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Abstract—Programmable logic controllers (PLC) are by far the
most common hardware used in industry for process automation.
As observed in many electronic devices, in the recent years,
processing capabilities have increased, thus making possible to
implement complex algorithms in such embedded devices. Among
the different control methodologies, Model Predictive Control
(MPC), stands out due to its ability to deal with constrained
control problems. MPC is becoming the standard control strategy
in process control as it meets the current industry demands of
quality, production, resource optimization, low hardware cost,
among others. The aim of this work is to develop a methodology
to implement in a straightforward manner advanced control
algorithms on a PLC, while providing a guideline on the mini-
mum specifications required to properly choose a PL.C reference,
thus reducing the gap between the theoretical contributions and
industrial practice. An experimental validation is achieved by
implementing and comparing the performance of a classical
PID, a linear (EPSAC) and nonlinear (NEPSAC) approach to
constrained MPC on the Festo MPS PA workstation.

I. INTRODUCTION

The PID Family controllers (P, PI, PD, PID) until a few
years ago were the most control strategy used in the industry,
because of its undoubtedly simplicity, low implementation
cost and acceptable response. As a result, they have sev-
eral advantages over more robust control strategies [11] [6].
However, industry requirements are constantly increasing [18].
Currently, several works have presented the implementation
modern strategies and robust control, such as, MPC (Model
Predict Control) which exceeds the performance of traditional
PID, applied to different types of industrial processes [1] [4]
[12] [16] [2] [13]. In order to implement modern control
strategies in real form, certain characteristics are required
for the hardware of the controller where the implementation
is performed. The controller is usually a PLC - controller
standard of the industry [19] [3], PLCs manufacturers are
introducing devices with better characteristics related to the
memory capacity, programming languages and the processing
speed instruction [14] [21]. On the other hand, the software
specialized in control like MatLab include interesting tools
that represent a link to migrate from theoretical developments
to real implementations [15] [17] [22].

Work starts of the fact that is possible, with available tools, to
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implement advanced control strategies on PLCs, but its focuses
are the needs of to provide a clear-simple procedure and
shown the minimum PLC hardware requirements for it. The
detail of the implementation of predictive control strategies:
EPSAC and NEPSAC on Siemens PLC 1615-3 is presented.
The experimental validation is performed using a pilot FESTO
MPS PA with pressure system - SISO linear system, and
level system - SISO nonliear system. Matlab was used for
data processing and as an interface for programming the PLC,
with tool PLC Coder and the traditional PID was used like
benchmark to results.

II. METHODOLOGY DESCRIPTION

The methodology used as an interface for PLC program-
ming and experimental validation of their performance under
implementation of robust control strategies, it begins with the
formulation of the control strategy within a block function in
Matlab-Simulink (Stage 1) and the translation of this using
appropriate language through PLC Coder tool (Stage 2), the
file result is loaded, compiled and downloaded along with
other data acquisition subroutines to the PLC (Stage 3) using
a IDE (Integrated Development Environments). Finally the
scheduled will run a control strategy to maintain a plant
process in desired states (Stage 4). The instructions for data
acquisition are executed each sampling time, in order to allow
the collecting, storing in a global data base. (Stage 5) The data
is displayed data into a HMI (Human Machine Interface), from
which they are exported as a text file (*.txt) for later analysis
(Figure 1).

III. ELEMENTS OF METHODOLOGY
A. Control Strategy - (N)EPSAC

The Extended Prediction Self-Adaptive Control (EPSAC)
(Keyser and Cuawenberghe, 1985) belongs to the large family
of Model Predictive Control (MPC) algorithms. MPC is a set
of control strategies, which most attractive feature is its ability
to handle constraints, because MPC has detailed knowledge
of the dynamic behavior of the system (including critical
units) represented in a mathematical model. As it is stated
above MPC seems to be a good option to face the industry
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challenges. Elements: (1) Model: Used to get information
that helps to predict its evolution. (2) Prefilter: Responsible
for calculating a reference trajectory (Setpoint-new sequence
to current sample time) along a control horizon finite and
slider. (3) Optimizer: Algorithm that includes minimizing a
cost function for get an control action to apply and ensure
the process will remain as close as possible to the reference
trajectory. EPSAC formulation uses input/output models and
its representation is as presented in Figure 2. The type of
model used to capture the dynamics of the system is a discrete
transfer function. The optimizer used is an algorithm or control
sequence that minimizes a cost function of the form:

N2

J(Uopt) = Y [Brror]® = [r(t + k/t) —y(t + k/1)]* (1)
k=N1

The function is applied to k steps forward from the current
moment ¢. N1 and N2 are the minimum value and the maxi-
mum value of the control horizon. The reference trajectory is
given by r(t + k/t) and y(t + k/t) is the prediction of the
system response, which can be considered as cumulative result
such as shown in the next equation:

y(t =+ k/t) = ybase(t + k/t) + yopt(t + k'/t) )

Where ypqase(t + k/t) is the prediction of the system response
using the model and the data known so far z(t + k/t) and
including the estimation of disturbances n(t+k/t) and yop¢ (t+

k/t) corresponds to the response of the system when a vector
of future optimal actions U, (t + k/t) is applied.

Uopt(t+k/t) = (G'G) TG [r(t +k/t) — Yoase (t + /)] (3)

G: Coefficient vector for step response - These values cor-
respond to cumulative constant, so that only calculated once.
Restrictions that normally act on a process can be expressed
as: (1) Manipulated variable limit Uopt(t)min < Uopt(t) <
Uopt(t)maz. (2) Limit rate of change of the manipulated
variable AUopt(t)min < (Uopt(t) — Uopt(t — 1)) <
AUopt(t)maz. (3) Manipulated variable limit Y (), <
Y(t) < Y(¢)maz - It is usual that the constrains are only
taken into account after of calculated the control signal, but it
is no the best option when control signal breaks the constrains
because the process can be carried to its limits and operate
in a dangerous manner and not optimal. Another option is
to consider the constraints inside cost function, in the EPSAC
approach, it is adopted the Lagrange multiplier implementation
to express the cost function and the QP - Hildreths quadratic
programming procedure (Luenberger, 1969, Wismer and Chat-
tergy, 1978) - to solve it.

1
J(Uopt):§*U0pt’*H*Uopt+b*U0pt+F 4)

Subject to: AxUopt <b. H=G'G,F =G'*Error, A and
b are matrices which describe constraints acting on the process
and depends on the process parameters and values limits of
process variables. With Lagrange multiplier implementation a
problem of n variables is reduced to one of n + m variables,
where n is the dimension of U,, vector and m is the
dimension of A, to get:

A=—[AxH '+ AT b+ AxH ' 5 F) (5)
Uopt = —H '« F — H ' A'A (6)

First term is the general solution of EPSAC without constrains,
and the second term is a correction term due to constraints.
To find the Lagrange multipliers the quadratic programming
procedure is applied (equations 7 and 8), it is search element
by element iteratively using the matrices P = Ax H~' x A’
and d = H~! % A% F +b, because this part is also determined
as quadratic programming problem with A; as the decision
variable. The search is stops when the values found converge
(to zero for inactive constraints / to one positive value for the
active constraints), or the maximum number of iterations is
exceeded.

(A)™ ! = maz(0,w™) (7)

wt = —%ﬁ[h%—i(hij (M) + Z (hij* (A1)™)]

j=i+1

®)
m + 1 indicates update, h;; is the ijth element in the P and
k; is the ith element in the d. In the Non-linear Extended
Prediction Self-adaptive control (NEPSAC) approach the non-
linear model is used directly. It makes use of the developments
established for the linear version starting from the equation
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(2), with the difference that it uses an iterative procedure
to make Y,,; as close as possible to zero, thus avoiding
the super position principle and allowing the equation to be
valid for non-linear systems. The gradual reduction of Y,
involves careful selection of a control scenario to ensure rapid
convergence, satisfied by using the previous computed control
action, it also involves re-calculating the G matrix at each
sampling time.

B. Matlab Simulink-PLC Coder

The simulink-PLC coder is a hardware-independent Matlab
Toolbox, where Structured Text files are generated under the
IEC 61131-3!. Structured text can be generated in formats
compatible with various IDEs (Integrated Development Envi-
ronments) including Siemens TIA Portal, which, result is a
file with extension *.scl?.

