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Dynamical models implemented on the large scale architecture of the human brain may shed
light on how function arises from the underlying structure. This is the case notably for
simple abstract models, such as the Ising model. We compare the spin correlations of the
Ising model and the empirical functional brain correlations, both at the single link level and at
the modular level, and show that their match increases at the modular level in anesthesia, in
line with recent results and theories. Moreover, we show that at the peak of the specific heat
(the critical state) the spin correlations are minimally shaped by the underlying structural
network, explaining how the best match between structure and function is obtained at the
onset of criticality, as previously observed. These findings confirm that brain dynamics under
anesthesia shows a departure from criticality and could open the way to novel perspectives
when the conserved magnetization is interpreted in terms of an homeostatic principle imposed
to neural activity.

PACS numbers: 05.50.+q,87.19.L-
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It has been shown that a wide class of mod-

els, spanning a wide range from abstract to bio-

logically detailed, reproduce large scale collective

dynamics in the brain when they are in a critical

regime. Here we focus on possibly the simplest

one, the Ising model, implemented on the struc-

tural architecture of the brain, and look at what

happens when we introduce a further conserva-

tion constraint: the total magnetization remains

constant at each step. We show that this leads to

an improved correspondence between structure

and function at the level of modules. This phe-

nomenon is increased in particular under loss of

consciousness, when brain dynamics moves away

from the critical regime, thus providing insights

on how structure and function interact in the

brain.

I. INTRODUCTION

One of the key challenges in the study of complex net-
works is understanding the relation between structure
and the collective dynamics stemming from it. This issue
is of special relevance in neuroscience, where the question
translates to how structurally distinct and distant brain
areas dynamically interact1, both in healthy and patho-
logical conditions. Recent advances in diffusion imaging

and tractography methods allow the noninvasive in vivo

mapping of white matter cortico-cortical projections at
relatively high spatial resolution2, yielding a connection
matrix of interregional structural connectivity (SC). Sim-
ilarly, functional MRI can be used to obtain a functional
connectivity (FC) matrix, by calculating the statistical
dependencies between BOLD time series measured at dif-
ferent sites of the brain.3. Since the early days of con-
nectomics, the relation between SC and FC has been a
matter of interest, being expected but not trivial4,5.

The intricate interplay between structure and func-
tion can be investigated by simulating spontaneous
brain activity on structural connectivity maps. Recent
studies6–10 have implemented models of dynamical os-
cillators on the connectome structure11. These compu-
tational models vary from complex, biologically realis-
tic spiking attractor models, describing the firing rate
of populations of single neurons, over mean-field models
of neuronal dynamics, down to the simple, biologically-
näıve Ising model. All these studies agree that the
best agreement of simulated functional connectivity with
empirically measured functional connectivity can be re-
trieved when the brain network operates at the edge of
dynamical instability. This state corresponds to the crit-
ical regime, and for the Ising model coincides with the
maximum value of the heat capacity and of the suscepti-
bility. In particular some studies showed that the resting
activity exhibits peculiar scaling properties, resembling



2

the dynamics near the critical point of a second order
phase transition, consistent with evidence showing that
the brain at rest is near a critical point12. Moreover,
the possible origin and role of criticality in living adap-
tive and evolutionary systems has recently been ascribed
to adaptive and evolutionary functional advantages13.
In14 the large-scale pattern of empirical brain correlations
was compared with those from a large two-dimensional
Ising model, showing that the match is optimal when
the statistical system is close to the critical temperature.
Remarkably, it has been recently argued that propofol-
induced sedation and loss of consciousness move brain
dynamics away from the critical regime15.

