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ABSTRACT: Most of the children develop extra-curricular activities in the afternoon after the school timetable. These 
activities are generally organized in each school, but sometimes the amount de scholars interested in one activity is 
very limited; the school has a few available resources or the preferences of their students do not match with the 
facilities. To expand the number of activities offered to the students in a school the creation of clusters that group 
different schools is proposed. But also a transport problem appears as the children should be moved from one school to 
another, where they can enjoy their preferred activities. Therefore, this can be considered a School Bus Routing 
Problem (SBRP). We define a procedure of several steps. First, a heuristic is implemented to obtain the clusters. 
Subsequently, the assignment of activities and the optimal path between cluster's members are determined. The 
proposed children transport is based on the availability of one or two buses per cluster. This model has been applied to 
the schools in Barcelona.  
 
KEYWORDS: School Bus Routing, Set Covering Problem, Clusters, Transport. 
 

1 INTRODUCTION 

A city has to cover the basic service of education, either 
via public or private schools, to improve and to promote 
social cohesion through its educational network. These 
last years the extracurricular activities have become a 
complement of the school day for many children, as they 
are necessary, for instance, if both parents work at the 
time children come out from school.  
 
Most of the children want to develop extracurricular ac-
tivities (Rosenfeld and Wise, 2002) after the usual 
school timetable, in the afternoons. However, the de-
mand of extracurricular activities is often insufficient in 
a single school to cover the expenses of the trainer... 
This can be analysed from several points of view: activi-
ties in fashion require facilities not available in schools, 
activities that have an affordable price, lack of facilities 
for activities of potential interest, excess of offer in other 
cases, other leisure organizations or clubs offering simi-
lar activities than those organized in schools, activities 
that do not meet the minimum target for profit, activities 
with groups of different levels...  
 
Extracurricular school activities which could potentially 
be done in a school often are finally not carried out for 
lack of a minimum number of students. Moreover, there 
is no coordination of activities between schools and 
therefore only the demand of a specific number of activi-
ties is offered in each centre. Thus, the model proposed 
enlarges the range of activities considering not only the 
ones in the school where students study, but also other 

schools or neighbourhood organizations, thus forming a 
network of associations. With the clustering of the 
neighbour schools, the offer and the demand can be ex-
tended. 
 
Once this agreement between different schools is estab-
lished, the transport for the displacement of children 
must be provided.  
 
A proposed clustering between different schools, that 
could include other organizations (sport clubs,...), is pre-
sented in this study, which continues the work of 
Martínez and Figueras (2011) for the public schools in 
Barcelona. In order to transport students, an efficient 
transport network must be implemented. This second 
side of the problem is complemented by the determina-
tion of the routes for the movement of these children 
between the facilities of each activity. They only con-
sider the clustering of schools and propose a standard 
route for each of the clusters. Finally, the economic as-
pect is considered establishing a minimum amount of 
children per activity and in a bus route. 
 
The definition of the problem is presented in Section 2. 
Section 3 shows the key elements of the model. Section 
4 describes briefly the procedure. In the following sec-
tions, each of the steps is developed: Section 5 is for the 
clustering; Section 6 defines the assignment of the activi-
ties for each of the clusters, and in Section 7 the ability 
of transport flows between schools is designed. The pa-
per concludes with the discussion of the study case, con-
sidering the public schools in Barcelona in Section 8, 
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some conclusions and further work are shown in Section 
9. 

2 DEFINITION OF THE PROBLEM 

This work can be classified as a work on the school bus 
routing problem (SBRP). Park and Kim (2010) wrote 
recently a review on this problem. We are given the de-
mand for a number of activities and the places where 
each of these activities can be realized. So, compared to 
other variants of SBRP, the destination of each child is 
not known in advance. 
 
For the routing, we must take in mind that this problem 
is different to the conventional Vehicle Routing Problem 
(VRP), because “school students are not simple pack-
ages, as in the case of pick-up and delivery of goods” 
(Bowerman et al, 1995).  
 
The objective is to create clusters of nodes, i.e. form 
subgroups of nodes. When the clusters are created, one 
important constraint is the maximum waiting time, 
which is the maximum time a boy or girl can wait in a 
school to be picked up by a bus and moved to another 
school.  
 
