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Abstract
This work reports on the design, fabrication and characterization of an inkjet-printedmultisensing
platformon flexible polymeric substrates integrated into a printed semi-passive high frequency radio
frequency identification (HFRFID) smart label. The printed platformwas integrated after fabrication
to themain RFID carrier, which contained anNFCRFID chip, amicroprocessor, a readout frontend
and a screen-printed circuitry and antenna. Themultisensing platformhas channels for capacitive
vapor detection (i.e. humidity), two channels for resistive-based vapor detection (i.e. ammonia)with
heating capability, and one resistive channel for temperature detection (RTD). Amodular approach
was employedwhere the sensing platformwas integrated to the base RFID label carrier using foil-to-
foil integration techniques compatible with large area fabrication. Besides wireless communication,
the semi-passive label possesses data logging and the possibility ofmeasuring all the sensors
simultaneously through a direct readout circuitry. In addition to individual sensor characterization,
the full functionality of the smart label was successfully demonstrated bymeasuring different
temperature, humidity and ammonia levels.

1. Introduction

Wireless sensing radio frequency identification (RFID)
systems have recently started to be commercialized in
order to enable the monitoring of environmental
variables in logistics applications like, for instance,
cold chain supply. The motivation towards the use of
such systems is their potential to reduce waste during
transportation [1]. However, current RFID devices are
bulky and relatively expensive, restricting their imple-
mentation into large scale applications, such as
environmental monitoring in logistics. The vast
majority of the commercially available RFID based
sensor systems includes only a temperature sensor,
with the exception of only a few that have an integrated
a humidity sensor. Some experimental models of
printed RFID tags with sensors have been demon-
strated recently [2–5], while few others have

incorporated specific environmental sensors together
(i.e. temperature, humidity and ammonia) [6, 7].
Nevertheless, current sensor fabrication technology
for smart labels either incorporates Si-based transdu-
cers [8, 9] or employs clean room processes (i.e.
photolithography). Notably, the company Thinfilm
Electronics, leading the printing technology of smart
labels, has devised a fully printed solution with printed
memory, display and wireless interface, however
limited to only temperature sensing (i.e. printed
silicon-based sensor from the company PST). Going
beyond the state of the art, we worked to combine a
printed RFID label with a fully printed multisensor
platform for environmentalmonitoring.

In the last few years, there has been significant
focus on the development of flexible environmental
sensors that are directly printed on polymeric sub-
strates [10, 11]. Besides their large area processing
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compatibility, such sensors offer several advantages
compared to their silicon counterparts, even if the
overall performances of the former may be lower at
present. These potential advantages encompass low
manufacturing costs, less stringent size constraints,
easy distribution in arrays, light weight, flexibility and
conformability, among others. In previous publica-
tions, we demonstrated the feasibility of printing, on
polymeric substrates, resistance temperature detectors
(RTD) for temperature monitoring [12], capacitive
sensors with cellulose acetate butyrate (CAB) for
humidity sensing [11], and chemiresistive sensors with
conductive polyaniline (PANI)/carbon nanocompo-
site for ammonia (NH3) sensing (i.e. with heating
recovering capabilities) [13, 14]. Here, we present a
combination of these sensors on a single polymeric
platform and its integration onto a printed HF RFID
label using techniques compatible with large area
manufacturing [15]. The smart sensing system was
characterized through sensitivity and cross sensitivity
measurements. The data have been monitored using
the RFID communication protocol, and acquired on
the local tagmemory. From there, the informationwas
retrieved for later processing. The combination of sev-
eral sensors onto the same platform allows the recipro-
cal correction of the device output parameters and
therefore enhances its applicability. Temperature,
humidity and ammonia were chosen to exemplify the
smart label sensing capabilities due to their relevance
for many monitoring applications, notably in the food
logistic chains.

In this paper we report on the realization and the
functional performance of a semi-passive HF RFID
smart label with multisensing capabilities conceived
on flexible plastic substrates, mainly by printing tech-
niques (i.e. inkjet and screen printing). Semi-passive
HF RFID uses an on-board power source (i.e. a bat-
tery) for sensor recording and data management, and
uses the passive backscatter principle to communicate

with the reader [16]. In order to increase the efficiency
and the production yield, the manufacturing of the
base label (i.e. electronic circuitry, battery, passive and
active components as well as RFID antenna) and that
of the flexible sensing platform were scheduled in
separate processes, the two parts being merged toge-
ther in the last step only. Moreover, the chemically
functionalized printed-sensors were tested and cali-
brated before their final integration on the tag.Making
use of different transducing principles (i.e. capacitive
and resistive), the inkjet-printed multisensor platform
combines several transducers and sensing layers for
the simultaneous detection of water vapor, ammonia,
and temperature.

