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Abstract 

During the past two decades, extracellular vesicles (EVs) have been identified as important 

mediators of intercellular communication, enabling the functional transfer of bioactive molecules 

from one cell to another. Consequently, it is becoming increasingly clear that these vesicles are 

involved in many (patho)physiological processes, providing opportunities for therapeutic 

applications. Moreover, it is known that the molecular composition of EVs reflects the 

physiological status of the producing cell and tissue, rationalizing their exploitation as biomarkers 

in various diseases. In this review the composition, biogenesis and diversity of EVs is discussed in 

a therapeutic and diagnostic context. We describe emerging therapeutic applications, including the 

use of EVs as drug delivery vehicles and as cell-free vaccines, and reflect on future challenges for 

clinical translation. Finally, we discuss the use of EVs as a biomarker source and highlight recent 

studies and clinical successes. 
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1. Introduction 

1.1. A brief historical overview of EVs 

In addition to single molecules (i.e. small molecules, peptides and proteins), macromolecular 

complexes (e.g. Argonaute2 (AGO2)-RNA complex) and lipoproteins, cells also release 

membrane-enclosed vesicles in the extracellular medium. The first reports on such extracellular 

vesicles (EVs) date back to the late 1960s when it was observed that platelet free plasma contains 

vesicular material that could be pelleted down by ultracentrifugation (UC). These vesicles were 

mainly composed of phospholipids and appeared to promote blood clothing [1] and cartilage 

calcification [2]. In the decades that followed, using electron microscopy imaging, vesicular 

structures could be visualized in calf serum [3] and the first observations were made on tumor cell-

derived membrane vesicles [4]. Initially it was assumed that the observed vesicles were solely 

released by outward budding of the cell membrane. Several years later, Johnstone and colleagues 

reported on the formation of intraluminal vesicles (ILVs) in late endosomes by inward budding of 

the endosomal limiting membrane. Following fusion of these so-called multivesicular bodies 

(MVBs) with the cell’s plasma membrane, the ILVs are released in the surrounding fluid [5, 6]. 

This discovery was made based on the observation that reticulocytes release their transferrin 

receptor, as part of the maturation into erythrocytes, associated to vesicles. As this mechanism was 

also observed in other species and appeared to be selective for certain membrane-associated 

proteins [7], these EV were initially presented as a conserved and regulated waste removal pathway 

[8]. A seminal paper by Raposo et al. in 1996, reporting on the immune-modulating activity of B 

cell-derived EVs, inspired many others to evaluate the biological implications of these vesicles [9]. 

Two years later, Zitvogel et al. used EVs derived from tumor peptide-pulsed dendritic cells (DCs) 

as a cell-free anti-cancer vaccine providing the first therapeutic application of EVs [10]. Among 

others, these reports introduced the notion that EVs cannot solely be considered as a waste disposal 
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mechanism but also as important mediators of intercellular communication. Owing to the work of 

many, it was becoming increasingly clear that EVs likely play a fundamental role in many 

(patho)physiological processes. Besides deciphering the biological function of EVs, their potential 

as biomarker source [11, 12] was recognized and the first clinical trials using EVs as an anti-cancer 

vaccine were initiated [13]. In addition, around a decade ago different groups identified the 

presence of miRNA, mRNA and proteins in EVs and, more importantly, the ability to functionally 

shuttle their cargo into recipient cells, reinforcing the belief that EVs facilitate communication 

between cells [14, 15] and fuelling the idea of exploiting these vesicles for drug delivery 

applications. 

1.2. Biogenesis, cargo loading and composition  

Generally, EVs are categorized in three subtypes (i.e. exosomes, ectosomes and apoptotic bodies), 

based on distinct biogenesis pathways [16]. Apoptotic bodies are formed when a cell is dying via 

apoptosis, leading to blebbing and finally disintegration of the cell plasma membrane with 

partitioning of the cellular content in different membrane-enclosed vesicles. Hence, apoptotic 

bodies typically are larger particles (~0.5 - 4 µm) containing cytoplasmic organelles and 

fragmented nuclei [17]. Although some studies have reported a communication and biological 

function for these vesicles [18, 19], most research in this field discusses the smaller sized exosomes 

and ectosomes. Hence, apoptotic bodies are not considered when referring to EVs throughout this 

review. Exosomes (50 – 150 nm) and ectosomes (50 – 1000 nm) do not only show a partly 

overlapping size distribution but also their biogenesis pathways are very similar (figure 1A). In 

both cases their formation is preceded by the assembly of membrane micro-domains composed of 

specific lipids (with an important role for ceramide) [20] and proteins followed by budding and 

subsequent fission or pinching off. The main difference between both formation pathways is the 
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location of the initial budding process. Indeed, ectosomes (also termed shedding vesicles or 

microvesicles) are released directly from the cell’s plasma membrane. On the other hand, exosomes 

originate from the inward budding of early and late endosomes hence forming MVBs containing 

ILVs [21, 22]. Subsequently, the MVBs are transported to and fuse with the plasma membrane, 

requiring a dynamic interplay between members of the Rab and SNARE protein family, 

concurrently releasing the ILVs in the extracellular space [23-27]. Partly because both biogenesis 

pathway are analogous, to date there is no defined panel of markers to distinguish between both 

vesicle subtypes in a vesicular isolate. Nonetheless, a panel of generic markers (e.g. CD9, CD81, 

CD63, TSG101, etc.) was defined by the International Society of Extracellular Vesicles (ISEV) to 

indicate the presence of EVs in a sample [28].  

Figure 1. Schematic representation of EV biogenesis and architecture. [A] The 
biogenesis pathways of exosomes and ectosomes or shedding vesicles. Exosomes 
are formed by inward budding of the limiting membrane of early or late endosomes 
(LE) forming multivesicular bodies (MVBs) containing so-called intra-luminal 
vesicles (ILVs). Upon fusion of the MVBs with the cell membrane, the ILVs are 
released as exosomes in the extracellular medium. In contrast, ectosomes are 
released by direct budding from the plasma membrane. [B] The molecular 
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architecture of extracellular vesicles with some key general and cell-type specific 
molecular components. General: Tetraspanins (e.g. CD63, CD81), Alix, Heat shock 
proteins (e.g. Hsp70), major histocompatibility complex (MHC)-I, structural 
proteins (e.g. actin) , nucleic acids (e.g. miRNA, mRNA), integrins (type of integrin 
can be cell-type specific), lysobisphosphatidic acid (LBPA), cholesterol, 
ganglioside GM3 [29, 30]. Cell type specific: MHC-II, CD80, CD86 and 
complement shielding proteins CD55/59 (in DC) [31], tumor-associated antigens 
(TAA; e.g. GP100 in melanoma cells) [32], perforin (in natural killer T cells) [33]. 

 

Numerous papers report that the relative molecular composition of EVs differs distinctly from the 

producer cell. Lipidomic analysis showed an accumulation of cholesterol, sphingomyelin, 

glycerophospholipids and phosphatidylserine (PS) in EVs [34]. Certain membrane-associated 

proteins, for example many tetraspanins (e.g. CD9, CD81), appear enriched on the EV surface [35]. 

Finally, an array of reports show that specific mRNAs, miRNAs and other non-coding RNAs (e.g. 

t-RNA, Y-RNA, vault RNA, etc.) are enriched or underrepresented in EVs compared to their 

respective parent cells [36-41]. Based on these observations it is generally accepted that the 

composition of EVs is, at least partially, actively regulated by the parent cell [42], albeit that the 

mechanisms and associated key players regulating this cargo sorting remain largely elusive to date 

[38, 43-46].  

The overall EV configuration (i.e. a lipoprotein shell encapsulating an aqueous core containing 

soluble proteins and nucleic acids) and part of the molecular composition (i.e. proteins and lipids 

required in the EV biogenesis) are common among EVs isolated from different cells [29]. However, 

some EV-associated molecules are unique for the producing cell type (figure 1B). For example, 

MHC II is found on EVs secreted by antigen presenting cells (APC) [35, 47]. As another example, 

CD2, CD8 and CD56 were found in EVs derived from natural killer (NK) cells and not in EVs 

derived from platelets where the opposite holds true for CD41b, CD42a and CD61 [48].  
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Furthermore, it appears that the culture conditions not only influence the cellular phenotype but 

also the number and/or composition of the secreted EVs. For instance, hypoxia triggers cancer cells 

to release more CD63-positive vesicles [49] with a modified molecular composition and distinct 

effect on recipient cells [50]. Comparable observations were made for an altered extracellular pH 

[51] and the presence of stress-inducing molecules (e.g. lipopolysaccharide, H2O2, etc.) in general 

[52]. Besides the cellular microenvironment also the status of the cell influences the EV 

composition and downstream activity. Where mature DCs release pro-inflammatory EVs enriched 

in MHC II and ICAM-1 [53], EVs derived from DCs cultured in the presence of IL10, an anti-

inflammatory cytokine, suppress the onset of inflammation in a mouse arthritis model [54]. The 

fact that phenotypic alterations in the parent cells are mirrored by the composition of the secreted 

EVs can be exploited for diagnostic purposes (section 3.2.). 

