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Abstract: The aim of this paper is to evaluate the most used radar backscattering models
(Integral Equation Model “IEM”, Oh, Dubois, and Advanced Integral Equation Model “AIEM”) using
a wide dataset of SAR (Synthetic Aperture Radar) data and experimental soil measurements. These
forward models reproduce the radar backscattering coefficients (69) from soil surface characteristics
(dielectric constant, roughness) and SAR sensor parameters (radar wavelength, incidence angle,
polarization). The analysis dataset is composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS,
RADARSAT, ASAR and TerraSAR-X data and in situ measurements (soil moisture and surface
roughness). Results show that Oh model version developed in 1992 gives the best fitting of the
backscattering coefficients in HH and VV polarizations with RMSE values of 2.6 dB and 2.4 dB,
respectively. Simulations performed with the Dubois model show a poor correlation between real
data and model simulations in HH polarization (RMSE = 4.0 dB) and better correlation with real data
in VV polarization (RMSE = 2.9 dB). The IEM and the AIEM simulate the backscattering coefficient
with high RMSE when using a Gaussian correlation function. However, better simulations are
performed with IEM and AIEM by using an exponential correlation function (slightly better fitting
with AIEM than IEM). Good agreement was found between the radar data and the simulations using
the calibrated version of the IEM modified by Baghdadi (IEM_B) with bias less than 1.0 dB and RMSE
less than 2.0 dB. These results confirm that, up to date, the IEM modified by Baghdadi (IEM_B) is the
most adequate to estimate soil moisture and roughness from SAR data.

Keywords: Oh; Dubois; IEM; AIEM; SAR images; soil moisture; surface roughness

1. Introduction

In the context of sustainable development, soil and water resources management is a key issue not
only from the environmental point of view, but also from a socioeconomic perspective [1]. Soil surface
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characteristics (SSC), such as moisture (mv), roughness, texture, and slaking crusts are some key
variables used to understand and model natural hazards, such as erosion, drought, runoff, and
floods [2]. Particularly, soil moisture and roughness are important variables in land surface hydrology
as they control the amount of water that infiltrates into the soil and replenishes the water table [3].
Synthetic Aperture Radar (SAR) data were widely and successfully used for monitoring the spatial
and temporal evolution of soil moisture and roughness [4-7]. The estimation of soil moisture and
roughness was performed by inverting the measured SAR backscatter through SAR backscattering
models (both empirical and physical). Unlike physical models, empirical models need to be calibrated
using site specific in situ measurements and SAR observation at each time are used over a different
study area. Moreover, the validity domain of semi-empirical models is limited to the range of data used
for calibration. The most commonly empirical models are the models of Oh [8-11] and Dubois [12];
while, the most popular physical models are Integral equation model (IEM) [13], IEM calibrated by
Baghdadi, called in this paper “IEM_B” [14-19], and Advanced Integral Equation Model (AIEM) [20].

For bare soils, SAR backscattering models allow backscattering coefficients simulation
by using soil parameters (mainly dielectric constant, and roughness) and SAR configurations
(frequency, incidence angle, polarization) as input. Several studies reported important discrepancies
between backscattering models simulations and SAR observations [15,21-23]. The discrepancy between
SAR simulations and SAR measurements is mainly related to the description of surface roughness
which is an important input to SAR backscattering models [17,24,25]. For most of the backscattering
models the surface roughness is described by three parameters: the standard deviation of the height
(Hrms), the correlation length (L) and the shape of the correlation function [13,26]. The correlation
length is usually measured with an uncertainty which introduces an error on simulated backscattering
coefficients [27-33]. A few studies proposed a semi-empirical calibration of SAR backscattering models
in order to reduce the uncertainty on SAR simulations [14-19,34]. In [14-19] the method consisted of
replacing the measured L by a fitting parameter, so-called Lopt, which was found to be related to Hrms
(Lopt increases with Hrms). Lopt is a function of Hrms (linear, exponential, or power calibration) which
depends on SAR parameters (incidence angle, polarization and frequency). This calibration reduces
IEM’s input soil parameters (Hrms and mv instead of Hrms, L and mv). Rahman et al. [34] proposed
a method for deriving L through the IEM. In this method, the radar signal is modeled as a function
of only Hrms and L, and the contribution of soil moisture on backscattering coefficients is ignored
(dry soil). Thus, L could be estimated by inverting the IEM.

Several studies have been carried out to evaluate and compare the robustness of the backscattering
models such as, Oh, Dubois and IEM (original IEM, IEM_B and AIEM). Zribi et al. [23] evaluated the
Oh model and IEM using L-, C- and X-bands SAR data and in situ measurements. Results showed that
the IEM provides accurate simulations (RMSE about 2.0 dB) only over smooth surfaces. In addition,
for rough surfaces and medium incidence angle, Oh model simulations retrieve backscattering values
very close to the measured ones, while showing poor correlation with measured backscattering
coefficients over smooth areas. Baghdadi and Zribi [21] evaluated the backscattering models IEM,
Oh and Dubois by using large C-band SAR data and in situ measurements. Results showed that
these models frequently tend to over-estimate or under-estimate the radar signal (in the order of
—3.0 dB) and the errors on model simulation depend on height surface roughness, Hrms, soil moisture,
mv, and/or incidence angle. Baghdadi et al. [18] evaluated the potential of IEM, Oh and Dubois
models by using TerraSAR-X images acquired over France and Tunisia and experimental datasets
of in situ measurements (mv ranged between 5 vol. % and 41 vol. % and Hrms between 0.42 cm
and 4.55 cm). In this case, the semi-empirical Oh model correctly simulated the backscattering
(showing over or under-estimation of the backscatter <1 dB, and RMSE <3 dB), while Dubois model
showed a poor correlation between real data and simulations, with RMSE between 2.2 and 4.4 dB and
over or under-estimation of the backscatter of about 3.4 dB. In addition, the IEM simulates correctly
the backscattering at X-band for Hrms < 1.5 cm by using the exponential correlation function and
for Hrms > 1.5 cm by using the Gaussian correlation function. Panciera et al. [35] compared the
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performances of the IEM, Dubois and Oh models by using fully polarized L-band airborne data
(incidence angles between 24° and 38°) and in situ measurements (mv between 5 vol. % and 39 vol. %
and Hrms between 1 cm and 7.6 cm) acquired over the study area in southeastern Australia. At HH
polarization, the three models simulated the backscattering with almost similar accuracy, showing
a mean error between the simulated and the observed backscattering coefficients of about 1.6 dB in
absolute value (standard deviation “std” about 2.5 dB). At VV polarization, the Oh model resulted to
be more accurate than IEM and Dubois models: the mean errors between the simulated and observed
backscattering were equal to 4.5 dB (std = 2.0 dB), 1.7 dB (std = £2.3 dB), and —0.4 dB (std = £2.4
dB) for IEM, Dubois, and Oh model, respectively.

Several studies confirmed that the use of the calibrated correlation length, as proposed by
Baghdadi et al. [14-19] is able to improves the performance of the IEM at both both HH and VV
polarizations [35-37]. Dong et al. [36] used the calibrated correlation length in the AIEM to simulate
SAR data in C-band. Results showing that the RMSE reduced from 3.1 to 1.7 dB at HH and VV
polarizations and from 31.0 to 5.1 dB at HV polarization. Panciera et al. [35] showed that the use of
calibrated correlation length decreases the errors on IEM simulation with a bias equal to about —0.3 dB
(std about 1.1 dB) at both HH and VV polarizations.

