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Although phytohormones such as gibberellins are essential for many conserved aspects of plant physiology and development,
plants vary greatly in their responses to these regulatory compounds. Here, we use genetic perturbation of endogenous
gibberellin levels to probe the extent of intraspecific variation in gibberellin responses in natural accessions of Arabidopsis
(Arabidopsis thaliana). We find that these accessions vary greatly in their ability to buffer the effects of overexpression of GA200x1,
encoding a rate-limiting enzyme for gibberellin biosynthesis, with substantial differences in bioactive gibberellin concentrations
as well as transcriptomes and growth trajectories. These findings demonstrate a surprising level of flexibility in the wiring of

regulatory networks underlying hormone metabolism and signaling.

The relationship between a phenotype and a specific
genetic change, also referred to as expressivity, depends
not only on the environment, but also on the genetic
background in which a mutation occurs (Dowell et al.,
2010; Chandler et al., 2013; Chari and Dworkin, 2013).
Although typically treated as a nuisance by laboratory
geneticists, such epistatic interactions are not only central
to studies of genetic variation in populations, but can also
increase our understanding of genetic networks and
phenotypic robustness (Félix, 2007; Félix and Wagner, 2008;
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Paaby et al., 2015; Vu et al., 2015). Similar to its implications
for human health (Schilsky, 2010), the accurate prediction
of background-dependent phenotypic effects of specific
mutations is of great interest to crop breeders.

Gibberellins (GAs) are phytohormones with well docu-
mented roles in germination, stem elongation, flowering,
and leaf, seed, and fruit development, often in response to
environmental changes (Hedden, 2003; Ueguchi-Tanaka
et al, 2007; Schwechheimer and Willige, 2009; Claeys
et al., 2014). In addition, roles in plant immunity have been
discovered (De Bruyne et al., 2014). GA20-oxidase
(GA200x), a rate-limiting enzyme in the GA biosyn-
thesis pathway, catalyzes consecutive oxidation events
in the late steps of the formation of active GAs. It uses
various intermediates as substrates, including GA,,,
GA;;, GA 5, GA,,, GA,,, and GA,, to finally form GA,
and/or GA,, that are converted into bioactive GAs
(Hedden and Thomas, 2012) by GA3-oxidase (GA3ox).
In Arabidopsis (Arabidopsis thaliana), five genes encode
GA20ox enzymes. In the Col-0 background, GA20ox1,
2, and 3 are the dominant forms with an important role
in growth and fertility, while GA20ox4 and 5 have minor
roles (Plackett et al., 2012). The mutation of GA20ox1, 2,
and 3 causes severe dwarfism and sterility (Rieu et al.,
2008; Plackett et al., 2012), and overexpression of GA200x1
has been shown to enhance plant growth as a result of
increased GA levels (Huang et al., 1998; Coles et al., 1999;
Gonzalez et al., 2010; Nelissen et al., 2012).

Here, to assess natural variation in the ability to re-
spond to changes in GA metabolism, we examined at
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multiple levels the effect of the ectopic expression of
GA200x1 in 17 Arabidopsis accessions. We found that in
terms of leaf growth, the accessions respond differently
to the increased expression of GA20ox1, although in-
creased levels of the bioactive GA were quantified in all
accessions. Our results indicate that hormone metabo-
lism and signaling are remarkably different in these
accessions.

RESULTS
Natural Variation in Growth and Hormone Content

Seventeen accessions from throughout the native
range of the species (Supplemental Table S1) were
grown for 25 d after stratification (DAS) in soil. Thirteen
leaf size-related parameters were measured at rosette
(fresh and dry weight, number of leaves, and total rosette
area), leaf (first leaf pair area, vascular complexity, and
density), and cellular level (stomatal index and density,
epidermal pavement cell number, area, and circularity,
and endoreduplication index of the first leaf pair). The
17 accessions, including the reference accession Col-0, var-
ied for all parameters (Fig. 1A; Supplemental Table S2),
differing more than 2.5-fold in rosette biomass, total
rosette area, pavement cell number and area, stomatal
density, and vascular complexity. Fresh weight showed a
significant positive correlation with dry weight, total
rosette area, leaf number, and leaf area and correlated
negatively with vascular density and complexity (Sup-
plemental Fig. S1).

To examine the potential link existing between growth
variation in these accessions and phytohormone accu-
mulation, we measured the levels of biosynthetic inter-
mediates and different bioactive forms of GA, cytokinin,
salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA),
and auxin at 12 DAS (Fig. 1, B and C; Supplemental Table
S3). GAs, SA, and the auxin indole-3-acetic acid (IAA)
varied the most, while cytokinins and ABA varied the
least, with JA showing an intermediate degree of changes
(Fig. 1, B and C). In addition, we found that the relation-
ships between different GAs and their intermediates,
most of which are substrates of GA200x, were complex.
For example, the bioactive GA, showed a similar profile
as its direct precursor, GA,, but the levels of all other in-
termediates did not parallel that of GA, and GA, (Fig. 1B).
Similarly, the bioinactive form GAg and its precursor GA,,
showed a similar pattern of accumulation, while their
intermediate forms, GA20 and GA1, were not detected
(Fig. 1B). These observations suggest a different degree of
GA200x activity for GA biosynthesis in the different ac-
cessions. We analyzed the relationship between all the
hormones measured using Pearson correlation, and only
positive correlations were found between the different
plant hormones (Supplemental Table S3; Supplemental
Fig. 52).

We uncovered that three hormones, GA, iP, and TAA,
were significantly positively correlated with pavement
cell number, a leaf growth parameter (Supplemental
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Fig. S3). Furthermore, one of the GA20ox products,
GA,,, and the GA bioinactive form, GAg, were nega-
tively correlated with the other two leaf growth pa-
rameters, endoreduplication index and stomatal index

(Supplemental Fig. S3).

Consequences of GA20ox1 Overexpression in
Different Accessions

Overexpression of GA20ox1 in the reference Col-0
background causes similar phenotypes as treatment
with exogenous GA, such as larger rosette leaves, lon-
ger hypocotyls, increased height, and early flowering
(Huang et al., 1998; Coles et al., 1999; Gonzalez et al.,
2010; Nelissen et al., 2012; Ribeiro et al., 2012). To in-
vestigate natural genetic variation in phenotypic re-
sponses to GA level perturbance in Arabidopsis, we
introduced the same overexpression construct into
16 additional accessions. In these accessions, the cDNA
sequence of the GA20ox1 showed only few differences
that led to synonymous substitutions at protein level
(Supplemental Fig. S4; Supplemental Table S54). Two to
five independent homozygous lines for each accession
were selected and grown in soil for 25 d.

Leaf and Rosette Area

Most, but not all, accessions visibly responded to
GA200x1 overexpression, with altered rosette sizes and
longer petioles (Fig. 2A). Importantly, the response was
not always in the same direction. For example, whereas
in the majority of accessions, the area of younger leaves
was increased, in five accessions (An-1, Ler-0, Blh-1,
C24, and WalhaesB4) these leaves were smaller as
compared with the corresponding wild-type controls
(Fig. 2B; Supplemental Fig. S5; Supplemental Tables S5
and S6). Overall, for 10 accessions, transgenics had
larger rosettes (Fig. 2C), as measured by rosette ex-
pressivity corresponding to the ratio of a transgenic line
rosette area to that of the wild type. The penetrance,
corresponding to the proportion of accessions showing
an increased rosette area, was therefore 60%.

To test if the accessions show the same variation in
response after exogenous treatment of GA, wild-type
plants were grown in soil for 14 d and sprayed every 2 d
with GA,, and at 25 d, individual leaf area was mea-
sured. As shown in Supplemental Figure S6 (Supplemental
Table S7), we observed that accessions for which a large
decrease in leaf area was found upon GA20ox1 over-
expression (An-1, Ler-0, Blhl, and C24) also showed a
decrease in leaf area upon GA, treatment. Similarly, ac-
cessions for which transgenics showed the largest in-
crease in leaf area (ICE61, ICE138, ICE97, or Oy-0) also
presented an increase in leaf area when sprayed with
GA,,. For few accessions (WalhaesB4 or Col-0), the effect
was different between the transgenics and the GA-treated
plants. This discrepancy might be explained by the fact
that the treatment started at 14 d, while GA200x1 is
overexpressed from the germination on.
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Figure 1. Variability in leaf size-related parameters and hormone content in 17 Arabidopsis accessions. A, Heat map representing
the distance to the average of 17 accessions for 13 leaf size-related parameters (n = 3). Accessions are arranged based on the value of
the rosette area. The measurements and calculations can be found in Supplemental Table S2. B, Basal GA levels in 17 accessions. GA
biosynthesis (GA200x and GA30x) and catabolic (GA20x) enzymes are indicated with different colors. GA20 and GA1 were not
detected. C, Basal levels of cytokinins (tZ and iP), ABA, JA, SA, and IAA in the 17 accessions (n = 3). Error bars represent se.
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Figure 2. Phenotype of GA200x1 overexpressing (OE) lines of 17 Arabidopsis accessions. A, Image of 25-d-old rosettes
of representative GA20ox1 OE lines and their corresponding wild type. Bar = 2 cm. B, Heat map representing, per
accession, the average predicted percent difference in each leaf area between GA200x1 OE lines and their corre-
sponding wild type. Bold with underline: P value < 0.05. C, Heat map showing the estimated expressivity and
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In conclusion, we confirm that these accessions re-
spond differently to changes in GA and that in the
majority of the accessions the size of the young leaves is
increased.

