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CHAPTER 1

Introduction

1.1 Introduction

The nucleus is a complex many-body quantum-mechanical system. Up to the present day
it remains a very challenging problem to determine the corresponding wave functions and
obtain reliable observables.

The direct approach of calculating the non-relativistic many-body wave function starting
from the nucleon-nucleon interaction is a computationally very hard and high-dimensional
problem. Due to this complexity this approach is only feasible for light nuclei up to A =
12 [1–4]. When larger nuclei are considered the complex many-body problem has to be
approximated. The correlated basis function theory [5, 6] and cluster expansion techniques
[7–9] are examples of models that approximate the many-body problem. For infinite nuclear
matter (A → ∞) it is possible the solve the many-body problem with realistic nucleon-
nucleon potentials [10].

A very successful model, reproducing many nuclear properties, is the independent-particle
model (IPM) [11, 12]. The independent-particle model treats the nucleons in the nucleus as
independent particles moving in an averaged nuclear potential. This mean-field potential
encodes the average effect of the individual nucleon-nucleon interactions. The IPM essen-
tially reduces the A-body problem to a sum of A single-body problems. This cuts down the
curse of dimensionality in the many-body wave function tremendously. Despite its simplicity
the IPM manages to capture a lot of the nuclear properties such as the exceptional stability
of nuclei with certain combinations of protons and neutrons, nucleon binding energies and
the spin and parity of the ground state of stable and unstable nuclei.

In order to get a feeling about the structure of nuclei, the nuclear packing fraction (NPF) can
be considered. The nuclear packing fraction is defined as the fractional volume occupied by
the nucleons with regard to the total nucleus. The NPF can be estimated by considering the
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nucleons and nucleus as solid spheres. The nucleon is a diffuse system with a hard repulsive
core with radius ≈ 0.5 fm. The proton-mean-squared charge radius, as extracted from
electron-proton scattering data [13] is approximately 0.9 fm. With the radius of a nucleus

given by the empirical formula 1.2A
1
3 fm, the NPF is in the range [0.07, 0.42]. Comparing

the NPF to the maximum packing fraction of solid spheres of ≈ 0.74 it can be concluded
that the nucleus can be interpreted as a dense quantum liquid. Given this observation it is
rather surprising that the IPM accurately describes many nuclear properties.

As the IPM treats the nucleons as moving independently from each other in a mean-field
potential, it fails to capture features generated by nucleon-nucleon correlations. As such
the IPM cannot reproduce nuclear properties that are sensitive to the fluctuations about
the mean-field predictions. In order to build more realistic models the nucleon-nucleon cor-
relations have to be included. When correlations are introduced, however, the many-body
nature of the nucleus quickly resurfaces, increasing the dimensionality beyond numerical fea-
sibility. The nuclear correlations are generally classified into two categories: the long-range
correlations (LRC) and the short-range correlations (SRC). The aim of this dissertation is to
investigate short-range nuclear correlations. Starting from the IPM the short-range nucleon-
nucleon correlations are introduced in a tractable way, keeping the complexity under control.
Thereby the model includes the correlations which are expected to drive nuclear features un-
der study. Imposing such a restriction is non-trivial and requires a thorough understanding
of the dynamics of nucleon-nucleon correlations. The LRC are connected with the long-
range attractive part of the nucleon-nucleon interaction. They can be incorporated in an
independent-particle model by explicitly coupling the single-particle degrees-of-freedom to
collective nuclear states, such as giant resonances and surface modes. The effect of LRC is
confined to nucleon momenta approximately smaller than the Fermi momentum. The bulk
of the SRC, on the other hand, is associated with the short-range repulsive core and the
tensor component of the nucleon-nucleon interaction. The SRC generate strong-fluctuations
from the mean-field picture whereby the individual nucleons receive large momenta com-
pared to the Fermi momentum. All IPM single-particle orbitals are depleted by SRC and
higher energy levels are populated. This reduces the occupation probability, or spectro-
scopic strength, of the IPM single-particle orbitals [14]. Recent reviews of nuclear SRC can
be found in Refs. [15–18].

Because of the separation between SRC and LRC in momentum space, the SRC can be read-
ily isolated by limiting ourselves to the appropriate momentum range. The effect of SRC
can be introduced in a systematic way using the low-order correlation operator approxi-
mation (LCA), outlined in chapter 2. Thereby the expectation value of a general operator
is calculated by transforming the operator to an effective operator, which incorporates the
effect of SRC. The LCA introduces nuclear correlations while keeping the numerical com-
plexity under control. It allows the study of SRC across the whole nuclear mass range. In
[19] it is shown that the LCA yields similar results when compared to advanced quantum
Monte-Carlo results [20], which are limited to A ≤ 12.

The effect of SRC on the nuclear momentum distribution (NMD) is studied in chapter 2.
The NMD is connected to the probability of finding a nucleon (nucleons) with a certain
momentum inside a nucleus. As the LRC and SRC dominate in different momentum regions,
the effect of SRC can be readily isolated by limiting ourselves to the study of the NMD in
the appropriate momentum range. The one-body momentum distribution n(~k) corresponds
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Figure 1.1 – Diagrams depicting the one-body momentum distribution n(~k) (top) and the two-
body momentum distribution n(~k1,~k2) (bottom). The momentum distributions can be interpreted
as the probability of removing and adding a nucleon (nucleons) with momentum ~k (momenta
~k1,~k2). The correlated nuclear systems A,A − 1 and A − 2 are represented by the gray band.
Throughout this work the correlated wave functions are constructed by introducing a correlation
operator G acting on the IPM nucleons, represented with the individual lines.

with the probability of finding a single nucleon with a certain momentum in the interval
[~k,~k + d~k]. The two-body momentum distribution n(~k1, ~k2) denotes the joint probability

of simultaneously finding two nucleons with momenta [~k1, ~k1 + d~k1] and [~k2, ~k2 + d~k2]. In
the IPM, the two-body momentum distribution is given by the product of single-body
momentum distributions, n(~k1, ~k2) = n(~k1)n(~k2). A diagram depicting the nuclear one
and two-body momentum distribution is shown in Fig. 1.1. The correlated momentum
distributions are calculated by correlating the IPM wave function by means of a correlation
operator G.

The SRC or NMD are not directly observable and have to be probed in nuclear scatter-
ing reactions. In this dissertation we seek to extract information about nuclear SRC from
the analysis of measurements of exclusive electroinduced two-nucleon knockout reactions.
Thereby nucleons are knocked out of the nucleus by a hard electromagnetic interaction and
the energy and momentum of both outgoing nucleons is determined. These reactions are
ideal for the study of SRC. In chapter 3 the connection of SRC physics and two-nucleon
knockout reactions is discussed. The diagrams depicting one and two-nucleon knockout
reactions are depicted in Fig. 1.2. In scattering reactions the NMD are not probed di-
rectly. In the NMD description of Fig. 1.1 there is no time flow and hence no exchanged
energy. The only relevant quantity is the three-momentum of the nucleon(s). In scattering
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Figure 1.2 – The electroinduced one (two) nucleon-knockout reactions is depicted. A probe
exchanges a virtual photon with energy ω and three-momentum ~q with the struck nucleon. The
hatched circles denote the photon (two-)nucleon coupling. The correlated nucleus is constructed
with the correlation operator G acting on the IPM nucleons.

reactions, where time flows and energy is exchanged, the corresponding quantity is called
the spectral function. The spectral function is connected to the probability of finding a
nucleon (nucleons) with a certain momentum and energy in the nucleus. It can be shown
that in single-nucleon knockout reactions the one-body spectral function can be connected
to the one-nucleon knockout cross section [21]. For the two-body spectral function and the
two-nucleon knockout cross section such a connection is not evident, if not impossible.

A central issue of this dissertation is how information about the energy and momentum of
the initial SRC nucleon pair can be recovered in the two-nucleon knockout reaction. It is
shown that under appropriate kinematical constraints, the exclusive two-nucleon knockout
cross section can be connected to the probability of finding a SRC pair with a certain
center-of-mass (c.m.) momentum. Thereby the information about the relative momentum
is inherently tied to the details of the photon two-nucleon interaction. It is not possible to
make a direct connection between the cross section and the relative-momentum probability
distribution of the SRC pair.

Final state interactions (FSI) have a large impact on measured cross sections for nuclear
knockout reactions. The FSI are the interactions of the knocked out nucleon(s) with the
recoiling nucleus. FSI cause a significant attenuation of the nuclear knockout cross section.
In order to extract SRC properties from measured cross sections, the data has to be corrected
for FSI. The modelling of the processes contained in the FSI poses a difficult problem. The
FSI can be kept under control by considering reactions whereby the recoiling nucleus is left
with little or no excitation energy.

The attenuation of the cross section can be connected to the nuclear transparency. The
nuclear transparency is a measure of the attenuation strength of the FSI. For very soft
FSI the recoiling nucleus is very transparent for the ejected nucleon(s) and the nuclear
transparency will be high. Strong FSI will make the recoiling nucleus appear very opaque
to the outgoing nucleon(s) and lead to a very low nuclear transparency. In Fig. 1.3 the
electroinduced two-nucleon knockout reaction is depicted. Details about the description
of the FSI and the electrodinduced two-nucleon knockout cross section can be found in
chapter 3 and appendices A, B.
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Figure 1.3 – A schematic representation of the SRC driven two-nucleon knockout reaction. In
the reaction model of this dissertation only the initial pair, which is knocked out of the nucleus, is
correlated. The A − 2 nucleons are described by IPM nucleons. The dashed lines in the diagram
on the left denote the final-state interactions (FSI) of the knocked out nucleon-pair with the A− 2
nucleons in the recoiling nucleus.

1.2 Outline

The goal of this dissertation is to forge a bridge between the SRC physics and the measured
observables for electroinduced two-nucleon knockout reactions. The major research topics
can be summarized as follows:

• The characterization of SRC, uncovering:

– The structure and isospin composition of SRC nucleon pairs; the identification of
the dominant relative quantum numbers of SRC pairs sheds light on the internal
structure of SRC pairs. The isospin composition of SRC pairs is sensitive to
the tensor component of the nucleon-nucleon force and induces a heavy proton-
neutron SRC pair dominance over proton-proton and neutron-neutron SRC pairs
[22]. This has a large influence on the dynamics or SRC pairs in asymmetric
nuclei with an unequal number of protons and neutrons. This topic is of more
general interest as it is closely related to the universal properties of imbalanced
two-component Fermi systems [23].

– SRC dynamical features such as the c.m. momentum and opening-angle distri-
bution. The SRC pair c.m. momentum distribution is the probability of finding
a SRC nucleon pair with a certain c.m. momentum in the nucleus. Under the
appropriate constraints it can be tied directly to the two-nucleon knockout cross
section. It offers a clear connection between a measurable quantity and the SRC
dynamics in the nuclear ground state. SRC pairs have a small c.m. and large
relative momentum compared to the Fermi momentum in a nucleus. This implies
that the individual nucleons are roughly moving back-to-back, with anti-parallel
momenta. This feature can be probed in opening-angle distributions accessible
in exclusive two-nucleon knockout scattering experiments.

• The study of the electroinduced exclusive two-nucleon knockout reaction, thereby
establishing:
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– The mass dependence of the two-nucleon knockout scattering reaction across the
whole nuclear mass range. By means of studies of cross-section ratios between
targets of different mass, the mass dependence can be calculated independently
from the details of the photon 2-nucleon coupling leading to robust results. From
the mass dependence of the cross section it is possible to infer information about
the SRC. In particular the mass dependence of the amount of SRC pairs in the
nucleus can be derived.

– The influence of FSI in the scattering reaction. The FSI have a large impact
on the cross section and its mass dependence. An accurate description of FSI
is essential. Without FSI corrections the SRC properties inferred from the mass
dependence of the cross section would be heavily distorted.

– The mass dependence of the nuclear transparency. The FSI attenuation effects
are encoded in the nuclear transparency. With its mass dependence, the impact
of FSI on the cross section can be quickly estimated across the nuclear mass
range.

An outline of the structure of this dissertation is schematically represented in Fig. 1.4.

• Chapter 2 discusses the nuclear momentum distributions and how these can be ac-
curately calculated within the low-order correlation operator approximation (LCA).
The LCA corrects IPM wave functions for correlations by the means of a correla-
tion operator acting on a many-body Slater determinant, representing the IPM wave
function.

• Chapter 3 focusses on the electroinduced exclusive two-nucleon knockout cross section.
This reaction is used to probe and characterize the short-range dynamics in a nucleus.
The published results obtained for the reaction are also presented in this chapter. In
addition to the published articles, supplementary material is presented in Secs. 3.2
and 3.3 complementing the corresponding article. Sec. 3.4 researches the possibility of
reconstructing initial SRC properties from the measured two-nucleon knockout cross
section.

• Chapter 4 provides a brief summary of the work presented in this dissertation ac-
companied by an outlook on future research and possible extensions of the developed
framework for extracting the SRC information from the measured observables in two-
nucleon knockout reactions.

• Appendix A gives a short introduction to the eikonal approximation, followed by its
application in the Relativistic Multiple Scattering Glauber Approximation (RMSGA).
The RMSGA is used to describe the FSI in our reaction model. The accuracy of
different approximations within the RMSGA is investigated in a test model considering
nucleon-nucleus scattering.

Appendix B gives a detailed derivation of the factorized expression for the exclusive
two-nucleon knockout cross section. The validity of the approximations that are nec-
essary for the factorization of the cross section are examined.
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Figure 1.4 – Flowchart of the structure of this dissertation. In chapter 2 the nuclear momen-
tum distributions are discussed. They contain all the information about the nuclear ground-state
dynamics. Momentum distributions are sensitive to the effects of short-range correlations (SRC),
making them very relevant to the study of SRC. The SRC are implemented using the LCA frame-
work. Nuclear momentum distributions cannot be measured directly and have to be accessed
in scattering experiments. The exclusive two-nucleon knockout scattering reaction is outlined in
chapter 3. Thereby the SRC are implemented using the zero-range approximation (ZRA), which
serves as a proxy for the more advanced correlation description of the LCA outlined in chapter 2.
In Sec. 3.2 we focus on the theoretical derivation of the two-nucleon knockout cross section. This
is followed by the discussion of the influence of final-state interactions (FSI) on the cross section
in Sec. 3.3. Finally the issue of how initial SRC properties can be inferred from experimental
two-nucleon knockout cross sections is investigated in Sec. 3.4.
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CHAPTER 2

Short-range correlations and nuclear momentum distributions

2.1 Momentum distributions

The short-range correlations (SRC) generate nucleons with high-momentum compared to
the Fermi momentum. Compared to the IPM, the SRC increase the probability of finding
a nucleon with a momentum above the Fermi momentum by several orders of magnitude.
This makes the nuclear momentum distribution a very relevant quantity in the study of
SRC dynamics. The presence of significant strength in the momentum distribution above
the Fermi momentum is one of the hallmarks of SRC.

For a given system the momentum distribution is connected with the probability of finding
a particle with a certain momentum p. In nuclear systems, the momentum distribution
contains all the information about the momentum decomposition of the nuclear ground
state. Nuclear momentum distributions are an essential ingredient in the description of
nuclear scattering reactions. When appropriate kinematic constraints are imposed in those
scattering reactions, specific components of the nuclear momentum distribution can be
probed. This can allow us to isolate and study particular dynamical features affecting
the nuclear momentum distribution.

In this chapter the momentum distribution of a few prototypical systems is highlighted
first. Qualitative features of the momentum distributions for these cases are discussed.
This provides a context to interpret the nuclear momentum distributions calculated in more
advanced models, as for example, presented later on in this chapter.

Throughout this introductory chapter the momentum distributions are investigated in sys-
tems where a particle is placed in a potential V (~r ). The results of these simple models can
be related to SRC dynamics in the following way. Given that the SRC are a local effect,
it is expected that the correlations induced by two-body interactions will dominate the dy-
namics, while higher-order contributions are of less importance. The Schrödinger equation
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for a two-body problem with the potential depending only on the relative coordinate, can
be separated into center-of-mass (c.m.) and relative coordinates,

Ĥ =
~̂p 2

1

2m1

+
~̂p 2

2

2m2

+ V (~r1 − ~r2) =
~̂P 2

12

2M
+
~̂k 2

12

2m
+ V (~r12)

with M = m1 +m2, m = m1m2

m1+m2
, ~̂P12 = ~̂p1 + ~̂p2 and ~̂k12 = m2

M
~̂p1− m1

M
~̂p2. The problem in the

relative coordinate is then equivalent to solving the Schrödinger equation for a single particle
with mass m moving in a potential V (~r ), where ~r is the relative coordinate. This implies
that, in the context of SRC and nucleon pairs, the momentum distributions presented in
this chapter should be related to the relative-momentum distribution of nucleon pairs. The
range of SRC is much smaller than the typical size of the nucleus, therefore the dynamical
features generated by the SRC are predominantly independent of the size of the nucleus.
In nuclei, the c.m. motion will be largely dictated by the global nuclear potential, mostly
unaffected by the dynamics introduced by the explicit inclusion of two-body nucleon-nucleon
interactions. It is therefore expected that the c.m.-momentum distribution mainly depends
on the nucleus (A), while remaining insensitive to the SRC dynamics.

As a first approach in the study of high-momentum components in momentum distributions,
the Schrödinger equation in three dimensions is examined, in particular the behaviour in
the large-momentum limit.

[
− ~2

2m
∇2 + V (~r )

]
ψ(~r ) = Eψ(~r ) ,

[
∇2 + k2

]
ψ(~r ) = U(~r)ψ(~r ) (2.1)

with 2mE
~2 = k2 and U(~r ) = 2m

~2 V (~r ). Defining φ(~p ) = 1
(2π)3/2

∫
d~rψ(~r )ei~p ·~r, it follows from

Eq. (2.1) that

φ(~p ) =
1

k2 − p 2

∫
d~r U(~r )ψ(~r )e−i~p ·~r . (2.2)

In the extreme limit of short-range interactions, the potential U(~r ) can be replaced with a
delta-potential U(~r ) = U0δ(~r ),

φ(~p ) =
U0ψ(~0 )

k2 − p2
.

The momentum distribution, given by |φ(~p )|2, is then proportional to p−4 in the high-
momentum limit. In Ref. [1] it is shown that the nuclear momentum distribution is propor-
tional to [p−2v(p)]2, where v(p) is the Fourier transform of the nucleon-nucleon potential.
This is proportional to p−4 if v(p) is momentum independent. In the context of SRC, it
is possible to show that the tensor force induces a p−4 fall-off in the nuclear momentum
distribution [2].

2.2 Momentum distributions in an infinite square well

The momentum distribution of the infinite square well in one, two and three dimensions is
examined here. It is shown that the shape of the momentum distribution is very similar in
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the different numbers of dimensions and that the asymptotic behaviour for large momenta
is proportional to p−4.

One-dimensional square well

The infinite square well is a well known quantum-mechanical problem. We study the mo-
mentum distribution of this system. The wave functions in coordinate space for a infinite
square well in the region [0, L] are given by

ψn(x) =

{√
2
L

sin(knx) x ∈ [0, L]

0 x /∈ [0, L]
, (2.3)

with kn = nπ
L

, n ∈ N and En = ~2k2
n

2m
. As the Hamiltonian is time independent the eigenstates

have definite energy En. Because the system is not translationally invariant the solutions
(Eq. (2.3)) are not eigenstates of the momentum operator, and do not have a well defined
momentum. The corresponding wave function in the momentum space φn(p) is given by

φn(p) =
1√
2π

∫ +∞

−∞
dx e−ipxψn(x) =

√
πLn

[1− (−1)ne−ipL]

π2n2 − p2L2
. (2.4)

Note that p is defined in units of ~ making the dimension of p fm−1. The corresponding
momentum probability distribution reads

Pn(p) = |φn(p)|2 = 2πLn2 (1− (−1)n cos(pL))

(π2n2 − p2L2)2
. (2.5)

Pn(p) is depicted in Figure 2.2. The energy can be calculated from the momentum proba-
bility distribution,

〈p2〉n =

∫
dp p2Pn(p) =

2m

~2
En = k2

n . (2.6)

From Eq. (2.5) it is clear that the asymptotic behaviour of the probability distribution is
proportional to p−4 for large values of p.

Two-dimensional square well

The coordinate-space wave functions for a two-dimensional infinite square well are given by

ψnm(~r) =

{
NnmJm(km,nr)

eimθ√
2π

r ∈ [0, L]

0 r > L
, (2.7)

with n,m ∈ N. Here, Nnm is a normalisation factor given by
√

2
LJm+1(km,nL)

. Furthermore, Jm
are the Bessel functions of the first kind. The n’th root of the m’th order Bessel function
Jm is given by km,nL, Jm(km,nL) = 0. As there is no closed form for the roots of the Bessel
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Figure 2.1 – The momentum probability distribution for a one-dimensional infinite square well
with width L. The dashed line shows a power-law distribution ∝ p−4.

functions the allowed values for km,n have to be calculated numerically. The solutions in
momentum space (with p in units ~) are given by

φnm(~p) =
√

2L2km,n
Jm−1(km,nL)

Jm+1(km,nL)

Jm(pL)

(p2L2 − k2
nL

2)
(−i)m e

imθp

√
2π

. (2.8)

The corresponding momentum distribution reads

Pnm(p) = p

∫
dθp|φn,m(~p)|2 = 2L4k2

m,n

(
Jm−1(km,nL)

Jm+1(km,nL)

)2
pJ2

m(pL)

(p2L2 − k2
nL

2)2
. (2.9)

Given that the asymptotic behaviour of the Bessel function Jm(x) for large x is proportional
to 1/

√
x it can be inferred the asymptotic behaviour of Pnm(p) of Eq. (2.9) is proportional

to p−4 for large values of p.
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Figure 2.2 – The momentum probability distribution Pnm(p) of Eq. (2.9), with m = 0 for a two-
dimensional infinite square well with width L. The dashed line shows a power-law distribution
∝ p−4.
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Three-dimensional square well

For an infinite three-dimensional square well the solutions in coordinate space are given by

ψnlm(~r) =

{
Nnljl(kl,nr)Ylm(Ωr) r ∈ [0, L]

0 r > L
. (2.10)

Here, Nnl is a normalisation factor equal to
√

2
L3/2jl+1(kl,nL)

. Further, jl are the spherical Bessel

functions of the first kind. The values of kl,n, n ∈ N are fixed through the requirement
jl(kn,lL) = 0, they have to be determined numerically as there is no closed form for the
roots of the spherical Bessel functions jl. The solutions in momentum space (with p in units
of ~) are given by

φnlm(~p) =
2kl,nL

5
2√

π

jl−1(kl,nL)

jl+1(kl,nL)

jl(pL)

(p2L2 − k2
nL

2)
(−i)lYlm(Ωp) , (2.11)

with the corresponding momentum probability distribution Pnlm(p),

Pnlm(p) = p2

∫
d2Ωp|φnlm(~p)|2 =

4k2
l,nL

5

π

(
jl−1(kl,nL)

jl+1(kl,nL)

)2
p2j2

l (pL)

(p2L2 − k2
nL

2)2
. (2.12)

Given that the dominant asymptotic behaviour of the spherical Bessel functions jl(x) for
large x is proportional to 1/x, the momentum distribution of Eq. (2.12) is proportional to
p−4 for large p.

In the specific case l = 0,m = 0, the roots are given by kn = nπ and the momentum
distribution reads

Pn00(p) = 4πL3n2 p2j2
0(Lp)

(π2n2 − L2p2)2
= 4πLn2 sin2(Lp)

(p2L2 − n2π2)2
. (2.13)

The momentum distribution of Eq. (2.13) is displayed in Figure 2.3.
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Figure 2.3 – The momentum probability distribution Pnlm(p) of Eq. (2.13) with l = 0,m = 0,
for a three-dimensional infinite square well with width L. The dashed line shows a power-law
distribution ∝ p−4.
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2.3 On the origin of high-momentum components in

momentum distributions

It is often posed that a hard-core repulsive potential induces high-momentum components in
the momentum distribution. We will investigate this in more detail using a simple approach.
The Schrödinger equation is solved for a spherically symmetric potential V (r). The ground-
state wave function is investigated in coordinate space, ψ0(~r ) = Rn=0,l=0(r)Yl=0,m=0(Ωr),
and momentum space, φ0(~p ) = 1/(2π)3/2

∫
d3~r e−i~p ·~rψ0(~r ) = Φn=0,l=0(p)Yl=0,m=0(Ωp). The

radial Schrödinger equation adopts the form,
[
− ~2

2mr2

d

dr

(
r2 d

dr

)
+

~2L̂2

2mr2
+ V (r)

]
R(r)Y00(Ωr) = ER(r)Y00(Ωr)

[
− ~2

2mr2

d

dr

(
r2 d

dr

)
+ V (r)

]
R(r) = E0R(r) .

Defining u(r) = rR(r) results in,
[
− ~2

2mr2

d

dr2
+ V (r)

]
u(r) = E0u(r) . (2.14)

Bound states are investigated by introducing a harmonic-oscillator potential 1
2
mω2r2. A

repulsive-core term Vcore(r) is added to the harmonic-oscillator potential,

V (r) =
1

2
mω2r2 + Vcore(r) .

Inserting this potential into Eq. (2.14) results in,
[
− ~2

2m

d

dr2
+

1

2
mω2r2 + Vcore(r)

]
u(r) = E0u(r) . (2.15)

Dividing this equation by ~ω and expressing r in units of
√

~
mω

and the energy in units of

~ω, this equation becomes,
[
−1

2

d

dr2
+

1

2
r2 + Vcore(r)

]
u(r) = E0u(r) . (2.16)

Note that this particular choice of units makes r, u(r), R(r), V (r), and E0 dimensionless. In
units ~ the dimension of p is the inverse of the dimension of r, which is dimensionless is this
case.

The repulsive-core potential is modelled using a spherical rectangular potential, Vcore(r) of
Eq. (2.16) reads,

Vcore(r) =

{
V0 if r < 1

0 if r ≥ 1
, (2.17)

r is expressed in units of
√

~
mω

and V0 in units of ~ω making these variables dimensionless.

The ground-state wave function in coordinate and momentum space for varying “height”
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Figure 2.4 – The ground-state radial wave function and its corresponding probability distribution
in r−space (upper row) and p−space (bottom row), for a rectangular repulsive-core potential with
varying strength V0 (Eq. (2.17)). Both r and p and the corresponding radial wave functions
R(r),Φ(p) are dimensionless through the specific choice of units. The dashed line shows a curve
∝ p−4. The curve labelled V0 = 0 corresponds to the ground-state wave function of the harmonic
oscillator, which is a Gaussian in both r and p space.

V0 is depicted in Figure (2.4). It is clear that as the height of the potential rises the high-
momentum components in the wave function increase. High-momentum tails are essentially
generated by short-range structure in the r-space wave function. Strong repulsive potentials
can induce this the short-range structure, but this feature is certainly not limited to this
type of potentials.

2.4 Nuclear momentum distributions

Nuclear momentum distributions encode the probability density of finding a nucleon with a
certain momentum in a given nucleus. The strong short-range repulsion and the attractive
tensor part of the nucleon-nucleon force induce short-range correlations (SRC) in the wave
functions for atomic nuclei. One of the hallmarks of SRC is the presence of high-momentum
tails in the one-body momentum distributions. The short-range structure of the wave func-
tion, partly generated by the hard repulsive core, induces high-momentum components.
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A lot of effort has been put into calculating single-nucleon momentum distributions. For
small nuclei up to A = 12 ab-initio methods with variational wave functions can be used
[3–7]. For higher mass numbers approximation schemes such as cluster expansions [7–9]
and correlated basis function theory [10, 11] can be used to compute the momentum distri-
butions. In this chapter we give a short overview of an approximate method of including
SRC contributions to the momentum distributions for stable nuclei over the entire mass
range [12]. In this framework the SRC are included through correlation operators acting
on a Slater determinant A-body wave function. The correlation operators generate up to
A-body contributions when calculating any expectation value of the nucleus. It is necessary
to truncate the many-body contributions to keep the numerical computations feasible. A
low-order correlation operator approximation, dubbed LCA [12], is proposed in Sec. 2.4.1.

2.4.1 Short-range correlations

A time-honoured method of constructing a normalized correlated many-body wave function
|Ψ〉 constitutes of applying a correlation operator Ĝ to the independent-particle model (IPM)
Slater determinant |Φ〉 [13] :

|Φ〉 = |α1α2 . . . αA〉 ,

|Ψ〉 =
1√

〈Φ|Ĝ†Ĝ|Φ〉
Ĝ |Φ〉 . (2.18)

The single-particle states are denotes with αi. The correlation operator Ĝ is written as a
symmetrized product of two-body operators,

Ĝ = Ŝ
(

A∏

i<j

f̂ij

)
, (2.19)

with f̂ij = f̂ji. Furthermore, Ŝ is the symmetrization operator that guarantees that Ĝ |Φ〉
is antisymmetric. In order to isolate the effect of the correlations Ĝ can be conveniently
rewritten as,

Ĝ = Ŝ
(

A∏

i<j

[
1 + l̂ij

])
. (2.20)

For vanishing correlations we have l̂ij = 0.

In the calculation of the expectation value of an arbitrary operator Ω̂, the complexity in-
troduced by the correlations can be shifted from the wave functions to the operator. This
procedure amounts to defining an effective operator Ω̂eff = Ĝ†Ω̂ Ĝ, and evaluating its expec-
tation value between uncorrelated (IPM) wave functions,

〈Ψ|Ω̂|Ψ〉 =
〈Φ|Ĝ†Ω̂G|Φ〉
〈Φ|Ĝ†G|Φ〉

=
〈Φ|Ω̂eff|Φ〉
〈Φ|Ĝ†G|Φ〉

, (2.21)
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Ω̂eff = Ĝ†Ω̂ Ĝ =

(
A∏

i<j

[
1 + l̂ij

])†
Ŝ†Ω Ŝ

(
A∏

p<q

[
1 + l̂pq

])
. (2.22)

The product of the two-body operators l̂ can be expanded in a series in the order of the
correlation operators l̂,

A∏

i<j

[
1 + l̂ij

]
= 1 +

A∑

i<j

l̂ij +
A∑

i<j ,m<n
(i,j)<(m,n)

l̂ij l̂mn +
A∑

i<j ,m<n , p<q
(i,j)<(m,n)<(p,q)

l̂ij l̂mnl̂pq +O(l̂4) . (2.23)

The relation (i, j) < (k, l) is defined as (i, j) < (k, l)⇔ i < k∨ (i = k∧ j < l). The effective

operator Ω̂eff can then be written as,

Ω̂eff = Ĝ†Ω̂ Ĝ

=
(

1 +
A∑

i<j

l̂ij +
A∑

i<j ,m<n
(i,j)<(m,n)

l̂ij l̂mn +
A∑

i<j ,m<n , p<q
(i,j)<(m,n)<(p,q)

l̂ij l̂mnl̂pq +O(l̂4)
)†
Ŝ†Ω Ŝ

(
1 +

A∑

r<s

l̂rs +
A∑

r<s , t<u
(r,s)<(t,u)

l̂rsl̂tu +
A∑

r<s , t<u , v<w
(r,s)<(t,u)<(v,w)

l̂rsl̂tul̂vw +O(l̂4)
)
. (2.24)

The low-order correlation approximation (LCA) amounts to truncating the expansion of Ω̂eff

(Eq. (2.24)) up to quadratic order in l̂. Additionally, only the terms in which the correlation
operators l̂ act on the same nucleon pair are retained. Disconnected terms, in which the
operator Ω̂ acts on nucleons not affected by l̂ are discarded. In the LCA a one(two)-body
operator picks up two(three)-body correlation contributions.