C. The Programmable Logic Controller (PLC)

1) PLC general description: PLCs are sequential machines
where the instructions indicated in the user program, stored
in its memory, are executed consecutively. It generates some
commands or control signals starting from the input signals
readed from the plant. If signal changes are detected, the con-
troller reacts according to the program performing the required
orders. PLCs are designed to control tasks and the industrial
environment. hence, PLCs should have: Reliable hardware
(e.g., to work inside environments with high humidity and
temperature, etc), facilities for extend and include other control
loops and user-friendly interface. The basic architecture of
PLC has a central processing unit (CPU), memory unit (that
although the figure 3 is shown separated from the CPU, part
of it is integrated into the CPU), and input/output unit. CPU
is supplied with a clock with a frequency that determines
the operating speed of the PLC and provides the timing and
synchronisation for all elements in the system. The information
travels in digital format by paths called buses. The Figure 4

EC 61131-3 (2013). It specifies the syntax and semantics of a unified suite
of programming languages for edition of a PLC user program. It consists of
two textual languages, Instruction List (IL) and Structured Text (ST), and two
graphical languages, Ladder Diagram (LAD) and Function Block Diagram
(FBD).

2SCL (Structured Control Language) corresponds to the textual high-level
language ST (Structured Text).

shows the organization of memory in a PLC and the area that
corresponds to each of the elements that are part of a program
user (set of code blocks and data blocks). Program user is
first save into load memory (non-volatile type) along with
the hardware configuration, into the work memory (volatile
type) are stored the parts of the user program, relevant to the
current execution. The system memory is available to store
retentive data at power-off, such as bit memories®, timers and
counters, temporary local data of a block for the duration of
processing, tags from global data blocks and the values from
the input and output modules (process images input/output).
The cycle time (figure 5) represents the time that CPU needs

Memory Unit

System Memory | Load Memory Work Memory

Address areas for memory
bits, timers and counters

Data Blocks
Runtime-relevant parts

Hardware }
program code

configuration

Data Blocks
Code Blocks

Code Blocks
Runtime-relevant parts
program code

Process image
Inputs/Outputs

Local Data

Fig. 4. Memory areas PLC.

to execute a program, including all user program sections,
update of the process image of the inputs/outputs and system
activities interruptions. At the start the signal states of the
input modules are transmitted to the process image of the
inputs, then CPU processes the user program and executes
the instructions specified on it, at the end the process image
of the outputs is transmitted as signal state to the output
modules. The cycle time could increases due to software in-
terrupt processing, hardware interrupt processing, diagnostics
and error handling, communications, special functions such as
control and monitoring of tags or program status, transfer and
clearance of program parts (compression of the user program
memory) and internal memory test.

| Cycle time | |
L

: Update process I Update process '
image inputs image outputs

|
Cycle user program

Fig. 5. Cycle time PLC.

2) Classic Selection Criteria to PLC:

o Brand (cost, technical support).

o Communication System.

e Programming languages. The choice of programming
language could depend of the training and experience of
the programmer, the problem (particular application), the
structure of the control system, or the interface for other
people or departments.

o Number of Inputs/outputs digitals and analogs.

e Space Memory.

3Bit memory is a memory area of the CPU, which can be addressed from
any code block, it area can be used to store temporary results, for example.



3) PLC Siemens 1516-3 PN/DP: Controller for high-end
applications, CPU 1516-3 PN/DP sends and receives data and
signals from the connected IO devices within a PROFINET
IO system, it supports SCL and it has enough inputs and
outputs to Festo MPS PA Workstation (32 digital outputs, 32
digital outputs, 8 analog inputs, 4 analog outputs). The PLC
1516-3 has a resolution of 16 bits (1 word) including sign,
it means that a of 10VDC data will be represented by an
integer value of 27648. Memory characteristics: 1MB to work
memory for program, SMB to work memory for data, 24MB
to load memory into SIMATIC memory card. CPU processing
time is between 10ns (Bit operations) and 64ns (Floating-point
arithmetic). The minimum value of the update time of the
process image input/output is 39us/word, and the basic time
expenditure for an interrupt is 80us.