GA Levels

Next, we measured GA levels in the transgenic lines
(Fig. 2E; Supplemental Fig. S7). We found that accu-
mulation of GA20ox substrates GAg;, GA,,, GA,y, and
GA,, was reduced, whereas GA20ox products GA, and
GA,, two bioactive forms, as well as GA, a bioinactive
form of GA, were strongly increased in all transgenic
accessions compared with their wild-type control. We
noticed that, within each accession, the levels of GA,,
and also of GA,, in the different transgenic lines were
relatively constant. For example, similar high amounts
of GA, were found in the five transgenics from Ler-0,
and this accumulation was 3-fold higher than the levels
in the five transgenics from Blh-1. This constant level of
accumulation suggests that the levels of these GAs are
particularly well buffered within a given accession
against different levels of GA20ox1 overexpression.
However, there was no correlation between GA levels
and expressivity of the growth-related phenotype
(Supplemental Table S8), indicating that the down-
stream growth responses differ across accessions.

We also found that rosette expressivity was signifi-
cantly positively correlated with leaf number and fresh
and dry weight of the wild-type accessions and nega-
tively correlated with both vascular complexity and
density (Supplemental Fig. S8).

In conclusion, GA20ox1 overexpression causes dis-
tinct effects in different accessions, with the majority of
accessions showing an enhanced leaf and rosette size.

Transcriptome Changes in Response to
GA200x1 Overexpression

We used RNA-seq of 10 accessions and their repre-
sentative transgenic derivatives with variable changes
in leaf 6 area to profile differential downstream re-
sponses of GA20ox1 overexpression. Because cell pro-
liferation and/or cell expansion were affected in the
transgenic lines (Fig. 2D) and the transition between cell
proliferation and cell expansion is crucial for deter-
mining the final leaf size (Andriankaja et al., 2012;
Gonzalez et al., 2012; Hepworth and Lenhard, 2014),
leaves were microdissected (size <0.25 mm?) at the
beginning of this transition, either at 12 or 13 DAS
depending on the accession (see Methods), and used for
RNA-seq. At this time point, only GA20ox1 and 2 were

Natural Variation of Gibberellin Responses

found to be expressed in the wild-type accessions with
variable expression levels mainly for GA20ox2 between
the accessions (Supplemental Fig. S9). Because these
two genes are the major expressed forms of the GA20ox
gene family in the accessions used for RNA-seq, we also
verified the sequence of GA200x2. As for GA20o0x1, we
found small changes between the accessions in the
cDNA sequences that led to synonymous changes (Sup-
plemental Fig. S10).

RNA-seq first confirmed overexpression of GA20ox1
in all transgenic lines (Supplemental Fig. S11), but this
was not predictive of bioactive GA, levels as measured
by a nonsignificant Pearson correlation of 0.211. Con-
sistent with the morphological observations, accession-
specific properties dominated over the effects of GA200x1
overexpression, as deduced from the principal compo-
nent analysis (PCA; Fig. 3A; Supplemental Fig. 512).

To identify differentially expressed genes, we con-
sidered transgenic lines of a particular accession as re-
peats of a single line because one sample per genotype
was sequenced. Because only one wild-type sample per
accession was sequenced, the experimental setup did
not allow the identification of an accession-specific re-
sponse. We therefore performed a statistical test to identify
a general differential response between wild types and
transgenic lines over the 10 accessions. A total of 730 genes
were identified as differentially expressed (DE) with
361 with a fold change higher or lower than 1.5. Over-
represented Gene Ontology (GO) categories were photo-
synthesis, secondary metabolism, protein and hormone
metabolism, regulation of transcription, transport, amino
acid metabolism, and sulfur assimilation pathways (Fig. 3,
B and C; Supplemental Table S9; Supplemental Fig. S13).
Genes involved in GA deactivation and degradation
(GIBBERELLIC ACID METHYLTRANSFERASE?2, GA20x1,
and GA20x4) were up-regulated, and GA biosynthetic
genes GA3ox1 and GA20ox2 were down-regulated in
many lines, indicative of feedback regulation (Fig. 3B).
Several genes related to other phytohormones, including
JA, ABA, brassinosteroid, auxin, ethylene, and cytokinin,
were altered in expression, reflecting extensive cross-
regulation among hormones (Weiss and Ori, 2007). For
example, six small auxin up-regulated RNAs (SAUR), two
ethylene response factors (ERF), and 9-cis-epoxycarotenoid
dioxygenase (NCED), a gene encoding a rate-limiting en-
zyme in ABA biosynthesis, were differentially expressed
in the GA20ox1 overexpression lines. Genes related to
photosynthesis were mostly down-regulated (Fig. 3C).
Because we analyzed young developing leaves, a possible
explanation is that GA promotes growth and delays the
onset of differentiation and the establishment of the pho-
tosynthetic apparatus by decreasing leaf chlorophyll con-
tent (Cheminant et al., 2011).

Figure 2. (Continued.)

penetrance (Sel, selective; Ros, rosette; see “Materials and Methods”) of GA20ox1 OE. D, GA levels in GA20ox1 OE
lines. The normalized values represent the average concentrations between all transgenics for one accession and are

represented with st bars (n = 3).

Plant Physiol. Vol. 173, 2017

707

Downloaded from www.plantphysiol.org on January 12, 2017 - Published by www.plantphysiol.org
Copyright © 2017 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01626/DC1
http://www.plantphysiol.org/
http://www.plantphysiol.org

Nam et al.

200

100
!
o
o
o
(8]

Cal-0, 3 I
ColU_4 ?
o Dok 0 WiE Yége! Wz 3\1a7§§§g~

g¥q=/5 JSha |

PC2

¥

-100

-200
[

-200 -100 (1] 100 200

PC1

L
o
o
o
o

ICET5
Ler-0
WalhasB4
Yeg-1

4530658

2415378

84,0674
420337

00

AT4G25420:gibberellin 20-oxidase 1

AT1G75590:small auxin upregulated RNA 52
AT3G03850:small auxin upregulated RNA 26
AT1G15550:gibberellin 3-oxidase 1
AT5G51810:gibberellin 20 oxidase 2
AT2G31230:ethylene-responsive element binding factor 15
AT3G16450:jacalin-related lectin 33
AT3GB0690:SAUR-like auxin-responsive protein family
AT3G16460:jacalin-related lectin 34
AT5G05860:UDP-glucosyl transferase 76C2
AT1G47990:gibberellin 2-oxidase 4

AT4G34790:small auxin upregulated RNA 3

. AT1G30100:9-cis-epoxycarotenoid dioxygenase
AT4G23340:2-oxoglutarate (20G) and Fe(ll)-dependent oxygenase superfamily protein
AT2G42820:HVA22-like protein F

AT4G34800:small auxin upregulated RNA 4
AT4G17490:ethylene responsive element binding factor 6
AT1G29500:SAUR-like auxin-responsive protein family
AT5G18030:small auxin upregulated RNA 21
AT1G29510:small auxin upregulated RNA 67
AT2G17230:exordium like 5

AT1G30040:gibberellin 2-oxidase2

AT1G19830:small auxin upregulated RNA 54
AT5G48180:nitrile specifier protein 5
AT1G78440:gibberellin 2-oxidase 1
ATS5GS56300:gibberellic acid methyltransferase 2

9976857

49884288

56100033
28054516

|

oo

AT1G73110:P-loop containing nucleoside triphosphate hydrolases superfamily protein
AT1G29910:chlorophyll A/B binding protein 3

AT3G27690:light-harvesting chlorophyll B-binding 2, photosystem Il light harvesting complex gene 2.3
AT1G15820:light harvesting complex photosystem Il subunit 6

AT2G05070:photosystem Il light harvesting complex gene 2.2
AT1G32060:phosphoribulokinase (PRK)

AT5G38410:Ribulose bisphosphate carboxylase (small chain) family protein
AT2G13360:alanine:glyoxylate aminotransferase 1, L-serine:glyoxylate aminotransferase
AT2G34430:light-harvesting chlorophyll-protein complex Il subunit B1
AT1G29920:chlorophyll A/B-binding protein 2

AT2G39730:rubisco activase

AT3G54050:High Cyclic Electron Flow 1

ATSG38420:Rubisco small subunit 2B

AT5G38430:Rubisco small subunit 1B

Figure 3. PCA of transcriptomics data and heat maps representing the fold change of differentially expressed genes in GA20ox1 OE lines. A, PCA
plot representing classifications of transcriptomics data of wild-type and GA200x1 OE lines. Each accession is displayed in a different color. W,
wild type; 1-5, independent transgenic lines. B and C, Differentially expressed genes involved in hormone metabolism (B) and photosynthesis ().
Yellow and blue colors represent increased and decreased expression, respectively, in comparison with the wild types. Only DE genes that show
at least 1.5-fold change difference are shown. Hierarchical clustering was done for both genes and samples with Manhattan distance metrics.
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To identify genes for which the expression pattern
could be linked to the degree of response to the trans-
genes, we estimated correlation between changes in
expression and rosette expressivity. This correlation
analysis identified 132 genes that were either signifi-
cantly positively (71) or negatively (61) correlated with
expressivity of morphological effects (Fig. 4). The genes
with an expression positively correlating with rosette
expressivity belonged to various GO categories, such as
regulation of programmed cell death or regulation of
response to drug or glycerol catabolic process, while the
function of genes negatively correlated was related to
circadian rhythm, response to organic stimulus, response
to stress, and response to hormone, auxin, ethylene, and
salicylic acid but also gibberellin (Supplemental Fig. S14).
Among these genes, 13 were found to be significantly
differentially expressed with a fold change higher or
lower than 1.5.