This paper is organized as follows: the design and
fabrication of the inkjet-printed multisensor platform
is presented in section 2, while the fabrication of the
RFID smart label and the platform integration is pre-
sented in section 3. The characterization of the envir-
onmental sensors (i.e. temperature, humidity and
ammonia) is presented in section 4. Finally, the con-
clusions and perspectives of this work are presented in
section 5.

2. Inkjet-printedmultisensor platform

2.1.Design and layout
The inkjet-printed multisensor platform includes two
capacitive transducers, two resistive transducers, one
micro hotplate and one resistance temperature detec-
tor (RTD), as shown in figure 1. The design of the
multisensory platform was based on a double metalli-
zation level of printed silver layers, separated by a very
homogeneous polymeric dielectric film (i.e. laminated
dry film photoresist—DP). TheDPPerMX3050® from
DuPont was used as well as a protection layer, which
increases the robustness of the printed metallic tracks
upon bending. The first metallic layer includes the
interdigitated capacitor electrodes (IDEs), the RTD, a

Figure 1. (a) Sketch of the platformdescribing the distribution and size of every component and different layers employed and (b)
opticalmicroscope pictures of themultisensor platform showing the six different channels after fabrication.
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set of smaller IDEs for the resistive sensing and the
heater of themicro hotplate. The secondmetallic layer
was printed directly on top of the DP and includes the
second set of IDEs for resistive sensing (i.e. above the
micro hotplate). The printed components can be
selectively electroplated (i.e. to improve their stability
and performance), while the platform was integrated
to the main RFID carrier with large-area compatible
lamination techniques (i.e. foil-to-foil).

The IDEs were composed of 36 fingers, 5 mm
long, with a pitch of 120 μm and within an area of
5.1 × 4.2 mm2. The small IDE without heater has 14
fingers (1 mm long)with a total area of 1.2× 1.6 mm2.
The micro hotplate stack was composed of a double
meander heater with a length of 7.5 mm (with an area
of 1 mm2), a 14 μm thick DP dielectric layer and IDEs
aligned on top. The latter IDE was formed by 8 fingers
of 0.8 mm in length with a pitch of 120 μm (covering
an area of 1 mm2). Finally, the RTD was devised with
six meanders of 240 μm pitch and 6.7 mm long (i.e.
total length of 83.3 mm and occupying an area of
7.3× 2.7 mm2). Figure 1(a) shows a sketch of the plat-
formwith its different components and relevant cross-
sections indicating the materials and thicknesses of
every layer. The contact pads were designed to be com-
patible with zero-insertion-force (ZIF) connectors of
1 mm pitch (i.e. 700 μm wide with 300 μm of spa-
cing), to test them before the integration. The silver-
based printed layer (i.e. 200 nm thick) can be used as a
seeding layer for the electroplating of nickel and/or
gold to passivate the electrodes, in order to increase the
temperature coefficient of resistance (TCR) of the
RTD and to improve the robustness of the micro hot-
plate. As proof of concept in this paper, one of the
capacitive IDE transducers was used to sense humidity
(i.e. the second set can be used tomeasure humidity in
differential mode and/or other analyte). One of the
resistive transducers in combination with the micro
hotplate was used to sense ammonia (i.e. the second
set can be used to measure other analyte). The combi-
nation of capacitive, resistive and RTD transducers
was used to measure simultaneously humidity,
ammonia and temperature, respectively.

2.2. Fabrication
The multisensor platform process flow consisted of
four main steps, depicted in figure 2. First, the two
large capacitive structures, RTD, heater of the micro
hotplate, one resistive IDE channel structure and all
contact pads were inkjet-printed with the Jet EMD506
silver ink using the Dimatix DMP-2800 (10 pl drop
cartridges) onto PEN substrates (Teonex QF65A), as
shown in figure 2(a). After annealing the structure for
3 h at 180 °C, the RTD was electroplated with 1 μm of
nickel in order to take advantage of a higher temper-
ature coefficient of resistance (TCR) to improve its
sensitivity. The IDE capacitance and micro hotplate
resistance values weremeasured to be 3.5± 0.2 pF and

150± 4Ω, respectively, while the RTD resistance value
resulted in a nominal value of 1.0± 0.1 kΩ before the
Ni electroplating and 500 ± 35Ω afterwards (error
value represents standard deviation from three mea-
sured samples). The complete characterization of the
Ag inkjet-printed lines (i.e. SEM and white light
interferometer images) was presented in [11], which
resulted in a thickness of 200 nm and 1 μmbefore and
after theNi electroplating, respectively.