Ω̂LCA = Ω̂ +
A∑

i<j

l̂†ijΩ̂ +
A∑

r<s

Ω̂ l̂rs +
A∑

i<j

A∑

r<s

δirδjsl̂
†
ijΩ̂ l̂rs = Ω̂ +

A∑

i<j

(
l̂†ijΩ̂ + Ω̂l̂ij + l̂†ijΩ̂l̂ij

)
.

(2.25)

The quadratic terms,

A∑

i<j ,m<n
(i,j)<(m,n)

(
l̂†ij l̂
†
mn + l̂†mnl̂

†
ij

2

)
Ω̂ ,

A∑

r<s , t<u
(r,s)<(t,u)

Ω̂

(
l̂rsl̂tu + l̂tul̂rs

2

)
,

are zero because of the requirement that both l̂ operators act on the same nucleon pair and
those terms do not appear in the summation.

With Eq. (2.25), a one-body operator Ω̂[1] =
∑A

i Ω̂i becomes

Ω̂[1],LCA = Ω̂[1] +
A∑

j<k

A∑

i

(l̂†jkΩ̂i + Ω̂il̂jk + l̂†jkΩ̂il̂jk)(δij + δik)

= Ω̂[1] +
A∑

i,j 6=i

(
l̂†ijΩ̂i + Ω̂il̂ij + l̂†ijΩ̂il̂ij

)
. (2.26)
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Figure 2.5 – The diagrammatic representation of the LCA expansion of a one-body operator
(Eq. (2.26)). Below each diagram is their corresponding expression. The black dot represents the
particle “i” on which the operator Ω̂i is acting on. The dashed lines are the correlation operator
l̂ij acting the particle pair “ij”. In the LCA, two dashed lines (correlation operators) are required
to connect the same pair. Disconnected diagrams are not considered in the LCA.

The Kronecker deltas appearing in Eq. (2.26) make sure that the disconnected terms do not
contribute to the effective operator. In similar vein, the LCA of Eq. (2.25) transforms a

two-body operator Ω̂[2] =
∑

i<j Ω̂ij to,

Ω̂[2],LCA = Ω̂[2] +
A∑

m<n

A∑

i<j

(
l̂†mnΩ̂ij + Ω̂ij l̂mn + l̂†mnΩ̂ij l̂mn

)

× [(δmi + δni + δmj + δnj)(1− δmiδnj)(1− δmjδni) + δmiδnj + δmjδni]

= Ω̂[2] +
A∑

i<j

[
l̂†ijΩ̂ij + Ω̂ij l̂ij + l̂†ijΩ̂ij l̂ij

+
A∑

n/∈{i,j}
(l̂†in + l̂†jn)Ω̂ij + Ω̂ij(l̂in + l̂jn) + l̂†inΩ̂ij l̂in + l̂†jnΩ̂ij l̂jn

]
. (2.27)

As in Eq. (2.26), the δ’s guarantee that only connected terms contribute. Some care has to
be taken to avoid double counting. Figures (2.5) and (2.6) provide a pictorial diagram of
the LCA expansion corresponding to the one-body and two-body operators of Eqs. (2.26)
and (2.27) respectively.

To preserve normalization the denominator of Eq. (2.21), N = 〈Φ|Ĝ†G|Φ〉, should be ex-
panded to the same order in l̂ as the numerator. The normalisation factor N can be
calculated by replacing Ω̂i with 1

A
in Eq. (2.26) or Ω̂ij with 2

A(A−1)
in Eq. (2.27),

N [1] = 1 +
2

A

A∑

i<j

〈αiαj|l̂†ij + l̂ij + l̂†ij l̂ij|αiαj〉 , (2.28)

N [2] = 1 +
2(2A− 3)

A(A− 1)

A∑

i<j

〈αiαj|l̂†ij + l̂ij + l̂†ij l̂ij|αiαj〉 . (2.29)
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Figure 2.6 – The diagrammatic representation of the LCA expansion of a two-body operator
(Eq. (2.26)). Below each diagram is their corresponding expression. The black dots represent the
particle pair “ij” on which the operator Ω̂ij is acting on. The dashed lines are the correlation

operator l̂in acting the particle pair “in”. In the LCA, two dashed lines (correlation operators) are
required to connect the same pair. Disconnected diagram are not considered in the LCA.

2.4.2 SRC momentum distributions

The effect of the correlations on nuclear momentum distributions can now be investigated.
With Eq. (2.26) the LCA transforms the one-body momentum operator n̂[1](~k) = |~k〉 〈~k|,
into the effective operator n̂[1],LCA(~k) given by

n̂[1],LCA(~k) = n̂[1](~k) +
A∑

i,j 6=i

(
l̂†ijn̂i(

~k) + n̂i(~k)l̂ij + l̂†ijn̂i(
~k)l̂ij

)
. (2.30)

Using Eq. (2.27) the two-body momentum operator n̂[2](~k1, ~k2) = |~k1
~k2〉 〈~k1

~k2| becomes,

n̂[2] LCA(~k1, ~k2) = n̂[2](~k1, ~k2) +
A∑

i<j

[
l̂†ijn̂ij(

~k1, ~k2) + n̂ij(~k1, ~k2)l̂ij + l̂†ijn̂ij(
~k1, ~k2)l̂ij+

A∑

m/∈{i,j}
(l̂†im + l̂†jm)n̂ij(~k1, ~k2) + n̂ij(~k1, ~k2)(l̂im + l̂jm) + l̂†imn̂ij(

~k1, ~k2)l̂im

]
. (2.31)

The nuclear momentum distributions denoting the probability of finding a nucleon (two

nucleons) with a given momentum ~k (~k1, ~k2) are then given by,

n(~k) =
〈Φ|n̂[1],LCA(~k)|Φ〉

N [1]
, (2.32)

n(~k1, ~k2) =
〈Φ|n̂[2],LCA(~k1, ~k2)|Φ〉

N [2]
. (2.33)

The normalization factors N [1],N [2] are computed with the aid of Eqs. (2.28), (2.29).

Figure (2.7) shows the one-body momentum distribution calculated using Eq. (2.32), whereby
the central (gc), tensor (gt) and spin-isospin (gτσ) correlation functions of Eq. (2.34) have
been included [12]. It is clear that the correlations induce high-momentum tails in the
nuclear momentum distribution [12, 14, 15]. The probability of finding a nucleon with a
momentum above the typical nuclear Fermi momentum ≈ 300 MeV is increased by several
orders of magnitude when short-range correlations are included.
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Figure 2.7 – The one-body momentum distribution n(k) =
∫

d2Ωkn(~k) of Eq. (2.26) with (LCA)
and without correlations (mean field) for a 12C nucleus. The mean-field Slater determinant |Φ〉 is
determined from an isotropic harmonic oscillator potential with ~ω = 45A−1/3 − 25A−2/3.

2.5 LCA recipe

The practical application of the LCA is outlined in this section. The LCA requires a choice
for the single-particle wave functions |Φ〉 of Eq. (2.18) and the correlation operator Ĝ of
Eq. (2.19). The determination of the correlation operator is discussed in Sec. 2.5.1. A
convenient choice for the single-particle basis is outlined in Sec. 2.5.2.

2.5.1 Parameterization of the correlation operators

The correlation operators l̂ij are often parameterized as

l̂ij(~rij) =− gc(rij)1 + gσ(rij)~σi ·~σj + gτ (rij)~τi ·~τj
+ gστ (rij)(~σi ·~σj)(~τi ·~τj) + gt(rij)Ŝij + gtτ (rij)Ŝij(~τi ·~τj) , (2.34)

~rij = ~ri − ~rj is the relative coordinate, ~σ (~τ) is the (iso)spin operator and Ŝij is the tensor
operator,

Ŝij =
3

r2
ij

(~σi ·~rij)(~σj ·~rij)− (~σi ·~σj) . (2.35)

The correlation functions g(rij) are introduced as a variational degree of freedom in the nu-
clear wave function [5, 16, 17]. In practice the correlation functions are parameterized and
the parameters are determined by minimizing the energy-expectation value [18]. The deter-
mination of the ground-state energy and the correlation functions g(rij) requires a specific
choice of the single-particle basis functions and the nucleon-nucleon interaction. Because of
this, the correlation functions g(rij) are in principle scheme-dependent and can not be con-
sidered universal. However, the high-momentum components of SRC are generated by the
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Figure 2.8 – The central gc, tensor gtτ and spin-isospin gστ correlation functions in coordinate
space (left) and momentum space (right). Note that gtτ (r) and gστ (r) have been multiplied by a
factor of 10 in the left panel.

short-range structure of the nuclear wave function. This in turn is induced by the correlation
operators, leading to the conclusion that the choice of single-particle basis functions should
not have significant influence on the SRC high-momentum tails. The central correlation
function gc(rij) of Eq. (2.34) is difficult to constrain and shows large differences between
different models for the nucleon-nucleon interaction in nuclei. The tensor correlation func-
tion gt(rij) and spin-isospin correlation function gστ (rij) of Eq. (2.34) is better constrained
and can be considered realistic [19]. Of the six terms in Eq. (2.34) it has been reported
[16, 20–22] that the central gc(rij), the spin-isospin gστ (rij) and the tensor gtτ (rij) terms
yield the dominant contributions to the correlated operators. The central,spin-isospin and
tensor correlation functions used in [12] are displayed in Fig. (2.8) in coordinate space and
momentum space. It is clear that the effect of the inclusion of the correlations is to shift
strength from the low-momentum to the high-momentum tails of the momentum distribu-
tions. This is prototypical for correlation corrections on mean-field properties. Whereas
mean-field nuclear properties are often characterized by a certain momentum scale, correla-
tions are often responsible for the spreading of the strength over a larger range in momenta.
Roughly speaking, the correlations add fat tails to the mean-field momentum distributions.

2.5.2 Single-particle basis

The LCA is built upon pair correlations. The correlation functions contained in the cor-
relation operators are used as an input to generate the correlated wave function. As such,
there is no variational approach applied in the LCA. The correlation function depend on
the relative coordinate of the pair. It is favourable to choose a single-particle basis |Φ〉
that allows for an easy transformation to particle pairs. That is, a single-particle basis that
accommodates for an efficient way of expressing two single-particle wavefunctions in func-
tion of the pair’s center of mass (c.m.) and relative coordinates. The single-particle basis
fulfilling this requirement is that of the isotropic harmonic oscillator, with the Hamiltonian
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Ĥ given by

Ĥ = − ~2

2m
∇2 +

1

2
mω2r2 . (2.36)

The solutions of Ĥ |α〉 = E |α〉 are given by

α(~r) = 〈~r|α〉 = 〈~r|nlm〉 =

[
2n!

Γ(n+ l + 3
2
)νl+

3
2

] 1
2

rle−
νr2

2 L
l+ 1

2
n (νr2)Ylm(Ωr) , (2.37)

with L
l+ 1

2
n the generalized Laguerre polynomials and ν = mω/~. The harmonic oscillator

Hamiltonian allows us to express a pair of single-particle states |α1α2〉 = |n1l1ml1n2l2ml2〉
with total angular momentum Λ,MΛ in terms of relative and c.m. states |nlmlNLML〉 with
the same total angular momentum Λ,MΛ. The relative and c.m. state are again harmonic
basis functions, that is, they are a solution to Eq. (2.36). The transformation is given in
terms of the Moshinsky brakets [23]

|n1l1n2l2; ΛMΛ〉 =
∑

nl,NL

|nlNL; ΛMΛ〉 〈nlNL; Λ|n1l1n2l2; Λ〉 . (2.38)

Here, 〈nlNL; Λ|n1l1n2l2; Λ〉 are the Moshinsky brakets and

|n1l1n2l2; ΛMΛ〉 =
∑

ml1 ,ml2

|n1l1ml1n2l2ml2〉 〈l1ml1l2ml2|ΛMΛ〉 (2.39)

|nlNL; ΛMΛ〉 =
∑

ml,mL

|nlmlNLML〉 〈lmlLML|ΛMΛ〉 . (2.40)

The Clebsch-Gordan coefficient 〈l1ml1l2ml2 |ΛMΛ〉 (〈lmlLML|ΛMΛ〉) couples the single-particle
(relative and c.m.) states to total angular momentum Λ,MΛ. The Moshinsky brakets in
Eq. (2.38) are non-zero for only a few combinations of nl,NL limiting the summation over
nl,NL in Eq. (2.38) to a handful of terms. Including the spin ms and isospin mt projec-
tions of the particles the full equation expressing a single-particle pair in terms of c.m. and
relative states reads,

|α1α2〉 = |n1l1ml1ms1mt1n2l2ml2ms2mt2〉
=

∑

nlmlNLML
SMSTMT

〈nlmlNLMLSMSTMT |α1α2〉 |nlmlNLMLSMSTMT 〉

=
∑

A={nlmlNLML

SMSTMT }

CA
α1α2
|A〉 . (2.41)

The quantum numbers S, T (MS,MT ) denote the total spin and isospin (projections) of the
particle pair. The expression for the coefficients CA

α1α2
reads,

CA={nlmlNLMLSMSTMT }
α1α2

=
1√
2

[
1− (−1)l+S+T

]
〈1
2
mt1

1

2
mt2|TMT 〉 〈

1

2
ms1

1

2
ms2|SMS〉

∑

ΛMΛ

〈l1ml1l2ml2|ΛMΛ〉 〈nlNL; Λ|n1l1n2l2; Λ〉 〈ΛMΛ|nlmlNLML〉 . (2.42)
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The Moshinsky brakets allow the separation of the contribution from relative two-nucleon
quantum states with specific quantum numbers nl. This powerful feature makes it possible
to map the contributions from specific relative quantum states to the expectation value of
any operator calculated in the LCA, shedding light on the structure of the pairs affecting
the correlated operator.

2.6 How to probe high-momentum tails in quasi-free

knockout reactions

The question that naturally arises is how the short-range correlations (SRC) can be measured
in scattering reactions. The SRC-prone nucleon pairs are predominantly in a back-to-back
configuration with a small center-of-mass (c.m.) and high relative momentum, where small
and large are defined relative to the Fermi momentum. The high-momentum components in
the relative-momentum distribution are induced by the correlation operators, acting on the
relative coordinate of the SRC pair. This gives rise to fat tails in the one-body momentum
distribution, inducing significant strength well above the Fermi momentum. In order to
probe SRC a reaction is needed that allows one to identify initial high-momentum nucleons,
generated by the fat tails in the one-body momentum distribution.

An ideal reaction to study SRC is the exclusive electrodinduced two-nucleon knockout reac-
tion. The outgoing nucleons as well as the scattered electron are measured, fully determining
the energy-momentum balance. This makes it a powerful tool to investigate SRC dynam-
ics in nuclei. Information about the initial momenta of the knocked out nucleons can be
inferred from the measured momenta of the final particles. This allows one to investigate
the relative and c.m.-momentum distribution of the initial nucleon pair. However, it is not
possible to directly connect the measured cross sections with the momentum distributions.
In scattering reactions, both momentum and energy is exchanged by the probe. The cross
section is proportional to the probability of finding an object with a certain momentum and
energy. This is called the spectral function. In the case of exclusive two-nucleon knockout
reactions, this is the probability of finding a nucleon pair with given initial four-momenta.
In this work the initial energies of the nucleons are modelled using the discrete binding en-
ergies of the single-particle orbitals. More realistic spectral functions are continuous in the
single-particle energies. As the SRC-driven two-nucleon knockout reaction targets nucleons
with high initial and final momenta, with the corresponding kinetic energies much larger
than the single-particle binding energies, it is expected that this has little or no influence.

In exclusive reactions all final particles are detected. The knocked-out nucleon pair has
to traverse the recoiling nucleus, interacting with the A − 2 nucleons. These interactions
are denoted as final-state interactions (FSI). It is expected that FSI can have a significant
influence on the cross section as they decrease the probability of the final particles reaching
the detector. The importance of FSI can be quickly estimated using the classical mean
free path length ` = 1/(ρσ). The density of the recoiling nucleus is estimated using ρ ≈
A

4π
3
R3 = A

4π
3

(1.21A1/3fm)3 = 0.138 fm−3. σ is the total elastic nucleon-nucleon cross section in

the relevant energy range for SRC-driven knockout reactions (≈ 300MeV up to a few GeV),
σ ∈ [2.0, 4.0] fm2 (see Ref. [24]). The resulting mean free path length ` is then in the range
[1.8, 3.6] fm. As this is comparable to nuclear radii it can be expected that the FSI will
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attenuate the two-nucleon knockout cross section significantly, as both escaping nucleons
have to survive. It is straightforward to see that the attenuation should increase for larger
nuclei.

The measurement of the electroinduced exclusive two-knockout process is very challenging
as it requires the detection of the energy and momentum of the scattered projectile as well
as the two ejected nucleons. Very few data is available for this highly exclusive reaction.
Throughout this work the theoretical calculations are compared to experimental data ob-
tained from the Jefferson Lab Hall B CEBAF Large Acceptance Spectrometer (CLAS) data
mining initiative [25] and the Jefferson Lab Hall A collaboration [26, 27]. These two initia-
tives take different approaches in order to target SRC with the electroinduced two-nucleon
knockout reaction. The CLAS results are obtained by a recent analysis [25] of data obtained
in 2004 [28] with updated reconstruction software, cuts and corrections. This analysis is a
part of the Jefferson Lab Hall B data mining project [29]. The project exploits the large
acceptance and the wide open inclusive trigger of the CLAS detector to re-analyse the
accumulated data for additional channels of interest. In particular it allows to extract infor-
mation about the SRC-driven two-nucleon knockout reaction. There are ongoing efforts to
uncover the dynamics of SRC, in particular, the properties of the SRC pair c.m.-momentum
distribution are currently being investigated.

The Hall A experiment [26] on the other hand is a more recent experiment specifically
designed to target two-nucleon knockout reactions. The detectors and kinematics are set
up in a very specific configuration to constrain the phase-space of the reaction to the SRC-
dominated regime. Thereby the detectors are placed in such a way that it is automatically
ensured that the measured cross section is dominated by initially “back-to-back” moving
nucleon pairs, a characteristic feature of SRC pairs.

The study of SRC-driven reactions is not limited to the exclusive electroinduced two-nucleon
knockout scattering process. For example, in Ref. [30] the relative amount of SRC-pairs is
extracted from inclusive electron scattering cross-section ratios of different nuclei. Addition-
ally, SRC have been investigated in exclusive knockout reactions with a hadronic probe. At
Brookhaven National Laboratory SRC have been studied where an incoming proton knocks
out a proton-neutron pair from the target nucleus 12C [31, 32]. It was demonstrated that
the majority of SRC pairs consist of proton-neutron pairs.
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CHAPTER 3

Two-nucleon knockout reactions and their connection to SRC

physics

3.1 Introduction

This chapter examines how two-nucleon knockout reactions can be connected to short-
range correlation (SRC) physics. The framework modelling the exclusive electroinduced
two-nucleon knockout reaction is outlined first. Further followed by the different articles
containing the application and results of the reaction model.

In chapter 2 the SRC are generated by the LCA. In the LCA, the correlated wave functions
are generated by letting a correlation operator G act on a A-body Slater determinant. In
section 3.2 the SRC are selected using two approaches. On the one hand the LCA is
proposed as a means to model SRC pairs, on the other hand the zero-range approximation
(ZRA) is used to select SRC pairs. In the ZRA the relative coordinate ~r12 of the initial
nucleon pair is set to zero, G ∝ δ(~r12). The SRC pairs are dominated by nucleon pairs
with a nodeless relative radial wave function and vanishing relative orbital momentum,
leading to a non-zero probability of finding the two nucleons at the same spatial coordinate.
Therefore it is expected that the ZRA, which fixes the initial nucleon pair at the same
spatial coordinate, is a good proxy for the more advanced correlation operators contained
in the LCA. The LCA is derived in a non-relativistic framework. In order to incorporate
the LCA methodology in the relativistic reaction model presented in this dissertation there
are two possible approaches. (1) The reaction model is reduced to a non-relativistic version.
However as the SRC-driven knockout reaction targets high-momentum nucleons, where the
outgoing momentum is comparable to the rest mass of the nucleon, the validity of the
non-relativistic approach should be carefully checked. This approach does not increase
the difficulty of the numerical calculations. The LCA computations are under control,
while the numerical aspect of the reaction model should not increase by the non-relativistic
description. (2) Deriving a relativistic version of the LCA is a very challenging problem,
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Figure 3.1 – A diagrammatic representation of the electroinduced two-nucleon knockout reaction.
An incoming electron e with four-momentum (Ee,~ke) exchanges a virtual photon q with four
momentum (ω, ~q) with a target nucleus (EA, ~pA), knocking two nucleons with initial four momenta
k1, k2 out of the nucleus, leaving the recoiling nucleus with four momentum (EA−2, ~pA−2). In the
lab frame we have that the energy of the target nucleus is its rest mass, EA = MA. In an exclusive
two-nucleon knockout reaction the final electron (E′e,~k

′
e) and the two knocked out nucleons p1, p2

are detected. The diagram on the right shows the process where the correlated nucleon pair absorbs
the exchanged four momentum q.

if not impossible. Major complications arise as there is no easy transformation to the
relativistic c.m. and relative wave functions of the SRC nucleon pair, there is no relativistic
extension of the Moshinsky brackets, accommodating for this transformation in the non-
relativistic case. Additionally the formulation of correlation operators and corresponding
correlation functions is a difficult question with no clear answer [1].

The reaction in which an incoming electron knocks out two nucleons out of a target nucleus
is considered. The scattered electron as well as both outgoing nucleons are detected. The
electron exchanges four momentum q = (ω, ~q) with the nucleus A, knocking a nucleon pair
into continuum states, denoted p1, p2. Fig. 3.1 shows a diagrammatic representation of this
reaction. It is assumed that one nucleon absorbs a large fraction of the three-momentum
~q, exchanged by the projectile electron. When a nucleon pair with a large enough relative
momentum is hit, the second, recoiling nucleon in the pair will leave the nucleus as well
due to the high relative momentum. It is then possible to select nucleons with large initial
momentum by making an appropriate cut on the final momenta of the nucleon pair. By
demanding that |~q| � 2|~kF | we can identify which nucleon of the final pair absorbed the
three-momentum ~q. Choosing |~q| large enough makes the case in which the slow, recoiling
nucleon absorbed the virtual photon very unlikely. This would require an initial pair with
relative momentum comparable to |~q|. As the distribution of the relative momentum of the
SRC pairs is strongly decreasing for momenta above the Fermi momentum [2, 3] it is always
possible to select an appropriate |~q| value. The A−2 nucleons that do not participate in the
hard scattering process remain unaffected. This is called the frozen spectator approximation,
depicted by the right diagram of Fig. 3.1. The reference frame is taken to be the lab frame,
where the target nucleus is stationary.

Several kinematical constraints are imposed in order to ensure that the process is domi-
nated by knockout of SRC pairs. In a nucleus the nucleons with momenta above the Fermi
momentum predominantly belong to SRC pairs with low center of mass (c.m.) momen-
tum and high relative momentum, relative to the Fermi momentum. When assuming the
exchanged four momentum q is largely absorbed by a single nucleon of the SRC pair, the
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Figure 3.2 – A diagrammatic representation of the electroinduced two-nucleon knockout reaction
as in Fig. 3.1 with the additional approximations whereby one nucleon of the correlated pair absorbs
the four momentum q. The diagram on the right depicts the case where final-state interactions
(FSI) between the knocked out nucleons and the recoiling nucleus are included.

initial three-momenta of the SRC pair ~k1, ~k2 can be reconstructed from the final momenta
~p1, ~p2 through ~k1 = ~p1 − ~q, ~k2 = ~p2. In the exclusive reaction ~p1, ~p2 are measured and ~q can
be reconstructed from the difference between the initial and final three-momentum of the
projectile. This allows one to enforce restrictions on the initial three momenta of the nucleon
pair. Knockout from SRC pairs can then be isolated by requiring the initial momenta to be
larger than the Fermi momentum of the nucleus. The diagram corresponding to this process
is shown in Fig. 3.2. The selection of SRC pairs can be reinforced by imposing the following
additional restriction. Given that the SRC pairs have large relative momentum and small
c.m. momentum it can be easily inferred that the initial momenta ~k1, ~k2 of the nucleon pair
are biased towards a “back-to-back” configuration, whereby ~k1 and ~k2 are anti-parallel. As
~k1, ~k2 can be reconstructed, SRC pairs can be targeted by limiting the angle between ~k1 and
~k2 to back-to-back configurations, (~k1 ·~k2)/(|~k1||~k2|) ∼ −1.

Final-state interactions (FSI) are an essential ingredient in the accurate description of ex-
clusive nucleon knockout processes. They model the interactions between the particles in
the “final” state. In this case this corresponds to the interactions between the knocked out
nucleons and the recoiling A− 2 nucleus (Fig. 3.2). The initial SRC pair, hit by the virtual
photon, is brought into continuum states inside the nucleus. The knocked-out nucleons have
to traverse the recoiling A − 2 nucleus, possibly interacting with it. The FSI cause a sig-
nificant reduction of the exclusive two-nucleon knockout cross section. The elastic and soft
inelastic rescattering of the escaping nucleons is described using the Relativistic Multiple
Scattering Glauber Approximation (RMSGA). The Glauber approximation is justified when
the wavelength of the outgoing nucleon is sufficiently small in comparison to the distance-
scale of the nucleon interaction with the residual nucleons. In the Glauber approximation
the fast-moving particle interacts with fixed point scatterers, where the exchanged energy
and momentum are small in comparison to the energy and momentum of the projectile.
Each scatterer in the target adds to the eikonal phase factor, picked up by the wave func-
tion of the escaping particle. It the relativistic Glauber approximation the outgoing wave
function is described by a relativistic plane wave, modified by an eikonal phase factor [4, 5].
The phase factor can be calculated starting from nucleon-nucleon scattering data. As such,
it does not depend on the specific target nucleus, which makes the RMSGA readily appli-
cable to the whole nuclear mass range. A detailed description of the RMSGA is provided in
appendix A.3. Charge-exchange (CX) reactions, changing outgoing protons into neutrons
and vice versa, are also included in the description of the FSI. This effect is calculated
semi-classically. The influence of CX on the two-nucleon knockout reaction is described in
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Sec. 3.3.

In this dissertation the contributions from inelastic processes such as excitations of the struck
nucleon, multi-nucleon (> 2) knockout or fragmentation of the recoiling A − 2 nucleus are
not considered. When comparing to the theoretical results it is therefore imperative that
these contributions are suppressed in the experimental data. In exclusive knockout reactions
it is possible to suppress the inelastic contributions by imposing the appropriate conditions
on the energy balance of the reaction, as outlined in the following. The four momenta of
the target nucleus pA(EA = MA,~0), the virtual photon q(ω, ~q) and the two ejected nucleons
p1(E1, ~p1), p2(E2, ~p2) are known (see Figs. 3.1,3.2). Without inelastic processes the energy
conservation reads,

MA + ω − E1 − E2 − EA−2 = 0 , (3.1)

with EA−2 =
√
M∗ 2

A−2 + |~pA−2|2 where M∗
A−2 is the rest mass of the, possibly excited, re-

coiling nucleus. With MA−2 6M∗
A−2, where MA−2 the rest mass of the ground state of the

A− 2 nucleus Eq. (3.1) can be rewritten as,

MA + ω − E1 − E2 −
√
M2

A−2 + |~pA−2|2 = EX > 0 , (3.2)

EX of Eq. (3.2) is at most equal to the excitation energy of the recoiling nucleus, EX ≤
M∗

A−2 − MA−2. Inelastic processes consume energy, making less energy available to be
transferred to the ejected nucleons E1, E2. This will increase the value of EX . In the reaction
model used in this dissertation, the recoiling nucleus is left with little or no excitation energy.
By limiting EX below the threshold for pion production in the data, it is possible to allow
for the mild excitations of the A−2 nucleus, originating from the knockout of two nucleons,
while suppressing inelastic processes which require more energy.

In the following articles, it is shown that within the outlined reaction formalism, the two-
nucleon knockout cross section σ(e, e′NN) can be factorized into contributions depending
on the relative and center-of-mass (c.m.) momentum of the initial nucleon pair. The factor
depending on the relative momentum encodes the electron two-nucleon interaction, while
the part that is a function of the c.m.-momentum holds the nuclear-structure information.
The part of the cross section connected to the c.m. momentum is referred to as the distorted
c.m. momentum distribution. It contains the distortion-effects of the final-state interactions
(FSI). This factorization is a powerful tool in investigating the mass dependence of SRC
features. When studying SRC across the whole nuclear mass range, the only quantity that
changes is the distorted c.m. momentum distribution. Additionally, the factorization allows
us to take cross section ratios of different nuclei which are independent of the electron two-
nucleon interaction. The part containing the electron two-nucleon interaction is independent
of the nuclear structure, reflecting the universality of the SRC, and is divided out when
taking cross section ratios. It is expected that this approach leads to robust results as no
model dependencies are introduced by modelling the electron two-nucleon interaction. A
detailed derivation of the factorized cross section can be found in appendix B. There, the
conditions for the factorization are examined in detail.

The articles presented in this chapter are arranged as follows. In Sec. 3.2 the factorization
property of the exclusive two-nucleon knockout cross section is investigated, focussing upon
the features of the distorted c.m. momentum distribution. Characteristics of the SRC pairs
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contributing to the c.m. distribution are discussed, as well as the influence of FSI on the
shape of the distribution.

The description of the FSI is the main focus of the second article (Sec. 3.3). The influence
of charge-exchange processes on the two-nucleon knockout reaction is studied. Charge-
exchange reactions change the isospin projection of the outgoing nucleons, transforming a
proton in a neutron or vice versa. The calculation of the distorted c.m. momentum distri-
bution is detailed and its decomposition into nucleon pairs with different isospin projections
(proton-proton and proton-neutron pairs) is studied. The nuclear transparency, which is a
measure of the FSI strength, across the nuclear mass range is investigated as well, in which
the cross section ratios and the factorization property of the cross section play an important
role.

Finally the third article of Sec. 3.4 addresses the issue of how the SRC properties in the
ground state of atomic nuclei can be recovered from two-nucleon knockout cross sections.
Theoretical predictions of SRC properties are compared to results extracted from measured
cross sections that have been corrected for FSI, identifying the initial SRC dynamics.

3.2 Factorization of exclusive electroinduced 2N knock-

out

3.2.1 Introduction

In the following article, published as Ref. [2], the factorized expression for the exclusive two-
nucleon knockout cross section is derived. The c.m. momentum distribution of SRC nucleon
pairs is investigated in detail. The second, third and fourth moment (width, skewness and
kurtosis) of the c.m. distribution are examined across the nuclear mass range. The c.m.
momentum distribution as well as the relative momentum distribution are decomposed into
the different contributions from SRC pairs with specific quantum numbers. This allows us
to identify the dynamical behaviour of SRC pairs and their structure.

The calculated c.m. momentum distribution is then used as an input for Monte Carlo cal-
culations, simulating an experimental scattering setup probing SRC pairs. In experimental
measurements it is impossible to probe the full phase space uniformly. Due to kinematical
constraints in scattering reactions, the c.m. momentum distribution is generally probed
non-uniformly in a restricted part of the phase space. This paper investigates how the
measured c.m. momentum distribution differs from the initial “true” distribution. Finally
the effect of FSI on the c.m. momentum and the shape of the opening angle distribution
is studied. The opening angle is defined as the relative angle between the individual initial
momenta of the struck nucleon pair.