The aim of this study is to evaluate the most popular backscattering SAR models (Oh, Dubois,
IEM, IEM_B, and AIEM) by using a wide range of SAR data and in situ measurements. With the arrival
of Sentinel-1A and -1B satellites that provide free high resolution SAR data with 3 days revisit time,
several research teams work actually on developing methods for mapping soil moisture using these
Sentinel-1 data. Most of methods for soil moisture mapping are based on backscatter models for soil
moisture estimations. The objective of our study is to evaluate the most commonly backscatter models
using a wide dataset of SAR data and in situ measurements acquired over numerous agricultural sites
in France, Italy, Germany, Belgium, Luxembourg, Canada and Tunisia. Thus, this study could be of a
great importance for scientific community since it help on understand backscatter models performance
for wide range of soil surface conditions, acquired for several study areas through the world by
numerous SAR sensors. Never before have been evaluated all these backscatter models together in
the same literature with such a wide dataset. In addition, this study is the first that evaluates the
backscatter models using L-, C- and X-bands together. A description of the study areas and different
datasets used in this study is provided in Section 2. Section 3 the models are described. The results are
shown in Section 4. Finally, Section 5 presents the conclusion.

2. Dataset

2.1. Study Areas

A wide range of datasets composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS,
RADARSAT, ASAR and TerraSAR-X acquisitions over numerous agricultural sites in France, Italy,
Germany, Belgium, Luxembourg, Canada and Tunisia (Table 1), have been used in this research
work. In addition, in situ measurements of soil moisture and surface roughness were carried out
simultaneously to SAR acquisitions over bare soil surfaces.

2.2. Satellite Data

A large number of L-, C- and X-band images (approximately 1.25 GHz, 5.3 GHz and 9.6 GHz,
respectively) were acquired between 1994 and 2014 with different incidence angles (between 18°
and 57°) and in HH, VV and HV polarizations (Table 1). The spatial resolution of SAR images is
between 1 m and 30 m (Table 1). Images were first radiometrically calibrated to enable the extraction
of the backscattering coefficients (c°). Then, the mean backscattering coefficients were computed from
calibrated SAR images by linearly averaging the o” values of all pixels within the plot.
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2.3. Field Data

Field measurements of soil moisture and surface roughness have been collected from bare plots
selected over the study areas. Each plot is a homogeneous surface (similar soil type, moisture content
and surface roughness) of around one hectare or more. In situ measurements of soil moisture (mv, in
vol. %) were carried out for a soil layer of 5 cm or 10 cm in each reference plot by using both the
gravimetric method or a calibrated TDR (time domain reflectometry) probe. For each bare soil reference
field the average soil moisture (1mv) of all samples was calculated. The soil moisture ranged between
2 vol. % and 47 vol. %.

Roughness measurements were carried out by using laser or needle profilometers (mainly 1 m and
2 mlong, and with 1 cm and 2 cm sampling intervals); while for some in situ measurement campaigns,
a meshboard technique was used. Several roughness profiles along and across the direction of tillage
were acquired in each reference field. The standard deviation of surface heights (Hrms) and the
correlation length (L) were calculated by using the mean of all experimental correlation functions.
In our dataset, Hrms ranged from 0.2 cm to 9.6 cm and the L from 1.2 cm to 38.5 cm.

A total of 2442 experimental data of soil moisture content and surface roughness were available,
together with the corresponding values of backscattering coefficient, of which 1262 at HH polarization,
790 at VV polarization, and 390 at HV polarization (see Table 1).

Table 1. Description of the dataset used in this study. “Fr”: France, “It”: Italy, “Ge”: Germany, “Be”:
Belgium, “Lu”: Luxembourg, “Ca”: Canada, “Tu”: Tunisia.

. Spatial Number of
Site SAR Sensor Resolution Freq Year Data
Orgeval (Fr) [23] SIR-C 30m x 30 m L 1994
1994; 1995; 2008;
Orgeval (Fr) [23,38,39] SIR-C, ERS, ASAR 30m x 30 m C 2009; 2010
Orgeval (Fr) [39] PALSAR-1 30m x 30 m L 2009
Orgeval (Fr) [40] TerraSAR-X Imx1m X 2008, 2009, 2010
Pays de Caux (Fr) [15,41] ERS; RADARSAT 30m x 30 m C 1998; 1999
Villamblain (Fr) [6,16,42] ASAR 30m x 30m C 2003; 2004; 2006
Villamblain (Fr) [39,43] TerraSAR-X X 2008; 2009
RADARSAT 30m x 30 m C
Thau (Fr) [44] TerraSAR-X 1mx1m X 2010; 2011 2010
HH: 1262
Touch (Fr) [6,44] ERS-2; ASAR 30m x 30 m C 2004; 2006; 2007
measurements
Mauzac (Fr) [43] TerraSAR-X Imx1m X 2009 66 in L-band
Garons (Fr) [43] TerraSAR-X Imx1m X 2009 766 m C-band
430 in X-band
Kairouan (Tu) [45] ASAR 30m X 30 m C 2012 VV: 790
Kairouan (Tu) [43,45,46] TerraSAR-X X 2010; 2012; 2013; 2014  measurements
Yzerons (Fr) [47] TerraSAR-X 1mx1m X 2009 159 in L-band
411 in C-band
Versailles (Fr) [43] TerraSAR-X Imx1m X 2010 220 in X-band
Seysses (Fr) [43] TerraSAR-X 1mx1m X 2010 HV: 390
measurements
Chateauguay (Ca) [15] RADARSAT 30m x 30 m C 1999 13 in L-band
Brochet (Ca) [15] RADARSAT 30m x 30 m C 1999 313 in C-band
Alpilles (Fr) [15] ERS; RADARSAT ~ 30m x30m  C 1996; 1997 64 in X-band
Sardaigne (It) [36] ASAR; RADARSAT  30m x 30 m C 2008; 2009
Matera (It) [22] SIR-C 30m x 30 m L 1994
Alzette (Lu) [30,34] PALSAR-1 30m x 30 m L 2008
Dijle (Be) [30] PALSAR-1 30m x 30 m L 2008; 2009
Zwalm (Be) [30] PALSAR-1 30m x 30 m L 2007
Demmin (Ge) [30] ESAR 2m X 2m L 2006
Montespertoli (It) [35,48] AIRSAR L 1991
Montespertoli (It) [49] SIR-C 30m x 30 m L;C 1994

Montespertoli (It) [50] JERS-1 L 1994
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3. Description of the Backscattering Models

3.1. The Semi-Empirical Dubois Model

Dubois et al. [12] proposed a semi-empirical model for simulating the backscattering coefficients
in HH and VV polarizations (6% and 0%,,) on bare soils. The expression of 0%, and 09, depends on
the incident angle (), the soil dielectric constant (e, which is a function of the soil moisture content), the
soil roughness defined by the standard deviation of surface height (Hrms), and the radar wavelength
(A =27t/ k where k is the wave number). The model optimized for bare soils according to the validity
domain defined by kHrms < 2.5, mv < 35 vol. %, and 6 > 30° is expressed as:

0 _ 10—235 (cos®0 0.046¢ tan © : 1.150.7
oyy =10 (m) 10 (kHrmssin®) A

0 _ 10275 ( cos® @ 0.028¢ tan © : 1.440.7
oy = 10 (W) 10 (k Hrmssin 0) A

)

where 0 is expressed in radians and A in cm, and 0%, and 0%,;, are expressed in linear units.