Figure 2(b) illustrates the lamination and pattern-
ing of the dielectric DP film using standard photo-
lithography. The DP was specially patterned to open
windows on top of the sensors (i.e. excluding the RTD)
for further functionalization and electrical contacts.
The complete processing steps and properties of the
DP are described in [17].

The second metallic layer included an IDE set
dedicated to the resistive ammonia sensor. It was prin-
ted directly onto the DP above the micro hotplate, as
shown in figure 2(c). This structure was electro-
deposited with 0.5 μm of Au (figure 2(d)) in order to
improve its chemical stability, especially when in con-
tact with the PANI-based ammonia sensing layer. The
chemoresistive devices resulted in a final resistance in
the range of several MΩ after the respective coating of
the sensing layer. Au electrodeposition could also be
used on the rest of the transducers in order to increase
their stability in time, as well as Ni or Au electro-
deposition on the heater of the micro hotplate to
increase its reliability [12, 18]. The final printed struc-
ture is depicted in figure 1(b), indicating all the trans-
ducers and their respective channels.

2.3. Sensing layers
2.3.1. Humidity sensing layer
The humidity sensing layer was fabricated by dissol-
ving 65 mg of CAB in 4 ml of hexyl acetate (purity
>99% from Sigma Aldrich). The dissolved polymer
was subsequently inkjet-printed onto only one of the
IDEs. After inkjet printing, the solution was dried for
30 min at 85 °C in a convection oven, resulting in a 8±
1 μm-thick layer after printing 25 consecutive (over-
lapping) layers (optimization taken from reference
[11]) and a measured capacitance value of 4.1±
0.2 pF. Although relatively high amount of layers were
printed, inkjet printing was selected as the deposition
method for CAB due to the high precision achieved for
the thickness of the layer [11].

2.3.2. Ammonia sensing layer
We recently showed that doped PANI thin films
fabricated by the vapor-phase deposition polymeriza-
tion method could detect NH3 vapor in sub-ppm
concentration range in air, both under dry as well as
humid conditions [18]. Polyaniline however, has
generally been considered as an insoluble polymer [19]
hindering advantageous deposition techniques such as
spin coating and inkjet printing for fabrication of
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PANI-based sensors. Great effort has been made to
enhance the solution processability of polyaniline in
its doped state (emeraldine salt). In this study, the
counter-ion induced processability concept [20] was
employed to prepare PANI solution in an aprotic
solvent. The targeted material was further modified
towards a carbon/PANI nanocomposite [21] by
incorporating surface-modified carbon nanoparticles
into the precursor solution, in order to improve its
electrical and ammonia sensing properties. The
ammonia sensing layer was fabricated as described
elsewhere [21], by mixing polyaniline emeraldine
base (EB, MW ∼ 10 000 g mol−1), sulfosuccinic acid
(SSA solution, 70 wt.% in water), surface-modified
carbon black (CB, 20 wt.% polyaniline on carbon
black composite) and n-methyl pyrrolidone (NMP).
The final composite had 20 wt.% CB and 80 wt.%
PANI, which was found as optimum in our
previous publication [21], which is in good agreement
with other published studies in literature [22]. All
the chemicals were used as received from Sigma
Aldrich without further purification. The sensing layer
was deposited by drop casting (∼1 μl) on the IDEs, and
left to dry under air flow at ∼20 °C and 70%
relative humidity [21]. Finally, the layer was
annealed at 120 °C for 30 min to evaporate the residual
solvents.

The sulfosuccinic acid acts as a multifunctional
dopant which, in the same time, dopes and solubilizes
emeraldine base in NMP. The sulfonic acid group in
the SSA is believed to protonate nitrogen atoms on
imine sites [23], converting emeraldine base to the
electrically conducting emeraldine salt form, while the
two carboxylic acid groups produce strong hydrogen
bonds with NMP, assisting the dissolution [24].
According to the manufacturer, the CB nanoparticles
(d ∼ 40 nm) used in this study possess a core–shell
structure with carbon black as the core and a thin poly-
aniline coating as the surrounding shell which serves
mainly as an electrical interconnection between the
polymer matrix and the carbon black particles. This
causes fine dispersion and uniform distribution of the
nanoparticles in the composite while preserving the
electrical properties of the pristine carbon nano-
particles. Achieving a homogeneous hybrid mixture is
crucial in order to fabricate uniform sensing layers
with good reproducibility.