We speculate that these genes (discussed below) might
have important roles in determining the influence of
GA200x1 overexpression in the different accessions.

DISCUSSION

Overexpression of GA20ox1 in 17 accessions in-
creased the levels of the bioactive forms of GA (GA, and
GA,) and depleted GA,,, the direct precursor of GA,, in
all accessions, demonstrating that the GA20ox1 trans-
gene is active in all accessions. A remarkable observa-
tion was that the levels of GA; and GA, are very similar
across multiple transgenic lines of an accession. In other
words, there appears to be an accession-specific maxi-
mum accumulation level of GA; and GA,. The reason
for this is currently unclear, but it is known that bio-
active GA forms stimulate the expression and activity
of GA catabolism, counteracting the accumulation of
the bioactive GAs and converting GA to bioinactive
forms such GAS8. Furthermore, GA represses the ex-
pression of endogenous genes encoding the GA bio-
synthetic genes GA20ox and GA3ox (Coles et al., 1999;
Nelissen et al., 2012; Ribeiro et al., 2012). Such feedback
regulation was also observed in the transcriptomics
data of the GA20ox1 overexpression lines in all acces-
sions analyzed. Possibly, there is an accession-specific
feedback control in which the GA receptors and the
GA-triggered degradation of DELLA proteins likely
play a role (Ueguchi-Tanaka et al., 2007; Claeys et al.,
2014). Although the majority of accessions showed a
positive effect on leaf growth upon introduction of the
GA200x1 transgene, the effect quantitatively differed
between accessions, and in some accessions, GA200x1
overexpression had even a negative effect on leaf and
rosette size. We confirmed this effect when wild-type
plants were treated with GA,. However, no clear cor-
relation could be found between the levels of GA200x1
overexpression or the levels of various GAs and the
observed effects. Similar genotype-dependent effects
on freezing tolerance have been found when the cold
tolerance genes CBF1, CBF2, and CBF3 were down-
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regulated in eight different accessions of Arabidopsis
(Gery et al., 2011).

We also observed that the biomass of the wild-type
accessions was positively correlated with the growth-
promoting effect of GA20ox1 overexpression on rosette
size. Accessions with larger rosettes showed a more
pronounced response to GA20ox1 overexpression than
those with smaller rosettes. We hypothesize that in
large accessions, the growth-regulatory network is less
constrained and more prone to the effect of positive
growth regulators, whereas in small accessions, which
have a more restrictive growth network, it would be
more difficult to make larger plants. In addition, it seems
that there is more room for physical expansion in larger
accessions because vascular density and complexity in
the wild-type accessions showed a negative correlation
with rosette expressivity. For rosette expressivity, no di-
rect correlation with GA levels was found. A possible
reason for this observation is that rosette size is a complex
trait determined by many different factors, among which
leaf number and size and speed of development that
therefore has to integrate different individual organs.

How can we explain the natural variation in the effect
of GA200x1 overexpression based on our finding of al-
most no strong correlation between its transcript level,
active GA quantities, and phenotypic effects? Because
many steps exist between the expression of GA20ox1
and its actual effect on growth, differences in signal
transduction along the GA pathway, depending on the
genetic background, could therefore be the reason for
the observed variability. First, translatome analysis af-
ter treatment with bioactive GAs has revealed that
differential mRNA translation, possibly varying be-
tween the different accessions, is important for the
control of feedback regulation of GA-related genes
(Ribeiro et al., 2012). Second, at the protein level, the
amount of the GA-receptor (GID) and DELLAs, which
are negative regulators of GA signaling, their affinity,
and their efficiency to form the regulatory module
GA-GID-DELLA might be different in the different
accessions and, therefore, differentially affect the re-
sponse. Distinct interactions with other growth regula-
tory elements could also explain the variation observed.
It has been shown, in Col-0, that overexpression of
GA200x1 in binary combination with an altered expres-
sion of growth-promoting genes leads to different size
phenotypes in function of the gene combination
(Vanhaeren et al., 2014). It is therefore possible that
differences in expression of growth regulatory genes,
triggering different cellular characteristics in the wild-
type plants, differently influence the effect of GA200x1
overexpression. In addition, we identified 132 genes of
which the expression levels are correlated with the
phenotypic expressivity of GA20ox1 in all analyzed
accessions. Interestingly, among the genes having an
expression pattern negatively correlated with the de-
gree of response to GA20ox1, several are related to the
response to hormone stimulus and especially to GA.
For example, XERICO (AT2G04240), known to be
up-regulated by DELLA and repressed by GA and to
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promote accumulation of ABA (Zentella et al., 2007), is addition, few of the correlated genes have previously
more or less expressed in the accessions presenting the been associated with plant growth. For example, GRF8
smallest or largest rosette expressivity, respectively. In (AT4G24150) is one of the nine members of the GROWTH
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REGULATING FACTOR gene family with a major role in
regulating cell proliferation and/or cell expansion during
plant development (Kim et al., 2003; Vercruyssen et al.,
2014). Two auxin-related genes were also found to corre-
late with rosette expressivity: ARABIDOPSIS ABNORMAL
SHOOT3 (AT4G29140; Li et al., 2014) and REVEILLEI]
(AT5G17300; Rawat et al., 2009). Interestingly, it has been
shown that REVEILLE1 binds to the promoter of GIB-
BERELLIN 3-OXIDASE2, can inhibit its transcription,
and therefore suppresses the biosynthesis of GA (Jiang
etal., 2016). Further work is required to determine whether
this subset of genes has, either alone or in combination, a
functional role in determining the accession-specific re-
sponses to elevated GA levels.

CONCLUSION

Plant growth is regulated by complex molecular
networks that are determined by the genome and its
interaction with the ever-changing environment. Such
growth regulatory networks are expected to be rather
different among species and even within a species,
which might serve as a key element in adaptation to
different environments. It has been demonstrated that
mutations or transgenes influencing growth might
have different effects in different genetic backgrounds
in several model organisms (Dowell et al., 2010;
Chandler et al., 2013). Here, we show for 17 different
Arabidopsis accessions that the ectopic expression of a
rate-limiting enzyme for gibberellin biosynthesis has
very different effects on growth depending on the ac-
cession in which the gene is introduced. Most acces-
sions visibly responded by changing their growth
especially with an altered leaf size and shape. However,
across the accessions, the response did not always cor-
respond to a positive effect on growth. Ten accessions
showed larger rosettes whereas others had smaller ro-
sette size compared to the wild type. We observed that in
all transgenic lines, GA levels showed the same direction
of accumulation, suggesting that GA biosynthesis/
metabolism pathway is commonly changed across the
accessions. Remarkably, transcript levels of GA20ox1
did not correlate with the levels of bioactive GA. Fur-
thermore, the levels of bioactive GA forms in the dif-
ferent transgenic lines were remarkably constant for all
transgenics in each accession, suggesting the existence
of an accession-specific plateau for maximal accumu-
lation of these GAs. GA levels were therefore not cor-
related with the phenotypes, suggesting that a high
accumulation level of GA is not always responsible for
a positive growth regulation.

In order to provide further insight into the mecha-
nism that is behind the accession-specific effect of GA
perturbation, screening for modifier genes that sup-
press the response to GA perturbation in transgenic
lines of a specific accession could be performed. Fur-
thermore, detailed analysis of the GA signaling path-
way in the different accessions is likely to shed light on
how GA affects growth to a very different extent in
different Arabidopsis accessions.
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MATERIALS AND METHODS
Plant Material and Growth Conditions

Seventeen Arabidopsis (Arabidopsis thaliana) accessions were selected to
cover most common genetic variants of Arabidopsis (Supplemental Table S1)
and used to generate GA20oxI-overexpressing lines. cDNA of the full GA200x1
coding region from Col-0 was cloned in the fluorescence-accumulating seed
technology vectors (Shimada et al., 2010) and introduced into the 17 accessions
following the floral dip protocol (Clough and Bent, 1998). Dried transgenic T1
seeds were selected based on fluorescence signal in the seed coat and sown on
soil for seed production. T2 transgenic seeds were harvested, and selection of
five independent single-locus insertion lines (75% of fluorescent seeds) was
done. Seeds were sown on soil for seed production, and expression of the
transgene was verified by RT-qPCR. From these lines, at least two and maxi-
mum five independent T3 homozygote lines for each accession were selected
for further experiments. All plants were grown in soil under a 16-h-day/8-h-
night regime at 21°C in a growth chamber.

