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ABSTRACT 

Alternative sampling strategies such as dried blood sampling, liquid microsampling and the 

sampling of oral fluid, hair, meconium, interstitial fluid, sweat, exhaled breath condensate and 

sputum offer interesting opportunities for many applications in clinical routine. Here, we 

provide an overview of different applications, with special attention to the pivotal role of LC-

MS/MS in facilitating analysis of the collected matrices. Covered clinical fields include 

newborn screening, endocrinology, therapeutic drug monitoring, phenotyping, toxicology, 

proteomics and metabolomics.  Furthermore, specific advantages, challenges and limitations 

of each alternative sampling strategy are discussed, along with recent advances and future 

trends that may contribute to routine implementation of these sampling strategies. Given the 

development of many recent potentially valuable clinical applications, the possibility of home 

sampling and the opportunity to obtain information that is hard to procure using traditional 

sampling, a well-balanced role for alternative sampling strategies can be envisaged in patient 

healthcare in the (near) future. 
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LIST OF ABBREVIATIONS 

CDC: center for disease control and prevention 

CDT: carbohydrate-deficient transferrin 

COPD: chronic obstructive pulmonary disease 

CYP: cytochrome P 

DBS: dried blood spot 

DPS: dried plasma spot 

DRUID: driving under the influence of drugs, alcohol and medicines 

EBC: exhaled breath condensate 

GC-MS: gas chromatography-mass spectrometry 

GH: growth hormone 

HbA1c: hemoglobin A1c 

HRMS: high resolution mass spectrometry 

IGF-1: insulin-like growth factor-1 

ISF: interstitial fluid 

LC-MS/MS: liquid chromatography-tandem mass spectrometry 

MS/MS: tandem mass spectrometry 

NBS: newborn screening 

PEth: phosphatidylethanol 

POC: point-of-care 

PT: proficiency testing 

QC: quality control 



SoHT: society of hair testing 

SPE: solid phase extraction 

T4: thyroxine 

TDM: therapeutic drug monitoring 

VAMS: volumetric absorptive microsampling



 

1. INTRODUCTION 

Alternative sampling strategies include the collection of ‘traditional’ samples (blood, plasma, 

serum or urine) in an alternative way, as well as the collection of ‘alternative’ samples in all 

kind of ways. A typical example of the former is the collection of dried blood spots (DBS) 

(i.e. the collection of blood in an unconventional manner), while examples of the latter 

include sampling of oral fluid, hair and a wide variety of other matrices. Both the ‘alternative 

sampling’ and the ‘alternative samples’ offer interesting opportunities for clinical 

applications, as they do not only imply easier sample collection (particularly in special patient 

populations such as small children and neonates), but can also provide information that is 

impossible or hard to obtain using traditional sampling strategies, such as venipuncture and 

urine collection. Moreover, the use of alternative sampling strategies is often coupled to 

matrix-specific advantages such as increased analyte stability and/or the possibility of home 

sampling. However, the implementation of alternative sampling strategies in clinical routine 

requires sensitive analytical techniques, since generally only minute amounts of sample are 

available and/or low analyte levels may be present. For the quantitative analysis of traditional 

samples in clinical routine, detection methods such as gas chromatography-mass spectrometry 

(GC-MS) and particularly immunoassays have been and are still being employed. Over the 

last decade, a clear trend towards implementing liquid chromatography coupled to tandem 

mass spectrometry (LC-MS/MS) has been observed
1, 2

. Especially in larger clinical 

laboratories, the added-value of LC-MS/MS has been advocated. Also for the analysis of 

samples obtained via alternative sampling strategies, LC-MS/MS is the technique of choice 

when it comes to combining sufficient sensitivity with utmost selectivity. 

 

2. ALTERNATIVE SAMPLING STRATEGIES 

In this review we will focus on the implementation of patient-friendly, minimally or non-

invasive alternative sampling strategies which are promising for clinical routine, with special 

attention to the role of LC-MS/MS. Microsampling of blood to collect liquid microsamples or 

to generate dried blood or dried plasma spots (DPS), as well as sampling of oral fluid, hair, 

meconium, interstitial fluid (ISF), sweat, exhaled breath condensate (EBC) and sputum are the 

alternative sampling strategies covered in this review. While there is a plethora of reports on 



the use of alternative sampling strategies for research purposes, (pre)clinical and 

epidemiological studies, we focus here on those methods that are -in our opinion- most 

promising for application in clinical routine. The different areas in which alternative sampling 

strategies may have added-value will be highlighted and for each category some key examples 

will be discussed, without being comprehensive. 

One of the best known alternative sampling strategies is DBS sampling. DBS are generally 

prepared by depositing a drop of capillary blood, obtained by a finger or heel prick, on a filter 

paper. The application field of DBS is highly diverse, going from newborn screening (NBS, 

the screening for inborn errors of metabolism), over therapeutic drug monitoring (TDM) to 

toxicology and pharmacokinetic studies in drug development. Other microsampling 

approaches closely related to DBS sampling are DPS and liquid microsampling, as well as 

volumetric absorptive microsampling (VAMS). The latter is performed using a handheld 

device consisting of a plastic handle and a hydrophilic polymer tip which absorbs a fixed 

volume of blood (±10 µL). The advantages and challenges posed by (dried) blood 

microsampling have been subject to many reviews
3-6

. Briefly, common advantages of dried 

samples in general include the ease of sampling and the convenient transport and storage 

under ambient conditions. In addition, these samples pose a reduced risk of infection due to 

deactivation of pathogens upon drying. In DBS analysis, the hematocrit issue is undoubtedly 

the most widely discussed challenge. Variations in hematocrit influence the spreading of 

blood on filter paper, thereby impacting the spot size and, possibly, homogeneity. 

Furthermore, hematocrit may also influence recovery and matrix effect. As outlined further 

(see section 6.1), several approaches have been developed that allow to cope with the issues 

imposed by varying hematocrit
3, 7, 8

. Aside from the hematocrit effect, DBS analysis is also 

affected by the volume of blood deposited on the filter paper and the punch location
9
. Another 

issue, which applies to all microsampling strategies, is the possible difference in concentration 

between capillary and venous blood. 

Liquid microsampling is the sampling of liquid capillary blood using a precision capillary. It 

is used in the pharmaceutical industry, primarily in the preclinical phase of drug development, 

to obtain pharmacokinetic and toxicokinetic information, e.g. from laboratory animals. Also 

in the clinical lab, liquid microsamples (typically taken from children) are already being used, 

e.g. for hemoglobin A1c (HbA1c) monitoring. As the precision capillaries are filled with 

liquid blood, immediate analysis or processing (e.g. centrifugation, dilution in a stabilizing 



buffer and/or freezing) after sampling is generally required, making transport and storage less 

practical when compared to DBS, DPS and VAMS. 

