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Global alternans instability 
and its effect on non-linear 
wave propagation: dynamical 
Wenckebach block and self 
terminating spiral waves
Nele Vandersickel1, Arne Defauw1, Peter Dawyndt2 & Alexander V. Panfilov1,3

The main mechanism of formation of reentrant cardiac arrhythmias is via formation of waveblocks at 
heterogeneities of cardiac tissue. We report that heterogeneity and the area of waveblock can extend 
itself in space and can result formation of new additional sources, or termination of existing sources 
of arrhythmias. This effect is based on a new form of instability, which we coin as global alternans 
instability (GAI). GAI is closely related to the so-called (discordant) alternans instability, however its 
onset is determined by the global properties of the APD-restitution curve and not by its slope. The APD-
restitution curve relates the duration of the cardiac pulse (APD) to the time interval between the pulses, 
and can easily be measured in an experimental or even clinical setting. We formulate the conditions for 
the onset of GAI, study its manifestation in various 1D and 2D situations and discuss its importance for 
the onset of cardiac arrhythmias.

The pumping function of the heart is controlled by electrical waves of excitation, which propagate through the 
heart and initiate cardiac contraction. Abnormal propagation of these electrical waves can result in the formation 
of vortices which excite the heart with a high frequency and cause a cardiac arrhythmia, called a tachycardia. In 
many cases, such vortices break down into complex turbulent patterns and the excitation of the heart becomes 
spatially asynchronous. Because of this, the effective contraction of the heart is disrupted, which results in ven-
tricular fibrillation. Sudden cardiac death due to ventricular fibrillation is one of the largest causes of death in 
the industrialized world, accounting for approximately one death in ten. Therefore the mechanisms behind the 
initiation of vortices and the processes which can remove them from cardiac tissue are of great practical interest.

Early research showed that vortices can be formed due to regional heterogeneities in the heart. If one stim-
ulates heterogeneous cardiac tissue with a period shorter than the refractory period of this heterogeneity, it will 
result in the onset of wavebreaks at this heterogeneity which can evolve into vortices1–3. The size and extent of 
this heterogeneity are the most important factors which underly rotor formation, and sustained vortices can be 
formed if the size of the heterogeneity is sufficiently large4,5.

There are many types of heterogeneities which occur due to different properties of cardiac cells in different 
regions of heart: e.g. the apex-base heterogeneity6, the transmural heterogeneity7, a heterogeneity around an 
infarction scar8, etc. Experimental studies of wedge preparation of the human heart also revealed local small-sized 
heterogeneities9,10.

In addition, the heterogeneity can occur even in homogeneous tissue as a result of action potential duration 
(APD) restitution, which is normally expressed in terms of the APD restitution curve. This restitution curve 
relates the APD and the diastolic interval (DI, the time between the end of the previous and the beginning of 
the new action potential) and it is normally a monotonically increasing function with saturation at large DI. 
Therefore, if due to some reason the DI distribution is spatially heterogeneous, for example just due to initial 
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conditions, it will results in spatial heterogeneity in APD even if the tissue of completely homogeneous. A well 
known example of the onset of such a heterogeneity is the so called alternans instability, when the APD duration 
alternates from short to long to short etc., which was first investigated theoretically11,12 and then experimentally13. 
It was shown that it occurs if the slope of the APD restitution curve is more than one.

Such alternans instabilities obtained a lot of attention, because it was found that they result in the breakdown 
of a single vortex into a complex turbulent pattern of excitation14–16. These studies initiated a lot of experimental 
studies on the restitution properties of cardiac tissue and it was finally shown that reduction of the slope of the 
restitution curve prevents the onset of ventricular fibrillation17,18. In addition, a lot of new protocols and defi-
nitions of restitution relations were proposed, including dynamical restitution19 and the restitution portrait20. 
Additional studies indicated that the situation is more complex than originally thought: instability is not only 
related to the slope of the restitution curve, but also to other parameters, e.g. dispersion relation of the waves21,22. 
Also, two types of spatial alternans instabilities were identified: so-called concordant alternans (i.e. situation 
when the alternans are spatially uniform) and discordant alternans (i.e. situation when the alternans are spatially 
non-uniform). Discordant alternans are considered more dangerous as due to spatial heterogeneity wave blocks 
and reentrant patterns of excitation can occur21.