For GA treatments, the 17 accessions were grown in soil until 14 d after
stratification, and plants were sprayed every second day with 1 mL of 50 um GA4
containing 0.1% (v/v) Tween 80 or mock (Ribeiro et al., 2012). Leaf series were
made when plants were 25 d old.

Phenotypic Analysis

Measurement of 13 Leaf Size-Related Parameters in
17 Accessions

Twenty four plants for each accession were grown in soil for 25 d in three
independent experiments. Plants were randomly distributed. Fresh and dry
weight was measured from 8 to 12 plants, and leaf series were made by dissecting
individual leaves from 8 to 12 plants and mounting them on a 1% agar plate. The
area of each individual leaf was measured with the Image] software (http:/ /rsb.
info.nih.gov/ij/). Total rosette area and total leaf number were calculated from
the leaf series analysis. Measurements of venation patterns were done as pre-
viously described (Dhondt et al., 2012) from leaves 1 and 2. The cellular analysis
on leaves 1 and 2 was done as previously described (Andriankaja et al., 2012)
and allowed calculating pavement cell number, area, and circularity and sto-
matal index and density. Ploidy levels of leaves 1 and 2 were measured, and the
endoreduplication index was calculated as previously described (Claeys et al.,
2012). The measurements of fresh and dry weight, total leaf number, leaves
1 and 2, total rosette area, and endoreduplication index were obtained from the
three repeats. The cellular analysis and the vasculature analysis were done for
two repeats from five leaves for each repeat. For the heat map of leaf size-related
parameters (total rosette area, fresh weight and dry weight of the shoot, total
number and area of leaves, pavement cell number and area, cell circularity,
endoreduplication index, stomatal density, stomatal index, and vascular com-
plexity and density of leaves 1 and 2) in the 17 accessions, the measured value
for a parameter in each accession was divided by the average of this parameter
for all accessions.

Measurement of Leaf Area in the Transgenic Lines

Ten plants per genotype were grown in a randomized manner for 25 d in soil.
All the independent transgenics for an accession were grown in the same ex-
periment together with their corresponding wild type. Separate experiments for
each natural accession were conducted. Leaf series were made by dissecting
individual leaves from 10 plants, and the leaf area was measured with the Image]J
software.

To evaluate the response to the transgene and therefore to estimate the effect
of the transgene in the background of the natural accession versus the un-
transformed natural accession on each leaf, leaf area was log transformed to
stabilize the variance. Data were truncated so that there were at least two ob-
servations for each leaf of both the transgenic lines and the corresponding wild
type. The mean model consisted of the main effects of GA20ox1 overexpression
on leaf size and their interaction term. Due to the unbalanced and complex
nature of the data, the Kenward-Rogers approximation for computing the de-
nominator degrees of freedom for the tests of fixed effects was used. An
autoregressive structure was used to model the correlations between mea-
surements done on the leaves originating from the same plant. The main in-
terest was in the effect of the gene on leaf area for each leaf separately. Simple
tests of effects were performed at each leaf between the transgenic lines and the
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corresponding wild type. Difference estimates were represented as percentage
of the least-square means estimate of the wild type and leaf. The analysis was
performed with the mixed and plm procedure of SAS (version 9.4 of the SAS
System for Windows 7, 64 bit; SAS Institute).

Rosette expressivity is defined as the ratio of a transgenic line rosette area to
that of the wild type. In the case of rosette expressivity per accession, the mean of
rosette expressivity per transgenic line for an accession has been taken.

Hormone Analysis

The shoot of seedlings grown in soil until stage 1.03 (Boyes etal., 2001; 12 DAS
for Cvi-0 and 11 DAS for the other accessions) was harvested in the middle of
the day for three independent experiments and frozen in liquid nitrogen. The
phytohormones GA (GA,, GAg, GA,y, GA,y, GA,,, GA, and GAg,), IAA (TAA,
IAAsp, IAlle + IALeu, and IAPhe), ABA, SA, cytokinin (tZ, tZR, tZRPs, cZ, cZR,
¢ZRPs, DZ, DZR, DZRPs, iP, iPR, iPRPs, tZ7G, tZ9G, tZOG, tZROG, cZROG,
tZRPsOG, DZ9G, iP7G, and iP9G), and JA were measured as described pre-
viously (Kojima et al., 2009; Shinozaki et al., 2015). The hormone data were
modeled with a linear model with accession as main factor and experiment as
fixed block factor due to small number of samples (three repeats). The model
was fitted with the Im function from the R software (v 3.0.1; R Core Team, 2015).
Least squares means and standard errors were calculated with the lsmeans
function of the Ismeans library (v. 2.10; Lenth and Hervé, 2014) from the R
software (v 3.0.1; R Core Team, 2015). These estimates were used in Pearson
correlation analyses.

RNA Extraction

Total RNA was extracted from the shoot of 12-d-old seedlings of T2 trans-
genic lines and the corresponding wild-type plants according to a combined
protocol of TRIzol (Invitrogen) and the RNeasy kit (Qiagen) with on-column
DNase (Qiagen) digestion. The expression of the transgene was analyzed by
RT-qPCR. RT-qPCR was performed as previously described (Claeys etal., 2012).

For RNA-seq analysis, seedlings with one biological repeat of wild-type
plants and GA20ox1-overexpressing lines (at 12 DAS for Col-0 and Ey15-2 and
at 13 DAS for WalhaesB4, ICE97, ICE138, ICE75, Ler-0, Yeg-1, Sha, and ICE153)
were harvested in RNA ice-later solution (AM7030; Ambion) and incubated at
—20°C for at least a week. Leaf 6 was microdissected on a cold plate with dry ice
under a stereomicroscope and frozen in liquid nitrogen. RNA was extracted
according to a combined protocol of TRIzol (Invitrogen) and the RNeasy kit
(Qiagen) with on-column DNase (Qiagen) digestion. RNA was quantified and
the quality was checked with a 2100 Bioanalyzer (Agilent).

RNA-Seq Analysis

Library preparation was done using the TruSeq RNA Sample Preparation Kit
v2 (lumina). In brief, poly(A)-containing mRNA molecules were reverse
transcribed, double-stranded cDNA was generated, and adapters were ligated.
After quality control using the 2100 Bioanalyzer, clusters were generated
through amplification using the TruSeq PE Cluster Kit v3-cBot-HS kit (Illumina)
followed by sequencing on a Illumina HiSeq 2000 with the TruSeq SBS Kit v3-HS
(Ilumina). Sequencing was performed in paired-end mode with a read length of
50 bp. The quality of the raw data was verified with FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/; version 0.9.1). Next, quality
filtering was performed using the FASTX toolkit (http:/ /hannonlab.cshl.edu/
fastx_toolkit/; version 0.0.13): Reads where globally filtered in which for at least
75% of the reads the quality exceeds Q20, and 3’ trimming was performed to
remove bases with a quality below Q10. Repairing was performed using a
custom Perl script. Reads were subsequently mapped to the Arabidopsis ref-
erence genome (TAIR10) using GSNAP (Wu and Nacu, 2010; version 2011-12-
28) allowing maximally two mismatches. The concordantly paired reads that
uniquely map to the genome were used for quantification on the gene level with
htseq-count from the HTSeq.py python package (Anders et al., 2015). The
analysis was implemented as a workflow in Galaxy (Goecks et al., 2010).

For the visualization of RNA-seq expression data and correlation analysis,
count data were normalized following the normalization pipeline with the
trimmed mean of M-values algorithm as implemented in the edgeR library from
the R software (v.3.0.1; R Core Team, 2015). Weakly expressed genes were
previously filtered out by removing genes that have less than five samples with
an expression level lower than 0.5 counts per million. The 0 counts of normalized
data were substituted with value 1-e10 and then the whole data set was log,
transformed.
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The PCA plot on transformed count data were done in R software (v.3.0.1;
R Core Team, 2015) using the “prcomp” function.

Differential Expression Analysis

Differential expression analyses of RNA-seq data were conducted with the
EdgeR library (v.3.4.2) of the Bioconductor software from the R software (v.3.0.1;
R Core Team, 2015). Filtering and normalization were performed as previously
described. In this analysis, we consider transgenic lines of a particular accession
as repeats of a single line; otherwise, we would not be able to run statistical tests
because we have a single repeat per line. A statistical test for general, mean
differential expression between wild types of accessions and transgenic lines of
these accessions was performed using the gImLRT function with a contrast
(Accessionl_WT — Accessionl_OE) + Accession2_WT — Accessionl_OE) +.... +
(AccessionN_WT — AccessionN_OE). For further analysis, genes were selected
based on their false discovery rate adjusted P value lower than 0.05 and/or fold
change threshold between transgenic lines and the wild type. The filter on the
fold change requires a fold change higher than 1.5 for each transgenic line of an
accession in at least one accession.