Another widely used alternative matrix is oral fluid. Oral fluid is composed of saliva (an 

aqueous secretion produced by the major salivary glands), the secrete of the accessory glands, 

gingival fluid, enzymes, other proteins, electrolytes, bacteria, epithelial cells, ora-naso-

pharyngeal secretions, and other debris
10

. Although oral fluid, as an alternative to plasma, has 

arisen as a potential alternative matrix for TDM, the best established oral fluid-based 

application to date is roadside drug testing. A major concern coupled to oral fluid analysis, is 

the risk of contamination. Indeed, contamination with food and/or beverages, other debris 

from the mouth or smoke are commonly seen
11

. In addition, oral fluid analysis is also prone to 

oral contamination. Therefore, sampling should be performed immediately before drug intake 

or after an adequate ‘wash-out’ period
12

. Furthermore, blood contamination of the oral fluid 

caused by leakage from the oral mucosa as a result of microinjuries, such as burns or 

abrasions and due to gingivitis and periodontitis or even following regular mouth hygiene, 

might compromise analyte quantitation in oral fluid. The latter can have a major impact on the 

analysis of compounds with a blood to oral fluid ratio which strongly deviates from 1, as was 

demonstrated for the measurement of e.g. salivary cortisol and testosterone
13-15

. Another 

important issue in oral fluid analysis is the fact that analyte levels may depend on a multitude 

of variables such as compound pKa, molecular weight, charge and lipid solubility, as well as 

oral fluid pH, flow rate and metabolism
10, 16

. Consequently, the measured oral fluid 

concentrations can be heavily influenced by the employed collection procedure
16, 17

. Oral fluid 

can either be collected without stimulation (e.g. via passive drooling) or with mechanical or 

chemical stimulation (e.g. by chewing on paraffin or by using citric acid, respectively)
16, 17

. 

Moreover, adsorption may occur to collection devices and -important when sample analysis is 

to be performed by LC-MS/MS- matrix effects may arise from incorporated buffers, 

preservatives or surfactants
16-18

. Due to the above-mentioned issues, careful selection and 

standardization of the oral fluid collection procedure is essential to obtain reliable and 

reproducible results. 

The most important advantage of hair sampling is undoubtedly the wider window of 

detection, due to the fact that incorporated compounds are no longer subject to 

biotransformation. However, substances of interest can gradually leach out of the hair or can 

be removed to an important extent by hair damaging caused by cosmetic treatment, such as 

bleaching or dyeing, resulting in an underestimation of exposure or use
19

. Other advantages 



are the non-invasive nature of the sampling and the fact that the collection of a hair sample 

does not pose any privacy issues. However, it needs to be mentioned that hair sampling can be 

considered somewhat intrusive. One of the main challenges in hair analysis is external 

contamination or passive drug exposure. Therefore, a decontamination step is an essential 

factor in hair analysis, although also the decontamination itself poses challenges, as outlined 

in section 4
20-22

. 

Sweat, having a detection or collection window that may range from 30 minutes up to 1-2 

weeks, is commonly collected using transdermal absorptive sweat patches, typically applied 

to the back, upper arm or lower chest and generally worn for several days. While the 

measurement of chloride in sweat for diagnosis of cystic fibrosis is likely the best studied 

application, LC-MS/MS-based applications -offering the required sensitivity- include the 

determination of prescription drugs or drugs of abuse. The main disadvantages of this 

sampling technique are the potential influence of external contamination of the skin or the 

sweat patches and the unknown sample volume (rendering interpretation of a quantitative 

result challenging), as sweat production may vary in function of physical activity or ambient 

temperature. Given the limited potential of sweat analysis in the routine clinical lab, the 

interested reader is referred to other recent reviews
23, 24

. 

EBC collection only requires quiet breathing in a specially designed collection device for 

several minutes. Various measures can be taken to avoid EBC contamination, as recently 

reviewed by Konstantinidi et al.
25

. Generally, it is recommended to analyze EBC samples 

immediately after collection, otherwise immediate freezing, including inconvenient storage, is 

necessary
26

. 

The collection of sputum, mucus coughed up from the lungs (after induction or not), is 

considered a semi-invasive sampling method. Sputum is typically -although not on a routine 

basis- used to investigate chronic lung diseases such as asthma, chronic obstructive 

pulmonary disease (COPD) and interstitial lung disease. LC-MS/MS has been used to 

measure a variety of analytes in sputum, amongst which leukotrienes, iso(desmosine), mucins, 

as well as therapeutic drugs
27-30

. 

Meconium, a neonate’s first stool, is widely accepted as the matrix of choice for determining 

fetal drug exposure (other alternative matrices include umbilical cord, placenta, hair and 

nails). The wide detection window, covering approximately the last 2-3 months of pregnancy, 

is, just as the easy sampling, a major advantage
31, 32

. Although meconium is hitherto not used 



in general clinical routine, its use can be beneficial for example for the analysis of ethanol 

markers in centres specialized in the follow-up of neonates from mothers at risk of alcohol 

abuse
33

. 

Finally, although less applied in clinical practice up till now, also ISF is an interesting 

alternative matrix. The composition of ISF, the fluid which surrounds tissue cells, is 

determined by the continuous exchange of water and small, non-protein bound solutes such as 

therapeutic drugs, between whole blood and the ISF under the influence of hydrostatic and 

osmotic pressure. Since ISF concentrations often closely reflect free plasma concentrations of 

drugs and endogenous substances, this matrix can be particularly valuable in the field of 

TDM. Over the years, different technologies have been developed for ISF sampling, such as 

reverse iontophoresis and microneedles
34, 35

. The latter have the advantage of being more 

convenient for patient self-sampling. 

Despite the many advantages accompanying the various alternative sampling strategies, 

several challenges still remain. Table 1 summarizes the main advantages and challenges of the 

different types of alternative sampling strategies. Alternative sampling strategies readily being 

implemented on a routine basis in clinical labs, as well as strategies with potential for future 

implementation, will be discussed in the next section, which covers several subdisciplines of 

the clinical lab. 

 

3. CLINICAL APPLICATIONS INVOLVING ALTERNATIVE SAMPLING 

STRATEGIES 

3.1 Newborn screening 

The use of DBS sampling as an alternative for conventional blood sampling in neonates has 

become a widespread technique in NBS programs, ignited by the demonstration of Guthrie 

and Susi in 1963 to use newborn DBS to determine phenylketonuria
36

. DBS-based NBS by 

(LC-)MS/MS has exponentially increased since the 1990s and has become an established 

procedure in developed countries
37

. Moreover, the experience gained from NBS has 

undoubtedly facilitated the development of DBS-based applications in other fields as well. 

NBS can be divided into primary screening tests and second-tier tests. The primary tests are 

designed to identify as many inborn errors as possible. Since diagnostic sensitivity is favored 

over specificity for disorder detection here, the number of false-positive tests increases. 



Therefore, second-tier tests have been implemented, enabled by the introduction of MS/MS 

methods, to improve the specificity of disorder detection. A second-tier test is performed 

using the same DBS, is characterized by a lower sample throughput and is extremely suitable 

to confirm or refute an initial positive result, due to the measurement of additional 

metabolites
38

. In addition, a distinction has to be made between direct and indirect screening. 

Direct screening examines endogenous substances, while indirect screening focusses on the 

conversion of substrates by specific enzymes
39

. Current NBS programs screen for up to over 

50 disorders
40, 41

. Of these, 20 to over 40 disorders can be screened for by LC-MS/MS
37

. 

However the exact number of disorders that is screened for varies strongly from country to 

country
37, 41

. A key advantage of the (LC-)MS/MS technology is that it is highly 

multiplexeable (e.g. a multiplex assay of lysosomal enzymes in DBS), making the procedure 

very attractive in routine NBS as a diagnostic platform for the early detection and 

confirmation of genetic disorders
42, 43

. As it is beyond the scope of this review to provide a 

full overview of the metabolic diseases that can be screened for by tandem MS, we refer to a 

comprehensive review by Lehotay et al.
 
on this topic

37
. Furthermore, DBS can also be used at 

a later age, for the follow up of (treatment) of inborn errors of metabolism, as is currently 

applied for patients with e.g. maple syrup urine disease, phenylketonuria or tyrosinemia type 

1
44

. 