3.2. The Semi-Empirical Oh Model

Oh et al. [8-11] developed between 1992 and 2004 several versions of a semi empirical
backscattering model. Basing on theoretical models, scatterometer measurements and airborne SAR
observations, the Oh model is built over a wide variety of bare soil surfaces. The Oh model relates
the co-polarized ratio p (:G% u/ O'(‘)/V) and the cross-polarized ratio q (= O'%V / O'(‘)/V) to incident angle (0),
wave number (k), standard deviation of surface height (Hrms), correlation length (L), and soil moisture
(mv) or dielectric constant (e,).

The initial version of the Oh model [9] is defined as:

0 0\ 3 2
3T
p= O-I(;IiH = [1 — <90> O.EkHrms] (2)
Ovv
Y
g =8V =023 /T (1- e *Hime) 3)
Ovv
where: ,
1—
Lo — ’ Ver @
1+ &
Oh et al. [10] proposed a new expression for g to incorporate the effect of the incidence angle:
0
g va — 025 \/ﬂ(o.l + sin®? 9) (1 _ e—[1.4—1.61"0]kHrms> ®)

Oyy

Oh et al. [11] again modified the expressions for p and g, and the following expression for the
cross-polarized backscatter coefficient was proposed:

0.35 my =065
p= O-(I)LIH —1_ <9) " o—04(k Hrms)'* ©)

! .

oy 90
0 12
H ,
g= M =01 (5 sin130) (1 00 (ki) @)
oy L

0%y = 0.11mov"” cos*2 0 (1 — o032 (kHrmSﬂB) 8)
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Oh and Kay [51] demonstrated that the measurement of the correlation length is not accurate and
that the ratio g is not sensitive to the roughness parameter (defined as Hrms/L). Thus, Oh [8] proposed
a new equation for g that ignores the correlation length (L):

Dy 14 1.3 (k Hrms)*?
g = ~HV — 0,095 (0.13 + sin 1.50) (1 — 13 (kHrms) ) )
Ovv

The Oh model [8] is optimized for bare soils in the following validity domain: 0.13 < kHrms < 6.98,
4 < mo (vol. %) <29.1,and 10° < 6 < 70°.

The estimation of soil moisture and surface roughness from Oh model requires two backscattering
coefficients at least, with one co-polarized coefficient (0% 7 or U?,V) and one cross-polarized coefficient
(0%, or o},p;). The availability of 09, and 0%, allows using the ratio g4 and oY, in the inversion
process of SAR data, while the ratio p/g, as well as G?LIV, is used in the case where SAR data are

available in the both HH and HV polarizations.

3.3. The Physical Integral Equation Model (IEM)

The Integral Equation IEM is a physical model [13], where the soil is characterized by the dielectric
constant (g,), the standard deviation of surface height (Hrms), the form of the correlation function, and
the correlation length (L). The IEM also takes into account the sensor parameters such as the incidence
angle (0), the polarization (pg with p,g = H or V), and the radar wave number (k = 27t/A where A is
the wavelength). The IEM has a validity domain that covers the range of roughness values that are
commonly encountered for agricultural surfaces:

kHrms < 3

((k Hrms cos6)*/v/046kL) exp {—/0.92kL(T—sin0) | < 0.25 (10)

Over bare soils in agricultural areas, the backscattering coefficient of the surface contribution is
expressed at HH and V'V polarizations as:

2 42 2 29 t® (gx2 2 02 9! )
09, = | fpp| e Hrms cos"0 3 MkH’m+se) W) (2k sin 0, 0)

n=1

—+o0 n

+ ERe(f; Fyp) 3 Hrms® cos? 0 7 (HM o8’ 0)_yyy(n) ok sin 0, 0) (11)
n=1

[y e 2R Hmst cost 0§ (2Hm 05 0"y () (01 sin ,0)

n!

8
n=1

At cross polarization, the backscattering coefficient is as follows:

0 K n+m
Oho = Ton®

—2RHrms? cos? 0 & &% (K2Hrms? cos” )
L X n!lm!

n=1m=1 (12)
/I {|th(u, 0)|* + By (1, 0) Ey (—u, —v)} W (4 — ksin®,v) W (1 4 ksin 8, v) du dv

where: R R
— <R\ v

Fu cos© foo cos 0 (13

1y cos® — \/ e, — sin® @
Ry, = : Fresnel coefficient at horizontal polarization (14)

Urcos O 41/ prer — sin 0

€rCc080 — ¢/ Urey — sin? @

= : Fresnel coefficient at vertical polarization (15)

Ry
€rcos0 + ¢/ prey — sin? @
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0 1
Ey = 251“ — {412,1 - (1 - er) 1+ Rh)z} (16)
Fop = 2S°Of () ercos’@ (1=R)?+ (1= 1)1 +R) (17)
0 T cos0 pire, —sin® @ ? & ‘
Fo (o) — 17 BR2 2+ 6R? + (”R> +e,(1—R)>? -
o) = ot | V2 — 2 = o2 erkz—uz—vz
R — Ry ; Ry (19)

g,: dielectric constant, obtained on the basis of volumetric water content (mv). In our study,
Hallikainen empirical model is used [52].

Uy relative permittivity.

Re: real part of the complex number.

fpp: conjugate of the complex number f,.

W) is the Fourier transform of the nth power of the surface correlation p(x, y) function:
W (a,b) jfp x,y) e ) gy dy (20)

The distribution of p(x,y) is exponential for low surface roughness values and Gaussian for
high surface roughness values. For one-dimensional roughness profiles, the correlation functions are

defined as follows:

) exponential 1)
: Gaussian

3.4. IEM Modified by Baghdadi (IEM_B)

Several studies reported important discrepancies between backscattering coefficients simulated
by IEM and those measured by SAR sensors [23,35,41,46,53-56]. Baghdadi et al. [14,28] showed that
the discrepancy between the observed and IEM simulated backscattering coefficients is mainly due to
the correlation length parameter which is difficult to be measured with a good accuracy. To reduce such
incongruities between simulated and measured backscattering values, Baghdadi et al. [16,17,19,43]
proposed a semi-empirical calibration of the IEM backscattering, which consists of replacing
the in situ measured correlation length by a fitting parameter (Lopt). Lopt depends on surface
roughness conditions and SAR configurations (incidence angle, polarization and radar wavelength).
This calibration has been performed by using large experimental datasets and SAR configurations
(incidence angles from 23° to 57°, and HH, HV, and VV polarizations), and it has been carried separately
at X-band in [43], C-band in [16,17] and L-band in [19]. The proposed calibration reduces the IEM’s
input soil parameters from three to two (Hrms and mv only, instead of Hrms, L and mv).