Enrichment analysis was done in MapMan (Ramsak et al., 2014; http://
mapman.gabipd.org/) with significantly DE genes.

Heat maps are generated in Mev (v 4.9; Howe et al., 2011) for significantly DE
genes filtered for and a 1.5-fold change threshold between transgenic lines and
the wild type. Hierarchical clustering was done for both genes and samples
with Manhattan distance metrics in Mev (v 4.9; Howe et al., 2011).

Sequence Extraction and Alignment

The sequences from AT4G25420 and AT5G51810 were extracted from the
RNA-seq data. After preprocessing and mapping of the reads to the TAIR10
genome, sorting and deduplication of the read libraries were performed using
picard v1.129 (http://broadinstitute.github.io/picard/). GATK v3.3.0 was
used for variant calling (Van der Auwera et al., 2013). Analysis was based on
recommendations in “Best Practices for RNA-seq” (https://www.broadinstitute.
org/gatk/guide/best-practices?bpm=RNAseq). Before variant calling was per-
formed, the different libraries were preprocessed using the tools splitnCigar,
haplotypecaller, realignertargetcreator, indelrealigner, baserecalibrator, and
printreads. In the haplotypecaller step, only high-quality scores were considered
by setting a quality of 50. Next, a multisample variant calling was performed
using haplotypecaller. In this step, all samples are analyzed together. Variants
were filtered using VariantFiltration with the options -window 35, -cluster 3,
-filterName FS, -filter “FS > 30.0”, -filterName QD, and -filter “QD < 2.0.” The
resulting variants file was split by sample using bcftools (http://github.com/
samtools/bcftools). Sequences were extracted for the genes (AT4G25420 and
AT5G51810) using the alternative alleles for each sample using the GATK tool
Fasta Alternate Reference Maker (Van der Auwera et al., 2013) and based on the
Coding DNA Sequence coordinates (based on the structural annotation of
TAIR10). The reverse complement was generated for genes located at the negative
strand and subsequently protein sequences were extracted using custom scripts.

To align the extracted sequences, CLC main Workbench 6.0 was used (CLC
bio, a Qiagen Company).

Correlation Analysis

Pearson correlation coefficient tests were run independently between phe-
notypes, between phenotypes and hormones, between hormones, and between
penetrance and RNA-seq fold change data. Pearson correlation coefficients were
calculated with corr.test function in R. The adjusted P values of correlations were
calculated with a permutation test. We permuted a tested trait and ran corre-
lation tests over the whole considered data set. Such a run was repeated
1000 times. The adjusted P values are calculated from all runs over all repeats as
a proportion of correlation coefficients correlated in a higher degree than a
tested correlation (r) to the number of permuted correlations (1), with a formula
(r +1)/(n + 1) (North et al., 2002). The significant correlations, false discovery
rate < 0.05, were visualized in Cytoscape (Cline et al., 2007).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Correlation between the shoot-related pheno-
typic measurements of the 17 Arabidopsis accessions.
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Supplemental Figure S2. Correlation between four of the major bioactive
hormones (ABA, cytokinin, JA, and ABA) in 17 Arabidopsis accessions.

Supplemental Figure S3. Correlation between the leaf size-related param-
eters and hormones in the 17 Arabidopsis accessions.

Supplemental Figure S4. Sequence alignments of GA200ox1 cDNA and the
corresponding protein from 16 of the 17 Arabidopsis accessions studied.

Supplemental Figure S5. Heat map representing, per accession, the pre-
dicted percent difference in each leaf area between each independent
GA200x1 OE lines and their corresponding wild type.

Supplemental Figure S6. Heat map representing, per accession, the per-
centage of difference in each leaf area between plants sprayed with GA;
(GA) and the control plants (mock).

Supplemental Figure S7. GA levels in GA200x1 OE lines from the 17 Ara-
bidopsis accessions.

Supplemental Figure S8. Correlation analysis of phenotypic data.

Supplemental Figure S9. GA20ox1 and GA20ox2 expression levels in the
10 Arabidopsis accessions used for RNA-seq.

Supplemental Figure S10. Sequence alignments of GA200x2 cDNA and the
corresponding protein from 10 of the 17 Arabidopsis accessions studied.

Supplemental Figure S11. GA20ox1 expression level in the transgenic lines
from 10 Arabidopsis accessions.

Supplemental Figure S12. Variance explained by first 20 components for
the RNA-seq analysis from the 10 accessions.

Supplemental Figure S13. Heat maps representing the fold change of DE
genes in GA20o0x1 OE lines.

Supplemental Figure S14. Overrepresented GO categories (biological pro-
cess) for genes positively and negatively correlated with rosette expres-
sivity.

Supplemental Table S1. Geographic origin of the 17 Arabidopsis acces-

sions used in this study.

Supplemental Table S2. Measurements of 13 leaf size-related parameters
in 17 accessions.

Supplemental Table S3. Correlation between levels of different hormones
in the 17 Arabidopsis accessions.

Supplemental Table S4. Percentage differences between the sequences of
GA200x1 in 15 accessions and Col-0 at DNA and protein level.

Supplemental Table S5. Average individual leaf area (cot = cotyledon; L1
to L21 = leaf 1 to leaf 21) in the independent GA200x1 overexpressing
lines (E1 to E5) and their respective wild-type accessions.

Supplemental Table S6. Average values given as least square means pre-
dicted according to the statistical models and variation.

Supplemental Table S7. Average leaf area values given as least square
means predicted according to the statistical models and variation.

Supplemental Table S8. Pearson correlation between the rosette expres-
sivity after GA20ox1 overexpression and GA levels in the transgenics.

Supplemental Table S9. Overrepresented MapMan categories for GA200x1
DE genes.
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Supplemental Figure S1. Correlation between the shoot-related phenotypic measurements of the 17
Arabidopsis accessions. The parameters measured are fresh and dry weight; total rosette area; total number
and area of leaves; pavement cell number, area, and circularity; endoreduplication index; stomatal density
and index; vascular complexity and density of the first leaf pair. The green, yellow, and white nodes
represent the parameters at plant, leaf, and cellular level, respectively. The cellular level parameters were
measured from leaf 1 and 2. The red and blue edges show positive (correlation coefficient > 0.6) and
negative correlation (correlation coefficient < -0.6) between parameters, respectively (adj-P value < 0.05).
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Supplemental Figure S2. Correlation between four of the major bioactive hormones (ABA, cytokinins, JA,
and ABA) in 17 Arabidopsis accessions. The edges indicate a positive correlation (correlation coefficient >
0.6) between the hormones (adj-P value < 0.05).
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Supplemental Figure S3. Correlation between the leaf size-related parameters and hormones in the 17
Arabidopsis accessions. The red and blue edges show positive (correlation coefficient > 0.6) and negative
correlation (correlation coefficient < -0.6) between parameters, respectively (adj-P value < 0.05).
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C24_GA200x1
Col-0_GA200x1
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Ey15-2_GA200¢1
ICE7S_GA200x1
ICE97_GA200x1
ICE138_GA200x1
ICE153_GA200x1
ICE163_GA200x1

Ler-0_GA20ox1
Oy-0_GA200x1
Sha_GA200x1
WalhaesB4_GA20ox1
Yeg-1_GAZ20ox1
An1_GA200x1 GT G G 960
Blh-1_GA200x1 GT G G 960
C24_GA200x1 GT G 960
Col-0_GA200x1 GT G G 960
Cvi-0_GA200x1 GT G AcGH G 960
Ey15-2_GA200x1 GT G |BcEGEGc HcBcHGEGGR 960
ICE75_GA200x1 GT G |BEcEcEG HcEcHGEGGR 960
ICE97_GA200x1 GT G BGGH G 960
ICE138_GA200x1 GT G BGGH G 960
ICE153_GA200x1 cT GAEEEcEGEG HGEGAGHEGGH 960
ICE163_GA200x1 6T GAABAGEGEG HcEGHGHAGGH 960
Ler-0_GA20ox1 GT G AGGH G 960
0y-0_GA200x1 GT G AGGH G 960
Sha_GA200x1 GT G |BcEGEG HcEGHGHEGGHA 960
WalhaesB4_GA200x1 GT G AGGH G 960
Yeg-1_GA20ox1 GT G GEGEG HGEGHAGAGGH G 960
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An-1_GA20ox1
BIh-0_GA200x1
C24_GAZ0ox1
Col-0_GA200x1
Cvi-0_GA200x1
Ey15-2_GAZ200%1
ICETS_GAZ0ox1
ICES7_GA200x1
ICE138_GAZ0ox1
ICE155_GAzZ0ox1
ICE163_GA200x1
Ler-0_GAZ0ox1
Oy-0_GA200x1
Sha_GAZ0ox1
WalhaesB4_GAZOox1
Yeg-1_GAZ20ox1