3. Printed andhybrid RFID label

3.1. Label design and its components
The RFID label’s circuitry was screen-printed onto a
125 μm thick PEN substrate (i.e. Teonex® Q65FA from
DuPont Teijin Films™) with two metal layers and one

Figure 2. Fabrication steps of themultisensor platform. (a) Inkjet printing andNi plating of thefirstmetallic layer on the PEN
substrate, which includes two capacitive transducers, a resistive one, an RTD and amicro hotplate. (b)Photolithography processing of
aDP layer to isolate the secondmetallic layer and to reinforce/protect thefirst one. (c) Inkjet printing of the secondmetallic layer,
which includes the resistive sensor IDE on top of themicro hotplate. (d)Gold plating of the IDE on top of themicro hotplate to
enhance chemical stability.
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dielectric architecture. The three printing steps used the
400mesh screen type SD40/25 with a 10 μm emulsion
thickness. The twometal layers usedmicron flake silver-
based paste 5064 from DuPont with a typical sheet
resistance of 12mΩ/sq/mil and a typical print thickness
of 6 μm for one printing pass. The above-mentioned
materials and parameters gave sufficient conductivity in
the antenna (i.e. total resistance of 50Ω). If a thicker
antenna is needed, a thicker screen or higher mesh can
be used, however the printing resolution will be reduced
(i.e. bonding pads of 200 μm need to be considered for
the SMD components). The printed ink was cured in a
convection oven at 150 °C for 30min, resulting in a
thickness of 35 ± 4 μm. Required for bridging the
antenna and several circuit connections, the bridgeswere
fabricated by screen printing the dielectric paste 5704
fromDuPont and cured in an oven at 150 °C for 30min.
A total of three printing passes were used (i.e. with a
typical thickness of 6μm/layer) in order to reduce the
risk of pin holes which would provoke short circuits.
Twopasses could be sufficient by using a thickermesh or
anUV-curable dielectricmaterial (i.e. higher viscosity).

The RFID antenna was conceived with a square
shape multi-loop design considering a resonating fre-
quency of 13.56MHz and a chip internal tuning capaci-
tance of 27.5 pF. Using equation (1), the total
inductance of the antenna was calculated to be 5.01 μH.
Such inductance value in combinationwith the software
‘Antenna_ST_desing_AN2866.exe’ from STMicroelec-
tronics were used to define the optimal dimensions of
the squared-shape antenna, shown infigure 3.
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Where, f0 is the RFID resonating frequency, Ctun is the
tuning capacitance of the RFID chip and Lant is the
calculated inductance of the antenna.

The label consists of an RF coil antenna, metalliza-
tion circuitry, bridges and integration pads for discrete
components as well as an interface for the multisensor
platform. The labels were fabricated on a flat A4 sur-
face and then detached as single pieces using a 355 nm
ns laser (Coherent Avia, in combination with a Gal-
vano scanner system). The label, with a surface of
7× 9 cm2, can be further folded in order to achieve the
dimensions of a credit card, which is 4.5× 7 cm2. The
layout and the location of the principal components
such as the multisensor platform, RFID chip, micro-
controller, HF coil antenna, frontend components (i.e.
capacitance to voltage converter and voltage divider
circuitry), power switch and battery electrodes are illu-
strated in figures 3(a) and (b). It should be noted that
the ON/OFF switch here was used for demonstration
purposes and that the final assembly was activated by
direct contact of the battery (i.e. 150 mAh at 3.9 V bat-
tery—PK Cell from Adafruit) with the supply pads on
the foil (labelledwith ‘Power source’ infigure 3(a)).

The RFID label was operated in an autonomous
manner through the use of a MSP430F1611 micro-
controller from Texas Instruments, chosen due to its
low power functionality, integrated temperature sen-
sor (potentially useful to compensate other sensors
on-tag) and because of its highly sensitive analog-to-
digital converter (ADC). The wireless interface was
performed through the RFID chip STM24LR64 with
dual interface eeprom from ST Microelectronics
(compliant with the ISO 15693 standard). The dual
interface, both with RFID and I2C, was used to power
the chip from the RF field and communicate directly
to the microcontroller, respectively. The humidity
IDE transducers were interfaced to the micro-
controller via the capacitive frontend chip AD7150
from Analog devices, since it provides a two-channel
independent and calibrated output; very useful when
reading different sensors, in addition to its sensitivity
in the desired capacitive range (i.e. pF signal from
sensors).

