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Abstract. It is well known, as follows from the Banach-Steinhaus
theorem, that if a sequence {yn}∞n=1 of linear continuous function-
als in a Fréchet space converges pointwise to a linear functional Y,
Y (x) = limn→∞ 〈yn, x〉 for all x, then Y is actually continuous. In
this article we prove that in a Fréchet space the continuity of Y still
holds if Y is the finite part of the limit of 〈yn, x〉 as n→∞. We also
show that the continuity of finite part limits holds for other classes
of topological vector spaces, such as LF-spaces, DFS-spaces, and
DFS ∗-spaces, and give examples where it does not hold.

1. Introduction

Let X be a topological vector space over K, K being R or C. We
denote as X ′ the dual space, that is, the space of continuous linear
functionals on X; the evaluation of y ∈ X ′ on x ∈ X will be denoted
as 〈y, x〉 or as y (x) ; we shall denote as X ′al the algebraic dual of X,
but if z ∈ X ′al we denote evalutions as z (x) only.

Let {yn}∞n=1 be a sequence of elements of X ′ and suppose that

(1.1) lim
n→∞

〈yn, x〉 = Y (x) ,

exists for each x ∈ X, thus defining a function Y : X → K. It is clear
that Y is linear, an element of X ′al, and simple examples show that Y
does not have to be continuous, that is, maybe Y /∈ X ′. However, it is
well known [9, 12] that if X is barreled, in particular if X is a Fréchet
space or an LF space, then one must have that Y ∈ X ′; this result is
quite important in the theory of distributions since the usual spaces
of test functions are barreled and thus (1.1) provides a method, rather
frequently employed, to construct new distributions as limits.
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Our aim is to consider the continuity of Y in case the standard1 finite
part of the limit

(1.2) F.p. lim
n→∞

〈yn, x〉 = Y (x) ,

exists for each x ∈ X. We will show that Y ∈ X ′ in case X is a Fréchet
space or in case it is an inductive limit of Fréchet spaces. Naturally
several distributions are defined as finite parts, so such a result would
be very useful.

The meaning of (1.2) is that for each x ∈ X there is k = kx ∈ N0 =
N ∪ {0}, exponents α1 > · · · > αk > 0, scalars Rα1 (x) , . . . , Rαk

(x) ∈
K \ {0} , and zn (x) ∈ K for n ≥ 0 such that

(1.3) 〈yn, x〉 = nα1Rα1 (x) + · · ·+ nαkRαk
(x) + zn (x) ,

where

(1.4) lim
n→∞

zn (x) = Y (x) .

Observe that kx could be 0, meaning that 〈yn, x〉 = zn (x) converges to
Y (x) .

We call nα1Rα1 (x) + · · · + nαkRαk
(x) the infinite part of 〈yn, x〉 as

n→∞ and zn (x) the finite part. Clearly the infinite and finite part, if
they exist, are uniquely determined, so that the finite part of the limit,
if it exists, is likewise uniquely determined.

It is important to point out that maybe sup {kx : x ∈ X} = ∞ and
that the set of exponents,

(1.5)
⋃
x∈X

{αj : 1 ≤ j ≤ kx} ,

does not have to be finite. We shall show that when X is a Fréchet
space then sup {kx : x ∈ X} < ∞ and actually the set (1.5) is finite,
but give examples in other types of spaces where these results do not
hold.

We shall also show that the Rα admit extensions as elements of
the algebraic dual X ′al, and show that while in general they are not
continuous, they must belong to X ′ when X is a Fréchet space or an
inductive limit of Fréchet spaces.

The plan of the article is as follows. In Section 2 we give some basic
facts about finite parts that hold in any topological vector space. The
central part of the article is Section 3, where we study finite parts in
a Fréchet space. Extensions to more general finite parts and to more
general topological vector spaces are considered in Sections 4 and 5,
respectively. Finally we present several illustrations in Section 6.

1We shall consider more complicated finite part limits later on.
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2. General results

We shall first consider several results that hold in any topological
vector space.