An-1_GAZ0ox1
BIh-0_GA200x1
C24_GA200x1
Gol-0_GAZ0ox1
Cwi-0_GAZ0ox1
Ey15-2_GA200x1
ICETS_GAZ0ox1
ICEST_GAZ00x1
ICE138_GAZ0ox1
ICE153_Gaz0ox1
ICE163_GAZ0ox1
Ler-0_GAZ0ox1
Oy-0_GAZ00X1
Sha_GAZ0ox1
WalhassB4_GAZ20ox1
Yeg-1_GAZ20ox1

An-1_GA200x! BAMSRSKSWOE MEcBAEBGHGE c
Bin-0_GAZ0ox1 BAMSESKsHal EcHGE [
c24_GA20ox1 AMS GHGE ¢l
Col0_GAzooxt EMSESKsHaD BGHGE c
Cvi-0_Gazoox1 BmsRsKsHMall BallcHcE ¢
Ey15-2_GAz0ox! EMSESKsHoB BalcHGE [
ICETS_Gazoox1 EMSESKsHaB ABGHGE [
ICEST_Gazoox! EAMSE GHGE [
ICE138_GA20cx1 BMSHSKSHaB BcHGE c
ICE153_GA200x1 BMSESKsHWaB BallcHcR c
ICE163_GAzoox1 BMSESHsHaD BABGHGE c
Ler-0_GAZ0ox1 BMSRSKsMaB ABGHGE c
Oy-0_GA20oxt BAMSRE GHGR c
Sha_GAzooxi BMS GHGE c
WalhaesBa_GA200x1 BMSESKSHaB ABGHGE c ImMEEEcHESE
Yeg-1_Ga20cx1 AMSESKSMQE MECBAEGHGE cEAMSSESER NvMEEEcESEG
250 ZlIIU
an-1_GAzoox! THGTGPHCHP TSITIIHQIH aWRsHRPNPE AEMENNGETE
Bih-0_Ga20ox1 THEGTGPHCHP afiH MNcE aWRsHRPNPR HcBT
c24_Gazooxt THGTGPHCHP awRsERPNPE
Col-0_GA200x1 THGTGRHCHP QWRsSHRPNPR
Cvi-0_GA20oxt THGTGPHCHP awRslRPNPE
Ey15-2_GAZ0ox1 THGTGRHCHP TsITIllQIl ¥ncEol awRsHRPNPE
ICE75_GA20ox1 TEGTGRHCHP TII ln l I IIIHN aWwRslRPNPR
ICE97_GA200x1 THEGTGPHCHP Ts THEHQBH a QWRSIRPNPE
ICE138_GAZ0ox1 THGTGRHCHP aBH aWRsHRPNPE
ICE153_GAzoox1 THGTcPHCHP awRsHRPNPR
ICE163_GA200x1 THGTGPHCHP QWRSHRPNPK
Ler-0_GA20ox1 THGTGRHCHP wisl
Oy-0_GA200x1 THEGTGPHCHEP
Sha_GA20oxt THGTGPHCHP
Walhaese4_Gazoox1 THGTGPHCHP nllsllpupl
Yeg-1_GA20ox1 THGTGPHCHP aWRsHRPNPR

An-1_GAZ0ox1
Bih-0_GAZ0ox1
C24_GAZ0oxl
Col-0_GAZ0ox1
Cwi-0_GAZ0ox1
Ey15-2_GA200x1
ICETS_GAZ00x1
ICEQ7_GA200x1
ICE138_GAZ0ox1
ICE153_GA200x1
ICE163_GA20ax1
Ler-0_GAZ0ox1
Oy-0_GAZ0ox1
Sha_GAZ0ox1
WalhassB4_GAZ20ox1
Yeg-1_GAZ20ox1

Supplemental Figure S4. Sequence alignments of GA200x1 cDNA (A) and the corresponding protein (B)
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cot Lland 2 L3 L4 LS L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19

ICE61_EL 110 131 128 124 121 136 139 145 154 143 149 146 125 116

ICE61_E2 109 121 132 119 127 133 127 126 123 117 111 100 o8

ICE61_E3 105 116 125 120 124 129 129 125 132 117 105 100 87

AN-1_E1 90

AN-1_E2

AN-1_E3

AN-1_E4

AN-1_E5

CVI-0_E1 104 89 89 99 108 138 165 245 286 420

CVI-0_E2 101 94 99 106 107 119 135 141 138 120

CcVI-0_E3 102 100 103 110 114 128 152 166 147 197

LER-0_E1 82 80 77 77 %0 %

LER-0_E2 87 85 %0 94 111 134

LER-0_E3 NG 2 v

LER-0_E4 81 92 86 91 107 126

LER-0_ES 78 81 86 89 99 113

BLH-1_E1 % 99 100 104 %2 £ 101

BLH-1_E2 %0 90 82 93 % 100 112

BLH-1_E3 97 112 103 107 99 102 110

BLH-1_E4 89 103 %2 %2 % 84 84

BLH-1_E5 84 89 84 93 87 97 109

ICE138_E2 97 107 105 108 126 134 129 122 122 117 113 105

ICE138_E3 89 103 108 113 133 148 159 138 162 157 145 162

ICE97_E1 125 118 104 97 97 87 90 93 104 120 117 123 157 150

ICE97_E2 105 105 111 109 122 120 139 158 180 270 338 397 561 531

ICE97_E4 115 112 118 112 126 127 146 162 190 283 409 537 667 675
EV152_E1 99 9% 100 102 106 103 109 108 131 124

EV152_E2 101 101 97 94 % 105 112 109 122 118

EV152_E3 100 99 95 93 99 99 105 104 115 116

EY152_E4 97 100 o8 98 103 106 104 108 120 115

EY152_E5 % 100 99 % 107 101

c24_E1 82 87 2 97 107 98

c24E2 77 78 89 95 95 88

c24 E3 - 77 90 92 94 97

c24_E4 77 o1 o8 105 100

c24_E5 82 94 93 100 104 102

VEG1_E1 112 123 114 112 113 103 100
YEG1_E2 88 109 9% 102 98 %0 o1
WALHASB4_E1 91 105 110 119 115 110

waLHAsB4_E2 (G 81 %0 % 102 83

WALHASB4_E3 80 102 97 105 112 116

WALHASBA4_ES %0 102 104 106 117 119

SHA_E1 82 76 o1 o1 110 122

SHA_E3 98 90 100 102 118 139

SHA_E4 99 88 91 %0 103 121

COL-0_E2 110 146 143 137 138 140

COL-0_E3 119 117 115 127 112

COL-0_E4 104 116 125 124 134

ICE153_E1 91 97 o8 98 103 111 101 111 110 106 112 87 81 81 97
ICE153_E2 %0 9% 9% o 101 111 103 104 103 95 99 87

ICE153_E3 %0 95 99 % 104 113 108 115 112 112 113 2 91 75 76
ICE153_ES 102 109 121 112 128 132 127 139 156 158 184 155 194 170 166
ICE163_E1 83 107 102 100 102 114 119 138 131 146 148 125 147 143 136 136 145 134 113
ICE163_E2 105 116 110 111 121 135 148 159 158 168 158 156 151 156 146 127 159 140 146
ICE163_E3 - 87 88 87 104 107 108 105 9 91 82 e o7 | IICEHNNESNETE
ICE163_E4 86 85 93 102 112 120 123 124 116 112 99 93 88 81 95 9% 98 82
ICE163_ES 82 97 103 106 117 138 141 145 138 137 141 120 119 115 112 115 116 98 98
OY-0_E1 101 98 9% 101 108 117 128 135 138 152 180 177

ov-0_E2 88 97 9% 100 117 123 137 138 151 154 166 175

OY-0_E3 9 91 % 95 104 114 126 133 153 155 204 208

ov-0_E4 107 9% 97 101 105 116 127 139 153 174 206 232

ICE75_E1 107 93 99 97 107 118 147 177 200 286 304 324 374 321 238
ICE75_E2 112 95 101 99 107 114 135 158 167 200 192 192 187 152 153
ICE75_E3 104 91 97 %4 104 110 136 160 170 222 197 214 208 181 22
ICE75_E4 106 99 102 97 110 111 144 163 174 220 202 243 224 218 195

I 75550 sso5 95105 105115 115125 125135 >135

Supplemental Figure S5: Heat map representing, per accession, the predicted percent difference in each
leaf area between each independent GA200x1 OE lines and their corresponding wild type.



