering and/or 395 

incomplete screw flight filling by NAP. In contrast, the experimentally derived feed factor of the freely 396 

flowing FF316 was lower than the theoretically predicted feed factor. As incomplete screw filling seems 397 

unlikely for FF316, the density in the screw inlet must have been significantly lower than the bulk density. 398 

It is hypothesized the powder was loosely packed in the screw because the particles flowed freely in the 399 

rotating screw instead of being transported as a packed bed. Interestingly, the maximum feed factor for 400 

Starch 1500 (2.97) was significantly higher compared to FF316 (2.12). Both materials have a similar bulk 401 
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density (≈ 0.63 g/mL) but packed significantly different (i.e. Starch 1500 has a Hauser ratio of 1.29 compared 402 

to 1.13 for FF316) and flowability (i.e. Starch 1500 flow is passable and FF316 flow is good). Due to its 403 

compressibility, Starch 1500 has the ability to densify in the hopper and/or screw. In combination with its 404 

moderate flow properties, Starch 1500 will be efficiently transported as a packed bed instead of loose 405 

particles. Furthermore tapped density, compared to bulk density, generally correlated better with the 406 

maximum feed factor (R2 = 0.91). These observations underpinned that bulk density, compressibility and 407 

powder flow impact the maximum feed factor value.  408 

Table 2 presents the feeder flow rate ranges based on a system flow rate range of 25 to 75 kg/h and the 409 

ratio of the components in the formulation. The maximum feed factor value was used to estimate the drive 410 

command at the intended flow rates. Twin concave screws with 20 mm pitch appeared to be perfectly 411 

suited to dose the high throughput products FF316 and Methocel DC2. Due to its high feed factor, a 412 

relatively low drive command (3.0 %) was required to dose Starch 1500 at 2.5 kg/h. The feeder was 413 

therefore equipped with 10 mm pitch concave screws to enable operation at double the drive command 414 

(6.1%) and avoid thereby pulsating mass flow. Due to its low dose in the formulation, MgSt required an 415 

extremely low mass flow (0.125 kg/h) which inevitably resulted in an extremely low drive command (0.5 416 

%) using concave screws with 20 mm pitch. Hence, screws with 10 mm pitch were selected to enable MgSt 417 

dosing at higher drive command (1.3 %). A single feeder dosing pure NAP was not able to achieve the 418 

maximum flow rate of 22.5 kg/h. One strategy could be to set-up multiple NAP feeders in parallel. 419 

Alternatively, feeding a NAP+SiO2 pre-blend at the maximum flow rate (22.9 kg/h) required 76.4% drive 420 

command. During in-line blending trials at 75 kg/h two NAP+SiO2 feeders were eventually installed to 421 

prevent operating near the drive command limits at lower hopper fill levels.  422 

A hopper refill strategy was derived from the normalized feed factor profiles (figure 4, middle). The goal 423 

is to operate the feeder within a fill level window where the feed factor remains stable and close to its 424 

maximum value. Hence, less control actions are required to deal with feed factor kinetics during emptying 425 

and refilling of the hopper. The feed factor remained relatively stable till low fill levels for Starch 1500, 426 

FF316 and HPMC: a feed factor decrease of 5% was only observed below 15 % fill level. Their feeders were 427 

therefore run down to 20% fill level before triggering a refill. Highly compressible powders with low density 428 

displayed a decay at significantly higher fill level. A decay of 5% was already reached at 80, 50 and 20% fill 429 

level for NAP, MgSt and NAP+SiO2, respectively. The normalized feed factor profile clearly illustrated an 430 

additional advantage of dosing NAP+SiO2 pre-blend: the normalized feed factor remained constant till 40% 431 

fill level for the pre-blend whereas the decay was initiated from the start for NAP. A refill at 40% fill level 432 

was triggered for the pre-blend and MgSt. Operating in the same feed factor window with NAP would 433 
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require more frequent refills. The actual impact of hopper refills during continuous manufacturing was 434 

further investigated at the feeding and blending unit operation (section 5.3.6). 435 

5.3 Effect of impeller configuration and speed 436 

Residence time estimation was performed as a function of impeller speed (i.e. RPM) and configuration (i.e. 437 

RMB) (figure 5). Besides changes in RTD profiles, the impact of process and design parameters was clearly 438 

reflected in other process and product responses. Therefore, a PLS model was fit, simultaneously 439 

representing the variation of all responses to the variation and interaction of the factors. Thereby the 440 

loading plot is a useful tool to understand how factors and responses are correlated (figure 6). The loading 441 

plot shows that the first PLS component is dominated by the number of RMB mounted on the impeller 442 

(on the negative side of the X-axis) and to a lesser extent by impeller speed (on the positive side). The 443 

second component is a combination of impeller speed and the quadratic and interaction model terms. 444 

Several responses appear to be correlated: the spread of the (normalized) RTD, fill level, strain, bulk and 445 

mean residence time cluster along the axis of component 1 on the loading plot. These responses have 446 

higher values when the impeller is equipped with more RMB and operates at lower speed. Responses 447 

describing the ratio of convective transport and dispersive mixing (péclet number and number of tanks) 448 

showed negative correlation with this response cluster, especially with the normalized variance. Installing 449 

more RMB and lowering the mixing speed improved the axial mixing efficiency (low number of péclet and 450 

tanks and low variability in the outlet stream). Remarkably, the blend uniformity measures are located near 451 

the origin and hence not significantly impacted by the investigated factors. Variability in tablet weight and 452 

content was higher for high values of the second component indicating the importance of the quadratic 453 

terms to describe their variance. Remarkably, these tablet properties did not group with RTD related 454 

responses. Hence one can conclude that both RTD estimation and product quality determination were 455 

required to fully characterize the manufacturing system. Effects and factor interactions are discussed in 456 

more detail below using figures 7, 8, 9 and 10. The size of the effect is presented in a table below the 457 

corresponding effect plot.  458 

5.3.1 Powder flow behavior in the continuous mixer  459 

5.3.1.1 Effect on fill level, bulk residence time and mean residence time 460 

The responses fill level, bulk residence time and mean residence time spanned a wide range from 0.096 to 461 