Lopt is computed at L-, C-, and X-bands using a Gaussian correlation function and it is described
as follows:

Lopt(Hrms, 8, HH) = 18.102¢~ 18910 Hyyg 0764420 0
In X — band : —0.83080 (22)
Lopt(Hrms,0,VV) = 18.075¢ 217159 Hyms 1.25%4¢
Lopt(Hrms, 8, HH) = 0.162 4 3.006 (sin1.230) "*** Hrms
InC—band: { Lopt(Hrms,6, HV) = 0.9157 4 1.2289 (sin 0.1543 6) 3% Hrms (23)
Lopt(Hrms,8,VV) = 1.281 +0.134 (sin0.19 8) " Hrms

Lop (Hrms, 8, HH) = 2.6590 0~ 1#4% 43,0484 Hrms 0~ 0804

24
Lopt(Hrms,0,VV) = 5.8735 010814 + 13015 Hrms 144 (24)

InL —band : {
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where 0 is in radians; Lopt and Hrms are in centimeters. Several studies showed that the use of the
fitting parameter Lopt allows more correct estimations of the radar backscattering coefficient [36].

3.5. The Advanced Integral Equation Model

The Advanced Integral Equation Model (AIEM) [20] is the updated version of the Integral
Equation Model (IEM) [57]. In a comparison with the IEM, two improvements have been integrated
into the AIEM: (1) the complete expressions for the Kirchhoff field coefficient and the complementary
field coefficient based on the removal of the simplification assumption of the Green’s function have
been included in the AIEM [20] and (2) a continuous Fresnel reflection coefficient is obtained using
a transition model [58]. This update allows a more precise calculation of the simple scattering for a
surface with a wide range of dielectric constant (¢,), large standard deviation of heights Hrms, and
various remote sensing configurations. The AIEM simulates the radar backscattering coefficients
basing on the same parameters as the IEM.

4. Results and Discussion

This section shows the evaluation results of the five radar backscattering models Dubois, Oh,
IEM, IEM_B and AIEM using large datasets, characterized by various radar wavelength (L, C and X),
wide range of incidence angles and large geographical distribution in regions with different climate
conditions (humid, semi-arid and arid sites). In this study, each plot is considered as a sampling
unit. For each plot, SAR data was simulated through backscatter models using in situ measurements
(mv, Hrms and L) averaged within that plot. Then, the simulated SAR signal were compared with the
backscattering coefficients computed from calibrated SAR images by linearly averaging the o” values
of all pixels within the plot.

4.1. Evaluation of the Dubois Model

The evaluation of Dubois model was carried out for different scenarios using all data, per radar
wavelength, and by range of soil moisture, kHrms, and incidence angle.

Using all data, the Dubois model over-estimates slightly the radar signal by about 1.0 dB in HH
polarization and under-estimates slightly the radar signal by about 0.7 dB in VV polarization (Table 2,
Figures 1 and 2). RMSE is about 4.0 dB and 2.9 dB at HH and V'V polarization, respectively (Table 2).
The analysis of the error according to each radar frequency band separately (L, C and X) shows an
over-estimation in HH polarization, which is almost the same at L-, C- and X-bands (between 0.9 dB
and 1.1 dB). In VV polarization, the Dubois model under-estimates the radar signal by about 1.8 dB
and 0.4 dB for X and C bands, respectively. For L band, the Dubois model fits correctly the radar signal
in VV because the difference between real data and simulations is about 0.2 dB. The RMSE in HH is the
same as at X- and C-bands, and is about 4.1 dB and decreases to 3.0 dB at L-band. In VV polarization,
the RMSE increases with the radar frequency (2.5 dB at L-band, 2.8 dB at C-band and 3.1 dB at X-band).

Table 2. Comparison between the Dubois model output and real data using the entire dataset,
and by separating two intervals of kHrms, soil moisture (mv) and incidence angle (6). Bias = real
data — simulations.

Model Statistics [;:1 tla L-Band C-Band X-Band k<1-12r'r;ts k:{:;S "::;; 0/20 0 Tz;oio :?05 305
Dubois for ~ Bias(dB)  —1.0 -1.0 1.1 —-0.9 +04  —29 2.6 +03  —42 +03
HHpol.  RMSE(B) 4.0 3.0 4.1 41 3.6 4.6 4.6 3.4 55 32
Dubois for Bias (dB) +0.7 -0.2 +0.4 +1.8 +1.2 -0.2 +0.5 +1.0 —-0.6 +15

VV pol. RMSE (dB) 2.9 25 2.8 3.1 3.0 2.5 2.8 3.0 29 29
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Figure 1. Comparison between backscattering coefficient values obtained from SAR images and those
estimated from the Dubois model at HH polarization. (a) Dubois model simulations vs. SAR data;
(b) difference between SAR signal and the Dubois model vs. soil roughness (kHrms); (c) difference
between SAR signal and the Dubois model vs. soil moisture (mv); (d) difference between SAR signal

and Dubois model vs. incidence angle.
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Figure 2. Comparison between backscattering coefficient values obtained from SAR images and those
estimated using the Dubois model at VV polarization. (a) Dubois model simulations vs. SAR data;
(b) difference between SAR signal and Dubois model vs. soil roughness (kHrms); (c) difference between
SAR signal and the Dubois model vs. soil moisture (1mv); (d) difference between SAR signal and the
Dubois model vs. incidence angle.

The analysis of the error of the Dubois model according to the validity domain was studied by
range of surface roughness (kHrms), soil moisture (mv) and incidence angle (Table 2). The Dubois
model underestimates the radar signal for kHrms < 2.5 (validity domain of the Dubois model) by about
0.4 dB and 1.2 dB in HH and VYV polarizations, respectively. In the case of kHrms < 2.5, the RMSE
is about 3.6 and 3.0 dB for HH and VV polarizations, respectively. In addition, the Dubois model
overestimates the radar signal for kHrms > 2.5 by about 2.9 dB in HH polarization with RMSE about
4.6 dB. In VV polarization, the Dubois model fits correctly the radar signal in the case of kHrms > 2.5
with a difference between real and simulated data of about 0.2 dB and a RMSE of 2.5 dB (Table 2).

Moreover, the evaluation of the Dubois model was carried out by range of soil moisture (mv).
Results show an overestimation in HH pol. by about 2.6 dB and a slightly underestimation in VV by
about 0.5 dB with mv-values lower than 20 vol. % (RMSE = 4.6 and 2.8 dB at HH and VV, respectively)
(Table 2). In besides, the Dubois model correctly simulates the backscattering coefficient in HH pol.
with a difference between real data and simulations about 0.3 dB and underestimates the radar signal
in VV by about 1.0 dB with mv-values greater than 20 vol. %. In the case of mv-values greater than
20 vol. %, the RMSE is about 3.4 dB and 3.0 dB for HH and VV polarization respectively. Finally, the
performance of Dubois model was studied according to ranges of incidence angle (Table 2). For 6 < 30°
(outside the validity domain of the Dubois model), the Dubois model overestimates the radar signal
by —4.2 dB in HH polarization (RMSE = 5.5 dB) and slightly underestimates the radar signal in VV
polarization (real data — simulations = —0.6 dB) with a RMSE of 2.9 dB. At 8 > 30°, the Dubois model
correctly simulates the backscattering coefficient in HH pol. with a difference between real data and
model of 0.3 dB at HH polarization and underestimates the backscattering at VV pol. by about 1.5 dB
(RMSE = 3.2 dB and 2.9 dB for HH and VV polarizations, respectively).