However, the Ising model on brain networks has so far
been implemented only according to a spin dynamics in
which magnetization is not preserved16. Another class
of dynamics exists, in which the total magnetization is
preserved: it is used to describe for example alloy sys-
tems, where the two different spin states naturally cor-
respond to the two component atoms that comprise the
alloy17 and can be implemented via a pair exchange up-
date rule18. If we consider the Ising model on the human
connectome as a model of neural activity, the conserva-
tion of magnetization may be seen as a sort of homeo-
static principle for the overall activity of the brain.
The question we address here is whether an Ising model

with conserved magnetization on the human connectome
would be a more suitable model for the functional con-
nectivity of brain, in particular under anesthesia, where
previous works have hypothesized a departure from crit-
icality.
Under anesthesia, the brain spans a dynamical reper-

toire that is reduced with respect to wakefulness. This
would result in an increased correspondence between
structural and functional connectivity19,20. Following the
reasoning and the results of21,22 we think that this corre-
spondence is to be sought at the level of modules rather
than at the level of individual links.

II. METHODS AND DATA

A. Dynamical Ising models on brain networks

The study of the Ising model, an appealing descrip-
tion of phase transitions in ferromagnets, played a fun-
damental role in the development of the modern theory
of critical phenomena (see, e.g.,23 and the recent review
for Ising’s model 90th birthday24). In the original model,
a regular lattice is populated by 2-state spins, assuming
one of the two values σi = ±1. Pairs of nearest neigh-
bours spins interact so as to favour their alignment. The
Hamiltonian of the system is given by

H = −J
∑

〈ij〉

σiσj ,

the sum being over nearest neighbours pairs on the lat-
tice, the positive coupling J favouring ferromagnetic or-
der. For spatial dimension d > 1 the model exhibits, in
the thermodynamic limit, a phase transition with finite

critical temperature Tc, such that above Tc the spatial ar-
rangement of spins is disordered with an equal number of
up and down spins. Below Tc the magnetization is non-
zero and distant pairs of spins are strongly correlated.
All the equilibrium properties of the Ising model can be
obtained from the partition function Z =

∑

exp(−βH),
the sum being over the configurations of the system and β
being the inverse temperature. Dynamical rules leading
to the same equilibrium are not unique, all the possibil-
ities being fixed by the detailed balance condition. Fun-
damentally, the spin dynamics may or may not conserve
the total magnetization, depending on whether the Ising
model is being used to describe alloy systems, where the
magnetization is conserved as it is related to the composi-
tion of the material, or spin systems where magnetization
is not conserved.
According to Glauber dynamics16 the magnetization

is not conserved and each spin is sequentially considered
and flipped with probability Pflip = (1 + exp(β∆E))

−1
,

where ∆E is the energy difference associated to the
spin flip. Here we consider the Kawasaki spin-exchange
dynamics18 which conserves the magnetization: two
spins randomly chosen are swapped with probability

exp (−∆E),

where ∆E is the variation of the energy corresponding
to exchanging the two spins. A full iteration consists
in tentatively updating all the spins (pairs of spins) for
Glauber (Kawasaki) dynamics.
Turning now to couplings, let us denote Aij the sym-

metrical structural connectivity matrix. The Hamilto-
nian of the Ising model on the network is

H = −

∑

i,j

Jijσiσj ,

where the couplings are given by Jij = βAij and the pa-
rameter β plays the role of an inverse temperature. Since
we deal with finite size systems, they exhibit a (pseudo)-
transition between the disordered phase and the ordered
one, corresponding to the peak of the specific heat (and
of the susceptibility, for the case of Glauber dynamics).
In25 the Ising model with Glauber dynamics was imple-

mented on the human connectome matrix of11 at two dif-
ferent spatial scales, 998 and 66 nodes, and the directed
and undirected information transfer between nodes was
then quantified.
Spin correlations were evaluated using the classical lin-

ear Pearson correlation. The pairwise transfer entropy
TE, measuring the information flow from spin i to spin
j in each pair connected by a link in the underlying net-
work was computed as follows:

TEij =
∑

σj=±1

∑

Σj=±1

∑

Σi=±1

p (σj ,Σj ,Σi) · ...