The Set Covering Problem (SCP) is defined as follows: 
given a universe U (here it consists of the set T of all 
schools), we look for a family of subsets (here, school 
clusters) such that each student in the cluster gets access 
to the selected activity. This problem has been widely 
studied, since the work of (Schilling et al, 1993) to the 
more recent ones (Farahani et al, 2012). 
 
The coverage or solution to the problem is, therefore, a 
subfamily ST which in binding results in T. As a first 
step, we plan to solve the case in which each one of the 
m clusters created are disjoint sets. Therefore, we will 
not allow that a node belongs to more than one cluster 
S={S1, ..., Sm} such that S1...Sm = T. 
 
In our case, we determine the subsets of schools, such 
that the distance between a school and the closest school 
is no greater than tmax. This comes conditioned by the 
travel time of the bus between both locations. Any 
school is initially assimilated as a depot or starting point 
of a bus route. From each one, we seek coverage for oth-
er schools in the area, and so a potential subset is de-
fined. This should be done considering each school as a 
depot. 
 
Let us consider a route which starts from a school and 
goes to the rest of schools in the cluster. There are two 
possibilities: the same bus is going to the starting point 
following the opposite route, or another bus is necessary.  
As we consider all the activities will begin after tmax 
minutes the classes have finished, the maximum travel 
time for a student, i.e., between two of the nodes in the 
cluster, must respect this constraint.  
 

If a single bus is assigned to the route formed between 
all nodes in the cluster, the time should be done less than 
tmax/2 minutes, but the time may be doubled, i.e. to tmax 
minutes, if two buses are assigned to the transport be-
tween the nodes of the cluster (one for the route in one 
way and the other for the reverse route).  
 
Usually, SBRP consists of smaller sub-problems. Des-
rosiers et al (1981) proposed five steps for their resolu-
tion: data preparation, bus stop selection, bus route gen-
eration, school bell time adjustment and route schedul-
ing.  
 
The data preparation is necessary to consider the schools 
involved in the problem, the number of students asking 
for the activities, the potential activities to be carried in 
each school, the distances between origins and destina-
tions and the vehicles for the transport. 
 
For the sources of the student’s demand, we consider 
each of the schools in an urban area. On the other hand, 
for the destinations of the students a selection of which 
activity will be done at each school is necessary. There-
fore, this is a location problem, the representation of 
which may be done through a graph (Francis and White, 
1974), where each node represents a school in which the 
activities can be realized.  
 
In our case, the bus stop selection is skipped, as in most 
of the SBRP papers, a bus stop is given by each school, 
to take and/or leave the students.  
 
The bus route generation leads to the construction of the 
routes. The algorithms can be classified, according to 
Bodin and Berman (1979) in route-first, cluster-second 
or cluster-first, route-second. The first option builds an 
initial large route, which is divided in parts or clusters. 
The second option groups the students into clusters and 
then determines the route. 
 
Another step, the school bell time adjustment, has no 
sense in our case as the classes at all the schools finish at 
the same time, and also the extra-curricular activities 
start simultaneously. 
 
Finally, the route scheduling will determine the exact 
starting and ending time of each route. In our problem, 
as the initial time for any route is the same, a single bus 
will be used for a single route and time 0 will be the end-
ing time for classes. 
 
According to the classification on the problem character-
istics presented by Park and Kim (2010), our problem is 
classified as an urban service for multiple schools, not 
frequent in literature; the problem scope in our case is 
for the afternoons; mixed loads, as traditionally this has 
been considered when students form different schools 
share the same bus (this is one of the objectives to re-
duce globally costs); a heterogeneous fleet of buses as 
we assume that each bus (in different clusters) has dif-
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ferent own characteristics, as capacity, fixed cost and per 
unit distance variable cost.  
 
For the different objectives and constraints considered in 
the SBRP, most of the studies aim to minimize the num-
ber of buses needed and the total bus travel distance. 
Only few papers consider alternative objectives as how 
well the demand is satisfied, balancing the loads and 
travel times for buses, the riding time for students… 
Braca et (1997), Li and Fu (2002), and Park and Kim 
(2010) detail them. 
 