0.610 kg, 24 to 88 s and 97 to196 s, respectively. Overall, good correlation (R2=0.96) was observed 462 

between the responses bulk residence time and mean residence time, indicating that fill level measurements 463 

and RTD estimations are complementary. The NIRs probe is implemented in the feed tube of the tablet 464 

press which explains the absolute difference between bulk and mean residence time. The impeller 465 
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configuration is an important factor to include in RTD studies for continuous mixers as the impeller drives 466 

the mixing and transport of particles through the mixer. The RMB had a significant effect on fill level, bulk 467 

and mean residence time (figure 7, top). By extending the RMB section, more powder accumulated in the 468 

mixer due to more restricted material flow. For fill level and bulk residence time, this effect was not linear 469 

and intensified when more RMB were installed. The experimental error inherently associated with RTD 470 

estimation (higher error bars compared to fill level estimation) probably caused statistical insignificance of 471 

the quadratic term for mean residence time. Next to the number of RMB, the main effect of impeller speed 472 

was significant for fill level, bulk and mean residence time. This can be explained by the higher conveying 473 

rate of powder within the blender when the impeller rotates faster. The impact of speed on fill level and 474 

bulk residence time was mainly linear as the quadratic term had a statistically significant although very 475 

limited effect. The interaction effect (figure 7, bottom) of RMB and speed on fill level, bulk and mean 476 

residence time was significant. Remarkably, an increase in speed reduced the impact of the impeller 477 

configuration. At low filling conditions (i.e. for low number of RMB), marginal differences in these responses 478 

were observed when the impeller speed was varied from its low to high level. For this configuration, the 479 

conveying rate at low impeller speed was still sufficiently high to prevent an accumulation of powder in the 480 

mixing section. When the length of the mixing section is extended and the mixer operates at low speed, 481 

the powder transported by the initial conveying section is less able to pass the mixing section without 482 

undergoing restriction to flow. Consequently, the powder accumulates in the mixer under these 483 

conditions. Operating at high impeller speed level increased the conveying rate which reduced the 484 

efficiency of the shear zone to restrict powder flow. Consequently fill level, bulk and mean residence time 485 

were more reduced (figure 7).  486 

5.3.1.2 Effect on minimum residence time 487 

The lag time describes the rate of transport through the blender. Quantifying the minimum residence time 488 

is important to understand when disturbances at the feeding stage will reach the inlet of the tablet press. 489 

The minimum residence  ranged from 7 to 53 s. The effect plot shows the main effects of impeller speed 490 

and number of RMB are statistically significant in contrast to their quadratic and interaction terms (figure 491 

7, top). Remarkably, the minimum residence time is the only response where speed is the most influential 492 

factor. The enhanced conveying rate reduced transport time through the blender. In contrast, equipping 493 

the impeller with more RMB restricted powder flow which slowed down the transport rate.  494 

5.3.1.3 Effect on Normalized variance 495 

Perfectly mixed-flow is described by a continuously stirred tank reactor and for such a system the spread 496 

of the normalized RTD curve is equal to one. By contrast, a plug-flow reactor describes a perfectly unmixed 497 

system and under this condition the normalized variance is equal to zero (Fogler, 2006). A higher 498 
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normalized variance indicates better axial mixing conditions. In our study, the impeller configuration and 499 

speed significantly affected the normalized variance (figure 8, top) which ranged from 0.04 to 0.18 and 500 

suggests the flow behavior in the blender was in between mixed and plug-flow. Extending the mixing section 501 

on the impeller from 8 to 16 RMB yielded a higher normalized variance which indicates the RMBs induced 502 

dispersion. Changing speed from 200 to 400 rpm reduced the spread of the normalized RTD  indicating 503 

less dispersion occurred at higher conveying rate. The data suggest a linear effect of impeller configuration 504 

and speed as the quadratic and interaction terms were not statistically significant and limited in size (figure 505 

8, top). Hence the normalized RTD can be widened by combining a low impeller speed with high number 506 

of RMB (figure 8, bottom).  507 

5.3.1.4 Effect on Péclet number, number of tanks and plug-flow volume fraction   508 

As the spread of the RTD curve approaches zero, the péclet number approaches infinity indicating the 509 

extent of axial mixing is low and the mixer characteristics approach a plug-flow reactor. This regime is not 510 

favorable for continuous processing as plug-flow corresponds to low axial mixing efficiency which can 511 

result in poor dampening of instream fluctuations (Kumar et al., 2014). The applied normalized RTD model 512 

(section 4.3.4) contained two physically significant parameters namely the plug-flow volume fraction and 513 

number of constantly stirred tank reactors in series. These allow the quantification of the plug-flow volume 514 

fraction and axial mixing efficiency, respectively. Less tanks in series corresponds to more efficient axial 515 

mixing. Figure 5 confirms good model fit was achieved using the RTD model presented in section 4.3.4 (R2 516 

