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Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. The vast majority of CRC cases have

been linked to environmental causes rather than to heritable genetic changes. Over the last decades, epidemiological

evidence linking the consumption of red and, more convincingly, of processed red meat to CRC has accumulated. In

parallel, hypotheses on carcinogenic mechanisms underlying an association between CRC and the intake of red and

processed red meat have been proposed and investigated in biological studies. The hypotheses that have received most

attention until now include (1) the presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines, two

groups of compounds recognized as carcinogenic, (2) the enhancing effect of (nitrosyl)heme on the formation of

carcinogenic N-nitroso compounds and lipid peroxidation. However, none of these hypotheses completely explains the link

between red and processed red meat intake and the CRC risk. Consequently, scientists have proposed additional

mechanisms or refined their hypotheses. This review first briefly summarizes the development of CRC followed by an in-

depth overview and critical discussion of the different potential carcinogenic mechanisms underlying the increased CRC

risk associated with the consumption of red and processed red meat.

Keywords Polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, N-nitroso compounds, lipid oxidation,

heme, N-glycolylneuraminic acid

INTRODUCTION

Colorectal cancer (CRC) is the third most commonly diag-

nosed cancer in the world. Approximately 5% of all CRC

cases are due to inherited genetic mutations, including many

syndromes such as Familial Adenomatous Polyposis and

Lynch syndrome (Power et al., 2010; Al-Sohaily et al., 2012);

however, the vast majority of CRC cases have been linked to

environmental causes rather than to heritable genetic changes

(Lund et al., 2011; Watson and Collins, 2011). For many

years, diet is recognized as an important factor in disease etiol-

ogy and risk of CRC (Modan, 1977), including the consump-

tion of red and processed red meat.1 Convincing

epidemiological evidence linking red and processed red meat
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1Although the literature is not always clear, “red meat” in this report refers

to home prepared and cooked fresh red meat products (beef, pork, sheep and

goat) that have not been subjected to treatments other than cooling, freezing

and/or comminution for mixing with other red meats and salt (e.g. ground

meat). Processed meat products are defined by the “World Cancer Research

Fund/American Institute for Cancer Research” (WCRF/AICR, 2012) as “meat

preserved by smoking, curing or salting or by addition of chemical preserva-

tives” and are here more simply specified as “red meats at least preserved by

nitrite (and/or nitrate) curing and possibly other treatments.” In the literature,

processed meats do clearly (although tacitly) not cover poultry. To prevent

possible confusion with definitions of meat covering poultry the term

“processed meats” is replaced by “processed red meats” in this review.
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intake to CRC risk has accumulated over the last decades

(Cross et al., 2010; Fung et al., 2010; Reedy et al., 2010;

Chan et al., 2011; Shin et al., 2011; Ferrucci et al., 2012;

Magalhaes et al., 2012; Johnson et al., 2013), and suggests

that the CRC inducing effect is more pronounced for processed

red meat compared to red meat. In parallel with these epidemi-

ological observations, hypotheses on carcinogenic mecha-

nisms underlying an association between CRC and the intake

of red and processed red meat have been proposed and investi-

gated in biological studies. Despite all efforts made, the under-

lying carcinogenic mechanisms remain unclear. Like other

types of cancer, the development of CRC is a multistep pro-

cess and compounds present in red an processed red meat may

interfere with this process at different levels. In order to better

understand these interactions, the current state of knowledge

on the molecular pathogenesis of CRC is first briefly

summarized.

COLORECTAL CANCER

GENOMIC INSTABILITY. CRC arises in most cases as a

benign adenomatous polyp, which develops into an advanced

adenoma with high-grade dysplasia and finally progresses to

an invasive cancer (Sanford and McPherson, 2009). Genomic

instability appears to be an integral part in the transformation

process (Al-Sohaily et al., 2012). In an initial attempt to char-

acterize multistep carcinogenesis, Fearon and Vogelstein pro-

posed a model in which specific genetic alterations (i.e.

mutations in the APC, K-ras and p53 genes) are associated

with the sequential evolution of the neoplastic phenotype in

the colon (Fearon and Vogelstein, 1990; Boland, 2010).

Although this model of Fearon and Vogelstein has been useful,

combination of mutations of the different genes in the same

cancer is uncommon and additional CRC pathways have been

recognized (Al-Sohaily et al., 2012). Today, three distinct

molecular pathways of genomic instability are considered to

occur in colon carcinogenesis: the chromosomal instability

pathway, the microsatellite instability pathway and the CpG

island methylator phenotype pathway (Itzkowitz and Yio,

2004). These three pathways have been extensively reviewed

elsewhere (Markowitz and Bertagnolli, 2009; Boland and

Goel, 2010; Migliore et al., 2011; Al-Sohaily et al., 2012).

Environmental and food-borne mutagens including com-

pounds present in red and processed red meat products can

contribute to genomic instability and finally CRC by inducing

DNA damage. In addition to an effect on the genetic material,

interference of these compounds with other processes such as

intestinal inflammation and the intestinal microflora may also

be involved in the development of CRC as both processes play

an important role in CRC development.

INFLAMMATION. Like for other types of cancer (Cous-

sens and Werb, 2002; Marnett, 2012), inflammation has been

suggested to play a role in the development of CRC. Epidemi-

ologic observations have clearly identified inflammation as an

important risk factor for developing CRC in patients suffering

from inflammatory bowel disease (IBD, including both ulcera-

tive colitis and Crohn’s colitis) (Itzkowitz and Yio, 2004).

More recent evidence, however, indicates that also in other

forms of sporadic as well as heritable CRC, inflammation is

likely to be involved (Terzic et al., 2010). Considering the

large number of pathways disturbed (Westbrook et al., 2010),

chronic inflammation has been proposed to affect the three

stages of cancer: tumor initiation, tumor promotion and tumor

progression.

Tumor initiation, the process by which a normal cell starts

to become malignant, is associated with accumulation of

genetic alterations (Grivennikov et al., 2010; Westbrook et al.,

2010). Research data indicate that inflammation can induce

genetic alterations through several mechanisms. Activated

inflammatory cells for example trigger oxidant-generating

enzymes such as NADPH oxidase and myeloperoxidase to

produce high concentrations of oxygen species (ROS) and

reactive nitrogen species (RNS) (Coussens and Werb, 2002),

compounds known to induce DNA single- and double-strand

breaks (Murata et al., 2012). Nonetheless, it is rather unlikely

that ROS produced by immune cells diffuse and induce muta-

tions in adjacent epithelial cells. A more plausible hypothesis

is that the cytokines and other factors released by activated

immune cells stimulate ROS production within epithelial cells

(Hussain et al., 2003). In colitis-associated cancer (CAC),

which is the CRC subtype associated with IBD, chronic

inflammation precedes colitis-associated tumor development

and therefore oxidative damage to DNA due to chronic inflam-

mation may be responsible for tumor initiation (Kraus and

Arber, 2009). However, in sporadic CRC, most intratumoral

immune cells are only recruited after the tumor is formed indi-

cating that chronic inflammation does not precede but follows

tumor development. Inflammation is thus probably not

involved in tumor initiation in sporadic CRC although after

tumor formation, the localized inflammatory microenviron-

ment can promote accumulation of additional mutations and

epigenetic changes (Meira et al., 2008; Terzic et al., 2010;

Westbrook et al., 2010). Furthermore, cytokines released by

activated immune cells can play a role during tumor promotion

and progression by stimulating angiogenesis and suppressing

immune-mediated tumor elimination (Karin, 2006; Yu et al,

2009; Grivennikov et al, 2010).

INTESTINAL MICROBIOTA AND TOLL-LIKE RECEP-

TORS. Both studies with human CRC tissue (Marchesi et al.,

2011; Castellarin et al., 2012; Kostic et al., 2012) and animal

studies (Kado et al., 2001; Engle et al., 2002; Vannucci et al.,

2008) indicate that the intestinal microflora influences the

development of sporadic CRC and CAC. In normal healthy

conditions, the intestinal microflora has important homeostatic

immune and metabolic functions, affects the proliferation and

survival of epithelial cells and provides protection against

pathogens (Boleij and Tjalsma, 2012). Disruption of the

homeostasis (both qualitatively and quantitatively) of the

intestinal microflora could promote cancer through different
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ways, for example by altering the number, diversity, and sta-

bility of commensal bacteria or by the action of pathogens (i.e.

Bacteroides fragilis) or conditional commensals (Terzic et al.,

2010; Zhu et al., 2013). Over the last years, evidence for a role

of microbiota and toll-like receptors, a type of pattern recogni-

tion receptors, in CRC is emerging and literature on the differ-

ent potential mechanisms involved has been reviewed recently

(Moossavi and Rezaei, 2013).