Figure 3. (a) Layout of the FlexSmell high frequency RFID smart label, indicating themain components and architecture and (b)
picture of thefinal assembly of the RFID smart label (half folded), including the inkjet-printedmultisensor platform.
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The readout was activated by the microcontroller
and was made accessible over an I2C bus. In contrast,
each resistive sensor was connected in a voltage divider
configuration with a defined matching resistor (i.e. in
the order of MΩ for the ammonia sensor and kΩ for
the RTD) to the analog-to-digital converter of the
microcontroller. The voltage divider configuration
was biased by the microcontroller (i.e. 3 V when the
battery is fully charged) with a conversion resolution
of 3 V/212 bit= 0.73 mV bit−1.

The chips and discrete components were inte-
grated using the semi-automatic bonder Tresky
T3200® and the isotropic conductive adhesive (ICA)
CE 3103 WLV from Henkel®. The chips could also be
integrated at the bare die format (thinned down if
necessary) using a combination offlip-chip techniques
and iso-/anisotropic conductive adhesives [25].

The general operation of the smart label can be
described in five function modes: programming
mode, standby mode, measuring mode, write mode
and communication mode. Figure 4 depicts the rela-
tionship between the five operation modes. In pro-
gramming mode only the microcontroller was
addressed while the firmware was uploaded. The sys-
tem returned to standby mode when the program-
ming pins were removed, or to the off state if no
external power was supplied. In standby mode the
microcontroller enters the sleeping mode allowing
only the internal clock to function. Both the NFC chip
and capacitance readout chip were in the off state. A
trigger of the internal clock of the microcontroller will
exit the standby mode and put the system in the mea-
suring mode. In measuring mode the microcontroller
reads out the sensors one by one, while the data (i.e.
raw output of the AD converter and a time stamp) are
stored temporarily on its memory. In write mode the
data stored in the microcontroller is written in the
memory of the dual interface eeprom over an I2C bus.

Finally, in communication mode an external reader
reads out the dual interface eeprom memory with
energy supplied through the RF link by the reader. The
human interface of the smart label includes different
configuration settings regarding the operation mode
(i.e. live-mode: data are displayed on the PC screen as
it is measured; logging-mode: saving the data on the
RFID memory for later retrieval). Measuring intervals
can be defined with a maximum storage capacity of
6000 points (i.e. including data from all the sensors).
Such settings, as well as the gathering and saving of the
data, are possible through awireless interface using the
commercial RFID reader M24LR-DISCOVERY from
ST Microelectronics and a custom made LabVIEW
interface.

3.2. Foil-to-foil integration of themultisensor
platform
After screen-printing the circuit interconnections and
RFID antenna, the first layer of pressure sensitive
adhesive (PSA) ARClear 8932 (50 μm-thick) from
Adhesive Research® was laser-ablated to open 200 μm
wide vias and access windows for the environmental
sensors, and bonded to the main PEN substrate, as
shown in figures 5(a) and 6(a). After the lamination,
the interconnection vias were filled with isotropic
conductive adhesive (ICA) CE 3103 WLV from
Henkel® [15], using stencil printing (figure 6(b)). The
multisensor platform, inkjet-printed in a parallel
process, as described in section 2.2, was integrated into
the main PEN carrier using the flip-chip approach
previously demonstrated in [15] (figures 5(b) and
6(c)). The PSA was used to mechanically attach the
platform to themain substrate. Thanks to the relatively
big interconnection pads (i.e. pitch of 1 mm) the
alignment was performed by hand through an optical
microscope. At this point, the ICA was cured in a
convection oven for 1 h at 85 °C. A second pre-

Figure 4.Modes in states diagram in theON state (OnS) of the FlexSmell label.
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patterned layer of PSA was bonded on the bottom side
of the label (figure 5(c)) in order to fix a 135 μm thick
acrylic copolymer porous membrane (i.e. Verspor®
10000R from PALL™) [12], as shown in figures 5(d)
and 6(d). The semi permeablemembrane should allow
the analytes (i.e. water vapor, ammonia) to reach the
sensors while protecting them from handling and/or
dust contamination.

4. Results and discussion

The performance of the sensingmaterials, multisensor
platform, and full smart sensing label has been
consecutively investigated under vapor exposure. The
experiments have been scheduled as evaluation steps
towards final device architecture and functionality. In
agreement with the research aim, three groups of
ambient characteristics have been envisioned: temper-
ature, humidity and gaseous analytes (i.e. NH3).

An overview over the smart sensing tag capabilities
is given by the screen-shot of the main window of the
LabVIEW user interface as shown in figure 7. The
three panels represent the graphical output of the raw
data acquired by the system as follows: (left) the resist-
ance of the RTD dedicated to temperature measure-
ment; (center) capacitive, the IDE capacitive
transducer coated with a CAB layer for humidity sen-
sing; (right) the resistance with PANI-based sensing
layer for NH3 detection. The data depicted in figure 7
illustrate a constant temperature of 25 °C, a staircase

humidity variation from 30 to 50% R.H. (30, 40 and
50%), and the output of the NH3 sensor for ammonia
concentrations ranging from 0 ppm to 15 ppm (0, 5,
10 and 15 ppm steps) for 15 h. The individual sensor
and system characterization will be described in the
sections hereafter.