... · log
p (σj ,Σj) p (Σj ,Σi)

p (σj ,Σj ,Σi) p (Σj)
,

where p (Σj ,Σi) is the fraction of times that the config-
uration (Σj ,Σi) is observed in the data set, and similar
definitions hold for the other probabilities.
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It was shown that at criticality the model displays
the maximal amount of total information transfer among
variables, with patterns consistent for both the coarser
and the denser scale. Given the fact that in this line
of research we are particularly interested in information
flow in networks, we have verified that the peak of the
information transfer corresponds to the peak of the spe-
cific heat; therefore a range of temperatures around the
peak of the information flow (or, equivalently, the peak
of the specific heat) will be taken as the critical regime
of the system. It is worth mentioning that it has been
observed in the regular 2D lattice Ising model that, dif-
ferently from the pairwise information flow which peaks
at criticality, the global information transfer peaks on
the disordered side of the transition, and the asymmetry
observed in26 as also been observed in27 when consid-
ering both Ising and Kuramoto (from the viewpoint of
correlations in phase synchronisation).

B. Data

The fMRI data that we consider in this work were
recorded from healthy subjects in awake conditions and
during propofol anesthesia. The motivation for the study,
the underlying physiological issues, and the protocol are
extensively described in28. The functional MRI (fMRI)
data was preprocessed with FSL (FMRIB Software Li-
brary v5.0). The first 10 volumes were discarded for
correction of the magnetic saturation effect. The re-
maining volumes were corrected for motion, after which
slice timing correction was applied to correct for tem-
poral alignment. All voxels were spatially smoothed
with a 6mm FWHM isotropic Gaussian kernel and af-
ter intensity normalization, a band pass filter was ap-
plied between 0.01 and 0.08 Hz. In addition, linear and
quadratic trends were removed. We next regressed out
the motion time courses, the average CSF signal and
the average white matter signal. Global signal regres-
sion was not performed. Data were transformed to the
MNI152 template, such that a given voxel had a vol-
ume of 3mm x 3 mm x 3mm. Finally we obtained
116 time series, each corresponding to an anatomical
region of interest (ROI), by averaging the voxel sig-
nals according to an anatomical template29. We se-
lected this partition for being the most used in fMRI
connectivity analysis, and because it includes subcorti-
cal structures. For the diffusion MRI data, we used the
publicly available data contained in the Nathan Kline
Institute- Rockland sample described and downloadable
at http://fcon 1000.projects.nitrc.org/indi/pro/eNKI
RS TRT/FrontPage.html. As a first step, the images
were corrected for motion and eddy currents due to
changes in the gradient field directions of the MR scan-
ner. In particular, the eddy-correct tool from FSL was
used to correct both artifacts, using an affine registra-
tion to a reference volume. After this, DTIFIT was used
to perform the fitting of the diffusion tensor model for
each voxel. Then, a deterministic tractography algorithm
(FACT)30 was applied using TrackVis31, an interactive
software for fiber tracking. Two computations were per-

formed to transform the anatomical atlas to each individ-
ual space: (1) the transformation from the MNI template
to the subject’s structural image (T1), and (2) the trans-
formation from the subject’s T1 to the subject’s diffusion
image space. Combining both transformations, each at-
las region is transformed to the subject’s diffusion space,
allowing to count the number of reconstructed stream-
lines connecting all ROI pairs.
It is worth to note that for group level analyses at the

scales considered in this study it is not relevant that the
structural connectivity used for the simulations is not
the one obtained from the same subjects for which the
functional connectivity was computed and compared32.

C. Modularity and modular similarity between networks

A key concept in network theory is modularity33. It
describes how efficiently a network can be partitioned
in sub-networks, and it is particularly relevant when it
comes to study the interplay between anatomical segre-
gation and functional integration in the brain34. Maxi-
mization of the modularity Q allows to identify commu-
nities. Here we use the algorithm described in35 which
also takes into account negative weights, a situation that
frequently arises in functional networks. The resolution
parameter is set to its default value γ = 1 and, for
each network, the algorithm was run 1000 times choos-
ing the maximal Q and the corresponding partition. In
order to compare, at the modular level, two networks
with the same nodes, we calculate the similarity of their
partitions quantifying it by the mutual information ap-
proach described in36. The code used to compute these
quantities is contained in the Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/)