My specific contribution to this paper constitutes the computation and the discussion of the
effect of the FSI on the c.m. momentum distribution and the opening-angle distribution of
SRC pairs for different nuclei (section V). Additionally, an important message of the article
is that the conditional c.m. momentum distribution, derived in the LCA framework, can be
connected to the two-nucleon knockout cross section. The relation between the factorization
function, appearing in the eightfold differential cross section (e, e′NN), and the conditional
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c.m. momentum distribution is stated, establishing the connection between SRC-pairs and
the two-nucleon knockout cross section. This shows that SRC dynamics can be probed in
the (e, e′NN) reaction. The proof of the connection is quite involved. Therefore I derived
the proof, included in Sec. (3.2.3)



Factorization of exclusive electroinduced two-nucleon knockout

Camille Colle,∗ Wim Cosyn,† Jan Ryckebusch,‡ and Maarten Vanhalst§

Department of Physics and Astronomy,
Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

(Dated: 10 February 2014)

We investigate the factorization properties of the exclusive electroinduced two-nucleon knockout
reaction A(e, e′pN). A factorized expression for the cross section is derived and the conditions for
factorization are studied. The A(e, e′pN) cross section is shown to be proportional to the conditional
center-of-mass (c.m.) momentum distribution for close-proximity pairs in a state with zero relative
orbital momentum and zero radial quantum number. The width of this conditional c.m. momentum
distribution is larger than the one corresponding with the full c.m. momentum distribution. It is
shown that the final-state interactions (FSIs) only moderately affect the shape of the factorization
function for the A(e, e′pN) cross sections. Another prediction of the proposed factorization is that

the mass dependence of the A(e, e′pp) [A(e, e′pn)] cross sections is much softer than Z(Z−1)
2

[NZ].

PACS numbers: 25.30.Rw,25.30.Fj,24.10.-i

∗ Camille.Colle@UGent.be
† Wim.Cosyn@UGent.be
‡ Jan.Ryckebusch@UGent.be
§ Maarten.Vanhalst@UGent.be

Chapter 3. Two-nucleon knockout reactions and their connection to SRC physics 33



I. INTRODUCTION

In recent years, substantial progress has been made in exploring the dynamics of short-range correlations
(SRCs) in nuclei. On the experimental side, exclusive A(p, 2p + n) [1] and A(e, e′pN) [2–4] measurements
have probed correlated pairs in nuclei and identified proton-neutron (pn) pairs as the dominant contribution.
Inclusive A(e, e′) [5–7] measurements in kinematics favoring correlated pair knockout, have provided access
to the mass dependence of the amount of correlated pairs relative to the deuteron. On the theoretical side,
ab initio [8–11], cluster expansion [12–14], correlated basis function theory [15, 16], and low-momentum
effective theory [17], calculations have provided insight in the fat high-momentum tails of the momentum
distributions attributable to multinucleon correlations. Tensor correlations have been identified as the
driving mechanism for the fat tails just above the Fermi momentum. The highest momenta in the tail of the
momentum distribution are associated with the short-distance repulsive part of the nucleon-nucleon force
and N ≥ 3 correlations. Recent reviews of nuclear SRC can be found in Refs. [18, 19].

We have proposed a method to quantify the amount of correlated pairs in an arbitrary nucleus [20–22].
Thereby, we start from a picture of a correlated nuclear wave function as a product of a correlation operator
acting on an independent-particle model (IPM) Slater determinant ΨIPM

A [17]. The SRC-susceptible pairs
are identified by selecting those parts of ΨIPM

A that provide the largest contribution when subjected to
typical nuclear correlation operators. It is found that IPM nucleon-nucleon pairs with vanishing relative
orbital momentum and vanishing relative radial quantum numbers, receive the largest corrections from
the correlation operators. This can be readily understood by realizing that IPM close-proximity pairs are
highly susceptible to SRC corrections. This imposes constraints on the relative orbital and radial quantum
numbers of the two-nucleon cluster components in the IPM wave functions which receive SRC corrections.

With the proposed method of quantifying SRC we can reasonably account for the mass dependence of the
A(e,e′)
d(e,e′) ratio under conditions of suppressed one-body contributions (Bjorken xB & 1.2) [21] and the mass

dependence of the magnitude of the EMC effect [22, 23]. In connecting the SRC information to inclusive
electron-scattering data at Bjorken xB & 1.2, there are complicating issues like the role of c.m. motion
[21, 24] and final-state interactions (FSIs) [25]. More quantitative information on SRC and their mass and
isospin dependence, is expected to come from exclusive electroinduced two-nucleon knockout which is the
real fingerprint of nuclear SRC [26]. Reactions of this type are under investigation at Jefferson Laboratory
(JLab) and results for 12C(e, e′pN) have been published [3, 4].

In this paper, we investigate the factorization properties of the exclusive A(e, e′pN) reaction. Factorization
is a particular result that emerges only under specific assumptions in the description of the scattering process.
It results in an approximate expression for the cross section which becomes proportional to a specific function
of selected dynamic variables. For exclusive quasielastic A(e, e′p) processes, for example, the factorization
function is the one-nucleon momentum distribution evaluated at the initial nucleon’s momentum. It will be
shown that for exclusive A(e, e′pN) these roles are respectively played by the c.m. momentum distribution
for close-proximity pairs and the c.m. momentum of the initial pair.

In Sec. II we present calculations for the pair c.m. momentum distribution in the IPM. It is shown
that the correlation-susceptible IPM pairs have a broader c.m. width than those that are less prone to
SRC corrections. In Sec. III, we show that after making a number of reasonable assumptions, the eightfold
A(e, e′pN) cross section factorizes with the conditional pair c.m. momentum distribution as the factorization
function. In Sec. IV we report on results of Monte Carlo simulations for A(e, e′pp) processes in kinematics
corresponding to those accessible in the JLab Hall A and Hall B detectors. We study the effect of typically
applied cuts on several quantities. In Sec. V it is investigated to what extent FSIs affect the factorization
function of the exclusive A(e, e′pN) process. Finally, our conclusions are stated in Sec. VI.

II. PAIR CENTER-OF-MASS MOMENTUM DISTRIBUTIONS

In this section we study the pp and pn pair c.m. momentum distribution for 12C, 27Al, 56Fe and 208Pb
which we deem representative for the full mass range of stable nuclei. We introduce the relative and c.m.
coordinates and momenta

~r12 = ~r1 − ~r2, ~R12 =
~r1 + ~r2

2
, (1)

~k12 =
~k1 − ~k2

2
, ~P12 = ~k1 + ~k2 . (2)

34 3.2.2 Factorization of exclusive electroinduced two-nucleon knockout



The corresponding two-body momentum density reads

P2

(
~k12, ~P12

)
=

1

(2π)6

∫
d~r12

∫
d~r ′12

∫
d~R12

∫
d~R ′12

× eı~k12 · (~r ′12−~r12)eı
~P12 · (~R ′12−~R12)ρ2(~r ′12, ~R

′
12;~r12, ~R12), (3)

where ρ2(~r ′12,
~R ′12;~r12, ~R12) is the non-diagonal two-body density (TBD) matrix

ρ2(~r ′12,
~R ′12;~r12, ~R12) =

∫
{d~r3−A} ×Ψ∗A(~r ′1 , ~r

′
2 , ~r3, . . . , ~rA)ΨA(~r1, ~r2, ~r3, . . . , ~rA). (4)

Here, ΨA is the normalized ground-state wave function of the nucleus A and {d~ri−A} ≡ d~rid~ri+1 . . . d~rA.

For a spherically symmetric system, P2

(
~k12, ~P12

)
depends on three independent variables, for example

the magnitudes
∣∣∣~k12

∣∣∣ and
∣∣∣~P12

∣∣∣ and the angle between ~k12 and ~P12. In Ref. [13] two-body momentum

distributions for 3He and 4He are shown to be largely independent of the angle between ~k12 and ~P12 for
P12 . 200 MeV. Integrating over the directional dependence of Eq. (3), the quantity

n2(k12, P12)k2
12dk12P

2
12dP12

= k2
12dk12P

2
12dP12

∫
dΩk12

∫
dΩP12P2(~k12, ~P12) , (5)

is connected to the probability of finding a nucleon pair with relative and c.m. momentum in [k12, k12 +dk12]
and [P12, P12 + dP12]. With the spherical-wave expansion for the two vector plane waves in Eq. (3) one
obtains

n2(k12, P12) =
4

π2

∑

lml

∑

ΛMΛ

nlmlΛMΛ
2 (k12, P12), (6)

with

nlmlΛMΛ
2 (k12, P12) =∫
dr ′12 r

′
12

2
∫
dR ′12 R

′
12

2
∫
dr12 r

2
12

∫
dR12 R

2
12

× jl(k12r12)jl(k12r
′

12)jΛ(P12R12)jΛ(P12R
′

12)

× ρlmlΛMΛ
2 (r ′12, R

′
12; r12, R12). (7)

Here, ρlmlΛMΛ
2 (r ′12, R

′
12; r12, R12) is the projection of the TBD matrix on relative and c.m. orbital angular-

momentum states |lml〉 and |ΛMΛ〉.
The pair c.m. momentum distribution is defined by

P2(P12) =

∫
dΩP12

∫
d~k12P2(~k12, ~P12)

=

∫
dk12k

2
12n2(k12, P12), (8)

and the quantity P2(P12) P 2
12 dP12 is related to the probability of finding a nucleon pair with

∣∣∣~P12

∣∣∣ in

[P12, P12 + dP12] irrespective of the magnitude and direction of ~k12. Similarly, the pair relative momentum
distribution is defined as

n2(k12) =

∫
dΩk12

∫
d~P12P2(~k12, ~P12) . (9)

In the IPM, the ground-state wave function can be expanded in terms of single-particle wave functions
φαi

ΨIPM
A = (A!)−1/2det

[
φαi(~xj)

]
, (10)
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and the TBD matrix is given by

ρIPM
2 (~r ′12,

~R ′12;~r12, ~R12) =
2

A(A− 1)

∑

α<β

1

2

[
φ∗α(~x ′1)φ∗β(~x ′2)− φ∗β(~x ′1)φ∗α(~x ′2)

]
[φα(~x1)φβ(~x2)− φβ(~x1)φα(~x2)] .

(11)

Here, ~x ≡ (~r, ~σ, ~τ) is a shorthand notation for the spatial, spin, and isospin coordinates. The summation∑
α<β extends over all occupied single-particle levels and implicitly includes an integration over the spin

and isospin degrees of freedom (d.o.f.).
In a HO basis the uncoupled single-particle states read

φα(~x) ≡ ψnαlαmlα (~r)χσα (~σ) ξτα (~τ) . (12)

The A dependence can be taken care of by means of the parameterization ~ω(MeV) = 45 A
1
3 − 25 A

2
3 .

A transformation from (~r1, ~r2) to (~r12, ~R12) for the uncoupled normalized-and-antisymmetrized (nas) two-
nucleon states can be readily performed in a HO basis [20, 21]

| αβ〉nas =
∑

nlmlNΛMΛ
SMSTMT

〈nlmlNΛMΛSMSTMT | αβ〉 | nlmlNΛMΛSMSTMT 〉 =
∑

A={nlmlNΛMΛ

SMSTMT }

CAαβ | A〉,

(13)

with the transformation coefficient CnlmlNΛMΛSMSTMT

αβ given by

CnlmlNΛMΛSMSTMT

αβ =
1√
2

[
1− (−1)l+S+T

]
〈1
2
τα

1

2
τβ | TMT 〉〈

1

2
σα

1

2
σβ | SMS〉

×
∑

LML

〈lαmlα lβmlβ | LML〉〈nlNΛ;L | nαlαnβlβ ;L〉SMB〈LML | lmlΛMΛ〉 , (14)

where we use the Talmi-Moshinsky brackets 〈|〉SMB [27] to separate out the relative and c.m. coordinates
in the products of single-particle wave functions.

After performing the transformation of Eq. (13) for the TBD matrix of Eq. (11), P2(P12) can be written
as

P2(P12) =
2

π

∑

nlml

∑

ΛMΛ

PnlmlΛMΛ
2 (P12), (15)

with

PnlmlΛMΛ
2 (P12) =

2

A(A− 1)

∑

α<β

∑

NN ′

∑

SMSTMT

(CnlmlN
′ΛMΛSMSTMT

αβ )†CnlmlNΛMΛSMSTMT

αβ

×
∫
dR ′12 R

′
12

2
∫
dR12 R

2
12 jΛ(P12R

′
12)jΛ(P12R12)RN ′Λ(

√
2R ′12)RNΛ(

√
2R12) (16)

A Woods-Saxon basis, for example, first needs to be expanded in a HO basis before a projection of the
type (16) can be made. Using Eqs. (15) and (16), the conditional pair c.m. momentum distribution for a
given relative radial quantum number n and relative orbital momentum l, can be defined as

P2(P12|nl = νλ) =
2

π

∑

ml

∑

ΛMΛ

P νλmlΛMΛ
2 (P12) . (17)

Obviously, one has

P2(P12) =
∑

νλ

P2(P12|nl = νλ) =
∑

λ

P2(P12|l = λ), (18)

where P2(P12|l = λ) is the conditional pair c.m. momentum distribution for l = λ.
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A symmetric correlation operator Ĝ can be applied to the IPM wave function of Eq. (10) in order to
obtain a realistic ground-state wave function [15, 28–30]

| ΨA〉 =
1√

〈 ΨIPM
A | Ĝ†Ĝ | ΨIPM

A 〉
Ĝ | ΨIPM

A 〉 . (19)

The operator Ĝ is complicated but as far as the SRC are concerned, it is dominated by the central, tensor
and spin-isospin correlations [31, 32]

Ĝ ≈ Ŝ
[ A∏

i<j=1

(
1 + ô (~xi, ~xj)

)]
, (20)

with Ŝ the symmetrization operator and

ô (~x1, ~x2) = −gc(r12) + ftτ (r12)S12~τ1 ·~τ2
+ fστ (r12)~σ1 ·~σ2~τ1 ·~τ2 , (21)

where gc(r12), ftτ (r12), fστ (r12) are the central, tensor, and spin-isospin correlation functions, and S12 the
tensor operator. The sign convention of −gc(r12) in Eq. (21) implies that lim

r12→0
gc(r12) = g0 (0 < g0 ≤ 1)).

We stress that the correlation functions cannot be considered as universal [29]. They depend for example on
the choices made with regard to the nucleon-nucleon interaction, the single-particle basis and the many-body
approximation scheme.

With Eq. (19), the intrinsic complexity stemming from the nuclear correlations is shifted from the wave
functions to the transition operators. For example, the ground-state matrix element with a two-body
operator Ô[2] adopts the form

〈ΨA | Ô[2] | ΨA〉 =
1

〈 ΨIPM
A | Ĝ†Ĝ | ΨIPM

A 〉
〈 ΨIPM

A | Ĝ†Ô[2]Ĝ | ΨIPM
A 〉 , (22)

whereby high-order many-body operators are generated. Throughout this work we adopt the two-body

cluster (TBC) approximation, which amounts to discarding all terms in Ĝ†Ô[2]Ĝ except those in which
the transition operator and the correlators act on the same pair of particles. In this lowest-order cluster
expansion the matrix element of Eq. (22) becomes with the aid of Eq. (20)

〈ΨA | Ô[2] | ΨA〉 ≈
1

〈 ΨA | ΨA 〉
〈 ΨIPM

A |
A∑

i<j=1

(
1 + ô (~xi, ~xj)

)†
Ô[2] (i, j)

(
1 + ô (~xi, ~xj)

)
| ΨIPM

A 〉

=
1

〈ΨA | ΨA 〉
[
〈 ΨIPM

A | Ô[2] | ΨIPM
A 〉+ TBC corrections

]
. (23)

In this expansion, the matrix element is written as the sum of the bare (or IPM) contribution and the TBC
corrections to it. The P2(P12) and n2(k12) of Eqs. (8-9) can be computed with the aid of the Eq. (23) using

the transition operators δ
(
~Pij − (~ki + ~kj)

)
and δ

(
~kij −

~ki−~kj
2

)
. As the ô involves only relative coordinates,

the P2(P12) is not affected by the SRC corrections in the TBC approximation. We define nIPM
2 (k12) as the

IPM contribution of n2(k12) and nTBC
2 (k12) the result obtained with Eq. (23). Accordingly, nTBC

2 (k12) =
nIPM

2 (k12) + TBC corrections. For nTBC
2 (k12) the denominator 〈 ΨA | ΨA 〉 in Eq. (23) can be numerically

computed by imposing the normalization conditions:
∫
dk12n

TBC
2 (k12)k2

12 = 1. As in Eqs. (7) and (17),
one can introduce projection operators, and select the contributions to nTBC

2 (k12) stemming from particular

quantum numbers (nl) of the relative two-nucleon wave functions in ΨIPM
A . We define n2n+l

2 (k12) as the
contribution to nTBC

2 considering only (nl) configurations in ΨIPM
A with constant 2n+ l. Obviously, one has

∑

2n+l

n2n+l
2 (k12) = nTBC

2 (k12). (24)

The computed n2n+l
2 , nTBC

2 and nIPM
2 for 56Fe are shown in Fig. 1. Below the Fermi momentum kF , the effect

of the correlation operator is negligible and nIPM
2 (k12) ≈ nTBC

2 (k12). For k12 > kF , nIPM
2 (k12) drops rapidly

while nTBC
2 (k12) exhibits the SRC related high momentum tail. The tail is dominated by the 2n + l = 0
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FIG. 1. (Color online) The momentum dependence of the computed n2n+l
2 (k12), nTBC

2 (k12) and nIPM
2 (k12) for 56Fe

in a HO basis. In order to quantify the effect of SRC we have used the gc (r12) of Ref. [33] and the ftτ (r12), fστ (r12)
of Ref. [28].

configurations. This indicates that most of the SRC are dynamically generated through the operation of
the correlation operators on nl = 00 IPM pairs.

In Sec. III, it is shown that in the limit of vanishing FSIs the factorization function of the exclusive
A(e, e′pN) cross section is P2(P12|nl = 00). In Figs. 2 and 3, we display the computed P2(P12) and
P2(P12|nl = 00) for the pp and pn pairs in 12C, 27Al, 56Fe and 208Pb. The relative weight of the (nl = 00)
in the total c.m. distribution decreases spectacularly with increasing mass number A. This will reflect itself
in the mass dependence of the A(e, e′NN) cross sections which are predicted to scale much softer than A2.
The (nl = 00) pairs are strongly localized in space which enlarges the P2(P12|nl = 00) width relative to the
P2(P12) one. The mass dependence of the normalized P2(P12) reflects itself in a modest growth of the width
of the distribution. For the light nuclei 12C and 27Al, the pp and pn c.m. distributions look very similar.

At first sight the computed P2(P12) for the pp and pn pairs in Figs. 2 and 3 look very Gaussian. In what
follows, we use the moments to quantify the non-Gaussianity of the P2. The first moment, or mean, of a
distribution F (x) is defined as

µ1 = µ =

∫
D
xF (x)dx∫

D
F (x)dx

, (25)

where D is the domain of the distribution. For m > 1, we define the central moments as

µm =

∫
D

(x− µ)mF (x)dx∫
D
F (x)dx

. (26)

The width is defined as σ =
√
µ2. With regard to µ3 and µ4, it is common practice to describe a distribution

with the skewness γ1 and excess kurtosis κ

γ1 ≡
µ3

σ3
(27)

κ ≡ µ4

σ4
− 3, (28)

which are both vanishing for a Gaussian distribution.
For a spherically symmetric distribution, one can derive the distributions P2,i (P12,i) (i = x, y, z) along the

axes from P 2
12P2

(
P12 =

√
P 2

12,x + P 2
12,y + P 2

12,z

)
. Gaussian P2,i give rise to a P 2

12P2 (P12,i) of the Maxwell-

Boltzmann type.
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FIG. 2. The momentum dependence of P2(P12) and the P2 (P12|nl = 00) for pp pairs in different nuclei. The
adopted normalization convention is that

∫∞
0

dP12 P
2
12P2(P12) = 1. Note that only the pp contributions to P2(P12)

are considered when performing the integral. The results are obtained in a HO basis.

HO WS

σ (MeV) γ1 [Eq. (27)] κ [Eq. (28)] σ (MeV) γ1 [Eq. (27)] κ [Eq. (28)]
12C P2,x(P12,x|nl = 00) 156 0.00 −0.25 158 0.00 −0.28
12C P2,x(P12,x) 140 −0.01 −0.12 142 −0.01 −0.05
27Al P2,x(P12,x|nl = 00) 164 0.00 −0.45 168 0.00 −0.45
27Al P2,x(P12,x) 144 −0.01 −0.20 148 −0.01 −0.20
56Fe P2,x(P12,x|nl = 00) 172 0.00 −0.54 174 0.00 −0.54
56Fe P2,x(Px) 146 −0.01 −0.27 149 0.00 −0.26
208Pb P2,x(P12,x|nl = 00) 178 0.00 −0.58 177 0.00 −0.63
208Pb P2,x(P12,x) 145 0.00 −0.31 146 0.00 −0.31

TABLE I. The moments of the P2,x (P12,x) and the P2,x (P12,x|nl = 00) distributions for pp pairs as computed in a
HO and WS single-particle basis for various nuclei.

Table I shows the computed moments of the P2,x(P12,x|nl = 00) and P2,x(P12,x) distributions for pp pairs.
These results are obtained with HO and Woods-Saxon (WS) single-particle wave functions. We find that
the c.m. distributions are not perfectly Gaussian and that the non-Gaussianity grows with A. The values
of the widths are only moderately sensitive to the single-particle basis used. The WS widths are larger by
a few percent than the HO ones.

In Fig. 4, the calculated widths of the P2,x(P12,x) and P2,x(P12,x|l) are shown for pp, nn and np pairs.
For the np pairs we discriminate between singlet (S = 0) and triplet (S = 1) spin states. From Fig. 4 we
draw the following conclusions. The width of the P2,x(P12|l) depends on l. For l = 0 and np pairs, the
width of P2,x(P |l) is almost independent of S. For heavy nuclei there is a substantial difference in the width
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of the P2,x(P |l = 0) for pp, nn and np pairs but for light nuclei this is not the case. A similar but smaller
dependence on the width is found for n at fixed l, the width of P2(P12|nl) decreases for increasing n. We
conclude that from the width of the c.m. distribution of the pairs one can infer information about their
relative orbital momentum.

III. FACTORIZATION OF THE TWO-NUCLEON KNOCKOUT CROSS SECTION

It is well known that the fivefold differential cross section for the exclusive A(e, e′p)A− 1 reaction under
quasifree kinematics with A− 1 spectators

γ∗ (q) +A− 1 (pA−1) +N (k1) −→ A− 1 (pA−1) +N (p1) , (29)

factorizes as

d5σ(e, e′p) = KepσepP1(~km, Em) . (30)

Here, Kep is a kinematical factor and σep the off-shell electron-proton cross section. Further, ~km = −~pA−1 =
~k1 is the missing momentum and Em = q0 − Tp1

− TA−1 the missing energy, whereby TA−1 and Tp1
are

the kinetic energy of the recoiling nucleus and ejected nucleon. The P1(~k,E) is the one-body spectral

function and is associated with the combined probability of removing a proton with momentum ~k from the
ground-state of A and of finding the residual A − 1 nucleus at excitation energy E (measured relative to
the ground-state of the target nucleus). The factorization is exact in a non-relativistic reaction model with
A − 1 spectators and vanishing FSIs [34]. The validity of the spectator approximation requires that the
Em is confined to low values, corresponding to states with a predominant one-hole character relative to the
ground state of the target nucleus A.

Below, it is shown that also the A(e, e′pN) differential cross section factorizes under certain assumptions.
The factorization function is connected to the c.m. motion of close-proximity pairs. In Ref. [35] the factor-
ization function is introduced as the so-called decay function. In Ref. [36] a factorized expression for the
A(e, e′pp) cross section has been derived. Thereby, in computing the matrix elements, all FSI effects have
been neglected and the zero-range approximation (limr12→0) has been adopted. A 12C(e, e′pp) experiment
conducted at the Mainz Microtron (MAMI) [37] showed very good quantitative agreement with the pre-
dicted diproton pair c.m. momentum factorization up to momenta of about 500 MeV. Here, the formalism
of Ref. [36] is extended to include the effect of FSIs and to soften the zero-range approximation. Note that
the limit limr12→0 effectively amounts to projecting on states with vanishing relative orbital momentum.

We consider exclusive A(e, e′NN) reactions in the spectator approximation with a virtual photon coupling
to a correlated pair N (k1)N (k2)

γ∗ (q) +A− 2 (pA−2) +N (k1)N (k2) −→ A− 2 (pA−2) +N (p1) +N (p2) . (31)

In a non-relativistic treatment, the corresponding matrix element is given by

Mµ =

∫
d~x1

∫
d~x2

[
χ†s1(~σ1)ξ†t1 (~τ1)χ†s2(~σ2)ξ†t2 (~τ2) e−i~p1 ·~r1e−i~p2 ·~r2 − (1↔ 2)

]

×F†FSI(~r1, ~r2)Ôµ(~x1, ~x2)φα1
(~x1)φα2

(~x2) . (32)

Here, si(ti) are the spin (isospin) projection of the outgoing nucleons. Further, FFSI(~r1, ~r2) is an operator
encoding the FSIs for a reaction where two nucleons are brought into the continuum at the spatial localiza-
tions ~r1 and ~r2 respectively. We assume that FFSI does not depend on the spin and isospin d.o.f, which is a
fair approximation at higher energies. The amplitude of Eq. (32) refers to the physical situation whereby,
as a result of virtual-photon excitation, two nucleons are excited from bound states α1α2 into continuum
states.

In Eq. (32), the effect of the correlations is implemented in the TBC approximation by means of a
symmetric two-body operator [29, 31]

Ôµ(~x1, ~x2) =

[
ei~q ·~r1Γµγ?N (~x1) + ei~q ·~r2Γµγ?N (~x2)

]
ô (~x1, ~x2) , (33)

where the operator ô (~x1, ~x2) has been defined in Eq. (21) and ~q is the three-momentum of the virtual
photon. The Γµγ?N (~xi) denotes the one-body virtual photon coupling to a bound nucleon with coordinate
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FIG. 5. The four contributions to the A(e, e′NN) amplitude of Eq. (32).

~xi (includes the spatial, spin, and isospin d.o.f.). The Eq. (33) can be interpreted as the SRC-corrected
photo-nucleon coupling which operates on IPM many-body wave functions.

The amplitude of Eq. (32) involves four contributions schematically shown in Fig. 5. For the sake of
brevity, in the following we consider the term of Fig. 5(a) with a photon-nucleon coupling on coordinate ~r1

and the outgoing nucleon with momentum ~p1 directly attached to this vertex. The corresponding amplitude
is denoted by Mµ

a . The other three terms in Fig. 5 follow a similar derivation.
In a HO single-particle basis, one can write

Mµ
a =

∫
d~r1

∫
d~r2e

−i(~p1−~q) ·~r1e−i~p2 ·~r2F†FSI(~r1, ~r2)

× 〈s1t1, s2t2 | Γµγ?N (~x1) ô (~x1, ~x2) | σ1τ1, σ2τ2〉ψn1l1ml1
(~r1)ψn2l2ml2

(~r2) , (34)

where σi (τi) are the spin (isospin) quantum numbers of the bound states. Further, ψn1l1ml1
and ψn2l2ml2

are the radial HO wave functions as introduced in Eq. (12).
Similar to the Eq. (13), we apply the Talmi-Moshinsky brackets 〈|〉SMB [27] to transform Eq. (34) to

relative and c.m. radial coordinates to obtain

Mµ
a =

∑

LML

∑

nlml
NΛMΛ

∫
d~r12

∫
d~R12e

−i ~P12 · ~R12e−i
~k− ·~r12F†FSI(

~R12+
~r12

2
, ~R12−

~r12

2
)ψnlml(

~r12√
2

)ψNΛMΛ(
√

2~R12)

× 〈l1ml1 l2ml2 | LML〉〈lmlΛMΛ | LML〉〈nlNΛ;L | n1l1n2l2;L〉SMB

× 〈s1t1, s2t2 | Γµγ?N (~x1) ô (~x1, ~x2) | σ1τ1, σ2τ2〉 , (35)

where ~P12 = ~p1 + ~p2 − ~q, ~k∓ = ~p1−~p2

2 ∓ ~q
2 .

In Eq. (35) the sum over the relative quantum numbers is dominated by (nl = 00). This is based on the
observation that typical correlation operators act over relatively short internucleon distances and mostly
affect the (nl = 00) components of the ψnlml wave functions. For a more detailed explanation we refer to
the discussion of Fig. 1 in Sect. II and Refs. [20, 21].

For close-proximity nucleons one can set ~r12 ≈ ~0 in the FSI operator:

FFSI(~r1, ~r2) = FFSI(~R12 +
~r12

2
, ~R12 −

~r12

2
)

≈ FFSI(~R12, ~R12) . (36)

This approximation amounts to computing the effect of FSIs as if the the two nucleons are brought into
the continuum at the same spatial point (determined by the c.m. coordinate of the pair), which is very
reasonable for close-proximity nucleons. With the above assumptions one arrives at the expression for the
matrix element

Mµ
a ≈ 〈s1t1, s2t2 | Γ̂µγ?N (~k−) | σ1τ1, σ2τ2〉

×
∑

NΛMΛ

〈l1ml1 l2ml2 | ΛMΛ〉〈00NΛ; Λ | n1l1n2l2; Λ〉SMB

×
∫
d~R12e

−i ~P12 · ~R12F†FSI(
~R12, ~R12)ψNΛMΛ(

√
2~R12) ,
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with

Γ̂µγ?N (~p) ≡
∫
d~r12e

−i~p ·~r12ψ000(
~r12√

2
)Γµγ?N (~x1)̂o(~x1, ~x2) . (37)

In deriving the Eq. (37), we have separated the integration over the spatial and spin-isospin d.o.f.. In

addition, use has been made of the fact that the operator ô(~x1, ~x2) of Eq. (21) does not depend on the

c.m. coordinate ~R12. The most striking feature of Eq. (37) is the factorization of the amplitude in a term
connected to the c.m. motion of the initial pair and a term which contains the full complexity of the
photon-nucleon coupling to a correlated pair.

After summing the four terms that contribute to Eq. (32) and squaring the matrix element, the eightfold
differential cross section factorizes according to

d8σ(e, e′NN) = KeNNσe2NF
D
n1l1,n2l2(~P12), (38)

with KeNN a kinematic factor. Further, the off-shell electron-two-nucleon cross section is given by

σe2N ∝ Lµν
∑

s1s2σ1σ2
τ1τ2

Jµ (Jν)
†
, (39)

with Lµν the leptonic tensor and Jµ the hadronic current given by

Jµ = 〈s1t1, s2t2 | Γ̂µγ?N (~k−) | σ1τ1, σ2τ2〉
− 〈s2t2, s1t1 | Γ̂µγ?N (~k+) | σ1τ1, σ2τ2〉
+ 〈s1t1, s2t2 | Γ̂µγ?N (~k+) | σ1τ1, σ2τ2〉
− 〈s2t2, s1t1 | Γ̂µγ?N (~k−) | σ1τ1, σ2τ2〉 . (40)

The factorization function FDn1l1,n2l2
(~P12) in Eq. (38) can be associated with the distorted c.m. momentum

distribution of pairs in a relative (nl = 00) state of the nucleus A

FDn1l1,n2l2(~P12) = 4
∑

ml1ml2

∣∣∣
∑

NΛMΛ

∫
d~R12e

−i ~P12 · ~R12〈l1ml1 l2ml2 | ΛMΛ〉〈n1l1n2l2; Λ | 00NΛ; Λ〉SMB

×F†FSI(
~R12, ~R12)ψNΛMΛ(

√
2~R12)

∣∣∣
2

, (41)

where the factor 4 accounts for the spin degeneracy of the HO states.