4.2. Evaluation of the Oh Model

The Oh model versions developed in 1992, 1994, 2002 and 2004 were applied to our datasets.
The evaluation of the different Oh model versions was carried out firstly using all data, successively for
each radar wavelength (L, C and X bands), and finally by range of soil moisture, kHrms and incidence
angle (Table 3, Figures 3-5).
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Table 3. Comparison between real data and Oh models for all data and different ranges of kHrms and
soil moisture (mv). Bias = real data — simulations.

.. All kHrms kHrms mv<29.1 mo >29.1
Model Pol. Statistics Data L-Band C-Band X-Band <20 520 vol. % vol. %
HH Bias (dB) +0.4 +2.5 +0.1 0.0 +1.3 —-0.5 —-0.3 +1.9
Oh et al. RMSE (dB) 2.6 3.7 24 2.5 29 2.3 2.3 3.1
(1992)[9] gy Bies@®) 4o 121 +04 12 10 —07 —04 +15
RMSE (dB) 24 34 2.3 2.1 2.7 2.0 2.3 2.7
HH Bias (dB) —-0.9 +1.3 —-1.2 —-1.2 —0.05 -17 -1.6 +0.5
Oh et al. RMSE (dB) 2.8 2.8 2.7 2.8 2.6 29 29 25
(1994) [10] vV Bias (dB) -1.3 +0.7 -1.3 2.1 —-0.5 —2.1 —-1.7 —-04
RMSE (dB) 2.6 2.6 2.6 2.7 24 29 2.8 2.2
HH Bias (dB) —-0.3 +2.1 -0.9 -1.0 +0.3 —-0.9 —-0.7 +0.4
RMSE (dB) 2.7 3.2 2.7 2.8 2.7 2.6 2.7 2.5
Oh et al. HV Bias (dB) +0.7 +1.5 +1.0 —-0.9 +1.8 —-0.7 +0.5 +0.8
(2002) [11] RMSE (dB) 29 31 2.7 338 32 25 3.0 2.6
vV Bias (dB) —-0.6 +1.8 —-1.2 +0.4 -0.2 -1.0 —-0.7 -0.5
RMSE (dB) 2.5 29 2.7 2.0 25 2.6 2.6 25
HH Bias (dB) —-0.5 +2.1 -1.0 —0.6 0.6 +1.5 —-0.9 +0.4
Oh (2004) [8] RMSE (dB) 2.6 3.3 2.7 2.3 2.6 2.6 2.7 2.6
vV Bias (dB) —-1.1 +1.4 -1.5 —14 —-0.2 —-2.0 -1.3 -0.8
RMSE (dB) 2.6 2.8 2.8 2.1 24 2.8 2.6 2.6

Using the entire dataset, results showed that the different versions of Oh model correctly simulate
the backscattering at both HH and VV polarizations with difference between real data and simulations
varying between —0.9 and +0.4 dB at HH pol. and between (—1.3 dB and +0.4 dB) in VV pol. The RMSE
values are approximately the same for all models and in both HH and VV polarizations, i.e., between
2.4 dB and 2.8 dB. The Oh 1992 model simulates slightly better the backscattering than the other
versions (Table 3). For HV polarization, the Oh 2002 model simulates correctly the backscattering with
a difference between real and simulated data of about +0.7 dB, with RMSE equal to 2.9 dB.

In L-band, the different versions of the Oh model underestimate the backscattering at both HH
and VV polarizations. This underestimation varies between 1.3 dB and 2.5 dB in HH polarization and
between 0.7 dB and 2.1 dB in VV polarization (Table 3). The RMSE is slightly higher in HH than in VV
polarization (between 2.8 dB and 3.7 dB in HH and between 2.6 dB and 3.4 dB in VV). The Oh 1994
version better simulates the backscattering than other versions of Oh model, with an underestimation of
the backscattering between 1.3 dB and 0.7 dB and RMSE of 2.8 and 2.6 dB for HH and VV polarizations,
respectively. At HV polarization, the Oh model underestimates the backscattering by about 1.5 dB
with RMSE equal to 3.1 dB.

In C-band, the Oh 1992 model correctly simulates the backscattering in both HH and VV
polarizations with differences between real and simulated data of 0.1 dB and 0.4 dB at HH and
VV polarizations, respectively (Table 3). Besides, the RMSE is of 2.4 dB at HH and 2.3 dB at VV pol.
Moreover, the other Oh versions overestimate the backscattering in both HH and VV polarizations
(between 0.9 dB and 1.5 dB) with similar RMSE between 2.6 dB and 2.8 dB. At HV polarization, the Oh
2002 model slightly underestimates the backscattering by about 1.0 dB with a RMSE of 2.7 dB.

The analysis of results obtained in X-band shows that Oh model versions simulate the radar signal
with difference between real data and simulations between 0.0 and —1.2 dB in HH and between +0.4
and —2.1 dB in VV (Table 3, Figures 3-5). The RMSE is between 2.3 and 2.8 dB in HH and between 2.0
and 2.7 dB in VV polarization. For HV polarization, the Oh model over-estimates the backscattering
by about 0.9 dB with RMSE of 3.8 dB.

The analysis of the error was studied by selecting two ranges of surface roughness
(kHrms < 2.0 and kHrms > 2.0) (Table 3). This range is different from the general validity domain
of the Oh model (0.13 < kHrms < 6.98) because it covers the entire dataset except only a few points.
For kHrms < 2.0, the 1994, 2002 and 2004 Oh models simulate correctly the backscattering at both HH
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and VV polarizations with differences between real data and simulations between —0.5 and +0.6 dB
and RMSE between 2.4 dB and 2.7 dB. The Oh 1992 model underestimates the backscattering by
1.3 dB and 1.0 dB at HH and VV polarizations, respectively (RMSE is 2.9 for HH pol. and 2.7 dB for
VV pol.). For kHrms > 2.0, the 1992 and 2002 Oh versions simulate correctly backscattering at both
HH and VYV polarizations with difference between real and simulated data between —0.5 dB and
—1.0 dB with RMSE between 2.3 and 2.6 dB. The 1994 Oh model over-estimates the backscattering
at both HH and VV polarizations by about 1.7 dB and 2.1 dB, respectively (RMSE = 2.9 dB). The last
version of the Oh model (Oh, 2004) underestimates the backscattering in HH polarization by about
1.5 dB (RMSE = 2.6 dB) and over-estimates it in VV polarization by about 2.0 dB (RMSE= 2.8 dB).
At HV polarization, for kHrms < 2, the Oh 2002 model underestimates the backscattering in HV by
1.8 dB (RMSE = 2.5 dB). In addition, Oh model correctly fits the backscattering for kHrms > 2.0, with a
difference between the real and simulated data of about —0.7 dB and RMSE of 2.5 dB.