= 0.95-0.99).  517 

Impeller configuration and speed had a significant impact on axial mixing efficiency (figure 8, top). Within 518 

this investigation the number of péclet and tanks ranged from 10 to 47 and 2 to 18, respectively. In contrast, 519 

these factors had no significant impact on the plug-flow volume fraction which indicates the impeller 520 

configuration had a similar impact on the minimum and mean residence time (figure 7, top). The impeller 521 

configuration had the largest impact on the axial mixing efficiency. By extending the impeller configuration 522 

with RMB, the powder undergoes relatively more dispersion than transport within the mixer. In contrast, 523 

the main effect of impeller speed is a higher péclet number  and more tanks in series. Higher speed yields 524 

higher conveying rates which results in less axial mixing and more plug-flow like material transport through 525 

the mixer. A strong interaction occurred between impeller configuration and speed for the péclet number 526 

and amount of tanks in series (figure 8, bottom). Processing conditions which resulted in high blender fill 527 

levels increased the axial mixing efficiency. When the impeller is equipped with low number of RMB, axial 528 

mixing is only effective at low speed as material flow is then restricted in the mixing section more 529 

frequently. An impeller with high number of RMB subjected particles to a critical strain and homogenization 530 
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force making speed less influential for the efficiency of axial mixing. Hence equipping the impeller with high 531 

number of RMB is a powerful tool to maintain optimal dispersion at high impeller speed.  532 

5.3.2 Strain 533 

The strain or number of blade passes experienced by the powder within the continuous mixer was clearly 534 

dominated by the impeller configuration (figure 9, top). Significantly more strain was applied on the powder 535 

when the number of RMB was varied from low to high. The quadratic term had a significant albeit small 536 

positive effect, indicating that extending the shear zone with more RMB gradually resulted in more blade 537 

passes. The increase in strain originates from a significant change in bulk residence time associated with 538 

higher number of RMB (section 5.3.1.1 and figure 7, top). Next to impeller configuration, the main effect 539 

of impeller speed and its quadratic term had a negative impact on the applied strain (figure 9, top). In 540 

general, the number of blade passes was maximal at intermediate impeller speed (figure 9, bottom). This 541 

was previously reported by other researchers for different continuous mixers and formulations (Vanarase 542 

and Muzzio, 2011; Vanarase et al., 2013). However, an interaction occurred when a high number of RMB 543 

was combined with low impeller speed, yielding similar blade passes compared to intermediate speed 544 

(figure 9, bottom). This observation can be explained by the interaction plot of bulk residence time (figure 545 

7, bottom). At low speed and high number of RMB, the maximized bulk residence time compensates for 546 

the lower speed and yields similar blade passes.  547 

5.3.3 Blend Uniformity 548 

Section 5.3.1 described the macroscopic powder flow behavior within the continuous mixer. However, 549 

these RTDs do not capture the mixing performance. Therefore, the mixing process was monitored using 550 

in-line NIRs to determine the homogeneity of the blend stream from the mixer. The relative standard 551 

deviation on the content of NAP in the blend during steady state processing was calculated as a mixing 552 

index (RSDss) and accounts for variability on the long and short term. Imperfections in the feed rate can 553 

introduce variability on the long term. By contrast, micro-mixing performance refers specifically to the 554 

extent of de-agglomeration and local segregation and is expressed as the NAP variability over a short time 555 

interval (RSDif). This corresponds to the remaining variability in the case of ideal feeding performance (Gao 556 

et al., 2011) which can be due to incomplete micro-mixing but includes also the error of the analytical 557 

method (Vanarase et al., 2013a). This short term variability was calculated by correcting the NIR 558 

predictions for drifts using the curve fitting toolbox in MATLAB (Mathworks, Natick, Massachusetts, USA). 559 

Despite, the impeller speed and configuration had no statistically significant impact on both the long and 560 

short term variability . This is due to the narrow ranges that were observed for these mixing indices, 0.70-561 

1.10% and 0.65-0.80% respectively, which indicated excellent blend uniformity during steady state 562 
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processing. The limited difference between long and short term variability illustrated the continuous mixer 563 

had sufficient axial mixing to filter out feeder fluctuations. Additionally, the root mean squared error of 564 

prediction of the in-line NIR model was 0.24% which indicated that for a target drug load of 30% the lowest 565 

achievable RSD would be around 0.24%/30% ≈ 0.80%. Hence, one can conclude the best possible mixing 566 

performance was achieved that could be detected with the employed analytical method.  567 

5.3.4 Tablet content uniformity 568 

Content uniformity ranged from 0.51 to 1.28% and indicated excellent micro-mixing performance. The 569 

impeller configuration had a statistically significant effect on tablet content uniformity (figure 9, top). 570 

However, this effect was nonlinear as reflected by the significant quadratic term. When the number of 571 

RMB changed from 8 to 12, tablet content variability decreased marginally. However, equipping the 572 

impeller with 16 RMB increased tablet content variability (e.g. 0.45% difference for 200 rpm respectively). 573 

The impeller speed had no statistically and significant influence on content uniformity when it was varied 574 

from its low to high setting. However, also for speed the quadratic term was significant indicating a curved 575 

effect (figure 9, top). The interaction plot (figure 9, bottom) confirms that optimal homogeneity could be 576 

achieved at intermediate impeller speed for a fixed impeller configuration. This can be attributed to the 577 

maximum number of blade passes which the powder experienced at intermediate speed (figure 9, bottom). 578 

However, the good correlation between content uniformity and strain for a fixed impeller configuration 579 