D. IDE - Tia Portal VI3

Totally Integrated Automation is an IDE designed by
Siemens to program its PLCs of last generation, TIA PORTAL
can be programmed in any of the languages of the IEC 61131-
3 standard always that the PLC supports it. Tia Portal, it
also allows programming of SCADA (Supervisory Control
And Data Acquisition) or HMI systems through WINCC. A
SCADA system enables access to the data of a process for
monitoring, management and control of it, due to the graphical
user interface communicating with the system. The IDE to use
depends on the choice of PLC.

E. Plant - Festo MPS PA workstation

Festo MPS PA workstation is a training system developed
by Festo, it combines a set of analogue and digital sensors
and actuators with which can be constructed different closed
loops, to try n control strategies.

IV. DEVELOPMENT OF METHODOLOGY

A. Stage 1: Design and simulation of control strategy

The control strategies EPSAC and NEPSAC are designed
within an Embedded MATLAB Function block (Figure 6) with
two inputs (desired value - setpoint, value measured - sensor
value) and one output (control action - pump voltage). In order

Fig. 6. Simulink scheme for EPSAC and NEPSAC implementation.

to simulate the sampling time, the function was introduced
within a subsystem to which was added another input (Trigger-

EPSAC Implementation
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I Initialization of variables |
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Step 3

Updating of variables for the
current sampling time

Predict the output response (including noise)
Veaseltrk/)=x(tk/t) £n(tek/t), k=N,...N,

no yes

Optimization problem to solve:

Optimization problem to solve:
U,,..= QP(H,FAb)

Uge=-H™1=F

Step 6
I Compute the optimal control action Uopt(t) I

| Applying signal to the process |

Fig. 7. EPSAC Method

Next sample time (Ts)

pulse train with period equal to Ts). The performance of each
control strategy is verified through simulation. In the case
of level is added one more output with which is possible to
observe the number of iterations to achieve a desired value. A
flow-chart for the implementation of EPSAC with and without
constrains is depicted in Figure 7. The calculation of the
control action starts with the declaration and initialization of
variables and constants that will be used, then with the upgrade
of variables for the current sampling time and the prediction
of the system output from the model considering this noise,
then a number of future optimal actions are determined and
finally the control signal to apply is calculated. After applying
the control signal, the steps from the updating of variables are
repeated for a new sampling time. To NEPSAC (Figure 8) the
significant difference is that from step 4 to step 6 are repeated
a finite number of times to progressively reduces the value of
Yopt'

B. Stage 2: Coding algorithm to appropriate language

Translation of the control algorithm within the embedded
MATLAB function to *.SCL language, using PLC Coder. With
right click on the embedded MATLAB function to initiate the
generation of the file *.SCL compatible with TIA Portal. The
figure 9 shows a portion of the program written in Matlab and
encoded in SCL. The part a. corresponding to step 3 - update
variables: in Matlab shift vector is used to discard the oldest
value, in SCL this process is not direct, so a helper vector
(tmp) is used to make the shift, additionally vectors are worked
with the control structure FOR. The part b. corresponding to
step S - optimization problem to solve (EPSAC unconstrained)
one important difference is with the translate the previous steps



MNEPSAC Implementation
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Fig. 8. NEPSAC Method

are omitted, Ybase is calculate only when it is going to be
used and not before.

a) Step 3: Updating of variables for the current
sampling time:

[..Future(t + k), Present(t), Past(t — k)..]1. 20

Last predicted value

Oldestvalue Current value

1 10 20 Positions

X=[0; X(1:length(X)—=1)];' #mp[0] := 0.0;
| FOR #k := 0 TO 18 DO

| #mp[#k + 1] = #X[#k];

| ENDFOR;
| FOR #k := 0 TO 19 DO
| #X[#k] = fmpl#k]
! ENDFOR;

b) Step 5: Optimization problem to solve:

Setpt=omnes (10,1)*=Wt; ‘#,Y = 0.0;
Err=Setpt—Ybase; ‘ #e_y = 0.0;
I FOR #k := 0 TO 9 DO

Uopt=(G"'*G) \(G'* Err); | By = (#G k] #OIHK)) +

I ke y:=((#Setpt— (#X[9 - #k|+
I b N[9—#k] )= #Gl#k])+ #e-ys
| ENDFOR:;