Finally, the performance of the Oh model was studied according to its validity domain by selecting
two intervals of soil moisture (mv < 29.1 and mov > 29.1 vol. %). For mv < 29.1 vol. %, the 1992 and 2002
Oh versions simulate correctly the backscattering coefficient at both HH and VV polarizations with a
difference between real and simulated data varying between —0.3 dB and —0.7 dB. In addition, the
1994 and 2004 Oh models overestimate the backscattering at both HH and VV polarizations (Table 3)
with RMSE between 2.6 dB and 2.9 dB. In conclusion, for mv < 29.1 vol. %, the 1992 Oh model provides
the best simulations. For mv > 29.1 vol. %, the 1994, 2002 and 2004 Oh models correctly simulate
the backscattering with a difference between real and simulated data between —0.8 dB and +0.5 dB,
while the 1992 Oh model underestimates the backscattering by about 1.9 dB and 1.5 dB at HH and
VV polarizations, respectively (RMSE = 3.1 dB for HH and 2.7 dB for VV). The RMSE values are
approximately the same in the Oh 1994, 2002 and 2004 versions, and range between 2.2 dB and 2.6 dB.
At HV polarization, the Oh model correctly simulates the backscattering for both range of mv-values,
with RMSE of 3.0 dB for mv < 29.1 vol. % and RMSE of 2.6 dB for mv > 29.1 vol. %.

The validity domain of Oh model according to the incidence angle (10° < 6 < 70°) covers the
entire dataset. Moreover, our results showed that the performance of the Oh model is not dependent
on the incidence angle.

In conclusion, the Oh models simulate correctly the backscattering. Results showed that Oh 1992
version is slightly better than other model versions. The performance of Oh model seems to be better
in C- and X-bands than L-band. Moreover, most versions of the Oh model correctly simulate the
backscattering in most cases although outside its mv validity domain.

ol-band 2 C-band x X-band 15
oL-band 2 C-band x X-band

-15
-30-25-20-15-10 -5 0 5 0 2 4 6 8 10 12 14
SAR (dB) k Hrms
(a) (b)

Figure 3. Cont.
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Figure 3. Comparison between backscattering coefficients derived from SAR images and those
estimated from the Oh 1992 model at HH polarization, (a) Oh model simulations vs. SAR data;
(b) difference between SAR signal and Oh model results vs. soil roughness (kHrms); (c) difference
between SAR signal and Oh model results vs. soil moisture (mv); (d) difference between SAR signal
and Oh model results vs. incidence angle.
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Figure 4. Comparison between backscattering coefficients derived from SAR images and those
estimated from the Oh 1992 model at VV polarization, (a) Oh simulations vs. SAR data; (b) difference
between SAR signal and the Oh model vs. soil roughness (kHrms); (c) difference between SAR signal
and Oh model results vs. soil moisture (mv); (d) difference between SAR signal and Oh model results

vs. incidence angle.
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Figure 5. Comparison between backscattering coefficients derived from SAR images and those
estimated from the Oh 2002 model at HV polarization, (a) Oh simulations vs. SAR data; (b) difference
between SAR signal and Oh model results vs. soil roughness (kHrms); (c) difference between SAR
signal and Oh model results vs. soil moisture (mv); (d) difference between SAR signal and Oh model
results vs. incidence angle.

4.3. Evaluation of the IEM

The IEM was tested on our dataset using both a Gaussian correlation function (GCF) and an
exponential correlation function (ECF). The evaluation of the IEM was carried out firstly using the
entire dataset, later on for each radar wavelength (L-, C- and X-bands) and finally according to the
validity domain of the IEM (Equation (10)).

Using all data, the IEM simulates the backscattering in HH polarization with an RMSE of 10.5 dB
and 5.6 dB for GCF and ECEF, respectively (Table 4). At VV polarization, the RMSE is 9.2 dB for GCF
and 6.5 dB for ECE. At HV polarization, the RMSE is higher than 30.0 dB for both GCF and ECF. Some
points show a large discrepancy between the real data and the IEM simulations performed using both
ECF and GCF (Figures 6-11). In case of the ECF (Figures 9-11), these points are mainly outside the
IEM validity domain (Equation (10)). In case of GCF (Figures 6-8), the huge error is due to the high
sensitivity of the IEM to roughness parameters (Hrms and L). Using the GCF, the IEM underestimates
the backscattering coefficients for data with low Hrms values (kHrms < 3), high L values (L > 4 cm) and
with high incidence angle (0 > 35°). Using the ECF, the sensitivity of backscattering to the roughness
parameters is much lower (Figures 9-11). Altese et al. [59], Zribi et al. [23,60], and Callens et al. [61]
showed that in agricultural areas, the ECF usually provides better agreement to real data than the GCE.

The results obtained in L-band show that the IEM simulates the backscattering in HH pol. using
both GCF and ECF with differences between real data and model simulations ranges between —0.9 dB
and +0.6 dB, with an RMSE of 3.6 dB for GCF and 2.9 dB for ECF (Table 4). At VV polarization, the IEM
overestimates the backscattering by about 2.5 dB and 1.3 dB for GCF and ECEF, respectively (RMSE of
5.0 dB for GCF and 3.5 dB for ECF). At HV polarization, the IEM simulates the backscattering using
GCF with RMSE of 14.5 dB using GCEF, and lower RMSE (6.8 dB) using ECE.
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Table 4. Comparison between real data and IEM versions (original model, IEM_B and AIEM) using
both GCF and ECF. (1) all data; (2) for different SAR wavelength; (3) according to the validity domain
of IEM. Bias = real data — model simulations.

e Inside the Outside the
Model Pol. Statistics All Data L-Band C-Band X-Band Validity Domain Validity Domain
HH Bias (dB) +0.8 —-0.9 +0.7 +1.5 +2.6 —-1.8
RMSE (dB) 10.5 3.6 11.2 10.6 12.4 6.7
. Bias (dB) +17.2 +5.2 +11.8 +46.3 +18.0 +14.1
[EMusing GCF - HV pyisg (dB) 384 145 267 740 285 50.1
vV Bias (dB) +0.4 —2.5 +0.7 +3.5 +1.2 —-0.9
RMSE (dB) 9.2 5.0 8.6 113 11.5 3.1
HH Bias (dB) +0.8 +0.6 -1.0 +4.2 -1.2 +3.8
RMSE (dB) 5.6 2.9 4.1 8.3 3.2 7.8
) Bias (dB) —15.8 +12 —19.9 0.0 —15.8 -17.1
[EMusing ECF HV  pyi6p (4B) 314 6.8 25.1 544 20.1 443
v Bias (dB) +2.2 —-1.3 +0.5 +6.7 —-0.9 +7.1
RMSE (dB) 6.5 35 49 9.4 37 9.4
HH Bias (dB) —-0.3 —-0.1 —-0.6 +0.3
RMSE (dB) 2.0 2.3 2.1 1.8
IEM_B with HV Bias (dB) -1.3
Lopt using GCF RMSE (dB) 3.1
w Bias (dB) +0.1 +0.2 0 +0.3
RMSE (dB) 19 2.3 1.9 1.8
HH Bias (dB) 2.3 -32 +2.9 +3.1
AIEM using RMSE (dB) 12.2 5.4 134 11.7
GCF W Bias (dB) 0.0 41 +05 +0.5
RMSE (dB) 10.8 5.9 11.4 11.0
I Bias (dB) —23 30 36 +02
AIEM using ECF RMSE (dB) 44 44 46 42
W Bias (dB) -1.8 —24 -23 0.7
RMSE (dB) 3.8 44 3.8 37
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Figure 6. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM at HH polarization using GCF. (a) IEM simulations vs. SAR data; (b) difference
between SAR signal and IEM vs. soil roughness (kHrms); (c) difference between SAR signal and IEM vs.
soil moisture (mv); (d) difference between SAR signal and IEM vs. incidence angle.
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According to the results observed in C-band, the IEM simulates the backscattering using GCF
with RMSE of 11.2 dB and 8.6 dB for HH and VV polarizations, respectively (Table 4). The RMSE is
lower with ECF than GCF about 4.1 dB for HH and 4.9 dB for VV polarizations. At HV polarization,
the RMSE is higher than 25.0 dB using both GCF and ECF.