(e.g. R2 = 0.91 for 8 RMB) deteriorated when data obtained from multiple impeller configurations is 580 

included (R2 = 0.45). These findings suggest that not only the number of blade passes but also the number 581 

of RMB on the impeller impacts micro-mixing and hence content uniformity.  582 

5.3.5 Tablet weight variability 583 

Tablet weight variability spanned a wide range from 2.07 to 4.77% within this design which underpinned 584 

the impact of the blending process on tablet quality. The moderate to high tablet weight variation is due 585 

to the poorly flowing Methocel CR-based formulation. The impact of improved blend properties, using 586 

Methocel DC2, on tablet weight variability is described in section 5.5.2.1. However, for the more cohesive 587 

Methocel CR-based formulation, the impeller configuration had a statistically significant influence on tablet 588 

weight variability (figure 9, top). Tablets varied more in weight when the impeller was equipped with more 589 

RMB. This impact of the impeller configuration was nonlinear and even intensified at high number of RMB. 590 

This counterintuitive observation indicated that a higher fill level, prolonged mixing time and more blade 591 

passes not necessarily resulted in improved blend properties for high speed tableting. Demixing of cohesive 592 

blends was previously described for batch blending processes and was attributed to re-agglomeration or 593 

compaction of the blend when the mixing time extended (Augsburger and Hoag, 2008). The higher levels 594 
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of strain associated with prolonged mixing may have compacted the blend and hence deteriorated the die 595 

filling consistency and resulting in a higher tablet weight variation. Also mixing speed impacted weight 596 

variation in a rather complex way (figure 9, top). For an impeller equipped with 16 RMB, mixing speed had 597 

only a limited impact as weight variability was mostly dominated by the impeller design. For an intermediate 598 

shear zone (12 RMB), the highest weight variability was observed when the impeller was set at intermediate 599 

speed. This observation confirms that higher levels of strain can induce tablet weight variation. But 600 

interestingly an interaction occurred when a high impeller speed was combined with low number of RMB 601 

(figure 9, bottom) which resulted in high tablet weight variability. This observation suggests that still a 602 

minimal fill level, mixing time and strain is required to achieve blend properties suitable for tableting. It is 603 

clear that mixing time and strain need to be well balanced with tablet properties for the Methocel CR 604 

formulation.  605 

5.3.6 Macro-mixing performance 606 

5.3.6.1 Model based analysis 607 

A representative image of the variability on the active content in the feed stream was derived from an 608 

extended run including multiple hopper refills (figure 10, left). Hence, the practical relevance of differences 609 

in RTDs (section 5.3.1) can be evaluated by quantifying their ability to dampen both steady state flow rate 610 

deviations and perturbations introduced by hopper refill. The variability in the feed stream remained 611 

relatively low (1.07%). The relatively high screw speed (average ≈ 290 rpm) eliminated pulsation and 612 

provided a fast response to perturbations, resulting in  good precision (low variability) and high accuracy 613 

(mean label claim 100.15%). All investigated blender settings were able to sufficiently dampen the observed 614 

fluctuations in the inlet stream. The label claim range (i.e. difference between maximum and minimum) in 615 

the outlet stream varied from 3.46% for the lowest axial mixing condition (8 RMB at 400 rpm) towards 616 

1.44 % for the highest axial mixing condition (16 RMB at 200 rpm) which is significantly lower than the 617 

label claim range in the feed stream (12.7 %). The model based analysis revealed the active content 618 

variability in the outlet stream ranged from 0.32 to 0.59 %. The effect plot (figure 10, right) shows that 619 

processing with more RMB or at lower speed clearly reduced label claim variability in the blender outlet 620 

stream. The loading (figure 6) and effect plots confirmed this is due to a combination of more efficient axial 621 

mixing (figure 8: higher péclet number and less tanks in series) and a higher residence time (figure 7: higher 622 

bulk and mean residence time). In conclusion, the continuous blender has the proper design and process 623 

ranges to filter out the noise introduced by the feeders and hence excellent macro-mixing performance 624 

was achieved.  625 

5.3.6.2 Experimental analysis 626 
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The macro-mixing performance was experimentally verified by content uniformity analysis of grab samples 627 

collected at an interval of 10 s over an extended processing time (figure 11). Two runs were selected 628 

based on their extreme axial mixing performance: 8 RMB at 400 rpm as low axial mixing or “lean” 629 

condition, and 16 RMB at 200 rpm as high axial mixing or “robust” condition. The content uniformity was 630 

0.49 and 0.61% for the high and low axial mixing setting, respectively. The average and individual tablet 631 

content remained well within standard requirements. These findings supported our previous conclusions 632 

regarding the excellent macro-mixing performance of the system. In conclusion, uniform tablet 633 

characteristics were achieved during the steady state of the manufacturing process.  634 

5.4 Effect of drug load 635 

The NIR standards depicted in table 3 were processed using fixed settings. Changing drug load from 21.35 636 

to 39.65% reduced fill level from 0.536 to 0.234 kg and hence also bulk residence time from 74 to 34 s. 637 

Bulk density was the key material property impacting the fill level (figure 12, left) which indicates the 638 

material was transported as a dense stirred powder bed under these conditions (16 RMB, 200 rpm). The 639 

bulk density has been shown to be less influential when the powder bed is fluidized (e.g. at high impeller 640 

speed) (Vanarase et al., 2013b). Blend uniformity ranged from 0.65 to 1.70 % suggesting good mixing 641 

performance. Despite theoretically improved product (higher density and better flow) and process (higher 642 

fill level and strain) responses, a lower content resulted in less homogenous blends (figure 12, right). It is 643 

hypothesized this slightly reduced mixing performance can be attributed due to more challenging micro-644 

mixing inherently associated with the lower drug load. Furthermore, a higher level of strain has been shown 645 

to adversely impact the distribution of the drug in the final HPMC CR product (section 5.3.3).  646 