L HI[10] = ey [ #y):
Fig. 9. Program part: Matlab(left) Vs SCL(right)

C. Stage 3: PLC programming

Import from TIA Portal V13 the code generated in the
previous step and then generate a function block to it. The
generated file will enter to TIA Portal as an external source,
and it will be the content of a function block. The import

process involves the creation of a database to manage all the
variables of the new function block, it is necessary because
the control code works with previous values, to calculate
the current control action (t), the values of (t-1) are used.
The downloaded program on the PLC (Figure 10) allows the
execution of a control algorithm (independent of the control
strategy) and storage of results in a database on-line. Once
started the program from scratch, OB100 is executed to give
initial values, the outputs are updated, the inputs are updated
and it starts with the execution of the OB1 content. Each
sampling time Ts the OB1 execution is paused to make way for
the execution of the OB35 content, it gives way to compute of
the control action and the data acquisition for input and output.
Then the execution returns to the OB1 and once the process
starts again it ends. Once all instructions end the process is
repeated again.

Fig. 10. Program Structure - PLC

PLC Implementation/Troubles: There are several and typi-
cal problems that should be consider such as:

e It is critically dependent on the quality of the system
model, so the first step for successful implementation of
MPC on PLC is the modelling and identification of the
process.

e There is a gap between MPC theoretical research and
practical application, It is necessary to design low cost
application with simple configuration and easy to under-
stand, like PID.

On the other hand, there is a difficulty specifically related
with the execution of optimization algorithms in each sampling
time as it presupposes a computational cost. Feasible solutions
adopted in this work:

« Increase the data loaded off-line.

o Using lighter algorithms.

e Select PLC with appropriate memory capacity and pro-
cessing speed.



PLC Coder makes two important contributions to mitigate the
problems of implementation mentioned before: (1) Decreases
the computational load: Avoid making calculations within
the program that can be done off-line, the equations are
written explicitly and the coefficients are loaded directly. (2)
Optimizes memory data: Reduce the use of internal variables,
variables are reused for temporary storage of data that do
not necessarily have relationship. For this reason there are no
direct correspondence between all the variables that are used
in Matlab (used to store specific data) and the variables that
are used in the resulting code.

D. Stage 4: Experimental validation

For experiments validation are used the following SISO two
systems:

1) Pressure System - case linear: System pressure (Figure
11) is an energy storage system with self-regulation. The pump
P101 delivers a fluid via a piping system into a pressure
tank partly filled with gas (air), the pressure of the gas (air)
in the pressure tank is detected by a piezoresistive relative
pressure sensor. The manipulated value is the voltage of the
pump, which sets the revolution speed. The step response

Input Element/Measuring

Pressure Sensor

Output Element/Controlling

Element

Fig. 11. Reference photo Festo MPS PA Compact Workstation Manual.
Pressure System.

(Figure 12) shows a constant time tao = 3.5s, then the
sampling time should be T's = tao/10 = 0.35s. However,
anticipating the computational burden that will have the PLC
T's = 0.5s is chosen, it does not present any risk of error for
the identification process because the system not presented
a response significantly faster. The transfer function (9) is
determined using parametric identification with ARX and
PEM models for operating point OP = 7V DC.
24498 _10.82 9
-~ S+40.5077 =Z—omms O
2) Level System - case non-linear: The pump P10l
delivers a fluid from a storage tank B101 to a reservoir
tank B102 via a piping system. The level of the fluid
inside tank B102 is monitored with a analogue ultrasonic
sensor B101. Manipulated value is the voltage of the
pump, which sets the fluid quantity (Figure 13). Based
on the mass balance for B10l and B102 is obtained
the nonlinear model (10,11) to the system, under the
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Fig. 12. Step Response Pressure System for OP
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assumption that fluid density will not change. Where
Qi = aP x Ueontroi(t — 1) + BP, Qo = Cvv/ X2 — X1 =
V2xgT * Sat\/[X2(t—1)+ LT] — [X1(t — 1) — L2T],

A2t = T +2+BLRAT o xo(t— 1)), Al =
BT + 2 % BI=bT o x1(t — 1)),
. Ts
X2 = X2(t = 1) +[(Qi ~ Qo) * —-] (10)
X1=X1(t— 1) + [(Qi — Qo) % 2] (11)

Alt

For data acquisition the sampling time will be T's = 16s, the
same used in the reference thesis [20].