The influence of the surrounding medium on the EV composition may have relevant clinical 

implications. For instance, Li et al. compared EVs derived from N2A neuroblastoma cells cultured 

both in serum containing cell medium or under starvation conditions, showing marked alterations 

in the protein composition [55]. Besides the changes in the composition of the EV itself, the 

presence or absence of serum proteins will likely also influence the protein corona surrounding the 

EVs . It is well documented that this corona strongly influences the extra- and intracellular 

(transfection) behavior of synthetic nanoparticles, including liposomes [56, 57]. Given the analogy 

between EVs and liposomes [58] it is conceivable that a protein corona will also impact the EV 

interactome and hence biological function. However, to date the influence of these parameters on 

the EV functionality has not been thoroughly investigated. 

1.3. EV heterogeneity 
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Evidence is mounting that within the exosome and ectosome population many distinct vesicle 

subtypes exist. When a specific exosome release pathway (i.e. via Rab27a inhibition) was silenced, 

the secretion of only a specific set of exosome-related molecules (i.e. CD63, Tsg101, Alix and 

Hsc70) decreased whereas others (CD9 and Mfge8) were not affected [59]. This could indicate that 

different exosome subtypes exist originating from different biogenesis pathways. Additionally, 

Van Niel et al. showed a clear discrepancy in protein profile between EVs released from the apical 

or basolateral side of polarized epithelial cells [60]. Another report showed that vesicles isolated 

from conditioned cell medium and plasma by UC could be divided in two distinct populations by 

bottom-up density gradient UC. Both populations showed a different protein and nucleic acid 

composition, which correlated with a distinct biological effect on recipient cells [61]. To address 

this heterogeneity in more detail, more sensitive techniques have to be developed allowing single 

vesicle analysis. In this respect, a recent study by Smith and coworkers used Raman 

microspectroscopy to obtain a Raman spectrum, which can be regarded as a molecular fingerprint, 

on the single vesicle level. Following principal component analysis of the obtained spectra, these 

authors concluded that at least four types of vesicles with a clearly distinct molecular composition 

are released [62]. Conceivably, this is still an underestimation of the factual heterogeneity among 

EVs. Yet to date it is impossible to physically separate these specific EV subtypes as reliable 

markers are lacking. This implies that the composition of and functions attributed to EVs are likely 

the combined effect of multiple subtypes of vesicles. This notion further complicates the adoption 

of EVs in a pharmaceutical context as it is well possible that only a specific subfraction of vesicles 

induces a desired effect while others might entail off-target or even opposing effects. 

1.4. EV purification protocols and stability 
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EVs represent only a fraction of the cell’s secretome. Parallel to the growing research interest in 

EVs, different methods to isolate and purify EVs from conditioned cell medium or biological fluids 

have been developed. The most common approaches are listed in table 1 and discussed further 

with a focus on their applicability in a pharmaceutical context. The predominant technique in the 

literature is based on differential centrifugation followed by UC, which is based on a difference in 

size and density between EVs and other components present in the respective medium [63]. It is 

important to note that many potential contaminants are co-purified using UC (e.g. lipoprotein 

particles, protein(-RNA) aggregates, etc.) [64, 65]  and that the yield is relatively low (i.e. 10 – 

20%) and dependent on the medium viscosity [66, 67]. Additionally, the impact of the high shear 

forces on the vesicle integrity are under debate. While some studies indicate no changes in the 

integrity of the EVs after UC [68, 69] others show subtle EV aggregation influencing the EV 

biodistribution [70, 71]. 

To increase both the vesicle yield as well as purity of the isolate,  density gradient UC (iodixanol 

or sucrose) can be used [64, 72]. To underscore the superior separation resolution, it was shown 

that viral particles could be physically separated from EVs by using an iodixanol-based density 

gradient [73]. The major disadvantages of this technique are the long processing time, making this 

technology difficult to implement in a clinical setting [74], as well as the lack of knowledge 

regarding the effect of the density gradient media on the EV’s functionality and the potential 

interference of gradient residuals with downstream processing [28].  

Another method that was originally developed to concentrate viral particles [75], employs 

hydrophilic polymers (e.g. poly(ethylene glycol); PEG) and (high) salt concentrations to precipitate 

EVs. Although this method provides a high yield, which makes it interesting for small amounts of 

starting material or as a preparative concentrating step, it lacks specificity as many contaminants 
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(e.g. protein aggregates) are co-isolated [64]. Hence, interpreting downstream analysis of 

precipitated EV isolates, should be done with caution. Additionally, the PEG polymer is also 

present in the final isolate potentially shielding the EV surface and interfering with their 

functionality or downstream analysis [76].  

Affinity-based capture of EVs has the potential to yield subpopulations with high purity. The most 

well-known affinity-based approach exploits protein recognition on the EV surface via antibodies 

(e.g. associated to beads, a polymer surface in a chip or a chromatography column) [77, 78].  Of 

note, this method requires knowledge of specific EV markers, which despite many years of research 

[79] are still difficult to identify. To circumvent the lack of specific markers, a more general 

approach was recently presented in which antibodies are substituted by heparin as it appears to 

have a general affinity for EVs. However, the cross-reactivity with other components present in 

the respective media is a possible concern [80]. Overall, affinity-based capture of EVs might be 

very useful in an on-chip diagnostic set-up using small sample sizes [81, 82]. Yet from a therapeutic 

point of view, when contemplating to use EVs as medicinal products, larger volumes will have to 

be processed, thus augmenting manufacturing costs. Additionally, non-destructive methods to elute 

the EVs from the capturing agents need to be co-developed. 

Finally, several separation methods are being developed for EVs that exploit differences in size, 

including size-exclusion chromatography (SEC) and filtration [83]. SEC enables fast sample 

processing with high yield making it applicable in a clinical setting [70, 84]. However, sample 

dilution is inherent to the technique as well as co-purification of (a low percentage of) lipoproteins, 

which might limit the applicability of this technique in a diagnostic context [74, 83]. The main 

advantage of SEC is the mild conditions and hence retained EV functionality [85, 86]. On the other 

hand, sequential filtration steps can eliminate smaller and larger contaminants to concentrate EVs. 
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Yet a major disadvantage compared to SEC are the often high forces used (via air pressure or 

centrifugal forces) possibly compromising EV integrity. Moreover, sticking of EVs to the 

membrane filters might limit the yield [84]. In most cases filtration is used as a preparative step 

prior to one of the above mentioned techniques.  

Combining different purification methods based on complementary principles will be imperative 

to process very complex samples (e.g. plasma). The sequential combination of techniques is already 

commercially available, e.g. with the exo-spinTM system (CELL guidance systems). This approach 

merges an initial concentrating step using the precipitation method with subsequent SEC to 

enhance the sample purity. It is of note that the diversity of purification techniques used throughout 

the literature hampers unambiguous comparison of different studies. This is most pronounced in 

the field of biomarker discovery as it is clearly shown that different isolation methods might greatly 

alter the obtained RNA/protein profiles [64]. However, recently the amount of commercially 

available purification kits (e.g. ExoEasy Maxi kit, Qiagen; ExoPureTM Immunobeads, Biovision; 

qEV, Izon Science), based on different technologies, is increasing which is beneficial for the 

reproducibility and ability to compare between studies using the same kits. Retained vesicle 

integrity and functionality is of pivotal importance in a therapeutic context. In this regard, a direct 

comparison between different purification strategies evaluating the therapeutic functionality of the 

obtained vesicle isolates would provide valuable information for pharmaceutical applications.  

2. Therapeutic applications of EVs 

2.1. Harnessing the intrinsic biological effect of EVs 

As discussed above, EVs are composed of numerous potentially bioactive molecules (i.e. lipids, 

proteins, nucleic acids and carbohydrates) of which the relative composition is regulated by the 

producer cell. In this respect, it is no surprise that EVs have an intrinsic biological effect that 
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modulates the recipient cell’s phenotype, which can be exploited in a therapeutic context [87]. 

These phenotypical alterations can be elicited by a receptor-ligand interaction at the cellular surface 

[88, 89] or at the luminal side of the (late) endosomes, thus triggering a downstream signaling 

pathway [90]. Alternatively, it is believed that EVs can fuse with cellular membranes (plasma 

membrane and/or endosomal membrane) and release their content in the cytoplasm [91] (figure 2). 

 

Figure 2. Mechanisms behind EV-mediated phenotypical changes in recipient 
cells. (a) The EV surface proteins/lipids can interact with receptors on the recipient 
cell’s surface triggering an intracellular signaling pathway. Alternatively, (b) the 
EV cargo (e.g. proteins and nucleic acids) can be released in the cell’s cytoplasm 
via membrane fusion with the limiting cell membrane or (c) with the endosomal 
membrane after initial internalization via phagocytosis/endocytosis. Finally, it is 
also possible that the (d) EVs release their content (after partial degradation) in the 
endolysosomes where it can trigger endosomal receptors (e.g. toll-like receptors). 