5.5 Effect of HPMC grade and flow rate 647 

5.5.1 Characterization of powder flow behavior in the continuous mixer  648 

5.5.1.1 Effect of HPMC grade 649 

The RTD was estimated for both Methocel DC2 and CR-based formulations at various processing 650 

conditions. The mixing time was slightly higher (+ 20 s) for the Methocel DC2-based formulation when 651 

low mixing speed is combined with high number of RMB. Here the higher bulk density of the Methocel 652 

DC2 formulation extended residence time within the mixer. This corresponds well with the previously 653 

described (section 5.4) density-fill level relation and confirms the powder bed is in a dense regime under 654 

these conditions. Furthermore, powder flow was in this regime best described by 2 tanks for both 655 

formulations indicating the ratio of mixing and transport remained unaffected (figure 13, a). However when 656 

the impeller was equipped with less RMB and/or operated at higher speed, considerably more tanks were 657 
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required to fit RTDs of the Methocel CR formulation compared to DC2 (figure 13, a). This indicated that 658 

convective transport dominated over dispersive transport for the more cohesive Methocel CR formulation 659 

under such conditions. The interaction between material properties and process parameters govern the 660 

particle-particle dissipation rate and hence the powder flow behavior within the mixer. Overall, the axial 661 

mixing efficiency was more robust to process changes for Methocel DC2 compared to CR.  662 

5.5.1.2 Effect of flow rate 663 

Processing the Methocel DC2-based formulation at higher flow rates increased the steady state fill level of 664 

the blender (figure 14, left). The bulk residence time (figure 14, middle) and strain (figure 14, right) 665 

decreased from 131 to 45 s and 412 to 170 revolutions when flow rate increased from 25 to 75 kg/h, 666 

respectively. Although the difference in responses leveled off slightly between 50 and 75 kg/h, the mixer 667 

did not yet reach its maximum fill level. The mixer could fill up more when the flow rate is set beyond the 668 

investigated limit. However, the tablet press had a maximum capacity of 91 kg/h for this formulation, hence 669 

the practical operational boundaries were covered within this study. 670 

5.5.2 Tablet quality 671 

5.5.2.1 Tablet weight variability 672 

Figure 13b shows tablet weight variability is overall significantly lower when Methocel DC2 is used a matrix 673 

former (1.44 – 1.79%) compared to CR (2.07– 4.77%). This can be attributed to the better flow of the 674 

DC2 grade which yielded improved blend properties even at high drug load (section 5.1). The latter 675 

resulted eventually in more consistent die filling and lower weight variability. Moreover, the Methocel DC2 676 

formulation was more robust to changes in process and design variables. Figure 13b clearly shows that the 677 

mixer speed and configuration had only a marginal impact on tablet weight variability using the DC2 grade. 678 

This is an advantage compared to the Methocel CR formulation where low tablet weight variability (section 679 

5.3.5) was only achieved at specific settings where other responses (e.g. axial mixing) were less optimal. It 680 

is hypothesized that the better flowing Methocel DC2 formulation is not prone to demixing or compaction 681 

phenomena during blending at high fill levels and hence die filling was more consistent. Furthermore, weight 682 

variability remained comparable whilst operating at a flow rate of 25 (1.61%), 50 (1.50%) and 75 (1.72%) 683 

kg/h. Despite the high drug load, the Methocel DC2 formulation flowed sufficiently for high speed tableting. 684 

These findings illustrated that selecting appropriate excipient characteristics can enable continuous direct 685 

compression of poorly flowing, low density APIs formulated at high drug load. 686 

5.5.2.2 Tablet content uniformity 687 

Although tablets with excellent uniformity could be manufactured using both formulations, the active 688 

content for the Methocel DC2 formulation was more uniform and significantly more robust (figure 13c). 689 
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Furthermore, content uniformity for the DC2 grade remained excellent when the flow rate was increased 690 

to 50 (0.74%) and 75 (0.71%) kg/h. Apparently, the micro-mixing performance was not significantly 691 

impacted by flow rate despite the reduced strain and residence time (section 5.5.1.2).  692 

5.5.2.3 Tabletability, compressibility, compactibility and axial recovery 693 

Tabletability describes tensile strength as a function of applied compaction pressure (Patel et al., 2006). 694 

Tablets were stronger when compressed at higher pressures (figure 15, a). The steep increase in strength 695 

in the low pressure region is due to reduced tablet porosity upon particle rearrangements and volume 696 

reduction, resulting in more bonding area. More immediate axial recovery was observed at higher 697 

compaction pressures (figure 15, b) as the porosity was already reduced and a further increase of pressure 698 

induced elastic deformation of particles. Elastic recovery occurred after compression thereby weakening 699 

interparticulate bonding (Sun and Grant, 2001). Consequently, the tabletability curve gradually leveled off.  700 

Formulations with Methocel CR as matrix former showed superior compaction behavior compared to 701 