RED AND PROCESSED RED MEAT INTAKE AND
COLORECTAL CANCER RISK

Several mechanisms through which compounds present in

red and processed red meat can interfere with the different pro-

cesses occurring during the CRC development have been pro-

posed and the most important ones will be discussed.

Unlikely Hypotheses: Fat, Protein and Virus

Excess of Protein and Fat Intake

A diet high in red meat and/or in processed red meat prod-

ucts potentially contains high levels of fat. Evidence from

both epidemiologic studies (Boyle et al., 1985) and laboratory

animal studies (Reddy, 1992) has suggested a promoting role

of dietary fat for CRC development. Several mechanisms have

been postulated for the possible relationship between high-fat

intake and CRC risk among which the association between fat

intake and the production of bile acids has received most atten-

tion. High fat intake indeed stimulates the secretion of second-

ary bile acids in the gut. These bile acids can promote tumor

formation by acting as aggressive surfactants for the mucosa

thus increasing cell loss and proliferation (Bruce, 1987; Owen,

1997). Other hypotheses for the promoting role of dietary fat

include (i) an increase in the amount of free fatty acids in the

colonic lumen which may damage the colonic epithelium and

induce proliferation (discussed more in detail later in this arti-

cle) and (ii) an augmented risk for obesity, a status associated

with CRC and other diseases (Calle and Kaaks, 2004).

Although a promoting effect of high-fat diet has been repeat-

edly shown in animal models of carcinogenesis (Zhao et al.,

1991), most studies reporting a correlation between dietary fat

intake and CRC risk are quite old and more recent assessments

failed to detect an effect once confounding factors had been

taken into account, in particular body weight (Santarelli et al.,

2008; Liu et al., 2011).

Meat is also a rich source of dietary protein. Fermentation

of the excess of proteins in the gut yields metabolites such as

NH3 and H2S, compounds known to be toxic to the mucosa

(Corpet et al., 1995). However, human epidemiologic studies

do not support an association between protein intake and CRC

(Windey et al., 2012).

Both an excess of neither fat nor protein can explain the

link between consumption of red and processed red meat and

CRC risk since these macro-nutrients are also present in dairy

products, fish and poultry, foods not found to be associated

with CRC incidence in epidemiology. A meta-analysis, though

subject to some criticism, also showed that neither animal fat

nor animal protein are CRC risk factors (Alexander et al.,

2009).

Thermoresistant Oncogenic Bovine Viruses

An elegant hypothesis links red and processed red meat to

CRC through “thermoresistant potentially oncogenic bovine

viruses” (zur Hausen, 2012). The hypothesis however is not

based on experimental work and does not explain a more out-

spoken cancer inducing effect of processed (cured) red meats.

In contrast to red meat, these processed red meat products are

indeed mainly obtained from pig meat, rendering such hypoth-

esis improbable though elegant. Nevertheless, a synergistic

action of a thermoresistant infectious agent with other carcino-

genic mechanisms (e.g. carcinogenic chemicals) cannot be

excluded.

Alternative Unlikely Hypotheses

Colorectal cancer has been linked to several other agents

that may be present in (processed) red meat. Such compounds

include, amongst others, arachidonic acid (Phinney, 1996),

methionine (Duranton et al., 1999), trans-fatty acids (Smith

et al., 2009), endogenous hormones (e.g. IGF1) (Toden et al.,

2010), exogenous hormonal growth-promoters (Galbraith,

2002), man-made contaminants e.g. pesticides (Vogt et al.,

2012), and formaldehyde (Zhu et al., 2012). As evidence for

these hypotheses is limited and most of the compounds are not

specific for (processed) red meat, they are not further

discussed.

Polycyclic Aromatic Hydrocarbons and Heterocyclic
Amines

Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic

amines (HCAs) can be present in food, including red and proc-

essed red meat products. In animal studies, both types of com-

pounds have been shown to be carcinogenic through the

induction of mutations (de Kok and van Maanen, 2000; Gold-

man and Shields, 2003; Cross and Sinha, 2004).

Polycyclic Aromatic Hydrocarbons

PAHs are ubiquitous environmental toxicants produced by

incomplete combustion of organic compounds. They can be

emitted during processing of coal, crude oil, petroleum, and

natural gas, as by-products of industrial production, from heat-

ing in power plants and homes (oil, gas, charcoal-fired stoves,

wood stoves), burning of refuse, wood fires, and from motor

MECHANISMS LINKING COLORECTAL CANCER TO THE CONSUMPTION OF (PROCESSED) RED MEAT 2749



vehicle exhausts. Humans are exposed to PAHs through differ-

ent routes since they enter the body by consumption of con-

taminated foods or drinking water, inhalation of cigarette

smoke, automobile exhausts, and contaminated air from occu-

pational settings (Alexander et al., 2008). For non-smoking

humans, the major routes of exposure to PAHs are food and to

some extent inhaled air. In cigarette smokers, the contributions

from smoking and food may be of a similar magnitude (Men-

zie et al., 1992). Food can be contaminated both with PAHs

from environmental sources and PAHs formed during food

cooking. In case meat is grilled over a direct flame, fat/meat

juices often drip onto the hot fire, yielding flames containing a

number of PAHs which can adhere to the surface of the food.

However, PAHs can also be produced during the curing and

the processing of the food, for example, when smoking is used

as a preservation method (Phillips, 1999; Cross and Sinha,

2004). The best studied PAH is benzo[a]pyrene (BaP), recog-

nized since 1987 as a probable human carcinogen, and recently

upgraded to Group 1 based on mechanistic and other relevant

data by the International Agency for Research on Cancer

(IARC, 2012). In addition, three PAHs have been categorized

as probably and twelve PAHs as possibly carcinogenic to

humans (IARC, 2013). PAHs are not genotoxic as such, but

are activated through metabolization. During the metaboliza-

tion process of different PAHs, reactive metabolites are

formed which can covalently bind to DNA (mainly to the gua-

nine bases), inducing DNA damage (Phillips, 1983; Phillips

and Grover, 1994). If the DNA damage is not or incorrectly

repaired, mutations can be induced which may contribute to

the development of CRC. Risk evaluation of long-term

adverse health effects following dietary intake of PAHs often

considers the total of up to 8 different PAH compounds. The 4

major compounds often considered together are benz[a]anthra-

cene, benzo[b]fluoranthene, BaP and chrysene (Alexander

et al., 2008).

Although PAHs are present in meat and meat products, they

are usually not considered as a specific causal agent for the

carcinogenic activity of red and processed red meat products

as they are present in all foods (Cirillo et al., 2010). Indeed,

comparable levels of PAHs are found in cereal products and in

grilled poultry and fish, foods not found to be associated with

an increased risk for CRC. Epidemiologic studies do not

clearly support the hypothesis of PAH intake as cause of the

increased risk for CRC associated with the consumption of red

and processed red meat either. In a limited clinical based case/

control study (374 subjects) and after correction for possible

confounders, Sinha and others (2005a) found that BaP intake

was associated with colorectal adenoma incidence. However,

the relation was stronger for BaP intake from all foods than for

BaP from meat with relative risk rates (highest versus lowest

intake) of 5.60 and 2.82 respectively. Within this study, dietary

BaP intakes were derived from previously established data-

bases and from information on meat cooking methods and

degrees of doneness/browning obtained in preparation as col-

lected from the literature and illustrated by photography of the

prepared meat. Meat and meat products represented 19% of

total dietary BaP intake. In line with earlier work (Kazerouni

et al., 2001), only grilling/barbecuing (gas barbecue unit with

ceramic briquettes) but not cooking increased PAHs in meat

and the major source of meat associated BaP intake was grilled

steak and hamburger (69%) whereas grilled chicken repre-

sented 23%. In related work, Gunter and others (2005) con-

firmed these results and stated that “an incremental increase of

10 g of barbecued red meat per day was associated with a 29%

increased risk of large adenoma.” As no such association was

found for oven-broiled red meat, the authors concluded that

the way the meat is cooked, i.e. exposure “to a naked flame”,

rather than meat per se, contributes to the increased risk for

CRC. In similar Australian work involving 1280 subjects,

however, a risk of CRC could not be associated with BaP

intake (Tabatabaei et al., 2010). The authors related this con-

tradiction to the possible differences in fat content of the meat

consumed.

Based on this information, it would seem that concern for

PAHs as a clear causal agent of an increased risk for CRC

through meat consumption should be limited to the cooking

process. Consequently, a considerable reduction in PAH con-

centrations in foods (including meat products) can be obtained

by avoiding the pyrolysis of fat that drops into the flames

applied (Alexander et al., 2008).