Thus let {yn}∞n=1 be a sequence of elements of the dual space X ′ of
the topological vector space X, and suppose that for each x ∈ X the
finite part of the limit

(2.1) Y (x) = F.p. lim
n→∞

〈yn, x〉 ,

exists, or, in other words, that the evaluation 〈yn, x〉 can be decomposed
as

(2.2) 〈yn, x〉 = un (x) + zn (x) ,

with the infinite part of the form

(2.3) un (x) = nα1Rα1 (x) + · · ·+ nαkRαk
(x) ,

where α1 > · · · > αk > 0, and Rα1 (x) , . . . , Rαk
(x) ∈ K \ {0} , and

with the finite part, zn (x) , such that the limit

(2.4) Y (x) = lim
n→∞

zn (x)

exists.
The following result is very easy to prove, but it is also very impor-

tant.

Lemma 2.1. The decomposition (2.2) in finite and infinite parts is
unique.

It is convenient to define Rα (x) for all α > 0 and all x ∈ X. We
just put Rα (x) = 0 if α is not one of the exponents α1, . . . , αk in the
expression of the infinite part of 〈yn, x〉 . This allows us to rewrite (2.3)
as

(2.5) un (x) =
∑
α>0

nαRα (x) ,

since only a finite number of terms of the uncountable sum do not
vanish.

Lemma 2.2. If Y (x) = F.p. limn→∞ 〈yn, x〉 exists for all x ∈ X then
Y is linear: Y ∈ X ′al.

Proof. Indeed, if x1, x2 ∈ X and c ∈ K, then 〈yn, x1 + cx2〉 admits the
decomposition

〈yn, x1 + cx2〉 = 〈yn, x1〉+ c 〈yn, x2〉
= (un (x1) + cun (x2)) + (zn (x1) + czn (x2)) .
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Since

(2.6) un (x1) + cun (x2) =
∑
α>0

nα (Rα (x1) + cRα (x2)) ,

has the form of an infinite part, the Lemma 2.1 yields

un (x1 + cx2) = un (x1)+cun (x2) , zn (x1 + cx2) = zn (x1)+czn (x2) ,

and consequently Y (x1 + cx2) equals

lim
n→∞

zn (x1 + cx2) = lim
n→∞

(zn (x1) + czn (x2)) ,

that is, Y (x1) + cY (x2) . �

If we now use the fact that Rα (x) = F.p. limn→∞ n
−α 〈yn, x〉 , or

employ (2.6), we immediately obtain the ensuing result.

Lemma 2.3. For any α > 0 the function Rα is linear, Rα ∈ X ′al.

In general Y nor all Rα will not be continuous, as the Example 6.5
shows.

3. Finite parts in a Fréchet space

We shall now consider the continuity and structure of finite parts in
a Fréchet space. We start with some useful preliminary results.

Lemma 3.1. Let X be a Fréchet space and let {yn}∞n=0 be a sequence of
non zero elements of X ′. Then there exists x ∈ X such that 〈yn, x〉 6= 0
∀n ∈ N0.

Proof. Indeed, since yn 6= 0 the kernel of yn, Fn = {x ∈ X : 〈yn, x〉 = 0}
is a closed proper subspace of X and thus of first category. Hence
∪∞n=0Fn 6= X. �

Observe that this result fails in spaces that are not Fréchet. Consider,
for example, the sequence {δ (t− n)}∞n=0 in the space D′ (R) .

Recall that a function f : W → V, where W and V are topological
spaces, is called a Baire function of the first class if there exists a
sequence of continuous functions from W to V, {fn}∞n=0 , such that
f (w) = limn→∞ fn (w) for all elements w ∈ W.

Lemma 3.2. Let X be a Fréchet space and let A : X → R be a function
that satisfies the following three properties:

1. A is a Baire function of the first class;
2. A (x− y) ≤ max {A (x) , A (y)} ;
3. A (cx) = A (x) if c 6= 0.
Then A is bounded above in X and it actually attains its maximum.
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Proof. We shall first show that A is bounded above. If F is a subset of
X, denote by MF = sup {A (x) : x ∈ F} . If U is a neighborhood of 0,
then 3 yields that MX = MU . Let now V be any set with non empty
interior; then V − V is a neighborhood of 0 and thus 2 yields that
MX = MV−V ≤MV ≤MX so that MX = MV .