E. Stage 5: Export the data as *.txt file

Data acquisition is exported to a *.txt file from HMI (Figure
14) using the Visual Basic Script. The graphical interface is
created with WinCC Runtime Advanced panel which contain
all essential functions for operator control and monitoring of
machines or plants from PC. Address the storage of data in the
* txt file from PLC database is used the instruction FieldRead.



AIT Area-depends on the height of fluid in the tank B101

A2T Area-depends on the height of fluid in the tank B102

X1 Height of fluid to tank B101 for the current Ts

X2 Height of fluid to tank B102 for the current Ts

Qi Input flow for tank B102

Qo Output flow for tank B102

aP,BP Constants Pump relation flow/voltage (equivalent to the
constant m, b of the linear equation y=mx+b

bT Base length of the tanks

BT Upper length of the tank (cover)

HT Surface length of the tanks

LT,L2T Initial values for the calculations heights

Sat,CVT  Constant to quantify the resistance of the valve V110

eT Gravity constant

The database includes the runtime of OB35 which is calculated
with the function RT INFO (Figure 15).
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Fig. 14. HMI for managing FESTO MPS PA Compact Workstation
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Code description of VB function to save data from a PLC
database to a *.txt file: (1) Name of the VB function Save.
(2) Variables declaration. (3) Use the CreateObject method
to create a FileSystemObject object. The File System Object
(FSO) model provides an object-based tool for working with
folders and files. (4) Address of the text file where will be
stored the data. If the file does not exist one is created in
the specified direction. (5) Address at database data to read:
SmartTags("INDEX1 SAVE”)=index datas. (6) Copy the state
of the global variables into the local variable: VOLTAGE
P101=SmartTags("VOLTAGE P101 SAVE HMI”). (7) Write
in a line of the text file: ts.WriteLine(VOLTAGE P101). (8)
Finish and close.

V. EXPERIMENTAL RESULTS

The experiments correspond to the application of a setpoint
type ladder to evaluate the performance of the controllers when
is necessary to follow references.

A. Pressure Control System

1) Performance EPSAC Controllers: PI controller will be
used as reference for being the control solution more demand
at industrial level implemented on PLCs. Thanks to that

Fieldread
Real
EN ENC
TeMD4 S
INDEX1_SAWE INDEX iy
FI0T_SAVE_
%DB2.DEDL vaLge HMIT
"Data_black_
Save.
CatavoitageF101[
! MEMEER
¥  Network 14: .
RT_INFO
EN ENQ ——
:i s MW 46
e *INFO_RT_
PAM136.0 Ret_Val OB35_Ret_Wal
*INFO_RT_OB35" — |NFO

Fig. 15. Programming for HMI.

EPSAC knows the system model and its step response is
possible to predict the best value to reach the setpoint, which
is reflected in improving three aspects to this case (Figure 16):
(HImproved speed of response: to the same time (t) EPSAC is
closer to the reference value that PI. (2)Elimination of delay
or dead time, the PI response has delay that is overcome
via the EPSAC (Figure 17). (3)Disappears the undesirable
effect of initial conditions®, the first EPSAC values are very
close at the end optimal value. The price to pay for the

PIVs EPSAC-MPC

Pressure [mbar]

Voltaje [V]
o
&

0 10 2 30 40 50 60 70 80
Time [Seconds]

Fig. 16. PI Vs EPSAC - Linear Case

advantage of speed of response that has the EPSAC controller
is the consequent increase in the control effort, however, it is
possible to improve this situation by restricting the maximum
change between a control signal of last time U;(¢ — 1) and the
control signal for the current time U, (t), through the inclusion

“4For this experiment began with the plant on the operating point 7v, which
provides an pressure of 139mbar , this initial value explains the first value of
PI highlighted by the green circle. In the simulation, the controllers does not
has initial conditions, thus the values 7v and 139mbar are added to the final
values (input and output) in order to compare it with the actual response of
the system.
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of the constraints (Figure 18). The output signal does not
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Fig. 18. EPSAC Vs EPSAC CONSTRAINTS: (1)145mbar > Y; > Ombar,
(2)10VDC > Uy > 0VDC, (3)0.05v > Ug(t — 1) — U(t) > —0.05v -
Linear Case

exceed the value specified as the maximum value Ymax -
Constraint 1. The output signal has a control effort minor that
the control effort observed for the EPSAC unconstrained case;
the peaks are removed and slope changes are much softer, this
thanks to the constraints 3 which limits the changes in control
signal +0.05v. For maximum setpoint value of a signal control
required is not greater than 10v, it means that constraint 2 is
no violated for the case studied.