3.2 Endocrinology 

The measurement of sex steroids, testosterone and especially estradiol, serves as a key tool in 

the diagnosis or management of a wide range of disorders, such as hypogonadism, polycystic 

ovary syndrome, amenorrhea, disorders of puberty, male and female infertility and tumors of 

prostate, testes, breast and ovary
45

. Sex steroid testing has known a noticeable transition from 

colorimetric assays using urine, over manual radio-immunoassays and automated 

immunoassays using serum to LC-MS/MS methods
45

. Improved precision, sensitivity and 

selectivity compared to automated immunoassays and the capability of multiplexing methods 

has resulted in substitution of traditional sex steroid immunoassays by LC-MS/MS methods in 

large reference clinical laboratories. 

Oral fluid serves, next to plasma and serum, as a matrix for sex steroid determination. 

Progress in LC-MS/MS has allowed to -at least partly- cope with the low hormone 

concentration, one of the challenges coupled to oral fluid analysis. However, still, sensitivity 

remains the limiting factor when considering e.g. the assessment of testosterone in children 



and women, and, to a lesser extent, in hypogonadal men via alternative sampling strategies. 

Furthermore, cortisol and progesterone are also detectable in oral fluid by LC-MS/MS
46

. 

Cortisol has been determined in oral fluid for the diagnosis of Cushing’s syndrome and 

numerous stress-related disorders, as it is considered a ‘stress’ biomarker. Importantly, oral 

fluid can be used for home sampling, which can be of interest for example in the diagnosis of 

Cushing’s syndrome, since late-night measuring of cortisol levels in oral fluid is 

recommended as a first-line screening test
47

. Furthermore, additional stress -which could 

affect cortisol test results- due to venous sampling and/or hospital visits is avoided in this 

way. Progesterone, a hormone that plays a pivotal role in the regulation of the menstrual cycle 

and in the maintenance of pregnancy, also has been measured in oral fluid, to determine luteal 

and placental functions in non-pregnant and pregnant women, respectively
48

. Besides oral 

fluid, also DBS can be used for the LC-MS/MS-based determination of steroid hormones, 

including corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, 11-

deoxycortisol, 21-deoxycortisol, androstenedione, testosterone, dihydrotestosterone and 

cortisol, although not in all cases the required sensitivity will be achievable
49

. An upcoming 

tool for the assessment of long-term cortisol secretion, as a biomarker of chronic stress in 

various settings, is the analysis of hair cortisol concentrations via LC-MS/MS
50

. 

Anti-Müllerian hormone is a predictor of the ovarian response in women undergoing ovarian 

stimulation for in vitro fertilization. Since it can be quantified in DBS, this minimally invasive 

sampling strategy could be another possible future LC-MS/MS-based application in women 

undergoing fertility treatment
51

. Other hormones that have been measured in oral fluid and/or 

DBS via LC-MS/MS include 25-hydroxyvitamin D, melatonin and thyroxine (T4)
46, 52, 53

. T4 

determination in oral fluid may serve as a simple and cost-effective alternative to free T4 

measurement in serum, used in the diagnosis of thyroid disorders. Clinical application of the 

method could be an interesting future prospect, since T4 measurement in oral fluid turned out 

to be useful in the diagnosis of Graves disease
46

. Total T4 can also be measured in DBS via 

MS/MS, along with immunoassay-based determination of thyroid stimulating hormone and 

antithyroid antibodies
54-56

. 

Overall, oral fluid- and DBS-based hormone tests are an upcoming tool allowing patient 

friendly evaluation of endocrine functions. While undoubtedly immunoassays will continue to 

be used for routine measurement of hormones, LC-MS/MS methods are increasingly being 

integrated in clinical routine due to the disadvantages (e.g. sometimes poor specificity and 

accuracy) associated with immunoassays. Clearly, for the accurate determination of hormones 



in oral fluid and DBS, LC-MS/MS is the method of choice. For oral fluid it needs to be 

remarked, though, that although the concentrations measured in this matrix may correlate with 

the serum/plasma free fraction, they are not necessarily equivalent. For example, Fiers et al. 

nicely demonstrated that salivary testosterone concentrations measured by LC-MS/MS are not 

identical to free testosterone concentrations in serum
57

. Moreover, as mentioned in section 2, 

pre-analytical issues, amongst which contamination of the oral fluid with blood, as well as the 

choice of the collection method, may have an impact on the result
58

. Hence, the decision 

whether oral fluid may truly serve as a more convenient and inexpensive alternative to 

serum/plasma for free active hormone testing may actually depend on the clinical question. 

3.3 Toxicology 

Alternative samples like hair and oral fluid have become an established part of toxicological 

investigations in many countries, with analyses being performed in both forensic and clinical 

labs. Although these samples can provide valuable information, their analysis is also 

accompanied by some challenges, as discussed in section 2. As already mentioned above (see 

section 2), in several countries, oral fluid has become -or will soon become- the matrix of 

choice for immunoassay-based on-site drug screening. Whereas blood is the classical matrix 

for unequivocal MS-based confirmation of a positive on-site screening test, also oral fluid can 

serve this purpose. For this confirmation the toxicology section of clinical labs may play a 

role. Given the potentially high sample-throughput, focus has been put on the development of 

automated procedures, e.g. applying automated solid phase extraction (SPE) (on-line or off-

line) and on-line sample clean-up procedures, typically followed by LC-MS/MS
59

. Another 

matrix often considered in the context of drugs and driving -albeit covering another time 

frame- is hair. Indeed, hair analysis is increasingly being used for demonstrating drug abuse 

or for the determination of (bio)markers, such as the alcohol markers ethyl glucuronide and 

fatty acid ethyl esters. This approach is currently readily being applied on a routine basis in 

several countries (e.g. in Sweden, Switzerland and Germany) in driving license regranting 

programs, providing some labs with a throughput of several thousands of samples per year
60-

62
. Such throughputs, combined with the need of ultimate sensitivity, are offered by LC-

MS/MS.  

Also the use of DBS for toxicology purposes has been advocated
6
. Samples can be obtained 

from adults or from newborns, e.g. to assess exposure to drugs, alcohol and other xenobiotics 

prior to birth. For an overview of analytes of particular forensic interest that have been 



measured in DBS the interested reader is referred to previous work of our group
6, 63

. The ease 

of (rapid) sampling and the stabilizing effect are two significant advantages coupled to DBS 

sampling in (forensic) toxicology. In newborn DBS, benzoylecgonine and cotinine, 

respectively metabolites of cocaine and nicotine, have been determined to evaluate the use of 

cocaine and tobacco products among childbearing woman
6
. For most applications, the limited 

amount of material, combined with the required sensitivity, imposes the need for a dedicated 

LC-MS/MS configuration. Recent progress in this field includes the set-up of hands-off on-

line systems (see also section 5.1)
64

. When considering the cut off for driving under the 

influence of drugs, alcohol and medicines (DRUID), for most analytes procedures have been 

described that are able to achieve the required sensitivity when starting from a ≤6.4-mm DBS 

punch or when starting from 10 µl or less dried blood
63

. Like oral fluid, DBS may offer more 

convenient sample collection in the context of driving under the influence of drugs, as the 

usual urine sampling is coupled to privacy issues and the collection of a conventional blood 

sample by summoned medical staff is cumbersome and time-consuming
65

. Also in the context 

of driving license regranting programs, in which drivers with a history of alcohol abuse are 

followed up, DBS sampling may be beneficial. We recently demonstrated this for 

phosphatidylethanol (PEth), a direct alcohol marker that is used to monitor alcohol 

consumption during the past few weeks: capillary concentrations of PEth were equivalent to 

those found in venous blood, demonstrating that capillary DBS are a valid alternative for 

venous blood for this purpose
66

. Since the sampling procedure does not require dedicated staff 

and PEth outperforms indirect markers like carbohydrate-deficient transferrin (CDT), 

capillary DBS sampling offers a promising avenue for routine follow-up of drivers with a 

history of alcohol abuse. As is the case for CDT now, PEth determination might become a 

routine procedure integrated in the clinical lab. Again, LC-MS/MS is the method of choice, 

combining both high-throughput and sensitivity. In the toxicology lab, DBS can also be used 

as a sampling preparation strategy. We routinely use DBS (as well as other dried matrix spots) 

for quantitative determination of gamma- and beta-hydroxybutyric acid. Although for these 

particular analyses we use “on-spot derivatization” and GC-MS
67-69

, the use of dried (blood, 

urine, …) spots as an analytical tool (also allowing automation - see section 5.1) prior to LC-