As mentioned earlier, Raposo et al. showed that EVs derived from activated APCs could stimulate 

the immune system by presenting functional antigen-MHC complexes to T cells [9]. This 

observation was followed by many pre-clinical and clinical studies using antigen pulsed, DC-

derived EVs as a cell-free alternative for cancer vaccination (section 2.3.) [92]. 
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Another example of the use of EVs as a cell surrogate therapy are mesenchymal stem cell (MSC)-

derived vesicles. MSCs are stromal cells with multipotent differentiation capacity and have been 

intensively investigated for their potential regenerative and immunosuppressive effects in many 

animal models and clinical trials. Although originally believed to be the result of MSC homing to 

and engraftment at injured tissues, it is now becoming increasingly clear that the biological effect 

of these cells is mainly attributed to their secretome, including EVs [93, 94]. In this respect, MSC-

derived EVs have been studied in dedicated mouse models for their tissue-protective effects 

following acute kidney failure [93], myocardial infarct [95], liver injury [96] and neural injury after 

middle cerebrate artery occlusion [97]. Considering their immunosuppressive nature, MSC EVs 

are under investigation for a multitude of inflammatory conditions. For instance, in the field of 

auto-immune diseases, EVs shed by MSCs have shown to limit the pro-inflammatory response and 

induce a shift towards a beneficial regulatory T cell profile in type I diabetes [98] which is currently 

being investigated in a clinical setting (NCT02138331). As another example, MSC EVs are also 

successfully investigated in refractory graft-versus-host disease [99]. The exact mechanism behind 

the therapeutic effect of MSC-derived EVs remains largely obscure and is a topic of intensive 

investigation [100]. It is however known that stem cell EVs are enriched in signaling proteins, 

including cytokines, chemokines, interleukins and growth factors [101]. The use of EVs as a 

surrogate for cell-based therapies is intensively studied as it might entail some benefits. EVs are 

more resistant to freeze-thaw processes, are genetically stable making them a safer alternative to 

whole cells and they are likely less immunogenic allowing allogeneic therapy. Multiple 

comprehensive reviews have been published giving a more detailed overview of reported data on 

this topic [102, 103].  
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Next to their exploitation as surrogates for cell therapy, EVs from specific cell types have shown 

interesting features that can be exploited in a therapeutic context. For example, NK-cell derived 

EVs were shown to contain killer proteins (e.g. perforins), which are taken up by tumor cells and 

induce tumor cell death [33]. Adipose-derived stem cells (ADSCs) release EVs containing 

neprilysin (i.e. an A-degrading enzyme), which lowered the A-level secreted by N2A cells and 

thus might be a valuable therapy to investigate further in Alzheimer’s disease [104].  

It is of note that these reports have to be interpreted with careful consideration of the EV 

purification protocol used. Dependent on the selected method, non-EV contaminants can be co-

isolated, possibly leading to observations being incorrectly attributed to EVs. Moreover, many 

reports focus on a specific component of EVs, e.g. small non-coding RNA such as miRNAs, often 

neglecting the true complexity of the EV composition in which lipids and proteins likely also play 

a key role [105]. As a result of this complexity, EVs can simultaneously interfere with different 

signaling pathways, leading to pleiotropic effects. For example, it was observed that EVs derived 

from immortalized cardiomyocytes (HL-1 cells) significantly altered the expression of 161 genes 

in fibroblasts (NIH/3T3 cells) after co-culture [106]. This complexity implies that the observed 

effects are likely very difficult to mimic by synthetic, single-API drug therapies. On the other hand, 

care should be taken that this intrinsic complexity does not impede the translatability of EVs into 

a viable pharmaceutical product [107]. 

2.2. Harnessing EVs as a drug delivery vehicle 

2.2.1. Beneficial features of EVs as nanocarriers 

As outlined above, EVs are involved in communication between cells owing to their ability to 

deliver biomolecules from one cell type to another, thereby crossing both extra- and intracellular 
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barriers. Based on this particular feature, EVs are also envisioned as biological nanocarriers for the 

delivery of exogenous therapeutic (macro)molecules. The encapsulation of drugs in nanoparticles 

(creating so-called nanomedicines) is a well-established approach to (1) modify the 

pharmacokinetics (PK) and biodistribution of the therapeutic cargo, (2) solubilize hydrophobic 

drugs, (3) protect the drug from the extracellular environment and (4) guide the therapeutic cargo 

across existing extra- and intracellular barriers. Both low molecular weight chemotherapeutics, but 

especially membrane-impermeable macromolecular drugs (e.g. nucleic acids and proteins) require 

nanocarriers to enhance their delivery across biological membranes. Unfortunately, many synthetic 

nanoparticles (including lipid- and polymer-based nanoparticles) demonstrate insufficient in vivo 

targeting to extrahepatic tissues and fail to merge (intracellular) drug delivery efficacy with 

biocompatibility [108]. Since the identification of EVs as nature’s own intercellular 

communication tools, it is hypothesized that their Darwinian optimization could outperform 

conventional synthetic nanomedicines [109]. Indeed, EVs are believed to encompass many 

interesting features for drug delivery: (1) a proteo-lipid architecture that protects the encapsulated 

cargo, (2) their nanosize and specific composition minimizes recognition by the mononuclear 

phagocyte system (MPS) [110], (3) their patient self-derived nature mitigates activation of the 

adaptive immune system, (4) they contain specific lipids that help stabilize the vesicles in the blood 

circulation (e.g. GM3, sphingomyelin and cholesterol) and stimulate membrane fusion [51, 111] 

as well as surface proteins that have likewise been linked to membrane fusion in cell-cell and virus-

cell interactions (e.g. CD9, CD81) [112, 113] and finally (5) EVs seem to possess intrinsic cell and 

tissue targeting properties [114]. 

2.2.2. Extracellular behavior of EVs 
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One of the main motivations to incorporate drugs into nanocarriers is to modulate their 

biodistribution and tissue targeting. Free drugs are often rapidly cleared from the body and show 

poor tissue selectivity, which can in part be remedied by their formulation into nanomedicines. 

Unfortunately, without appropriate surface modification (e.g. PEGylation), they are easily 

recognized by the MPS and rapidly cleared from the blood circulation, leading to predominant 

sequestration by liver and spleen and limiting extravasation in other tissues of interest. As EVs are 

abundantly present and stable in the blood circulation, it was speculated that EVs could have longer 

circulation times and mediate drug targeting to extrahepatic and non-lymphoid tissues. However, 

reports studying the PK of IV injected EVs described short half-lives  (~2 minutes [115, 116] and 

~20 minutes [117]) with predominant uptake by liver, lung, kidney and spleen, thus closely 

resembling the biodistribution of synthetic liposomes [70, 118, 119]. The elimination after IV 

injection occurs via hepatic and renal routes [117] in which MPS-associated macrophages seem to 

play a key role [118]. It is conceivable that this recognition is in part mediated by the exposure of 

PS at the external side of EV (subtypes) [120, 121]. It is of note that in these studies tumor- or HEK 

293T-derived EVs have been used. For immature DC-derived EVs it was reported that they carry 

surface proteins (i.e. CD55 and CD59) inhibiting complement-mediated clearance [122]. 

Additionally, Whitehead et al. showed that EVs derived from malignant cells were far more prone 

to complement activation compared to non-malignant cells, which might help to explain some of 

the reported PK data [123]. Furthermore, also the selected purification protocol or the transfer of 

allogeneic EVs can potentially influence the EV’s PK profile [70]. 

Despite the intrinsic targeting to APCs and limited circulation time often reported for EVs, it 

appears that a certain fraction is still able to home to alternative organs and tissues. For instance, it 

was shown by Hoshino et al. that the integrins present on the surface of tumor-derived EVs 
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determined the organs/cell types that are preferentially targeted [114]. Such observations 

rationalize the engineering of EVs with specific targeting moieties to enhance tissue or cell specific 

homing. One of the first engineered EVs was reported by Alvarez-Erviti et al. who equipped EVs 

from immature DCs with a Lamp2b-RVG targeting peptide, via genetic engineering of the producer 

cell with the respective plasmid construct, to enable delivery of siRNA across the blood brain 

barrier (BBB) [124]. The same targeting ligand was also used to shuttle liposomes over the BBB 

for the delivery of siRNA [125]. The BBB targeting enhancement was later quantified by 

Wiklander et al. to be around two-fold [119]. Nonetheless, the majority of the vesicles was still 

present in MPS-associated tissues (i.e. liver, spleen and lung) [119]. The fact that targeting ligands 

are providing modest benefits is likely the result of the short circulation time. On the other hand, 

the partial degradation of the RVG targeting peptide during EV formation might also contribute to 

this observation. Indeed, Hung et al. showed that when fusing a targeting peptide to the Lamp2b 

protein (a protein inherently present on the EV surface) it should be equipped with a glycosylation 

site to protect it against protease degradation by the producing cell. The unprotected Lamp2b-RVG 

targeting construct showed only marginally improved internalization by N2A cells bearing the 

nicotinic acetylcholine receptor compared to non-targeted EVs due to peptide degradation [126]. 

In analogy with reports on synthetic liposomes, efforts to simultaneously enhance the circulation 

time and confer specific targeting properties have also been explored for EVs. For instance, 

hydrophilic PEG chains were inserted in the EV lipid bilayer carrying targeting nanobodies at their 

distal end to both shield the EV surface from off-target interactions (leading to a prolonged 

circulation time) yet allow specific interactions with a targeted receptor [127, 128]. However, such 

approaches greatly alter the composition and behavior of EVs, both in the extracellular 

environment as well as following intracellular uptake, and the question is raised to what extent 

these approaches are advantageous over synthetic drug-loaded nanocarriers.  
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The ability to cross the BBB is an interesting and often referred to feature attributed to EVs. 