Generally the economic objective does not appear (Park 
and Kim, 2010), as it is considered an obliged transport 
because children must go to the school. But as the extra-
curricular activities are not obliged and a company 
should provide the service, it has to take into account the 
balance between the cost (fixed cost per bus and variable 
cost per distance plus the instructor’s cost) and the price 
paid by the families for the activity. 
 
Various constraints have been considered for SBRP 
since Braca et al (1997) and summarized in Park and 
Kim (2010). We consider the vehicle capacity constraint 
(i.e. the maximum number of students in a bus); the 
maximum riding time (the maximum time in a bus for 
children), the minimum number of children to create a 
route (which comes from the balance between costs and 
activity prices).  
 
We adopt the usual hierarchy in the planning process: the 
strategic planning of clustering is first solved and we 
leave the scheduling issue of the activities to a later 
phase. This supposes that the cluster-first, route-second 
approach is followed. 
 
The resolution of the general problem, which allows a 
clustering, does not guarantee a preferable magnitude in 
the number of schools per subset. 

3 MODEL OF THE PROBLEM 

The first element in the model is the demand and the 
second one, the potential offer to cover it. 
 
At the beginning of the course, each student of all the 
schools is asked about his/her preferences on extra-
curricular activities. We define up to p activities 
(k=1,…,p).  
 
There are m schools, which together are included in the 
called set T of schools; we use i to denote one of the 
schools (i=1,…,m). Each school has a location in the city 
map.  
 
We define di,k,t as the demand in the school i of activity k 
for children in the age t (t=1,…,q), given q levels in the 
primary school. 
 

On the other hand, there are n potential facilities in 
schools in which an activity k can be developed. They 
are included in a set F of facilities, and we use j to 
denote one of the facilities (j=1,…,n). Each one has a 
location in the city map.  
 
Initially we define aj,k,t as the availability of the facility j 
to carry out the activity k for children in the age t 
(t=1,…,q), given q levels in the primary school. But we 
can suppose that the facilities usually do not depend on 
the age, so it can be simplified to aj,k..  
 
Associated to the facility, there is a location in the map 
and a maximum number of participants or capacity of the 
activity k in school j, called as Pj,k. As a first 
approximation to the problem, we will not consider it as 
a constraint. 
 
Note that a school i, for example, may have two 
basketball courts and so, there will be two “schools” j.  
 
Finally, ti,j is the time (in minutes) of the travel from the 
school i to a facility j. Nevertheless, in a first model we 
only consider a single facility per school; in this case the 
travel is between a school i and another school j can be 
also represented as ti,j, being i, j = 1 , ..., m. 
 
The estimated maximum time a child can wait in a 
school to be picked up by a bus, or a generic transport 
mean, to take him or her to another facility or be in 
his/her way to where the activity takes places, what is 
called “waiting time”, is 15 minutes. Therefore, below 
tmax=15.  
 
This implies that the round trip between two nodes in the 
graph is equal to or less than 15 minutes, as this is 
estimated maximum time to start an activity after classes 
are finished. Therefore, the initial condition is set as no 
interrelation between nodes exceeds 7.5 minutes. We 
should not forget that the longest the travel time between 
nodes is, the least the reliability of meeting schedules is, 
for example due to the traffic. 
 
In addition, the ability to have up to two buses per clus-
ter is also taken into account, which means that the clus-
ters with an optimal route to go from a first node to the 
last node and back is not greater than 30 minutes. That 
is, the value associated with an arc of the graph should 
have now a value of 15, at most. 
 
This time constraint permits to greatly diminish the inter-
relationships between nodes, for simplicity of clustering. 
Consequently, all those arcs connecting two nodes ex-
ceeding in the one way or the other one the tmax minutes, 
in this case, are deleted. We recall that the traffic ways of 
the streets imply that not always the time to travel be-
tween node i and node j is the same as performing the 
reverse route (between node j and node i). 
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Another time constraint is related to the capacity of the 
buses. 
 
The objectives will be first to minimize the total bus time 
of travel for all the created routes. And as the least 
important criteria, the number of pupils transported 
between schools is going to be minimized.  

