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Genome sequencing is becoming cheaper and faster thanks to the introduction of next-generation sequencing techniques.

Dozens of new plant genome sequences have been released in recent years, ranging from small to gigantic repeat-rich or polyploid

genomes. Most genome projects have a dual purpose: delivering a contiguous, complete genome assembly and creating a full

catalog of correctly predicted genes. Frequently, the completeness of a species’ gene catalog is measured using a set of marker

genes that are expected to be present. This expectation can be defined along an evolutionary gradient, ranging from highly

conserved genes to species-specific genes. Large-scale population resequencing studies have revealed that gene space is fairly

variable even between closely related individuals, which limits the definition of the expected gene space, and, consequently, the

accuracy of estimates used to assess genome and gene space completeness. We argue that, based on the desired applications

of a genome sequencing project, different completeness scores for the genome assembly and/or gene space should be determined.

Using examples from several dicot and monocot genomes, we outline some pitfalls and recommendations regarding methods to

estimate completeness during different steps of genome assembly and annotation.

INTRODUCTION

The ever-decreasing cost and the expanding

capacity of genome sequencing using next-

generation sequencing techniques has led to

a remarkable increase in the number of avail-

able genome sequences. As of 2016, over

100 plant genomes have been sequenced,

ranging from small (e.g., Utricularia gibba,

80 Mb) to huge, repeat-rich, or polyploid ge-

nomes (e.g., Triticum aestivum, 17 Gb), with

many more expected in the years to come

(Weigel and Mott, 2009; Chia et al., 2012;

Michael and Jackson, 2013; Li et al., 2014).

Ideally,agenomeassemblyrepresentsacom-

plete and contiguous genome sequence with

a cumulative scaffold length equal to the hap-

loid genome size (Figure 1A). In addition, a

complete set of annotated genes offers

a starting point for a detailed characteriza-

tion of gene functions, biochemical and reg-

ulatory pathways, or quantitative trait loci.

Genes are the nodes in abiological network,

which offers valuable insights into protein

complexes, regulatory interactions,andmet-

abolic processes that determine the physio-

logical and biochemical properties of a cell,

an organor anorganism (Bassel et al., 2012).

Clearly, comparative genomics and evolu-

tionary studies require complete genomes

and gene sets. Well-assembled genome se-

quences are necessary to characterize differ-

ent classes of repetitive elements to identify

large-scale gene colinearity across related

species and to reconstruct the organization

and evolution of transposable elements

(Bennetzen and Wang, 2014). Moreover, a

complete gene catalog is required to test if

the gain or loss of biochemical or signaling

pathways in specific plant species can explain

the structural and physiological adaptations

required to survive in extreme environments.

N50 is a commonly used contiguity measure

denoting that 50%of the total assembly length

is contained in scaffolds of length N50 or lon-

ger.Over the last15years,genomeassemblies

have displayed a large range ofN50 values but

indicate low contiguity even for relatively small

genomes (Supplemental Figure 1), suggesting

that fragmented draft genomes are generated

for many plants. As this wealth of new plant

genome sequences and gene catalogs ex-

pands and assembly strategies evolve, so

too must the variety of methods used to mea-

sure their quality and completeness (Earl et al.,

2011; Salzberg et al., 2012). As yet, no uniform

metrics or standards are in place to estimate

the completeness of a genome assembly or

the annotated gene space, despite their im-

portance for downstream analyses.

DEFINING THE EXPECTED GENOME

SIZE AND GENE SPACE

A simple approach is common to all re-

ported measures of completeness (Figures

1B and 1C). First, one measures the size of

the assembled genome (i.e., total assembly

length) or the gene space (i.e., thenumber of

genes), in the following referred to as the

“observed.” Second, one selects a refer-

ence to define the expected genome size

or gene space, here referred to as the “ex-

pected.” To define the expected genome

size, both physical measurements (e.g., nu-

clear weight) and computational methods
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that analyze the sequence space (such as

k-mer spectra) shouldbeused. Furthermore,

to define the expected gene space, one can

relyonevolutionaryconservationanduse the

gene space of related species as reference

(interspeciescomparisons).Alternatively,one

can define a species-specific measure of

the gene space by transcriptome or EST

sequencing in the species itself (intraspe-

cies comparisons; Figure 1D).Clearly, these

methods rely on starkly contrasting assump-

tions, as further detailed below. All compar-

isonmethods (e.g., BLAST or readmapping)

inherently assume directionality and set the

external reference as the expected 100%. In

all approaches, the observed measure is

then expressed as a fraction of the expected

and interpreted as completeness score for

the genome assembly or gene space. Given

the diversity of approaches, it is important to

understand the underlying concepts to pro-

vide consistent and realistic measures of

genome and gene space completeness.

The genome can be partitioned into two

main fractions with contrasting characteris-

tics in terms of assembly and annotation.