Although the RVG-targeting ligand associated to the EV surface in the previously mentioned 

studies likely plays a potentiating role [124], EVs derived from unmodified hematopoietic cells 

were also shown to cross the BBB. This event was reported to be rare, yet occurs more frequently 

under peripheral inflammatory conditions [129]. The mechanism behind this process remains to be 

elucidated. One hypothesis is based on transcytosis in which EVs are taken up by (apical) 

endocytosis by endothelial cells and are again released at the basolateral side following exocytosis 

[130]. A recent study compared four types of EVs derived from different brain cells (i.e. brain 

endothelial cells (bEND.3), glioblastoma A-172 cells, neural glioblastoma U87 cells and 

neuroectodermal tumor PFSK-1 cells) for their ability to deliver cytotoxic drugs over the BBB in 

an embryo zebrafish model. Only the bEND.3derived EVs were able to transfer their cargo into the 

brain, underscoring the existence of EV specificity [131]. 

Besides transferring cargo over the BBB, tumor targeting is another therapeutic application for 

which nanomedicines can provide a clear benefit. For this purpose, nanomedicines typically rely 

on the enhanced permeation and retention (EPR) effect to extravasate and accumulate in the tumor 

mass. Based on their small size, it is conceivable that EVs can also exploit this effect for anti-

cancer treatment. However, such passive targeting of EVs to tumors gave rise to contradictory 

results. Smyth et al. IV injected EVs (60 µg) derived from the tumor itself but found very little 

amount in the tumor tissue (4T1 breast cancer and PC3 prostate cancer cells) compared to liver and 

spleen [118]. In contrast, Lai et al. found a marked signal of HEK-derived EVs (100 µg) in the 

tumor (Gli36 glioblastoma) alongside with the liver and spleen [117]. An example of successful 

tumor targeting by modified EVs was reported by Ohno et al. who observed a three-fold 

enhancement in the tumor tissue (HCC70 hepatocellular carcinoma) using EGFR-targeted (via the 
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GE11 peptide) EVs [132]. Comparable results were obtained with iRGD equipped EVs that bind 

to v3 integrins in tumor tissue. Importantly, these vesicles, when loaded with doxorubicin, 

strongly reduced tumor growth in a MDA-MB-231 breast cancer cell model [133]. Inspiration for 

targeting is often obtained from viruses. For instance, HEK293-derived EVs have been modified 

with gp350 (i.e. a ligand for CD21 expressed on B cells and a component of the Epstein-bar virus 

(EBV) envelope), conferring the viral tropism to EVs for normal and leukemic B cell targeting 

[134]. 

Finally, altering the PK of EVs can also be done by changing the route of administration. Indeed, 

Wiklander et al. compared IV, SC and IP injection of HEK293T EVs showing a clear difference 

in biodistribution [119]. After footpad injection accumulation of EVs in the lymph nodes was 

reported [135, 136] and intranasal application showed an accumulation in the brain [137, 138] in 

which the delivered anti-inflammatory cargo (i.e. curcumin) could still be detected up to 12 hours 

after administration [137]. 

2.2.3. Intracellular trafficking of EVs 

Especially when considering EVs for delivery of macromolecular therapeutics, which require 

delivery into the cell’s cytoplasm (e.g. miRNA, mRNA) or even nucleus (e.g. pDNA), the ability 

of EVs to shuttle their cargo over the cellular barriers is of key importance. 

Nanoparticles can employ distinct endocytic uptake pathways to gain access to cells. Numerous 

studies have investigated the mechanism(s) by which EVs are associated to and subsequently 

internalized by cells. Many different types of surface molecules, both EV- and cell-associated, have 

been identified as being involved in EV-cell contact (i.e. tetraspanins, integrins, proteoglycans and 

lectins) as comprehensively reviewed by Mulcahy et al. [139]. These interactions, possibly 
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preceded by surfing onto filopodia according to recent observations [140], mostly lead to cell 

uptake via one of the common endocytosis pathways (i.e. clathrin- and caveolin-dependent 

endocytosis, lipid raft-mediated endocytosis, macropinocytosis or phagocytosis) [105, 139]. It is 

also interesting to note that inhibition of a given pathway is almost never able to completely 

abrogate the EV uptake, hinting toward the involvement of multiple uptake mechanisms and/or 

reflecting EV heterogeneity [139]. In this regard, it would be an interesting strategy to also link the 

effect of uptake inhibitors to the induced phenotypical changes in recipient cells as this would help 

to elucidate which specific uptake pathway(s) leads to functional cellular release of the EV cargo. 

As the interaction of EVs with cells likely involves multivalent ligand-receptor binding, it is 

reasonable to assume that they finally are trafficked to lysosomes for degradation [140]. Hence, 

delivery of drugs into the cell cytoplasm will require a mechanism that allows the EV cargo to 

escape the endolysosomal compartment. Also for synthetic nanomedicines the endolysosomal 

entrapment is one of the major hurdles for efficient cellular delivery of membrane impermeable 

drugs. The delivery efficiency of nanomedicines hinges on strategies to cross the endosomal 

barrier, such as the so-called proton sponge effect and/or lipid bilayer fusion [141]. As many of the 

effects mediated by EVs have been attributed to the functional delivery of miRNA and mRNAs, 

[87] this implies that (subtypes of) EVs might contain built-in mechanisms to stimulate endosomal 

escape. The most plausible theory describes back-fusion of internalized EVs with the endosomal 

membrane, thus releasing their content in the cytoplasm (figure 2). However, few reports directly 

demonstrated EV fusion with plasma-and/or endosomal membranes. Some studies labeled EVs 

with a self-quenching dye after which they were incubated with cells. An enhancement of 

fluorescence was indicative of dye dequenching and hence fusion of (a fraction of) EVs with 

cellular membranes [51, 91]. Alternatively, luciferin containing EVs were able to evoke a 
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luminescent signal after interaction with luciferase expressing cells, suggesting cytosolic delivery 

of the EV luminal cargo [91]. Whether this intracellular delivery process is linked to a particular 

receptor-ligand interaction or requires a specific proteolipid composition is currently unknown.  

Alternative to relying on the intrinsic EV properties to obtain functional delivery, EVs have been 

modified with delivery-enhancing peptides. Temchura et al. decorated antigen-loaded EVs with a 

vesicular stomatitis virus G (VSV-G) protein to stimulate the cross-presentation of these antigens 

in recipient DCs [142]. The VSV-G protein promotes the fusion of lipid membranes at lower pH 

(i.e. ~6) and can thus drive destabilization of the endosomal/phagosomal membrane following 

internalization [143]. These authors showed that the VSV-G protein stimulated MHC I mediated 

antigen presentation and elicited an antigen-specific CD8+ T cell response [142]. The previously 

mentioned RVG targeting ligand [119, 144, 145] and iRGD [133, 146] have also been reported to 

have membrane-destabilizing properties, possibly contributing to enhanced cytoplasmic delivery 

of the encapsulated cargo.  

It is of note that not for all phenotypical effects EV internalization is necessary. Physiological 

effects attributed to EVs can be based on proteins and lipids present on the surface of EVs 

interacting with ligands on the target cell’s surface triggering intracellular signaling pathways 

(figure 2) [88, 147-149] or via enzymatic activity present inside or on the surface of EVs [150]. 

2.2.4. Loading EVs with a therapeutic cargo 

The clinical implementation of EVs as a viable drug delivery platform will require optimized 

methods allowing efficient loading with the drug of choice. As already indicated above, EVs have 

been evaluated as a drug delivery vehicle for a vast diversity of therapeutic cargos, including both 

small molecules (e.g. doxorubicin, curcumin,…) and macromolecules (i.e. RNA, DNA and 
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proteins). The strategies to incorporate these drugs into EVs can generally be divided in pre-and 

post-formation approaches [151]. In the former case, the therapeutic cargo is first loaded into the 

respective producer cell followed by its packaging into EVs during their biogenesis. For the latter 

approach, EVs are first purified from the producer cell’s conditioned culture medium after which 

they are loaded with the therapeutic cargo via one of the methods represented in table 2. 

In a pre-formation loading approach the endogenous sorting machinery of the cell is used to load 

the cargo into the EVs (table 3). Loading of specific nucleic acids (siRNAs, miRNAs, mRNAs) 

into EVs can be accomplished by transfection of the producer cell with the respective cargo (e.g. 

miRNA) by lipofection [52]. A comparable approach, by incubating the producer cell (i.e. MSCs) 

with free paclitaxel, has also been evaluated. The paclitaxel-loaded EVs that were secreted by the 

MSCs induced an anti-proliferative effect on in vitro cultured adenocarcinoma cells [152]. 

Alternatively, the RNA of interest can be expressed in the producer cell via a plasmid vector 

encoding for the respective nucleic acid therapeutic (e.g. miRNA [153], siRNA [154], mRNA 

[155]). Unfortunately, such pre-formation loading approaches typically show limited loading 

efficiency and should be optimized for each selected producer cell type and cargo. In addition, one 

needs to anticipate that the selected cargo can influence the producer cell’s functionality and 

viability, hence impairing the loading process. Although still largely elusive, our expanding 

knowledge on the endogenous cargo sorting machinery can be exploited to increase the drug 

loading efficiency by modifying the therapeutic cargo. In this respect, proteins can be equipped 

with a plasma membrane anchoring and oligomerization domain to stimulate EV loading [156]. 