In the limit of vanishing FSIs (F FSI ≡ 1), one has

P2(P12|nl = 00) =
1

A(A− 1)

3

(2π)3

∑

nαlαnβlβ

∫
dΩP12

FDnαlα,nβlβ (~P12) . (42)

This establishes a connection between the A(e, e′NN) factorization function and the contribution of pairs
with quantum numbers (n1l1n2l2) to P2(P12|nl = 00), illustrated for pp pairs in 12C in Fig. 6.

In the naive IPM, each two-hole (2h) state (n1l1)−1(n2l2)−1 can be associated with a sharp excitation
energy in the A − 2 system. In reality, the 2h strength corresponding with (n1l1)−1(n2l2)−1 extends over
a wide energy range [38]. Current A(e, e′pN) measurements are performed at Q2-values of the order of
GeV2 not allowing one to measure cross sections for real exclusive processes as could be done at lower Q2

values [26, 39, 40]. Accordingly, rather than probing the individual 2h contributions to P2, the measured
semi-inclusive A(e, e′pN) cross sections can be linked to the P2(P12 | nl = 00) which involves a summation
over the 2h states. From Fig. 6 it can be appreciated that in high-resolution A(e, e′pN) measurements the
c.m. distribution depends on the two-hole structure of the discrete final A-2 state [38, 39].

The A(e, e′p) reaction allows one to access the P1(~km, Em) modulo corrections from FSIs. It is worth
stressing that there is no simple analogy for the A(e, e′pN) reaction and that a direct connection with the

two-body spectral function P2(~P12,~k12, E2m) is by no means evident, if not impossible.
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FIG. 6. (Color online) The contribution of the different shell-model pair combinations to the P2 (P12|nl = 00) for
pp pairs in 12C.

IV. MONTE CARLO SIMULATIONS

In this section, we investigate the implications of the proposed factorization of Eq. (38) for the A(e, e′pp)
opening-angle and c.m. distributions accessible in typical measurements. We present Monte Carlo simu-
lations for A(e, e′pp) building on the expression (38) suggesting that the magnitude of the cross section is
proportional to P2(P12|nl = 00). In this section the effects of FSIs are neglected. Its impact will be the
subject of Sect. V.

The data-mining effort at CLAS in Jlab [41, 42] is analyzing exclusive (e, e′pN) for 12C, 27Al, 56Fe, and
208Pb for a 5.014 GeV unpolarized electron beam [41]. In order to guarantee the exclusive character of

the events, cuts are applied to the leading proton: 0.62 < |~p1|
|~q| < 0.96, θ~p1,~q < 25◦ and k1 > 300 MeV. To

increase the sensitivity to SRC-driven processes one imposes the kinematic constraints xB = Q2

2MNω
> 1.2

and Q2 > 1.4 GeV2. We have performed (e, e′pp) simulations for all 4 target nuclei. The electron kinematics
are drawn from the measured xB − Q2 distributions. We then generate two protons from the phase space
by adoping a reaction picture of the type (31) whereby we assume that one nucleon absorbs the virtual

photon. This results in a fast leading proton p1(E1, ~p1 = ~k1 + ~q) and a recoil proton p2(E2, ~p2 = ~k2), where
~k1 and ~k2 are the initial proton momenta. The initial c.m. momentum ~P12 = ~k1 + ~k2 is drawn from the

computed HO pp pair c.m. momentum distribution P2(P12|nl = 00) of Table I. We choose ~k1 along the
z-axis and ~q in the xz plane. The recoil A− 2 nucleus can have excitation energies between 0 and 80 MeV.
All A(e, e′pp) results of this section are obtained for 105 events which comply with the kinematic cuts.

First, we investigate in how far the factorization function can be addressed after applying kinematic cuts.
This can be done by comparing the input and extracted pp c.m. distributions. Fig. 7 shows the extracted
c.m. distribution from the simulated 12C(e, e′pp) events. The kinematic cuts have a narrowing effect (less
than 10 %) on the distributions along the x- and y-axis. In addition, one observes a shift of roughly 100 MeV
and an increase in the non-Gaussianity of the c.m. distribution along the z-axis. Similar observations have
been made for the other three target nuclei.

We now address the issue whether the extracted c.m. distributions can provide information about the
relative quantum numbers of the pairs. To this end, we have performed simulations starting from the
assumption that the (e, e′pp) cross section factorizes with P2(P12|nl) for various nl combinations. The
results of the simulations are summarized in Table II. The narrowing effect attributed to the kinematic
cuts is less significant for l > 0 pairs. Photon absorption on l = 0 and l = 1 pairs leads to differences
in the extracted widths of the c.m. momentum distributions of the order of 20 MeV, which leads us to
conclude that high-accuracy A(e, e′pp) experiments could indeed provide information about the relative
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FIG. 7. (Color online) Total (bottom right) and directional pp c.m. distributions extracted from the 12C(e, e′pp)
simulations in the CLAS kinematics described in the text. The blue solid line is a fit with a skew normal distribution.

nl = 00 l = 0 l = 1 l = 2 all l

σix(MeV ) 156 154 135 121 140
σfx(MeV ) 147 145 130 118 134

TABLE II. The width of the c.m. distribution along the x-axis for pp pairs with different relative orbital momentum
l. σix is the width used as input parameter in the 12C(e, e′pp) simulations. The σfx is the width extracted after the
simulation.

orbital angular momentum of the correlated pairs.

Fig. 8 shows the simulated opening-angle (γ) distributions of the initial-state protons for all four target
nuclei considered. The A(e, e′pp) simulations starting from the computed P2(P12|nl = 00) and P2(P12)
provide very similar backwardly peaked cos γ distributions. The peak is not due to the kinematic cuts as a
uniform c.m. momentum distributions gives rise to a flat cos γ distribution. The shape of the simulated cos γ
distributions is hardly target-mass dependent. The peak at 180 degrees in the cos γ distributions conforms
with the picture of correlated nucleons moving back to back with high relative and low c.m. momentum.

We now turn our attention to an 12C(e, e′pp) measurement probing a restricted part of phase space. The
JLab Hall-A 12C(e, e′pp) experiment of Refs. [3, 4], used an incident electron beam of 4.672 GeV and three
spectrometers. We consider the kinematic settings with ω = 0.865 GeV, Q2 = 2 GeV2, xB = 1.2 and
a median missing momentum pm = 0.55 GeV. Figure 9 shows the shapes of the simulated and measured
cos γ simulations. The proposed factorization for the A(e, e′pp) cross section accounts for the shape of the
measured cos γ distribution. We stress that the computed pair c.m. distributions (Table I) are the sole
input to the simulations.

V. FINAL STATE INTERACTIONS

In this section the impact of FSIs on the proposed factorization function of Eq. (38) is investigated.
In order to keep computing times reasonable we limit ourselves to some particular kinematic cases and
introduce an additional approximation. We start from Eq. (41) for the distorted momentum distribution

FDn1l1,n2l2
(~P12) and apply the zero-range approximation [36, 43] which amounts to setting ψα1

(~r1)ψα2
(~r2) ≈
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ψα1
(~R12)ψα2

(~R12) in Eq. (34). Consequently, we can write

FDn1l1,n2l2(~P12) = 4
∑

ml1ml2

∣∣∣
∫
d~R12e

−i ~P12 · ~R12F†FSI(
~R12, ~R12)ψn1l1ml1

(~R12)ψn2l2ml2
(~R12)

∣∣∣
2

. (43)

It is possible to derive a relativized version of this expression [43]

FDn1κ1,n2κ2
(~P12) =

∑

s1,s2,m1,m2

∣∣∣∣
∫
d~R12 e

i ~P12 · ~R12 ū(~k1, s1)ψn1κ1m1
(~R12)ū(~k2, s2)ψn2κ2m2

(~R12)FFSI(~R12, ~R12)

∣∣∣∣
2

. (44)

Here, u(~k, s) are positive-energy Dirac spinors and ψnκm are relativistic mean-field wave functions [44]
with quantum numbers (n, j = |κ|/2,m). We neglect the projections on the lower components of the
plane-wave Dirac spinors. The FSIs of the ejected pair with the remaining A − 2 spectators, encoded in
FFSI, can be computed in a relativistic multiple-scattering Glauber approximation (RMSGA) [45, 46]. As
the c.m. momentum is conserved in interactions among the two ejected nucleons, we discard those. This

approximation does not affect the shape of FDn1κ1,n2κ2
(~P12).

We include FSIs for the JLab data mining kinematics considered in Sec. IV. We have computed the
distorted c.m. momentum distribution of Eq. (44) for the kinematics that yields the most events in the

simulations of Sec. IV: |~q| = 1.4 GeV, |~p1| = 0.82|~q|, θ~p1,~q = 10◦. As in Sec. IV, ~k1 lies along the z-axis and
the ~q is located in the xz plane. The results of the FSI calculations are summarized in Figs. 10 and 11.

In Fig. 10 we compare the RMSGA c.m. momentum distributions FD(~P12,x) =
∑
n1κ1,n2κ2

FDn1κ1,n2κ2
(~P12,x)

and FD(~P12,y) with their respective plane-wave (no-FSI) limit. First, the FSIs are responsible for a sub-
stantial reduction of the cross sections: a factor of about 7 for carbon and about 30 in lead. The effects
of FSIs on the shape of FD(~P12), however, are rather modest. Gaussian fits to the FD(~P12,i=x,y) result in
widths which are less than 10% smaller than in the plane-wave limit. The effects of FSIs on the shape of
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FIG. 11. (Color online) The normalized opening angle distributions for A(e, e′pp) for 12C, 27Al, 56Fe and 208Pb in
the kinematics of Fig. 10.

the c.m. distributions in Fig. 10 can be qualitatively understood considering that the nucleons undergoing

FSIs are slowed down on average: (~p1, ~p2)
FSI−−→ ζ (~p1, ~p2) with 0 < ζ ≤ 1. It is straightforward to show that

for the adopted conventions this results in P12,x → ζP12,x − (1− ζ)p1,x, and P12,y → ζP12,y. This explains
the observed contraction and shift to the right in the P12,x distribution, and the contraction of the P12,y

distributions.
The effect of FSIs on the shape of the normalized opening angle distributions is studied in Fig. 11 for

four target nuclei. It is clear that they become even more forwardly peaked after including FSIs.

VI. SUMMARY

Summarizing, we have shown that in the plane-wave limit the factorization function for the exclusive SRC-
driven A(e, e′pN) reaction is the conditional c.m. distribution P2(P12|nl = 00) for pN pairs in a nodeless
relative state with a vanishing orbital momentum. We have illustrated that in a two-body cluster expansion
the correlated part of the momentum distribution originates mainly from correlation operators acting on IPM
pairs with (nl = 00) quantum numbers, supporting the assumptions underlying the proposed factorization of
the A(e, e′pN) reaction. Numerical calculations indicate that the P2(P12|nl = 00) has a wider distribution
than the unconditional P2(P12) one. An important implication of the proposed factorization is that the

mass dependence of the A(e, e′pp) and A(e, e′pn) cross section is predicted to be much softer than Z(Z−1)
2

and NZ respectively.
We have examined the robustness of the proposed factorization of the two-nucleon knockout cross sections

against kinematic cuts and FSIs. Both mechanisms modestly affect the shape of the c.m. distributions which
leads us to conclude that they can be accessed in A(e, e′pN) measurements. The FSIs bring about a mass-
dependent reduction of the cross sections which is of the order of 10 for carbon and 30 for lead.
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3.2.3 Supplementary material

Connecting the factorization function with the conditional pair c.m. momentum
distribution

In Sec. II of Sec. 3.2.2 the conditional c.m. momentum distribution P2(P12|nl = 00) is
derived in the LCA. The single-particle wave functions are coupled to nucleon pairs described
in function of their c.m. and relative coordinates. The c.m. momentum distribution P2(P12)
of Eq. (8) is then calculated using the Fourier transform of the TBD ρ2 of Eq. (4). Restricting
the contributions to P2(P12) of the SRC pairs with relative quantum numbers nl = 00 gives
the conditional c.m. momentum distribution P2(P12|nl = 00) of Eq. (17).

In Sec. III the reaction model describing the two-nucleon knockout process is outlined. It is
shown that the two-nucleon knockout cross section can be factorized into c.m. and relative
momentum of the initial nucleon pair. The factor containing the c.m. momentum ~P12 is
denoted the factorization function FD(~P12)n1l1,n2l2 (Eq. (41)).

In the limit of vanishing FSI, the factorization function FD and the conditional c.m. mo-
mentum distribution can be connected, their relation is given by Eq. (42) and reads,

P2(P12|nl = 00) =
1

A(A− 1)

3

(2π)3

∑

nαlαnβ lβ

∫
dΩP12F

D
nαlα,nβ lβ

(~P12) . (3.3)

This relation is proven by starting from the left and right hand side and connecting them
midway.

The conditional c.m. momentum probability distribution P2(P12|nl = 00) as defined by
Eqs. (15) and (17) of Sec. 3.2 reads,

P2(P12|nl = 00) =
2

π

∑

nlml

∑

ΛMΛ

δn 0δl 0P
nlmlΛMΛ
2 (P12) =

2

π

∑

ΛMΛ

P 000ΛMΛ
2 (P12) ,

with,

P 000ΛMΛ
2 (P12) =

2

A(A− 1)

∑

α<β

∑

NN ′

∑

SMSTMT

(
C000N ′ΛMΛSMSTMT
αβ

)†
C000NΛMΛSMSTMT
αβ

∫
dR′12R

′2
12

∫
dR12R

2
12jΛ(P12R

′
12)jΛ(P12R12)RN ′Λ(

√
2R′12)RNΛ(

√
2R12) , (3.4)

and

C000NΛMΛSMSTMT
αβ =

1√
2

[
1− (−1)S+T

]
〈1
2
tα

1

2
tβ|TMT 〉〈

1

2
σα

1

2
σβ|SMS〉

∑

LML

〈lαmlαlβmlβ |LML〉〈00NΛ;L|nαlαnβlβ;L〉SMB 〈LML|00ΛMΛ〉︸ ︷︷ ︸
δLML,ΛMΛ

.

The summation over spin S,MS and isospin T,MT of Eq. (3.4) is performed first. The spin
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and isospin quantum numbers only appear in the coefficients Cαβ.

∑

SMSTMT

(
C000N ′ΛMΛSMSTMT
αβ

)†
C000NΛMΛSMSTMT
αβ =

1

2

∑

ST

[
1− (−1)S+T

]2∑

MT

∣∣∣∣〈
1

2
tα

1

2
tβ|TMT 〉

∣∣∣∣
2∑

MS

∣∣∣∣〈
1

2
σα

1

2
σβ|SMS〉

∣∣∣∣
2

∣∣〈lαmlαlβmlβ |ΛMΛ〉
∣∣2 〈00N ′Λ; Λ|nαlαnβlβ; Λ〉∗SMB〈00NΛ; Λ|nαlαnβlβ; Λ〉SMB . (3.5)

The following summation over spin and isospin appearing in Eq. (3.5) can be simplified,

∑

ST

[
1− (−1)S+T

]2∑

MT

∣∣∣∣〈
1

2
tα

1

2
tβ|TMT 〉

∣∣∣∣
2∑

MS

∣∣∣∣〈
1

2
σα

1

2
σβ|SMS〉

∣∣∣∣
2

.

As we are dealing with two nucleons we have S, T ∈ {0, 1}. Only the terms where S and T
have opposite even-odd parity survive, that is S = 0, T = 1 and S = 1, T = 0,

∑

ST

[
1− (−1)S+T

]2∑

MT

∣∣∣∣〈
1

2
tα

1

2
tβ|TMT 〉

∣∣∣∣
2∑

MS

∣∣∣∣〈
1

2
σα

1

2
σβ|SMS〉

∣∣∣∣
2

= 4

∣∣∣∣〈
1

2
tα

1

2
tβ|00〉

∣∣∣∣
2 1∑

MS=−1
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1

2
σα

1

2
σβ|1MS〉

∣∣∣∣
2

+ 4
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1

2
σα

1

2
σβ|00〉

∣∣∣∣
2 1∑

MT=−1
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1

2
tα

1

2
tβ|1MT 〉

∣∣∣∣
2

= (1− δtαtβ)(1 + δσασβ) + (1− δσασβ)(1 + δtαtβ) = 2(1− δσασβδtαtβ) .

Eq. (3.5) then reads,

∑

SMSTMT

(
C000N ′ΛMΛSMSTMT
αβ

)†
C000NΛMΛSMSTMT
αβ = (1− δσασβδtαtβ)

∣∣〈lαmlαlβmlβ |ΛMΛ〉
∣∣2 〈00N ′Λ; Λ|nαlαnβlβ; Λ〉∗SMB〉〈00NΛ; Λ|nαlαnβlβ; Λ〉SMB . (3.6)

With Eq. (3.4) and Eq. (3.5) the conditional c.m. momentum distribution of P2(P12|nl = 00)
can be written as,

P2(P12|nl = 00) =
2

π

∑

ΛMΛ

P 000ΛMΛ
2 (P12)
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2

A(A− 1)

2

π
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2
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′
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√
2R12) . (3.7)

This expression is invariant under the interchange α↔ β allowing us to write the summation∑
α<β as 1

2

∑
α 6=β. The factor (1− δσα,σβδtα,tβ) ensures that the term with α = β is zero and

the restriction α 6= β in the summation can be dropped. With
∑

α,β

(1− δσα,σβδtα,tβ) =
∑

nαlαmlα
nβ lβmlβ

∑

σαtα
σβtβ

(1− δσα,σβδtα,tβ) = 12
∑

nαlαmlα
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,



Chapter 3. Two-nucleon knockout reactions and their connection to SRC physics 53

Eq. (3.7) can be written as,

P2(P12|nl = 00) =
2

π
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Starting from the right hand side of Eq. (3.3) the same expression is now derived, proving
that identity. The factorization function of Eq. (41) with vanishing FSI (FFSI ≡ 1) is given
by,

FD
nαlα,nβ lβ

(~P12) = 4
∑

mlα ,mlβ

∣∣∣
∑

NΛMΛ

∫
d~R12e
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2

.

Expanding the exponential using the plane wave expansion,

ei
~k ·~r = 4π

∑

l,ml

iljl(kr)Y
∗
lml

(Ωk)Ylml(Ωr) ,

and splitting the HO wave functions ψNΛMΛ
in their (real) radial RNΛ and angular YΛMΛ

part yields,

FD
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2

.

The integration over the solid angle ΩR12 gives δΛlδMΛ,ml , leading to,

FD
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(~P12) = 4(4π)2
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.

Expanding the modulus squared, the integration over the solid angle ΩP12 produces the
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result,
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Comparing the Eqs. (3.9) and (3.8) results in,

P2(P12|nl = 00) =
1
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3

(2π)3
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D
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This is identical to Eq. (3.3), proving the identity.

Note that the expression given by Eq. (3.9), or equivalently Eq. (3.8), can be simplified
further by making use of

∑
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3.3 Final-state interactions in two-nucleon knockout

cross sections

3.3.1 Introduction

The c.m. momentum distribution of SRC pairs is the main focus of the article outlined in
Sec. 3.2, published as Ref. [2]. The effect of final-state interactions (FSI) on the c.m. mo-
mentum distribution and the opening angle distribution of the SRC pairs is briefly discussed.
In the article of Ref. [6] presented in this section the description of final-state interaction
(FSI) in exclusive two-nucleon knockout reactions is discussed in more detail and additional
FSI processes are considered compared to Sec. 3.2. The difficulties regarding the practical
computation of the FSI are addressed as well.

Within the approximations used in our model, the inclusion of the FSI, describing the inter-
action of the outgoing nucleons with the recoiling nucleus, only affects the c.m. momentum
distribution. This means that the factorization of the cross section is preserved and the elec-
tron two-nucleon coupling can still be divided out in cross-section ratios. Charge-exchange
reactions are included in the description of the FSI and the effect on the cross-section ratios
and the shape of the c.m. momentum and the opening angle distribution is studied. The
mass dependence of the charge-exchange probabilities and the nuclear transparency is stud-
ied across the whole nuclear mass range. A simple geometric model is developed to gain
more insight into the nuclear transparency mass dependence. This geometric model allows
to set predictive bounds on the nuclear mass dependence.

The calculation of the cross section ratios for two-nucleon knockout reactions are time-
consuming due to the large kinematical phase space that has to be covered. In the supple-
mentary material of Sec. 3.3.3 the sampling of this high-dimensional phase space is described.

My contribution in the article presented here [6] consists of substantial contributions to the
text as well as producing the computer code, leading to the presented numerical results and
figures.
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3.3 Final-state interactions in two-nucleon knockout reactions

Camille Colle,∗ Wim Cosyn,† and Jan Ryckebusch‡

Department of Physics and Astronomy,

Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

(Dated: 7 March 2016)

Background: Exclusive two-nucleon knockout after electroexcitation of nuclei (A(e, e′NN) in brief) is

considered to be a primary source of information about short-range correlations (SRC) in nuclei. For a

proper interpretation of the data, final-state interactions (FSI) need to be theoretically controlled.

Purpose: Our goal is to quantify the role of FSI effects in exclusive A(e, e′pN) reactions for four target nuclei

representative for the whole mass region. Our focus is on processes that are SRC driven. We investigate the

role of FSI for two characteristic detector setups corresponding with a “small” and “large” coverage of the

available phase space.

Method: Use is made of a factorized expression for the A(e, e′pN) cross section that is proportional to

the two-body center-of-mass (c.m.) momentum distribution of close-proximity pairs. The A(e, e′pp) and

A(e, e′pn) reactions for the target nuclei 12C, 27Al, 56Fe and 208Pb are investigated. The elastic attenua-

tion mechanisms in the FSI are included using the relativistic multiple-scattering Glauber approximation

(RMSGA). Single-charge exchange (SCX) reactions are also included. We introduce the nuclear transparency

T pNA , defined as the ratio of exclusive (e, e′pN) cross sections on nuclei to those on “free” nucleon pairs,

as a measure for the aggregated effect of FSI in pN knockout reactions from nucleus A. A toy model is

introduced in order to gain a better understanding of the A dependence of T pNA .

Results: The transparency T pNA drops from 0.2 − 0.3 for 12C to 0.04 − 0.07 for 208Pb. For all considered

kinematics, the mass dependence of the T pNA can be captured by the power law T pNA ∝ A−λ with 0.4 . λ .
0.5. Apart from an overall reduction factor, we find that FSI only modestly affects the distinct features of

SRC-driven A(e, e′pN) which are dictated by the c.m. distribution of close-proximity pairs.

Conclusion: The SCX mechanisms represent a relatively small (order of a few percent) contribution of SRC-

driven A(e, e′pN) processes. The mass dependence of FSI effects in exclusive A(e, e′pN) can be captured in

a robust power law and is in agreement with the predictions obtained in a toy model.
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I. INTRODUCTION

Nuclear SRC are an essential ingredient of the dynamics of nuclei at large momenta and energies. The

short- and medium-range components of the nucleon-nucleon interaction induce beyond mean-field high-

momentum and high-density fluctuations in the nuclear medium, thereby giving rise to fat tails in the

nuclear momentum distributions [1–3]. The magnitude of nuclear SRC has been linked to plateaus in ratios

of cross sections of inclusive electron scattering off different nuclei [4–6], and to the size of the EMC effect

[7].

Nuclear SRC can be studied in exclusive two-nucleon knockout processes with hadronic and electroweak

probes. In appropriately selected kinematics, those reactions give access to the dynamics and isospin

composition of the initial nucleon pair. In the 1990s, high-resolution A(e, e′pp) measurements carried out

at MAMI [8, 9] and NIKHEF [10–12] could determine the transition to a specific final state of the residual

A−2 nucleus. When comparing to data for the 16O(e, e′pp) transition to the 0+ ground state of 14C, model

calculations [13–15] showed the clear dominance of SRC contributions to the cross section at low c.m. pair

momentum, where the initial pair is in a relative S-state. The EVA collaboration at Brookhaven National

Laboratory (BNL) measured the 12C(p, ppn) reaction [16] as a function of the initial neutron momentum.

For neutron momenta above the Fermi surface (∼ 220 MeV) the data showed a clear angular correlation

between the initial proton and neutron momenta with backward angles (> 90◦) dominating. For momenta

below the Fermi surface the angular correlation between the two nucleon momenta is almost random. This

picture was later confirmed by a 3He(e, e′pp) experiment performed in Jefferson Lab [17]. More recently,

12C(e, e′pN) [18, 19] and 4He(e, e′pN) [20] measurements (both at Jefferson Lab) provided proof that in

the probed kinematics about 20% of the nucleons in nuclei form correlated pairs. Of those, about 90% is

of the proton-neutron type [21], illustrating the dominance of tensor correlations in the nucleon momentum

region of 300-500 MeV/c. A feature that emerges from all those experimental investigations, is that SRC

pairs are mostly in a back-to-back configuration with a high relative and small c.m. momentum, whereby

small and large are defined relative to the Fermi momentum.

In this paper we focus on the effect of FSI in SRC-driven high-virtuality A(e, e′pN) cross sections. In

Sec. II, we discuss the approximations underlying the factorized form of the A(e, e′pN) cross section (detailed

in Ref. [22]) and how we implement the FSI. Using the factorized A(e, e′pN) cross-section expression, we

show in Sec. II C that cross-section ratios can be directly related to the ratios of the integrated distorted

two-body c.m. momentum distributions of close-proximity nucleon pairs. In Sec. III, we apply the developed

model to four different target nuclei (12C, 27Al, 56Fe, 208Pb) and two very different kinematics probing SRC

pairs. First, the kinematics of the A(e, e′pp) cross-section measurements with the CEBAF Large Acceptance

Spectrometer (CLAS) [21] covering a very large phase space. Second, the kinematics of an experimental

setup with a very restricted phase-space coverage [18]. We extract the nuclear transparencies for two-

nucleon knockout and compare them to single-particle knockout transparencies extracted from A(e, e′p)

measurements. We propose parameterizations for the mass dependence of the A(e, e′pN) transparencies in

the form of a power law and study its robustness. The opening-angle distribution for the initial correlated

nucleon pair is shown to be dominated by backward angles, with little modification after the inclusion of

FSI. A toy model that captures the essential features of elastic attenuation mechanisms in A(e, e′NN) is
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FIG. 1. (left) Sketch of the exclusive A(e, e′pN) reaction with all kinematic variables. (right) The A(e, e′pN) reaction

in the impulse- and spectator approximation.

proposed. This toy model allows us to gain a more qualitative understanding of the mass dependence of

the nuclear transparency. Conclusions are given in Sec. IV.

II. MODEL

A. Factorization of the A(e, e′pN) cross section

We consider exclusive electroinduced knockout of a correlated proton-nucleon (pN) pair from the target

nucleus A

e+A→ e′ + (A− 2)∗ + p+N . (1)

In this paper we solely deal with reactions whereby the residual (A− 2)∗ is left with little or no excitation

energy. This condition is essential for keeping the number of contributing reaction mechanisms under

control.

Let (~k1,~k2) and (~p1, ~p2) be the initial and final three-momenta of the nucleon pair. We label the struck

proton with “1” and the recoiling nucleon with “2”. In the impulse approximation, in which the exchanged

momentum is absorbed by a single nucleon, we have that ~p1 = ~k1+~q with ~q the transferred three-momentum

of the virtual photon (Fig. 1). We define the c.m. ~P12 and relative momentum ~k12 of the initial pair as,

~P12 = ~k1 + ~k2, ~k12 =
~k1 − ~k2

2
. (2)

The corresponding c.m. and relative coordinates are denoted by ~R12 and ~r12.

By selecting events with a large |~q | (large in comparison to the initial momenta (~k1,~k2) of the nucleon pair)

and requiring that one of the measured nucleons carries a significant fraction of the exchanged momentum

|~q |, the contribution from the exchange term in which nucleon “2” absorbs the photon can be made negligible.

Indeed, above the Fermi momentum, the ~k12 distribution of the pairs is strongly decreasing with increasing

|~k12| [22, 23]. This makes it highly unlikely that the fast nucleon in the final state is not the one that

absorbed the virtual photon.

As outlined in Refs. [22, 24], in kinematics probing SRC pairs, it is possible to factorize the A(e, e′pN)

cross section in a product of a function depending on the relative momentum ~k12, and a part depending on
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the c.m. momentum ~P12 of the initial pN pair

d8σ(e, e′pN)

d2Ωke′d
3~p1d3~p2

=
MAMA−2
EAEA−2

1

(2π)3
frecσepN (~k12)F pN,DA (~P12) , (3)

with Ωke′ the solid angle of the scattered electron, frec the recoil factor,

frec =

∣∣∣1− Ee′
E2

~p2·~ke′
|~ke′ |2

∣∣∣
∣∣∣1 + Ee′

EA−2

~P ·~ke′
|~ke′ |2

∣∣∣
, (4)

and MA, EA (MA−2,EA−2) the rest mass and energy of the initial (recoiling A − 2) nucleus. σepN (~k12)

encodes the virtual-photon coupling to a correlated pN pair with relative momentum ~k12. F pN,DA (~P12) is the

distorted c.m. momentum distribution of the close-proximity pair that absorbs the photon. The factorized

cross-section expression of Eq. (3) hinges on the validity of the zero-range approximation (ZRA), which

amounts to putting the relative pair coordinate ~r12 to zero (Fig. 2). Thereby, the amplitude for photo-

absorption on a close-proximity pair that involves the product of two IPM wave functions ψα(~R12 + ~r12
2 )

and ψβ(~R12 − ~r12
2 ) and a two-body operator Ô[2](~R12, ~r12) (left panel of Fig. 2) is written as a product of a

one-body operator Ô[1] evaluated at the c.m. coordinate ~R12 and a correlation operator ̂̀that depends only

on the relative coordinate ~r12 (right panel of Fig. 2). In nuclei, ̂̀has a complicated spin and isospin structure.

The ZRA acts as a projection operator on the short-range components of the wave function corresponding

with the relative motion of the pair. Throughout this paper the factorized cross section of Eq. (3) is used.

The validity of this expression (3) has been experimentally verified. The proposed factorization of the cross

section in terms of F pp,DA was first confirmed in 12C(e, e′pp) measurements back in the late 1990s [9]. An

effort is on its way to extract the width of the F pp,DA distribution in A(e, e′pp) measurements on 12C, 27Al,

56Fe and 208Pb [25, 26], and compare them with the theoretical predictions [22]. Another striking prediction

of the expression (3) is that the A(e, e′pN) cross section is proportional to the number of close-proximity

pN pairs in the target nucleus. As a result, it can be inferred that the A dependence of the A(e, e′pp)

cross section is much softer than naive FSI-corrected Z(Z − 1)/2 counting. Recent measurements of the

A(e, e′pp)/12C(e, e′pp) ratios are completely in line with those predictions [27]. The measured and predicted

208Pb/12C (e, e′pp) cross section ratio, for example, is a mere five whereas the naive prediction is over two

hundred.

B. Final-state interactions

We include two FSI mechanisms in our model. First, attenuation (ATT) of the outgoing nucleons upon

traversing the recoiling nucleus. Second, single-charge exchange (SCX), i.e. an outgoing proton (neutron)

rescattering into a neutron (proton). The attenuation effect is calculated in the relativistic multiple-

scattering Glauber approximation (RMSGA) [28, 29]. The RMSGA is based on high-energy diffractive

scattering. It uses an eikonal form for the rescattering amplitude dominated by the central term, neglecting

spin-dependent attenuation. The RMSGA is fully parameterized in terms of nucleon-nucleon scattering

data. We systematically use “FSI” upon referring to the combined effect of attenuation and single-charge

exchange. Throughout this paper, we refer to A(e, e′pN) results that ignore the effect of FSI as “ZRA”

results.
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FIG. 2. A sketch of the zero-range approximation (ZRA) which underlies the factorized expression of the exclusive

A(e, e′pN) cross section.