Heterocyclic Amines

The final concentration of HCAs formed in heated meat and

fish via the Maillard reaction with creati(ni)ne, amino acids,

and sugars depends on many factors including cooking

method, cooking time and temperature, the concentration of

HCA precursors, and presence of water and fat in the raw

product (Alaejos and Afonso, 2011). More than 25 HCAs have

been isolated from different cooked muscle foods and the

IARC categorized eight of them [including 2-Amino-3,4-

dimethylimidazo[4,5-f]quinoline (MeIQ), 2-Amino-3,8-

dimethyl imidazo[4,5-f]quinoxaline (MeIQx) and 2-Amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)] as possibly

carcinogenic to humans and 2-Amino-3-methylimidazo[4,5-f]

quinoline (IQ) as a probable human carcinogen (IARC, 2013).

The nitrenium ion formed during metabolization is considered

the likely ultimate genotoxic compound binding to the DNA

bases producing DNA adducts through the formation of N-C

bonds at guanine bases (Goldman and Shields, 2003; J€agerstad
and Skog, 2005). The most abundant HCAs in cooked meat

are PhIP and MeIQx. They are also the two major absorbed

HCAs after intake of a cooked meat meal (Lynch et al., 1992).

When comparing the effects of type of cooking on HCA, lev-

els of MeIQx and PhIP appear to be similar if not lower in

beef and pork compared to those found in cooked poultry and

fish (Puangsombat et al., 2012). For both poultry and fish, epi-

demiology did not show an association with CRC risk. By the

same token, Viegas and others (2012) demonstrated that

whereas quantitative HCA and PAH profiles were different for
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barbecued beef and salmon using the same type of charcoal,

higher levels of HCAs and PAHs were found in salmon sam-

ples. Nevertheless, several studies provide some evidence for

a positive association of well-done meat intake and HCA

exposure with the risk of CRC. In a German European Pro-

spective Investigation into Cancer and Nutrition (EPIC) obser-

vational study involving 25540 participants followed between

1998 and 2007, dietary HCAs (PhIP but not MeIQx) were

found to be significantly associated with the CRC incidence

(relative risk: 1.47, highest vs lowest intake), even after adjust-

ment for total red and processed red meat consumption. This

suggests a specific effect of PhIP that cannot be completely

explained by other components in red or processed red meat

(Rohrmann et al., 2009). In a smaller US scale case-control

study involving 6307 subjects between 2003 and 2010 (Fu

et al., 2011), a significant positive association was found

between exposures to all meat-derived HCA studied and risk

of colorectal polyps, again after adjusting for potential con-

founders (relative risk: 1.3–1.4, highest versus lowest intake).

As described above for PAH, HCA intake levels were derived

in both studies from information on cooking methods and the

degree of doneness/browning obtained in preparation as col-

lected from the literature and illustrated by photography of the

prepared meat (Sinha et al., 2005b). For EPIC, similar data are

available in relation to cooking method at the EPIC website

(EPIC, 2012a) and photographs illustrating “meat doneness”

were developed for European environment by e.g. Augustsson

and others (1997). However, data from studies using photo-

graphs to indirectly estimate the intake of HCAs should be

interpreted with caution as the correlation between these

parameters is not clear (Solyakov and Skog, 2002). This is

also illustrated by the range of HCA intake in the US study

performed by Fu and others and the German observations

done by Rohrmann and others (Table 1). Furthermore, Deziel

and others (2012) demonstrated that estimates for dietary

HCA exposure obtained from food frequency questionnaire

(FFQ) collections, diary collections, and measurements of uri-

nary PhIP were not related. More consistent cancer risk esti-

mates of dietary HCA exposure may therefore require

improved HCA assessment tools.

Results from animal experiments do not fully explain the role

of HCAs in the increased risk of CRC related to consumption of

red and processed red meat either as the well-known carcinogenic

effects of HCA have been demonstrated in rodents at levels more

than 1000 times higher than HCA levels found in foods (Stavric,

1994; Schwab et al., 2000). For these reasons, HCAs are generally

not considered very important in relation to the carcinogenic prop-

erties ofmeat (Corpet, 2011). Furthermore, as HCAs requiremeta-

bolic activation to function as mutagens/carcinogens, the

carcinogenic potential of HCA may depend on the extent of

metabolization (Cross and Sinha, 2004). Cancer risk posed by die-

tary HCAs was indeed shown to vary with genetic differences in

the drug metabolizing enzymes involved e.g. in acetylation and

sulfonation (Le Marchand et al., 2002). Besides genetic factors,

evidence is available that individual differences in the intestinal

microflora may affect HCA carcinogenic activity as well (Kassie

et al., 2004; Vanhaecke et al., 2008). In a comprehensive review

Alaejos and others (2007) therefore conclude that there is no suffi-

cient scientific evidence to definitely accept that dietary HCA

intake specifically causes cancer but that “Epidemiological evi-

dence points to genetic predisposition as the main factor in meat

associated HCA related cancer development.”

Conclusion

The evidence listed above indicates that both HCA and

PAH intake is determined by the meat-cooking technique and

doneness level. Nevertheless, the formulation of guidelines for

meat cooking may still be considered appropriate. For industri-

ally cooked meat products, a decrease of HCA content could

be aimed at using processing variables that minimize HCA

production as determined e.g. by Dundar and others (2012). In

this respect, the finding that the ripening time of meat affects

HCA formation during heating (Szterk et al., 2012) may

also be relevant. People involved in meat preparation in

restaurants and catering should also consider such information

as it has been shown that cooks are potentially exposed to rela-

tively high levels of airborne HCA (Thi�ebaud et al., 1995).

For household cooking, an efficient method to reduce exposure

to PAH and HCA consists of the mechanical removal of

charred and blackened material from the surface of broiled

meat and fish on the dish (Sugimura, 1997). Furthermore, dis-

couragement of “well done meat” should be considered

and longer time/lower temperature treatments should be

encouraged.

Nitrosamines and Other N-nitroso Compounds

The general term ‘N-nitroso compounds’ (NOCs) covers all

substances with N-nitroso groups, including N-nitrosamines

and N-nitrosamides. Twenty years ago, Tricker and Preuss-

mann (1991) referred to established carcinogenic activities of

over 300 NOCs in one or more animal species including higher

primates. Since NOCs are alkylating agents that can react with

the DNA of the target tissue, they can induce mutations and

therefore, like PAHs and HCAs, could potentially initiate car-

cinogenesis (Saffhill et al., 1985). Alkylation of the O6-posi-

tion of guanine by NOCs may lead to G ! A transitions

Table 1 Intake (ng/day) of two heterocyclic amines in German and US

observational studies

German observational

study (Rohrmann et al., 2009)

US observational

study (Fu et al., 2011)

PhIP �6.5 – �41.4 �73.3 – �339.4
MeIQx �3.8 – �19.9 �12.2 – �70.1
1Levels of lowest–highest quartiles.
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(Singer and Essigmann, 1991; Romach et al., 1994), a com-

mon mutation in CRC found in codons 12 or 13 of K-Ras

(Bos, 1989), if not repaired by O6-methylguanine transferase

(Lindahl, 1982; Rydberg et al., 1990). N-nitrosamides are

alkylating agents, and thus are more likely to cause damage at

the site of exposure. In contrast, N-nitrosamines require meta-

bolic activation to be mutagenic and have thus the potential to

cause damage at any activation site. During food consumption,

humans can be exposed to NOCs both of exogenous and

endogenous origin (Cross and Sinha, 2004; J€agerstad and

Skog, 2005).

Exposure by Exogenous Routes

Meat products, and especially processed or heat-treated

foods, often contain NOCs. NOCs have for example been

detected in foods processed by smoking or direct fire-drying.

When these production processes are performed at high tem-

perature, molecular nitrogen can be oxidized forming nitrogen

oxides, compounds able to nitrosate secondary amines and

amides present in foods such as meat (Mirvish, 1995; Cross

and Sinha, 2004). As will be discussed later in more detail,

nitrite, present in processed foods also contributes to the for-

mation of NOCs.