4 PROCEDURE  

The procedure will solve a set of problems.  
 
The first one is the clustering problem, whose objective 
is to divide the set of schools into clusters in order to 
group the closest points. At the end of this phase, and 
considering a single or double bus per cluster, we have 
an upper bound for the number of buses. 
 
The second one, given a small number of schools, is the 
assignment problem. The objective is to select one of the 
school candidates to develop an activity, if there is any 
possibility. This is done for each of the activities, in each 
of the clusters. 
 
Finally, once given the assignment of activities, the 
children’s destination is known and the movement of 
boys and girls can be determined, as well as the number 
of buses necessary per cluster. If we have the fixed cost 
of the buses, the variable cost per distance and the estab-
lished prices paid by the children for each activity, a 
selection of profitable activities may be carried out. 

5 CLUSTERING PROCEDURE 

Let G the graph consisting of m nodes, which are to be 
grouped into clusters. Considering the location of nodes, 
the constraints for the “waiting time” of students in bus 
stops (schools) and a study of the demand, we will only 
accept subsets or clusters between a minimum of nmin 
nodes and a maximum of nmax nodes.  
 
The procedure should be a partition and, therefore, small 
subsets satisfying the conditions in the previous para-
graph will be formed. First, we present the linear pro-
gram and then the heuristic procedure, which guarantees 
good quality in the solution obtained. 
 
5.1 Linear Program 

A mathematical program finds the minimum set of arcs 
between nodes with no isolated node. 
 
We define the binary variables xi,j,c indicating if the arc 
between node i and node j is chosen for cluster c (xi,j,c=1) 
or not (xi,j,c=0). These variables express the suitability of 
having or not any possible path between two nodes. The 
value 1 will be taken when the pair of nodes is directly 
related, i.e. a bus will go from school i to school j and 
vice versa.  
 

We should add that the arcs that do not meet the 
constraint of maximum travel time or also "waiting time" 
between nodes are excluded and no corresponding binary 
variable is defined. Therefore: 
 
 xi,j,c{0,1} if i ≠ j and ti,j≤ tmax for i,j=1,...,m 
 
The linear program is the following: 

           
m m

i, j i, j,c
i=1 j=1

[MIN] z = t ·x


 
max

1

c

c

 (1) 

subject to 

           
 

  
max

, ,
11/

2 1,..., ;
cm

i j c
cj i j

x i m c  (2) 

           
 

  
max

, ,
11/

1 1,..., ;
cm

i j c
cj i j

x i m c  (3) 

           
  

    , , min
1 1/

2·( 1)
mm

i j c
i j i j

x n c  (4) 

           
  

    , , max
1 1/

2·( 1)
mm

i j c
i j i j

x n c  (5) 

             , , , , , 1,..., ;i j c j i cx x i j m c  (6) 

xi,j,c{0,1} 
 
The objective that will be minimized is the total time 
consumed in the transport in all the clusters (1).  
 
There are three types of constraints. The first ones cor-
respond to equation 2, which impose that the number of 
arcs emerging from one node to the rest is less than or 
equal to 2 (for the case when a node is an intermediate 
point of a tour), and equation (3), which impose a mini-
mum number of one arc emerging from one node to the 
rest of nodes (thus, no node will be isolated and can be 
the edge of a tour). The second ones are expressed in 
equation (4) and equation (5), for the minimum and max-
imum number of nodes in a cluster (nmin=4 and nmax=5, 
respectively), which turns in an arc less. This is eva-
luated for the viability and impact on the creation of the 
clusters. We should keep in mind that the arcs that do not 
meet the constraint of the maximum travel time (tmax 
minutes) are excluded. The stop time at each school is 
neglected. Finally, the constraints of equation (6) require 
that if an arc from a node i to another node j is selected, 
we must also choose the reverse arc, emerging from j to 
i. 
 
5.2 Heuristic procedure 

The method used searches the clustering in the graph, 
starting from the location edges. The heuristic follows 
these rules: 
 
• Graph resolution with the beginning in the edges of the 
school map, and take one of the closest schools for a 
cluster going towards the city center. 
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• The clusters can be formed by 4 or 5 nodes in the 
graph. Therefore, the existing chains may be broken to 
avoid excluding clusters with less than 4 nodes. 
 