Methocel DC2. It is hypothesized that the smaller particles of the CR grade resulted in a higher packing 702 

density and more contact points between particles, thereby improving inter-particle bonding and yielding 703 

a better tabletability (Sun and Himmelspach, 2006; Thoorens et al., 2014). Tablet strength is determined 704 

by bonding area and bonding strength per unit bonding area. Contributions from each of these factors 705 

cannot be separated by means of the tabletability curves. Therefore the compressibility and compactibility 706 

was evaluated in order to understand the observed differences in tableting behavior. Compressibility is the 707 

ability of a material to undergo volume reduction as a result of an applied pressure, whereas compactibility 708 

normalizes tablet strength by porosity. The Methocel CR-based formulation exhibited more 709 

compressibility compared to the Methocel DC2 formulation processed at the same flow rate (figure 15, 710 

c). At the same compaction pressures, tablet porosity was consistently lower which is correlated to a 711 

higher bonding area within a tablet. For all profiles, the tensile strength was negatively correlated with 712 

porosity (figure. 15, d). Although Methocel CR-based formulations exhibited a better tabletability, its 713 

compactibility curve partially overlapped the Methocel DC2 curve. This observation suggested that its 714 

greater compressibility is at the origin of the better tabletability of Methocel DC2. Therefore, the superior 715 

tabletability is a result of its greater bonding area and not of its greater bonding strength per unit bonding 716 

area. 717 

Another observation is the strain rate sensitivity of the Methocel DC2 formulation: a change in flow rate 718 

from 25 to 75 kg/h yielded weaker tablets when the compaction pressure remained constant. In a 719 

continuous process, increasing the flow rate affected each unit operation. Operating at higher flow rate 720 

reduced RTD and strain in the continuous blenders and tablet press feed frame. As a result the lubricant 721 



25 

mixing time is reduced which potentially improved tabletability. Also the dwell time during main 722 

compression decreased from 15.90 to 5.30 ms at higher flow rate as the turret needed to rotate at higher 723 

speed (27 to 82 rpm) to maintain the correct mass balance. As some deformation processes are time 724 

dependent, a prolonged dwell time results in more plastic deformation, leading to more consolidation. In 725 

this case, the net effect of the longer lubrication and prolonged dwell time improved tabletability, indicating 726 

that the reduced dwell time is the dominating factor for the observed strain rate sensitivity. Tablets 727 

compacted with longer dwell time showed improved compressibility. As plastic deformation is time 728 

dependent, the volume reduction and hence increase in bonding area is more important when dwell time 729 

was longer. In addition, the overlapping compactibility profiles indicated that bonding strength per unit 730 

bonding area was not significantly influenced by dwell time. Studying tabletability, compressibility and 731 

compactibility profiles highlighted the importance of porosity. One can manufacture tablets with similar 732 

tensile strength by targeting equal tablet porosity.  733 

5.5.2.4 Drug release 734 

The impact of compaction pressure and flow rate on drug release from Methocel DC2-based formulation 735 

was investigated by means of a two level full factorial screening design. Figure 16 shows drug release over 736 

16 h and the fit of the applied model. To elucidate which tablet properties steer the dissolution rate, the 737 

responses derived from the dissolution profiles (section 4.4.2.5) and their corresponding tablet properties 738 

(section 4.4.2.2) were both included. A PLS model was fit: the loading plot (figure 5.17) revealed the 739 

experimental responses clustered. This indicates the time to reach 20 and 50% drug release was highly 740 

correlated (R2 =0.99). Interestingly, the release exponent of the dissolution model co-varied with these 741 

experimental responses (R2=  0.95-0.98). By contrast, the kinetic constant of the dissolution model lies on 742 

the opposite side of the straight line that connects the origin with the cluster of dissolution responses. 743 

This indicates the kinetic constant is negatively correlated with the release exponent (R2 = -0.99) and the 744 

time to reach 20 (R2 = -0.99) and 50% (R2 = -0.97) drug release. The high correlation between experimental 745 

and model based dissolution responses indicated that the power law model was adequate to describe drug 746 

release. Moreover, the experimental and simulated dissolution data correlated well (R2> 0.99) and 747 

confirmed the suitability of the model. The release exponent ranged between 0.46 and 0.51, indicating 748 

diffusion-controlled drug release.  749 

The experimental design revealed that compaction pressure significantly affected dissolution responses and 750 

tablet properties. Levina and Rajabi-Siahboomi (2004) described that the sensitivity of drug release to 751 

compaction pressure depended upon the compressibility of the formulation: in matrices with lower 752 

porosity the water uptake and water front movement was slower, which reduced the drug release rate. 753 

Also in the current study, drug release was significantly slower at higher compaction pressure which was 754 
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reflected by lower values for the kinetic constant but higher values for release exponent and a prolonged 755 

time to reach 20 and 50% time drug release. Compacting at higher pressure reduced tablet thickness, area 756 

and porosity, whereas tablet strength and hardness improved. These observations combined resulted in a 757 

slower drug release. Based on their correlation with dissolution responses, the importance of tablet 758 

properties could be ranked from high to low as: tablet area, thickness, tensile strength, hardness and 759 

porosity. Tablet area was previously reported to steer the release rate (Li et al., 2005) and hence thickness 760 

was a simple tablet property that correlated well with all dissolution responses (R2 : 0.90 to 0.95). Ensuring 761 

low thickness variation during manufacturing of sustained release tablets is hence crucial.  762 

The rate of drug release was relatively slow as the cumulative release was limited to about 60% after 16h. 763 

One of the research goals was to elucidate the impact of HPMC grade on tablet properties. To this extent, 764 

a high percentage of HPMC was selected in the model formulation to evoke potential differences in blend 765 

and tablet properties. This relatively low drug-to-polymer ratio extended the drug release (Li et al., 2005). 766 