MS/MS can be applied for other compounds as well
6, 70, 71

. When considering toxicology 

screening in an acute setting, liquid microsampling, coupled to e.g. on-line sample cleanup 

procedures like turbulent flow chromatography and MS/MS detection, are more likely to be 

used than DBS, since in most cases it would not make sense to wait for a sample to dry. Yet, 

it is conceivable that for screening purposes approaches like paper spray-MS/MS or -HRMS 



(see further in section 6.4) might be employed in future, to get an instant identification of an 

intoxicant. Again, a drop of blood might suffice. 

Over the last years, meconium has proven to be a valuable matrix in the assessment of 

prenatal exposure to drugs of abuse and has gained a lot of interest due to the higher 

sensitivity, the easier sample collection and the larger detection window than traditional 

matrices, such as neonatal hair and urine
32

. To date, effort has been put in the development of 

advanced broad-spectrum screening methods using LC-MS/MS, facilitating the use of 

meconium in clinical routine screening for drugs of abuse. Ristimaa et al. developed in this 

context an LC-MS/MS-based targeted analysis method for a wide range of drugs of abuse, 

amongst which MDMA, MDA and THC-COOH
72

. Another application of meconium analysis 

is the quantification by LC-MS/MS of meconium fatty acid ethyl esters, ethyl glucuronide and 

ethyl sulfate, three alcohol markers used for the identification of in utero alcohol exposure
73

. 

Furthermore, the use of other non-invasive matrices in toxicology, such as nails, sweat and 

breast milk, has been enabled by the introduction of sensitive analytical techniques. Although 

these matrices can be useful in some instances (e.g. doping control, determination of exposure 

to environmental contaminants), their more widespread implementation in clinical routine is 

less likely, given the specialized nature of these samples. 

3.4 TDM 

TDM serves as an excellent tool in the optimization and individualization of drug therapy in 

both the general and special populations. Most often, TDM is performed on venous blood 

samples (whole blood, plasma or serum). Unfortunately, these samples are collected in an 

invasive way and the amounts of blood that are required are relatively large for e.g. neonates 

or anemic patients. In addition, samples need to be obtained by a phlebotomist, which obliges 

patients to visit a hospital or doctor’s office for a blood draw. Therefore, there is a growing 

interest in the use of non- and minimally invasive alternative sampling strategies for TDM. 

The most widely used alternative matrix in this regard is DBS
4, 5

. The use of DBS for TDM 

offers several benefits. As DBS are mostly obtained by a finger prick, the patient himself can 

perform the finger prick at home. In addition, as DBS are considered non-contagious, they can 

be sent via regular mail to the clinical laboratory
5
. This way, laboratory results may already be 

available before a patient visits the clinician for routine follow-up. However, the small sample 

size (typically 3 - 12 µL) associated with DBS imposes the need for sensitive 

instrumentation
5
. This need can generally be met with LC-MS/MS. Whereas throughput can 



be considered a limitation of DBS analysis - at least when considering manual handling of 

DBS - the emergence of automated DBS analyzers could be of great benefit for clinical 

routine, as outlined further (see section 5.1).  

Table 2 provides an overview of therapeutic drug classes, with selected examples, for which 

DBS-based TDM via LC-MS/MS has been reported
5, 74-83

. It needs to be mentioned, though, 

that to date in clinical routine only few therapeutic drugs are determined in DBS via LC-

MS/MS. A search throughout lab guides of different clinical laboratories only yielded 4 drug 

classes for which DBS are used for TDM in clinical routine: tricyclic antidepressants, 

antibiotics, anticonvulsants and immunosuppressants. Especially in the Netherlands, several 

hospitals have put major efforts to implement DBS for TDM (and other applications) in 

clinical routine
84-88

. As mentioned above for the use of DBS in an acute toxicology setting, 

also for TDM, liquid microsampling might be preferred over DBS sampling when feedback 

on the sample concentration is urgent. Still, in a hospital context, where staff is acquainted 

with traditional sampling and where patients are sampled anyway for evaluation of a variety 

of parameters, the implementation of alternative sampling strategies may not be a logical 

option in many cases. Microsampling may be a valuable option in those cases that require 

repeated measurement of drug levels e.g. for the abbreviated area under the curve estimation 

for the follow-up of tacrolimus treatment
89

. Outside the hospital, TDM may also play a crucial 

role in assessing patient adherence to prescription regimens of medication, as patient non-

adherence is a worldwide problem and leads to serious consequences (e.g. additional use of 

scarce healthcare sources and higher costs of care, negative impact on the efficacy of 

treatments and patient’s wellbeing)
90

. In this context, TDM via DBS also fits within the 

concept of “precision medicine”, where a patient should not only get the right drug, but also at 

the right dosage to achieve the right concentration, eventually leading to optimized 

medication usage. 

Although the small sample volume is one of the main advantages of DBS, it can be a limiting 

factor in certain cases as well, e.g. when a physician wants to evaluate various parameters in 

the same blood sample during treatment follow-up. The simultaneous determination of the 

kidney function, for example, can be of great importance given the fact that many drugs are 

excreted by the kidneys and/or may cause renal failure. In this case, creatinine (endogenous) 

or iohexol (administered) can be determined to assess the glomerular filtration rate. Koster et 

al. recently developed an LC-MS/MS method for the combined analysis of creatinine and 

several immunosuppressants in the same DBS extract, which is of great importance given the 



risk of renal failure associated with immunosuppressant use
91

. Since iohexol, a contrast agent, 

has already been analyzed in DBS, its determination in a DBS together with a drug of interest 

appears another feasible future perspective
92

. In summary, DBS can offer a lot of advantages 

in the context of TDM. However, the choice to switch from traditional sampling to DBS 

sampling needs to be well-balanced, taking into account the clinical question and the context 

in which both sampling and analysis need to take place. 

Another alternative matrix which has been extensively evaluated in the context of TDM is 

oral fluid. Since oral fluid is often regarded as a natural ultrafiltrate of whole blood, its use has 

been advocated as a convenient alternative to ultrafiltration or equilibrium dialysis to assess 

the free concentrations of therapeutic drugs
93

. In addition, oral fluid has the advantage of 

being obtained in a non-invasive manner, yielding the possibility of home sampling. 

Obviously, the latter is only feasible when a compound is sufficiently stable under ambient 

conditions, which needs to be evaluated during method development and validation. The 

stability of newer anti-epileptic drugs, for example, has proven to be adequate, allowing 

samples to be sent to the laboratory via postal service
94

. Furthermore, preservatives can be 

added to collection devices to enhance analyte stability
95

. 