The repetitive DNA fraction, mostly con-

tained in heterochromatin, is difficult to as-

semble using short shotgun reads and is

commonly collapsed or absent from draft

genomeassemblies. This partitiongenerally

contains transposable elements and rela-

tively few coding genes. By contrast, the

nonrepetitive sequence space, mostly con-

tained in euchromatin, is relatively easy to

assemble and is commonly assumed to

represent the gene-rich partition. It is im-

portant to realize that methods to estimate

genomeorgenespacecompleteness target

these partitions of the genome differently,

and although completeness scores may

seem related, they should not be extrapo-

lated between the two levels.

Here, we will outline the challenges of es-

timating the completeness of the genome

assembly and annotated gene space. We

first explain how the expected is defined

for different measures of completeness

and comment on the assumptions made

by each method, including their strengths

and weaknesses. Next, we will compare dif-

ferent measures of completeness in 12 re-

cently published plant genomes and

highlight several cases where dissimilar

Figure 1. Framework for Genome Assembly and Gene Space Completeness Estimation.

(A) Workflow for genome assembly and annotation. A representative genotype is selected for sequencing and the whole-genome shotgun reads are

assembled into incrementally longer contiguous scaffolds. In a final step, gene prediction provides the description of repetitive regions and the annotation of

genes.

(B) and (C) Estimation of genome assembly and gene space completeness, respectively. Measures for the expected and observed size of the genome

assembly and gene space are shown, connected by specific methods.

(D) The expected gene space can be estimated along an evolutionary scale, ranging from evolutionarily highly conserved to species-specific genes.
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completeness scores are the consequence

of technical issuesof assemblyor annotation

or due to strong gene function or expression

biases in the expected gene space. Finally,

wewill provide someguidelines todetermine

more robust completeness scores and com-

ment on the challenges facing future plant

genome projects.

ESTIMATING THE COMPLETENESS OF

A GENOME ASSEMBLY

Thefirststep inagenomeassemblyworkflow

(Figure 1A) is selecting an individual that is

representative of the species. For this indi-

vidual, shotgun libraries are constructedwith

variable insert sizes, ranging from 100 bp to

over 100 kb. Sequencing will yield reads of

variable length, ranging from 100 bp tomore

than 10 kb, depending on the applied se-

quencing technology. These reads are then

assembled into incrementally longer contig-

uous sequences in three steps. First, contigs

are constructed through de novo assembly

based on the overlap of short reads or de

Bruijn k-mer graphs. In de Bruijn graphs,

nodes represent k-mers and edges con-

nect neighboring k-mers so that a traversal

through this graph results in the reconstruc-

tion of a contiguous sequence. Second, the

contigsareordered into scaffoldsusingmate

pairs,BAC-endsequences,orhybridassem-

bly with long sequencing reads. Finally, the

scaffolds are ordered and anchored into

pseudomolecules or linkage groups repre-

senting chromosomes. These chromosomal

structures can further be validated and im-

proved using optical mapping, cytogenetic

mapping, Hi-C sequencing, genetic maps,

population sequencing, or physical maps

such as BAC minimal tiling paths (Mascher

et al., 2013;Mendelowitz andPop, 2014; Flot

et al., 2015).

Twomain factorsaffect thecompleteness

and contiguity of the genome assembly: the

level of heterozygosity and the length, abun-

dance, and dispersal of duplicated regions

or repetitive sequences (Wendel et al.,

2016). Genome assembly algorithms at-

tempt to reconstruct unique sequences in

order to separate recently duplicated re-

gions, closely related gene family members

or highly conserved protein domains. As

a result, allelic sequences in highly hetero-

zygousspeciesareoftenalso reconstructed

as independent sequences, thereby inflat-

ing the total assembly lengthanddecreasing

scaffold contiguity (e.g., Malus domestica;

Velasco et al., 2010). Conversely, repeat re-

gions are typically collapsed during assem-

bly of short reads, thereby severely reducing

the total assembled genome size and inter-

rupting scaffold contiguity (e.g., Lolium per-

enne; Byrne et al., 2015). Highly polymorphic

regions disturb sequence alignment during

de novo assembly, lead to bubbles and

branches in de Bruijn graphs, and cause

breakpoints when de Bruijn graphs are re-

solved into contiguous sequences. Some of

these issues may be overcome in the near

future using third-generation long-read se-

quencing technologies.