Let αn be a sequence of continuous functions from X to R that con-
verges to A everywhere. Then X =

⋃∞
k=0 {x ∈ X : αn (x) ≤ k ,∀n} so

that there exists k ∈ N such that the set Vk = {x ∈ X : αn (x) ≤ k ∀n}
has non empty interior. This yields that MX = MVk ≤ k, so that A is
bounded above by k in the whole space X.

We should now show that there exists x̃ ∈ X such that A (x̃) = MX .
If not, the function B (x) = 1/ (MX − A (x)) satisfies the same three
conditions as A, and from what we have already proved, B must
be bounded above by some constant λ > 0; but this means that
A (x) ≤MX − 1/λ, for all x ∈ X, and consequently MX ≤MX − 1/λ,
a contradiction. �

We now apply the Lemma 3.2 to the study of finite parts. Indeed, let
{yn}∞n=1 be a sequence of elements of the dual space X ′ of the Fréchet
space X, and suppose that for each x ∈ X the finite part of the limit
Y (x) = F.p. limn→∞ 〈yn, x〉 exists. If the infinite part of 〈yn, x〉 has the
expression as a finite sum,

(3.1) un (x) = nα1Rα1 (x) + · · ·+ nαkRαk
(x) =

∑
α>0

nαRα (x) ,

where α1 > · · · > αk > 0, and Rα1 (x) , . . . , Rαk
(x) ∈ K \ {0} , define

A (x) = 0 if un (x) = 0 and as

(3.2) A (x) = α1 = max {α > 0 : Rα (x) 6= 0} ,

otherwise.

Lemma 3.3. The function A is bounded above and attains its maxi-
mum in X.

Proof. It is enough to prove that A satisfies the three conditions of the
Lemma 3.2. However, condition 1 follows from the limit formula

(3.3) A (x) = lim
n→∞

ln [|〈yn, x〉|+ 1]

lnn
,

while 2 and 3 are obvious. �

The Lemma 3.3 not only means that if α̃ = max {A (x) : x ∈ X}
then Rα (x) = 0 if α > α̃, but it also means that Rα̃ 6= 0. The linear
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form Rα̃ is actually continuous as follows from the Banach-Steinhaus
theorem since

(3.4) Rα̃ (x) = lim
n→∞

n−α̃1 〈yn, x〉 ,

for each x ∈ X.
We can then replace yn by yn − nα̃Rα̃ and apply the same ideas as

above. Therefore, for some integers k we obtain exponents α̃1 = α̃ >
· · · > α̃k > 0 such that Rα (x) = 0 if α > α̃k, α 6= α̃j, 1 ≤ j < k,
while Rα̃j

is continuous and Rα̃j
6= 0 for 1 ≤ j ≤ k. In principle one

could think that this is possible for each k ≥ 0, but if it were then we
would obtain an infinite sequence of non zero continuous functionals{
Rα̃j

}∞
j=0

and the Lemma 3.1 would give us the existence of x∗ ∈ X
such that Rα̃j

(x∗) 6= 0 for all j, a contradiction, since for any x ∈ X the
set {α > 0 : Rα (x) 6= 0} is finite. Summarizing, we have the following
result.

Theorem 3.4. Let {yn}∞n=1 be a sequence of elements of the dual space
X ′ of the Fréchet space X, and suppose that for each x ∈ X the finite
part of the limit Y (x) = F.p. limn→∞ 〈yn, x〉 exists. Then there exists
k ∈ N, exponents α̃1 > · · · > α̃k > 0, and continuous non zero linear

functionals
{
Rα̃j

}k
j=1

such that for all x ∈ X

(3.5) 〈yn, x〉 = nα̃1Rα̃1 (x) + · · ·+ nα̃kRα̃k
(x) + zn (x) ,

where the finite part zn is continuous for all n and where

(3.6) Y (x) = lim
n→∞

zn (x) ,

is also a continuous linear functional on X.