Once tested the inclusion of new nodes to a current clus-
ter the result of the route is evaluated according to the 
objective function, and compared with other possible 
association between pairs of arcs which do not isolate 
any node. 
 
Given the condition of size in the graph, a cluster is con-
sidered as provisional and the process continues to eva-
luate the suitability of alternative clusters. 

6 ACTIVITY ASSIGNMENT 

Let Y the set of m’ nodes in a cluster c (nmin ≤ m' ≤ nmax) 
and let U’ the set of arcs in the cluster that meet the con-
straint of maximum time for feasible routes. The graph 
G(Y,U’) associated with the problem is oriented and 
connected. 
 
A mathematical program establishes in which node in 
the graph an activity will be done. Previously to solve 
the problem, if an activity can be realized in none of the 
schools, this is deleted from the list.  
 
We define the binary variables zi,k, which will take a 
value 1 if the activity k will be assigned in school i.  
 
The number of children si,k moved to school i for activity 
k is defined as: 

           
q qm'

i,k i',k,t i,k,t
i'=1 t=1 t=1

s = d d   (7) 

 
Finally, there can be a maximum number actmax of 
activities per school. 
 
The linear program is the following: 
 

           
pm'

i,k i,k
i=1 k=1

[MIN] z = s ·z  (8) 

subject to 

           


 
'

,
1

1 1,...,
m

i k
i

z k p  (9) 

           


  , max
1

1,..., '
p

i k
k

z act i m  (10) 

zi,k{0,1} 
 
The objective function (8) seeks to minimize the number 
of students who have to take the bus and go to another 
school. The constraint 9 looks for the best places for 
each activity. The constraint (10) is not obliged, but it 
may be imposed if the number of activities per school is 
limited. 

7 TRANSPORT CAPACITY 

The last stage to define the feasibility of the proposed 
solution is to evaluate the capacity in the buses, or alter-
native means of transport. 
 
A depot is defined in any of the 2 ends if the route needs 
just a bus or two depots, one at each end side, for 2 bus-
es. The maximum bus travel is estimated at tmax minutes. 
However, the ratios between time and route travel time 
are compared to round the number of buses. Given the 
cost of a bus, the maximum deviation percentage before 
choosing another bus is 15%. Thus, for ratios greater 
than 1.15, two buses are chosen; otherwise, only a bus is 
assigned to a cluster.  
 
7.1 Required capacity in the case of one depot 

The demand matrix determines the flow in each arc, con-
sidering the loading and unloading of children at each 
node (i.e. school). The required capacity for transport 
(the minimum number of required seats in the bus) will 
correspond to that arc of the graph with the maximum 
flow. Consequently, we can say that the most efficient 
situation would be if all the values in the flow matrix 
were equal. This way, you can move the highest number 
of children given a certain capacity in number of seats 
(Hall, 2003). 
 
Let yi,j the number of children who must be transported 
from node i to node j. The flow leaving a node can be 
calculated using the equation for one way (equation 11) 
and the equation for the back way (equation 12) as fol-
lows: 
 

           
'

,
1 1

1,..., ' 1
l m

l i j
i j l

f y l m
  

     (11) 

           
'

1 ,
1 1

1,..., ' 1
l m

l i j
j i j

g y l m
  

     (12) 

 
Given the maximum flow in one way (maximum of the 
m’-1 values fl) and in the back way (maximum of the m’-
1 values gl), the maximum flow in any way is deter-
mined with equation (13): 
 

            1
1,..., ' 1

;l l
l m

Maxflow Max f g 
 

  (13) 

 
7.2 Required capacity in the case of two depots 

If the route in the graph requires 2 depots, each bus 
computes fl and gl+1 using equations 11 and 12 from the 
matrix of demand and the minimum capacity of each 
vehicle is determined with equation 14 and 15. I.e. we 
obtain the maximum of both kinds of flows without find-
ing the maximum between them). 
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            1

1,..., ' 1
l

l m

Maxflow Max f
 

  (14) 

 

            2
1

1,..., ' 1
l

l m

Maxflow Max g 
 

  (15) 

 
Finally, the remaining capacity or the slack is computed. 
This variable depends on the capacity of the bus and the 
demand on each node. It is useful to accept or refuse a 
future increase of passenger flows according to the eco-
nomic or strategic viability. 