Although oral fluid levels are suggested to correlate with the plasma free fraction of a drug, a 

correlation between both (or between oral fluid levels and total plasma levels) is often 

lacking. Moreover, even when a correlation is observed, the latter might be time- or 

concentration dependent and/or intra- and interpatient variability may be too large to allow 

reliable use in clinical practice
17

. Therefore, oral fluid is probably not suitable for TDM of 

most therapeutic drugs
96

. Generally, non-ionizable drugs (at least within the pH range of oral 

fluid) are considered the best candidates
10, 16

. However, this always needs to be evaluated on a 

case-by-case basis. Antiepileptics are one of the drug classes for which oral fluid-based TDM 

can be performed successfully. Specific antiepileptic drugs for which oral fluid provides a 

good alternative include carbamazepine, clobazam, ethosuximide, gabapentin, lacosamide, 

lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, primidone, topiramate, 

and zonisamide. For valproic acid on the other hand, this approach is not useful
12

.  

Additionally, also other alternative matrices such as tears, hair, sweat, exhaled breath and ISF 

have been evaluated for TDM purposes. Although some of these (e.g. ISF sampling via 

microneedles
34

) seem promising, currently, their use in routine TDM laboratories is non-

existing or limited at best. 



3.5 Phenotyping 

Phenotyping aims at determining the exact actual enzymatic activity of Cytochrome P (CYP) 

450 enzymes. In general, phenotyping for a drug-metabolizing enzyme consists of 

administering a selective probe drug of the enzyme, followed by determining a specific 

pharmacokinetic metric (e.g. systemic clearance of the probe drug, single-point concentrations 

or metabolite/parent drug concentration ratios)
97

. CYP450 enzymes mainly catalyze phase I 

metabolism reactions, the first step in the enzymatic biotransformation which is chiefly 

responsible for the elimination of drugs and other xenobiotics. Interindividual variability is 

seen in CYP450 enzyme expression and function, which is determined by genetic, epigenetic 

and non-genetic host factors (e.g. sex, age, pathophysiological conditions) and by 

environmental influences, such as tobacco smoke, drug intake and diet
97

. Therefore, every 

person has his own CYP450 enzyme activity profile, resulting in variability in drug 

metabolism and -consequently- variability in drug response. This variability is the prime 

reason why CYP450 phenotyping can be implemented in clinical routine for a selection of 

drugs, including tricyclic antidepressants (imipramine, nortriptyline), antipsychotics 

(haloperidol, risperidone, clozapine, olanzapine), opioid analgesics (codeine, tramadol), 

proton-pump inhibitors (omeprazole, lansoprazole) and antithrombotic agents (clopidogrel, 

warfarine)
97

. The use of alternative sampling strategies for CYP450 phenotyping in 

combination with LC-MS/MS is currently confined to oral fluid and DBS. Although data 

obtained using EBC for CYP450 phenotyping are in some respect comparable with those 

obtained during oral fluid-based phenotyping, the use of EBC in this context is less obvious 

due to the highly specialized equipment necessary for the measurement of 
13

CO2/
12

CO2 ratios 

in breath. To date, reliable phenotyping methods for various clinically relevant CYP450 

enzymes, including CYP1A2, CYP2C19 and CYP2D6 are available using alternative 

sampling strategies. For CYP3A4 on the other hand, additional studies are necessary
97

. For 

more details, the interested reader is referred to the recent comprehensive review by De Kesel 

et al.
97

. 

3.6 Metabolomics, proteomics and protein analysis 

The use of alternative sampling strategies in the ‘omics’ arena is to date limited to DBS, oral 

fluid and EBC. In a clinical setting, metabolomics and proteomics are typically targeted 

approaches, following a discovery phase in which a selected set of biomarkers (proteins and 

small molecules, respectively) has been identified. 



Metabolomics, the global study of metabolites in human body fluids, is an emerging ‘omics’ 

science which intends, just as proteomics, to discover specific disease biomarkers. Clinical 

metabolome studies by LC-MS/MS have been performed for transplantation, cancer, diabetes, 

lipid profiling and coronary heart disease. LC-MS/MS is an indispensable partner for 

performing quantitative metabolomics
98

. Alternative sampling strategies in the metabolomics 

field include EBC as well as oral fluid, with as an example the measurement of salivary 

biomarkers for the early diagnosis of various types of cancer
99-101

. 

EBC is an example of an alternative sampling strategy for which proteomic analysis has been 

performed for the detection of biomarkers related to asthma and COPD. Here, untargeted 

proteomics plays a distinct role in the search for the underlying pathobiology of these two 

most common chronic airway diseases. Analysis of EBC by an LC-MS/MS method revealed 

in this context the promising possibility of using a panel of proteins in the quest for the 

etiology of COPD
102

. 

Currently, clinical proteomics can be defined as the (large-scale) study of peptides/proteins in 

human biological matrices, aiming at validating and/or implementing biomarkers for the 

diagnosis, prognosis and/or therapeutic monitoring of diseases. Improvements in MS 

technology partly explain the increased focus on proteomics and protein analysis over the past 

decade, with applications in a variety of disciplines
103

. Recently, Chambers et al. published a 

multiplexed approach for the (semi-)quantification of a panel of 97 proteins in DBS
104

. 

However, the performance of proteomics and protein analysis in clinical routine, both by the 

use of conventional and alternative biological matrices (e.g. DBS), has remained rather 

limited to date and mainly focusses on studying one or several proteins. DBS-based protein 

analysis by MS includes quantitative and qualitative hemoglobin analysis, used in the 

diagnosis of sickle cell disease and other clinically relevant hemoglobinopathies
105

. 

Furthermore, Dewilde et al. developed a method for the determination of ceruloplasmin, a 

biomarker for Wilson’s disease, in DBS using LC-MS/MS
106

. Also proteins used in doping 

can be determined in DBS via LC-MS/MS. Examples are insulin-like growth factor-1 (IGF-

1), a biomarker of growth hormone (GH) abuse and Synacthen®, a synthetic human 

adrenocorticotropic hormone, causing increased plasma levels of cortisol
107, 108

. Further, the 

rapid emergence of protein therapeutics will likely bring along the need in some clinical labs 

to measure these proteins in at least a subset of patients. This is typically done by targeted 

LC-MS/MS-based analysis of a representative set of peptides, generated by proteolytic 

digestion of a sample, such as a DBS. 



Next to LC-MS/MS methods, several immunoassays were developed for the determination of 

relevant proteins in alternative samples, including DBS. Examples include thyroglobulin and 

prostate-specific antigen
109, 110

. Although more challenging to set up and implement, LC-

MS/MS assays offer the advantage over immunoassays that they do not suffer from false 

positive results, caused by autoantibodies (e.g. against thyroglobulin) and rely on unequivocal 

identification rather than on antibody-based recognition. Another disadvantage coupled to 

many immunoassays is the lack of reliable reference methodologies, sometimes causing 

incomparable results. In this context, LC-MS/MS methods could be developed as reference 

measurement procedures
111

. An example of such a reference method is the determination of 

HbA1c, a fundamental biomarker in the long-term follow-up of the glycemic state of diabetic 

patients, in whole blood. Several publications readily unveiled the advantages of HbA1c 

determination in DBS
112

. As blood lipids are also important risk determinants in patients with 

diabetes, a combined LC-MS/MS determination of HbA1c and lipids in DBS could be 

beneficial. Since LC-MS/MS-based quantification of cholesterol and related metabolites in 

DBS has already been performed in the screening of inborn errors, we believe that a 

combined method is certainly possible in the monitoring of diabetes patients
113

. 

 

4. LIMITING FACTORS 

Although the use of alternative sampling strategies may be appealing for certain applications, 

their use in clinical routine is hampered by some practical hurdles, technical challenges and 

inherent (minor) disadvantages. First of all, the development of methods using alternative 

matrices generally takes longer, since more variables need to be evaluated. Examples include 

the evaluation of hematocrit, volume and chromatographic effect in DBS analysis and the 

influence of the collection method and collection device used in oral fluid analysis. In 

addition, method development may be further complicated due to interferences originating 

from e.g. DBS filter paper or oral fluid collection devices
18, 114

. Unfortunately, the above-

mentioned additional variables are often not included in standard validation guidelines and 

matrix-specific guidelines are not always available.  