All studies listed above can be considered as studies of local dynamical instabilities. This means that there are 
some critical parameter values at which such instabilities occur. At the beginning, such an instability is usually 
just a small change, which grows and ultimately affects the global dynamics of the system.

The main rational of this paper is to show an important new manifestation of the APD restitution properties, 
which is closely related to the processes of the onset and disappearance of vortices in cardiac tissue. We will 
show that wave block (e.g. due to a heterogeneity) can extent into space under certain conditions, although the 
tissue is can be perfectly homogeneous. We will call this phenomenon a global alternans instability (GAI), as it is 
determined by global restitution properties of the tissue (difference of APD at two points on the restitution curve, 
rather than slope of the restitution curve).

In this paper, we study this instability in detail. In the first section, we will study this phenomenon in 1D 
and illustrate the process of growth of the wave block region, find the velocity at which this region grows and 
the dependency on the forcing period. Next, we propose a semi-analytical theory, and demonstrate that it can 
describe the observed behavior with a high accuracy. This analytical approach is similar to the one-dimensional 
coupled maps model used in Fox et al.21 to study alternans wave blocks which occur as a result of discordant 
alternans. However, in our case it is based on a quantitatively correct description of electrotonic effects developed 
in23,24 and evaluation of the refractory period of cardiac tissue. In the next section, we will study the GAI in 2D 
and show that the region of block extends itself in a similar way, and that it can result in the creation of new spiral 
waves or eventual removal of spirals from the tissue. Finally, show a physiological example where the GAI can be 
important. We end the paper with a discussion of our results and their possible consequences for the onset and 
dynamics of cardiac arrhythmias.

Materials and Methods
Model. In this paper we considered a monodomain description of cardiac tissue25 which has the following 
form:

∂
∂
= ∇ ⋅ ∇ −C V

t
D V I , (1)m

m
m ion

where D is a diffusion matrix accounting for anisotropy of cardiac tissue, Cm is membrane capacitance, Vm is 
transmembrane voltage, t is time and Iion is the sum of ionic transmembrane currents describing the excitable 
behavior of individual ventricular cells. To represent human ventricular electrophysiological properties, we used 
the ionic TP06 model26,27. This model provides a detailed description of voltage, ionic currents, and intracellular 
ion concentrations for human ventricular cells. A complete list of all equations can be found in26,27. We used the 
default parameter settings from27 for epicardial cells.

Numerical methods. For 1D and 2D simulations, the forward Euler method was applied to integrate eq. (1). 
A space step of Δ x =  0.25 mm was used in 1D, Δ x =  0.2 mm in 2D, and a time step of Δ t =  0.02 ms was used. To 
integrate the Hodgkin-Huxley-type equations for the gating variables of the various time-dependent currents  
(m, h and j for INa; r and s for Ito; xr1 and xr2 for IKr; xs for IKs; d, f, f2 and fCass for ICaL), the Rush and Larsen scheme28 
was used.

For a DI smaller than 32 ms, we used linear interpolation for the restitution curve, while the conduction veloc-
ity was set constant. For DI ¡ 17 ms, the APD was set equal to zero.