The distorted c.m. momentum distribution F pN,DA (~P12) in Eq. (3) is defined in the following way

F pN,DA (~P12) =
∑

α,β

F pN,D;αβ
A (~P12)

=
∑

s1,s2
αβ

∣∣∣∣
∫
d~R12 e

i ~P12·~R12 ū(~k1, s1)ψα(~R12)ū(~k2, s2)ψβ(~R12)FRMSGA(~R12)

∣∣∣∣
2

. (5)

Here, u(~k, s) is the positive-energy free Dirac spinor and (ψα, ψβ) are relativistic mean-field wave functions

with IPM quantum numbers (α, β) computed in the Serot-Walecka model [30]. The contribution from

a specific IPM nucleon pair with quantum numbers (α, β) is denoted as F pN,D;αβ
A (~P12). We consider

experimental conditions whereby the precise state of the residual A− 2 nucleus is not resolved. As a result,

the sum over (α, β) extends over all occupied pN pairs. In the practical implementation of Eq. (5), we

neglect the projection on the lower components of the plane-wave Dirac spinors. The rescattering of the

ejected pair with the remaining A − 2 spectators, encoded in the standard Glauber phase FRMSGA, is

computed in the RMSGA [28]. The interactions among the two ejected nucleons do not affect F pN,DA (~P12)

due to c.m. momentum conservation, and they are effectively included in σepN (~k12). The implementation

of reinteractions between the ejected nucleons is not addressed in this article, as σepN (~k12) drops out in the

cross section ratios defined in Sec. II C.

The SCX mechanisms are treated in a semi-classical manner. The joint probability for the struck proton,

labelled “1”, undergoing SCX while the recoiling nucleon of the SRC pair, labelled “2”, is not undergoing

any SCX, is given by

P
[1]2,pN
CX,A =

∑

α,β

∫
d3 ~R12 P

[α]β
CX (~R12)

[
1− Pα[β]

CX (~R12)
]
F pN,D;αβ
A (~R12)

∫
d3 ~R12 F

pN,D;αβ
A (~R12)

. (6)

As in Eq. (5), the sum over (α, β) extends over all the occupied pN pairs. Further, the square bracket

[1] identifies the nucleon subject to SCX. In Eq. (6), the probability that an initial nucleon with quantum

numbers α (with correlated partner with quantum numbers β) has undergone a SCX after a hard interaction

at c.m. coordinate ~R12 is given by P
[α]β
CX (~R12), and is weighted with the RMSGA-corrected probability

F pN,D;αβ
A (~R12) of finding the two nucleons at c.m. coordinate ~R12. Similar expressions to Eq. (6) can be
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written for the situations where only the recoil nucleon “2” is subject to SCX (P
1[2],pN
CX,A ), both nucleons in the

pair are subject to SCX (P
[12],pN
CX,A ) or none of the nucleons in the pair are subject to SCX (P 12,pN

CX,A ). In those

situations, the factor P
[α]β
CX (~R12)

[
1− Pα[β]

CX (~R12)
]

in the numerator of Eq. (6), is replaced by respectively

the factor
[
1− P [α]β

CX (~R12)
]
P
α[β]
CX (R12), P

[α]β
CX (~R12)P

α[β]
CX (R12), and [1 − P [α]β

CX (~R12)][1 − Pα[β]
CX (~R12)]. One

has P
[1]2,pN
CX,A + P

1[2],pN
CX,A + P

[12],pN
CX,A + P 12,pN

CX,A = 1.

The SCX probabilities P
[α]β
CX (~R12) are calculated in a semi-classical approximation. Thereby, the prob-

ability of charge-exchange rescattering for a nucleon with bound-state IPM quantum numbers α that is

brought in a continuum state at the coordinate ~r is modelled by

P
[α]β
CX (~r ) = 1− exp

[
−σCX(s)

∫ +∞

z

dz′ραβA−2(z′)

]
. (7)

The z-axis is chosen along the direction of propagation of the nucleon undergoing SCX ([α]). The ραβA−2 is

the one-body density of the recoiling A − 2 nucleus that contributes to the SCX reaction. For an ejected

proton (neutron) only the neutron (proton) density of the recoiling nucleus affects SCX reactions. The

parameter σCX(s) in Eq. (7) can be extracted from elastic proton-neutron scattering data [31], with s the

total c.m. energy squared of the two nucleons involved in the SCX. In Ref. [32], it was shown that σCX(s)

obeys the relation

σCX(s) = 0.424
s

s800
fm2 , (8)

where s800 is the c.m. energy squared for a collision between a neutron with 800 MeV kinetic energy and

a stationary proton. The value 0.424 fm2 is obtained by integrating the elastic pn differential cross section

with s=s800 at backward scattering angles dominated by charge-exchange [31]. The parameterization of

Eq. (8) is valid for lab frame momenta in the interval [0.1, 100] GeV/c.

In Eq. (6), the weight factor F pN,D;αβ
A (~R12) gives the attenuation corrected probability to find a pair

(α, β) at a coordinate ~R12

F pN,D;αβ
A (~R12) = lim

~r12→~0
|ψα(~R12 +

~r12
2

)|2|ψβ(~R12 −
~r12
2

)|2|FRMSGA(~R12 ±
~r12
2

)|2 . (9)

Note that F pN,D;αβ
A (~R12) is the Fourier transform of F pN,D;αβ

A (~P12) appearing in Eq. (3). In the limit of

vanishing FSI (FRMSGA ≡ 1) Eq. (9) reduces to the probability of finding two IPM nucleons at the same

coordinate ~R12.

The flow diagram in Fig. 3 shows an overview of the different FSI mechanisms that are included in the

A(e, e′pN) reactions considered in this article. The initial plane-wave (vanishing FSI) ZRA A(e, e′pN) cross

section (σpNA ) is positioned at the center. The partner nucleon can be a proton (σppA ) or a neutron (σpnA ). The

observable cross sections are denoted with σ̃ppA and σ̃pnA . The sources and sinks between the different σ̃NNA

through the SCX mechanism are denoted with the solid arrows. The dashed arrows denote the RMSGA

attenuation contribution, quantified by means of the nuclear transparency T pNA , defined as the ratio of the

A(e, e′pN) cross section with and without the RMSGA attenuations (see Eq. (14)). It is a measure for

attenuation caused by the nuclear medium. The different contributions to the final cross sections σ̃ppA , σ̃pnA

can be visually deduced by following all possible paths from σpNA to σ̃ppA or σ̃pnA in Fig. (3). Because we

only account for single-charge exchange, the SCX arrows can only be used at most once for each particle
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FIG. 3. (Color online) A flow diagram illustrating the different FSI effects included in our model calculations. The

center of the diagram (σpNA ) denotes the plane-wave ZRA A(e, e′pN) cross section. The σ̃ppA and σ̃pnA correspond with

the observed A(e, e′pp) and A(e, e′pn) cross sections. The solid arrows denote SCX reactions. The dashed arrows

denote the attenuation (ATT).

in every path, meaning P
1[2],pN
CX,A P

[1]2,pN
CX,A is allowed but P

[1]2,pN
CX,A P

[1]2,pN
CX,A or P

1[2],pN
CX,A P

1[2],pN
CX,A are not. The

missing SCX arrows (from and between σnnA , σnpA ) are neglected as we assume that the struck nucleon is a

proton. We argue that this is a valid approximation. First, the photon-neutron coupling is a fraction of the

photon-proton one. Second, an SCX reaction is a necessary condition to end up with a leading proton in

the final state. We find that those SCX probabilities are very small (Sec. III).

C. A(e, e′pN) cross-section ratios

Most often, it is extremely challenging to measure A(e, e′pN) cross sections. A lot of information regarding

nuclear SRC has been obtained by measuring cross-section rations over extended ranges of the phase space

[4, 5, 21, 25, 27]. Using the factorized form of the differential cross section from Eq. (3), one can investigate

A(e, e′pN) cross-section ratios relative to 12C. Let R̃pNA (RpNA ) be the cross-section ratios with (without)

the inclusion of FSI,

R̃pNA =
σ̃pNA
σ̃pN12C

≈
∫

d2Ωke′d
3~k12σepN (~k12)

∫
d3 ~P12F

pN,D
A (~P12)

∫
d2Ωke′d

3~k12σepN (~k12)
∫

d3 ~P12F
pN,D
12C (~P12)

=

∫
d3 ~P12F

pN,D
A (~P12)∫

d3 ~P12F
pN,D
12C (~P12)

. (10)

The σ̃pNA denotes the FSI-corrected A(e, e′pN) cross section. The cross-section ratios are independent of

the information contained in the photon-nucleon coupling σepN (~k12). Therefore, we use cross-section ratios

to quantify the effect of SRC as those are less model dependent.

In the limit of vanishing FSI the integrated c.m. momentum distribution
∫

d3 ~P12 F
pN,D
A (~P12) is propor-

tional to the amount of SRC-susceptible pN pairs. The relative amount of SRC pairs for nucleus A relative

to 12C is then given by RpN = σpNA /σpN12C, where σpNA denotes the A(e, e′pN) cross section in the limit of

vanishing FSI. It is well established that the tensor correlation [3, 19] induces a heavy dominance of SRC pn
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pairs over SRC pp pairs. This dominance is not automatically generated in the ZRA without introducing

additional assumptions with regard to the dynamical mechanisms underlying the SRC. The pn- over pp-pair

dominance can be included for nucleus A using the measured pn/pp pair ratio (18 ± 5) in 12C [19], in the

following way

σpnA
σppA

=
σpnA
σpn12C

σpn12C

σpp12C

σpp12C

σppA
≈ σpnA
σpn12C

#pn-pairs
(
12C
)

2 ·#pp-pairs (12C)

σpp12C

σppA
≈ σpnA
σpn12C

(
18± 5

2

)
σpp12C

σppA
. (11)

The exchanged photon can couple to both protons in a pp pair and to one in a pn pair leading to

the factor 2 in the denominator of Eq. (11). The expressions for the FSI-corrected cross-section ratios,

R̃pN = σ̃pNA /σ̃pN12C, are then given by (see Fig. 3)

R̃ppA =
σ̃ppA
σ̃pp12C

=
P 12,pp
CX,AT

pp
A σppA + P

1[2],pn
CX,A T p∗A σpnA

P 12,pp
CX12C

T pp12Cσ
pp
12C + P

1[2],pn

CX12C
T p∗12Cσ

pn
12C

=
P 12,pp
CX,AT

pp
A RppA + P

1[2],pn
CX,A T p∗A

σpn
A

σpp
12C

P 12,pp
CX12C

T pp12C + P
1[2],pn

CX12C
T p∗12C

σpn
12C

σpp
12C

=
P 12,pp
CX,AT

pp
A RppA + P

1[2],pn
CX,A T p∗A RpnA

18±5
2

P 12,pp
CX12C

T pp12C + P
1[2],pn

CX12C
T p∗12C

18±5
2

. (12)

Here, σ̃pNA is the FSI corrected A(e, e′pN) cross section. The first term in the numerator and denominator

consists of the A(e, e′pp) cross section (σppA ) corrected for attenuation (T ppA ) given that no SCX occurred

(P 12,pp
CX,A). The second term is the contribution from an initial A(e, e′pn) (σpnA ) multiplied by the attenuation

factor (T p∗A ) given that the recoiling partner changes to a proton (P
1[2],pn
CX,A ). These two terms correspond

with the two possible paths to σ̃ppA in Fig. 3 :

σpNA → σppA
P 12,pp

CX,A T
pp
A−−−−−−→ σ̃ppA and, σpNA → σpnA

P
1[2],pn
CX,A Tp∗

A−−−−−−−→ σ̃ppA . (13)

In the ZRA, the nuclear A(e, e′pN) transparency T pNA can be calculated as,

T pNA ≈
∫

d3 ~P12 F
pN,D
A (~P12)∫

d3 ~P12 F
pN
A (~P12)

. (14)

Here, F pNA (~P12) is the c.m. momentum distribution in the limit of vanishing attenuation (FRMSGA ≡ 1 in

Eq. (5)). We stress that the transparency depends on the sampled phase space, i.e. the integration volume

of ~P12 in Eq. (14).

In estimating the attenuation effect for the SCX contribution we use the averaged transparency T p∗A =

1
2 (T ppA +T pnA ). The reason is that in our model we have no information about the time ordering of the SCX

and attenuation mechanisms. Therefore, starting from initial pp knockout followed by p→ n SCX, one can

adopt the averaged attenuation
Tpn
A +Tpp

A

2 . Note that the difference between T ppA and T pnA is rather small for

the kinematics addressed in this paper (2% for 12C and about 20% for 208Pb).

For the A(e, e′pn) cross-section ratios we get,

R̃pnA =
σ̃pnA
σ̃pn12C

=
P 12,pn
CX,AT

pn
A σpnA + P

1[2],pp
CX,A T p∗A σppA

P 12,pn
CX12C

T pn12Cσ
pn
12C + P

1[2],pp

CX12C
T p∗12Cσ

pp
12C

=
P 12,pn
CX,AT

pn
A RpnA + P

1[2],pp
CX,A T p∗A RppA

2
18±5

P 12,pn
CX12C

T pn12C + P
1[2],pp

CX12C
T p∗12C

2
18±5

. (15)

As in Eq. (12) each term can be identified with a certain path to σ̃pnA in Fig. 3. The experimental values

for R̃pnA are not known if the outgoing neutrons are not detected. In kinematics tuned so that the A(e, e′p)
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signal is dominated by A(e, e′pN) events it is possible to deduce R̃pnA from the A(e, e′p) cross section ratios

(R̃pA) measured for the same kinematical settings

R̃pA =
σ̃pA
σ̃p12C

≈ 2σ̃ppA + σ̃pnA
2σ̃pp12C + σ̃pn12C

=
2R̃ppA + R̃pnA R̃

pn
pp
12C

2 + R̃
pn
pp
12C

. (16)

The 12C(e, e′pn) over 12C(e, e′pp) cross-section ratio R̃
pn
pp
12C can be extracted in the following way

R̃
pn
pp
12C =

σ̃pn12C

σ̃pp12C

=
P 12,pn
CX12C

T pn12Cσ
pn
12C + P

1[2],pp

CX12C
T p∗12Cσ

pp
12C

P 12,pp
CX12C

T pp12Cσ
pp
12C + P

1[2],pn

CX12C
T p∗12Cσ

pn
12C

=
P 12,pn
CX12C

T pn12C
18±5

2 + P
1[2],pp

CX12C
T p∗12C

P 12,pp
CX12C

T pp12C + P
1[2],pn

CX12C
T p∗12C

18±5
2

. (17)

Hence from Eq. (16),

R̃pnA =
1

R̃
pn
pp
12C

[
R̃pA

(
2 + R̃

pn
pp
12C

)
− 2R̃ppA

]
. (18)

The relations for R̃ppA and R̃pnA can be inverted to extract the FSI-uncorrected cross section ratios (which

are proportional to the ratios of SRC prone pairs) RppA , RpnA from the measured values for R̃pp and R̃pn [27].

III. RESULTS

In this section we present the results of the numerical A(e, e′pN) calculations for four representative target

nuclei and two representative but distinct kinematic settings. First, we apply the formalism developed in the

previous section to the A(e, e′pN) reaction in the kinematics covered by the Jefferson Lab CLAS detector

[21]. The latter is a “4π” detector, which results in a very large phase-space coverage. We systematically

refer to this kinematics as “KinB”. Kinematics approaching a “4π” layout pose challenges for the calculations

and require dedicated sampling techniques that are outlined below. After the discussion of the “4π” KinB

results we present two-nucleon knockout calculations in kinematics in very narrow solid angles for all detected

particles (coined “KinA”).

In dealing with the KinB situation, we define a reference frame with the z-axis along the initial momentum

~k1 of the proton and the exchanged photon-momentum ~q in the x− z plane. A two-nucleon knockout event

is uniquely characterized by the set of 6 kinematical variables {Q2 ≡ |~q |2 − ω2, xB = Q2

2mNω
, θq, ~P12}. Here,

θq is the direction of ~q relative to the z axis.

Upon numerically computing the distorted c.m. momentum distribution of Eq. (5), we generate phase

space samples by drawing (xB ,Q2) from the experimentally measured (xB , Q
2) distribution [25]. We draw

the θq and the ~P12 uniformly from the relevant ranges. In order to guarantee that the virtual photon

primarily probes correlated pairs a number of kinematic constraints are imposed

θ~p1,~q ≤ 25◦ ; 0.62 <
|~p1|
|~q| < 0.96 ; xB ≥ 1.2; (19)

|~k1| ≥ 300 MeV; |~p2| ≥ 350 MeV . (20)

The first two cuts select events where the virtual photon has mainly interacted with the struck (leading)

proton. The xB ≥ 1.2 cut selects events with a high |~q| and relatively low ω, suppressing for example

pion production through intermediate ∆ production. The last two cuts impose high-momentum conditions

(larger than the Fermi momentum) for the initial nucleon pair.
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FIG. 4. (Color online) (Top) A schematic representation of the sampling procedure adopted in the A(e, e′pN)

calculations in kinematics covering a large phase space. The gray cubes are ~P12 bins. The black circles are those

points in ~P12 space for which A(e, e′pN) calculations with vanishing FSI (FRMSGA ≡ 1) are done. The red dots

represent the sampled points for which the RMSGA A(e, e′pN) calculations are performed. The sampling weight

of each bin is the bin-averaged c.m. momentum distribution F
pN
A (~P12) indicated by the white bars. The resulting

bin-averaged c.m. momentum distribution including FSI is indicated by the red bars. (Bottom) The convergence as

defined in Eq. (22) and the transparency T ppA of Eq. (14) as a function of the sample size Ns for (e, e′pp) from 12C,

27Al, 56Fe and 208Pb in the kinematics defined by Eq. (20).

Sampling over the complete {xB ,Q2,θq,~P12} space is computationally very demanding in the RMSGA

calculations. Therefore, we use stratified sampling on the binned plane-wave result F pNA (~P12) (FRMSGA ≡ 1),

to generate the events in phase space (see Fig. 4 for an illustration). Thereby, after calculating F pNA (~P12)

for a large number of events, we bin the events in the ~P12 space. Next, we sample phase-space events from

the bins using the bin-averaged value F
pN

A (~P12) of F pNA (~P12) as bin weights. We then include the effect of

attenuation by calculating F pN,DA (~P12) in the RMSGA, for the sampled phase-space events. It is assumed
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FIG. 5. (Color online) The P12,x,P12,y,P12,z dependence of the c.m. momentum distribution F pNA (~P12) (ZRA in the

plane-wave limit of the ejected nucleons) and F pN,DA (~P12) (including elastic attenuation of the ejected nucleons) for

12C(e, e′pp) (top) and 12C(e, e′pn) (bottom) in KinB kinematics. The solid lines, obtained in the ZRA are multiplied

with the nuclear transparency for 12C (Table I).

that the bin averaged F
pN,D

A (~P12) of the function F pN,DA (~P12) of the sampled events is representative for

the real bin average. Using this procedure, the integrals in Eq. (10) are determined in the following way:

∫
d3 ~P12F

pN,D
A (~P12) ≈

V~P12

Ns

∑

n∈bins
F
pN,D

A,n (~P12)Nn , (21)

with Nn the number of events in the n-th bin, Ns the total number of phase-space events and V~P12
the

considered phase-space volume in ~P12.

Fig. 4 displays the convergence of the plane-wave integrated c.m. distribution, defined as,

[∫
d3 ~P12F

pN
A (~P12)

]
Ns[∫

d3 ~P12F
pN
A (~P12)

]
Ns=104

, (22)

and the nuclear transparency T ppA (Eq. (14)) as a function of the number of sampled events Ns. The

convergence at a 1000 samples is between 94% and 97% for all nuclei. We perform the RMSGA calculations

for this sample size. From Fig. 4 it is clear that the nuclear transparency is almost independent of the

sample size. This indicates that the ZRA and RMSGA (≡ZRA+RMSGA) have almost identical convergence

behavior as a function of the sample size Ns.

Figures 5 and 6 show the computed c.m. distribution for A(e, e′pp) and A(e, e′pn). Both undistorted

(ZRA, F pN (~P12)) and distorted (RMSGA, F pN,D(~P12)) results are shown. It is clear that for all target nuclei

considered, attenuation effects on the ejected nucleons marginally affect the shape of the c.m. momentum

distribution. Note that the shape of the c.m. momentum distribution is fairly similar for all four nuclei

considered. This illustrates that SRC are connected with the local and “universal” short-distance behavior

of nucleon pairs [3].
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FIG. 6. (Color online) The c.m. momentum distribution in the ZRA F
pN,(D)
A (~P12) with and without RMSGA

attenuation corrections for A(e, e′pp) (left) and A(e, e′pn) (right) in KinB kinematics. As in Fig. 5 the ZRA results

are multiplied with the corresponding T pNA (see Table I).

FIG. 7. (Color online) The normalized θ12 distributions for A(e, e′pp) (top) and A(e, e′pn) (bottom) in KinB

kinematics.

The opening angle θ12 is defined as the angle between the two initial nucleon momenta, cos θ12 =(
~k1 · ~k2

)
/
(
|~k1||~k2|

)
. Nucleon pairs susceptible to SRC have a high relative momentum and a small c.m

momentum, reminiscent of “back-to-back” motion. This causes the opening-angle distribution of SRC pairs

to be biased towards backward angles. Figure 7 displays the normalized θ12 distributions as they can be ex-

tracted from the undistorted and distorted distributions F pN (~P12) and F pN,D(~P12) for the different nuclei.

The inclusion of elastic attenuation mechanisms as computed in the RMSGA framework, has a relatively

small effect on the opening-angle distribution. A slight tendency to effectively increase the contributions of

the cos θ12 ≈ −1 events is observed.

Charge-exchange reactions in the final state will mix the c.m. momentum distribution and the opening-

angle distribution of the initial pp- and pn-pairs. For example initial pp-pairs, with a c.m. momentum

distribution F pp,DA (~P12), can change into pn-pairs, contaminating F pn,DA (~P12) and vice versa. From Figs. 5
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red ones (right) include RMSGA attenuation.

RppA T ppA R̃ppA RpnA T pnA R̃pnA (T pA)2

12C 1.00 0.280 1.00 1.00 0.286 1.00 0.26

27Al 2.89 0.186 1.91+0.01
−0.01 2.52 0.186 1.65+0.01

−0.01 −
56Fe 5.89 0.138 2.85+0.01

−0.01 4.82 0.150 2.49+0.01
−0.01 0.10

208Pb 17.44 0.073 4.96+0.11
−0.14 18.80 0.093 6.00+0.01

−0.01 0.05

TABLE I. The numerical results for the cross-section ratios RpNA (ZRA) and the corresponding transparencies (Eq. 14)

calculated with the RMSGA. R̃pNA are the cross section ratios corrected for FSI (RMSGA and SCX). For vanishing

SCX probabilities R̃pNA is equal to RpNA T pNA /T pN12C
. T pA is the measured A(e, e′p) transparency [29].

to 7 it is clear that throughout the mass table the A(e, e′pp) and A(e, e′pn) c.m. momentum distributions as

well as the opening angle distributions are very similar. The effect of SCX on the shape of these distributions

is close to negligible. The SCX probabilities calculated in the ZRA and ZRA+RMSGA (Eq. 6) are displayed

in Fig. 8. The RMSGA clearly diminishes the SCX probabilities. This can be understood in the following

way: the events most susceptible to SCX reactions are those whereby the ejected nucleon pair traverses

large distances in the recoiling nucleus. These events are most suppressed by the attenuation, causing the

SCX probabilities to decrease.

Table I lists the cross-section ratios RpNA calculated in the ZRA. These are approximately equal to

the SRC pair ratios. The nuclear transparencies T pNA calculated in the RMSGA (Eq. (14)) and the FSI

(RMSGA+SCX) corrected cross section ratios R̃pNA are listed as well. The RMSGA attenuates the cross

sections significantly, ranging from a factor of four for 12C to fourteen for 208Pb. The inclusion of SCX has

a very modest effect on the cross section ratios R̃pNA , the largest effect is approximately 8% for R̃pp208Pb.

The mass dependence of the calculated transparencies for the “4π” kinematics KinB follow a power law
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(T pNA ∝ Aλ) and are displayed in Fig. 9. Up to now we concentrated on the kinematics accessed in the

experiment of Ref. [21].

We test the robustness of our methodology by applying it to the kinematics accessed in the 12C(e, e′pp)

measurements of Ref. [18], denoted KinA. It corresponds with a very selective phase space whereby the

scattered electron and leading proton are detected with two high resolution spectrometers at the fixed

central angles 19.5◦ (electron) and -35.8◦ (leading proton) relative to the incoming electron beam. The

angular acceptance is ±0.03 mrad (±0.06 mrad) in the horizontal (vertical) plane. The initial (final)

electron momentum is fixed at 4.627 GeV/c (3.724 GeV/c). The leading proton momentum is 1.42 ± 4%

GeV/c. The recoiling proton is detected at the central angle -99◦ with an angular acceptance of 96 msr.

These kinematics are finely tuned and optimized to select knockout reactions of initial back-to-back pairs.

For example, more than 80% of the available phase space has opening angle cos θ12 < −0.9.

The power-law dependencies of the T pNA transparencies in KinA and KinB kinematics are very similar and

are included in Fig. 9. We find T ppA ∝ A−0.46±0.02 (KinB), T ppA ∝ A−0.49±0.06 (KinA), T pnA ∝ A−0.38±0.03

(KinB) and T pnA ∝ A−0.42±0.05 (KinA). This indicates that the mass dependence of the transparency is ro-

bust. The absolute value of the KinA transparencies is lower by approximately a factor of 2 compared to the

KinB results. Given the small phase space of KinA we cannot make a detailed study of the c.m. momentum

distribution F
pN,(D)
A and the opening-angle distribution, as was done for KinB. Indeed, KinA kinematics

only covers restricted ranges in ~P12 and cos θ12.

Next, we outline an alternative method to account for the mass dependence of T pNA . The transparency

T pA of A(e, e′p) processes can be interpreted as the probability of a single proton leaving the nucleus after

virtual photon excitation. Recent measurements [25] have confirmed that the A dependence of the T pA

can be captured by the power-law A−0.33 [33] . One could naively expect that T ppA ≈ T pAT
p
A ≈ A−0.66.

Upon squaring the T pA one assumes that the two protons are independent. This is in obvious contradiction

with the ZRA picture for SRC-driven two-nucleon knockout reaction where the nucleon pair is maximally

correlated: finding one nucleon at the spatial coordinate ~R12 fixes the second nucleon’s spatial coordinate.

To obtain a deeper and more intuitive understanding of the A dependence of T pNA we have developed a toy

model detailed in Appendix A. Thereby the nucleus is treated as a uniform sphere with radius R = 1.2A−
1
3

fm and density ρ = A
4/3πR3 = 0.138 fm−3. We calculate the transparencies using a semi-classical approach

analogous to the method used to compute the SCX probabilities. The attenuation is derived using the

scattering probabilities as in Eq. (7), where the scattering cross section is treated as a model parameter. We

derive a range λ ∈ [−0.37,−0.78] for the exponent λ in T pNA ∝ Aλ. This range is established by varying two

parameters: (1) the nucleon-nucleus cross section describing the attenuation, (2) the θ12 distribution for the

nucleon pair is varied from a uniform distribution (no angular correlation) to a back-to-back delta function

δ(θ12 − π). The exponents derived involving the full calculations (Fig. 9) are well in agreement with the

toy model. The toy model predicts that for increasingly backward peaked θ12 distributions the exponent

λ becomes more negative. The toy model also explains why the T pNA diminishes as one increasingly selects

back-to-back nucleons.
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FIG. 9. (Color online) Mass dependence of the two-nucleon knockout transparency calculated according to Eq.
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kinematics accessed in Ref. [21] covering a large phase space. KinA are the transparencies calculated for A(e, e′pN)
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IV. SUMMARY

We have studied the impact of final-state interactions in SRC-driven exclusive A(e, e′pN) processes.

Attenuation through elastic and soft inelastic rescattering as well as single-charge exchange processes are

included in the description of the FSI. We applied our model to two very different kinematics probing SRC

pairs and four target nuclei from carbon to lead. It is shown that the inclusion of FSI has a limited effect on

the extracted shapes of the c.m. momentum and opening-angle distributions of the correlated nucleon pair.

The cross section, however, is significantly attenuated by the FSI. The absolute values of the transparencies

depend on the kinematics and we find T pNA ≈ 0.2 − 0.3 for a light nucleus like 12C and T pNA ≈ 0.04 − 0.07

for a heavy nucleus like 208Pb. The mass dependence of the nuclear transparency is more robust. We

find T ppA ∝ A−0.46±0.02 and T pnA ∝ A−0.38±0.03 in “4π” kinematics. For the highly selective kinematics, that

exclusively probes back-to-back nucleons, we find T ppA ∝ A−0.49±0.06 and T pnA ∝ A−0.42±0.05. Both are softer

than one would expect from a doubling of the power found for single-nucleon knockout (T pA ∝ A−0.33). The

values for the exponent λ in the power-law dependence of T pNA ∝ Aλ are tested against the results of a toy

model which allows us to set bounds on values for λ. We find the calculated values to be well within these

bounds, λ ∈ [−0.37,−0.78].

It is well known that exclusive A(e, e′p) reactions, populating low-lying states in the residual (A − 1)∗

nucleus, are proportional to the FSI corrected single-particle momentum distributions for specific hole states.
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Along similar lines, the SRC-driven A(e, e′pN) cross section is proportional to the c.m. distribution of close-

proximity pairs. We find that the FSI only modestly affect the shape of the c.m. distribution, with the

width of the distribution barely changing. In essence, to a reasonable degree of accuracy, the aggregated

effect of FSI for exclusive A(e, e′pN) processes is a sizeable reduction of the plane-wave cross sections.

This is a remarkable result that could help to quantify the effect of two-nucleon knockout contributions to

quasi-elastic neutrino-nucleus and anti-neutrino nucleus responses [34].
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Appendix A: Qualitative model for the mass dependence of nuclear transparencies

In order to gain a qualitative understanding of the mass dependence of the transparency in knockout reac-

tions we develop a toy model. In Sec. A 1 we introduce several scenarios each of which provides predictions

for the mass dependence of the nuclear transparency. We display the numerical results in Sec. A 2.

1. Model

We model the nucleus as a homogeneous sphere with radius R = 1.20A
1
3 fm and constant density ρ(~r) =

0.138 fm−3. Without attenuation the A(e, e′N) cross section is proportional to the integrated density
∫

d3~rρ(~r) = A. The attenuation with the nuclear medium is calculated with the aid of a classical survival

probability P (~r ). Given a nucleon brought into an energy continuum state at the coordinate ~r, P (~r ) is

P (~r ) = exp

[
−σ
∫ +∞

z

dz′ρ(~r ′)

]
. (A1)

Let ~r = (x, y, z) and ~r ′ = (x, y, z′). The integration variable z′ runs along the direction of the momentum

~p of the outgoing nucleon. The cross section describing the scattering of the outgoing nucleon with the

nuclear medium is denoted by σ. It is a measure for the aggregated effect of the attenuation. For a sphere

with radius R and homogeneous density ρ the survival probability of Eq. (A1) becomes,

P (~r ) = exp

[
−σρ(

√
R2 − r2 sin2 ξ − r cos2 ξ)

]
.