Accession | cot LL L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L1z L13 L14 L15
ICE61 89 116 113 87 83 104 99 120 150 164 178 173 179 208
Anl

cvi-0 99 100 101 30 39 106 119 151 198 200

Ler0 81 77 a |12 15 77 91 133

Blh1 98 88 95 86 76 81 | 13 16 115

ICE138 87 110 77 87 87 100 115 140 156 158 408 3971

ICES7 87 100 104 89 51 95 93 91 104 118 128 115 129 235
Ey15-2 81 93 a8 81 78 88 89 98 118 144 87 78 113 195
c24 87 v [ o DS 88 % 101 E
Yegl 102 20 100 83 86 3 83 95 121 146 176 152 132

WalhaesBa 20 9% 89 104 100 114 17 148 180 190 237 270 454

Sha 91 % 91 s0 | 7a = 101 113 155 208 176

Col-0 104 103 110 83 88 91 922 103 112 141

ICE153 95 2 101 89 99 99 105 99 100 107 116 93

ICE163 30 20 78 89 89 91 102 103 127 151 149 151

oyo 95 105 107 8s 79 83 89 91 5 13 143 161

ICE75 9a [es " 97 [aa 7 80 87 101 105 106 119 82

65< 65-75 7585 8595  9s-105  10s-115 [Nddscss s

Supplemental Figure S6. Heat map representing, per accession, the percent difference in each leaf area
between plants sprayed with GA; (GA) and the control plants (Mock).
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Supplemental Figure S7. GA levels in GA200x1 OE lines from the 17 Arabidopsis accessions. A. The
normalized values represent the average concentrations between all transgenics for one accession and are
represented with standard error bars. B. GA levels in individual GA200x1 OE lines. GAz4, GAg, GA4, GAS,
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GAs3, GAy, GAy9, GAy and GA| were measured from 12—day-old seedlings grown in soil. The normalized
values are represented with standard error bars (N=3). W; wild type, 1-5; independent transgenic lines.
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Leaf number ‘ ‘ Fresh weight | Dry weight
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u Plant level parameter RosetFe'
expressivity
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- Positive correlation
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Vascular
complexity

Supplemental Figure S8. Correlation analysis of phenotypic data. Correlation between phenotype
parameters of wild types and expressivity of the GA200x1 OE effect in the transgenic lines. Node colours:
green, plant level parameters; orange, expressivity; yellow, leaf level parameters. The red and blue edges
show positive (correlation coefficient > 0.5) and negative correlation (correlation coefficient < -0.5) between
parameters, respectively (adj-P value < 0.05).
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Supplemental Figure S9. GA200x1 and GA200x2 expression levels in the 10 Arabidopsis accessions used
for RNAseq. Absolute values (count per million) are presented.
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I I | I
Col-0_AT5G51810.1 ATGGCGATACTATGCACAACAACATCTCCGGCAGAGAAAGAACACGAACCAAAACAAGATCTTGAAAAAGACCAAACTTC 80
Ey15-2_AT5G51810.1 80

ICE75_AT5G51810.1 80
ICE97_ATS5G51810.1 80
Ler-0_AT5G51810.1 80

Sha_AT5G51810.1 80

WalhasB4_AT5G51610.1 80

Yeg-1_ATSGS1810.1 80
ICE138_AT5G51810.1 80
ICE153_AT5G51810.1 80

Ey15-2_AT5G51810.1
ICE75_AT5GE1810.1
ICE97_ATSG51810.1

Ler-0_AT5G51810.1
Sha_AT5G51810.1

WalhasB4_AT5G51810.1

Yeg-1_AT5G51810.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1

| | | I
Col-0_AT5G518101 TCCACTAATCTTTAACCCTTCTCTTCTTAACCTCCAATCCCAAATCCCAAACCAATTCATTTGGCCAGACGAAGAGAAAC 180
1

20

I I I I
Col-0_AT5651810.1 CTTCCATTGACATTCCAGAGCTCAACGTCCCGTTCATCGATETCTCAAGCCAAGACTCGACTCTTGAAGETCCTAGAGTC 240
Ey15-2_AT5G51610.1
ICE75_AT5GS51810.1
ICE07_AT5G51810.1
Ler-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_AT5GS1810.1
Yeg-1_AT5G51810.1
ICE138_AT5G51810.1
ICEA53_AT5G51810.1

I I I I
Col-0_AT5G51810.1 ATCGCAGAAGCTTGCACCAAACACGGCTTCTTCCTCGTCGTCAATCATGGCGTCAGCGAGTCACTAATAGCGGATGCTCA 320
Ey16-2_AT5G51810.1
ICE75_AT5G51810.1
ICEQ7_ATEGE1810.1
Ler-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_AT5G51810.1
Yeg-1_AT5G51810.1
ICE138_ATSG51610.1
ICE153_AT5@51810.1

Col-0_ATSGS1810.1 CCGTTIGATGGAAAGTTTICTTCGACATGCC
Ey15-2_AT5G51810.1
IGET5_AT5G61810.1
ICEA7_AT5G51810.1
Lon0_ATSGE1810.1
Sha_AT5G51810.1
WalhasB4_AT5G51810.1
Yog-1_AT6G61810.1
ICE138_ATSG51810.1
ICE153_ATEGS1810.1

CGUCGGCAAACAGAAAGC TCAGAGAAAACCCGGTGAGAGT TGTGGET

400
400
400
400
400
400
400
400
n -0 450 a0
Col-0_ATSG51810.1 ATGCAAGTAGCT TCACCGGCAGATTCTCCACTAAGCTCCCATGGAAGCAGACTCTCTCTTTTCAGTTTTCCAACGATAAT 480
Ey15-2_AT5G51810.1 I - 1
ICETS_ATSGE1810.1 480
ICEQT_ATSGS1810.1 480
Ler-0_ATSGS1810.1 480
Sha_ATEGE1810.1 480
WalhasB4_ATSGS51810.1 480
Yog-1_AT5G51810.4 e 480
ICE138_ATSGE1810.1 . . .. . .. ... ........T.. ... ....... 480
IGEIS3 ATEGS1B10 . . . . . ..o 480

ko L

Col-0_ATSG51810.1 AGI GGCICGAGAACCG I ICAAGATTACT I TTCCGATACAT TAGGACAAGAGT I CGAGCAGT | IGGGAAGGIGTATCAAGA 560
Ey15-2_AT5G51810.1 5
ICET5_AT5G51810.1
ICES7_AT5G51810.1
Ler-0_AT5G51810.1
Sha_AT5651610.1
WalhasB4_ATSG51810.1
Yag-1_AT5G51810.1
ICE138_ATSG516810.1
ICE153_ATSG51810.1

560 600 640

| | | |
Col-0_AT5G51810.1 CTATTGTGAAGCAATGAGTTCTCTATCACTCAAGATCATGGAGCTTCTGGGCTTAAGTTTAGGCGTAAACCGAGACTATT 840
Ey15-2_AT5G51810.1
ICET5_AT5G51810.1
ICE97_AT5G51810.1
Ler-)_AT5G51810.1
Sha_AT5651810.1
WalhasB4_ATSG51810.1
Yeg-1_AT5G51610.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1
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Col-0_ATSGS1810.1
Ey15-2_AT5G51810.1
ICE75_ATSGE1810.1
ICES7_ATSG51810.1
Lor-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_ATSG51810.1
Yeg-1_AT6G51810.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1

Col-0_ATSG51810.1
Ey16-2_AT5G51610.1
ICET5_ATSGE1810.1
ICE97_ATSG51810.1
Ler-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_AT5G51810.1
Yeg-1_AT5G51810.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1

Col-0_AT5G51810.1
Ey15-2_ATS5GS51810.1
ICE76_ATSG51810.1
ICE97_AT6GE1810.1
Ler-0_ATSG51810.1
Sha_AT5G51810.1
WalhasB4_AT5G51810.1
Yeg-1_AT5G51810.1
ICE138_AT5G51810.1
ICE1683_AT5G51810.1

Col-0_AT5G516810.1
Ey15-2_AT5G51810.1
ICET5_AT5G51810.1
ICE97_AT5G51810.1
Lar-0_AT5G51810.1
Sha_AT5G51810.1
WalhagB4_AT5G51810.1
Yeg-1_AT5G51810.1
ICE138_ATSGS51810.1
ICE153_ATSG51810.1

Col-0_AT5G51810.1
Ey15-2_AT5G51810.1
ICE76_AT5G51810.1
ICEa7_AT5G51810.1
Ler-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_AT5G51810.1
Yog-1_AT5G51610.1
ICE138_ATSG51810.1
ICE153_ATSGS51810.1

Col-0_ATSG51810.1
Ey15-2_AT5G51810.1
ICE75_ATSG51810.1
ICE97_AT5G51810.1
Ler-0_ATSG51810.1
Sha_AT5G51810.1
WalhasB4_AT5G51810.1
Yag-1_AT5G51810.1
ICE138_AT5G51810.1
ICE153_AT5G51610.1

Col-0_AT5G51810.1
Ey15-2_AT5G51810.1
ICET5_AT5G51810.1
ICE97_AT5G51810.1
Ler-0_AT5G51810.1
Sha_AT5651810.1
WalhasB4_ATSG51810.1
Yag-1_AT5G51810.1
ICE138_AT5G51610.1
ICE153_ATSG51810.1

y 0 w =
TCCGAGGATTTTTCGAAGAGAACGATTCGATAATGAGGCTCAATCATTATCCTCCATGCCAAACACCAGATCTCACGTTA 720
.. 720
.. 720
.. 720
.. 720
L. 720
.. 720