Proof. The only thing left to prove is the continuity of the zn’s and the
continuity of Y. But the continuity of the Rα̃j

’s yields the continuity of
the zn’s because of (3.5) while the continuity of Y follows from (3.6)
and the Banach-Steinhaus theorem. �

4. More general finite parts

One can consider a general finite part limit process as follows. Let
Λ ∪ {λ0} be a topological space where λ0 ∈ Λ \ Λ, and let (E, ≺) be a
totally ordered set. Let B = {ρα}α∈E be the “basic infinite functions,”
that is, a family of functions with the following properties:

(1) For each α ∈ E, ρα : Λ→ (0,∞) , and limλ→λ0 ρα (λ) =∞;
(2) If α ≺ β then ρα (λ) = o (ρβ (λ)) as λ→ λ0.
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Let yλ ∈ K, where K is R or C, for each λ ∈ Λ. If we can write

(4.1) yλ = uλ + zλ ,

where the “infinite part” has the form

(4.2) uλ =
k∑
j=1

Rαj
ραj

(λ) ,

where α1 � · · · � αk, and Rα1 , . . . , Rαk
∈ K \ {0} , and where the

“finite part,” zλ, satisfies that the limit

(4.3) Y = lim
λ→λ0

zλ

exists, then we say that the finite part of the limit of yλ as λ → λ0

with respect to B exists and equals Y, and write2

(4.4) Y = F.p.B lim
λ→λ0

yλ .

We have considered the standard system B = {ρα}α>0 where Λ = N,
λ0 =∞, and ρα (λ) = λα.Naturally one can consider the same standard
system for functions defined in any unbounded set Λ ⊂ (0,∞), in
particular for Λ = (0,∞).

We can also consider Hadamard finite part limits3, where the infinite
basic functions are products of powers and powers of logarithms. Ex-
plicitly, let E = [0,∞)2 \ {(0, 0)} , with the order given by (α1, β1) ≺
(α2, β2) if α1 < α2 or if α1 = α2 and β1 < β2. Here Λ ⊂ (1,∞), and
the basic infinite functions B =

{
ρ(α,β)

}
(α,β)∈E are given as ρ(α,β) (λ) =

λα lnβ λ.
We can also take a set ε ⊂ (0, 1) and consider limits as ε ∈ ε

tends to 0. For standard finite part limits E = (0,∞) and the basic
infinite functions are ρα (ε) = ε−α; for Hadamard finite part limits,

E = [0,∞)2 \ {(0, 0)} and ρ(α,β) (ε) = ε−α |ln ε|β .
The continuity of the finite part of the limit in Fréchet spaces, The-

orem 3.4, will also hold for these more general systems of basic infinite
functions. This is of course the case for standard finite limits. For
Hadamard finite parts the proof can be modified as follows. Indeed,
let X be a Fréchet space, Λ ⊂ (1,∞) is an unbounded set and yλ ∈ X ′

2Let V be the vector space of all functions of the form
∑k
j=1 cjραj

+ µ with

limλ→λ0
µ(λ) = 0. The triple N = (Λ,K, V ) forms a neutrix in the sense of van

der Corput [13]. In his terminology, the finite part limit (4.4) coincides with the
neutrix value yN .

3Hadamard was probably the first to use finite parts; in his 1923 work [7], he
employs them to find fundamental solutions of partial differential equations.
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for each λ ∈ Λ. Suppose that for each x ∈ X the evaluation 〈yλ, x〉 can
be written as

(4.5) 〈yλ, x〉 = uλ (x) + zλ (x) ,

where the infinite part has the ensuing form for some k = kx,

(4.6) uλ (x) = λα1 lnβ1 λR(α1,β1) (x) + · · ·+ λαk lnβk λR(αk,βk) (x) ,

where the exponents (αj, βj) ∈ E satisfy (α1, β1) � · · · � (αk, βk) ,
where R(α1,β1) (x) , . . . , R(αk,βk) (x) ∈ K \{0} , and where the finite part,
zλ (x) , satisfies that the limit

(4.7) Y (x) = lim
λ→∞,λ∈Λ

zλ (x) ,

exists. As before, we set R(α,β) (x) = 0 if (α, β) 6= (αj, βj) for 1 ≤ j ≤
kx. Then we have the following generalization of the Lemma 3.3.