Alternatively, proteins can also be sorted into EVs by creating a fusion construct containing the 

protein of interest linked to a protein that is inherently associated to EVs as has been done for EV 

targeting purposes (section 2.2.2.) [144, 157] or to fluorescently label EVs (e.g. CD63-GFP) [158]. 
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Likewise, also for nucleic acids, evidence is mounting that by altering the nucleotide sequence also 

the sorting efficiency can be modulated. Bolukbasi et al. identified a specific sequence in the 3’-

UTR region of mRNA strands that promotes its accumulation in glioblastoma-derived EVs. This 

~25 nucleotide sequence contained a miR-1289 binding region and a CUGCC sequence. 

Incorporation of this so-called ‘zip-sequence’ in the 3’-UTR of a mRNA strand increased its 

packaging into EVs two-fold compared to the unmodified sequence. This enrichment could even 

be further enhanced when miR-1289 was overexpressed in the producing cell [39]. Regarding 

miRNA sorting, Koppers-lalic et al. discovered that 3’-uridylated miRNAs are enriched in human 

B cell-derived EVs [45]. Villarroya-Beltri and colleagues showed that miRNAs containing a 

GGAG sequence were overrepresented in primary T lymphoblast EVs. They suggest that this 

sequence is selectively recognized by the RNA binding protein heterogeneous nuclear 

ribonucleoproteins A2/B1 (hnRNPA2B1) and subsequently drives incorporation into EVs [38]. 

However, these sequences could not be retrieved in miRNAs accumulating in colorectal cancer-

derived EVs, implying the existence of distinct sorting pathways [159]. Although progress is being 

made, in general these sorting mechanisms remain vaguely defined to date. 

In addition to the above mentioned loading approaches for small molecules and macromolecules, 

viral capsids (i.e. AAV) have been loaded in EVs thus creating so-called vexosomes. These hybrid 

vesicles are composed of viral particles coated with or associated to EVs. Vexosomes aim to merge 

the efficient transfection capabilities of the AAV and the immune-shielding properties of EVs to 

produce a potentially efficient and biocompatible delivery vehicle [160]. Indeed, EVs appear to 

protect AAVs from adaptive immune detection. Hence, vexosomes outperformed uncoated AAVs 

regarding in vivo transfection efficiency in the presence of neutralizing antibodies [161]. Moreover, 

the coating with EV membranes potentiated the AAV’s ability to cross the BBB. The mechanism 
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behind this phenomenon is currently unknown [162]. Overall, the above mentioned features denote 

that this hybrid system is a potentially interesting therapeutic tool, combining the best of two 

worlds. 

On the other hand, post-formation loading approaches attempt to load drugs in isolated and purified 

EVs. In this regard, the most frequently reported method, especially for hydrophilic membrane-

impermeable components, is electroporation (EP). EP is traditionally used to introduce nucleic 

acids in cells using high-voltage electric pulses to create transient pores in the plasma membrane 

[163]. The group of Matthew Wood reported the first successful EP of siRNA into DC-derived 

EVs allowing functional delivery across the BBB in a mouse model of Alzheimer’s disease [144]. 

Following this pioneering report, other research groups have shown comparable results for loading 

siRNA and even DNA strands up to a 1000 bp into EVs [164-168]. Besides nucleic acids, 5 nm 

superparamagnetic iron oxide particles and large proteins have been loaded in purified EVs using 

EP (table 2). Despite the fact that different groups reported efficient cargo loading using this 

approach, the technique is under debate as it was shown that EP can induce the formation of large 

aggregates that co-precipitate siRNA and hence greatly overestimates the actual loading efficiency 

[169]. Since the publication of this report, several groups have tried to prevent this aggregate 

formation through the use of chelating agents (e.g. EDTA) [166] or membrane stabilizers (e.g. 

trehalose) [170, 171]. Nonetheless, even if transient pores would be formed in the EV membrane 

and aggregation can be prevented, given that EP likely relies on passive loading it can only be 

efficient in extremely concentrated EV isolates [169]. Other post-formation strategies that are being 

explored for hydrophilic molecules are also based on transiently destabilizing the EV membrane, 

including repeated freeze-thaw cycles, sonication, extrusion or saponin treatment (table 2). These 

techniques have been evaluated for both small molecules (i.e. porphyrins) [172] as well as 
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macromolecules (i.e. the 240 kDa catalase enzyme) [138]. It is important to note that for the former 

methods, the integrity of the EVs can be significantly compromised [138]. One report also suggests 

that antibody-coated EVs derived from B1a cells can interact with and take up miRNAs from the 

environment by simple co-incubation and subsequently shuttle it into cells. However, the 

mechanism behind this post-formation miRNA loading as well as the generality of this loading 

approach remain to be elucidated  [173]. 

For hydrophobic membrane-permeable molecules, simple co-incubation at ambient or elevated 

temperature are often sufficient to load EVs [131, 174]. Indeed, EVs derived from EL4 cells 

incubated with curcumin at room temperature were, after intranasal delivery, able to significantly 

delay brain tumor growth in the GL26 mice tumor model [137]. Curcumin-loaded plant EVs for 

example are currently under clinical evaluation in colon cancer (NCT01294072). An overview of 

other small molecules loaded via co-incubation is given in table 2. However, leakage of these 

therapeutics out of the vesicles in biological fluids (e.g. plasma) can limit their practicality. 

As long as the fundaments of EV biogenesis and cargo sorting are not clear, pre-formation methods 

will suffer from limited efficiency. Indeed, when comparing both loading strategies for paclitaxel, 

the post-formation method yields ~21 mg/g EV [175] and ~7.3 mg/g EV [131] compared to ~2 

µg/g EV [152] for the pre-formation method. Overall, loading hydrophobic small molecules in EVs 

is more straightforward and efficient. For post-formation loading of hydrophilic compounds, 

especially macromolecules, important progress still has to be made before efficient clinical 

application of EVs as drug delivery vehicles can be envisioned. In this respect, a generic post-

formation loading strategy for siRNA was recently developed by exploiting the efficient 

hydrophobic interaction between cholesterol-conjugated siRNA (chol-siRNA) and the EV 

proteolipid surface [176]. Unfortunately, the EVs used in this study were not able to escape the 
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endolysosomal degradation pathway and hence failed to functionally deliver the siRNA in contrast 

to anionic fusogenic liposomes that were equally loaded with chol-siRNA. Moreover, the 

endogenously present miRNAs were not able to silence their respective target proteins which is in 

accordance with recent reports describing that (1) even the most abundant miRNAs found in EVs 

are secreted at a (low) ratio of 1 molecule per 100 vesicles [46, 177]  and (2) internalized EVs are 

typically trafficked toward the lysosomes [140, 178]. Although this particular combination of EVs 

and recipient cells did not lead to successful EV-mediated drug delivery [176], it does not invalidate 

the concept of EVs as drug carriers as their interaction with cells might be highly specific. 

Therefore, a more in-depth biological understanding of the EV’s delivery mechanism is urgently 

required, including cell type specificity, cellular uptake mechanism, intracellular trafficking and 

cellular cargo delivery.. 

2.2.5. Producer cell source selection 

The choice of an adequate producing cell when aiming to exploit EVs as a drug delivery vehicle is 

of pivotal importance as it will define the PK behavior (i.e. the stability in the blood circulation 

and organotropism; section 2.2.2.) and the intrinsic biological effect (both physiological and 

pathological; section 2.1.) of the EV carrier. It has been suggested that MSCs form a sustainable 

source of EVs. MSCs produce high quantities of EVs and neither the EV yield nor their 

composition is altered by immortalizing the producer cell. Moreover, MSCs are known for their 

low immunogenicity making allogeneic applications possible [99, 179] (NCT02138331). 

However, it is also shown that MSC-derived EVs stimulate tumor vascularization and tumor 

growth, which might induce undesirable off-target effects [180]. Besides MSCs, immature DCs 

have also been proposed as an interesting EV source due to their low immunogenicity, 

immunosuppressive effects and the ease with which autologous sources can be obtained [109, 181].  
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As the field is moving closer to clinical applications, the concept of high vesicle yield with minimal 

production costs is of increasing importance. In this respect, research groups have started to focus 

on alternative sources of EVs. Grapefruit- and milk-derived EVs have been investigated as drug 

delivery vehicles [182-184]. Additionally, the idea of creating EV mimicking vesicles, e.g. by 

means of sequential extrusion of cells through micro-and nanoporous filters [185, 186] or by 

mixing synthetic components attempting to reproduce the most important EV characteristics [79, 

187], is gaining interest. However, the latter approach is difficult to implement as long as the 

knowledge on which components are essential for EV functionality is lacking or incomplete.  

2.3.EVs as vaccination platform 

The first therapeutic application of EVs was based on the use of DC-derived EVs as a surrogate for 

DC-based anticancer vaccination, [10] as APC-derived EVs harbor both (antigen-loaded) MHC I 

and II as well as the necessary co-stimulatory factors, to directly trigger (CD8+ and CD4+) T cell 

activation [9, 47]. However, in vivo, DC-derived EVs likely interact first with endogenous DCs 

(via cell surface adhesion or intracellular processing), transferring their antigens to endogenous 

APCs and augmenting T cell activation [188, 189]. The use of DC-derived EVs for cancer 

immunotherapy has already been evaluated in phase I clinical trials for both melanoma [13] and 

non-small-cell lung carcinoma (NSCLC) [190]. Although DC-derived EVs exhibited an excellent 

safety profile, the therapeutic effects were limited with no substantial CD8+ T cell response. 