8 CASE STUDY 

In Barcelona there are 164 public schools. However, 
considering that in a few cases the distance between 
them is minimal in order to share facilities, the number 
of locations can be simplified up to 160. Some initial 
considerations are made to see if any node can be dis-
carded. 
 
We impose that in the clusters a travel between any 
couple of nodes is less than tmax/2=7.5 minutes (if a sin-
gle bus is assigned to the cluster) or tmax=15 minutes (if 
two buses are assigned). 
 
First, we plot the graph with the 160 nodes and the set of 
arcs which accomplish the constraint on tmax. We can see 
that the graph is not connected, since there are four dif-
ferent subgraphs that should be evaluated separately. It is 
also noted that four nodes are sufficiently isolated from 
the rest of nodes; thus, we decide to exclude them and 
the graph has finally 156 nodes. 
 
For our case, we take nmin=4 and nmax=5. If we apply the 
heuristic procedure presented in Section 5, we obtain a 
total number of 37 clusters. Later, the best route between 
the nodes of each one of the clusters is determined, using 
the linear program shown in Section 5 for the nodes in a 
cluster.  
 
In Table 1 we can see the 37 clusters, the routes between 
the nodes and the total travel time to cover the transport 
in both ways. Two types of routes can be distinguished. 
The first group includes those whose travel time is up to 
15 minutes, in which case a single bus is needed to cover 
the transport in the cluster. The second group includes 
those others, whose travel time is between 15 and 30 
minutes, in which two buses cover the transport in the 
cluster in both ways. 
 
For example, we will consider the cluster 5 composed by 
the schools 102, 103, 104 and 105. The objective is to 
evaluate the required capacity to perform the transport in 
a cluster. The data for demand at each school i for each 
activity k, considering the children of any age t, are 
shown in Table 2. 
 
 
 

Cluster Nodes 
Total 
time 
(min) 

1 157-156-159-158 28 
2 48-47-46-44 14 
3 43-39-34-35-27 28 
4 140-135-142-139 18 
5 105-104-102-103 11 
6 109-111-110-89-86 18 
7 106-116-122-121 15 
8 137-143-149-150-136 18 
9 90-108-85-84 15 

10 38-51-52-42-41 23 
11 60-57-58-54 15 
12 99-88-98-83-59 22 
13 126-125-123-112 16 
14 65-64-82-87 10 
15 28-29-18-25 18 
16 117-115-114-113 19 
17 100-77-76-61-75 30 
18 133-134-132-131 19 
19 7-8-11-16 13 
20 73-81-63-72-66 17 
21 160-1-5-9 17 
22 96-93-95-92-94 10 
23 153-152-154-155 13 
24 36-30-37-53 19 
25 19-17-24-26 19 
26 141-147-146-151 14 
27 31-32-33-40 10 
28 10-12-13-14 22 
29 138-145-144-148 8 
30 62-45-55-56 24 
31 101-78-74-70 16 
32 119-120-118-124 22 
33 127-130-129-128 9 
34 22-21-20-23 15 
35 3-2-4-6 10 
36 69-68-67-79 18 
37 80-91-97-107 11 

Table 1: Optimal routes for the 37 clusters. 
 
If we have many activities and in order to obtain an ini-
tial solution, we propose to group them into the number 
of schools that can act as facilities. In this case, if we 
have 10 different activities, those are grouped in 4 gener-
ic activities (Table 2): team sports (Ts), individual sports 
(Is), cultural activities (Ch) and foreign languages (Lg).  
 

 102 103 104 105 
Ts 6 4 8 5 
Is 7 8 4 4 

Cu 5 5 5 3 
Lg 6 9 7 1 

Table 2: Demand of each activity in the schools of 
cluster 5. 
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The next step is to choose the school where each one of 
the activities will take place, acting as a facility. We 
solve an assignment problem for each cluster.  
 
Using the data shown in the Table 2, if actmax=1 the op-
timum assignment is: activity Ts in school 104; activity 
Is in school 102; activity Cu in school 105 and activity 
Lg in school 103.  
 