Here, ξ is the angle between ~r and ~ep = ~p
p . The A(e, e′N) nuclear transparency TNA , defined as the cross

section including attenuation divided by the cross section without attenuation, is

TNA [single] ∝
∫

d2Ωp
∫

d3~rρ(~r)P (~r)∫
d2Ωp

∫
d3~rρ(~r)

=
8π2ρ

∫ R
0

dr r2
∫ 1

−1 dx exp
[
−σρ(

√
R2 − r2(1− x2)− rx)

]

4πA
. (A2)

The integration
∫

d2Ωp covers all possible outgoing-momentum directions.

For uncorrelated two-nucleon knockout the cross section is proportional to the total number of pairs
∫

d3~r1ρ(~r1)
∫

d3~r2ρ(~r2) = A2. The attenuation-corrected cross section is obtained by including the survival

probability for both nucleons, and one finds for the two-nucleon knockout transparency TNNA [double],

TNNA [double] ∝
∫

d2Ωp1
∫

d3~r1ρ(~r1)P (~r1)
∫

d2Ωp2
∫

d3~r2ρ(~r2)P (~r2)∫
d2Ωp1

∫
d3~r1ρ(~r1)

∫
d2Ωp2

∫
d3~r2ρ(~r2)

= TNA [single] · TNA [single] (A3)
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Next we investigate two-nucleon knockout in the ZRA, which serves as a proxy for identifying SRC-prone

nucleon pairs. The ZRA is introduced by requiring that the initial nucleons are found at the same spatial

coordinate. The cross section without attenuation is proportional to,

∫
d2Ωp1

∫
d2Ωp2

∫
d3~r1ρ(~r1)

∫
d3~r2ρ(~r2)δ(~r1 − ~r2) = (4π)2

∫
d3~rρ(~r)2 = (4π)3ρ2

∫ R

0

dr r2 = (4π)2ρA

(A4)

We find that in the ZRA the two-nucleon knockout cross section is proportional to A as opposed to A2 in

the uncorrelated case. Including attenuation gives,

∫
d3~rρ(~r)2

∫
d2Ωp1P1(~r)

∫
d2Ωp2P2(~r ) =

16π3ρ2
∫ R

0

dr r2
∫ 1

−1
dx exp

[
−σρ(

√
R2 − r2(1− x2)− rx)

] ∫ 1

−1
dy exp

[
−σρ(

√
R2 − r2(1− y2)− ry)

]

(A5)

The transparency mass dependence is then given by the ratio of Eqs. (A5) and (A4),

TNNA [ZRA] ∝
πρ

A

∫ R

0

dr r2
∫ 1

−1
dx exp

[
−σρ(

√
R2 − r2(1− x2)− rx)

] ∫ 1

−1
dy exp

[
−σρ(

√
R2 − r2(1− y2)− ry)

]
(A6)

It is well established that SRC pairs prefer back-to-back motion with anti-parallel momenta of the initial

nucleon pair [16, 27]. After introducing the following angular constraints in the ZRA cross sections of

Eqs. (A4),(A5),

δ(φ1 − φ2 + π)δ(θ1 + θ2 − π) ,

the transparency becomes,

TNNA [ZRA+SRC] ∝2πρ

A

∫ R

0

dr r2
∫ 1

−1
d cos θ1 exp

[
−σρ(

√
R2 − r2(1− cos2 θ1)− r cos θ1)

]
(A7)

×
∫ 1

−1
d cos θ2 exp

[
−σρ(

√
R2 − r2(1− cos2 θ2)− r cos θ2)

]
δ(θ1 + θ2 − π) . (A8)

With the substitution (r, cos θ1)→ (r, ` =
√
R2 − r2(1− cos2 θ1)), and further manipulations one finds,

TNNA [ZRA+SRC] ∝2πρ

A

∫ R

0

d` ` exp(−2ρσ`)
√
R2 − `2 ln

(
R+ `

R− `

)
. (A9)

2. Results

The mass dependence of the TNA , T
NN
A of Eqs. (A2),(A3),(A6),(A9) is investigated by varying the mass

number A in the range [12, 208]. A power law is fitted to the numerical results TA ∝ Aλ. Figure 10 displays

the numerical results for the exponent λ as a function of σ. In the limit of vanishing attenuation (σ → 0)

the cross section equals the plane-wave one and one has TA ≈ A0.

For σ > 10 fm2 we find that the λ values approach a limit value corresponding with an extremely opaque

nucleus. In this limit one expects that the single-nucleon knockout cross section is surface dominated ∝ A 2
3
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FIG. 10. (Color online) The exponents λ in T
N(N)
A ∝ Aλ as a function of the nucleon-nucleus cross section σ. The

gray band corresponds with the σ of outgoing nucleon momenta 0.3 ≤ p ≤ 10 GeV/c. With “single” we denote the

TNA [single] results of Eq. (A2). With “double” we refer to the TNNA [double] results obtained with Eq. (A3) which corre-

sponds to uncorrelated two-nucleon knockout. The “ZRA” (“ZRA+SRC”) results for TNNA [ZRA] (TNNA [ZRA+SRC])

are obtained with the expressions of Eq. (A6)[Eq. (A9)].

as no nucleons originating from within the nucleus are able to escape. The mass dependence of TNA [single]

then becomes,

lim
σ→+∞

TNA [single] ∝ A
2
3

A
= A−

1
3 , (A10)

which complies with the measured value [25, 33]. For TNNA [double], we have,

lim
σ→+∞

TNNA [double] = lim
σ→+∞

TNA [single] · TNA [single] ∝ A− 2
3 . (A11)

In the case of two-nucleon knockout in the ZRA the two nucleons originate from the same spatial coordinate.

We again expect a surface dominated cross section as in the single nucleon knockout case, leading to the

exponent limσ→+∞ λ = − 1
3 .

Including the additional constraint of back-to-back angles (ZRA+SRC in Fig. 10) will strongly favour

the situation in which (~r ⊥ ~ep1 ⇔ ~r ⊥ ~ep2) ∧ (r ≈ R). When investigating the mass dependence of the

transparency in the strong attenuation limit one finds (Fig. 10),

TNNA [ZRA+SRC] ∝ A0

A1
= A−1 . (A12)

The cross section in the strong attenuation limit becomes independent of A.
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3.3.3 Supplementary material

Sampling the high-dimensional phase space of exclusive two-nucleon knockout
events

In this section a more detailed overview is given concerning the calculation of the distorted
c.m. momentum distribution F pN,D

A (~P12), given by Eq. (5) in Sec. 3.3. Computing the

F pN,D
A (~P12) for the kinematics described in [7] requires the sampling of a highly-dimensional

phase space. The calculation of F pN,D
A (~P12) is computationally very demanding. This calls

for an efficient way of dealing with the high-dimensionality of the phase space. First the
generation of the phase space for two-nucleon knockout events is discussed, followed by the
determination of F pN,D

A (~P12) over this large phase space.

As in Sec. 3.3 the scattering reaction whereby a correlated proton-nucleon pair is knocked
out of the target nucleus with a hard electromagnetic probe exchanging four momentum
q = (ω, ~q) is considered. In the impulse approximation, the exchanged three momentum
~q is absorbed by a single nucleon, labelled “1”. The recoiling nucleon is labelled “2”. Let
(~k1, ~k2) and (~p1 = ~k1 +~q, ~p2) be the initial and final three-momenta of the nucleon pair. The

c.m. ~P12 and relative momentum ~k12 are given by Eq. (2) in Sec. 3.3.

Choosing the reference frame with the z-axis along the momentum ~k1 and ~q in the x − z
plane, a two-nucleon knockout event can be characterized by 6 variables {Q2 = −q2, xB =
Q2

2mNω
, θq, ~P12. θq is the angle of ~q relative to the z-axis and mN is the nucleon mass. To

ensure knockout events of SRC pairs the following kinematic constraints are imposed,

θ~p1,~q ≤ 25◦ ; 0.62 <
|~p1|
|~q| < 0.96 ; xB ≥ 1.2; (3.10)

|~k1| ≥ 300 MeV; |~p2| ≥ 350 MeV . (3.11)

The phase space can then be sampled with the following procedure,

• draw xB, Q
2 from the experimental (xB, Q

2) distribution, |~q|, ω can then be calculated
from xB, Q

2.

• draw |~k1| uniformly

• draw the c.m. momentum ~P12 uniformly

θq is then calculated from energy conservation,

MA + ω − EA−2 − E2 = E1 =

√
m1 + (~q + ~k1)2

cos θq =
E2

1 −m2
1 − |k1|2 − |q|2
2|k1||q|

. (3.12)

Stratified importance sampling

The calculation of the distorted c.m. momentum distribution F pN,D
A (~P12) over the whole

phase space is computationally very demanding. Specifically the effect of final-state inter-
actions (FSI) calculated in the RMSGA require intensive numerical integrations. As shown
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in Sec. 3.3 the major effect of including FSI on the c.m. momentum distribution is an
overall attenuation of the distribution. This means that the F pN,D

A (~P12) with vanishing FSI,

denoted F pN
A (~P12), is a suitable candidate for the use in importance sampling where the

individual events are weighted according to the corresponding value of F pN
A (~P12). The dis-

torted c.m. momentum distribution F pN,D
A (~P12) is then calculated for the sampled events.

Rather than sampling the events directly they are first binned in the three-dimensional
~P12-space. The importance sampling procedure is then applied on these bins whereby the
sampling weights are given by the bin average of F pN

A (~P12). The F pN,D
A (~P12) calculated for

the limited set of sampled events is then extrapolated to the whole phase space by assuming
that bin-averaged value of F pN,D

A (~P12) of the sampled events is representative for the real

bin average. In other words, the mean of F pN,D
A (~P12) for a selected bin n, denoted with

F
pN,D

A,n (~P12) is assumed to be equal to the value that would be obtained by calculating and

averaging F pN,D
A (~P12) for all the events in that bin. This procedure is illustrated in Fig. 3.3.

As shown in Sec. 3.3, the validity of this assumption can be investigated by examining the
convergence

∫
d3 ~P12F

pN,D
A (~P12) (Eq. (21) in Sec. 3.3) as a function of the number of sampled

events. The binning and sampling procedure can be written as approximating the integral∫
d3 ~P12F

pN,D
A (~P12) in the following way,

∫
d3 ~P12F

pN,D
A (~P12) = V~P12

〈F pN,D
A 〉 =

V~P12

Ns

Ns∑

i=1

F pN,D
A,i (~P12,i) . (3.13)

The total number of events is denoted with Ns. The summation over the individual events
i is rewritten as a sum over the bins in ~P12-space. The value for F pN,D

A,i (~P12,i) of each event
in a certain bin n is set to the average calculated from the sampled events inside that bin,

F
pN,D

A,n (~P12),

Ns∑

i=1

F pN,D
A,i (~P12,i) =

∑

n∈bins

∑

i∈n
F pN,D
A,i (~P12,i) ≈

∑

n∈bins

∑

i∈n
F
pN,D

A,n (~P12)

=
∑

n∈bins

F
pN,D

A,n (~P12)
∑

i∈n
=
∑

n∈bins

F
pN,D

A,n (~P12)Nn . (3.14)

The number of events in a bin n,
∑

i∈n, is denoted as Nn. Eq. (3.13) can then be written
as,

∫
d3 ~P12F

pN,D
A (~P12) =

V~P12

Ns

∑

n∈bins

F
pN,D

A,n (~P12)Nn (3.15)

From the investigated convergence behaviour of this expression in function of the num-
ber of sampled events, displayed in Fig. 4 of the article [6], it can be concluded that the
approximation is very close to the true value of the integral.

Alternative approaches to calculating the integral should use importance sampling or equiv-
alent strategies as covering the whole phase space is computationally infeasible. In order to
infer the value of F pN,D

A,i (~P12,i) of the unsampled events from the sampled events, any mul-
tidimensional interpolation algorithm can be used, for example radial basis function (RBF)
interpolation.
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Figure 3.3 – An illustration of the sampling procedure for a specific bin in c.m. momentum (~P12)
space. The numbers are arbitrary values. The left hand side figure shows the events in the bin
with their values calculated for the c.m. momentum distribution F pNA (~P12) with vanishing FSI. The
bin weight is 1.0 in this case. The centre shows three events which were sampled and for which
the distorted c.m. momentum distribution F pN,DA (~P12), including FSI, was calculated, denoted
with the red fictional values offset downward. The right hand side shows a representation of the
assumption that the average of F pN,DA (~P12) is the “true” bin average which would be obtained by

calculating F pN,DA (~P12) for all the events in the bin.
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3.4 Extracting the mass and isospin dependence of

SRC of 2N knockout reactions

3.4.1 Introduction

In Sec. 3.1 the connection of the exclusive two-nucleon knockout reaction and SRC momen-
tum distributions is discussed. The c.m. and relative momentum distributions are computed
in Sec. 3.2 and it is shown that the SRC pairs induce high-momentum tails in the relative
momentum distribution. Sec. 3.3 then follows up on how these SRC pairs with high-relative
momentum can be probed in two-nucleon knockout scattering reactions. It is shown that
FSI cause a large attenuation on the final cross section.

In order to infer the properties of initial SRC-pairs from the experimental two-nucleon
knockout reaction, the measured cross section has to be corrected for FSI. This issue is
addressed in this section [8]. The mass dependence of the number of initial SRC-prone pairs
present in the ground state of a nucleus is investigated. The theoretical predictions are
compared to the values extracted from the measured cross section. In order to identify the
probed initial SRC pairs the measured cross sections are corrected for the attenuation and
the charge-exchange effects caused by the FSI. Given the mass dependence of the initial
SRC pairs it is possible to infer their internal structure

My contributions to the article presented here, published in [8], are significant contributions
to the text, predominantly in sections III,IV and V. The results and figures presented in
those sections are a part of my input as well.
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The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp)
and proton-neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in
the ground state of atomic nuclei. This work presents an analysis of electroinduced single-proton
and two-proton knockout measurements off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated
by scattering off SRC pairs. The nuclear mass dependence of the observed A(e, e′pp)/12C(e, e′pp)
cross-section ratios and the extracted number of pp- and pn-SRC pairs are much softer than the
mass dependence of the total number of possible pairs. This is in agreement with a physical picture
of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field
basis.

PACS numbers: 25.30.Rw, 25.30.Fj, 24/10.-i

I. INTRODUCTION

The nuclear momentum distribution (NMD) is often quoted as being composed of two separate parts [1–
3]. Below the Fermi momentum (kF ≈ 250 MeV/c) single nucleons move as independent particles in a mean
field created by their mutual interactions. Above the Fermi momentum (k > kF ) nucleons predominantly
belong to short-range correlated (SRC) pairs with high relative and low center-of-mass (c.m.) momenta,
where high and low are relative to the Fermi momentum [4–8]. In addition to its intrinsic interest, the
NMD and its division into mean-field and correlated parts is relevant to two-component Fermi systems [9],
neutrino physics [10, 11], and the symmetry energy of nuclear matter [12].

The mean-field and long-range aspects of nuclear dynamics have been studied extensively since the dawn
of nuclear physics. The effect of long-range correlations on the NMDs is limited to momenta which do
not extend far beyond kF [13]. Study of the short-range aspects of nuclear dynamics has blossomed with
the growing availability of high-energy high-intensity electron and proton accelerators. Recent experiments
confirm the predictions that SRC pairs dominate the high-momentum tails (k > kF ) of the NMDs [4–
7], accounting for 20-25 % of the NMD probability density [14–17]. These high-momentum tails have
approximately the same shape for all nuclei [2, 3, 9, 14–18], differing only by scale factors which can be
interpreted as a measure of the relative number of SRC pairs in the different nuclei. In this work, we aim
at understanding the underlying dynamics which give rise to this universal behavior of the high-momentum
tail.

An intuitive picture describing the dynamics of nuclei including SRCs is that of independent bound
nucleons moving in the nucleus, occasionally getting sufficiently close to each other to temporarily fluctuate
into SRC-induced nucleon-nucleon pairs. This picture can be formally implemented in a framework in
which one shifts the complexity of the nuclear SRC from the wave functions to the operators by calculating
independent-particle model (IPM) Slater determinant wave functions and acting on them with correlation
operators to include the effect of SRCs [18–20]. The observed number of proton-proton (pp) and proton-
neutron (pn) SRC pairs in various nuclei can then be used to constrain the amount and the quantum
numbers of the initial-state IPM nucleon-nucleon (SRC-prone) pairs that can fluctuate dynamically into
SRC pairs through the action of correlation operators.

In this paper, we will extract the relative number of pp-SRC and pn-SRC pairs in different nuclei from
measurements of electroinduced two-proton and one-proton knockout cross-section ratios for medium and
heavy nuclei (27Al, 56Fe, and 208Pb) relative to 12C in kinematics dominated by scattering off SRC pairs [8,
21]. In these kinematics in the plane-wave approximation A(e, e′pp) cross sections are proportional to the
number of pp-pairs in the nucleus and A(e, e′p) cross sections are proportional to twice the number of
pp pairs plus the number of pn pairs (2pp+pn). Therefore, after correcting the measured cross sections
for rescattering of the outgoing nucleons from the residual nucleus (final state interactions or FSI), the
relative number of pp and pn pairs will be extracted from measurements of A(e, e′pp)/12C(e, e′pp) and
A(e, e′p)/12C(e, e′p) cross-section ratios [8].

We will then compare the A(e, e′pp)/12C(e, e′pp) cross-section ratios and the extracted number of pp and
pn pairs to factorized calculations using different models of nucleon pairs in order to deduce the quantum
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FIG. 1: (color online). The distribution (in arbitrary units) of the cosine of the angle γ between the missing
momentum of the leading proton and the recoil proton for 12C (dark blue long-dashed line), 27Al (red dotted line),
56Fe (purple solid line), and 208Pb (blue dashed line). The black dashed line shows the distribution of the random
phase-space extracted from mixed events.

numbers of the IPM SRC-prone pairs. We will provide strong evidence that the relative quantum numbers
of the majority of the SRC-susceptible pairs are 1S0(1) for pp and 3S1(0) for pn. Hereby, we used the
notation 2J+1LS(T ) to identify the pair’s quantum state (T is the total isospin).

This paper is structured as follows. The one- and two-proton knockout experiments analyzed in this
paper are described in Sec. II. In Sec. III we introduce the model to calculate the FSI-corrected two-nucleon
knockout cross-section ratios. Results and discussions are presented in Sec. IV. Section V contains the
concluding remarks.

II. EXPERIMENT

The one- and two-proton knockout measurements analyzed in this paper were described in [8] and
its supplemental information. They were carried out using the CEBAF Large Acceptance Spectrometer
(CLAS) [22], located in Hall-B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in
Newport News, Virginia. The data were collected in 2004 using a 5.014 GeV electron beam incident on 12C,
27Al, 56Fe and 208Pb targets. The scattered electron and knocked out proton(s) were measured with CLAS.
We selected A(e, e′p) events in which the electron interacts with a single fast proton from a SRC nucleon-
nucleon pair in the nucleus by requiring large four-momentum transfer (Q2 > 1.5 GeV2), Bjorken scaling

parameter xB = Q2

2mNω
> 1.2 and missing momentum 300 < |~pmiss| < 600 MeV/c. The four-momentum

transfer Q2 = ~q · ~q −
(
ω
c

)2
where ~q and ω are the three-momentum and energy transferred to the nucleus

respectively; mN is the nucleon mass; the missing momentum ~pmiss = ~pp− ~q, and ~pp is the knockout proton
three-momentum. We also required that the knockout proton was detected within a cone of 25◦ of the

momentum transfer ~q and that it carried at least 60% of its momentum (i.e.
|~pp|
|~q| ≥ 0.6). To suppress

contributions from inelastic excitations of the struck nucleon we limited the reconstructed missing mass of
the two-nucleon system mmiss < 1.1 GeV/c2.

The A(e, e′pp) event sample contains all A(e, e′p) events in which a second, recoil, proton was detected
with momentum greater than 350 MeV/c. Fig. 1 shows the distribution of the cosine of the angle between
the initial momentum of the knockout proton and the recoil proton for these events [8]. The recoil proton is
emitted almost diametrically opposite to the missing-momentum direction. The observed backward-peaked
angular distributions are very similar for all nuclei and are not due to acceptance effects as shown by the
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angular distribution of mixed events. These distributions are a signature of scattering on a nucleon in a
SRC pair, indicating that the two emitted protons were largely back-to-back in the initial state, having large
relative momentum and small c.m. momentum [6, 23]. Further evidence of scattering on a SRC nucleon
pair is that the recoil proton was emitted at forward angles (i.e., angles in the range 20-60◦ with respect to
~q).

The A(e, e′p)/12C(e, e′p) and A(e, e′pp)/12C(e, e′pp) cross-section ratios are obtained from the ratio of the
measured number of events, normalized by the incident integrated electron flux and the nuclear density of
each target. During the experiment all solid targets were held in the same location, the detector instanta-
neous rate was kept constant, and the kinematics of the measured events from all target nuclei were almost
identical [8, 21]. Therefore detector acceptance effects cancel almost entirely in the A(e, e′pp)/C(e, e′pp)
cross section ratios. Due to the large acceptance of CLAS, radiative effects affect mainly the electron kine-
matics. These corrections were calculated in Ref. [21] for the extraction of the A(e, e′p)/C(e, e′p) cross
section ratio. As the electron kinematics is the same for the A(e, e′p) and A(e, e′pp) reactions, the same
corrections are used here to extract the A(e, e′pp)/C(e, e′pp) cross-section ratios. See Ref. [8] for additional
details.

III. FSI AND CROSS-SECTION MODEL

In order to extract the underlying relative number of pp and pn SRC pairs in nuclei from the measured
cross-section ratios, we must correct the data for FSI effects [8]. Alternatively, in order to compare the
measured ratios to calculations, we must correct either the data or the calculation for FSI effects. The two
dominant contributions are: (1) attenuation of the outgoing nucleon(s) upon traversing the residual A− 1
or A− 2 nucleus, and (2) rescattering of a neutron into a proton (i.e., single charge-exchange (SCX)). SCX
can lead to a pp final state which originates from a pn pair.

The effect of FSIs of the ejected pair with the remaining A− 2 spectators was computed in a relativistic
multiple-scattering Glauber approximation (RMSGA) [24, 25]. The RMSGA is a multiple-scattering formal-
ism based on the eikonal approximation with spin-independent NN interactions. We have included both the
elastic and the SCX rescattering of the outgoing nucleons with the A− 2 spectators. The three parameters
entering in the RMSGA model are taken from NN scattering data and yield an excellent description of
the world’s A(e, e′p) transparency data [25]. In this work no free parameters are tuned to model the FSI
effects in the A(e, e′p) and A(e, e′pp) data under study. The RMSGA yields attenuation coefficients that
are similar to the power-law results obtained in nuclear transparency measurements [21]. For those reasons,
we estimate the systematic uncertaintly related to the FSI calculation as small.

The SCX probabilities are calculated in a semi-classical approximation. The probability of charge-
exchange re-scattering for a nucleon with initial IPM quantum numbers α which is brought in a continuum
state at the coordinate ~r is modeled by,

P
α(β)
CX (~r ) = 1− exp[−σCX(s)

∫ +∞

z

dz′ραβ(z′)] . (1)

The z-axis is chosen along the direction of propagation of the nucleon with initial quantum numbers α. The
quantum numbers of the correlated partner in the SRC pair are denoted with β. The ραβ is the IPM one-
body density of the residual nucleus available for SCX reactions. The ραβ is determined as the IPM density
of the target nucleus, minus the contribution from the single-particle orbitals α and β. Obviously, for an
ejected proton (neutron) only the neutron (proton) density of the residual nucleus affects SCX reactions.
σCX(s) in Eq. (1), with s the total c.m. energy squared of the two nucleons involved in the SCX [26], can
be extracted from elastic proton-neutron scattering data [27].

As outlined in Refs. [23, 28], in the spectator approximation it is possible to factorize the A(e, e′pN) cross
section in kinematics probing short-range correlated pairs as

d8σ [A(e, e′pN)]

d2Ωe′d
3 ~P12d3~k12

= KepNσepN (~k12)F
pN(D)
A (~P12) , (2)

where Ωe′ is the solid angle of the scattered electron, and ~k12 and ~P12 are the relative and c.m. momenta of

the nucleon pair that absorbed the virtual-photon. The KepN is a kinematic factor and σepN (~k12) is the cross

section for virtual-photon absorption on a correlated pN pair. The F
pN(D)
A (~P12) is the distorted two-body

c.m. momentum distribution of the correlated pN pair. In the limit of vanishing FSIs, it is the conditional

c.m. momentum distribution of a pN pair with relative Sn=0 quantum numbers. Distortions of F
pN(D)
A (~P12)
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FIG. 2: (color online). The mass dependence of the A(e, e′pp)/12C(e, e′pp) cross-section ratios. The points show the
measured, uncorrected, cross section ratios. The lower orange band and upper grey line denote ZRA reaction-model
calculations for 12C, 27Al, 56Fe, and 208Pb based on Eq. (3) with and without FSI corrections respectively. The
width of the ZRA-RMSGA band reflects the maximum possible effect of SCX.

due to FSI are calculated in the RMSGA. The factorized cross-section expression of Eq. (2) hinges on the
validity of the zero-range approximation (ZRA), which amounts to putting the relative pair coordinate ~r12
to zero. The ZRA works as a projection operator for selecting the very short-range components of the IPM
relative pair wave functions.

The probability for charge-exchange reactions in pN knockout is calculated on an event per event basis,

using the SRC pair probability density F
pN(D)
A (~R12) in the ZRA corrected for FSI. With the aid of the

factorized cross-section expression of Eq. (2), the phase-space integrated A(e, e′pN) to 12C(e, e′pN) cross-
section ratios can be approximately expressed as integrals over distorted c.m. momentum distributions,

σ [A(e, e′pN)]

σ [12C(e, e′pN)]
≈

∫
d2Ωe′d

3~k12KepNσepN (~k12)
∫

d3 ~P12F
pN(D)
A (~P12)

∫
d2Ωe′d

3~k12KepNσepN (~k12)
∫

d3 ~P12F
pN(D)
C (~P12)

=

∫
d3 ~P12F

pN(D)
A (~P12)

∫
d3 ~P12F

pN(D)
C (~P12)

. (3)

In the absence of FSI, the integrated c.m. momentum distributions
∫

d3 ~P12F
pN(D)
A (~P12) equal the total

number of SRC-prone pN pairs in the nucleus A. Hence, the cross section ratios of Eq. (3) provide access to
the relative number of SRC pN-pairs up to corrections stemming from FSI. We have evaluated the ratios of
the distorted c.m. momentum distributions of Eq. (3) over the phase space covered in the experiment. Given
the almost 4π phase space and the high computational requirement of multidimensional FSI calculations, we

use an importance-sampling approach. The major effect on the c.m. momentum distribution F
pN(D)
A (~P12)

when including FSIs is an overall attenuation, the shape is almost unaffected [23]. Motivated by this, we
used the c.m. momentum distributions without FSI as sampling distribution for the importance sampling
in the FSI calculations. When convergence is reached, the computed impact of FSI is extrapolated to the
whole phase space.
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pp pn

Sn=0 ZRA expt. Sn=0 ZRA expt.
27Al / 12C 3.10 2.89 2.47+0.55

−0.67 2.99 2.52 2.99+0.26
−0.22

56Fe / 12C 8.60 5.89 3.98+0.99
−1.19 7.72 4.82 6.03+0.60

−0.51
208Pb/ 12C 45.29 17.44 7.73+5.92

−7.23 37.62 18.80 24.87+3.89
−3.42

TABLE I: The relative number of SRC pp and pn pairs calculated using Sn=0 counting and the ZRA reaction model
compared to the extracted values from the measured A(e, e′p) and A(e, e′pp) ratios after correcting for FSI effects.
The error includes the uncertainties on the cross-section ratios and FSI calculations.

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the measured uncorrected
σ[A(e,e′pp)]
σ[12C(e,e′pp)] cross-section ratios compared with the ZRA

reaction-model calculation with and without RMSGA FSI corrections. The first striking observation is
that the measured cross-section ratios increase very slowly with A (e.g., the Pb/C ratio is only 3.8 ± 0.5).
For contrast, combinatorial scaling based on the number of pp pairs leads to a ratio of over 200. The ZRA-
RMSGA calculations agree well with the measured data, yielding a Pb/C ratio of 4.96+0.11

−0.14. The ZRA and
ZRA-RMSGA calculations assume that only pairs with a finite probability density at relative coordinate
zero contribute to the cross-section. This is consistent with assuming that only IPM pairs in a relative Sn=0

state contribute.
Figure 3 shows the number of pp- and pn-SRC pairs in various nuclei relative to Carbon extracted from

the measured A(e, e′pp)/C(e, e′pp) and A(e, e′p)/C(e, e′p) cross-section ratios following the method outlined
in Ref. [8] with RMSGA corrections for FSI and SCX. The extracted number of pp pairs are very sensitive
to SCX. If the virtual photon is absorbed on a pn pair and the neutron subsequently undergoes a single
charge exchange reaction with a proton, two protons will be detected in the final state. These events must
be subtracted in order to extract the number of pp-SRC pairs. As the contribution from these pn pairs to
the pp final state is comparable to the number of initial pp pairs, this leads to a large uncertainty in the
number of pp pairs, especially for heavy nuclei.

Figure 3 also shows the expected number of pp and pn SRC pairs relative to Carbon for different quantum
numbers of the IPM pairs that can dynamically form SRC pairs through the action of correlation operators.
These include (a) all possible NN pairs (i.e. Z(Z-1)/(6 · 5) and ZN/(6 · 6) for pp and pn pairs respectively),
(b) pairs in a nodeless relative S state (i.e. Sn=0), and (c) L ≤ 1 pairs (i.e. both S and P state pairs). Those
”Sn=0” pairs are characterized by the (n = 0, L = 0) quantum numbers for their relative orbital motion. Of
all possible states for the pairs, the Sn=0 pairs have the highest probability for the two nucleons in the pair
to approach each other closely. Close-proximity IPM pn pairs in a 3S1(0) state are highly susceptible to the
tensor correlation operator that creates SRC pairs in a spin-triplet state with predominantly deuteron-like
quantum numbers (L = 0, 2;T = 0;S = 1).

We determine the number of pairs in each case using an IPM harmonic-oscillator basis and performing
a standard transformation to relative and center-of-mass coordinates as detailed in Ref. [29]. The relative
number of pairs are displayed in Fig. 3 and listed in Table I. As can be seen, both (a) the naive combina-
torial assumption and (c) the calculations that include IPM S and P pairs contributions both drastically
overestimate the increase in the number of pairs with A. The ZRA and Sn=0 pairs counting calculations
are in fair agreement with the extracted number of pp and pn pairs.

As both the ZRA and the Sn=0 pair counting project IPM states onto close-range pairs, we expect the two
methods to produce a similar mass dependence of the number of SRC pairs The ZRA predicts a somewhat
softer mass dependence (∝ A1.01±0.02 vs A1.12±0.02). This can be explained by the fact that the ZRA is a
more restrictive projection on close-proximity pairs than the Sn=0 counting which accounts also for ~r12 6= 0
contributions.