The expected genome size of an organ-

ism can be measured using the physical

properties of the nuclear genome: by reas-

sociation kinetics of high molecular weight

genomic DNA (Cot assay), pulsed field gel

electrophoresis, or, ideally, flow cytometry

after DNA staining. These methods use

standards of known molecular weight or

reference species with a defined nuclear

DNAmass (Zonneveld et al., 2005). The total

assembled scaffold length (in Mb) can then

be expressed as a fraction of the molecular

weight of the nuclear DNA (in pg) using the

standard average molecular weight of 1 pg

per 978 Mb for the conversion. Strikingly,

closely related species may display con-

siderable variation in genome size, hence

limiting the accuracy of interspecies com-

parative measures of completeness (Garcia

et al., 2014). By contrast, flow cytometry-

based measurements of genome size turn

out to be fairly consistent across individuals

within a species (Dolezel and Bartos, 2005),

thus providing accurate estimates of the

expected genome size within that species.

Alternatively, the expected genome size

and repetitive sequence content can be

estimated using computational methods,

such as k-mer frequency spectra of the

shotgun sequencing reads. A k-mer fre-

quency spectrum shows the count distribu-

tion of all sequences of length k present in

the read data. From the frequency plot, one

can estimate the coverage depth, sequenc-

ing bias, data quality, problems in the as-

sembly, and polymorphic rates (Liu et al.,

2013). The genome size can be calculated

by dividing the total number of k-mers in the

read data by the peak value in the frequency

plot (Supplemental Methods and Sup-

plemental Figure 2). Furthermore, the per-

centage of the shotgun reads or BAC-end

sequences that map onto the scaffolds

yields a genome completeness score that

indicates whether the shotgun read se-

quences have all been incorporated into

the scaffolds. The read depth profile may

further identify wrongly assembled, col-

lapsed, or duplicated regions (Hunt et al.,

2013; Rahman and Pachter, 2013). Con-

versely, one can control overassembly by

analyzing whether all scaffolds are sup-

ported by read data. Just as the assembly

algorithms are sensitive to genetic diver-

sity and heterozygosity while searching

for sequence overlap to build contiguous

scaffolds, these assembly completeness

methods rely on sequence identity for read

mapping. Thus, completeness scores are

inherently sensitive to mismatch strin-

gency parameters in highly heterozygous

genomes (Wendel et al., 2016).

ESTIMATING THE COMPLETENESS OF

THE ANNOTATED GENE SPACE

In an ideal scenario, genome annotation de-

scribes repetitive regions and the complete

setofprotein-codinggenesandvariousclas-

ses of noncodingRNAswith a correctly iden-

tified gene structure. Ab initio methods try to

predict gene models by the detection of in-

trinsic signals such as codon composition or

splice sites in the DNA sequence while ex-

trinsic approaches make use of similarity to

well-characterizedproteinsfromrelatedspe-

cies or EST/RNA-seq transcript data of the

species under investigation (Figure 1A). Un-

fortunately, most gene prediction methods

suffer from false-positive and false-negative

predictions aswell aspartially incorrect gene

structures. Retraining gene prediction soft-

ware todetectcodonbiasesorspecificsplic-

ing motifs is important both for obtaining

high-quality gene models and for identifying

species-specific genes lacking homologs in

other plant families. Gene prediction bench-

marks exist for different eukaryotic model
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species and automated self-learning gene

predictionapproacheshavebeendeveloped

(Korf,2004).However, in theabsenceof large

species-specific transcript databases, ge-

neric gene prediction tools have been used

for several plant genomes, compromising

validation of the quality and completeness

of the predicted gene catalog. Recently devel-

oped methods like MAKER-P and BRAKER1

offer a practical solution for some of these

issues, provided that sufficient extrinsic in-

formation is available (Campbell et al., 2014;

Hoff et al., 2016).

If the N50 is smaller than the average size

of a gene, one can expect to annotatemany

partial gene models due to gene splitting,

resulting in an overestimation of the number

of genes in the genome. Clearly, such erro-

neous gene models will compromise the

correct delineation of homologous gene

families and orthologous genes, as well

as the detection of protein domains. This

obstructs the interpretation of gene family

expansion or gene loss andanyother down-

stream gene-based analysis, such as gene

expression quantification through RNA-

seq, annotation ofChIP-seqbinding events,

or gene network analysis.

DEFINING THE EXPECTED GENE

SPACE ON A GLIDING EVOLUTIONARY

SCALE

The expected gene space can be defined

between two extremes on the evolutionary

scale (Figure1D).Ononeextreme,evolution-

arily highly conserved reference gene sets

are assumed to be present in the newly

assembledgenome.Thus, interspeciescom-

parisons require the definition of the taxo-

nomic range over which genes are expected

tobeconserved, relative to thespeciesunder

investigation. The core eukaryotic genes

mapping approach (CEGMA) has defined

highly conserved eukaryotic genes, placing

itself on a basal eukaryotic level in the tree of

life (Parra et al., 2007, 2009). BUSCO, the

successor of CEGMA, has defined sets of

single-copy genes for various major clades,

including plants (Simão et al., 2015). Finally,

the PLAZA core gene families (coreGFs) are

defined as highly conserved gene families in

a majority of plants within predefined line-

ages (Van Bel et al., 2012). On the other

extreme of the evolutionary scale, one can

define all expressed genes in the sequenced

individual as a reference for the expected

genespace. In this case, transcript sequenc-

ing, optionally followedbydenovo transcrip-

tome assembly, and mapping provides

empirical evidence to define the expected

gene space in the organism under investi-

gation. Below, we will further illustrate the

underlying assumptions, strengths, and

weaknesses for all four methods.