Once the assignment is done, we have a matrix of times 
in minutes between schools (nodes in the graph) as the 
route for the cluster was done earlier (see the transport 
times in Table 3).  
 

 103 102 104 105 
103 - 2 - - 
102 1 - 2 - 
104 - 2 - 3 
105 - - 1 - 

Table 3: Matrix of transport times (in minutes) between 
schools in cluster 5. 

 
The matrix with the flows is shown in Table 4. Note that 
in this matrix we sequence the schools in the rows and 
columns according to the route.  
 

 103 102 104 105 
103 0 8 4 5 
102 6 0 6 5 
104 7 4 0 5 
105 1 4 3 0 

Table 4: Matrix of flows between schools in cluster 5. 
 
The next step is to choose if one or two buses are neces-
sary for the transport in a cluster. The determination of 
the number of buses, last column in Table 5, is done as 
follows: 
 

 From the optimal routes (Table 1), we have the 
total time for transport, called tt and measured 
in minutes.  

 We obtain a ratio between tt and tmax, the maxi-
mum waiting time. 

 As described in Section 7, for a ratio greater 
than 1.15, two buses are chosen; otherwise, one 
bus is chosen. 

 
Example for a single bus. Given the required flows in 
Table 4, we apply equations 11 and 12 to obtain the re-
quired capacity of the bus at each part of the circuit. 
These results are detailed in Table 6 in the new column fl 
and the new row gl’. We add another column with the 
remaining capacity in the bus, calculated as the differ-
ence between the bus capacity BC and the required ca-
pacity. Similarly, we add another row with the remaining 
capacity in the other way. We associate each one of the 
capacity requirements to the origin of the arcs in the 
graph. 
 

Cluster tt (min) tt/tmax Buses
1 28 1.87 2 

2 14 1.67 2 

3 28 1.87 2 

4 18 1.20 2 

5 11 0.73 1 

6 18 1.20 2 

7 15 1.00 1 

8 18 1.20 2 

9 15 1.00 1 

10 23 1.53 2 

11 15 1.00 1 

12 22 1.47 2 

13 16 1.07 1 

14 10 0.67 1 

15 18 1.20 2 

16 19 1.27 2 

17 30 2.00 2 

18 19 1.27 2 

19 13 0.87 1 

20 17 1.13 1 

21 17 1.13 1 

22 10 0.67 1 

23 13 0.87 1 

24 19 1.27 2 

25 19 1.27 2 

26 14 0.93 1 

27 10 0.67 1 

28 22 1.47 2 

29 8 0.53 1 

30 24 1.60 2 

31 16 1.07 1 

32 22 1.47 2 

33 9 0.60 1 

34 15 1.00 1 

35 10 0.67 1 

36 18 1.20 2 

37 11 0.73 1 

Table 5: Determination of the number of buses per 
cluster. 

 
 l’ 1 2 3 4   
l Node 103 102 104 105 fl BC-fl 
1 103 0 8 4 5 17 3 
2 102 6 0 6 5 20 0 
3 104 7 4 0 5 15 5 
4 105 1 4 3 0 - - 
 gl’ - 14 16 8   
 BC-gl’ - 6 4 12   

Table 6: Required capacity and remaining capacity 
between schools in cluster 5. 

 
Remember that the requirements in one way are shown 
in column fl, between node l and node l+1 (i.e. the stu-
dents between school 103 and school 102 are 17). And in 
the other way they are shown in row gl’, between node l’ 
and node l’-1 (i.e. the students between school 104 and 
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school 102 are 16). Here we considered a mini-bus with 
20 seats, so the capacity is BC=20. 
 
In this case, the transportation between schools in cluster 
5 is reflected in this graph with 4 nodes (Figure 1). The 
transport is done with a single bus, whose depot may be 
school 103 (i.e. the route starts in 103, goes to 105 and 
comes back to 103) or school 105 (i.e. the first part of 
the route goes from 105 to 103 and comes back to 105). 
It has a total run time of 11 minutes and carries a total of 
58 children (the addition of all the flows in the matrix 
shown in Table 4). 
 