4.1. Temperature sensor characterization
The RDT sensor plays a double role in the developed
concept. On one hand, it delivers one of the main tag
output parameters (i.e. the environment temper-
ature). On the other hand, the temperature value can
be used for the compensation of the other output
parameters (that is for humidity and NH3 correct
evaluation). For instance sensitivity of both sensing
layers (i.e. CAB partition coefficient for humidity and
PANI partition coefficient for NH3) as well as the
ambient absolute humidity (Antoine law) strongly
depend on temperature. Although not implemented
yet in the actual version of the tag software (out of the
scope of this paper), the compensation, calibration as
well as graphical user interface can be integrated in the
firmware of the label itself through proper coding.

Temperature tests were performed in the climatic
chamber SH-661 from the company Espec (Benchtop
temperature and humidity chamber) and were able to
reproduce controlled temperature and humidity con-
ditions with a precision of 0.5 °C and 2%R.H., respec-
tively. The temperature characterization occurred
under different heating and cooling conditions (i.e. at
40%R.H. between −10 °C and 80 °C with steps of

Figure 5. Fabrication steps of themultisensor platform integration. (a) Laser ablation of thefirst PSA layer, lamination onto themain
carrier, and filling the blinded vias with ICA. (b)Alignment and lamination of themultisensor platformonto the PENmain carrier. (c)
Lamination of the second PSA layer on the bottom side of the carrier. (d)Lamination of theVersapor porousmembrane to fully
encapsulate the sensors while protecting them.
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10 °C for the TCR calibration and steps of 1 °C for the
resolution determination), as indicated in figure 8(a).
For the temperature calibration curves, a staircase
temperature profile was chosen in order to avoid the
errors that could be introduced by the settling time of
the chamber. Figure 8(b) shows the calibration curves
of the printed RTD, indicating up- and down-sweep
TCRs of 1100 and 1129 ppm K−1, respectively.
Although the linearity was maintained, the measured
TCR values were lower than the ones reported pre-
viously [12]. This could be improved by optimal Ni
plating and/or a prolonged ink annealing process.

The resistance of the RTDwasmeasured by using a
voltage divider (VD) with its output voltage directly
connected to the analog-to-digital (ADC) converter of
themicroprocessor (i.e. 12 bit resolution). At themax-
imum reading voltage (i.e. 3 V provided by the micro-
controller when the main battery is fully charged) the
conversion resolution was calculated to be 3 V/
212 bit = 0.73 mV bit−1. Considering a temperature
operational range between −10 °C and 80 °C, the
RTD values were measured to be between 500Ω and
550Ω (figure 8). This corresponds to an output volt-
age from the VD between 1.5 V and 1.571 V. This

range provides a quite linear response, as expected
from the VD design, with a maximum variation of
0.75 mV for resistance steps of 0.5Ω. The latter value
allows us to estimate the maximum resolution of the
actual system to be 1 °C (i.e. limited by the ADC reso-
lution), that is, 0.1% of the nominal RTD value at
room temperature. The achieved resolution of ∼1 °C
satisfies for a general purposemonitoring system.

4.2.Humidity sensor characterization
Humidity characterization was performed using the
climatic chamber SH-661 from Espec. Figure 9(a)
shows the dynamic response of the humidity sensor
when coated with a CAB sensing layer (black squares).
Themeasured RTD resistance values corresponding to
the ambient temperature are shown in the right axis in
figure 9(a) (blue solid line). From figure 9(a) the
response and recovery times can be evaluated.
Response times of 5.43 min and 8.05 min were calcu-
lated from 20% to 40% and from 40% to 60%,
respectively; while recovery times of 5.75 min and
6.64 min were calculated from 60% to 40% and from
40% to 20%, respectively. Both response and recovery

Figure 6.Pictures of themultisensor platform integration. (a) Laser-ablated access windows onPENmain carrier. (b) Laminated PSA
with stencil-printed ICA at the connection pads. (c) Integratedmultisensor platform. (d) LaminatedVersapormembrane on the back
side of the stack.
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times are comparable with other similar values
reported in the literature [11, 12].