An important group of NOCs in food are the volatile N-

nitrosoamines including N-nitrosodimethylamine (NDMA)

and N-nitrosodiethylamine (NDEA), two compounds classi-

fied by IARC as probably carcinogenic to humans, and N-

nitrosopyrrolidine (NPYR), N- nitrosopiperidine (NPIP), and

N-nitrosodibutylamine (NDBA) which are considered as pos-

sible human carcinogens (J€agerstad and Skog, 2005; IARC,

2013). Tricker (1997) estimated that dietary sources accounted

for about 70% of exogenous human exposure to N-nitros-

amines, the rest being due to occupational exposure (20%),

smoking (2%) and various sources (8%). The data assembled

in Table 2 illustrate that processed and heated meats (e.g.

heated bacon) are indeed major dietary sources of these vola-

tile NOCs but dairy products, fish and products such as spices

may also be important contributors (Tricker and Preussmann,

1991; Jakszyn et al., 2004; Stuff et al., 2009). Despite the fact

that most information is available on volatile nitrosamines, the

main forms of NOCs occurring in food are non-volatile NOCs

including for example N-nitrosoproline. Until now, non-vola-

tile NOCs have not yet been reported as mutagenic or carcino-

genic, but they might act as precursors to volatile carcinogenic

nitrosamines (J€agerstad and Skog, 2005).
A striking finding is the possible presence of NDMA in

fresh and minced meat (EPIC, 2012a). As almost no amines

are present in fresh meat and its nitrite concentration is rather

low, formation of nitrosamines in fresh meat has indeed been

considered to be rather unlikely (Honikel, 2008). Nevertheless,

values of NDMA up to 14 mg/kg have been reported for bulls

but were shown to originate from contamination in meat pro-

duction systems (Rywotycki, 2003). Heating of such meat fur-

ther increases the levels of nitrosamines (Yurchenko and

M€older, 2007). In line with established carcinogenic activities,

a significant positive association was observed between intake

of NDMA and subsequent occurrence of CRC in a large scale

Finnish study (Knekt et al., 1999). However, within the vari-

ous sources of NOCs, intake of smoked and salted fish was sig-

nificantly and intake of cured meat was non-significantly

associated with risk of CRC.

Endogenous Production of NOCs

About 45–75% of the total NOC exposure is estimated to be

the result of endogenous production from nitrosatable precur-

sors (Tricker, 1997). Besides secondary amines, other

Table 2 Levels of nitrosamines (mg/kg) in foods

Reference

Nitrosamine Food item (1) (2) (3)

N-Nitrosodimethy

lamine (NDMA)

Meat 0 – 4.0

Cured meats 1.0 – 5.0 4.5 0 – 84

Fried Bacon 4.0 1.9 0.5 – 5.0

Frankfurt 3.0 – 38.0 0 – 4.5

Dried Fish

(Japan)

1.0 – 6.0

Dairy products

Cheese

Non fat milk

N-Nitrosodiethylamine

(NDEA)

Cured meats <2.4

Ham 1.5

N-Nitrosodibutylamine

(NDBA)

Cured meats 1.0¡56.0

Smoked chicken <5.3 13.6

Bacon

N-Nitrosopyrrolydine

(NPYR)

Cured meats 1.0¡5.0

Fried bacon <130.0

Mixed spices <10.0

N-Nitrosopiperidine

(NPIP)

Cured meats <20.0

Fried bacon <9.2

References: (1) Tricker & Preussmann (1991), (2) Stuff et al. (2009), (3)

Jakszyn et al. (2004) and EPIC (2012a).
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nitrosatable precursors present in food are essential nutrients

such as proteins and trace compounds including urea deriva-

tives (de Kok and van Maanen, 2000). Endogenous formation

of NOCs may occur through several mechanisms including

acid catalyzed, bacterial or colon cell-mediated pathways

(Cross and Sinha, 2004). Acid catalyzed endogenous NOC for-

mation is considered to occur mainly in the stomach. About

5% of the exogenous nitrate is absorbed in the small intestine,

recirculated into the saliva and reduced to nitrite by oral bacte-

ria. In the acidic environment of the stomach, the salivary

nitrite is transformed into the nitrosating agent, nitrous acid

(Spiegelhalder et al., 1976; de Kok and van Maanen, 2000).

However, levels of NOCs in gastric juices are ten times lower

than fecal levels and gastric NOC formation is consequently

considered to be minimal (Pignatelli et al., 1993). In condi-

tions where the pH is too high for nitrous acid mediated nitro-

sation, NOC formation may result from biological catalysis by

bacterial growth (Leach et al., 1987). Considering the neutral

pH of the bowel, the bacteria mediated NOC formation is

most likely. The involvement of the colonic flora in the NOC

formation was supported by the observation that in germ free

rats, nitrate did not stimulate endogenous NOC formation

(Massey et al, 1988). However, little is known regarding the

bacterial species involved in endogenous nitrosation and dif-

ferent bacterial enzymes responsible for the nitrosation reac-

tion have been described. A recent study in a pig cecum model

indicated that intestinal formation of NOCs depends on the

intake of nitrate and the capacity of the microbiota to reduce

nitrate into nitrite (Engemann et al., 2013). In the colon cell-

mediated catalysis, nitric oxide formed via the inducible form

of NO synthase appears to act as the nitrosating species. Nitro-

sation of amines by activated macrophages has been reported

(Ohshima and Bartsch, 1994) and may thus occur at sites of

(low-grade) inflammation (Cross and Sinha, 2004).

As discussed later in this review, processed red meat does

contain residual nitrite which can contribute to the formation

of NOCs. In addition, heme present in red and processed red

meat has also been suggested to stimulate endogenous produc-

tion of NOCs.

Heme

Evidence from both epidemiological and experimental

studies suggests that heme plays a crucial role in the link

between the risk of CRC and red and processed red meat

intake (Santarelli et al., 2008; Bastide et al., 2011; Corpet,

2011). Heme consists of an iron atom contained in the center

of a large heterocyclic organic ring called a porphyrin (Santar-

elli et al., 2008). In red meat, heme is present in high concen-

trations in the form of myoglobin, resulting in the red color.

Due to the nitrate and nitrite present in the curing salt, heme

iron occurs in its nitrosylated form in processed red meat (Bas-

tide et al., 2011). When heme compounds are included in the

diet for experimental studies, hemin is often used (Sesink

et al., 2001). Hemin is a chemical derivative of hemoglobin

formed by removal of the protein part of the molecule, oxida-

tion of the iron atom, and combination with an acid to form a

salt.

Four large prospective studies found that a high intake of

heme iron was associated with a higher risk of CRC (Lee

et al., 2004; Larsson et al., 2005; Cross et al., 2010; Ferrucci

et al., 2012) but no evidence for such an association was pro-

vided in two other studies (Kabat et al., 2007; Zhang et al.,

2011). Estimation of heme iron from food intake is however

difficult and subject to error as the proportion of heme iron in

total Fe decreases with aging in beef (Ramos et al., 2012) and

with heat treatment (Lombardi-Boccia et al., 2002; Purchas

et al., 2004; D’evoli et al., 2009). In a recent study involving

185 archival CRC samples collected from participants of the

EPIC-Norfolk study, Gay and others (2012) found that CRC

cases associated with APC gene aberrations consumed higher

levels of processed red meat and iron from red meat. In con-

trast, an association between heme iron intakes and CRC risk

was not observed in Japanese men or women as reported from

a large population based prospective study (Hara et al., 2012).

However, lower intakes and different major food sources of

heme iron may explain the lack of association. Indeed, fish

was the main food source of heme iron in the study, whereas

maximal daily intakes of fish and red meat were 125 and 85 g

respectively.

As discussed by Corpet (2011), animal studies published

before 2004 did not show red meat promotion of CRC because

of the high calcium content of experimental diets, known to

suppress heme induced colon carcinogenesis (Sesink et al.,

2001). In a series of later experiments on low calcium diets

however the research group of Fabrice Pierre (Toulouse, FR)

linked red meat consumption to the development of aberrant

crypt foci (ACF) and mucin-depleted foci (MDF), precancer-

ous lesions, in the colon of azoxymethane sensitized rats. The

development of precancerous lesions was shown to be related

to red meat intake in a dose-response manner and the effect

was mimicked by heme (Pierre et al., 2004). It should be noted

that very large amounts of “freeze dried beef”, chicken or

“black pudding” were included into the experimental diets

(600 g/kg). Later, the same research group demonstrated that

also processed red meat products promote colon carcinogene-

sis in a rodent animal model (Pierre et al., 2010; Santarelli

et al., 2010). The lack of an enterosalivary recycling of nitrate

in rats has however cast doubt on the relevance of the results

of nutrition and cancer studies in this animal species. Recently,

the effect of the addition of nitrite to the drinking water of rats

mimicking the enterosalivary cycle on biochemical markers

linked to colon carcinogenesis was investigated (Chenni et al.,

2013). As no changes were observed, the authors concluded

that despite the lack of nitrite in the saliva, the rat can be rele-

vant to study the effects of red and processed red meat on

CRC.

Three mechanistic hypotheses have been put forward

underlying the promotion of CRC by heme: (1) the catalytic
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effect of heme iron on the endogenous formation of NOCs, (2)

the catalytic effect of heme iron on the formation of lipid oxi-

dation endpoints (Bastide et al., 2011) and (3) the metaboliza-

tion of heme in the gut into a cytotoxic and promoting factor

(Sesink et al., 1999).