The observed agreement with the experimental data indicates that correlation operators acting on IPM
Sn=0 pairs are responsible for the largest fraction of the high-momentum nucleons in nuclei. This gives
further support to the assumption that the number of IPM pairs with quantum numbers Sn=0 is a good
proxy for the number of correlated pairs in any nucleus A [18, 29, 30]. This is also consistent with an
analysis of the cross section of the ground-state to ground-state transition in high-resolution 16O(e, e′pp)14C
measurements [31, 32] which provided evidence for the 1S0(1) dominance in SRC-prone pp pairs.
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FIG. 3: (color online). The mass dependence of the number of pp (top panel) and pn (bottom panel) SRC pairs
of nucleus A relative to 12C. Data are extracted from the measured CLAS A(e, e′p) and A(e, e′pp) cross section
ratios [8, 21] after correcting for FSI. Error bars include the estimated uncertainty on the cross-section ratios and
the FSI corrections. The green squares correspond with unconditional counting of the pp pairs i.e. (Z(Z-1)/30 in the
upper panel) and pn pairs (ZN/36 in the bottom panel) for the nuclei 12C, 16O, 27Al, 40Ca, 48Ca, 56Fe, 63Cu, 108Ag
and 208Pb. The yellow diamonds are the ratios obtained by counting IPM pairs in a relative S and P state. The
blue triangles count IPM Sn=0 pairs. The solid line denotes the result of a reaction-model calculation for scattering
from close-proximity pairs (Eq. (3)) which takes full account of the experimental phase space. This calculation does
not include FSI corrections as these are applied to the data, see text for details.

V. CONCLUSIONS

We have extracted the relative number of np and pp SRC correlated pairs in nucleus A relative to
Carbon from previously published measured A(e, e′pp)/C(e, e′pp) and A(e, e′p)/C(e, e′p) cross section ratios
corrected for final state interactions. The relative number of np and pp pairs increases much more slowly
with A than expected from simple combinatorics.

We calculated the cross section in a framework which shifts the complexity of the nuclear SRC from
the wave functions to the operators by calculating independent-particle model (IPM) Slater determinant
wave functions and acting on them with correlation operators to include the effect of SRCs [18–20]. The
uncorrected A(e, e′pp)/C(e, e′pp) cross section ratios are consistent with a zero range approximation (ZRA)
calculation including the effects of FSI.
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Due to factorization, the ratio of calculated cross sections is approximately equal to the ratio of the
distorted c.m. momentum distributions. In the absence of FSI, the integrated c.m. momentum distribution
equals the total number of SRC-prone pairs in that nucleus. We compared three choices of SRC-prone pairs
to the data: (a) all pairs, (b) pairs in a nodeless relative S state (Sn=0), and (c) L ≤ 1 pairs (i.e., both S
and P).

We found that the soft mass dependence of the measured A(e, e′pp) cross-section ratios agrees with scat-
tering from highly selective close-proximity pairs (i.e., only IPM relative Sn=0 pairs). The mass dependence
of the extracted ratios of the number of short-range correlated pp and pn pairs provides additional support
for this conclusion. All these results consistently hint at a physical picture whereby the aggregated effect of
SRC in the nuclear wave function is determined to a large extent by mass-independent correlation opera-
tors on Sn=0 pairs. This provides additional evidence for the scale separation between the mean-field and
SRC dynamics that has, for example, been used in calculations of NMD of Refs. [18–20]. Amongst other
things, these conclusions are likely to affect the models used to estimate the effect of correlated pairs on
neutrino-nucleus cross sections [33] and studies of the nuclear equation-of-state in conditions of increased
density—enhanced sensitivity of SRC [34].
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CHAPTER 4

Summary and outlook

A complete description of the nucleus is a major goal of nuclear physics. The search of
how the nuclear observables are generated from the complex nucleon-nucleon interaction
is a very difficult one and has been studied since the dawn of nuclear physics. An early
model that successfully describes many nuclear properties is the independent-particle model
(IPM) whereby the nucleons move in a mean-field potential, encoding the average effect of
the individual nucleon-nucleon interactions [1, 2]. It is well known that the nucleon-nucleon
force induces correlations in the nucleus. These correlations can not be described in mean-
field models, whereby the nucleons are considered as independent particles. The nuclear
correlations can be divided into long-range correlations (LRC) and short range correlations
(SRC). The LRC are connected to the low-lying collective excitations of the nucleus. The
effects of LRC do not extend far beyond the Fermi momentum kF in the nucleus. SRC are
generated by the short-range repulsive core and tensor interaction of the nucleon-nucleon
force. SRC create nucleon pairs with high relative momentum and low c.m. momentum
compared to kF [3–6]. The dominant effects of SRC happen above the Fermi momentum kF .
They induce high-momentum components in the nuclear momentum distribution (NMD).
This separation of LRC and SRC in momentum space [7–9] allows us to isolate the SRC
and focus on the short-range dynamics inside the nucleus. Finding nucleons with momenta
well above kF is a clear signature of SRC.

In order to measure SRC effects, the SRC nucleons have to be probed in scattering reactions.
The exclusive two-nucleon knockout reaction is an ideal choice for probing SRC. Thereby a
hard probe interacts with a correlated nucleon pair with high relative momentum, that is
subsequently knocked out of the nucleus. Both ejected nucleons as well as the scattered pro-
jectile are measured. The kinematics for this reaction can be tuned in such a way that it can
be ensured that the scattering process is dominated entirely by SRC pairs. The measurement
of the electroinduced exclusive two-knockout process is very challenging as it requires the
detection of the energy and momentum of the scattered projectile as well as the two ejected
nucleons. Very few data is available for this highly exclusive reaction. Throughout this work
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the theoretical calculations are compared to experimental data obtained from the Jefferson
Lab Hall B CEBAF Large Acceptance Spectrometer (CLAS) data mining initiative [10] and
the Jefferson Lab Hall A collaboration [5, 11]. However, the study of SRC-driven reactions
is not limited to the exclusive electroinduced two-nucleon knockout scattering process. For
example, in Ref. [12] the relative amount of SRC-pairs is extracted from inclusive electron
scattering cross-section ratios of different nuclei. Additionally, SRC have been investigated
in exclusive knockout reactions with a hadronic probe. At Brookhaven National Laboratory
SRC have been studied whereby an incoming proton knocks out a proton-neutron pair from
the target nucleus 12C [3, 13]. It was demonstrated that the majority of SRC pairs consist
of proton-neutron pairs.

In this work a reaction model for the electroinduced two-nucleon knockout scattering process
has been developed [5, 14–16]. This reaction model is used to investigate the SRC dynamics
inside the nucleus. A factorized expression for the electroinduced two-nucleon knockout cross
section is used to study SRC properties across the entire nuclear mass range. The factorized
cross section allows the calculation of cross-section ratios that are independent of the electron
two-nucleon coupling. It is expected that this leads to robust results. Final-state interactions
(FSI) are included in the calculation of the cross section. It is established that the FSI have
a large effect on the cross section, predominantly causing a significant attenuation [14]. The
mass dependence of the two-nucleon knockout cross section is determined. It is found to
be very soft, whereby the FSI play a significant role in softening the mass dependence.
The effect of including charge-exchange reactions in the FSI does not significantly alter the
computed results. It can be concluded that FSI are an essential ingredient in a realistic
description of the two-nucleon knockout process. The calculated cross-section ratios are
found to be in agreement with the measured ratios. The nuclear transparency, which is
a measure of the attenuation strength caused by the FSI, is examined across the nuclear
mass range. With the factorized cross section the nuclear transparency can be calculated
independently of the electron two-nucleon coupling, increasing the robustness of the results.
Given the mass dependence of the nuclear transparency, the magnitude of the attenuation
caused by the FSI can be quickly estimated across the nuclear mass range.

Furthermore, the framework developed in this dissertation allows us to reconstruct proper-
ties of initial SRC pairs from the measured exclusive two-nucleon knockout cross section.
The measured cross section is corrected for FSI to infer the SRC in the initial nucleus.
The synergy between theory and experiment has resulted in improved knowledge about
short-distance dynamics of nuclei. We have established the fraction of the nucleon-nucleon
pairs that are subject to SRC corrections. The investigation of the mass dependence of
this fraction allows us to deduce the internal structure of the SRC pairs, identifying their
relative quantum numbers and isospin. The mass dependence of the amount of SRC-prone
pairs is much softer than a naive combinatorial prediction whereby one assumes that the
SRC-pairs are a fixed fraction of the total number of nucleon-nucleon pairs available in a
nucleus (∝ A(A−1)). We find that the theoretical predictions and the results reconstructed
from the measured cross sections are in agreement.
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Outlook

In the two-nucleon knockout reaction model outlined in this dissertation, the initial SRC
pairs are selected using the zero-range approximation (ZRA). The ZRA fixes the nucleon
pair to the same spatial coordinate. It sets the relative distance of the nucleon pair to
zero. The ZRA is used as a proxy for the more advanced correlation operators used in
the LCA framework. The possibility of introducing the LCA in the electroinduced two-
nucleon knockout reaction model as outlined in Sec. 3.2 [16] can be considered in future
work. Additionally the reaction model can be extended by including the photon two-nucleon
coupling. This will enable the calculations of absolute cross section instead of cross-section
ratios. Ideally the model-dependence introduced by the description of photon-two nucleon
coupling should be investigated.

Improved knowledge of the nuclear SRC will be of great help to quantify the effect of SRC-
governed multi-nucleon signal to neutrino-nucleus response [17–19]. In its turn this will
further help in improving the extracted neutrino-oscillation parameters. This is an active
area of research. In the ArgoNeuT experiment neutrino-induced knockout back-to-back
moving nucleon pairs has been directly observed [20]. Other neutrino experiments, such as
MicroBooNE, DUNE, MINERvA and NOvA, will benefit from a better understanding of
SRC dynamics as well.

It is expected that SRC play an important role in asymmetric nuclei with “exotic” neutron-
to-proton fractions. The framework outlined in this dissertation can be used to model
the scattering reactions off these asymmetric nuclei, leading to new probes investigating
nuclear short-range dynamics. This will shed light on the the persistence of the robust SRC
properties in unstable nuclei. Scattering reactions involving unstable nuclei are typically
performed in inverse kinematics, whereby the unstable nucleus is impinging on a hadronic
target. For knockout reactions, the target hadron induces the two-nucleon knockout. Due
to the hadronic probe it is expected that the importance of (initial-) final-state interactions
will grow even larger compared to the electroninduced two-nucleon knockout reactions. The
attenuation effect will increase, softening the mass-dependence of the cross-section. The
framework used in this dissertation to describe the final-state interactions can be readily
applied to this type of reactions.
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APPENDIX A

The eikonal approximation

The eikonal approximation is used extensively in this dissertation. It is an essential in-
gredient of our description of the final-state interactions (FSI) in nuclear reactions. The
majority of the results involving FSI presented in chapter 3 have been obtained by adopting
the eikonal approximation in the description of the FSI. In this chapter we investigate the
eikonal approximation and its applications. We start with a short discussion of the eikonal
approximation in one and three dimensions. This paves the way to the introduction of
the Relativistic Multiple Scattering Glauber Approximation (RMSGA) in Sec. A.3. The
RMSGA can be categorized as an eikonal approximation. The RMSGA can be used to
describe realistic FSI in nuclear reactions involving sufficiently energetic nucleons. In the
simulation of realistic scattering reactions off nuclei it is often necessary to make additional
approximations to keep the RMSGA calculations computationally feasible. The RMSGA
and possible additional approximations are evaluated using a test model in Sec. A.3.

A.1 The eikonal approximation in 1D

Here, we report a succinct derivation of the eikonal approximation for potential scattering
in one dimension. The extension to higher dimensions is straightforward. A more rigorous
derivation can be found in [1] (p188).

We start from the one-dimensional time-independent Schrödinger equation

d2

dx2
ψ(x)− U(x)ψ(x) + k2ψ(x) = 0 , (A.1)

with U(x) = 2m/~2V (x) and k2 = 2m/~2E. The eikonal approximation adopts the following
assumptions:
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• The length scale a of the potential V (x) is much larger than the wavelength λ = 2π/k
of the particle, (ka� 1).

• The energy of the particle is much larger than the potential strength E � V (x).

From these assumptions one can infer that the wave function will be adequately described
by a plane wave modulated by some position-dependent factor

ψ(x) =
1√
2π
eikxη(x) .

Inserting this expression into Eq. (A.1) gives,

−k2eikxη(x) + 2ikeikxη′(x) + eikxη′′(x)− U(x)eikxη(x) + k2eikxη(x) = 0 .

The second-order derivative of η(x) can be neglected by considering that η(x) is a slowly
varying function, consistent with the assumption ka� 1. This results in,

η′(x) =
1

2ik
U(x)η(x)

ln(η(x))− ln(η(−∞)) = − i

2k

∫ x

−∞
U(x′)dx′ .

Assuming that the potential approaches zero at −∞ it is easy to see that η(−∞) = 1 and,

η(x) = e−
i

2k

∫ x
−∞ U(x′)dx′ .

The above derivations lead to the following approximate expression for the wave function,

ψ(x) =
1√
2π
eikxe−

i
2k

∫ x
−∞ U(x′)dx′ . (A.2)

A.1.1 1D step potential barrier

Eq. (A.2) is applied to the potential step barrier V (x) = |V0|θ(x) in the case E > |V0|, for
particles impinging from the left (x < 0) as illustrated in [2] (p145). It is an easy exercise
to show that k′/k =

√
1− V0/E, with k the wave number in the region x < 0 and k′ the

wave number in the region x > 0.

The eikonal approximation is applied to construct the wave function. Using Eq. (A.2) the
wave function is described by,

ψ(x) =
1√
2π
eikxe−

i
2k

∫ x
−∞ U(x′)dx′

=
1√
2π
eikxe−

i2mV0
2k~2

∫ x
−∞ θ(x′)dx′ .

For x < 0 the wave function reduces to the plane wave 1√
2π
eikx, only describing forward

propagation, an inherent feature of the eikonal description. Note that the exact solution
also contains a term ∝ e−ikx in the region x < 0. For x > 0 the wave function is given by,

ψ(x > 0) =
1√
2π
eikxe−

imV0
k~2 x

=
1√
2π
eik(1−mV0

k2~2 )x .



Appendix A. The eikonal approximation 97

Using E = ~2k2

2m
this becomes,

ψ(x > 0) =
1√
2π
eik(1− V0

2E
)x .

Identifying the factor k(1− V0

2E
) with k′, the wave number of the particle after it has crossed

the potential barrier it follows that,

k′

k
= 1− V0

2E
.

This is the first-order expansion of the exact solution, given by
√

1− V0/E, in the high
energy limit ( E � V0). The eikonal approximation gives the correct result in the region
where it is expected to work (E � V0).

A.2 The eikonal approximation in 3D

As in the one-dimensional case we assume that the wave function of the particle is described
by

ψ(~r) =
1

(2π)
3
2

ei
~k ·~rη(~r) , (A.3)

where η(~r) is a slowly varying function in a range comparable to the wavelength of the
particle λ. Inserting the eikonal ansatz of Eq. (A.3) into the 3D Schrödinger equation one
obtains,

(
∇2 + k2

)
ψ(~r) = U(~r)ψ(~r)

2i~k · ∇η(~r) +∇2η(~r) = U(~r)η(~r)

Neglecting the second-order derivative of η(~r) and choosing the z-axis along the momentum
~k results in,

∂

∂z
η(~r) =

1

2ik
U(~r)η(~r)

⇒ ln(η(~b, z))− ln(η(~b,−∞)) =
1

2ik

∫ z

−∞
dz′U(~b, z′)η(~b, z′) ,

~b, z are the transversal and longitudinal components or ~r = (x, y, z) = (~b, z). From Eq. (A.3)

it is clear that η(~b,−∞) = 1,

η(~b, z) = exp

(
1

2ik

∫ z

−∞
dz′U(~b, z′)η(~b, z′)

)
(A.4)

ψ(~r) =
1

(2π)
3
2

exp

(
−i~k ·~r − i

2k

∫ z

−∞
dz′U(~b, z′)η(~b, z′)

)
. (A.5)
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After defining the eikonal phase-shift function χ(~r) = − 1
2k

∫ z
−∞ dz′U(~b, z′) [1], the wave

function adopts the short-hand form,

ψ(~r) =
e−i

~k ·~r
(2π)

3
2

eiχ(~r) . (A.6)

It is possible to derive Eq. (A.5) in a more mathematically rigorous fashion, described in for
example Ref. [1]. The key feature is that the propagator G0(~r, ~r ′) in the Lipmann-Schwinger
equation,

ψ(~r) =
ei
~k ·~r

(2π)
3
2

+

∫
d~r ′G0(~r, ~r ′)U(~r ′)ψ(~r ′) (A.7)

can be expanded as,

G0(~r, ~r ′) = − 1

(2π)3
lim
ε→0

∫
d~k ′

ei
~k ′ · (~r−~r ′)

k′2 − k2 − iε

= G0(~R) = −e
i~k · ~R

(2π)3
lim
ε→0

∫
d~p

ei~p · ~R
p2 + 2~k · ~p− iε

= −e
i~k · ~R

(2π)3
lim
ε→0

∫
d~p

ei~p · ~R
2~k · ~p− iε

(
1− p2

2~p ·~k − iε
+

p4

(2~p ·~k − iε)2
− . . .

)

= −e
i~k · ~R

(2π)3
lim
ε→0

∫
d~p

ei~p · ~R
2~k · ~p− iε

(
1− p/k

2~ep ·~ek − iε
+

(p/k)2

(2~ep ·~ek − iε)2
− . . .

)

≈ −e
i~k · ~R

(2π)3
lim
ε→0

∫
d~p

ei~p · ~R
2~k · ~p− iε

+O(p/k) . (A.8)

In the above derivation the following vectors have been introduced, ~R = ~r− ~r ′, ~p = ~k ′ − ~k,
~ek = ~k/k and ~ep = ~p/p. The validity of the expansion in p/k is not apparent at first sight. In
order to justify the expansion the eikonal ansatz of Eq. (A.3) is substituted into Eq. (A.7),

η(~r) = 1 +

∫
d~r ′G0(~r, ~r ′)ei

~k · (~r ′−~r)U(~r ′)η(~r ′)

= 1 +

∫
d~RG0(R)e−i

~k · ~RU(~r − ~R)η(~r − ~R)

= 1− 1

(2π)3
lim
ε→0

∫
d~p

1

p2 + 2~k · ~p− iε

∫
d~R ei~p · ~RU(~r − ~R)η(~r − ~R) . (A.9)

It is a general feature of Fourier transformations that for a given function f(~x) which varies
over a distance scale a, the Fourier transformation f(~p) will have most of its strength up

to p ≈ 1/a. Applying this argument to the integral over d~R in Eq. (A.9) it follows that
the largest contribution to the integral over d~p stems from momenta p . 1/a, with a the
distance scale of U(~r)η(~r). With the condition ka � 1 it follows that 1 � ka . k/p,
or p/k � 1. This validates the expansion in powers of p/k. As shown in Ref. [1] this
approximation (Eq. (A.8)) leads to Eq. (A.5).
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A.3 Relativistic Multiple Scattering Glauber Approx-

imation

A.3.1 Introduction

Here the assumptions underlying the Relativistic Multiple Scattering Glauber Approxima-
tion (RMSGA) [3] are briefly discussed. The RMSGA is an eikonal approximation as the
wave function of a scattered particle is described by a plane wave modulated by a position
dependent factor. It describes forward propagation of the scattered particle. This means
that the RMSGA can be applied to high-energy small-angle scattering reactions. Where high
energy means that the energy of the projectile should be large compared to the interaction
energy of the system.

The incoming particle is described as a plane wave with momentum ~ki (k = |~ki|). The wave
function of the scattered particle picks up a complex phase χ(~r) (Eq. (A.6)),

ψ(~r) =
ei
~ki ·~r

(2π)
3
2

eiχ(~r) ,

χ(~r) = − 1

2k

∫ z

−∞
dz′ U(~b, z′) . (A.10)

The vector ~r can be written as (~b, z) where z is the coordinate along the z-axis and ~b is
the perpendicular component. The orientation of the z-axis is chosen to be parallel to the
momentum ~ki. The scattering amplitude f(Ω) can be expressed as a function of the eikonal

phase-shift function χ(k,~b) (Eq. (A.10)),

f(~∆) =
k

2πi

∫
d2~b exp(i~∆ ·~b)

[
exp(iχ(k,~b))− 1

]

=
k

2πi

∫
d2~b exp(i~∆ ·~b)Γ(k,~b) . (A.11)

In Eq. (A.13) the profile function Γ(k,~b) = exp(iχ(k,~b)) − 1 is introduced. Further, ~∆ is

the transferred three momentum ~ki − ~kf with ~ki and ~kf the initial and final momentum of
the particle. Eq. (A.13) can be easily inverted to,

Γ(k,~b) =
i

2πk

∫
d2~∆e−i

~∆ ·~bf(~∆) . (A.12)

For high-energy diffractive scattering the scattering amplitude can be parameterized as,

f(~∆) ≈ Ae−
β2∆2

2 . (A.13)

Using the optical theorem Imf(~∆ = ~0) = kσtot

4π
we can rewrite this as,

f(~∆) ≈ kσtot

4π
(i+ ε)e−

β2∆2

2 ,
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where ε is defined as ε = Ref(~∆ = ~0)/Imf(~∆ = ~0). Inserting this parameterization into
Eq. (A.12) gives,

Γ(k,~b) =
σtot

8π2
(iε− 1)

∫
d2~∆ exp

(
−β

2∆2

2
− i~∆ ·~b

)
=

σtot

4πβ2
(1− iε) exp

(
−
~b2

2β2

)
(A.14)

A major advantage of this approach is that for a particular scattering reaction, the profile
function can be calculated from the forward-scattering amplitude f(~∆) (Eq. (A.13)) of that
reaction, without the need of introducing a potential describing the interaction between the
projectile and the target. The introduction of a potential induces model-dependency and
often has a limited energy-range of applicability.

A.3.2 Nucleon-Nucleus scattering

The application of RMSGA in scattering reactions off many-body systems is discussed in
this section. A nucleon-nucleus scattering reaction is considered here. Constraining the
parameters of the nucleon-nucleus potential is challenging. Often a large numbers of pa-
rameters are needed to describe the interaction adequately. Moreover it requires elastic
scattering data at specific energies. Because of this the nuclear potential parameterizations
have a limited energy range of validity. With the RMSGA it is possible to describe the
scattering process without the need of a potential. Within the RMSGA the scattering with
a composite system (nucleus) can be described as a superposition of scattering events with
the individual constituents (nucleons), this formalism can then be readily applied to the
whole mass range. This is very advantageous and a large fraction for the research presented
in this dissertation hinges on this assumption. It is expected that because of this the cal-
culations across the entire nuclear mass range are robust. The RMSGA is a high-energy,
eikonal approximation. The de Broglie wavelength of the particle should be small compared
to the distance scale of the interaction. In the context of single-proton knockout reactions
it was shown in Ref. [4] that the RMSGA is a realistic approach for proton kinetic energies
down to 300 MeV, corresponding with a de Broglie wavelength of 1.5 fm. For medium to
large nuclei (A ≥ 12) the dimensionality of the RMSGA equations combined with a large
kinematical phase space makes the numerical calculations very computationally intensive.
Additional approximations, lessening the computational burden, can be made. In what fol-
lows several approximations that reduce the dimensionality of the numerical calculations are
examined and their performance is checked using a test model. For the RMSGA calculations
of chapter 3 the thickness approximation (outlined below) is used.

A scattering reaction with an incoming nucleon scattering off a nucleus, consisting of individ-
ual nucleons, is considered. The incoming particle can scatter with the A nucleons present in
the nucleus. The total phase shift function χtot (Eq. (A.6)) is given by the sum of the phase
shifts χj contributed by the A individual scatterers in the target. The A constituents are
fixed during the scattering process. This means that their positions and quantum numbers
remain unchanged during the collision process. This combination of assumptions is often
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referred to as the frozen approximation. The above assumptions imply,

χtot(k,~b,~b1, . . . ,~bA) =
A∑

j=1

χj(k,~b−~bj) , (A.15)

Γtot(k,~b,~b1, . . . ,~bA) = 1−
A∏

j=1

(
1− Γj(k,~b−~bj)

)

=
A∑

j=1

Γj(k,~b−~bj)−
A∑

j<l

Γj(k,~b−~bj)Γl(k,~b−~bl) + . . . (A.16)

This phase-shift additivity is a consequence of the purely forward motion of the projectile
and the frozen approximation.

Elastic scattering nucleon-nucleus scattering is considered. The initial and final state of the
nucleus is the ground state |Φ〉, a Slater determinant of orthonormal single-particle wave
functions,

|Φ〉 = |α1α2 . . . αA〉 ,

〈~r1| 〈~r2| . . . 〈~rA| |Φ〉 =
1√
A!

∑

P

(−1)PφP (α1)(~r1)φP (α2)(~r2) . . . φP (αA)(~rA) ,

with P a permutation of the set {α1, α2, . . . αA}, we get,

Γel
tot(k,

~b) = 〈Φ|Γ̂tot(k,~b)|Φ〉 = 〈Φ|1−
A∏

i

(1− Γ̂i(k,~b))|Φ〉

=

∫
d~r1 . . . d~rA 〈α1α2 . . . αA| |~rA〉 . . . |~r2〉 |~r1〉 〈~r1| 〈~r2| . . . 〈~rA| 1−

A∏

i

(1−Γ̂i(k,~b)) |α1α2 . . . αA〉

=
1

A!

∫
d~r1 . . . d~rA

∑

Pn,Pm

(−1)Pn+Pmφ†Pn(α1)(~r1)φ†Pn(α2)(~r2) . . . φ†Pn(αA)(~rA)

[
1−

A∏

i

(1− Γi(k,~b−~bi))
]
φPm(α1)(~r1)φPm(α2)(~r2) . . . φPm(αA)(~rA)

= 1− 1

A!

∑

Pn,Pm

(−1)Pn+Pm
∏

i

∫
d~riφ

†
Pn(αi)

(~ri)(1− Γi(k,~b−~bi))φPm(αi)(~ri) (A.17)

The superscript “el” in Γel
tot(k,

~b) of Eq. (A.17) emphasizes the fact that elastic scattering

is considered. With Γ̂(k,~b) defined as 〈~r ′|Γ̂(k,~b)|φ〉 = Γ(k,~b − ~b ′)φ(~r ′). The frozen ap-
proximation amounts to requiring that the bound nucleons have fixed quantum numbers
during the collision process. This can be translated into the condition Pn = Pm ⇔ Pn(αi) =
Pm(αi), i ∈ {1, 2, . . . A}.

Γel
tot(k,

~b) = 1−
A∏

i

∫
d~riφ

†
αi

(~ri)(1− Γi(k,~b−~bi))φαi(~ri)

= 1−
A∏

i

[
1−

∫
d~ri|φαi(~ri)|2Γi(k,~b−~bi)

]
= 1−

∏

i

[
1−Gi(k,~b)

]
. (A.18)

The function Gi(k,~b) is defined as
∫

d~ri|φαi(~ri)|2Γi(k,~b−~bi).
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Zero-range approximation

In nuclear physics the zero-range approximation is often used. Thereby the nucleon-nucleon
interaction is described by a “contact” interaction with a vanishing range. This means
that it is proportional to a delta function in the relative distance. The profile function in
Eq. (A.18) can then be replaced by a delta function with the appropriate energy dependent

normalization factor A(k). The elements of the G(k,~b) vector are then given by,

Gi(k,~b) ≈
∫

d~ri|φαi(~ri)|2A(k)δ(~b−~bi) . (A.19)

This reduces the dimensionality of the integrals from three to one.

N-scattering approximation

The profile function Γel
tot(k,

~b) of Eq. (A.18) can be expanded as,

Γel
tot(k,

~b) ≈
A∑

i

Gi(k,~b)−
A∑

i<j

Gi(k,~b)Gj(k,~b) +
A∑

i<j<k

Gi(k,~b)Gj(k,~b)Gk(k,~b)− . . .

− (−1)N
A∑

i1<i2<...<iN

Gi1(k,~b)Gi2(k,~b) . . . GiN (k,~b) +O(GN+1) . (A.20)

This is an expansion in powers of Γ̂(k,~b) (Eq. (A.17)) and can be interpreted as an expansion
in the amount of active scatterers in the target. Truncating this expression up to first order
in Gi (N ≤ 1) is called the single-scattering approximation. Including the second order
(N ≤ 2) is denoted the double-scattering approximation. This expansion converges rapidly
if the individual Gi’s are small. With Eq. (A.14) and Eq. (A.18) this can be translated
into the condition that the product of the nucleon-nucleon scattering cross section (σ in

Eq.(A.14)) and the total integrated density seen by the projectile (∝
∫

d~ri|φαi(~ri)|2e
− ~b2

2β2 )
is much smaller than 1. As the nuclear density rises for increasing mass number A the
convergence of Eq. (A.20) is expected to become worse for increasing A.

Thickness approximation

In the thickness approximation the single-particle densities ρi = |φαi |2 are replaced by an
average density ρ̄ = 1

A

∑A
i=1 ρi. As a result the expression for Gi becomes,

Gi(k,~b) =

∫
d~riρ̄(~ri)Γi(k,~b−~bi)

Assuming that the interaction with the A scatterers can be modelled with one and the same
profile function Γ (which is not necessarily the case, considering the difference between
protons and neutrons for example) Eq. (A.18) is simplified to,

Γel
tot(k,

~b) = 1−
A∏

i

[
1−

∫
d~riρ̄(~ri)Γ(k,~b−~bi)

]
= 1−

[
1−

∫
d~riρ̄(~ri)Γ(k,~b−~bi)

]A

= 1−
[
1−G(k,~b)

]A
. (A.21)
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G(k,~b) is defined as
∫

d~riρ̄(~ri)Γ(k,~b −~bi). The zero-range (Eq. (A.19)) and thickness ap-
proximation (Eq. (A.21)) can be combined to yield the following expression for the profile
function,

Γel
tot(k,

~b) = 1−
∏

i

[
1−

∫
d~riρ̄(~ri)A(k)δ(~b−~bi)

]
= 1−

[
1− A(k)

∫
d~r ′ρ̄(~r)δ(~b−~b ′)

]A

(A.22)

Cross section

The elastic scattering amplitude f el(k, ~∆) can be calculated using Eq. (A.13),

f el(k, ~∆) =
k

2πi

∫
d2~b ei

~∆ ·~bΓel
tot(k,

~b) .

The total integrated cross section is then given by,

σel(k) =

∫
d2~∆|f(k, ~∆)|2 =

∫
d2~b|Γel

tot(k,
~b)|2 . (A.23)

A.3.3 Effect of the approximations on the elastic cross section

In the previous section several approximations have been introduced that simplify the nu-
merical calculations in the RMSGA. In order to gain further insight into the accuracy and
characteristics of the approximations introduced above, they are applied to a toy model
detailed below.

We consider a bound system consisting of A spin-less neutrons with mass mN trapped in an
isotropic harmonic oscillator potential V (r) = 1

2
mNω

2r2, ~ω = 15 MeV. The single-particle
wave functions are given by,

φnlm(~r) ≡ 〈~r|nlm〉 = Rnl(r)Ylm(Ω) (A.24)

where Ylm(Ω) are the spherical harmonics and the radial wave functions are given by

Rnl(r) =

[
2n!

Γ(n+ l + 3
2
)
νl+

3
2

] 1
2

rle−
νr2

2 L
l+ 1

2
n (νr2) . (A.25)

Here, Lαn(r) are the generalized Laguerre polynomials and

ν =
mNω

~
. (A.26)

The single-particle levels are populated up to a specific energy E = ~ω(2n + l + 3
2
). Only

closed shells are considered. Degenerate energy-levels are filled with the highest l value first.

The projectile is taken to be a proton with momentum k = 500 MeV. Details about the pa-
rameterization of the profile function for proton-neutron scattering can be found in Refs. [3,
5]. The total profile function (Eq. (A.18)) and the total cross section (Eq. (A.23)) are
calculated in the RMSGA and following additional approximations,
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Figure A.1 – The total profile function |Γel

tot(k = 500 MeV,~b)| of Eq. (A.18) for A = 4. This
system has a closed n = 0, l = 1 valence shell. The results obtained with different approximations
are displayed. The right hand side figure shows the absolute difference of the the approximations
compared to the full-fledged RSMGA result.