The temperature plot indicates no cross sensitivity
of the RTD towards humidity, which is required for an
accurate temperature measurement and efficient cor-
rection of the humidity sensor signal for temperature
variations. The immunity of the temperature sensor
against humidity was achieved thanks to the low water
vapor permeability of the DP protection layer depos-
ited on top of the RTD structure, which prevented the
direct contact of water vapor and the RTD structure.
The absence of cross sensitivity improves our previous
results shown in [12]. The calibration curves of the
humidity sensor functionalized with CAB at different
temperatures are presented in figure 9(b). One
remarks a linear response from 20%R.H. to 60%R.H.
with sensitivities of: 2.75 ± 0.1 fF/%R.H., 3.25 ±
0.1 fF/%R.H. and 3.44 ± 0.1 fF/%R.H. for 20 °C,
30 °C and 40 °C, respectively. The values have been
calculated for incremental humidity changes. Hyster-
esis values, calculated as the maximum difference in
output at any measurement within the sensor range
(i.e. 0.2 pF), were found to be 4.5%, 4.5% and 3.5% for
the 20 °C, 30 °C and 40 °C temperature conditions
(figure 9(b)), respectively. Because of such slight hys-
teresis, mostly due to the much slower desorption
kinetics of the sensor substrate, the decremental char-
acteristics were shifted towards higher capacitances.
Complete printed sensor characterization can be
found in [11]. If higher precision and faster response
are required, the substrate (PEN) parasitic sensitivity
to humidity can be compensated by using a reference
capacitor (i.e. other capacitive channel) [26, 27].
Moreover, a compact capacitor design such as a ver-
tical capacitor configuration could be used to further
decrease the response time [28–30], thanks to the
complete elimination of the substrate response. It
should be noted that the vertical structure (i.e. top and
bottom electrodes)would be fully compatible with the
current fabrication process involving two inkjetted

layers of silver, although more complex fabrication
process would be foreseen.

4.3. NH3 vapor sensor characterization
Ammonia is a reducing gas and upon interaction with
the PANI sensing layer, it deprotonates the emeraldine
salt converting it to the emeraldine base form. This
reduces the number of charge carriers (holes) in the
sensing layer thus decreasing the electrical conduc-
tance. The process is reversible as by exposing the
sensor to clean air, the resistance decreases to its initial
values. The tests under controlled atmosphere (NH3

and humidity) were performed in dynamic exposure
between 0 ppm and 15 ppm, which is relevant for
personal safety (i.e. TLV-TWA values ∼30 ppm,
country dependent), and at three different R.H. levels
(i.e. 30%, 40% and 50%). The ammonia was supplied
from a 50 ppm NH3 in 5.5 synthetic air pressured
bottle while saturated water vapour was obtained by
purging synthetic air (5.5) through a large area babbler
kept at constant temperature (25 °C). The required
concentrations were realized by dynamic dilution in
synthetic air with a computer controlled gas mixing
system. Figure 10 shows in black (solid line, left axis)
the relative changes in resistance of the PANI-based
sensor with respect to its baseline resistance (R0), and
in blue (dotted-line, right axis) the relative capacitance
changes for the humidity sensor. Although increasing
the humidity level alters the baseline resistance value,
it does not adversely affect, to a significant extent, the
response and recovery of the sensor, over the ammonia
concentration and humidity range studied here. The
ammonia response of the polyaniline nanocomposite
sensing material was proven to be less sensitive to
varying humidity levels compared to the poly(4-
styrenesulfonic acid)-doped PANI developed in our
previous report [19]. In order to calculate the sensitiv-
ity to NH3, the sensor was exposed at ammonia levels
between 1 ppm and 25 ppm and at 30%R.H. (i.e. 1 h
each step), as shown in figure 11(a). This resulted in a
linear response with a relatively high sensitivity of 5.4

Figure 7.Overview of themeasured data after being retrieved from the label and visualizedwith the LabVIEWuser interface. The
screenshot shows the raw data from a set ofmeasurements where the temperaturewas kept constant at 25 °Cwhile the humidity and
ammonia concentrations have been changed stepwise (30%, 40%and 50%R.H., and 0, 5, 10 and 15 ppmNH3 for each humidity
level).
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± 0.2%/ppm for low ammonia concentrations, and a
baseline of 6 MΩ, as shown in the inset of figure 11(a).
The analogue signal from the resistive sensors was read
out directly by the ADC of the microcontroller
through a voltage divider (i.e. in the sameway the RTD
was interfaced) with matching resistance value in the
range ofMΩ.