Effect of Heme on the Endogenous Production of NOC

In a series of human intervention studies, the research group

of the late Sheila Bingham (Cambridge, UK) related the exten-

sive fecal excretion of endogenously produced NOCs to red

meat and processed red meat consumption. They demonstrated

a dose-response increase in fecal excretion of NOCs with red

meat intake, not observed with vegetable proteins, white meat

or an FeCC supplement, but clearly mimicked by a heme sup-

plement. Also in animal studies, inclusion of red or processed

red meat into the diet increased the fecal concentration of

NOCs (Parnaud et al., 2000; Mirvish et al., 2003). However,

the analytical method used to analyze NOCs did not differenti-

ate between N-nitrosamines and other compounds such as S-

nitrosothiols, O-nitroso compounds and nitrosyl iron. As dis-

cussed previously, certain N-nitroso species such as most of

the N-nitrosamines, are known to be profoundly tumorogenic

through the formation of DNA adducts, whereas such activity

has not been reported for iron nitrosyls and S-nitrosothiols,

compounds that are continuously formed in biological systems

through the action of nitric oxide synthase (Hogg, 2007).

Given the lack of specificity, the term ATNC (apparent total

N-nitroso compounds) was used to describe the substances

measured by this technique.

Several mechanisms have been proposed to explain the

effect of heme and heme-containing meat products on the fecal

ATNC content. First, the increased fecal ATNC content may

be related to heme-induced changes in microbiota. In a recent

study, dietary heme changed the microbiota with a major

increase in the ratio of Gram-negative to Gram-positive bacte-

ria (IJssennagger et al., 2012b). However, the selective shift to

gram-negative bacteria was not accompanied by heme-depen-

dent inflammation or functional change in epithelial microbe

sensing. Previously, Lunn and others (2006) had already

observed comparable fecal ATNC content in healthy and

ileostomized volunteers. As microbiota are mainly active in

the colon, they concluded that endogenous formation of NOCs

after red meat intake is more likely to occur in the small intes-

tine through another mechanism. By using an improved analy-

sis technique for the detection of NOCs, the same research

group was also able to show that nitrosyl heme and nitroso-

thiols are major constituents of both fecal and ileal ATNC

(Kuhnle et al., 2007). Based on these observations, an alterna-

tive hypothesis was formulated according to which acid-cata-

lyzed thionitrosation in the stomach is considered to be the

initial step in the endogenous formation of NOCs. Once

exposed to the alkaline and reductive conditions of the small

and large bowel, NO can be released from S-nitrosothiols to

be taken up by heme derived from the red and processed red

meat intake. Both nitrosyl heme and S-nitrosothiols can act as

nitrosating agents, promoting the formation of potentially car-

cinogenic NOCs in the gut epithelium (Kuhnle and Bingham,

2007). However, S-nitrosothiols and iron nitrosyls may also

act as a protective mechanism by capturing NO thereby limit-

ing the formation of DNA alkylating agents and facilitating

excretion (Hogg, 2007). Further investigation towards the rela-

tive role of the different ATNC involved and the origin and

regulation of the NO supply is thus required.

Despite the data from human intervention and animal stud-

ies showing an increase in ATNC after the consumption of red

or processed red meat, the carcinogenicity of the NOCs

formed in the gut remains unclear. Mutations induced by diaz-

oacetate, nitrosated glycine, in a yeast functional assay, are

very similar to those observed in colorectal tumors, suggesting

that NOCs may be involved in CRC (Gottschalg et al., 2006).

Furthermore, fecal colon cells containing an O6-methylgua-

nine DNA adduct, a characteristic promutagenic and toxic

adduct formed by many NOCs, have been numbered and found

to be significantly related to fecal excretion of ATNC in the

stool of volunteers consuming meat in various diets (Lewin

et al., 2006). In 2011, a large prospective study investigating

the relation between dietary NOCs and the risk for cancer was

performed (Loh et al., 2011). Exposure to endogenous NOCs

was derived based on the estimated iron content from meat

intake considering the relationship between the fecal ATNC

and iron intake observed in several human controlled-diet

studies (discussed above). Dietary NDMA intake (ng/d) was

calculated using a food database of potential carcinogens

(EPIC, 2012a). Whereas dietary NDMA intake was associated

with a higher incidence of rectal cancer, this association could

not be found neither for endogenous NOC exposure nor for

dietary nitrite. Large errors associated with the various esti-

mates calculated can explain the lack of a relationship between

endogenous NOC exposure and rectal cancer. Furthermore, it

cannot be excluded that although the study confirms the previ-

ously reported carcinogenic activity of exogenous exposure to

NDMA, other food sources than red and processed red meats

may be involved. However, increased endogenous formation

as the underlying cause for the association between red and

processed red meat intake and CRC risk was also not sup-

ported by the observation that in the dietary intervention stud-

ies of Bingham’s group (Cross et al., 2006; Joosen et al.,

2009; Joosen et al., 2010), no difference in fecal water geno-

toxicity in relation to meat intake was detected despite the

increased fecal ATNC concentrations. Both masking of

the genotoxic effect by genoprotective compounds present in

the complex mixture of the fecal water and the inability of the

used Comet assay in human-derived colonocyte cell lines to

detect genotoxic chemicals in fecal water have been suggested

in order to explain this unexpected result (Gratz et al., 2011).

Furthermore, NOCs measured as ATNC may promote cancer

through a non-genotoxic mode of action. In contrast, a red-

meat intake-induced increase in fecal water genotoxicity

which was not related to fecal ATNC content nor influenced
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by inflammation of the colon was observed in patients suffer-

ing from intestinal inflammation as compared to inflammatory

bowel disease (Hebels et al., 2011). Based on these results, the

authors suggest that the increased genotoxicity is rather linked

to heme-catalyzed oxidative stress than heme-stimulated NOC

formation.

Effect of Heme on the Oxidation of Polyunsaturated Fats

In rats, carcinogenesis promotion by dietary heme was

found to be associated with the urinary excretion of 1,4-dihy-

droxynonane mercapturic acid (DHN-MA), a fat peroxidation

biomarker (Pierre et al., 2004). An increase in this biomarker

was also observed in the urine of volunteers given black pud-

ding, a heme loaded blood sausage (Pierre et al., 2006), sug-

gesting that the consumption of red meat stimulates the fat

peroxidation pathway. During lipid peroxidation, polyunsatu-

rated fatty acids derived from the phospholipids within the

intestinal contents and/or colonocyte cells are oxidized by

ROS and RNS. Due to the abstraction of the hydrogen atom

from the fatty acid carbon chain, a carbon radical is formed

that tends to be stabilized by production of a conjugated diene.

The latter rapidly reacts with O2 to give a hydroperoxy radical

that oxidizes other lipid molecules and continues the chain

reaction of lipid peroxidation. Lipid peroxides are further

degraded generating reactive aldehydes of three to nine car-

bons in length unsaturated in alpha, beta- positions which are

relatively stable and can diffuse throughout the cell (Halliwell

and Gutteridge, 1984a; Halliwell and Gutteridge, 1984b;

Bartsch and Nair, 2004). Reactive aldehydes, among which

malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) are

the two most important ones, can either interact directly with

DNA and proteins, or undergo further oxidation to more reac-

tive epoxy derivatives (Marnett, 2000). MDA has been shown

to be mutagenic in bacterial and mammalian systems (Basu

and Marnett, 1983) through the formation of DNA adducts,

such as the malondialdehyde-deoxyguanosine adduct (Mar-

nett, 1994). Increased levels of this adduct have been found in

cells of colorectal biopsies from adenoma patients compared

with adenoma-free subjects (Leuratti et al., 2002). 4-HNE has

weak mutagenic activity but induces apoptosis killing of nor-

mal but not precancerous cells, possibly explaining tumor pro-

motion by a selection process (Baradat et al., 2011).

Heme has been demonstrated to catalyze lipid (per)oxida-

tion in several conditions, including digestion as well as proc-

essing of food. In a simulated gastric compartment (Lorrain

et al., 2009) and in the rat stomach (Kanner et al., 2012),

heme compounds such as myoglobin or metmyoglobin were

found to accelerate further degradation of lipid peroxides,

either ingested with the diet or formed in the stomach (Kanner,

2007). The lipid hydroperoxide decomposition products

including hydroxyl fatty acids and potentially toxic electro-

philes such as the aldehydes and epoxides formed in the stom-

ach can afterwards be incorporated in gastric and intestinal

tissues (Kanazawa and Ashida, 1998). An analogous

myoglobin-induced oxidation/peroxidation of polyunsaturated

fatty acids has been widely recognized to occur during the

storage of meat but the mechanisms involved are very com-

plex and still a matter of dispute (Baron and Andersen, 2002).

Nitric oxide modifies and in most cases moderates the prooxi-

dative activity of the heme pigments (Carlsen et al., 2005), as

will be discussed more in detail later in this article.

The link of lipid peroxidation with heme in relation to CRC

has been further supported by the observation that hemoglobin

treatment promoted DNA damage induced by linoleic acid

hydroperoxide derived compounds in colon adenocarcinoma

cells (Angeli et al., 2011). In a more general context, lipid

hydroperoxides of dietary origin have been identified as an

important driving force for liver carcinogenesis (Rohr-Udilova

et al., 2008) whereas unsaturated fatty acid oxidation contrib-

utes to the inflammatory response (Marnett, 2012), a condition

associated with CRC.