Anisotropy. In all of our 2D simulations, the fibers were directed along the x-axis. In these cases the diffusion 
matrix was given by
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Ionic heterogeneities. In the 2D simulations, we have created ionic heterogeneities to induce the wave 
block in a realistic 2D transmural wedge. A spiral wave was induced at the left side of the medium (10 ×  1.6 cm). 
We have then set the heterogeneity in the right side with a with of 0.48 cm, whereby we have changed the the 
conductance of IKs resp IKr from their standard value of GKs =  0.3923 and GKr =  0.153 nS/pF to GKs =  0.073 nS/pF 
and GKr =  0.048 nS/pF. This change gave a lengthening of 10 ms in the APD duration29. In a second simulation, 
we have set GKs =  0.034 nS/pF and GKr =  0.024 nS/pF to test the effect of the degree of the heterogeneity on the 
simulation.

Results
GAI in 1D. In Fig. 1 we show the manifestation of what we call a global alternans instability (GAI). We con-
sidered a homogeneous cable of cardiac cells, which we paced at the left border with a period T =  220 ms, corre-
sponding to APD =  187 ms. We temporary blocked the wave propagation in the middle of the cable, so wave N 
cannot excite the cells to the right of this wave block location. However, this block is temporal, and wave N +  1 
again excited these cells. Due to restitution effects, the duration APDN+1 =  278 ms is substantially longer than the 
normal value. As a result, the next wave N +  2 is blocked again because cells are not recovered from the action 
potential N +  1. In addition, if we look at Fig. 1 we observed that the point of the wave block is shifted to the left, 
in comparison to the previous point of block. In the same way, wave N +  3 will be able to excite the complete cable, 
and the process is repeated as APDN+3 will be longer again. So we see that in homogeneous tissue, due to initial 
conditions, we observe an area of wave block which extends itself in space in an alternating order. This is what 
we call a GAI. It is important to note that we do not observe any other alternans due to dynamical instabilities.

In Fig. 2 we show the same process but now for T =  290 ms. We observe a similar growth of the wave block 
region, although in this case the rate at which it grows is lower than for T =  220 ms. Again, we do not observe any 
other alternans in Fig. 2.

Figure 3A shows the dependence of the wave block point on the period of pacing T. The colored dots show 
the location of block for each second wave, for a certain T. Interestingly, as was already clear from Figs 1 and 2, 
this shift of the wave block location is approximately constant. Next, we calculate the velocity at which the wave 
block region extends itself in space for different T. This is shown in Fig. 3B. We observe a linear dependency of the 
velocity on T. Also, we observe that there is a critical T (around 300 ms) for which this instability disappears. The 
reason for that is explained in the next section.

Figure 1. GAI in a cable of cardiac cells. The cable is paced at the left border with a period T =  220 ms. The 
wave block region extends itself in space. Length of the cable is 256 mm.

Figure 2. GAI in a cable of cardiac cells. The cable is paced at the left border with a period T =  290 ms. The 
wave block region extends itself in space. Length of the cable is 256 mm.
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Mechanism of GAI. General consideration. The critical period at which a GAI occurs can be estimated by a 
simple reasoning via the restitution curve (see Fig. 4). First, we note that if the cells located to the left of the point 
of block are stimulated with a certain period T, the cells inside the region of block are excited with a period 2 ×  T. 
Thus, if we neglect electrotonic effects, the APD for cells located outside this region is given via the restitution 
curve as APD1, which is a solution of the implicit equation APD1 =  FAPD(T −  APD1), while the APD for the other 
cells is given by the solution of APD2 =  FAPD(2 ×  T −  APD2). Second, we will observe a wave block if the wave 
arrival time is smaller than the local refractory period (RP) of the cells. So, to find when a wave block will occur, 
and thus a GAI, we have to relate the RP to the APD. For this, we note that in cardiac tissue APD values are closely 
related to RP. We find that, in our model, APD measured at 90% repolarization is approximately equal to RP, so 
APD ≈  RP. Finally, if we neglect conduction velocity changes, the arrival time to all points where the wave can 
reach is just equal to T. Combining these three remarks, we see that we will only have a GAI for those T for which:

< = −T APD F T APD(2 ) (3)APD2 2

This simple formula based on the restitution curve shown in Fig. 4 gives us a critical T ≈  310 ms, which is close 
to what we observed in our simulations.