In order to validate the operation of themicro hot-
plate when implemented in the tag architecture, a
localized temperature step was applied while the
response of the ammonia sensor was recorded using
the developed smart label. The localized temperature
change was used to quickly reset the chemical sensor
after an ammonia exposure. As shown in figure 11(b),
the test started with a 15 min stabilization cycle at a
controlled value of humidity (40%R.H.), temperature
(23 °C) and ammonia (0 ppm). Next, the platformwas
exposed to a step of 15 ppm of ammonia for 7 min.
Finally, the micro hotplate was activated for 10 min.
Figure 11(b) demonstrates the sensor recovery during
the temperature pulse, which is faster compared to the
room temperature desorption observed in figure 10
(i.e. after 1.5 h the signal returned to the baseline from
15 ppm to 0 ppm at 40% R.H.). As shown in [21], the

theoretical detection limit of the ammonia sensor for
the same structure used in this paper was lower than
100 ppb (i.e. at 95 °C). As presented, continuously
localized heating decreases the recovery time, how-
ever, it deteriorates the sensor’s detection limit and
sensitivity [18], while considerably increasing the
overall power consumption of the system.

The micro hotplate was directly connected to the
main power supply (i.e. 150 mAh at 3.9 V battery—PK
Cell from Adafruit) by means of a mechanical switch,
which in turn generated a power of 50 mW across the
150Ω resistor. Using the previously modelled Joule
effect of such a configuration [18], the estimated
temperature was found to be around 120 °C. Thanks
to the thermal insulation of the transducers in the plat-
form, the RTD reading remains invariant of the temp-
erature changes in themicro hotplate.

Considering an active load of 12.8 mA (i.e. repre-
senting the power consumption of 50 mW when the
heater is being activated), and a circuit load of 3.1 μA
(i.e. representing the standby currents of the RFID
chip (2 μA) and microcontroller (1.1 μA), the max-
imum lifetime of the system can be calculated as fol-
lows:

Figure 8. Smart label response to temperature. (a)The rawRTD response at 40%R.H. and (b) the calibration curves between−10 °C
and 80 °C.

Figure 9.Humidity sensor characterization. (a)Dynamic characterization (up- and down-sweeps) for R.H. values between 20%and
60%and at room temperature: IDE capacitive transducer withCAB (black squares), reference IDE (red circles) andRTDmeasured
resistance (blue solid line). (b)Humidity sensor calibration curves (up- and down-sweeps) for anR.H. range between 20%and 60%
and temperature values of 20 °C, 30 °Cand 40 °C.
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*
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+ T P
lifetime h

Capacity

Load Load
2bat

passive circuit

[ ]
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Where lifetime is given in hours, Capacitybat is the total
battery capacity of the label, Loadpassive is the summa-
tion of the standby currents for the RFID and
microcontroller, Loadcircuit is themaximum current of
the systemwhen operating the heater,T is the duration
of the measurement and P is the periodicity of the
measurement. Taking as an example the values in
table 1, the lifetime is expected to be 57 days, which is
compatible with standard requirements for the logis-
tics industry.

Although the operation of the heater on tag
has been demonstrated, the precise power control
through temperature modulation needs to be

optimized (i.e. applying short pulses of current to the
heater) in order to improve sensor recovery and
reduce power consumption.

5. Conclusion

The fabrication of an inkjet-printed multisensor plat-
form and its integration onto a printedHFRFID smart
label was presented. The label has the capability of
measuring an RTD sensor, two capacitive sensors
(demonstrated for humidity) and two resistive sensors
(one of them demonstrated for NH3). The platform
was integrated through foil-to-foil techniques in order
to interface it with a microcontroller and RFID chip

Figure 10.NH3 sensor characterization. Dynamic sensor response forNH3 levels between 0 ppm and 15 ppm (black solid line) and
R.H. values of 30%, 40%and 50%.The humidity is also plotted as a blue-dotted line.

Figure 11. (a) Sensor response towards ammonia concentrations between 1 ppmand 25 ppm at 30%R.H. The corresponding
sensitivity curve is shown in the inset. (b)Example of temperature pulse with themicro hotplate during ammonia sensing.

Table 1.Battery lifetime using typical system values.

Capacity Loadpassive Loadcircuit T P Lifetime

150 mAh 3.1 μA 12.8 mA 30 s 60 min 57 days
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for retrieving and visualizing the measured/stored
data. The integration technology developed here is a
step forward in the production of cost effective smart
sensing RFID labels using large-area and additive
manufacturing techniques. Overall production costs
are foreseen to be reduced by minimizing the number
of Si components (i.e. ultimately just one application-
specific integrated circuit) and replacing critical costly
materials (i.e. gas permeable and dry film photoresist
encapsulation). Such smart devices could be envisaged
for application in the monitoring of perishable goods
(food, medicine and biomaterials, among others)
transported through a cold chain supply.
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