Metabolization of Heme in the Gut into a Cytotoxic

and Promoting Factor

A third possible explanation for the role of heme in the

increased risk for CRC associated with consumption of red

and processed red meat involves a direct effect of heme (or

one of its metabolites) on colonic cells and was formulated by

the research group of Van der Meer. They showed that addi-

tion of hemin to a low-calcium diet of rats increased epithelial

proliferation in the colonic mucosa and induced cytotoxicity

of fecal water. Hyperproliferation was considered as a com-

pensation for cytotoxicity (Sesink et al., 1999). Furthermore,

hemin-fed rats excreted much less host DNA in feces com-

pared to controls, suggesting that hemin decreased cell differ-

entiation and exfoliation of colonocytes in the gut lumen (Van

Lieshout et al., 2004). Recently, the research group investi-

gated the role of the PPARa, a nuclear hormone receptor

known to protect against oxidative stress and lipid peroxida-

tion, in heme-induced hyperproliferation and hyperplasia.

Since the five investigated PPARa target genes did not

respond to heme, they concluded that probably not ROS-

induced stress but cytotoxicity-induced stress initiates colonic

hyperproliferation (IJssennagger et al., 2012a). This hypothe-

sis was further supported by the later observation that not ROS

production but luminal cytotoxicity coincided the changes in

crypt signaling and hyperproliferation in heme-fed mice

(IJssennagger et al., 2013). However, until now, the speculated

heme-based cytotoxic factor has not yet been identified

(Santarelli et al., 2008). Within this respect, it is important to

note that in most of the experiments of this research group

hemin was used instead of food heme. In previous work, Glei

and others (2006) demonstrated that hemoglobin and hemin

were genotoxic in an in vitro model of human colon cells.

However, the genotoxic effect of hemoglobin was observed at

non-cytotoxic concentrations whereas the DNA damage

induced by hemin always coincided with cytotoxicity. These

data suggest that heme compounds derived from red and
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processed red meat intake may have other modes of activities

in the gut lumen.

Effect of Processing on Red Meat Toxicity

Epidemiological studies indicate that the risk of CRC inci-

dence is higher per g increase in intake of processed (cured)

meat than per g of unprocessed red meat (van den Brandt and

Goldbohm, 2006; Boyle et al., 2008; Santarelli et al., 2008;

Moore, 2010). In a recent report summarizing evidence of the

EPIC study involving 448,568 men and women, Rohrmann

and others (2013) concluded that after correction for measure-

ment error, higher all-cause mortality was significantly related

only to processed red meat and not to red meat intake. The

authors even estimated that 3.3% (95% CI 1.5% to 5.0%) of

deaths could be prevented if all participants had a processed

red meat consumption of less than 20 g/day. Furthermore,

based on the results of animal studies, it has been suggested

that nitrosyl heme present in processed red meat and hemin

used in experimental diets are more toxic than the native heme

from fresh meat myoglobin (Santarelli et al., 2008; Pierre

et al., 2010). The important impact of these findings justifies a

closer look at meat processing and the reactions involved. Pig

meat is the world’s most widely eaten meat. In Western coun-

tries, at least about 50% of pig meat is processed and pig meat

is estimated to provide about 80% of processed meats (FOD

economie, 2010; US Pork Center of Excellence, 2013). As the

latter contains less heme iron than beef, the presence of heme

cannot be the sole factor responsible for the increased risk of

CRC associated with processed red meat as compared to fresh

meat. Possible explanations most likely relate to the changes

provoked by the addition of processing additives and by proc-

essing conditions.

The Curing Process

Apart from smoking, meat processing basically involves

“curing”, a process dating back to ancient times and mainly

characterized by the addition of salt (NaCl) containing sodium

nitrite (and/or potassium nitrate as a source of nitrite) (Honi-

kel, 2008). Whole meat cuts (hams) are cured by covering

with dry salts or by immersion in brines whereas minced

(ground) meat is cured by mixing (“cuttering”) meat and fat

with dry salts. Sodium nitrite should be added as a mixture

with NaCl (nitrite or curing salt e.g. NaCl containing 0.6%

NaNO2) in order to prevent instantaneous production of toxic

nitrous vapors (NO2). Permitted levels of sodium nitrite in

food in Europe and the US are respectively 150 ppm (EC,

2006) and 200 ppm (CFR, 2012). Other additives often used

are ascorbate or erythorbate and sugars. The presence of salt

dissolves proteins and leads to osmotic drying followed by

coagulation of proteins and weight loss during further air dry-

ing for periods ranging from some weeks to several months

(Heinz and Hautzinger, 2007).

Nitrite is mainly used to produce the characteristic bright

red (pink when cooked) color originating from its reaction

with myoglobin and/or for its anti-bacterial effect, specifically

against Clostridium botulinum. Furthermore, nitrite effectively

controls rancidity by inhibiting lipid peroxidation (Pearson

and Gillet, 1996). Central for all these functions of nitrite are

the complex reactions between the heme cavity in the meat

pigment myoglobin and reactive oxygen and nitrogen species

(Skibsted, 2011). Considering the eight possible states of oxi-

dation of N ranging between -III (NH3) to CV (HNO3)

together with the existence of intermediate perferryl ions

(Fe:CIV and Fe:CV) (Qian and Buettner, 1999) apart from the

ferrous (Fe: CII) and ferri (Fe: CIII) ions, it is not surprising

that a very complex set of possible reactions involving interac-

tions with numerous food components in different environ-

mental conditions has been reported (Honikel, 2008; Skibsted,

2011).

After addition to meat, nitrite primarily acts as an oxidant

(NO2
¡ C H2O C e¡ ! NO C 2OH¡). During this reaction,

endogenous (e.g. NADH) or intentionally added (e.g. ascor-

bate) reductants become oxidized. In acidic conditions such as

those often found during food processing operations, nitrous

acid (N2O3) is formed from nitrite. This nitrous acid can on its

turn be transformed to its anhydride which is in equilibrium

with the oxides NO and NO2. Myoglobin (Mb) can also act as

a reductant in this reaction due to oxidation of the Fe2C to

Fe3C yielding metmyoglobin (MetMb), inducing the initial

colour change from fresh red to the brown colour. In presence

of reductants such as NADH and ascorbate, MetMb can be

transformed back to Mb. The NO formed in one of the previ-

ous reactions can then bind strongly to Mb with formation of a

heat stable NO-myoglobin inducing a second colour transfor-

mation yielding the characteristic red color of cured meat

(Honikel, 2008; Skibsted, 2011). This compound loses the glo-

bin bond to iron upon heating (Sun et al., 2009) resulting in

nitrosylmyochromogen (or nitrosylprotoheme), the pigment

changing the product color from bright red to the characteristic

pink colour of cooked cured meat. Some researchers speculate

that free nitrosylheme is more toxic than fresh meat myoglobin

(Santarelli et al., 2008) as weak mutagenic activity for this

compound has been reported in the Ames test (Stevanovic

et al., 2000). However, in vivo genotoxicity data on nitrosyl-

heme are still lacking.

Nitrite is also involved in the complex reactions which

occur during lipid oxidation. Within this context, Nicolescu

and others (2004) concluded that the reaction of NO derived

from nitrite, with the free radical intermediates in lipid oxida-

tion acts as a lipid radical chain termination agent. The “lipid

nitrites” are labile and will function both as NO donors and

antioxidants. Both these aspects are obviously more important

for minced cured meat products, containing large amounts of

adipose tissue susceptible to oxidation and possibly acting as

NO donors during processing and conservation but also during

digestion. Production of lipid nitrites contributes to the well

recognized antioxidant effect of nitrite that effectively controls
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rancidity in processed red meats by inhibiting lipid peroxida-

tion (Freybler et al., 1993). It is indeed remarkable that in spite

of the oxidative properties of nitrite, and their possible

strengthening by the presence of iron and chloride, little lipid

oxidation is observed in processed red meats. It should how-

ever be clear that the oxidation status of lipids is also deter-

mined by other reactions involving nitrosomyoglobin with

depletion of oxygen or peroxides and production of NO as

described in detail by Skibsted (2011). Peroxynitrite, formed

by the reaction of NO with the superoxide radical anion

(NO C O2
.¡ ! ONOO¡ ! NO3

¡) may initiate lipid oxida-

tion. Antioxidant activity on the other hand also involves NO

binding to the heme ferrous ion forming nitrosomyoglobin and

to other non-heme iron proteins preventing pro-oxidant iron

release (e.g. from the porphyrin) (Morrissey and Tichivan-

gana, 1985) during an attack of H2O2 or hydroperoxides (Kan-

ner et al., 1994). The importance of the latter mechanism is

suggested by the antioxidant effect of the isolated cured meat

pigment in the absence of nitrite (Shahidi and Pegg, 1992).