Semi-analytical theory. We use the approach of a delay equation representation developed by Keener and 
Courtemanche30, and extended by Vinet31 and Fox et al.21. We will show that we can quantitatively estimate the 
rate at which the wave block region grows by using this analytical phenomenological approach.

For this, we assume that we deliver stimuli on the left end of the long cable with the period T. Let us consider a 
fiber on an interval [xl, xr]. For formal theoretical consideration we assume that xl =  − ∞ , xr =  + ∞ . However for 
numerical realization a big negative xl and a large postive xr will suffice. Suppose that the dynamical equilibrium is 
established in this system such as all points x of the cable have the same APD according to the restitution relation 
APD(x) =  APD0 =  FAPD(T −  APD0). Now suppose that we blocked a wave at some point x =  ξ0. Then for the next 
wave the profile of the APD will not be uniform anymore. To find this profile we first find the profile for DI after 
the initial wave was manually blocked at x =  ξ0. Let us denote the initial wave with the subscript “0” and the next 
wave “1”. The profile DI0(x) after the wave “0” is blocked is given by:

Figure 3. The colored dots in (A) show the location of the point of wave block versus time using the protocol 
as described in Figs 1 and 2 for different T. In (B) we show the velocity (in mm/ms) at which this instability 
extends itself in space. The velocity increases for shorter T.

Figure 4. Restitution curve. DI versus APD (A), DI versus CV(B).
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Then, for the next wave “1”, the profile of the APD should be given by: APD1(x) =  FAPD(DI0(x)). However, this 
is an oversimplification, and due to electronic effects23,24,31, we will have a spatially smooth transition from the 
points that are left of ξ0 to the points to the right of ξ0. As shown in23, this transition can be approximated by a 
convolution with a Gaussian function G(x):
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where x0 =  7.8 mm. Thus, the APD profile for the wave “1” is given by:
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where the star  denotes the convolution. The integral in the right hand side of (6) can be evaluated in terms of the 
error function erf (x) yielding:
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This means that the wave “2” following the wave “1” will propagate in a heterogeneous tissue with heteroge-
neity given by (7). If at the right boundary of the fiber (xr) APD1(xr) =  FAPD(2T −  APD0) is larger than T, then as it 
follows from the criterion (3), the wave “2” will be blocked at some x =  ξ2, which can be found from the implicit 
equation APD1(ξ2) =  T.

Now, we can describe the shift of the wave block point as an iterative process using a similar analysis. For 
this we suppose that the wave “n” propagated through the whole fibre and at each point x of the fibre, we know 
APDn(x) from the previous step of the iterative procedure. Let us also assume that APDn(xr) >  T and find the pro-
file APDn+1(x). For the moment we neglect the effects of CV restitution and assume that all waves propagate with 
the same velocity everywhere. In this case the profile of the DI is simply given by:

= −x T xDI ( ) APD ( ), (8)n n

but since APDn(xr) >  T there will be a point x =  ξn+1 where the DIn(ξn+1) =  0 and wave n +  1 will be blocked at 
x =  ξn+1. Eq. (8) will be valid only for x ≤  ξn+1 and APDn+1(x) will also be defined only for x ≤  ξn+1 as:

 ∫= = ′ − ′ ′
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+
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It is easy to see that for the next wave “n +  2” DIn+1(x), will be given by
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and APDn+2(x) for all x can be found from:

=+ +x F x G xAPD ( ) (DI ( )) ( ) (10)n n2 APD 1

If we continue this procedure we will find the next point of wave block for the wave n +  3, etc and finally define 
the shift velocity as:

ξ ξ
=

−
v

nT
, (11)

n
block

0

Now let us take into account the CV restitution21 and describe how the formulae should be adapted. If the 
wave velocity is no longer uniform, the interbeat interval for different points x is no longer a constant equal to T 
but a function of x which we denote as P(x). Now assume that for wave n, which propagates through the whole 
fiber without block, we know APDn(x) and DIn−1(x). APDn(x) is connected with DIn−1(x) via the equation similar 
to (10).