Nonetheless, pre-clinical studies have shown that co-delivery of adjuvants could vastly improve 

the evoked immune response. In this respect, Chaput et al. reported the combination of DC-derived 

EVs with CpG (a TLR3 agonist) [191], Guo and colleagues combined DC-derived EVs with 

another TLR3 agonist, i.e. polyinosinic-polycytidylic acid (poly(I:C))  and cyclophosphamide 

[192] and Gehrmann et al. associated -galactosylceramide (a iNKT stimulatory factor) to antigen-
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loaded DC-derived EVs, which induced a potent NK,  T-cell innate immune response and 

enabled proliferation of antigen-specific T and B cells [193]. Currently, a phase II clinical trial in 

NSCLC patients is evaluating the combination of cyclophosphamide with DC-derived EVs (pulsed 

with a range of antigens and INF-) that showed an improved immune stimulatory capacity in pre-

clinical studies [194] (NCT01159288). 

As pointed out above (section 1.2.), EVs derived from cancerous cells have shown to carry a panel 

of known (e.g. CEA, GP100, HER2, melan-A, PSMA) [32, 195] and likely to date unknown tumor 

antigens. This is not only of interest from a diagnostic point of view but also makes tumor-derived 

EVs, which have shown to outperform free antigens [193, 196] and whole tumor lysate [197, 198], 

an attractive candidate to evaluate as a cell-free vaccine. Building on these promising observations, 

a clinical trial has been conducted using EVs isolated from ascites fluid. Unfortunately, similar to 

the DC-derived EVs, the effect of unmodified EVs was unsatisfactory. However, when co-injecting 

GM-CSF as adjuvant, a pronounced anti-tumor cytotoxic T lymphocyte response was induced 

[199]. As for DC-derived EVs, tumor-derived EVs in preclinical reports benefit from the indirect 

antigen presentation by endogenous APCs. This can be stimulated by combining tumor-derived 

EVs with synthetic adjuvants [200] or using EVs derived from (genetically) modified tumor cells 

to enhance the presence of adjuvant-like components (e.g. heat treatment to enhance hsp70 in 

tumor-derived EVs [201] or genetically engineer tumor cells to release IL18 [202] or IL12 [203] 

in EVs). It appears that for both strategies of EV-mediated anticancer vaccination, vesicles have to 

be modified to enhance their immune stimulatory effect.  

Despite the multitude of reports showing the potential of (adjuvant-modified) tumor-derived EVs 

as antigen delivery vehicles, caution should be taken as there is mounting evidence that tumor-

derived EVs exhibit immunosuppressive characteristics. Indeed, besides antigens, the presence and 
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functional transfer of fasL [204], TGF-[205] and NKG2D ligand [206] by tumor-derived EVs 

was also reported, all of which can blunt the activity of effector T cells. Moreover, some tumor-

derived EVs are considered pro-metastatic via niche formation [114, 207], angiogenesis 

stimulation and extracellular matrix degradation (e.g. via presence of metalloproteinases) [208]. 

Additionally, providing a good source for tumor-derived EVs in a clinical context is not evident. 

The most elegant, easy accessible source is ascites fluid. However, only few tumors entail the 

accumulation of EVs in this biofluid [32]. Alternatively, EV mimics can be produced from cancer 

cell biopsies via sonication. Whether these vesicles have the same ability as natural EVs to evoke 

an anti-tumor immune response is not known [209]. To make use of tumor-antigen bearing EVs 

without the negative characteristics of tumor-derived EVs, a DNA vaccine (delivered via an 

adenoviral vector or EP) was developed that encodes a fusion protein comprising (the extracellular 

part of) a known tumor-antigen and an EV-associated protein (C1C2 domain of lactadherin or the 

gag protein). Expression of this fusion construct shuttles the associated antigens to the surface or 

lumen of secreted EVs, respectively [157, 210]. Nevertheless, this technology is limited to well-

characterized antigens and would likely benefit from an additional immune modulator. Excellent 

dedicated reviews on the interplay between EVs and the immune system can be found in the 

literature [211]. 

Next to eukaryotic cells, also prokaryotic cells release vesicles in the extracellular environment, 

which are termed outer membrane vesicles (OMVs). It is interesting to note that the use of OMVs 

as vaccination tool against infectious diseases is currently the most advanced therapeutic 

application of EVs with different ongoing and completed clinical trials (up to phase IIIb; e.g. 

NCT01423084, NCT01478347, NCT02446743, …) and a selection of OMVs that have already 

reached market approval (e.g. Bexsero® and MenBvac® for serogroup B meningococcal disease). 
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For a comprehensive discussion on the use of OMVs as vaccination technology the reader is 

referred to Van Der Pol et al. [212]. 

3. EV Biomarker mining  

3.1. An introduction to biomarkers 

A biomarker can be defined as an objectively measured characteristic that indicates the medical 

state of the patient. Biomarkers can assist clinicians in making a reliable diagnosis and can be used 

as a clinical endpoint surrogate in clinical trials. For both applications it is critical that the 

correlation between disease and biomarker is well characterized and validated [213].  

A reliable biomarker has to fulfill a number of prerequisites. First, a biomarker needs to be specific, 

a feature with which many known biomarkers struggle (e.g. prostate specific antigen ( PSA) often 

gives false positives for benign prostate hypertrophy) [214]. Also, it is of critical importance that a 

biomarker is robust and valid meaning that under all given conditions a correlation exists between 

the biomarker and the disease. In this respect it is important to have a clear understanding of the 

role of the biomarker in the pathophysiology of the disease. Ideally, biomarkers should be 

predictive, indicating that the quantity of the biomarker can be (positively or negatively) correlated 

with the severity of the disease. Furthermore, it is of interest that the biomarker is easy accessible, 

thereby minimizing the burden for the patient. Finally, the sensitivity of the biomarker (or 

diagnostic assay to quantify the biomarker) will determine the extent to which early diagnosis is 

feasible [213]. 

Parallel with the emergence of personalized medicine, the importance of adequate biomarkers is 

further increasing. Personalized medicine can provide a significant benefit for diseases exhibiting 

a strong inter-patient pheno- and/or genotype heterogeneity as is the case for many tumors [215]. 
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Therapies that are tailored towards a specific phenotype (e.g. Herceptin® for Her2 positive breast 

cancer patients) are often developed in parallel with a biomarker assay, which enables the clinician 

to select patients who are eligible for the respective therapy [216]. 

3.2.EVs as biomarker 

EVs can be regarded as a stable and easy accessible fingerprint of the parent cell [217]. Indeed, the 

EV composition will depend on the type and even status of the producer cell [218, 219]. As EVs 

are easily secreted by the large majority of cell types in the human body, they can be retrieved from 

all bodily fluids [220]. EVs have been isolated from e.g. urine [11], plasma [26], semen [25], nasal 

secretion [24], breast milk [221], the aqueous humor of eyes [222], cerebrospinal fluid [223], 

peritoneal fluid [224], bronchoalveolar lavage [225]. Depending on the respective disease for 

which the biomarker is being developed, an accessible biofluid should be considered in which the 

EVs of interest are likely the most concentrated and a liquid biopsy can be easily obtained. 

Moreover, due to their liposome-like architecture, EVs protect their cargo against the harsh 

environment present in many of these media providing a more stable, hence reliable biomarker 

source compared to naked RNA or proteins in e.g. blood. 

EVs have been linked to a plethora of (patho)physiological processes. They are involved in 

maintaining cellular homeostasis but have also been linked to for example cancer progression. 

Glioblastoma-derived EVs have shown the ability to spread oncogenic transformation by 

transferring the oncogenic form of the epidermal growth factor receptor (EGFRvIII) to surrounding 

cells [226]. These EGFRvIII expressing vesicles were also detected in the serum of 7 out of 25 

glioblastoma patients and have been proposed as biomarker source [12]. Additionally, tumor-

derived EVs have shown the ability to promote cancer growth by inhibiting cancer-specific 

immune recognition (section 2.3.) [88, 227]. Moreover, EVs are also involved in the metastasis of 
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tumor cells as they are believed to prepare a pre-metastatic niche at a secondary tissue or organ 

(the seed-and-soil hypothesis) [114, 135, 207]. The fact that EVs play such an important role in the 

process of tumor formation strengthens the validity and robustness of their use as biomarker in 

cancer detection. Besides cancer, EVs are also exploited by viral particles (e.g. HIV, Epstein-bar, 

hepatitis C) to mediate their spread, making EVs valuable tools to detect viral diseases as well 

[228]. Furthermore, EVs are associated with neurological, metabolic, cardiovascular and kidney 

conditions and are therefore also proposed as biomarkers for these diseases [229-231]. 

In the literature many different clinical samples have been shown to contain EV-associated 

biomarkers with diagnostic/prognostic value or disease monitoring potential. In this respect, the 

EV concentration present in serum of tumor-bearing patients was shown to be increased compared 

to healthy controls [217, 232-235]. The EV protein abundance also has prognostic value as it was 

observed that patients with stage III melanoma with a high EV-associated TYRP2 protein burden 

showed increased risk of disease progression [207]. Moreover, following resection of the primary 

tumor, the EV concentration markedly decreased indicating its correlation with tumor presence 

[235]. However, relying solely on EV concentration lacks specificity as the same observation was 

made for distinct cancer types [217, 232-235] and, importantly, for non-disease stimuli (e.g. 

physical exercise [236]). Furthermore, early diagnosis of many cancers will not be possible. 