Lemma 4.1. Let

(4.8) E (x) = (A (x) , B (x)) = max
{

(α, β) ∈ E : R(α,β) (x) 6= 0
}
.

Then E attains its maximum, (α∗, β∗) , and R(α∗,β∗) is continuous and
not zero.

Proof. The proof of the Lemma 3.3 applies to A, so there exists α∗ =
maxx∈X A (x) . For this exponent α∗ we consider the function given by
B∗ (x) = 0 if R(α∗,β) (x) = 0 for all β and otherwise by

(4.9) B∗ (x) = max
{
β : R(α∗,β) (x) 6= 0

}
.

The Lemma 3.2 yields the existence of β∗ = maxx∈X B
∗ (x) because

(4.10) B∗ (x) = lim
λ→∞

ln
[
λ−α

∗ |〈yλ, x〉|+ 1
]

ln lnλ
.

Since

(4.11) R(α∗,β∗) (x) = lim
λ→∞

(λ−α
∗

ln−β
∗
λ) 〈yλ, x〉 ,

the continuity of R(α∗,β∗) follows. �

Therefore we obtain that the Theorem 3.4 holds for Hadamard finite
parts.

These ideas can be further generalized. Let us take m positive func-
tions F1, F2, F3, . . . , Fm defined on an unbounded set Λ ⊂ (1,∞), each
of them tending to ∞ as λ→∞ and such that Fj+1(λ) = o(Fα

j (λ)) as
λ → ∞ for all α > 0. We now consider E = [0,∞)m \ {(0, 0, . . . , 0)}
with the lexicographical order ≺ . Set F = (F1, F2, . . . , Fm) and if
~α ∈ E write F~α = Fα1

1 Fα2
2 · · ·Fαm

m , where ~α = (α1, α2, . . . , αm). We
now choose the basic infinite functions as B =

{
F~α
}
~α∈E . If yλ ∈ X ′



A GENERALIZATION OF THE BANACH-STEINHAUS THEOREM 9

for each λ ∈ Λ, where X is again a Fréchet space, and for each x ∈ X
the evaluation 〈yλ, x〉 can be decomposed as in (4.5) where the infinite
part is now taken of the form (for some k = kx,)

(4.12) uλ (x) = F~α1(λ)R~α1 (x) + · · ·+ F~αk(λ)R~α1 (x) ,

with ~α1 � · · · � ~αk, and R~α1 (x) , . . . , R~αk
(x) ∈ K \ {0} , and where

zλ (x) satisfies (4.7), we can then define the finite part limit of yλ(x) as
Y (x). Defining R~α(x) = 0 if ~α does not occur in (4.12), the proof of
Lemma 4.1 can be readily adapted to show that the function A(x) =
max {~α ∈ E : R~α (x) 6= 0} also attains its maximum, ~α∗, and thatR~α∗ ∈
X ′ \ {0}. This leads to a general version of Theorem 3.4 for finite part
limits with respect to the system of infinite functions B =

{
F~α
}
~α∈E .

Naturally, the Hadamard finite part corresponds to the choices m = 2,
F1(λ) = λ, and F2(λ) = log λ.

5. Other types of topological vector spaces

The continuity of finite part limits holds not only in Fréchet spaces,
but in other types of spaces, those that carry a final locally convex
topology given by a family of Fréchet spaces [9]. Indeed, let (Xi, ui)I
be a family of Fréchet spaces and linear mappings ui : Xi → X for
each i ∈ I. If X is provided with the finest locally convex topology
that makes all mappings ui continuous, the continuity of the finite part
limits and the R~α’s follows at once from the fact that y ∈ X ′ if and
only if y ◦ ui ∈ X ′i, ∀i ∈ I. In particular, the result holds for any
inductive limit of an inductive system of Fréchet spaces. Important
instances of such inductive limits are those that can be written as
countable inductive unions of Fréchet spaces, such as the LF -spaces,
the DFS-spaces, and the DFS∗-spaces [11].