• The zero-range approximation of Eq. (A.19).

• The thickness approximation of Eq. (A.21) can be used.

• The combination of the zero-range and thickness approximation, (Eq. (A.22)).

• In the RMSGA and other above approximations the N -scattering approximation of
Eq. (A.20) can be investigated.

Figures A.1,A.2,A.3 and A.4 show the calculated profile function |Γel
tot(k,

~b)| of Eq. (A.18)
with the different approximations listed above. From Figures A.1 and A.3 it is concluded
that the thickness approximation performs the best, especially for larger systems. For larger
systems the zero-range approximation underestimates the tails of Γel

tot(k,
~b). The result for

σel(k) (Eq. (A.23)) is depicted in Figure (A.5). The thickness approximation is very accurate
while the zero-range approximation underestimates the cross section slightly.

From Fig. A.2 it is clear that for A = 4 the N -scattering approximation is converged
for N ≤ 2. For A = 84 (Fig. A.4) convergence is reached for N ≤ 20. Lower-order

approximations over-estimate the profile function |Γel
tot(k = 500 MeV,~b)| dramatically. It is

worth to note that the N -scattering approximation converges fast in the tails of the profile
function, corresponding with areas of low densities.

Numerical implications

From Eq. (A.18) it is clear that the fully-fledged RMSGA requires the evaluation of A
three-dimensional integrals for each value of the momentum k of the particle and its impact
parameter~b. The zero-range approximation of Eq. (A.19) reduces the dimensionality of those
integrals from three to one. It can therefore be expected that the speed of the numerical
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Figure A.2 – The total profile function |Γel
tot(k = 500 Mev,~b)| of Eq. (A.18) for A = 4. This

system has a closed n = 0, l = 1 valence shell. The results obtained with different approximations
are displayed. The N -scattering expansion of Eq. (A.20) is represented with the dashed lines,
where N denotes the order of the expansion.
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Figure A.3 – The total profile function |Γel
tot(k = 500 MeV,~b)| of Eq. (A.18) for A = 84. This

system has a closed n = 3, l = 0 valence shell. The results obtained with different approximations
are displayed. The right hand side figure shows the absolute difference of the the approximations
compared to the full-fledged RSMGA result.
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Figure A.4 – The total profile function |Γel
tot(k = 500 MeV,~b)| of Eq. (A.18) for A = 84. This

system has a closed n = 3, l = 0 valence shell. The results obtained with different approximations
are displayed. The N -scattering expansion of Eq. (A.20) is represented with the dashed lines,
where N denotes the order of the expansion. The N -scattering approximation is not calculated
here when the thickness approximation is not used (i.e. “RMSGA” and “Zero range”). For a
given order N the number of terms in Eq. (A.20) without the thickness approximation is equal to

A!
N !(A−N)! . For large A this number quickly becomes infeasibly large.

Figure A.5 – The elastic cross section of Eq (A.23) in function of the mass number A is displayed.
The right hand side shows the relative difference of the different approximations compared to the
full-fledged RSMGA result.
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calculations improve considerably: A times the time saved by calculating a one-dimensional
integral as opposed to a three-dimensional one. The thickness approximation of Eq. (A.21),
replaces the single-particle densities with an averaged density. For this approximation only
one three-dimensional integral has to be calculated, decreasing the computational effort by
a factor of A. Combining the zero-range approximation with the thickness approximation
leaves a single one-dimension integral to be calculated for each value of k and ~b. The com-
putation time is expected to decrease by a factor of A multiplied with the speed-up from
reducing the dimensionality of the integral from three to one. The N -scattering approx-
imation is very illustrative and allows for an easy interpretation of the number of active
scatterers involved in the scattering process. However, it is not of any benefit in terms of
computation intensity, as it does not decrease the numerical complexity. Additionally it
is in general infeasible to apply in medium to large nuclei as the number of terms quickly
becomes insurmountably large.

From the results presented in this chapter it is clear that the thickness approximation is
by far the best choice when the fully-fledged RMSGA calculations are too computation-
ally intensive. It benefits in general a larger speed-up than the zero-range approximation,
especially for larger nuclei, while being the most accurate.
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APPENDIX B

Factorization of exclusive two-nucleon knockout cross sections

The use of a realistic factorized expression for the cross section of the two-nucleon knockout
process is a key ingredient of the research presented in this dissertation. It allows us to write
cross-section ratios which are independent of the complicated photon two-nucleon coupling,
which would introduce a considerable model dependence. This is a strong argument for the
robustness of the results derived using this factorized cross section.

The factorization procedure outlined here is strikingly different from the one presented in
Sec. 3.2.2. In the article of Sec. 3.2.2 the cross section is factorized within the non-relativistic
LCA framework. Here, the factorization property is proven in a relativistic treatment.

Final-state interactions (FSI) are included in the description of the two-nucleon knockout
process. After the bound nucleon pair is brought into continuum states within the nucleus,
they can interact and rescatter with the recoiling nucleus on their path through it. These
interaction are denoted as FSI. Soft FSI are considered here. Thereby the rescattering events
are elastic or mildly inelastic. This means that the exchanged three-momentum and energy
are small compared to the three-momentum and energy of the escaping nucleons. In that
case the RSMGA (Sec. A.3) provides a realistic framework for the description of the FSI.

In this appendix the necessary conditions are outlined in detail to arrive at a factorized
expression for the exclusive electroinduced two-nucleon knockout cross section. We consider
an electron exchanging four momentum q = k′e − ke, (Q2 = −q2) with a correlated nucleon
pair in a nucleus |PA〉. The correlated nucleon pair is knocked out leaving the recoiling
nucleus |PA−2〉 with little or no excitation energy in a well defined quantum state (P 2

A−2 ≈
M2

A−2). A diagram of this reaction is displayed in Fig. (B.1). The matrix element Mfi for
such a process is given by,

Mfi = e2 jµJ
µ

Q2
. (B.1)



110

Figure B.1 – A sketch of the exclusive electrodinduced two-nucleon knockout reaction with all
kinematic variables.

jµ = 〈k′e|γµ|ke〉 is the lepton current and Jµ is the hadron current. The lepton current reads,

jµ = ū(r′)(k′e)γµu
(r)(ke) . (B.2)

For the hadron current an expression of the form

Jµ = 〈p1p2PA−2|Oµ,[2]|PA〉 (B.3)

is proposed, with Oµ,[2] a two-body operator that accounts for the electromagnetic coupling
to the correlated nucleon pair. Further, |p1〉 |p2〉 are the momentum states of the ejected
nucleons. The initial (final) state |PA〉 (|p1p2PA−2〉) is described by a Slater determinant of
single-particle wave functions φαi (〈~r |αi〉 = φαi(~r), 〈~r |pi〉 = φpi(~r) = usi(pi)e

i~r · ~pi),

〈~r1~r2 . . . ~rA|PA〉 =
1√
A!

∑

Pm

(−1)PmφPm(α1)(~r1)φPm(α2)(~r2) . . . φPm(αA)(~rA)

〈~r1~r2 . . . ~rA|p1p2PA−2〉 =
1√
A!

∑

Pn

(−1)PnφPn(p1)(~r1)φPn(p2)(~r2)φPn(α3)(~r3) . . . φPn(αA)(~rA) .

Pm (Pn) permutes the set {α1, α2, . . . αA} ({p1, p2, α3, . . . αA}). The choice of replacing α1, α2

with p1, p2 corresponds with a particular choice of the final quantum state of the residual
A − 2 system. The recoiling nucleus |PA−2〉 is left with the α1, α2 orbitals empty as those
particles are excited into continuum states. If the orbitals of the initial nucleon-pair α1, α2

can not be resolved, the sum over all possible single-particle quantum numbers has to appear
in the summation over the final states. The hadron current (Eq. (B.3)) can now be written
as,

Jµ =
A(A− 1)

A!

∑

PnPm

(−1)Pn+Pm

A∏

i=1

∫
d~ri

φ†Pn(p1)(~r1)φ†Pn(p2)(~r2)Oµ(~r1, ~r2)φPm(α1)(~r1)φPm(α2)(~r2)

φ†Pn(α3)(~r3)φPm(α3)(~r3) . . . φ†Pn(αA)(~rA)φPm(αA)(~rA) . (B.4)
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The identity
∑A

ij 〈C|Oij|D〉 = A(A−1) 〈C|O12|D〉 has been used. It is valid for a two-body
operator inserted between A-particle antisymmetric states C,D.

In the frozen spectator approximation it is assumed that the nucleons not taking part in
the scattering process remain fixed. That is, their quantum numbers do not change during
the collision of the virtual photon with the bound nucleon pair. This condition can be
enforced by inserting δPn(α3),Pm(α3) . . . δPn(αA),Pm(αA) in Eq. (B.4). Jµ is then invariant under
the (A− 2)! permutations of Pm(α3) . . . Pm(αA),

Jµ =
A∏

i=1

∫
d~ri
[
φ†p1

(~r1)φ†p2
(~r2)− φ†p2

(~r1)φ†p1
(~r2)

]

Oµ(~r1, ~r2) [φα1(~r1)φα2(~r2)− φα2(~r1)φα1(~r2)] |φα3(~r3)|2 . . . |φαA(~rA)|2 .
After including the effect of final-state interactions (FSI) using the RMSGA (Sec. A.3), the
outgoing wave functions pick up a phase χ(~r, ~r1, . . . ~rA) (Eq. (A.16)), with Eq. (A.3) they
adopt the form,

φp1(~r1)→ φp1(~r1)η(~r1;~r3 . . . ~rA)

φp2(~r2)→ φp2(~r2)η(~r2;~r3 . . . ~rA)

Defining FFSI as,

FFSI(~r1, ~r2) =
A∏

i=3

∫
d~ri |φαi(~ri)|2η(~r1;~r3 . . . ~rA)η(~r2;~r3 . . . ~rA) ,

the hadron current Jµ can be written as,

Jµ =

∫
d~r1

∫
d~r2FFSI(~r1, ~r2)

[
φ†p1

(~r1)φ†p2
(~r2)− φ†p2

(~r1)φ†p1
(~r2)

]

Oµ(~r1, ~r2) [φα1(~r1)φα2(~r2)− φα2(~r1)φα1(~r2)]

=

∫
d~r1

∫
d~r2FFSI(~r1, ~r2)

[
φ†p1

(~r1)φ†p2
(~r2)− φ†p2

(~r1)φ†p1
(~r2)

]

[Oµ(~r1, ~r2) +Oµ(~r2, ~r1)]φα1(~r1)φα2(~r2) . (B.5)

The operator Oµ(~r1, ~r2) is considered to be of the form ΓµγN∗e
i~q ·~r1g(~r1, ~r2). The exponential

ei~q ·~r1 follows from the part of the photon propagator attached to the hadron vertex ~r1.
g(~r1, ~r2) is a correlation function for which the property g(~r1, ~r2) ≡ g(~r2, ~r1) is assumed.
With this description of the operator Oµ(~r1, ~r2) Eq. (B.5) becomes,

Jµ =

∫
d~r1

∫
d~r2FFSI(~r1, ~r2)

[
ūs1(p1)e−i~p1 ·~r1ūs2(p2)e−i~p2 ·~r2 − ūs2(p2)e−i~p2 ·~r1ūs1(p1)e−i~p1 ·~r2]

[
ΓµγN∗e

i~q ·~r1 + ΓµγN∗e
i~q ·~r2] g(~r1, ~r2)φα(~r1)φα2(~r2)

=

∫
d~r1

∫
d~r2FFSI(~r1, ~r2)g(~r1, ~r2)

{

e−i(~p1−~q) ·~r1e−i~p2 ·~r2ūs1(p1)ΓµγN∗φα1(~r1)ūs2(p2)φα2(~r2)

+e−i~p1 ·~r1e−i(~p2−~q) ·~r2ūs1(p1)φα1(~r1)ūs2(p2)ΓµγN∗φα2(~r2)

−e−i(~p2−~q) ·~r1e−i~p1 ·~r2ūs2(p2)ΓµγN∗φα1(~r1)ūs1(p1)φα2(~r2)

−e−i~p2 ·~r1e−i(~p1−~q) ·~r2ūs2(p2)φα1(~r1)ūs1(p1)ΓµγN∗φα2(~r2)
}
. (B.6)
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Introducing center-of-mass (c.m.) and relative coordinates ~R12 = ~r1+~r2
2

, ~r12 = ~r1 − ~r2, the
following approximations that are crucial in order to reach factorization of the cross section
are applied,

g(~R12 +
~r12

2
, ~R12 −

~r12

2
) ≈ g(~r12)

FFSI(~R12 +
~r12

2
, ~R12 −

~r12

2
) ≈ FFSI(~R12) +O(~r12)

φα1,2(~R12 ±
~r12

2
) ≈ φα1,2(~R12) +O(~r12) .

The last two approximations are a zero-order expansion in the relative coordinate ~r12. It
assumes that the interaction selects two nucleons that are close compared to the distance
scale of the nucleus and the single-particle wave functions [1, 2]. This limits this derivation
to the study of short-range correlations (SRC). The hadron current of Eq. (B.6) becomes,

Jµ =

∫
d~R12

∫
d~r12FFSI(~R12)g(~r12)

{

e−i(~p1+~p2−~q) · ~R12e−i(~p1−~p2−~q) · ~r12
2 ūs1(p1)ΓµγN∗φα1(~R12)ūs2(p2)φα2(~R12)

+e−i(~p1+~p2−~q) · ~R12e−i(~p1−~p2+~q) · ~r12
2 ūs1(p1)φα1(~R12)ūs2(p2)ΓµγN∗φα2(~R12)

−e−i(~p1+~p2−~q) · ~R12ei(~p1−~p2+~q) · ~r12
2 ūs2(p2)ΓµγN∗φα1(~R12)ūs1(p1)φα2(~R12)

−e−i(~p1+~p2−~q) ·~r1ei(~p1−~p2−~q) · ~r12
2 ūs2(p2)φα1(~R12)ūs1(p1)ΓµγN∗φα2(~R12)

}
.

After introducing the c.m. and relative momentum of the initial nucleon pair,~P12 = ~p1+~p2−~q
and ~k±12 = ~p1−~p2

2
± ~q

2
, the hadron current adopts the form,

Jµ =

∫
d~R12

∫
d~r12FFSI(~R12)g(~r12)e−i

~P12 · ~R12

{

e−i
~k−12 ·~r12ūs1(p1)ΓµγN∗φα1(~R12)ūs2(p2)φα2(~R12)

+e−i
~k+

12 ·~r12ūs1(p1)φα1(~R12)ūs2(p2)ΓµγN∗φα2(~R12)

−ei~k+
12 ·~r12ūs2(p2)ΓµγN∗φα1(~R12)ūs1(p1)φα2(~R12)

−ei~k−12 ·~r12ūs2(p2)φα1(~R12)ūs1(p1)ΓµγN∗φα2(~R12)
}
,

with g(~k±12) =
∫

d~r12e
−i~k±12 ·~r12g(~r12),

Jµ =

∫
d~R12FFSI(~R12)e−i

~P12 · ~R12

{

g(~k−12)ūs1(p1)ΓµγN∗φα1(~R12)ūs2(p2)φα2(~R12)

+g(~k+
12)ūs1(p1)φα1(~R12)ūs2(p2)ΓµγN∗φα2(~R12)

−g(−~k+
12)ūs2(p2)ΓµγN∗φα1(~R12)ūs1(p1)φα2(~R12)

−g(−~k−12)ūs2(p2)φα1(~R12)ūs1(p1)ΓµγN∗φα2(~R12)
}
.
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In order to progress towards a factorized expression in c.m. (~P12) and relative momentum

(~k12) the photon-nucleon coupling ΓµγN∗ is decoupled from the c.m. coordinate ~R12. This
can be achieved by inserting the identity,

1 =
∑

s

[us(p)ūs(p)− vs(p)v̄s(p)]

between the coupling ΓµγN∗ and the single-particle wave functions φα1 , φα2 . Neglecting pro-
jections on the antiparticles v the hadron current can be written as,

Jµ =
∑

s

∫
d~R12FFSI(~R12)e−i

~P12 · ~R12

{

g(~k−12)
[
ūs1(p1)ΓµγN∗us(p1)

]
ūs(p1)φα1(~R12)ūs2(p2)φα2(~R12)

+g(~k+
12)ūs1(p1)φα1(~R12)

[
ūs2(p2)ΓµγN∗us(p2)

]
ūs(p2)φα2(~R12)

−g(−~k+
12)
[
ūs2(p2)ΓµγN∗us(p2)

]
ūs(p2)φα1(~R12)ūs1(p1)φα2(~R12)

−g(−~k−12)ūs2(p2)φα1(~R12)
[
ūs1(p1)ΓµγN∗us(p1)

]
ūs(p1)φα2(~R12)

}
.

Let J̃µs1,s(p) = ūs1(p)ΓµγN∗us(p) and,

FD
(s,α1)(s2,α2)(~P12) =

∫
d~R12FFSI(~R12)e−i

~P12 · ~R12ūs(p1)φα1(~R12)ūs2(p2)φα2(~R12)

FD
(s1,α1)(s,α2)(~P12) =

∫
d~R12FFSI(~R12)e−i

~P12 · ~R12ūs1(p1)φα1(~R12)ūs(p2)φα2(~R12) .

The Dirac spinors us(p) depend on the momentum ~p of the particle. In writing FD as a

function of only the c.m. momentum ~P12 this momentum dependence (lower component) of
the Dirac spinors is neglected.

Jµ =
∑

s

(
J̃µs1,s(p1)FD

(s,α1)(s2,α2)(~P12)g(~k−12) + J̃µs2,s(p2)FD
(s1,α1)(s,α2)(~P12)g(~k+

12)

−J̃µs2,s(p2)FD
(s,α1)(s1,α2

(~P12)g(−~k+
12)− J̃µs1,s(p1)FD

(s2,α1)(s,α2)(~P12)g(−~k−12)
)
. (B.7)

Of these four terms only the first one is kept (direct diagram), the three remaining terms
are discarded. The direct diagram corresponds with diagram (a) in Fig. B.2. This is a valid
approximation if the kinematics are tuned in specific way that allows us to differentiate the
two nucleons in the final state and identify which nucleon absorbed the photon. The hadron
current then becomes,

Jµ ≈
∑

s

J̃µs1,s(p1)FD
(s,α1)(s2,α2)(~P12)g(~k−12) . (B.8)

J̃µs1,s(p1) can be identified as the “free” nuclear current 〈p1, s1|ΓµγN∗|p1, s〉. J̃µs1,s(p1) depends

on both c.m. and relative momentum through ~p1 =
~P12

2
+ ~k−12 + ~q, however the dependence

on the c.m. momentum ~P12 can be safely ignored as in kinematics probing SRC the typical
values of |~q| and |~k12| are much larger than |~P12|. Jµs1,s(p1) ≈ Jµs1,s(

~k−12 + ~q) = Jµs1,s(
~k+

12). The

sum over s in Eq. (B.8), coupling Jµs1,s(
~k+

12) and FD
(s,α1)(s2,α2)(

~P12) is now the only remaining
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Figure B.2 – The four diagrams contributing to the hadron current of Eq. (B.7).

factor that couples the c.m. momentum to the relative momentum. A fully factorized
expression can be obtained by requiring that ΓµγN∗ is spin conserving,

J̃µr,s(p) = ūr(p)Γ
µ
γN∗us(p) = J̃µr,s(p)δr,s . (B.9)

From the fact that electromagnetic interactions conserve parity and are time reversal invari-
ant it can be shown that J̃µr,s(p)δr,s = J̃µ ∗−r,−s(p)δr,s. In what follows the complex conjugation
of the hadron current can be safely ignored when the modulus of the matrix element is
considered. With Eq. (B.9) the hadron current of Eq. (B.8) can then be written as,

Jµ ≈
∑

s

J̃µs1,s(p1)FD
(s,α1)(s2,α2)(~P12)g(~k−12) = J̃µ(p1)FD

(s1,α1)(s2,α2)(~P12)g(~k−12) .

Taking the modulus squared of the matrix element Mfi of Eq. (B.1) gives,

|Mfi|2 =
e4

Q4
ηµνW̃

µν |FD
(s1α1)(s2α2)(~P12)|2|g(~k−12)|2 .

There, ηµν is the lepton tensor and W̃ µν is the “free” nuclear tensor J̃ν∗J̃µ. The summation
over the initial quantum numbers of the nucleon pair (α1, α2) and averaging over the final
spins s1, s2 gives,

∑

fi

|Mfi|2 =
e4

Q4
ηµνW̃

µν |g(~k−12)|2 1

4

∑

s1s2

∑

α1α2

|FD
(s1α1)(s2α2)(~P12)|2

= σe,γ∗N(~k−12)FD(~P12) ,

with FD(~P12) and σe,γ∗N(~k−12) defined as,

FD(~P12) =
1

4

∑

s1s2

∑

αβ

∣∣∣FD
(s1α)(s2β)(~P12)

∣∣∣
2

,

σe,γ∗N(~k−12) =
e4

Q4
ηµνW̃

µν |g(~k−12)|2 .

The factorized cross section is then given by, 1

dσ ∝ σe,γ∗N(~k−12)FD(~P12) . (B.10)

1Note that strictly speaking the kinematical prefactors in the cross section do not factorize in c.m. and
relative momentum. However, under conditions where FD is “sharp” enough in ~P12-space this dependence
can be safely ignored
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σe,γ∗N(~k−12) depends on the relative momentum of the nucleon pair and encodes all the infor-
mation concerning the complex photon-two nucleon coupling. The only factor depending on
the nuclear structure (single-particle wave functions) is FD(~P12). When different nuclei are

considered FD(~P12) is the only quantity subject to change, depending on the specific nucleus
involved in the scattering reaction. This makes this expression very suitable to investigate
the mass dependence of nuclear properties in a systematic and consistent way.
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Samenvatting

Een volledige beschrijving van de kernstructuur is een van de hoofddoelen van theoreti-
sche kernfysica. De zoektocht naar de beschrijving van hoe nucleaire observabelen worden
gegenereerd door de complexe nucleon-nucleon interactie is een zeer complex vraagstuk.
Sinds het ontstaan van de kernfysica wordt er gezocht naar een antwoord hierop. Een erg
succesvol model dat vele nucleaire eigenschappen kan verklaren is de gemiddeld-veld be-
nadering [1, 2]. Daarbij bewegen de nucleonen in een gemiddeld-veld potentiaal die het
uitgemiddeld effect beschrijft van de individuele nucleon-nucleon interacties. Het is zo dat
de nucleon-nucleon kracht correlaties veroorzaakt in de kern. Deze correlaties kunnen niet
beschreven worden in gemiddeld-veld benaderingen waar de nucleonen onafhankelijk van
elkaar bewegen. De nucleoncorrelaties kunnen onderverdeeld worden in twee categorieën:
lange-afstandscorrelaties (LRC) en korte-afstandscorrelaties (SRC). De LRC corresponderen
met collectieve lage-energie excitaties van de kern. Boven de Fermi-impuls spelen de LRC
geen belangrijke rol meer in de beschrijving van de dynamica in een kern. De harde re-
pulsieve kern en het attractieve-tensor deel van de nucleon-nucleon kracht induceren SRC.
De SRC genereren nucleon paren, gekenmerkt door een hoge relatieve impuls en een lage
massamiddelpunt-impuls in vergelijking met de Fermi-impuls in de kern [3–6]. De effecten
van SRC zijn dominant boven de Fermi-impuls. Zij veroorzaken hoge-impulscomponenten in
de nucleonimpulsdistributie (NMD). Doordat LRC en SRC dominant zijn bij verschillende
impulsgrootte-schalen kunnen ze gescheiden worden en de SRC isoleren. Dit laat toe om de
korte-drachtdynamica in kernen in detail te bestuderen [7–9].

Als men SRC effecten wil meten moeten die onderzocht worden in nucleaire verstrooiing-
sexperimenten. De exclusieve elektrogëınduceerde tweenucleonuitstoot reactie is een ideale
keuze om SRC te onderzoeken. Daarbij interageert een harde probe (elektron) met een SRC
nucleon paar met een hoge relatieve impuls. Dit nucleon paar wordt vervolgens uitgestoten
uit de kern en de impuls en energie van beide nucleonen wordt gemeten. De kinemat-
ica kan zodanig afgesteld worden dat de reactie gedomineerd wordt door SRC paren. De
meting van deze reactie is zeer uitdagend omdat zowel het verstrooide projectiel als de
twee uitgaande nucleon gededecteerd moeten worden. In dit werk worden de theoretische
berekeningen vergeleken met experimentele data verworven in “Jefferson Lab Hall B CE-
BAF Large Acceptance Spectrometer (CLAS) data mining initiative” [10] en “Jefferson Lab
Hall A collaboration” [5, 11]. De studie van SRC is niet gelimiteerd tot de exclusive elek-
trogëınduceerde tweenucleonuitstoot reactie alleen. In Ref. [12] wordt het relatief aantal
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SRC paren bepaald door middel van inclusieve elektronverstrooiing op veschillende kernen.
Ook zijn SRC onderzocht in exclusieve tweenucleonuitstoot reacties met een hadronische
probe. In Brookhaven National Laboratory zijn SRC bestudeerd met een reactie waarbij
een inkomend proton een proton-neutron paar uit een koolstof kern, 12C , slaat [3, 13]. Het
werd aangetoond dat de meerderheid van SRC paren bestaan uit proton-neutron paren.

Een reactiemodel voor de exclusieve elektrogëınduceerde tweenucleonuitstootreactie wordt
voorgesteld in deze thesis [5, 14–16]. Daarmee worden SRC bestudeerd in kernen. Het ge-
bruik van een gefactorizeerde uitdrukking voor de werkzame doorsnede laat toe om de SRC
eigenschappen te bepalen over het volledige nucleaire massagebied. Door middel van de
gefactorizeerde werkzame doorsnede kunnen verhoudingen van werkzame doorsnedes voor
verschillende kernen berekend worden die onafhankelijk zijn van de interactie tussen het
elektron en het nucleon paar. Dit maakt de numerieke resultaten robuust. Finaletoes-
tandsreacties (FSI) worden beschouwd in de berekening van de werkzame doorsnede. Uit
de resultaten blijkt dat de FSI een belangrijke rol spelen in het verstrooiingsproces. De
FSI zorgen voor een aanzienlijke verzwakking van de werkzame doorsnede [14]. De massa-
afhankelijkheid van de tweenucleonuitstoot werkzame doorsnede is bepaald. De berekende
massa-afhankelijkheid is zacht, de FSI zijn hier voor een groot stuk verantwoordelijk voor.
Het wordt vastgesteld dat de invloed van ladinguitwisselingsreacties in de FSI vrij beperkt
is en nauwelijks invloed heeft op de massa-afhankelijkheid van de werkzame doorsnede. FSI
zijn een essentieel ingrediënt in de beschrijving van tweenucleonuitstootreactie. De berek-
ende werkzame doorsnede verhoudingen komen overeen met de gemeten verhoudingen. De
kerntransparantie is een maatstaf voor de kracht van de FSI. Met de gefactorizeerde uit-
drukking voor de werkzame doorsnede wordt de kerntransparentie berekend doorheen het
volledige nucleaire massagebied. De berekende kerntransparantie is onafhankelijk van de
elektron-tweenucleon koppeling. Dit leidt tot meer robuuste resultaten. De grootte van
de afzwakking van de werkzame doorsnede kan efficiënt geschat worden met de bepaalde
massa-afhankelijkheid van de kerntransparantie.

Het theoretisch kader ontwikkeld in deze thesis laat ook toe om eigenschappen van de
initiële SRC paren, aanwezig in de kern, te reconstrueren uit de gemeten exclusieve elek-
trogëınduceerde tweenucleonuitstootreactie. Daarbij wordt de gemeten werkzame doorsnede
gecorrigeerd voor FSI om de SRC in de initiële kern te karakteriseren. De synergie tussen
theorie en experiment heeft geleid tot een dieper inzicht in de korte-afstand dynamica in
kernen. De fractie van nucleonparen die onderhevig zijn aan SRC is bepaald. De massa-
afhankelijkheid van deze fractie laat toe om de interne structuur van SRC paren af te leiden,
waarbij de relatieve kwantumgetallen en de isospin structuur worden bepaald. De berekende
massa-afhankelijkheid is veel zachter dan een näıeve voorspelling waarbij men aanneemt dat
de SRC paren een vaste fractie zijn van het totaal aantal paren in een kern (∝ A(A − 1)).
De berekende SRC eigenschappen, gereconstrueerd uit gemeten werkzame doorsnedes, zijn
in overeenstemming met de theoretische voorspellingen.

Vooruitzicht

In het tweenucleonuitstootreactiemodel, ontwikkeld in deze thesis, worden de initiële SRC
paren gëıdentificeerd door middel van de ZRA. In de ZRA wordt de limiet genomen waarbij
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de relatieve afstand van het nucleonpaar naar nul nadert. De ZRA is een proxy voor de
meer geavanceerde correlatiemethodes gebruikt in het LCA-model. Het kan worden beargu-
menteerd dat deze twee methodes een vergelijkbare SRC-selectieprocedure implementeren.
De mogelijkheid om de ZRA te vervangen door de LCA om de initiële SRC paren te se-
lecteren, en dit te combineren met het tweenucleonuitstootreactiemodel, kan worden over-
wogen in verder onderzoek.

Het reactiemodel kan worden uitgebreid door de foton-tweenucleonkoppeling expliciet te
beschouwen in de berekening van de werkzame doorsnede. Dit laat toe om absolute werkzame
doorsnedes te berekenen. In het huidig model worden enkel relatieve werkzame doorsnedes
bepaald. Idealiter zou de model-afhankelijkheid, gëıntroduceerd door de beschrijving van
de foton-tweenucleonkoppeling, kunnen onderzocht worden.

Een verbeterde kennis van nucleaire SRC is onder meer van belang bij het beschrijven
van het multi-nucleon signaal in neutrino-kern interacties [17–19]. Dit laat toe om de
neutrino-oscillatie met hogere nauwkeurigheid te bepalen. In het ArgoNeuT experiment
is neutrinogëınduceerde tweenucleonuitstoot waargenomen [20]. De beschrijving van SRC is
ook belangrijk voor andere neutrino experimenten zoals MicroBooNE, DUNE, MINERvA
en NOvA.

Het wordt verwacht dat SRC een belangrijke rol spelen in assymetrische kernen met “exo-
tische” proton-neutron verhoudingen. Het theoretisch kader ontwikkeld in deze thesis kan
gebruikt worden om de verstrooiings experimenten aan deze exotische kernen te onder-
zoeken. Dit geeft toegang nieuwe middelen om SRC te bestuderen en een antwoord te
geven op de vraag of de robuuste SRC eigenschappen gelden in onstabiele kernen. Ver-
strooiingsexperimenten met onstabiele kernen worden in het algemeen gedaan in gëınver-
teerde kinematica, waarbij de onstabiele kern versneld wordt en verstrooit aan een hadro-
nisch deeltje. Dit hadron induceert dan de tweenucleonuitstoot in de onstabiele kern. Het
kan worden verwacht dat (initiële) finaletoestandreacties hierbij een nog grotere rol spelen
vergeleken met elektrogëınduceerde tweenucleonuitstoot. Het attenuatie-effect zal toene-
men en de massa-afhankelijkheid van de werkzame doorsnede heel zacht maken. Het model
beschreven in deze thesis kan direct toegepast worden voor deze soort reacties.
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