Altering the ratio of tablet surface area and weight was a simple tool to accelerate drug release: 80% drug 767 

was released after 16 h when this ratio increased with only 14%. Future work can focus on steering the 768 

rate of drug release from continuously produced matrix tablets by modifying the ratio and physico-chemical 769 

properties of HPMC and fillers (Levina and Rajabi-Siahboomi, 2004). 770 

6 Conclusions 771 

This study presented a framework for process and product development on a continuous direct 772 

compression platform. The ability to continuously manufacture sustained release tablets was explored 773 

using a formulation with high drug load of a poorly flowing low density API. Each unit operation was 774 

thoroughly investigated to reveal how design aspects, process settings and material properties impacted 775 

the process behavior and product quality. Two HPMC matrices were evaluated: standard Methocel CR 776 

and direct compressible DC2. Characterization revealed the DC2 grade flowed better than CR and yielded 777 

eventually improved blend properties. The capacity of feeding correlated directly with the density of the 778 

materials. Determining the feed factor and flow rate requirement allowed to estimate drive command 779 

which rationalized the selection of screw pitch. Most materials showed a limited feed factor decay and 780 

were emptied till 20% fill level before triggering a refill. By contrast, more compressible powders initiated 781 

the decay at higher fill levels and were as a consequence refilled at 40% fill level. Inline NIRs was shown to 782 

be an adequate tool for RTD estimation and process monitoring. The blender possessed good macro-783 

mixing capabilities as NIRs suggested excellent blend uniformity during steady state processing. The model-784 

based analysis of macro-mixing performance confirmed the RTD was able to dampen the observed feeder 785 

fluctuations. In addition, the excellent mixing performance was confirmed experimentally by analyzing the 786 
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content of tablets sampled over an extended sampling time. The experimental design with Methocel CR 787 

revealed the impeller configuration had a significant impact on the powder flow within the mixer. Extending 788 

the shear zone restricted powder transport and enhanced dispersion which resulted in a higher residence 789 

time and fill level, yielding thereby more strain and optimal axial mixing efficiency. The effect of speed on 790 

mixing and transport of powder was more pronounced at high filling degree. Higher conveying rates shifted 791 

RTD curves to the left, while fill level, strain and axial mixing efficiency were reduced. Furthermore, bulk 792 

density was a key blend property during as a higher density resulted in a higher fill level during blending. 793 

Using Methocel CR, the axial mixing and strain needed to be well balanced with tablet properties. Tablet 794 

quality deteriorated when more axial mixing was achieved through extending the shear zone on the 795 

impeller. However an impeller with small shear zone achieved optimal tablets with low weight and content 796 

variability when the applied strain was maximized via the impeller speed. A higher robustness to changes 797 

in the blending process was achieved with Methocel DC2. The better flow of the Methocel DC2 blend 798 

yielded overall lower tablet weight and content variability and enabled manufacturing at 75 kg/h. This 799 

observation underpinned the importance of flow during continuous blending and die-filling. Blends with 800 

Methocel CR showed better tabletability driven by a higher compressibility that originates from its higher 801 

bonding area. However, tablets of similar strength could be produced with Methocel DC2 by targeting 802 

equal porosity. Controlling thickness during continuous manufacturing of sustained release tablets 803 

appeared to be crucial.   804 
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Figure 1: Flowsheet of CDC-50. Powder supply and refill mechanism (■), twin screw feeding (■), 
blending (■), lubrication (■), feed tube (■), in-line NIRs as PAT tool (■) and tablet press (■).  

  



 

 

Figure 2: Schematic presentation of an impeller equipped with 8 RMB ( ) and extensions to 12 (
) and 16 ( ) RMB. The RMB were centered on the impeller whereas remaining blades were 
positioned in full transport orientation.  
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Figure 3: Scores (left) and loadings plot (right) of PCA model describing material properties. 
Observations on score plot are colored according to their functionality and blends are labeled 
according to NAP+SiO2 content and HPMC grade. The abbreviations of properties on the loading plot 
are described in methods section. 
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Figure 4: Feed factor (left) and normalized feed factor (middle) decay as a function of hopper 
fill level (%) using concave screws with 20 mm pitch. Starch1500 (_____), FF316 (_____), Methocel 
DC2(_____), NAP+SiO2(_____), MgSt (_____) and NAP (_____). Right: theoretical (- - -) and 
experimental (●) density-feed factor relation.  
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Figure. 5: Experimental RTD (—) and model fit (---) using tanks in series with plug-flow volume fraction 
model. Impeller equipped with 8 (---), 12 (---) and 16 (---) RMB operating at 200 (left) and 400 (right) 
rpm.  

  



 

Figure 6: Blending DOE: loading plot of PLS model. RMB and RPM denote impeller configuration and 
impeller speed. The responses corresponding to the abbreviations are described below and ranked 
according to their R2 : Fill level = 1.00 (FL), bulk residence time = 1.00 (btm), strain or number of blade 
passes = 1.00 (Strai), number of tanks in series = 0.96 (ntanks), model based macro-mixing performance 
or RSD_Cout = 0.93 (RSDco), Péclet = 0.92 (Pe), mean residence time = 0.92 (tm), variance = 0.91 
( 2), normalized variance = 0.90 ( θ

2), tablet content uniformity = 0.88 (RSDcu), tablet weight 
variation = 0.84 (RSDwv), minimum residence time = 0.78 (tmin), plug-flow volume fraction = 0.56 (p), 
short term blend uniformity = 0.54 (RSDif), steady state blend uniformity = 0.38 (RSDss).  

  



 

Figure 7: Blending DOE: effect (above) and interaction (below) plot for responses bulk residence time 
(left), mean (tm, middle) and minimum time (tmin, right). The table presents the size of the effect.  