In these more general spaces, however, the set of exponents for which
R~α (x) 6= 0 does not have to be finite, not bounded, in general (see
Examples 6.2, 6.3, and 6.4 below).

Theorem 5.1. Let X be a locally convex space that is the inductive
limit of a system of Fréchet spaces. Let Λ be an unbounded subset of
(1,∞) and for each λ ∈ Λ let yλ ∈ X ′. Suppose that for each x ∈ X
the finite part of the limit Y (x) = F.p. limλ→∞ 〈yλ, x〉 exists. Then
Y ∈ X ′.

Likewise, R~α is continuous for each ~α, but while for each x ∈ X the
set {~α : R~α (x) 6= 0} is finite, the set {~α : R~α 6= 0} could be infinite and
not bounded above.
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6. Examples

In order to better understand our results, it is useful to look at several
examples.

Example 6.1. The best known example of finite parts are the dis-
tributions constructed as the finite part of divergent integrals [4, 10].
Suppose G is a homogenous continuous function in Rd \ {0} , homoge-
nous of degree λ ∈ R. Then G gives a well defined distribution of the
space D′

(
Rd \ {0}

)
, which without loss of generality we can still de-

note by G, as 〈G, φ〉 =
∫
Rd\{0}G (x)φ (x) dx, for φ ∈ D

(
Rd \ {0}

)
.

When λ < −d then the integral
∫
Rd G (x)φ (x) dx, would be divergent

in general if φ ∈ D
(
Rd
)

and thus there is no canonical distribution cor-

responding to G in D′
(
Rd
)
. One can, however, define the distribution

F.p. (G) , the radial finite part4 of G by setting for φ ∈ D
(
Rd
)

(6.1) 〈F.p. (G) , φ〉 = F.p. lim
n→∞

∫
|x|≥1/n

G (x)φ (x) dx ,

a standard finite part if −λ /∈ N, and a Hadamard finite part if λ is an
integer. Similar ideas are needed to construct thick distributions from
locally integrable functions [15] .

Example 6.2. Let D = {z ∈ C : |z| < 1} be the unit disc in C. Let
Hk be the Banach space of functions continuous in D \ {0} , analytic
in D \ {0} , and that have a pole at z = 0 of order k; the norm being

‖f‖ = max|z|≤1 |z|k |f (z)| . Let H be the inductive limit of the Hk as
k →∞. Consider the functionals yn ∈ H ′ given as

(6.2) 〈yn, f〉 = f (1/n) ,

that is, yn = δ (z − 1/n) . For each f ∈ H the finite part of the limit
F.p. limn→∞ 〈yn, f〉 = Y (f) exists, and equals the finite part of f at

z = 0; in fact, if f (z) =
∑k

j=1 ajz
−j + g (z) , where g is analytic at 0,

then

(6.3) 〈yn, f〉 =
k∑
j=1

ajn
j + g (1/n) .

Observe that the infinite part is
∑k

j=1 ajn
j, which has arbitrary large

exponents; here the set (1.5) is infinite. Also Y (f) = g (0) , the usual

4If instead of removing balls of small radius, solids of other shapes are removed
one obtains a different finite part distribution [5, 8, 14], an important fact in the
numerical solution of integral equations [5]. The known formulas for the distribu-
tional derivatives of inverse power fields [6] and the corresponding finite parts [2, 3]
hold for radial finite parts.
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finite part of the analytic function at the pole. Our results will yield
the continuity of Y, but one can prove this directly, for example, by

observing that Y (f) = (2πi)−1

∮
|z|=r

z−1f (z) dz for any r ∈ (0, 1].

Interestingly, if X is the space of all analytic function in D\{0} with
its standard topology, then H is dense in X and the yn’s and Y admit
continuous extensions to X ′, but the extension of Y is not the finite
part of the limit of the extensions of the yn’s.