III. RESULTS

We implemented the Ising model on the structural
brain networks, and evaluated the transfer entropy and
the spin correlations, as described in the previous sec-
tion. The results shown here correspond to the average
over 1000 runs, each consisting of 30000 full iterations of
the lattice (after discarding the transient). Since we deal
with a small system, and we are not interested in the low
temperature limit, we always assumed zero magnetiza-
tion for Kawasaki dynamics, i.e. the starting configura-
tion consisted in an equal number of plus and minus spins
randomly assigned to nodes. In other words, due to the
small size, we assume vanishing equilibrium global mag-
netization. We start considering, in figure (1), the follow-
ing problem: to which extent are the functional patterns
of the Ising systems shaped by the underlying topology,
at the level of individual links? We compare the anatomi-
cal network with the functional networks provided by the
dynamical system, as a function of the inverse tempera-
ture. The following quantities are depicted, derived from
the Ising model with Kawasaki dynamics on the struc-
tural connectome corresponding to awake conditions: the
Pearson correlation between the transfer entropy TE and

http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html
https://sites.google.com/site/bctnet/
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the coupling J over all the anatomically connected pairs,
and the Pearson correlation between spin correlations c

and J over all the anatomically connected pairs. The
plots of the average absolute value of the correlation and
the average transfer entropy, both peaking at criticality,
are also displayed for comparison. As figure (1) shows,
in the temperature regime at which information trans-
fer and correlations are higher (identified with the crit-
ical regime, see below), the link correlation of TE and
c, with J, is minimal; in other words the critical states
appear to be the ones at which the functional pattern is
minimally shaped by the details of the underlying struc-
tural network. These findings are in line with a previous
study on Ising models implemented on the connectome,
in which the best fit between model and empirical cor-
relations was observed when the entropy of the model
attractors started to increase, and not at its peak10.

β
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FIG. 1. The Ising model with Kawasaki dynamics is imple-
mented on the 116 regions structural connectome. The fol-
lowing quantities are depicted as a function of the inverse
temperature β: the correlation between the value of TE and
J over all the anatomically connected pairs (red line, with
bullets); the correlation between the value of c and J over all
the anatomically connected pairs (cyan, dotted line); the nor-
malized average absolute value of the correlation (blue, full
line); the normalized average transfer entropy (green, dashed
line).

Next, in order to elucidate whether and how the fit be-
tween model and empirical correlation change with the
level of consciousness, we consider both the fMRI data
recorded from healthy subjects in awake conditions and
during propofol anesthesia, as well as the correspond-
ing structural data. Varying the temperature, we im-
plemented the Ising model with Kawasaki dynamics on
the structural architecture connecting the 116 ROIs. We
compare the corresponding spin correlations with the em-
pirical functional correlations.
In order to visualize the typical patterns of the connec-

tomes under exam, in figure (2) we depict the 116 × 116
structural connectivity matrix, the empirical functional
connectivity matrix for wake and anesthesia conditions,
and the patterns of correlations of the Kawasaki model
tuned at three different temperatures corresponding to
relevant regimes in the curves described below (greatest
linkwise correlation, greatest mean squared error, max-
imum mutual information between structural and func-

tional modules).
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FIG. 2. Top: matrices corresponding to empirical data.
Structural connections (left), average correlations in wake-
fulness (center), average correlations in anesthesia (right).
Bottom: average correlations in simulated time series for
three values of the inverse temperatures, corresponding to
relevant points in the curves of the following figures.

As depicted in figure (3), when the link-wise correla-
tion between model and empirical functional patterns is
considered, the match between model and empirical cor-
relations is higher in wakefulness for Glauber dynamics,
and in anesthesia for Kawasaki dynamics, in the respec-
tive critical regimes for each dynamics. Moreover, under
sedation, the Kawasaki dynamics results in a better fit
and in a clearer separation between wake and anesthesia,
compared to the Glauber dynamics.
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FIG. 3. The link-wise correlation between the model spin
correlations and the empirical functional connectivities is de-
picted as a function of the inverse temperature β for wake-
fulness (dashed red line) and anesthesia (full blue line). Left
panel: Glauber dynamics. Right panel: Kawasaki dynamics.