The results obtained in X-band show that the IEM simulates the backscattering with higher RMSE
than L- and C-bands, the RMSE in HH pol. being about 10.6 dB for GCF and 8.3 dB for ECF. At VV
polarization, the RMSE is 11.3 dB for GCF and 9.4 dB for ECF. At HV polarization, the IEM simulates
the backscattering with high RMSE which is larger than 54.0 dB using both GCF and ECF.

The analysis of the error was also studied according to the validity domain of the IEM
(Equation (10)). Inside the validity domain, the RMSE is larger than 11.5 dB for both HH and VV
polarizations using GCEF. Better results were obtained using ECF, where the IEM correctly simulates
the backscattering at both HH and VV polarizations with differences between real and simulated
data between —1.2 dB and —0.9 dB with RMSE of 3.2 dB at HH and 3.7 dB at VV polarizations,
using data concerning the IEM validity domain. Outside the IEM validity domain, the IEM simulates
the backscattering with RMSE of 6.7 dB for HH and 3.1 dB for VV using GCF; whereas RMSE is
7.8 dB for HH and 9.4 dB for VV polarization using ECF. At HV polarizations, model simulations
show large differences from real data for both GCF and ECF for points inside or outside the validity
domain of the IEM (in this case, RMSE is larger than 20 dB). Errors observed on IEM simulations
were also studied as a function of the difference between Lopt and the measured correlation length (L).
Results show that the IEM using GCF gives poor simulations mainly when the measured correlation
length was over-estimated (L > Lopt). In this case, the IEM strongly under-estimates the SAR backscatter.
In addition, the performance of the IEM was also analyzed using ECF according to the difference
between Lopt and L. Results show the same performance of the IEM whatever the difference between
Lopt and L.
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Figure 7. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM at VV polarization using GCF. (a) IEM simulations vs. SAR data; (b) difference
between SAR signal and IEM vs. soil roughness (kHrms); (c) difference between SAR signal and IEM vs.
soil moisture (mv); (d) difference between SAR signal and IEM vs. incidence angle.
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Figure 8. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM at HV polarization using GCF. (a) IEM simulations vs. SAR data; (b) difference
between SAR signal and IEM vs. soil roughness (kHrms); (c) difference between SAR signal and IEM vs.

soil moisture (mv); (d) difference between SAR signal and IEM vs. incidence angle.
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Figure 9. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM at HH polarization using ECF. (a) IEM simulations vs. SAR data; (b) difference
between SAR signal and IEM vs. soil roughness (kHrms); (c) difference between SAR signal and IEM vs.

soil moisture (mv); (d) difference between SAR signal and IEM vs. incidence angle.
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Figure 10. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM at VV polarization using ECF. (a) IEM simulations vs. SAR data; (b) difference
between SAR signal and IEM vs. soil roughness (kHrms); (c) difference between SAR signal and IEM vs.
soil moisture (mv); (d) difference between SAR signal and IEM vs. incidence angle.
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Figure 11. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM at HV polarization using ECF. (a) IEM simulations vs. SAR data; (b) difference
between SAR signal and IEM vs. soil roughness (kHrms); (c) difference between SAR signal and IEM vs.
soil moisture (mv); (d) difference between SAR signal and IEM vs. incidence angle.
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As a conclusion, we could say that the IEM better simulates the backscattering in L-band than in
C- and X-bands. Moreover, the results show a better fitting with real data using ECF instead than GCF,
which agrees with the validity domain of the IEM.

4.4. Evaluation of IEM Modified by Baghdadi (IEM_B)

The IEM_B was also tested on our dataset. This model version was run using GCF (Figures 12-14).
In comparison to the original IEM, results show that the RMSE was significantly lower. Using the
entire dataset, the IEM_B correctly simulates the backscattering at both HH and VV polarizations
showing low differences between real data and model simulations (—0.3 dB for HH and +0.1 dB for
VV) with approximately similar RMSE of about 2.0 dB (Table 4). Moreover, the evaluation of the
IEM_B was tested separately for each SAR band. Results show that the IEM_B correctly simulates the
backscattering in comparison to the original model for all bands and in both HH and VV polarizations
with a difference between real data and model simulations lower than 1.0 dB and with approximately
similar RMSE between 1.8 and 2.3 dB (Table 4). At HV polarization, the IEM_B slightly over-estimates
the backscattering by about 1.3 dB with RMSE of 3.1 dB, (the IEM_B was run only at C-band). Moreover,
results show that the IEM_B simulations in both HH and VV pol,, are slightly better in X- and C-bands
than in L-band. The analysis of the difference between IEM_B simulations and SAR data versus the
difference between Lopt and the measured correlation length (L) shows that IEM_B simulates well SAR
data whatever the value of the difference between Lopt and L.
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Figure 12. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM_B at HH polarization using GCF. (a) IEM_B simulations vs. SAR data; (b) difference
between SAR signal and IEM_B vs. soil roughness (kHrms); (c) difference between SAR signal and
IEM_B vs. soil moisture (mv); (d) difference between SAR signal and IEM_B vs. incidence angle.
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Figure 13. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM_B at VV polarization using GCF. (a) IEM_B simulations vs. SAR data; (b) difference
between SAR signal and IEM_B vs. soil roughness (kHrms); (c) difference between SAR signal and
IEM_B vs. soil moisture (mv); (d) difference between SAR signal and IEM_B vs. incidence angle.
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Figure 14. Comparison between backscattering coefficients derived from SAR images and those
estimated from IEM_B in C-band at HV polarization using GCF. (a) IEM_B simulations vs. SAR data;
(b) difference between SAR signal and IEM_B vs. soil roughness (kHrms); (c) difference between
SAR signal and IEM_B vs. soil moisture (mv); (d) difference between SAR signal and IEM_B vs.

incidence angle.
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4.5. Evaluation of the Advanced Integral Equation Model (AIEM)

The AIEM was tested on our dataset at HH and VV polarizations using both GCF and ECF. For all
data, the AIEM simulates the backscattering at HH and VV polarizations using GCF with RMSE larger
than 10 dB (Table 4, Figures 15 and 16). Moreover, results show better agreements of the AIEM with
real data using ECF (Figures 17 and 18). Indeed, the AIEM tends to overestimates the backscattering
by about 2.3 dB at HH and 1.8 dB at VV (RMSE is 4.4 dB for HH and 3.8 dB for VV). Using the
ECF, Figures 17 and 18 show high overestimations of the backscattering for low values of surface
roughness (kHrms < 4) and for incidence angles higher than 35°. Moreover, Figures 17 and 18 show
high underestimation of the radar signal (using ECF) in both HH and VV polarizations for points with
high surface roughness (kHrms > 6), low mov-values (mv < 5 vol. %, and with low incidence angles
(6 <20°). Figures 15 and 16 show that some points show high discrepancies between the real data and
the AIEM simulations using GCF. Due to the high sensitivity to surface roughness of the AIEM using
GCE, these points correspond mainly to surface with kHrms <3, L >4 cm and 6 > 35°.