Example 6.3. Let us consider the distributions

(6.4) fn (x) =
∞∑
k=1

(
n1/k + 1

)k2
δ (x− k) ,

of the space D′ (R) . If φ ∈ D (R) satisfies suppφ ⊂ (−∞, k + 1) then
the infinite part of 〈fn, φ〉 is the sum of k2− 1 terms, corresponding to
the exponents αj = j/k for 1 ≤ j ≤ k2. Hence the finite part of the
limit is the Dirac comb

(6.5) F.p. lim
n→∞

fn (x) =
∞∑
k=1

δ (x− k) ,

while Rα (x) 6= 0 precisely when α is a positive rational number; and
actually if k is the smallest integer for which α = j/k and j ≤ k2, then

(6.6) Rj/k (x) =
∞∑
q=1

(
q2k2

q j

)
δ (x− qk) .

One could represent the infinite part of fn (x) as the infinite sum∑
α∈Q+

Rα (x) ; the set of exponents α for which Rα 6= 0 is the infi-
nite unbounded set Q+, but upon evaluation on a test function the
sum becomes finite since 〈Rα, φ〉 6= 0 for only a finite set of exponents.

In the previous example X = D (R) is an LF space, and it is not
hard to see that in an LF space the set of exponents α for which Rα 6= 0
is countable at the most. We can easily construct an example where
this set of exponents is the whole (0,∞) .

Example 6.4. Let X be the space of functions f : (0,∞) → R such
that the set {α ∈ (0,∞) : f (α) 6= 0} is finite. We give X the inductive
limit topology of the system

(
RF , iF

)
, where F is a finite subset of

(0,∞) , F ↗, and if f ∈ RF , then iF (f) = fF ∈ X is given by
fF (α) = f (α) if α ∈ F and fF (α) = 0 if α /∈ F. Theorem 5.1 applies
in X.
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Let yn ∈ X ′ be given as

(6.7) yn (x) =
∑

α∈(0,∞)

nαδ (x− α) ,

that is 〈yn, f〉 is the finite sum
∑

α∈(0,∞) n
αf (α) . Then Rα (x) =

δ (x− α) for all α ∈ (0,∞) , so that the set (1.5) is the whole (0,∞) .
Notice also that F.p. limn→∞ yn (x) = 0.

Example 6.5. Consider the space X whose elements are the continu-
ous functions in [0, 1] , with the topology of pointwise convergence on
[0, 1] . If 0 < β < 1, let us consider the functional fn ∈ X ′ given by

(6.8) fn (x) =
n−1∑
k=0

δ

(
x− k + β

n

)
,

that is,

(6.9) 〈fn, φ〉 =
n−1∑
k=0

φ

(
k + β

n

)
,

for φ ∈ X. Then the Euler-Maclaurin formula [1] yields

(6.10) 〈fn, φ〉 = n

∫ 1

0

φ (x) dx+B1 (β) (φ (1)− φ (0)) ,

where B1 (x) = x − 1/2 is the Bernoulli polynomial of order 1. The
finite part is

(6.11) F.p. lim
n→∞

fn (x) = B1 (β) (δ (x− 1)− δ (x)) ,

which is actually continuous in X, but R1, the coefficient of n in the
infinite part of 〈fn, φ〉 is not continuous since it is given by φ  ∫ 1

0
φ (x) dx, which belongs to X ′al but not to X ′.

Example 6.6. Let Ω be a complex region and let ξ ∈ Ω. Suppose
yω ∈ X ′ is weakly–∗ analytic in ω ∈ Ω \ {ξ} , that is, for each x ∈ X
the function 〈yω, x〉 is analytic in Ω\{ξ} . Suppose also that 〈yω, x〉 has
a pole at ω = ξ for each x.

If X is a Fréchet space then there exists a fixed number N such that
the order of the pole is N at the most for all x, and the finite part

(6.12) y∗ξ (x) = F.p. lim
n→∞

〈
yξ+1/n, x

〉
,

is an element of X ′.
If X is an inductive limit of Fréchet spaces, then y∗ξ is still continuous,

but the order of the pole of 〈yω, x〉 at ξ does not have to be bounded,
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that is, maybe Rk (x) = F.p. limn→∞ n
−k 〈yξ+1/n, x

〉
does not vanish in

X for an infinite number of values of k.
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