In figure (4), the match between empirical and spin
correlations is measured in terms of the mean square
error between the two patterns, i.e. the average of
(

c
spin
ij − c

empirical
ij

)2

over all pairs of brain regions, cspinij

being the spin correlation of the Ising models and

c
empirical
ij the empirical functional connectivity. Results
show that again, the best match for anesthesia is bet-
ter than that for wake conditions, both for Glauber and
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Kawasaki dynamics. Using the mean square error, how-
ever, Glauber dynamics showed a better fit.
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FIG. 4. The mean square error between the model spin corre-
lations and the empirical functional connectivities is depicted
as a function of the inverse temperature β for wakefulness
(dashed red line) and anesthesia (full blue line). Left panel:
Glauber dynamics. Right panel: Kawasaki dynamics.

However, it has been shown that a modular compari-
son is better suited to investigate the interplay between
structure and function21. Hence, in order to better de-
scribe the relation between empirical and simulated func-
tional patterns at the modular level, we have evaluated
the mutual information between partitions (obtained by
maximizing the modularity) as a function of β to quan-
tify the relation between empirical functional correlations
and spin correlations from the model, for wake subjects
and subjects under anesthesia. In figure (5) the mutual
information is plotted for both Kawasaki and Glauber
dynamics. In wakefulness, where the same structural
connectivity subserves a wide repertoire of activity, we
observe a reduction of the mutual information in the criti-
cal regime with respect to the disordered phase, both for
Glauber and Kawasaki dynamics. This behavior is re-
versed, leading to increased mutual information between
structural and functional models, for the Kawasaki dy-
namics under sedation.

These results speak to the fact that Ising models tuned
at criticality result in connectivity matrices with a gener-
ally good linkwise resemblance with the empirical ones,
comparable or even better than the one obtained with
more biologically precise models37,38. This similarity is
represented by a peak in the curves in figures 3 which fol-
lows a trough, corresponding to the peak in mean squared
error of 4. According to the pairwise metric though, the
best resemblance remains the not-so-interesting one cor-
responding to the limit of high temperatures. On the
other hand, if we look at the mutual information between
structural and functional modules, we can observe that,
with respect to the disordered phase, Kawasaki dynamics
in the critical regime leads to a decreased match between
structural and functional modules in wakefulness, and an
increased one in anesthesia. These results, in line with
our hypotheses, are not evidenced by Glauber dynamics.
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FIG. 5. The mutual information between the partitions of
the empirical and model functional networks, as a function
of the inverse temperature β is depicted for Kawasaki and
Glauber dynamics, and for wake and anesthesia conditions.
The modular decomposition is obtained by maximization of
modularity.

IV. DISCUSSION AND CONCLUSIONS

We have considered pair exchange update rules for the
Ising model18 implemented on the structural brain net-
work at the macroscale, using a data set of healthy sub-
jects scanned during quiet wakefulness and during deep
sedation, a condition in which the structure-function re-
lation is modified. Our results show that the structure-
function relation is strengthened under anesthesia, both
at the link and modular level, compared to wake con-
ditions. Having shown that at criticality the functional
pattern is less dependent on the underlying structural
network, it follows that anesthesia takes the brain dy-
namics farther from the critical regime, in accordance
with previous evidence.
Moreover, at the modular level we obtained a bet-

ter match with empirical functional correlations using
Kawasaki dynamics compared to the more common
Glauber dynamics for which the magnetization is not
preserved16. This improved match suggests that the
conservation law of the Kawasaki dynamics might ad-
mit a physiological counterpart. A possible interpreta-
tion is seeing it as an effective implementation, due to
time scales separation, of the coupling from metabolic re-
sources to neural activity, a key ingredient that is missing
in neural models on the connectome39.