The performance of the AIEM was also evaluated for each SAR wavelength. Results show that
in L-band the AIEM simulates the backscattering with RMSE of about 5.0 dB at both HH and VV
polarizations using the GCF. In C and X-bands, the AIEM using GCF simulates the backscattering
with RMSE higher than in L-band (RMSE > 11 dB). Moreover, AIEM better simulates better the
backscattering in using GCF than ECF for all wavelength (RMSE about 4 dB).

In conclusions, the AIEM is able to better simulate better the backscattering than the original IEM
only using the ECF with better results in X-band than in C- and L-bands.
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Figure 15. Comparison between backscattering coefficients derived from SAR images and those
estimated from AIEM at HH polarization using GCF. (a) AIEM simulations vs. SAR data; (b) difference
between SAR signal and AIEM vs. soil roughness (kHrms); (c) difference between SAR signal and
AIEM vs. soil moisture (mv); (d) difference between SAR signal and AIEM vs. incidence angle.



Water 2017, 9, 38

ol-band & C-band xX-band
20
-20
o -6
[) >
S A
2100
< A
-140
-140 -100 -60 -20 20
SAR (dB)
(a)
120 - o L-band s C-band  x X-band
100
80
- A
)
A
2
w
<<
o
<
@

0 5 10 15 20 25 30 35 40 45 50

Soil moisture (vol. %)

()

120

O\OGH
g 8 8

20

SAR - AIEM (dB)
F=Y
o

)
© o

SAR - AIEM (dB)
N B
o O

)
o o

o L-baAnd a C-band x X-band

nE x
m‘: a8 ®
xA8 pa
R g
0 2 4 6 8
k Hrms
(b)

Incidence angle (°)

(d)

22 of 27

10

15 20 25 30 35 40 45 50 55 60

Figure 16. Comparison between backscattering coefficients derived from SAR images and those
estimated from AIEM at VV polarization using GCF. (a) AIEM simulations vs. SAR data; (b) difference
between SAR signal and AIEM vs. soil roughness (kHrms); (c) difference between SAR signal and
AIEM vs. soil moisture (mv); (d) difference between SAR signal and AIEM vs. incidence angle.
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Figure 17. Comparison between backscattering coefficients derived from SAR images and those
estimated from AIEM at HH polarization using ECFE. (a) AIEM simulations vs. SAR data; (b) difference
between SAR signal and AIEM vs. soil roughness (kHrms); (c) difference between SAR signal and
AIEM vs. soil moisture (mv); (d) difference between SAR signal and AIEM vs. incidence angle.
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Figure 18. Comparison between radar backscattering coefficients calculated from SAR images and those
estimated from AIEM for VV polarization using ECFE. (a) AIEM simulations vs. SAR data; (b) difference
between SAR signal and AIEM vs. soil roughness (kHrms); (c) difference between SAR signal and
AIEM vs. soil moisture (mv); (d) difference between SAR signal and AIEM vs. incidence angle.

5. Conclusions

Physical IEM, IEM_B and AIEM) and semi-empirical (Oh and Dubois) backscattering models
were tested using a wide dataset composed by large intervals of surface conditions (mv between
2 vol. % and 47 vol. %, Hrms between 0.2 cm and 9.6 cm and kHrms from 0.2 and 13.4), the dataset
was acquired over bare soils in various agricultural study sites (France, Italy, Germany, Belgium,
Luxembourg, Canada and Tunisia) characterized by large variety of climatological conditions and
using SAR sensors in L-, C- and X-bands with incidence angle between 18° and 57°.

Results show that the IEM modified by Baghdadi (IEM_B used the empirical correlation length
instead of measured correlation length) provides the most accurate SAR simulations (bias lower than
1.0 dB and RMSE lower than 2.0 dB) with slightly better performance in X-band (RMSE = 1.8 dB) than
in L- and C-bands (RMSE between 1.9 and 2.3 dB). At HV polarization, the IEM_B was only run at
C-band. Results show that the RMSE strongly decreases from values higher than 25.1 dB, using the
original IEM, to 3.1 dB, using IEM_B. In contrast, high RMSE were found using both IEM and AIEM
using Gaussian correlation function (RMSE higher than 9.2 dB) for both HH and VV polarizations
because of the high sensitivity of the Gaussian correlation function to roughness parameters, mainly
for kHrms < 3 and L > 4 cm. Moreover, results show better simulations of measured backscattering
coefficients for both IEM and AIEM using exponential correlation function (RMSE > 5.6 dB for [IEM
and RMSE > 3.8 dB for AIEM) at HH and VV polarizations. At HV polarization, IEM results show
very high errors (RMSE larger than 30.0 dB using both Gaussian correlation function and exponential
correlation function). The AIEM better simulates the backscattering than the original IEM only using
the exponential correlation function with slightly better results in X-band than in C- and L-bands.
In contrast, the IEM simulates better the backscattering in L- band than C- and X-bands (Table 4).
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Using the empirical models, all the Oh model versions show good agreements (RMSE < 3.0 dB)
with measured backscattering with slightly better performance of the Oh 1992 version (bias less than
1.0 dB and RMSE less than 2.6 dB) at both HH and VV polarizations. The Oh model provides better
results than Dubois model which simulates the backscattering in HH with RMSE of 4.0 dB, and slightly
better simulations for VV with RMSE of 2.9 dB. At HV polarization, the Oh 2002 version correctly
simulates the backscattering with difference between real and simulated data of about +0.7 dB and
RMSE of 2.9 dB. The performance of the Oh 1992 version in HH and VV polarizations is better in
C- and X-bands (bias between —1.2 and +0.4 dB with RMSE < 2.5 dB) than in L-band (bias > +2.0 with
RMSE > 3.0 dB).

It should be mentioned that the use of different in situ sampling methods and SAR acquisition
techniques may also contribute to the modelling errors. Indeed, the datasets comprises both airborne
and space-borne acquisitions, which may cause scaling effects. In addition, in situ data have been
collected using different techniques, both regarding soil moisture (gravimetric and TDR, sometimes
at different sampling depths) and roughness (different profile length and sampling intervals, and
post-processing methods).

This study evaluated the robustness of the most used backscattering models by means of statistical
indices (Bias and RMSE). These statistical indices should guide in choosing the appropriate model for
backscattering coefficients simulation. As it has been shown in the present study, the IEM modified
by Baghdadi (IEM_B) was the most accurate model among the others. Thus, it is preferred to use
the IEM_B in the inversion procedure of SAR backscattering coefficient in order to more accurately
estimate soil moisture and roughness parameters.
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