Furthermore, matrix-specific issues exist, which can lead to erroneous results or may 

complicate data interpretation. Hair analysis, for example, is subject to several issues, as 

already mentioned in section 2. First of all, it has been shown that external contamination can 

lead to false positive results, since contaminants can be introduced in the hair matrix of a non-



user in various ways, including during washing steps carried out in the lab (Cuypers et al., 

unpublished data)
21, 22

. Secondly, for certain compounds a single dose may yield positive 

results not only in the hair segment corresponding to the moment of intake, but throughout the 

entire length of the hair, falsely indicating chronic use
115

. Thirdly, cut-offs employed for 

toxicological hair analysis are not available for every compound or may vary between 

different guidelines
116

. In DBS analysis on the other hand, the hematocrit effect is the most 

prominent issue affecting data accuracy and interpretation
3
. Another practical issue in 

interpreting DBS results is the fact that existing reference intervals and therapeutic ranges are 

generally established using serum or plasma. So either new reference intervals need to be set 

up for the specific matrix or bridging studies have to be conducted to correlate alternative 

matrix levels to systemic plasma or serum levels, whenever a correlation between both is 

assumed
117

. However, thorough clinical validation is often lacking, as generally only a limited 

number of samples are included in these studies or the included samples are not true patient 

samples. In addition, studies on the effect of the use of alternative matrix analysis on patient 

outcome have not been conducted to the best of our knowledge.  

Moreover, as mentioned above, the analysis of alternative matrices requires sensitive 

equipment, since only a limited sample volume may be available and/or concentrations 

present may be very low. Hence, when obtaining sufficient sensitivity using traditional 

matrices (e.g. 100 µL of plasma) is already challenging, analysis of a DBS, for example, may 

not be feasible. Furthermore, the analysis of alternative matrices such as DBS and hair often 

includes a lot of manual steps and hands-on time, limiting sample throughput and increasing 

turn-around-time. Also the set-up of a quality control (QC) program is particularly 

challenging for alternative matrices (as outlined in section 5.2). Furthermore, it needs to be 

taken into account that in the case of home sampling of e.g. DBS or oral fluid there is no 

control of sample collection and storage conditions, as the collection is carried out by the 

patient or his caregiver, instead of by trained personnel. Although the collection of these 

samples is not that hard, quality issues with patient samples may pose problems. Also 

important in a clinical setting is the fact that these alternative tests may not be included in 

nomenclature and hence may not be reimbursed by the public healthcare system. 

 

5. TOWARDS ROUTINE IMPLEMENTATION 



To overcome the above-mentioned hurdles a lot of work has been done and is still ongoing, 

including the development of new, sensitive and robust analysis techniques, new sampling 

formats, automated analyzers, and a surrounding support system comprising e.g. proficiency 

testing (PT) programs and matrix-specific best practice guidelines.  

5.1 Automation 

An important step in incorporating the analysis of alternative samples in routine laboratories 

is automation; not only to increase throughput and safety, but also to decrease hands-on time 

and to exclude human errors. Ideally, automation encompasses the pre-analytical, analytical 

and post-analytical phase. More specifically in the case of DBS or DPS, this means a lab 

technician would only have to introduce a patient’s card into an analyzer after which the 

sample is automatically analyzed and the obtained result communicated into a laboratory 

management information system. Promising advancements have been made in this regard. 

The tedious punching step can be replaced by (semi-)automated punching devices, whilst 

sample preparation can be automated using e.g. readily available liquid handling systems
118

. 

Furthermore, completely automated DBS/DPS analyzers have become commercially available 

and can be directly coupled to standard LC-MS/MS configurations. These analyzers have 

accessories such as e.g. barcode readers that allow for sample registration and traceability. 

Every type of DBS/DPS automated analyzer uses solvents to elute a fixed area of matrix from 

a collection card, obviating the need for punching. The way the elution is performed depends 

on the type of analyzer: the DBS Autosampler
TM

 and the Sample Card and Prep system
TM

 

both employ flow through desorption, whilst in the DBS-MS 500 system extraction solvent is 

guided horizontally through the DBS during a surface sealed extraction, after which the 

extract is guided into a sample loop
119-121

. After elution, the extract can be subjected to on-line 

sample clean-up and/or separation on an LC column or even direct injection into the MS, 

depending on the chosen configuration
8, 64, 119-121

. Importantly, using automated DBS 

analyzers, the entire DBS extract is introduced into the (LC-)MS/MS system, thereby 

increasing method sensitivity, since in off-line approaches only part of the extract is injected 

into the analyzing system. The DBS-MS 500 system is currently the only analyzer in which 

internal standard can be sprayed onto the DBS before extraction
119

. In the two other types of 

analyzers the internal standard is automatically added to the elution solvent. To verify 

whether the correct portion of the card has been analyzed these analyzers can take a picture of 

the sample before and after analysis. In addition, it is also possible to use the DBS analyzers 

as automated sample preparation devices that are not coupled to an LC-MS/MS system. To 



reduce hands-on-time even further, also the preparation and spotting (in the case of 

DBS/DPS) of calibrators, QCs and blanks can be automated using a commercially available 

liquid handling system
59, 122

. This procedure showed similar accuracy and precision as manual 

preparation, but was safer, more efficient and yielded samples of predictable quality. 

Also for the analysis of other alternative matrices, automation is important to allow 

convenient implementation in a routine setting. Therefore, commercially available 

workstations can be employed to automate laborious sample pretreatment steps as much as 

possible. This was e.g. done for the analysis of drugs of abuse in preserved oral fluid samples 

collected using Quantisal
TM

 devices
59

. For this application the workstation was not only used 

for IS addition, but also for automated SPE. The only remaining manual step during sample 

pretreatment was the evaporation of the SPE eluate which was automatically collected in LC 

vials. However, for some matrices automation may prove challenging. In the case of hair 

analysis for example, the inability to handle the solid hair sample limits the degree of 

potential automation
123

. 

Importantly, when using LC-MS/MS in a routine setting, not only the sample handling and 

the on-line sample preparation need to be automated, also the LC-MS/MS modules and 

software programs should become more user-friendly. More specifically, to make LC-MS/MS 

technology as convenient as possible for lab technicians, ideally a sort of “black box” LC-

MS/MS unit should be integrated in existing chemistry analyzers. One suggestion that has 

been made in this regard is the development of an analyzing module with hybrid technology 

combining the characteristics of immunoassays and tandem MS
124

, potentially omitting the 

need for LC.    

Another, complementary way of increasing throughput to which LC-MS/MS lends itself 

perfectly, is to multiplex different analytes in a single run. The latter also aids in retrieving as 

much information as possible from a limited sample. However, in hair analysis the 

development of such multi-analyte procedures might prove challenging, since authentic hair 

samples are required for e.g. extraction optimization during method development
123

. 

Additionally, multiple LC systems can be multiplexed on one MS, further allowing a more 

economic use of the MS. This can be via staggered analysis (in which the chromatographic 

eluate only enters the MS/MS system during the time window where the compounds of 

interest elute) and/or via a more convenient switching between different methods, since no 

hardware changes need to be performed. Even sample multiplexing (i.e. the simultaneous 



introduction of two samples that were differentially derivatized) may be considered an option 

to increase throughput
125

. 