In agreement with recent theoretical frameworks40, our
results suggest that a wide range of temperatures corre-
spond to criticality of the dynamical Ising system on the
connectome, rather than a narrow interval centered in a
critical state. In such critical conditions, the correlational
pattern is minimally shaped by the underlying structural
network. It follows that, assuming that the human brain
operates close to a critical regime41, there is an intrin-
sic limitation in the relationship between structure and
function that can be observed in data. We have shown
that empirical correlations among brain areas are bet-
ter reproduced at the modular level using a model which
conserves the global magnetization. The most suitable
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way to compare functional and structural patterns is to
contrast them at the network level, using, e.g., the mu-
tual information between partitions like in the present
work.
During the awake resting state, spontaneous brain

activity constantly fluctuates across brain regions, ex-
hibiting a rich repertoire of functional connectivity pat-
terns. Previous studies accounted for long-range resting-
state functional connectivity persisting even after loss
of consciousness42–44. A recent study on monkeys19

posited that the role of structural connectivity in sculpt-
ing functional connectivity maps changes during wake-
fulness and anesthesia. According to the authors, wake-
fulness seems to be characterized by a rich repertoire
of connectivity patterns, while the functional connectiv-
ity patterns under sedation follow the underlying brain
structure. Another study reports increased similarity be-
tween whole-brain anatomical and functional connectiv-
ity networks during deep sleep20. Our results, showing
that the structure-function correspondence is enhanced
under anesthesia at the modular level, are in accordance
with this evidence.
Summarizing, we have considered the Ising model as a

valuable tool to explore large scale brain dynamics. We
have shown that the conservation of magnetization leads
to better correspondence between structure and function,
notably where this is more expected, that is in loss of
consciousness, again speaking to a less critical dynami-
cal regime. The reason of this improvement might lie in
the features added by the Kawasaki dynamics to large
scale connectivity (i.e. negative correlations). Its bio-
logical counterparts could be intuitively found in some
homeostasis mechanism or metabolic constraint, but no
validation tools for this conjecture exist at the moment.
Finally, our results confirm that matches between

structure and function should be sought at the modu-
lar level rather than among individual links, in line with
recent work21,22,45.

1H.-J. Park and K. Friston, Science (New York, N.Y.) 342,
1238411 (2013).

2O. Sporns, Networks of the Brain (2011) p. 412.
3H. H. Shen, Proceedings of the National Academy of Sciences
112, 14115 (2015).

4M. P. van den Heuvel, R. C. W. Mandl, R. S. Kahn, and H. E.
Hulshoff Pol, Human brain mapping 30, 3127 (2009).

5A. M. Hermundstad, D. S. Bassett, K. S. Brown, E. M. Aminoff,
D. Clewett, S. Freeman, A. Frithsen, A. Johnson, C. M. Tipper,
M. B. Miller, S. T. Grafton, and J. M. Carlson, Proceedings of
the National Academy of Sciences of the United States of Amer-
ica 110, 6169 (2013).

6C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thi-
ran, R. Meuli, and P. Hagmann, Proceedings of the National
Academy of Sciences of the United States of America 106, 2035
(2009).

7J. Cabral, E. Hugues, O. Sporns, and G. Deco, NeuroImage 57,
130 (2011).

8G. Deco, V. K. Jirsa, and A. R. McIntosh, Nature reviews.
Neuroscience 12, 43 (2011).

9G. Deco and V. K. Jirsa, The Journal of neuroscience : the official
journal of the Society for Neuroscience 32, 3366 (2012).

10G. Deco, M. Senden, and V. Jirsa, Frontiers in computational
neuroscience 6, 68 (2012).

11P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey,
V. J. Wedeen, and O. Sporns, PLoS biology 6, e159 (2008).

12A. Haimovici, E. Tagliazucchi, P. Balenzuela, and D. R. Chialvo,
Physical Review Letters 110, 178101 (2013), arXiv:1209.5353.

13J. Hidalgo, J. Grilli, S. Suweis, M. A. Muñoz, J. R. Banavar, and
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