Let us consider the propagation of wave n +  1. The local interbeat interval between the wave n +  1 and n can 
be found as the difference between the time of arrival of the wave “n +  1” and the wave “n”. As the velocity of the 
wave n +  1 is determined by the DI of the previous wave CV(DIn(x)), we obtain:

∫ ∫= +
′
′
−

′
′
.+

−∞ −∞ −
P x T dx

x
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x
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x
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However, DIn(x) and Pn(x) are also connected via:
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= − .+x P x xDI ( ) ( ) APD ( ) (13)n n n1

In order to solve the problems (12)–(13) it is easier to write (12) in the form of the differential equation. By 
differentiating the expression (12) and combining it with the formula (13), we obtain the following system:

= −+

−

dP
dx x x

1
CV(DI ( ))

1
CV(DI ( )) (14)

n

n n

1

1

= −+x P x xDI ( ) ( ) APD ( ) (15)n n n1

=+P x T( ) (16)n l1

where Pn+1 and DIn are unknown functions of x, and xl is location of the left boundary of the fiber where it is 
periodically forced with a period T. Numerical integration of this system starts from the left boundary and gives 
us values of Pn+1 and DIn at the successive points x. As in the case of constant velocity, we assume that for some x 
we will arrive to a point where DIn is zero. This value of x =  ξn+1 will be the point of the block of the wave n +  1: 
(DIn(ξn+1) =  Pn+1(ξn+1) −  APDn(ξn+1) =  0).

Now consider propagation of the next wave n +  2. This wave will propagate along the whole fibre. As wave 
n +  1 propagated till the point ξn+1 only, the system (14–16) will also be valid only for xl ≤  x ≤  ξn+1. In order to 
find an interbeat and diastolic interval for x >  ξn+1, we need to take the values of APD and DI from the previous 
wave n and add additional time T to DI as wave n +  2 was generated by time T later than wave n +  1. This yields 
the following system of equations for the wave n +  2:
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Note, that for x >  ξn+1, the interbeat interval (time between the waves n +  2 and n) will be given by T +  Pn+2(x).
The solution of this systems allows us to find DIn+1(x) for all x. Now using (10) we can find APDn+2(x) and 

proceed to the next iteration.
Several APD profiles are shown in Fig. 5. We observe that the APD distribution obtained via our iterative 

method is very close to the APD distribution obtained via numerical simulations.
We tested our iterative method for different periods T, and in Fig. 5B we show the velocity at which the wave 

block region extends itself in space for these T, both obtained via our iterative method (red dots), as observed 
in the numerical simulations (green dots). We see that our theory reasonably well reproduces the numerical 
simulations.

Effect of the CV restitution. In order to explain the effect of the CV restitution, we repeated our computations 
without taking the CV into account and compared it to the case with the CV restitution and to the numerically 

Figure 5. Figure A shows the APD distribution of subsequent waves in our system, obtained both via our 
iterative method as in numerical simulations, for a T equal to 220 ms. Black, red and green lines show APD 
distribution for the N +  1th, N +  2th and N +  3th wave obtained via our iterative method. Blue, purple and 
brown lines show APD distribution for the N +  1th, N +  2th and N +  3th wave obtained via simulations. Figure 
B shows the velocity at which the wave block region extends itself in space, both found via our iterative method 
(red dots) and as observed in numerical simulations (black dots).
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obtained values. In Fig. 6, we can see that for constant conduction velocity, the velocity of the wave block 
increases. We can explain this results from our theory as follows. Let us consider the propagation of a wave which 
will be eventually blocked at some point x. The profile of the APD for this case is similar to the red line in Fig. 4A. 
where we see monotonic decrease in APD. For this transition the value of the DI for the points before the block 
are given by the formula (8)

= −x T xDI ( ) APD ( )n n
0

whereas if we take the CV restitution into account the formula changes as:

= − .x P x xDI ( ) ( ) APD ( )n
r

n

Note that we denoted the first case with the superscript “0” and the second-with “r”. The difference between 
these two distributions is therefore:
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or substituting the formula (12) for P(x):
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Hence, the sign of Δ  DIn(x) is determined by the sign of the difference CV(DIn−1(x)) −  CV(DIn(x)). The sign 
of this difference is positive. Indeed, the wave “n −  1” had a short APD and thus long DI. That means:

> .− x x xDI ( ) DI ( ) for alln n1

In Fig. 4B we see that larger values of DI correspond to larger values of conduction velocity, therefore:

> .− x x xCV(DI ( )) CV(DI ( )) for alln n1

So the sign of the difference CV(DIn−1(x)) −  CV(DIn(x)) is positive, meaning that the sign of Δ  DIn(x) is also 
positive. Therefore, DI x( )n

r  is larger than DI x( )n
0  for any x. We define the point of the block as the point where the 

DI turns to zero. Since >x xDI ( ) DI ( )n
r

n
0 , the distibution xDI ( )n

r  turns to zero for larger values of x in comparison 
with the distribution for xDI ( )n

0 . Therefore, the block propagates to the left slower if the CV restitution is taken 
into account.

Effect of APD restitution. As a final step, we considered the effect of the APD restitution curve on the propaga-
tion of the wave block. In Fig. 7, we show our results. We see that an increase in the slope of the restitution curve 
results in an increase of the wave block velocity. This results can also be explained as follows. An increase in the 
slope of the restitution curve increases the difference in APD for waves travelling with a period T and period 2T. 
Therefore, due to electrotonic effects (eq. 7) this heterogeneity spreads further in space, resulting in a more pro-
nounced shift of the wave block.

GAI in 2D. One question that still remains is how this initial waveblock can occur in the heart, i.e. what are the 
applications of this phenomenon. In order to illustrate one possible realistic effect, we have added a heterogeneity 
to the end of the realistic transmural wedge (including rotational anisotropy) with a thickness of just 6 mm. We 
initiated a rotor (spiral wave) at the left boundary and studied again the process of its interaction with the heter-
ogeneity, as illustrated in Fig. 8 and in movie 1. As the period of the rotation of a spiral wave is shorter than the 

Figure 6. The effect of the CV restitution curve on the propagation speed of the block. Without taking the 
conduction velocity into account, the velocity of the block increases.
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the refractory period of the heterogeneity, we first observed an expected result: each second wave is blocked at the 
heterogeneity, which is a well known Wenckebach block phenomenon32 (see also frame at t =  520 ms). However, 
similar as in the first 2D example, we again observed that this area of this block extended in space, closer to the 
spiral wave (t =  520 ms–4480 ms), and started to interact with the spiral wave which led to the termination of the 
spiral (t >  4700 ms).

Figure 7. Effect of different slopes of the APD restitution curves on the velocity of the wave block. 

Figure 8. GAI in a 2D medium with rotational anisotropy. Vortex dynamics after putting a heterogeneity in 
the tissue at the right side of the medium. Upper panel of each timeframe shows transmembrane voltage; lower 
panel shows period of excitation. Size of the medium is 10 ×  1.6 cm.
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Interestingly enough, this process does not depend on the degree of the heterogeneity. We have performed 
similar simulation with a larger heterogeneity (see the method section for details) and the process of interaction 
with the spiral wave was exactly the same: block area extension, and moreover, in both cases the spiral was termi-
nated after exactly 4.7 s.

We note that we did many similar simulations, in which we varied the position of the initial vortex (closer, or 
further away from the boundaries of the medium), and each time we observed the same pattern: the wave block 
region approached the core of the vortex, and eventually the vortex is removed from the tissue.

We therefore conclude that a GAI is also present in 2D and has a substantial effect on vortex formation, and 
eventual removal of vortices. From the spatial frequency distribution, we again see that we have a clear (dynami-
cal) Wenckebach 1:2 block, which extends itself in space.