Therefore, it is of outstanding interest to look in more detail to the EV cargo (i.e. proteins, miRNA, 

mRNA,…) as they provide an easy accessible window to monitor the status of the respective 

producer cell (section 1.2.). In this respect, the exploitation of comparative omic-studies is 

fundamental for the detection of new biomarkers. For instance, it was revealed that a panel of eight 

EV-associated proteins were upregulated in the urine of patients with bladder cancer compared to 

healthy subjects [237]. Likewise, miRNA profiling of plasma-derived EVs identified a panel of 
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four tumor-specific miRNAs of potential use in a screening test for lung carcinoma [238]. A 

comprehensive review on this topic was recently issued by An and colleagues [239]. 

Isolating EVs from a liquid biopsy prior to molecular analysis enhances the sensitivity (compared 

to whole blood/urine analysis) as highly abundant serum/plasma proteins (e.g. albumin) and urine 

proteins (e.g. Tamm–Horsfall glycoprotein) are removed [240]. It is estimated that less than 0.01% 

of the proteins present in plasma are EV associated [241]. It is important to realize that in biological 

fluids, in general the vast majority of EVs are derived from healthy cells. In this respect it is 

reasonable to speculate that the sensitivity and specificity can be further enhanced through isolation 

of cell- or tissue-specific EVs prior to a biomarker assay. Such an approach was explored by Taylor 

and colleague who isolated EVs from plasma by antibody-based capturing (using anti-EPCAM) 

and subsequently analyzed the miRNA profile in this tumor EV enriched population. They could 

show that the miRNA profile closely resembled that of the original primary tumor cell. The 

combination of EPCAM-based EV capture and downstream miRNA quantification could hence be 

used to distinguish between healthy patients and patients at different stages of ovarian cancer [233]. 

Another example of the importance of an upstream EV selection was provided by Shi et al. who 

measured -synuclein levels in plasma of healthy individuals and patients suffering from 

Parkinson’s disease. When analyzing -synuclein levels in plasma using the total EV population, 

no significant difference could be observed between both groups. However, when the 

quantification was performed on plasma EVs positive for L1 cellular adhesion molecule (L1CAM), 

which is primarily expressed in the central nervous system, the -synuclein levels were 

significantly enhanced in Parkinson’s disease patients [242]. However, specific cancer markers are 

not always known or present on the EV surface. Additionally, population assays neglect an 

additional level of complexity conferred by the specific composition of individual vesicles, which 
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can provide relevant supplementary information. Therefore, techniques that allow analysis on the 

single vesicle level are of great interest [243]. However, for diagnostic purposes such an approach 

will require screening of large amounts of vesicles as ‘diseased’ EVs are rare among the total 

isolated EV population. One promising approach relies on modifying flow cytometry 

equipment/protocols to detect single, nanosized EVs [244-246]. However, to date FACS is not able 

to detect the lower size range of EVs and requires antibodies (and hence also knowledge of a 

particular disease marker) to phenotype EVs. Unfortunately, antibody-independent techniques that 

combine single vesicle sensitivity and high acquisition speed are scarce. One alternative strategy 

recently explored relies on surface enhanced Raman spectroscopy (SERS), which provides a 

quantitative molecular fingerprint of single EVs with a minimal acquisition time (500 ms) (figure 

3). Based on the obtained Raman spectra, EVs derived from erythrocytes and melanoma cancer 

cells could be distinguished [247]. 
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Figure 3. Surface Enhanced Raman Spectroscopy (SERS)  characterization of 
single EVs. [A] Enhancement of the Raman signal was obtained by decorating 
individual EVs with a AuNP-based nanoplasmonic SERS substrate. Raman spectra 
were recorded by moving the focal volume through the sample. The location of a 
AuNP-coated EV was determined by Rayleigh scattering (as depicted on the right 
insert of panel A, image 2). Using this approach, SERS spectra were obtained from 
[B] B16F10 melanoma-derived EVs and [C] erythrocyte-derived EVs. Red arrows 
in the displayed representative spectra originate from the AuNP coating material, 
while green arrows mark EV-related peaks. Partial least squares discriminant 
analysis on the obtained spectra allowed to distinguish between both vesicle types 
in a mixture, demonstrating the potential of single vesicle SERS fingerprinting in a 
diagnostic context. Reproduced with permission from ref.[247]. Copyright 2016 
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 
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3.3.Perspectives  

The wide-spread interest from both academia and industry in exploiting EVs in a diagnostic context 

is evident from ongoing and completed clinical trials (NCT02702856, NCT01779583, 

NCT02147418, NCT01860118, NCT02439008, NCT02464930, NCT02662621) and extensive 

investments from the pharmaceutical industry (e.g. Exosomedx, Exosome sciences, Codiak 

Biosciences, Hansabiomed, etc.). These investments are accompanied by a multitude of filed 

patents claiming technical solutions for the purification and/or readout of this new type of 

biomarker source. A first diagnostic test (the ExoDx Lung (ALK) by Exosome Diagnostics), based 

on detecting a specific NSCLC-associated mutation present in exosomal RNA became 

commercially available at the beginning of 2016 [248].  

Nonetheless, various issues still hamper the full exploitation of their biomarker potential. For 

instance, the lack of standardized purification protocols counteracts reproducibility and strongly 

influences biomarker identification. Due to this lack of consensus, to date no specialized EV-

biobanks, where a specific biofluid/biopsy sample can be correlated to the patient’s medical record, 

are established [249]. Moreover, elaborate purification protocols preclude fast screenings and 

hence restrain investigation and validation in large patient cohorts. Besides the purification 

protocol, also other parameters, among which the sample collection procedure (e.g. the type of 

anticoagulant during blood collection [250]), processing time and sample store conditions [65, 86] 

can influence the outcome of biomarker identification studies [251]. In response to this unmet need, 

an ISEV position paper was issued describing guidelines on how to handle different biological fluid 

samples and emphasizing the importance of a comprehensive experimental description to enhance 

reproducibility [252].  

4. General conclusion 
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Inspired by their involvement in many (patho)physiological processes and their role as nature’s 

own intercellular transport vehicles for biomolecules, a multitude of therapeutic and diagnostic 

applications have been explored for EVs.  

To date, EVs have been successfully exploited as biological nanocarriers for synthetic drugs 

ranging from small molecule chemotherapeutics to macromolecular siRNA, proteins and mRNA 

in various preclinical studies. However, clinical translation will essentially depend on substantial 

improvements in cost-effective EV isolation methods, improved drug loading techniques and more 

detailed knowledge on EV composition, heterogeneity and inherent biological effects. 

Additionally, a knowledgeable assessment of the value of EVs as drug delivery vehicles will 

require a direct comparison between EVs and current state-of-the-art synthetic and viral delivery 

vehicles.  

The complex composition of EVs conceivably correlates with off-target effects. On the other hand, 

this inherent complexity conferred by the many bioactive components associated to EVs enables 

them to induce potential beneficial effects likely challenging to mimic with therapeutic 

formulations containing a single drug. In this respect, MSC-derived EVs have been investigated in 

the field of regenerative medicine, auto-immune diseases and other inflammatory conditions as a 

safer alternative to whole cell therapeutics. EVs derived from both antigen-pulsed DC and tumor 

cells have been tested extensively for vaccination purposes. Despite the fact that the current clinical 

data show limited effect, pre-clinical reports indicate that modifications (e.g. co-delivery of an 

adjuvant) can further stimulate the evoked immune response. Nonetheless, it is important to note 

that safety concerns on the use of tumor-derived EVs are raised as many reports have linked EVs 

released by tumor cells to disease progression and metastasis. Here, ample attention should be 

given to further optimize EV purity and characterization protocols. 
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Finally, EVs have great potential to be harnessed in a diagnostic, prognostic and treatment 

monitoring context. EVs form a reliable and easily accessible window on the physiological status 

of the parent cell. They contain a vast amount of molecular information, which can be extracted by 

downstream proteomic, transcriptomic, miRNomic and lipidomic analysis, the feasibility of which 

has recently been underpinned by the first EV-based diagnostic test entering the US market. To 

galvanize further development of EVs as biomarkers, again fast, efficient and standardized 

purification protocols in combination with sensitive quantification methods will be essential. 
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Table 1. Overview of the most used EV isolation methods.