Many other possible reactions may be involved however as

e.g. a contribution to an antioxidant medium by initial oxida-

tion of NO2 in the presence of oxygen (Honikel, 2008). Also,

the pro-oxidant activities of heme pigments present are

strongly affected by low pH, the initial prevalence of deoxy-

genated heme pigment and the oxidative modification of the

heme pigments as well as the degree of proteolysis (Carlsen

et al., 2005). Last but not least, it is clear that during conserva-

tion of processed red meats, the presence of O2 and tempera-

ture conditions affect further oxidation reflected in browning

of the products. Exposure to light intensifies oxidation but

only in the presence of O2 as discussed in detail by Skibsted

(2011).

Effect of Nitrite on the Formation of NOCs and Lipid

Peroxidation

Apart from the well-studied reactions described above,

the use of 15N-labelled sodium nitrite has shown that

73–87% of added nitrite is retained in the muscle proteins

of bacon (Woolford and Cassens, 1977). This underlines

the importance of residual nitrite in cured meat proteins as

a “hidden NO generating pool providing nitric oxide for

the numerous reactions occurring during storage and cook-

ing of cured meats” (Skibsted, 2011). One important reac-

tion is the formation of NOCs. Nitrite used for meat curing

can stimulate both exogenous and endogenous formation of

NOCs. NO and NO2 generated from N2O3 in acidic condi-

tions during processing or in the stomach can react with

secondary amines or amides forming potentially carcino-

genic NOCs (d’Ischia et al., 2011). Residual nitrite in proc-

essed red meat is not limited to the protein fraction as

added 15N-labelled sodium nitrite was recovered in cured

whole adipose tissue (Goutefongea et al., 1977) and for up

to 20 -25% in the adipose part of cured bacon (Woolford

and Cassens, 1977). Nitrite present in the fat tissue can

contribute to lipid peroxidation. Later work in model sys-

tems has demonstrated the formation of nitrosated lipids by

addition of nitro groups to the double bonds of unsaturated

lipids (Mouloud et al., 1992), and recognized these com-

pounds as agents responsible for nitrosamine formation

during frying of cured meat (Ross et al., 1987).

Most of the available evidence from epidemiology and ani-

mal experiments supports an enhancing effect of nitrite on the

formation of NOCs both in food and endogenously. Haorah

and others (2001) showed that hotdogs contained 10 times

more NOCs than fresh red meat. Furthermore, ATNC derived

by nitrosation of NOC precursors present in hotdogs induced

colonic aberrant crypts in the mouse colon (Davis et al.,

2012). However, Drabik-Markiewicz et al. (2009) observed

that although levels of volatile nitrosamines in a cured meat

model increased with temperature and amounts of nitrite

added during processing, they stayed < 10 mg/kg as long as

the nitrite level of 120 mg/kg was not surpassed. This observa-

tion justifies strict regulations on the use of nitrite in meat

processing as well as the common addition of ascorbate as

originally suggested by Mirvish and colleagues (1972).

Indeed, according to Skibsted (2011), the addition of 500 mg/

kg of sodium ascorbate or erythorbate (isoascorbate) may pre-

vent formation of potentially carcinogenic NOCs as ascorbate

reacts faster than secondary amines with the nitrosating agent

N2O3. Interestingly, ascorbate in batters contributes together

with nitrite and salt also to the reduced toxin production by

proteolytic Clostridium botulinum types A and B (Robinson

et al., 1982).

Several studies indicate that the presence of nitrite in proc-

essed food can also increase endogenous formation of NOCs.

As for red meat, diets based on processed red meat have been

reported to increase the fecal ATNC content but the effect of

processed red meat appeared to be more pronounced. In mice,

diets containing 18% hot dogs increased fecal ATNC excretion

3.7–5.0 fold compared to controls whereas equal amounts of

beef resulted in a 2.6–2.9 fold increase (Mirvish et al., 2003).

As fecal ATNC contain both unabsorbed dietary NOCs and

endogenously formed NOCs, it was not clear if the observed

increase was related to the increased dietary NOCs content of

processed red meat. However, the observed effect on fecal

ATNC levels does not appear to be specific for nitrite from

processed red meat. In a later experiment, the same research

group showed that fecal ATNC excretion in mice increased

with nitrite in the drinking water, an effect even more

increased by the presence of heme (Mirvish et al., 2008). Until

now there is no or inconclusive evidence for nitrite being a

colon carcinogen. In vitro work showed that high concentra-

tions of nitrite promote cancer cell progression in cells repre-

senting stage 4 colon carcinomas whereas low concentrations

of nitrite inhibit cancer cell progression at early stage (Jiang

et al., 2012). The lack of a clear carcinogenic action of nitrite

is not surprising as nitrite is ubiquitously present in food

including vegetables and polluted drinking waters. Further-

more, humans are exposed to 4.5–13.5 mg nitrite/d from the
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saliva derived from enterosalivary recirculation of dietary

nitrate reduction in the oral cavity (d’Ischia et al., 2011).

Swallowing saliva in combination with virtually any food

would thus increase endogenous NOC formation (Sindelar and

Milkowski, 2012). The general safety and even beneficial role

of nitrate/nitrite in human health has indeed been extensively

confirmed (Parthasarathy and Bryan, 2012; Sindelar and Mil-

kowski, 2012). Endogenous production of nitrite and the

important intake of nitrate through other foods considerably

reduces the probability that these compounds are solely

responsible for the increased CRC risk associated with the

consumption of processed red meat. A synergistic effect of

multiple compounds present in processed red meat (including

nitrosatable precursors, heme and nitrite) in an acidic environ-

ment may be more likely. One hypothesis involves that in

such conditions a specific carcinogenic component within the

ATNC is produced which is different from those generated

when only nitrite is present. Obviously more advanced ana-

lytical techniques are required for identification of such com-

pounds in colon/fecal contents. Research within this domain

is progressing and recently over 30 putative NOCs have been

identified in fecal material (Clarke et al., 2011). A Danish

study involving 185 archival CRC samples collected from

participants of the EPIC-Norfolk study supports the hypothe-

sis that the increased risk for CRC associated with the con-

sumption of processed red meat products is related to an

increase in the levels of NOCs. Indeed, CRC cases harboring

GC-to-AT transition mutations were associated with proc-

essed red meat consumption, suggesting a dietary link with

alkylating agents such as NOCs (Gay et al., 2012). The

hypothesis was further supported by the observation that the

promoting effect of nitrite treatment on preneoplastic lesion

in the rat colon was linked with an increased fecal ATNC

content. As the amount of lipoperoxides present in the fecal

water and its cytotoxicity did not correlate with the increased

occurrence of preneoplastic lesions, the authors concluded

that not increased lipid peroxidation but an effect on NOC

formation is responsible for the procarcinogenic effect of

processed red meat (Santarelli et al., 2010). These results

were recently confirmed by another study from the same

research group (Santarelli et al., 2013) investigating the effect

of nine different cured meat products on fecal and urinary

biomarkers associated with heme-induced carcinogenesis pro-

motion in rats. Two diets, i.e. the ones that included hot dogs

and dry fermented sausage, induced a significant increase in

cytotoxicity of the fecal water and both diets also increased

the number of preneoplastic lesions. Although dry fermented

sausage contained eight times more thiobarbituric acid reac-

tive substances (TBARS, byproducts of lipid peroxidation)

than hot dogs, again no association was found between the

occurrence of preneoplastic lesions and the biomarkers for

lipid oxidation. Hence, the authors suggest that nitroso-com-

pounds are major pro-cancer factors in the gut of processed-

meat eaters.

An Effect of NaCl?

A major effect of meat processing (nitrite curing) is of

course the increased salt (NaCl) content reaching values rang-

ing from 1 to 10%. The presence of Cl¡ leads to the production

of nitrosyl chloride following HNO2 C HC C Cl¡ ! NOCl C
H2O. NOCl is more reactive than N2O3 and chlorine may con-

tribute with nitrite and ascorbate to the Fenton reaction pro-

ducing hydroxyl radicals from ROS formed in biological

tissues (Skibsted, 2011). Salty diets and salted foods have con-

sistently been related to stomach cancer, mainly in Japan. Fur-

thermore, NaCl enhances experimental gastrocarcinogenesis

by N-methyl-N’-nitro-N-nitrosoguanidine in rats (Takahashi

et al., 1994). Until now, no link has been published between

salt intake and CRC (Santarelli et al., 2008). However, it has

been suggested (Demeyer and De Smet, 2011) that free radical

damage in the gut by myeloperoxidase (MP) catalyzed genera-

tion of reactive chlorinated intermediates may be linked to

plasma chloride levels increased by salt in consumed proc-

essed red meats. This hypothesis deserves further consider-

ation and research.