Discussion
In this paper we show that disturbances of wave propagation, such as temporal block of propagation, may have 
important effects on vortex dynamics, and can lead, for example, to vortex termination. They can also substan-
tially affect spatial excitation patterns and result in dynamical Wenckebach blocks for wave propagation.

In our simulations such blocks occurred at a heterogeneity, or were created artificially. This is because the effect 
observed did not depend on the heterogeneity and we have used the most generic initial conditions. Therefore we 
expect the same results hold for any conditions in which a waveblock occurs. For example Sharifov et al.33 showed 
that parasympathetic excitation and local release of acetylcholine can result in local temporal blocks of propaga-
tion. Other mechanisms of block formation were considered by Otani34, mechanisms related to the source-sink 
mismatch by Jalife et al.35, etc. In all these cases we expect that the initial area of block under high frequency 
stimulation will extend itself in space and can substantially affect the wave propagation dynamics in the heart.

The fact that the block area extends itself in space is also very important as recent experimental studies showed 
small size heterogeneities in transmural wedges of the human heart9,10. We studied these type of heterogeneities 
in previous publications29,36, and we indeed found that they can create vortices but only after they had grown in 
space. In this paper, we illustrate that GAI is the possible mechanism of this growth of the heterogeneity.

Restitution properties of cardiac tissue were always considered as an important mechanism underlying the 
formation of vortices. Multiple studies14,16–18 showed that steep restitution can result in dynamical instabilities, 
possibly leading to fibrillation. Here, we show that substantial effects of restitution at the global level can also be 
expected according to formula (3). Thus, we show that, although steep restitution gives rise to dynamical insta-
bilities, it is not a necessary condition: the global shape of the restitution curve also plays an important role. It 
would be interesting to investigate formula (3) on a patient specific restitution curve, and study if it is related to 
the onset of cardiac arrhythmias.

In Fox et al.21 an experimental and modeling study of spatial dynamics of discordant alternans was performed. 
The authors also studied the onset of conduction block under high frequency pacing. The experimental studies 
in Fox et al.21 were performed in 10 dog Purkinje fibers. Conduction block never developed in the absence of 
discordant alternans. They found that in 30% of the cases the conduction block location migrated towards the 
site of stimulation in a similar way as reported in our simulations. However, in 50% of the cases only paroxysmal 
conduction block was found, and in 20% of the cases the conduction block location was stable in space. It would 
be interesting to perform similar experiments in preparations where discordant alternans are not present. This 
can be achieved, for example, by flatterning the restitution curve17,18. We expect that wave blocks which extend in 
space will also be found, when the conditions given by (3) are satisfied.

The study by Fox et al.21 uses numerical simulations in a 1D ionic model and coupled iterative maps to identify 
the dynamical mechanism for the spatiotemporal transition to conduction block. The iterative map approach 
used in21 is similar as the one used in our study, however, there are some essential differences. In Fox et al. the 
coupled iterative maps approach was used to perform qualitative simulations for wave propagation in a 1D cable. 
These results were not quantitatively compared with simulations in a 1D ionic model, and used to elucidate the 
mechanism of the underlying phenomenon. In our study, we develop a quantitative model which is based on our 
human ventricular cell ionic model and use it to formulate the conditions for the onset of instability and velocity 
of the extension of the block area in the form of an integral equation. We also compare predictions of this analyt-
ical model with simulations and show that they are quantitatively correct.

In this paper, we only studied effects of extension of an instability (i.e. conduction blocks) in a 1D cable. In37 
also other interesting effects were observed such as period doubling bifurcation (i.e. 1:1 →  2:2 rhythm transition) 
and the onset of chaos. It would be interesting to study if these regimes could be found in an ionic model for 
human cardiac cells. In addition if would be interesting to apply pure analytical methods used to study spatially 
discordant alternans, such as38,39.
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