  



 

Figure 8: Blending DOE: effect (above) and interaction (below) plot for responses normalized variance 
( θ

2, left), peclet (Pé, middle) and number of tanks (ntanks, right). The table presents the size of the 
effect. 

  



 

 

Fig 9: Blending DOE: effect (above) and interaction (below) plot for responses strain (left), tablet CU 
(RSDcu, middle) and tablet weight variability (RSDwv, right). The table presents the size of the effect. 

  



 

 

Figure 10: RTD model based macro-mixing evaluation. Left: NAP+SiO2 (%) label claim as a function of 

time in feed stream (—) and in blender outlet stream using 8 (—) and 16 RMB (—) at 400 rpm. Right: 
Blending DOE: effect size and plot for response NAP+SiO2 (%) variability in outlet stream (RSDCout).  
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Figure 11: Content uniformity analysis as macro-mixing verification. Mean tablet content (n=10) and 
RSD (error bars) as function of process time. Left and right represent low and high axial mixing 
condition.  

  



0.30 0.33 0.36 0.39 0.42
0.0

0.2

0.4

0.6

Bulk density (g/mL)

F
ill

 le
v

e
l B

L
1

 (
K

g
)

20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

Drug load (%)

R
S

D
ss

 (
%

)

 

Figure 12: Left: impact of the bulk density of the blend on the steady state fill level in the continuous 
mixer. Right: steady state blend uniformity determined via NIRs as a function of drug load.  
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Figure 13: Impact of HPMC grade on process and product responses: a) Number of tanks for optimal 
model fit of blender RTD, b) tablet weight variability, c) tablet content uniformity. Legend: (x) DC2 – 
400 rpm, (+) DC2 – 300 rpm, (■) DC2 – 200 rpm, (x) CR – 400 rpm, (+) CR – 300 rpm and (■) CR 
– 200 rpm.  
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Figure 14: Effect of flow rate on fill level (a), bulk residence time (b) and number of blade passes (c) in 
blender 1 (●).  
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Figure 15: Tabletability (a), immediate axial recovery (b), compressibility (c) and compactibility (d) plot 

for HPMC DC2 processed at 25 (▼), 50 (▲) and 75 (■) kg/h and HPMC CR (◊) at 25 kg/h. Error 
bars indicate standard deviation (n=10).  
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Figure 16: Experimental drug release (●) and model fit (---). Flowrate set at 25 (left) and 75 (right) 
kg/h. Color coding according to main compaction pressure.  
  



 

Figure 17: Tablet quality DOE: loading plot of PLS model. Responses and abbreviations ranked 
according to R2: tensile strength (TS) = 0.94, hardness (Hard) = 0.94 , time to release 50% drug (t50%) 
= 0.92, time to release 20% drug (t20%) = 0.90, kinetic constant power law model (k_pl) = 0.87, tablet 
porosity (Por) = 0.83, release exponent power law model (n_pl) = 0.79, tablet area (Area) = 0.73, 
thickness (Thi) = 0.72. The factors compaction pressure and flow rate were abbreviated as CP and FR.  
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Material ffp  ρbulk ffc d50 HR 

Methocel CR 1.46 0.30 4.81 82 1.36 

Methocel DC2 1.95 0.31 6.18 102 1.27 

FF316 4.81 0.63 7.64 88 1.13 

NAP 0.36 0.25 1.43 13 1.37 

NAP+SiO2 0.57 0.25 2.28 13 1.76 

MgSt 0.42 0.19 2.21 8 1.65 

Starch1500 2.35 0.62 3.81 65 1.29 
 
Table 1.  Key material properties of individual raw materials.  
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Table 2. Overview of flow rate ranges covered in this study and their corresponding drive command 

estimated using the maximum feed factor. A screw speed of 462 rpm corresponds to 100% drive 

command.  

  

Material Flow rate 
range (kg/h) 

Screw pitch 
(mm) 

Max feed factor 
(g/revolution) 

Drive command (%) at 
flow rate ranges 

Methocel CR 7.5 – 22.5 20 1.36 20.0 – 59.9 

Methocel DC2 7.5 – 22.5 20 1.34 20.1 – 60.4 

FF316 7.25 – 21.75 20 2.12 12.3 – 37.0 

MgSt 0.125 – 0.375 20 0.84 0.5 – 1.6 

MgSt 0.125 – 0.375 10 0.35 1.3 – 3.9 

NAP 7.5 – 22.5 20 0.64 42.2 – 126.5 

NAP+SiO2 7.75 – 22.88 20 1.08 25.9 – 76.4 

Starch 1500 2.5 – 7.5 20 2.98 3.0 – 9.1 

Starch 1500 2.5 – 7.5 10 1.48 6.1 – 18.3 
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Table 3. Verification of in-line NIRs blend uniformity model: NAP target and predicted concentration, bias 

and RMSEP.  

  

Target (%w/w) Predicted (%w/w) Bias (%w/w) RMSEP(%w/w) 

21.00 20.84 0.16 0.40 

24.50 24.41 0.09 0.31 

27.45 27.34 0.11 0.29 

28.98 28.79 0.19 0.33 

30.5 - "Day 1" 30.49 0.01 0.44 

30.5 - "Day 2" 30.49 0.01 0.26 

30.5 - "Day 3" 30.35 0.15 0.34 

32.08 31.12 0.96 1.00 

33.35 34.37 -1.02 0.86 

36.60 37.30 -0.70 0.76 

39.65 39.26 0.39 0.46 
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