5.2 Quality assurance and harmonization 

LC-MS/MS methods, including those for alternative matrix analysis, are typically developed 

in-house in clinical laboratories and are (at least up till now) generally not approved by the 

Food and Drug Administration
126

. Therefore, every laboratory is completely responsible for 

each test it implements. Unfortunately, QC materials for alternative matrices - necessary to 

help guarantee method quality - are generally not commercially available. QCs should be 

prepared in native matrix and whenever this is not feasible, should at least be commutable 

with true samples. Although a few standard kits exist for LC-MS/MS, these are not 

necessarily suitable for e.g. DBS methods, since in that case calibrator and QC materials 

should also have the same viscosity as true blood to have similar spreading properties. 

Therefore, calibrators and QCs are currently often prepared in-house from different (non-

)certified starting materials. The development of more LC-MS/MS kits, encompassing 

calibrators and QCs in a suitable matrix, as well as e.g. internal standards, extraction solvents 

and mobile phases would hence be a tremendous step forward. Although such a kit has, for 

example, already been developed for the analysis of amino acids and acylcarnitines in DBS, it 

needs to be pointed out that it was developed for MS/MS analysis and not specifically for LC-

MS/MS analysis
127

. Some alternative matrices also have special QC requirements. For DBS, 

for example, it is advisable to include different hematocrit levels
128

, whilst for hair analysis it 

is important to include different hair types
129

. In addition, to ensure appropriate accuracy, 

methods should ideally be traceable to a higher order reference method. However, these 

reference methods are often lacking.  

Concerning external quality assurance, the NBS quality assurance program has played an 

important role for DBS analysis, since it offers both certified PT materials and external QCs  

for (MS/MS-based) NBS assays
130

. However, external QC and PT materials are not yet 

available for all performed NBS tests. Furthermore, an initiative has been launched by The 

Association for Quality Assessment in Therapeutic Drug Monitoring and Clinical Toxicology 

to set up a pilot PT program for TDM of immunosuppressive drugs in DBS
131

. For hair 

analysis the Society of Hair Testing (SoHT), HAIRVEQ and the German Society of 

Toxicological and Forensic Chemistry organize PT programs for some drugs of abuse and 

ethanol markers
116

. Also for oral fluid and sweat PT schemes exist for drug testing. An extra 



complicating factor in PT programs for alternative matrices are the different types of 

substrates that are used to collect samples (e.g. different types of filter paper cards in DBS 

sampling and different collection devices in oral fluid sampling)
131

. Therefore, to facilitate 

these types of programs, harmonization/standardization will be important in the future.   

Not only the analytical method itself, but also the patient samples (even when collected at 

home) have to be of sufficient quality. A first step towards achieving this is by guaranteeing 

the quality of the substrate on which the sample is collected. For DBS sampling this is 

achieved via the Filter Paper Evaluation Project, set up by the center for disease control and 

prevention (CDC) which also offers its services to filter paper manufacturers
130

. The quality 

criteria postulated by the CDC resulted in the laboratory standard, Clinical and Laboratory 

Standards Institute NBS01-A6, which has greatly contributed to the reduction of analytical 

imprecision due to batch-to-batch variability in filter paper. Furthermore, the quality of a DBS 

is also evaluated before analysis, either by experienced laboratory personnel or in an 

automated fashion using an optical scanning instrument
132

. Such instruments objectively 

evaluate spot area, circularity, convexity and consistency (i.e. DBS size, symmetry and 

uniformity). In this way, acceptable, marginally acceptable, and unacceptable DBS are 

distinguished and acceptable punch areas identified. To maximize the amount of acceptable 

spots in the event of home sampling, patient education via demonstration folders and movies 

has proven to be essential. To evaluate whether contamination occurred during sample 

collection, incurred sample reanalysis or analysis of a blank filter paper area close to the DBS 

has been advocated
6, 133

. Also for other matrices which are usable for home monitoring, 

evaluation of sample quality is essential. Therefore, it can for example be advised to perform 

oral fluid home sampling using collection devices with volume indicators.  

To help harmonization and standardization of alternative matrix analysis, best practice 

guidelines have been proposed by several committees (e.g. SoHT or the European Bioanalysis 

Forum consortium) highlighting important pitfalls and validation requirements
116, 128

. Also 

harmonization of data interpretation is an essential goal of these committees. The SoHT and 

the DRUID project, for example, have played an important role in the determination of cut-

offs for toxicological analysis of hair and oral fluid, respectively
116, 134

. 

6. FUTURE TRENDS 

6.1 Development of new formats  



New formats and approaches have been developed to improve the acceptance of dried blood 

(spot) analysis by tackling the crucial hematocrit issue. Strikingly, most of these approaches 

have been designed to be compatible with automated analysis. First of all, volumetric 

approaches have been suggested which are able to produce fixed-volume DBS from a non-

volumetric whole blood droplet. Whilst some of these approaches use formats which are 

compatible with existing DBS analyzers
135, 136

, others such as VAMS employ a different type 

of collection device
137, 138

. However, also in this case, sample preparation can still be 

automated, more particularly via readily available liquid handling systems. Secondly, others 

have suggested the use of DPS instead of DBS. In such instance the former can be prepared 

via filtration of a blood drop over a size-exclusion membrane, which withholds blood cells
139, 

140
. The DPS cards developed by Sturm et al. are compatible with commercially available 

automated analyzers
141

. Unfortunately, also DPS appear to be subject to a certain hematocrit 

effect
141

. A third possibility is to estimate the hematocrit of a DBS and to correct for the 

anticipated hematocrit effect
142

. Recently, we developed a non-contact hematocrit estimation 

method (Capiau et al., unpublished data) which could potentially be more easily automated 

than the potassium-based hematocrit estimation method we previously established
7
. 

Also for other alternative matrices innovation is ongoing. An example is the development of a 

new exhaled breath collection device for the analysis of drugs of abuse, which allows to 

standardize the volume of matrix collected (at least to some degree) and facilitates remote 

collection by non-trained personnel
143

. The device is composed of a filter which is located in a 

filter holder and a mouth piece which is attached to a plastic bag. When a person breathes into 

the device, aerosol particles will be collected onto the filter and the plastic bag will inflate. 

When the plastic bag is full, sufficient matrix has been collected onto the filter. Subsequently, 

the filter holder and the mouthpiece can be detached from one another and the filter holder 

can be closed with plugs and sent to a laboratory via regular mail. 

6.2 Microfluidics  

Microfluidics have been employed for alternative matrix collection and sample preparation in 

conjunction with tandem MS. One example includes the use of a lab-on-a-chip for sample 

preparation of either a DBS punch or a directly applied capillary blood droplet
144

. Multiplexed 

extraction of DBS using this type of chips was demonstrated by Lafrenière et al. using 

automated droplet control.
145

 Due to its relative simplicity this technique has even been 

suggested to be able to bring clinical analysis closer to the patient. In this context, a proof of 



principle was published by Kirby et al. who used digital microfluidics to extract dried urine 

spots and to transport the extract to a nanoelectrospray emitter to allow tandem MS-based 

detection of drugs of abuse using a portable mass spectrometer
146

. Evans et al. on the other 

hand, employed capillary-scale LC to analyze DBS extracts, since this increases assay 

sensitivity
147

. To avoid problems with column connections, a chip can be employed onto 

which column, connections and MS emitter and spray are co-located
148

. Although no 

published examples could be found by the authors, chip-based microfluidic extraction could 

potentially be made compatible with LC by integrating the required technology into a single 

chip format for a seamless workflow. Notwithstanding the promising nature of these new 

developments, latest technological advancements are often only steadily implemented in a 

routine setting, as robustness first has to be well established. 