The White Meat Controversy

The evidence listed above identifies heme as the major

responsible carcinogenic compound in red meat (mainly beef

Figure 1 Total iron (mg/100 g) in raw and cooked beef, pork and chicken.

Each dot represents a mean value and horizontal lines are median values.

References: (Clark et al., 1997; Lombardi-Boccia et al., 2002; Purchas et al.,

2003; Williamson et al., 2005; Ventanas et al., 2006; Dannenberger et al.,

2007; L�opez-Alonso et al., 2007; Gerber et al., 2009; Greenfield et al., 2009;

Rooke et al., 2010; Sch€onfeldt and Hall, 2011; Tomovic et al., 2011; Lopez-

Alonso et al., 2012 and Pretorius et al., 2013).
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and pork) for the increase in CRC risk. Addition of nitrite

during red meat processing may reinforce the effects of heme

or even increase the toxic effect of red meat through a sepa-

rate mechanism. However, one important discrepancy still

exists, i.e. the so-called “white meat” controversy. Before

entering into this discussion, it is important to review what is

understood by ‘red meat’. Red meat is often used as a culi-

nary term referring to meat which is red when raw, and not

white when cooked. It includes the meat of most adult mam-

mals and some fowl (e.g. ducks). In a more precise manner,

the terminology “red” and “white” reflects the relative pro-

portion of red and white muscle fibers known to be more in

favor of white fibers in pigs than in beef. Concomitantly, the

heme content is higher in red than in white muscle fibers. It

was based on this definition that the U.S. National Pork

Board started an advertising campaign positioning pork as

“the other white meat“, a slogan retired in 2011 whereas

pork is clearly considered as red meat by USDA (USDA,

2013). Meat from pigs together with that derived from

calves, cattle and sheep (including lamb) was also defined as

red meat within the EPIC study (EPIC, 2012b). Furthermore,

the WCRF/AICR considers meat from cattle, goats, sheep

and pigs as red meat (WCRF/AIRC, 2012).

The major concern regarding the hypothesis of heme as the

carcinogenic compound in red meat relates to the observation

that heme contents of chicken and pork are of similar magni-

tude and both lower than beef (Lombardi-Boccia et al., 2002).

A wider literature survey suggests that iron contents of raw

and cooked chicken and pig muscle are of similar magnitude

and are considerably lower than total iron contents of beef,

although widely varying with the nature of muscle and the

type of production (Fig. 1). Median values for total iron in raw

beef, pork and chicken from this survey were 2.0, 0.8 and

0.6 mg/100 g respectively (3.1, 1.0 and 1.0 mg/100 g for

cooked beef, pork and chicken respectively). The proportion

of heme iron (% of total iron) decreases from beef over pork

to chicken, and was on average 87 (77), 61 (62) and 38 (28)%

for raw (cooked) beef, pork and chicken respectively in the

study of Lombardi-Boccia and colleagues (2002). These dif-

ference in heme iron content do not seem large enough how-

ever to account for the consistent absence of a carcinogenic

effect of chicken consumption in contrast to red meat (mainly

beef and pork) consumption. Within this context, the increased

risk of CRC associated with the consumption of red meat may

be related to a specific component of red meat (mainly beef

and pork) other than heme: the mammalian cell surface sialic

Figure 2 Combined effects of multiple compounds present in red and/or processed red meat on the development of colorectal cancer (CRC). Mutagens present

in meat or formed during processing or preparation such as polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HCAs) and dietary N-nitroso com-

pounds (NOCs) can initiate mutations in epithelial cells after metabolic activation. In addition, heme catalyzes endogenous formation of NOCs. Hyperprolifera-

tion of epithelial cells resulting from the cytotoxic effects of secondary bile acids generated from fat, end products of fat peroxidation and heme may lead to

further accumulation of mutations. Next, although not the initiating event, inflammation may further enhance the development of CRC by the production of reac-

tive oxygen species (ROS)/reactive nitrogen species (RNS) and cytokines. Compounds present in red and processed red meat that can trigger inflammation

include heme-catalyzed lipid peroxidation products and Neu5GC. The more pronounced effects of processed red meat on CRC risk may be related to the enhanc-

ing effect of nitrite on exogenous and endogenous NOC formation, by an increased cytotoxic effect of nitrosyl heme and/or the increased formation of reactive

chlorine species (RClS) enhancing inflammation.
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acid N-glycolylneuraminic acid (Neu5Gc). This compound is

not produced by bacteria or plants, is low or absent in poultry

and fish, but abundant in red meats (lamb, pork and beef) and

in bovine milk (Byres et al., 2008). Humans however are

genetically deficient in Neu5Gc production and instead meta-

bolically accumulate it from dietary sources, particularly red

meat and milk products. This metabolically-accumulated die-

tary Neu5Gc results in the production of circulating anti-

Neu5Gc antibodies leading to local chronic inflammation

(Hedlund et al., 2008). Intake of Neu5Gc alone may be insuffi-

cient to induce CRC as milk products have not or even

inversely been associated with an increased CRC risk. In

(processed) red meat products however, the combined pres-

ence of Neu5Gc with heme and genotoxic compounds (e.g.

PAHs, HCAs and NOCs) may increase the propensity to

develop diet-related carcinomas. Interestingly, high calcium

contents of experimental diets have been shown to reduce

CRC risk associated with (processed) red meat intake both in

animals (Sesink et al., 2001) and in humans (Pierre et al.,

2013), probably through interference with the effects of heme.

In spite of the presence of inflammatory Neu5Gc, the signifi-

cantly higher calcium levels in processed dairy products

(»500 mg/100g) compared to processed red meat (»10 mg/

100 g) (NUBEL, 2013) may thus account for the protective

effects of dairy foods as reported earlier (Park et al., 2009;

Pala et al., 2011). Anyway, the near absence of Neu5Gc in

poultry and fish could provide an explanation for the “white

meat controversy” and its importance justifies further research

efforts.

CONCLUSION

Over the last decades, epidemiological evidence linking the

consumption of red and, more convincingly, of processed red

meat to CRC has accumulated which resulted in dietary rec-

ommendations, presenting a challenge to the meat processing

industry (Demeyer et al., 2008). Multiple hypotheses have

been put forward to explain the increased CRC risk associated

with red and processed red meat intake. Yet, none of these

appears to be sufficient as discrepancies (e.g. the “white meat”

controversy) still exist. Considering the different hazardous

compounds that may be present in red and processed red meat,

the increased risk for CRC may not be associated with one sin-

gle causative agent, but with the presence of a mixture of dif-

ferent carcinogenic compounds, acting on multiple stages of

CRC development (Fig. 2). As discussed in the introduction,

CRC is a multistep process; tumor initiation by the induction

of mutations is not sufficient to develop cancer and additional

processes such as tumor promotion and progression are

required. High intakes of red and in particular processed red

meat in unbalanced diets may create an environment which

favors the different steps of CRC development. Environmental

mutagens present in red meat such as PAHs, HCAs and dietary

NOCs can initiate mutations in epithelial cells. Within this

process, genetic polymorphism and microbiota also play an

important role as the three classes of compounds are only

mutagenic after metabolization. Besides acting as an exoge-

nous source of NOCs, red meat further contributes to the

endogenous formation of these compounds through a catalytic

action of heme. In processed red meat, NOC formation is even

further enhanced due to the presence of nitrite. Consequently,

it is clear that both red and processed red meat contain com-

pounds capable of inducing mutations. Hyperproliferation of

epithelial cells due to cytotoxic effects can lead to accumula-

tion of mutations. Secondary bile acids generated from fat, the

end products of fat peroxidation and heme have all been

reported to exert a cytotoxic effect on the intestinal mucosa.

This mechanism may be in particular important for nitrosyl

heme, present in processed red meat, and may explain the

increased risk associated with processed red meat compared to

red meat. Finally, inflammation may also be involved.

Although probably not the initiating event in CRC induced

by red and processed red meat intake, inflammation can con-

tribute to the further development of CRC. Indeed, ROS and

RNS released by activated inflammatory cells can cause fur-

ther DNA damage whereas cytokines may result in epigenetic

changes that silence tumor suppressors or promote tumor ini-

tiation. Compounds in red and processed red meat that can

trigger inflammation include heme-catalyzed lipid peroxida-

tion products and Neu5GC. Of particular interest is the fact

that the latter could provide an answer for the “white meat”

controversy. Additional mechanistic studies are needed to

investigate the combined CRC promoting effects of com-

pounds present in red and processed red meat. A possible

role of NaCl (e.g. by enhancing the production of reactive

chlorine species) should not be ignored and, interestingly, a

combined effect has been recently described for a PAH (BaP)

and a HCA (PhIP) (Jamin et al., 2013), but much more

research in this area is necessary.
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