2) Runtime EPSAC Controllers: The running time is
directly proportional to the complexity of the control strategy
algorithm, which represents a reference to the computational
burden that will have to support the controller hardware
and represent a selection criterion related to the processing
speed of it. Note that the runtime for EPSAC controller
with constraints is 65 times larger than for EPSAC without
constraints and 574 times greater than the runtime for the PI
controller. As expected the controller EPSAC With restrictions
have the highest runtime, Which is justified by the number
of iterations required to find multipliers Lagrange in order
to solve the optimization problem (QPH algorithm). When
Yinaz restriction is active the runtime increases considerably.
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3) Memory Occupation EPSAC Controllers: The EPSAC
code is considerably longer compared to the code of a PI
algorithm, the EPSAC approach uses large amount of data (is
organized into vectors) consulted and updated every sampling
time.

Note that the EPSAC controller with constraints uses about
3 times more load memory resources that EPSAC controller
without constraints, and about 6 times more that PI controller.
As for work memory note the large increase in the resources
used by EPSAC controller with constraints regarding the
EPSAC controller without constraints (about 5 times) and
with respect to PI controller (about 15 times).
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B. Level Control System

1) Performance NEPSAC Controllers: The performance of
a NEPSAC controller for the nonlinear level system is compare
EPSAC controller which is formulated with the function
transfer obtained from the linearization of the model around
a operating point h20 = 0.1991 + L and hlo = 0.1454 — L2.
NEPSAC presents benefits in two relevant aspects: better
following of the reference and soft control actions (Figure 22).

0.06008 0.0024
385.75 +1 Z —0.9594

Figure 23 shows the number of iterations in relation with the
time of the experiment, note that the number of iterations
increases when the setpoint value is changed and decreases
to one iteration to maintain this value.

Fr(S) = — Fr(2) = (12)
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Fig. 22. EPSAC Vs NEPSAC - Non linear Case

Note: that between the graph of real data and the graph
obtained by simulation there are some differences, it is due to
the difference between the experimental value and real value
of the pump constant (relation flow/voltage) and the value for
valve opening V110 (This also applies to the simulation of
the NEPSAC controller).
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Fig. 23. Iterations NEPSAC - Non linear Case

2) Runtime NEPSAC Controllers: Note that during the
change of value in the setpoint the execution time for the
NEPSAC becomes up to 9 times major that the runtime for
EPSAC controller, where are necessary a greater number of
iterations. This result is comparable to the result obtained for
the EPSAC controller with constraints for pressure system
control, note that the runtime here is much lower because in
this case the restrictions are not violated.
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3) Memory Occupation NEPSAC Controllers: The figure
26 shown the occupation memory to non linear case, noten
that the NEPSAC approach uses about 2 times more resources
that EPSAC approach.
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VI. CONCLUSION

It has successfully shown the possibility of implementing
control strategies predictive: EPSAC. EPSAC with constrains
and NEPSAC for SISO Systems on a Siemens PLC 1516-3
and in consequence on devices with similar Technical
Characteristics.

A methodology to implement advanced controllers on PLC
has been explained step by step, providing the following
advantages:

e Mode to use the PLC as data acquisition card for identi-
fication of SISO linear and non-linear systems.

o Straightforward methodology to generate SCL code from
PLC Coder tool of Matlab.

o Experimental validation on a pilot plant for PI(D), con-
strained MPC controllers and non-linear MPC controllers.

o Evaluation of memory and CPU requirements to imple-
ment advanced controllers.

Future work includes the assessment of computation time
in the QP solver and extension of the analysis for multivarible
and more complex systems than those evaluated in this study.
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