 
 

Figure 1: Example of transport in cluster 5 with a single 
bus (one depot, in school 103). 

 
Example for two buses. In this case we take as example 
the cluster 3, composed by the schools 27, 34, 35, 39 and 
43. Once the assignment of activities to facilities is done, 
we have a matrix of times between schools (nodes in the 
graph) as the route for the cluster was 43-39-34-35-27 
(see Table 1). The total transport time in both ways is 14 
minutes, although the time between two of the nodes 
may be different in both ways (see Table 7). 
 

 43 39 34 35 27 
43 - 3 - - - 
39 3 - 2 - - 
34 - 3 - 6 - 
35 - - 6 - 3 
27 - - - 2 - 

Table 7: Matrix of transport times between schools in 
cluster 3. 

 
The matrix with the flows is shown in Table 8 (we se-
quence again the rows and columns according to the 
determined route, Table 1).  
 
Given the required flows in Table 8, we also apply equa-
tions 11 and 12 to obtain the required capacity of the bus 
at each part of the circuit (in Table 9): the new column fl 
and the new row gl’. The last column and the last row 
have the remaining capacity in the bus. Here we consider 
a bus with 50 seats of available capacity, what is BC=50. 
 
 
 

 43 39 34 35 27 
43 0 8 3 9 5 
39 10 0 4 6 2 
34 3 6 0 5 8 
35 8 5 6 0 9 
27 9 7 6 4 0 

Table 8: Matrix of flows between schools in cluster 3. 
 
 l' 1 2 3 4 5   

L Node 43 39 34 35 27 fl BC-fl

1 43 0 8 3 9 5 25 25 
2 39 10 0 4 6 2 29 21 
3 34 3 6 0 5 8 35 15 
4 35 8 5 6 0 9 24 26 
5 27 9 7 6 4 0 - - 
 gl’ - 30 38 41 26   
 BC-gl’ - 20 12 9 14   

Table 9: Required capacity and remaining capacity 
between schools in cluster 3. 

 
In this case, the transportation between schools in cluster 
3 is reflected in Figure 2 (a graph with 5 nodes). The 
transport is done with two buses. The first one has the 
starting point in school 43 (i.e. the route starts in 43 and 
finishes in 27, 14 minutes later). The second one has the 
starting point in school 27 (i.e. the route goes from 27 to 
43, and lasts 14 minutes). In the cluster the total run time 
is 28 minutes, and carries a total of 123 children (Table 
8). The maximum required capacity is 41 in the first 
route, so the remaining capacity goes from 9 (between 
schools 35 and 34) to 26 (between schools 35 and 27). 
 

 
Figure 2: Example of transport in cluster 3 with two 

buses (the first depot in school 43 and the second one in 
school 27). 

9 CONCLUSIONS 

Nowadays there are many extra-curricular activities. Not 
always an activity can be realized in the same school of 
the children interested in it. Another problem that ap-
pears is that the number of children interested in one 
activity does not reach the minimum to cover its cost. 
For this reason, a solution to these problems is to provide 
transport to the students of a school to go to another 
school and there practice their favorite sports, cultural 
activity… This has led to model the schools in a city as 
the nodes of a graph and cluster them in subsets group-
ing the nearest public schools. Another interesting deci-
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sion is the assignment of activities to the facilities in 
each school.  
 
The clustering will allow both reducing the costs of ac-
tivities and increasing the number of activities, but a 
transport is required. The objective is to provide the most 
efficient transport in terms of passengers carried accord-
ing to the bus capacity. We consider one or two buses 
per cluster, which means in the first case a bus moves in 
both ways, and in the second case, which a bus moves in 
one way and the second in the other. The following deci-
sion is to determine the best route between schools in the 
cluster. Once determined, and considering the demands 
of activities at each node and the movement of children, 
we can determine the flows between schools, nodes in 
the graph, and the remaining capacity of the buses. 
 
For a future research, we should analyze the possibility 
of that a node in the graph can form part of more than 
one cluster, according to the demand on the different 
activities; the demand according to the ages of the child-
ren; and the assignment of individual activities to facili-
ties in schools instead the assignment of groups of activi-
ties. 
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