Method Principle of 
separation 

Purity Integrity Disadvantages Advantages

Ultracentrifugation 
(UC) 

Size and 
density  

Medium 

 

High shear forces might 
affect EV 
integrity/functionality  

Relatively long procedure (~4-5 
hours) 

The yield is drastically reduced 
when the viscosity of the 
samples is high (e.g. plasma > 
serum > celmedium > PBS) [67] 

Most used technique throughout the literature  

 

 

Density gradient 
UC / sucrose 
cushion UC 

Size and 
density 

High Mild forces Long procedure (~18 hours) 

Effect of the gradient  forming 
molecules on the EV 
functionality is unknown 

Previously used in clinical settings [13, 190, 199, 253] 

Precipitation Salting out 
EVs using a 
PEG/salt 
solution 

Low Mild forces 

 

Low purity 

The PEG chain might envelope 
the EVs, possibly interfering with 
their functionality 

Applicable for large volumes 

Experience from the viral field 

Previously used in a clinical setting (as an EV 
concentration step prior to UC) [99] 

Affinity capture Binding of EV 
surface 
components  

High Mild forces  

 

Expensive (if antibody based) 

EV elution might damage 
surface proteins and 
functionality 

This method has the highest potential to physically separate 
different EV (sub)populations. However, due to the lack of 
specific markers for EV subtypes to date, this method is 
most frequently applied in the diagnostic field 

Size exclusion 
chromatography 
(SEC) 

Size Medium to high Mild forces The final EV isolate is diluted Chromatographic methods (e.g. SEC and IEC) are often 
used in clinical settings (e.g. to purify monoclonal 
antibodies) 

Sequential 
filtration 

Size Unknown Risk of modifying the 
original EV architecture 
due to extrusion 

Sticking of EVs to the filter 
membrane lowers the yield 

Useful as a pre-process concentration step. Previously 
used for this purpose in clinical settings [13, 253] 
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Table 2. Post-formation loading of EVs 

Method Cargo Efficiency Remarks Ref 

EP:  
 M+ electrodes (400 V; 125 μF) 
 Buffer: OptiprepTM; neutral pH 

siRNA 25% of the total RNA The reported RNA exceeds 
maximal theoretical loading 
based on the total vesicular 
volume% and assumption 
that loading is a passive 
process [169] 

[124] 

EP:  
 M+ electrodes (150 V; 100 µF)  
 Buffer: Cytomix buffer 

siRNA 90% of the total number of 
beads carrying EVs is 
positive for siRNA 

 [168] 

EP:  
 M+ electrodes (400 V; 125 

μF) + polymer electrodes 
(variable settings) 

 Buffer: OptiprepTM; neutral 
pH, EDTA containing buffer, 
acidic pH 

siRNA No significant 
encapsulation 

Shows the formation of 
aggregates during the EP 
process and highlights the 
importance of adequate 
controls when using EP as a 
loading method. 

[169] 

EP miRNA No significant 
encapsulation reported 

 [132] 

EP: 
 M+ electrodes (0.75 kV/cm)  
 Buffer: Trehalose containing 

buffer  

5 nm 
superparamagnetic 
iron oxide 
nanoparticles 

0.40-0.45 µg iron/µg EV  [170] 

EP:  
 M+ electrodes  
 Buffer: PBS 

70 kDa Dextran / 
Saporin 

0.4% and 0.5% of the total 
dextran and saporin, 
respectively. 

Required Lipofectamine LTX 
and GALA fusogenic peptide 
for functional delivery 

[254] 

Co-incubation (T=37°C) miRNA (miR-150) N.R. Indirect proof of successful 
delivery is provided via 
restoration of the effect when 
using miR-150 knockout EVs 

[173] 

     

Co-incubation + 0.01% saponins, 
*freeze/thaw, *sonication, 
*extrusion 

Catalase (240 
kDa) 

~15 – 25% of the added 
catalase 

*Indicated technique entail 
significant alteration of the 
EV structure 

[138] 

     

Co-incubation (+ 0.01% saponins), 
hypotonic dialysis 

Porphyrins Up to ~2.5x1015 

molecules/EV 
 [172] 

EP: 
 M+ electrodes ( 350 V and 

150 μF) 
 Buffer: non-specified 

electroporation buffer 

Doxorubicin 20% of the added 
doxorubicin 

EVs equipped with a targeting 
ligand (i.e. iRGD associated 
to LAMP2) – non targeted 
EVs were not functional  

[133] 

Co-incubation (T=22°C – 5 min) Curcumin 2.9 µg/µg EVs IP injection [174] 

Co-incubation (T=22°C – 5 min) Cucumin / JSI-124  Intranasal administration [137] 

Co-incubation (T=37°C – 2 h) Doxorubicin / 
paclitaxel 

132 ng/µg and 7.3 ng/µg, 
respectively 

 [131] 
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EV-liposome mixing followed by 
freeze/thaw cycles 

Lipids (-PEG) / Alteration of the EV 
membrane composition 

[128] 

EV-micelle mixing followed by 
elevation of temperature (40°C) 

Lipids (-PEG) (-
nanobody®) 

/ Incorporation of targeting 
nanobodies® + PEGylation 
for an enhanced in vivo 
circulation time 

[127] 

EP electroporation; M+ metal electrodes; PBS phosphate buffered saline; GALA: a pH-sensitive fusogenic peptide; IP Intraperitoneal; 
PEG poly(ethylene glucol); N.R. not reported 

 

Table 3. Pre-formation loading of EVs 

Cargo  Producer cell Method of 
producer cell 
transfection 

Efficiency Target 
cell/Functional 
delivery?  

Remarks ref

Mir-143 and mir-
143BP1 

THP-1 Lipofection: 
LipoTrustTM EX 
Oligo + miRNA 

Estimation: 0.2-
0.25% of the 
stabilized miRNA 
present in the cell 

No functional 
delivery reported 

Differentiation of 
THP-1 cells into 
macrophages 
further stimulated 
miRNA secretion 
in EVs / immune-
EM confirmation of 
miRNA presence 

[255] 

mRNA HEK-293T Lipofection: 
Lipofectamine 
2000 + plasmid 
(+3’ UTR zipcode 
sequence)  

No absolute 
values reported 
per EV (~2 fold 
increase versus 
non-modified) 

No functional 
delivery reported 

 [39] 

mRNA (CD-UPRT) 
mRNA)/respective 
protein 

HEK-293T Lipofection: 
Lipofectamine 
2000 + plasmid 
(equipped with a 
strong promoter 
i.e. 
cytomegalovirus 
promotor) 

No absolute 
values 

HEI-193 cells Used as enzyme 
to functionalize a 
small molecule 
prodrug/sucrose 
gradient to confirm 
EV association 

[256] 

miRNA  HEK293 Lipofection: 
HiPerFect reagent  
+ plasmid (final 
concentration 50 
nM) 

No absolute 
values 

HCC70 cells GE11 peptide for 
EGFR targeting 

[132] 

miR-143, miR-146a, 
miR-155 

HEK293/COS-
7 

Lipofection: 
LipofectamineLTX 
+ plasmid 
overexpressing 
the respective pri-
miRNA  

2.57%, 15.6%, 
1.38% 
(percentage 
extracellular 
versus 
intracellular) 

COS-7 EV association 
confirmed using 
RNAse 
treatment/using 
the neutral 
sphingomyelinase 
inhibitor GW4869 

[153] 

mRNA: Cre 
recombinase 
mRNA(+protein?) 2 

MDA-MB-231 
mammary 
tumor cells 

Lipofection: 
lipofectamine 2000 
+ plasmid  

No absolute 
values 

MCF-7 and T47D 
mammary tumor 
cells 

Included delivery 
over long distance 
in vivo  

[155] 

(Cy3-tagged) miR-
223 

Macrophage 
(IL-4 
activated) 

Lipofection: X-
tremeGENE 
siRNA transfection 
reagent + miRNA 

No absolute 
values 

Breast cancer 
cells (SKBR3) 

 [257] 
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(FITC-tagged) miR-
150  

THP-1 cells Lipofection:  
lipofectamine 2000 
+ pre-miRNA  (400 
pmol per 60 mm 
dish) 

0.002 pmol 
miRNA per µg EV 
(protein 
concentration) 

HMEC-1 cells   [52] 

siRNA L929 cells Lipofection: 
lipofectamine 2000 
+ siRNA duplex 
(60 pmol per 105 

cells) 

0.001pmol siRNA 
per µg EV 
(protein 
concentration) 

S180 cells 0.4 pmol siRNA 
per mouse 

[258] 

Paclitaxel MSCs 
(SR4987 
cells) 

Incubation of 
producer cell with 
2000 ng/ml 
paclitaxel for 24h 

2.03 ng 
paclitaxel/mg 
protein 

CFPAC-1 (i.e. a 
paclitaxel 
sensitive 
adenocarcinoma 
cell line) 

 

EVs loaded with 
paclitaxel show an 
anti-proliferative 
effect 

[152] 

Adeno-associated 
virus (AAV) 

HEK 293T 
cells 

Calcium 
phosphate 
transfection of 
plasmids coding 
for different AAV 
components 

0.01% - 0.2% of 
the produced 
AAV are 
associated to EVs 
(depending on the 
AAV subtype) 

U87 and 293T 
cells 

 [160] 

TyA-GFP as model 
protein 

Jurkat T-cells Electroporation of 
the respective 
plasmid 

>10 fold increase 
compared to 
unanchored 

/. Targeting proteins 
to EVs via 
membrane 
anchors3 and the 
TyA-
oligomerization 
domain 

[156] 

siRNA (via plasmid) HEK 293T  Lipofectamine 
2000 + plasmid 

~0.15 pmol/µg EV Neuro2A RVG targeting (via 
fusion to the 
LAMP2 protein) 

[154] 

Iron oxide 
nanoparticles 

THP-1 Incubation in 
serum free 
medium 

 SKOV-3 cells  [259] 

1Bp: an aromatic benzene-pyridine analog was added to the 3′-overhang region of the RNA strand (higher nuclease resistance). 2 part 
of Cre-LoxP system to visualize functional protein/mRNA delivery to recipient cells. 3 e.g. myristoylation tag or PIP2-binding domain.  
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