6.3 High resolution mass spectrometry (HRMS) 

Aside from its use in e.g. biomarker discovery research (possibly in oral fluid or DBS), 

untargeted screening using HRMS is increasingly becoming a valuable tool for toxicological 

purposes, e.g. allowing detection of new psychoactive compounds and their metabolites
149

. 

Also in other cases where untargeted screening is advised, e.g. for the evaluation of the 

chemical and biological exposure of humans (which has been suggested to become more 

important in the future)
150

, HRMS may be an ideal screening tool. In addition, for the 

detection of inborn errors of metabolism, the use of HRMS has been advocated as an 

alternative for the traditionally used electrospray ionization-MS/MS, since multivariate 

pattern recognition analysis would lead to better specificity and the identification of 

comorbidities and interferences caused by medical treatment or damaged DBS
151

. Last, 

although LC-MS/MS is likely to remain the workhorse for quantitative bio-analysis during the 

next couple of years, LC-HRMS/MS is increasingly advocated as a suitable alternative, 

further facilitating quantitative analysis of complex mixtures. 

6.4 MS(/MS)-based point-of-care testing (POC) 

Another important trend in clinical analysis is the development of MS(/MS)-based POC 

testing and/or near-patient analysis. The latter may be performed at a professional healthcare 

center, at the emergency unit or even in operating theatres. However, development of these 

decentralized analyses is most often -and ideally- still under the supervision of the clinical 

laboratory, which is responsible for e.g. quality assurance. In general, these POC techniques 

do not require sample preparation steps nor a separation step and employ ambient ionization 



techniques (although a multitude of ambient ionization techniques have been employed, 

selected examples will be discussed). In this context as well, alternative sampling strategies 

have been employed. Examples include the use of paper spray MS for the analysis of blood or 

oral fluid collected on filter paper for e.g. TDM purposes and abstinence monitoring
152, 153

. In 

paper spray MS, a drop of the biological sample is deposited on a triangle-shaped filter paper 

which is part of a disposable collection cartridge. After the cartridge has been positioned in 

front of the MS, a solvent is applied to the filter paper, as well as a high voltage. This causes a 

spray to be formed at the tip of the triangle, which is then transmitted into the MS. 

Subsequently, the resulting signal is recorded for a fixed period of time, which results in a 

signal vs. time plot (called a chronogram). To quantify the amount of the target compound 

present, the area under the curve of this chronogram is employed. To be workable in a POC-

setting, the blood on the filter paper is either analyzed when it is still wet or after it has been 

quickly dried using either pre-spotted coagulants or heat application
152-154

. A first step towards 

automation has been accomplished by the development of a tray, which can hold multiple 

filter paper triangles which are consecutively analyzed
155

. In addition, to render POC-MS 

feasible, portable MS systems have been developed
156

. The mini 12, for example, has been 

employed for the analysis of the therapeutic drug amitriptyline using paper spray MS
157

. The 

goal of this instrument is to be able to offer a sample to a miniature MS after which analysis 

and data analysis are performed automatically and a result is directly generated on the screen. 

Similarly, the concept of touch spray MS has been developed. This refers to the direct 

analysis of oral fluid collected on a medical swab. In this case as well, a solvent and a voltage 

are applied to the collection device after which a spray is formed. Applications of the 

technique include the semi-quantification of various drugs and the detection of lipids which 

are specific to S. pyogenes to quickly diagnose strep throat
158, 159

. In addition, even surgical 

smoke has been sampled via a surgical knife to help differentiate between cancerous and non-

cancerous tissue during surgery
160

. 

 

7. CONCLUSION 

Although ample clinically valuable applications have been developed using alternative 

sampling strategies, their adoption in routine clinical laboratories is still limited. Aside from 

the vast use of DBS in NBS programs, only few examples can be found which employ 

alternative sampling strategies for routine analyses using LC-MS/MS. Examples include the 



determination of salivary cortisol levels, the determination of drugs of abuse in oral fluid, and 

the use of DBS for TDM purposes. The growing automation of alternative matrix analysis 

will definitely contribute to the acceptance and introduction in routine practice. In addition, 

matrix-dependent issues are (successfully) being tackled and new, more robust formats are 

being developed, bridging the gap between research and clinical laboratories. To guarantee 

the quality of alternative matrix-based assays, initiatives to set up guidelines for the 

development and validation of these assays (which take into account matrix-specific 

requirements) as well as matrix-specific PT programs are essential. Although alternative 

sampling strategies will never replace traditional sampling, they should definitely be regarded 

as a complementary approach, which may be particularly valuable to extend the window of 

detection and/or to allow specific applications such as home monitoring, sampling of special 

patient populations (such as neonates, children and elderly), and sample collection in remote 

or resource limited areas. In this context, alternative sampling strategies, combined with LC-

MS/MS, can be looked at as an additional tool, with the potential to provide high quality 

results where adequate information cannot be (conveniently) obtained using traditional 

approaches. 
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NA: not applicable 

* The hematocrit effect 

is a major issue, but to 

date, several attempts 

to cope with the issue 

have been explored.  

 

 

Table 2: Overview of therapeutic drug classes, with selected examples of drugs, for which DBS-based TDM via LC-MS/MS has been reported. 

Convenient storage 

and transport 
+++ +++ - +++ + +++ - - + - - 

Reduced infection risk 

(compared to blood 

samples) 

+ +/- + ++ +++ +++ + + +++ +++ +++ 

Resistance to 

contamination 
- - + - - - ++ ++ - + ++ 

Resistance to 

hematocrit effect 
-* + ++ ++ NA NA NA NA NA NA NA 

Table 1: The main advantages and challenges of the different types of alternative sampling strategies. 

Drug class Medicines  

Anticonvulsant75, 82 Phenobarbital Clobazam 

 Topiramate Clonazepam 

 Rufinamide 

Carbamazepine 

Lamotrigine 

Phenytoin 

Valproic acid 

 

 Antiviral5, 74, 76 Atazanavir Efavirenz 

 Nevirapine Darunavir 

 Indinavir Ribavarine 



 Ritonavir Tenofovir 

 Saquinavir Etravirine (TMC125) 

 Nelfinavir Raltegravir 

 Lopinavir (Val)Ganciclovir 

Immunosuppressant5, 76, 83 Cyclosporine Sirolimus 

 Tacrolimus 

Mycophenolic acid 

Everolimus 

 

Cytotoxic5, 76, 78 Actinomycin-D Imatinib 

 Vincristine Nilotinib 

 Busulfan Dasatinib 

 Paclitaxel Tamoxifen 

Analgetic5 Acetaminophen  

Angiotensin II receptor antagonist5 Losartan  

Antibiotic5, 74, 81 Ertapenem Moxifloxacin 

 Linezolid 

Claritromycin 

Ramoplanin 

Rifaximin 

Rifampicin 

Antidepressant5 Venlafaxine  

Antimalarial5 Mefloquine  



 

 

 

Antimycotic5, 74 Voriconazole Posaconazol 

 Fluconazole Metronidazole 

Diuretic5 Canrenone  

Histamine H2-receptor antagonist5 Ranitidine  

β-blocker5 Propranolol  

Antipsychotic79 Amisulpride 

Asenapine 

(Nor)Clozapine  

Haloperidol 

(Levo)Sulpiride 

Risperdone 

Sertindole 

Zuclopenthixol 

(Dehydro-)Aripiprazole 

Bromperidol 

(OH-)iloperidone 

Lurasidone 

Paliperidone 

Pipamperone 

Quetiapine 

Antidiabetics80 Metformin Sitagliptin 

Enzyme-inhibitors77 Nitisinone  

 