. 120
720

| I | I
GGTACAGGACCTCATTGTGATCCAAGTTCTTTGACCATCCTTCATCAAGACCATGTCAATGGCCTTCAAGTCTTTGTCGA 800
8

| | 1 l
CAATCAATGGCAATCCATTCGTCCCAATCCCAAGGCTTTCGTTGTCAATATTGGTGACACTTTCATGGCTCTATCGAACG 880
880

| | | |
GGATATTCAAGAGCTGTTTGCATAGAGCGGTTGTGAATAGAGAGAGCGCGAGAAAATCGATGGCGTTTTTCTTGTGTCCG 860
960

| | | |
AAGAAAGACAAAGTGGTGAAACCACCAAGTGATATTT TGGAGAAGATGAAAACAAGAAAATACCCTGACTTCACTTGGTC 1040
1

| | )
TATGTTCCTTGAGTTCACTCAAAAACATTACCGAGCAGATGTGAATACTCTCGATTCCTTTTCGAATTGGGTTATTACCA 1120

ACAACAATCCCATCTAA 1137

.. o 1137
.. 137
. 137
1137
1137
.. 1137
.. 1137
. 1137
1137
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20 4@ L] 0
I I I 1
Col-0_ATSG518101 MA | LCTTTSPAEKEHEPKQDLEKDQTSPLIFNPSLLNLQSQIPNQF IWPDEEKPSIDIPELNVPFIDLSSQDSTLEAPRV 80
Ey16-2_ATSG51810.1 . . .. .. .
ICETS_ATSG51810.1
ICE97_ATSG51810.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1
Ler-0_ATSG51810.1
Sha_ATSG51810.1
WalhasB4_ATSG51810.1
Yeg-1_ATSG51810.1

I I I 1
Col0_ATSG51810.1 | AEACTKHGFFLVVNHGVSESL | ADAHRLMESF FDMP LAGKQKAQRKPGESCGYASSFTGRFSTKLPWKETLS FQF SNDN 160
Ey15-2_ ATSG51810.1 1

ICET5_AT5G51810.1

ICE97_ATSG51810.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1
Ler-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_ATSG51810.1

Yeg-1_AT5G51810.1

240

I I I 1
Col-0_AT5G51810.1 SGSRTVQDYFSDTLGQEFEQFGKVYQDYCEAMSSLSLKIMELLGLS LGVNRDYFRGFFEENDS IMRLNHYPPCQTPDLTL 240
Ey152_ATSG51810.1 240
ICE7S_ATSG51810.1
ICE97_ATSGE1810.1
ICE138_ATSG5181¢.1
ICE153_AT5G51810.1
Ler-0_ATSGE1810.1
Sha_AT5G51810.1
WalhasB4_ATSG51810.1
Yeg-1_AT5G51810.1

250 320

I I I 1
Col-0_AT5G51810.1 GTGPHCDPSSLTILHQDHVNGLQVFVDNQWQSIRPNPKAFVVNIGDTFMALSNG| FKSCLHRAVVNRESARKSMAFFLCP 320
Ey15-2_ATSG51810.1
ICE75_ATSG51810.1
ICE7_ATSG51810.1
ICE138_AT5G51810.1
ICE153_AT5G51810.1
Lor-0_AT5G51810.1
Sha_AT5G51810.1
WalhasB4_ATSG51610.1
Yeg-1_ATSG51810.1

Col-0_ATS5G51810.1 e
Ey15-2_ATS5G51810.1 . 378
ICE75_ATSG51810.1 .. 378
ICE97_ATSG51810.1 .. 3718
ICE138_AT5G51810.1 .. 318
ICE163_ATSG51810.1 .. 378
Ler-D_AT5G51810.1 .. 38
Sha_AT5G51810.1 . 378
‘WalhasB4_ATSG51810.1 378
Yeg-1_ATSGS1610.1 378

Supplemental Figure S10. Sequence alignments of GA200x2 cDNA (A) and the corresponding protein (B)
from 10 of the 17 Arabidopsis accessions studied.
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Supplemental Figure S11. GA200x1 expression level in the transgenic lines from 10 Arabidopsis
accessions. Absolute value (count per million) of expression level of GA200x1 from RNA-Seq data in wild-
type (W) and independent transgenic lines (1-5) of 10 accessions.
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accessions.
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Supplemental Figure S13. Heat maps representing the fold change of DE genes in GA200x1 OE lines.
Differentially expressed genes involved in secondary metabolism (A, F), protein synthesis (B, G), regulation
of transcription (C, H), hormone metabolism (D), and photosynthesis (E) are shown. In (A, B, C), the
average fold change of the transgenics per accession is represented and in (D, E, F, G, H), the fold change
for each individual transgenic is shown. Names of genes are shown on the right side of the heat map and
sample names are indicated on the top of heat map. Yellow and blue colours correspond to increased and
decreased expression, respectively, in comparison with the wild types. Only DE genes that show at least a
1.5-fold change difference are shown. Hierarchical clustering was done for both genes and samples with
Manhattan distance metrics.
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Supplemental Figure $14. Overrepresented GO categories (biological process) for genes positively (A) and negatively
(B) correlated with rosette expressivity. GO enrichement analysis was performef using PLAZA
(http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/).
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Supplemental Table S1. Geographic origin of the 17 Arabidopsis accessions used in this study.

Accession Origin CS stock number
An-1 Belgium CS76091
Blh-1 Czech Republic CS76098
C24 Portugal CS76106
Col-0 Poland CS76113
Cvi-0 Cape Verdi CS76116

Ey15-2 Germany CS76399
ICE138 Central Asia CS76426
ICE153 Central Asia CS76381
ICE163 Southern Tyrol CS76353
ICE61 Russia CS76378
ICE75 Russia CS76422
ICE97 Southern ltaly CS76359
Ler-0 Germany CS77020
Oy-0 Norway CS76203
Sha Tadjikistan CS76382
WalhaesB4 Germany CS76408
Yeg-1 Kaukasus CS76394
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Supplemental Table S3. Correlation between levels of different hormones in the 17 Arabidopsis
accessions. Pearson correlations between 36 biosynthetic and degradation intermediates, and bioactive forms
of six different hormones (GA, auxin, cytokinins, JA, SA and ABA) were calculated. Red colour indicates
positive correlation. (Correlation coefficient > 0.6, adj-P value < 0.05) tZ, trans-zeatin; tZR, tZ riboside;
tZRPs, tZR phosphates; cZ, cis-zeatin; cZR, cZ riboside; cZRPs, cZR phosphates; DZ, dihydrozeatin; DZR,
DZ riboside; DZRPs, DZR phosphates; iP, N6-(Az-isopentenyl)adenine; iPR, iP riboside; iPRPs, iPR
phosphates; tZ7G, tZ-7-N-glucoside; tZ9G, tZ-9-N-glucoside; tZOG, tZ-O-glucoside; tZROG, tZ-R-O-
glucoside; cZROG, cZ-R-O-glucoside; tZRPsOG, tZR phosphates-O-glucoside; cZRPsOG, cZR phosphate-
O-glucoside; DZ9G, DZ-9-N-glucoside; iP7G, iP-7-N-glucoside; iP9G, iP-9-N-glucoside; IAAsp, indole-3-
acetyl aspartic acid; IAlle + IALeu, indole-3-acetyl-L-isoleusine + indole-3-acetyl-L-leucine; IAPhe, indole-
3-acetyl-L-phenylalanine.

GA

T | Auxin
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Supplemental Table S4. Percentage differences between the sequences of GA200x1 in 15 accessions and
Col-0 at DNA and protein level.

GA200x1
Accession cDNA Protein
An-1 0 0
Blh-1 0.09 0
C24 0.09 0
Cvi-0 0 0
Ey15-2 017 0
ICE75 017 0
ICE97 0.09 0
ICE138 0.09 0
ICE153 0 0
ICE163 0.09 0
Ler-0 017 0
Oy-0 0.09 0
Sha 017 0
WalhaesB4 0 0
Yeg-1 0 0
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Supplemental Table S9. Overrepresented MapMan categories for GA200x1 DE genes. The number of
genes found in each overrepresented category is indicated. P-value with Bonferroni correction is shown.

Categories

Number of genes P-value

Photosynthesis
Secondary metabolism
Protein

Hormone metabolism

RNA.regulation of transcription

Transport
Amino acid metabolism
Sulfur-assimilation

RNA.regulation of transcription.C2C2(Zn) CO-like, Constans-like zinc finger family
RNA regulation of transcription.MYB-related transcription factor family

Sulfur-assimilation.adenosine 5'-phosphosulfate reductase

46

5.14E-29
3.98E-16
5.83E-11
5.23E-10

1.33E-06
3.60E-05
4.96E-05
8.55E-05

2.02E-05
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