The CEGMA reference gene set com-

prises 458 genes that are highly conserved

in six eukaryotic species (Homo sapiens,

Drosophilamelanogaster,Arabidopsis thali-

ana, Caenorhabditis elegans, Saccharomy-

ces cerevisiae, and Schizosaccharomyces

pombe) and are assumed to be encoded in

essentially all eukaryotic genomes.Notably,

CEGMAwas originally created to build a ro-

bust set of gene annotations to train gene

prediction software in the absence of ex-

perimental transcriptome data, but it is not

meant to provide a complete catalog of

genes in a genome. Nevertheless, a subset

of 248 single-copy core eukaryotic genes is

frequently used to estimate genome com-

pleteness, where the CEGMA complete-

ness score expresses the fraction of the

248 genes that can be accurately mapped

onto the genome assembly (Figure 1C).

The CEGMA gene set dates back to the

last common eukaryotic ancestor; thus, any

extrapolation of the completeness score

based on such a limited set of highly con-

served proteins will fail to account for many

genesunique toplantbiology. Inaddition, as

most plant genomes encode more than

20,000 genes, any bias present in such

a small set of conserved core genes can

lead toerrors in theestimatedcompleteness

scores. We found that more than half of the

248 CEGMA genes from Arabidopsis are

expressedacrossall thedifferent conditions

and organs contained in a nonredundant

Arabidopsis expression atlas (Figure 2A).

This reveals that many genes expressed in

specific plant organs or developmental

stages are missing. Gene Ontology enrich-

ment further demonstrates the gene func-

tion bias in the 248 core eukaryotic genes:

housekeeping functions (DNA metabolism,

translation, cell cycle, and generation of

precursormetabolites andenergy) are over-

represented and the CEGMA set does not

cover genes functioning in biological pro-

cesses conserved in green plants, such as

photosynthesis or development (Figure 2B).

BUSCO recently defined gene sets for six

major phylogenetic clades to estimate com-

pleteness as well as the duplicated fraction

of a genome sequence. Each gene is ex-

pected to be found single-copy in any newly

sequenced genome when an appropriate

clade is selected. The single-copy nature

is used by BUSCO to estimate the level of

redundancy in the genome assembly, but

the frequency of small- and large-scale

duplications, such as (paleo)polyploidy, in

plants makes this feature less applicable.

Whereas CEGMA works only on raw ge-

nomeor transcript sequences andperforms

gene prediction prior to the completeness

estimation, BUSCO can be applied to a ge-

nome sequence as well as to an annotated

gene set (Supplemental Methods). The

BUSCO plant profiles consist of 952 sin-

gle-copyorthologsandanalysis of theArab-

idopsis best hits showednoexpressionbias

and less gene function bias toward house-

keeping genes compared with the CEGMA

core genes (Figure 2).

ThePLAZAcoreGFsareasetofcoregene

families that are highly conserved in a ma-

jority of plant specieswithin predefined evo-

lutionary lineages. Three sets of coreGFs

have been defined using the PLAZA 2.5

database: green plants (2928 coreGFs), ro-

sids (6092 coreGFs), and monocots (7076

coreGFs), using a parsimony-based selec-

tion approach where complete conserva-

tion across all species is not required. This

approach accounts for the observation that

genes are indeed occasionally lost in some

species and it tolerates potential annotation

errors in a limited number of species. In

contrast to CEGMA and BUSCO, coreGFs

are not filtered for single-copy genes and

can therefore better accommodate the fre-

quent occurrence of whole-genome dupli-

cations in plants (Van de Peer et al., 2009).

Consequently, the number of coreGF genes

is 5 to 10 times higher compared with CEG-

MA or BUSCO gene sets. Similar to BUSCO

and transcript mapping, coreGFs can be

used to assess the completeness of an

annotated gene set (for further details on
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the calculation of the coreGF completeness

scores, see Supplemental Methods). Ex-

pression breadth and gene function enrich-

ment analysis reveals that the coreGF gene

set is less biased toward ubiquitously ex-

pressed genes and does not strongly over-

represent specific gene functions (Figure 2).

Furthermore, because coreGFs sample

conserved gene families at different taxo-

nomic levels within green plants, it offers

a better representation of the gene function

space of flowering plants compared with

CEGMA and BUSCO.

Bycontrast, transcriptmapping isahighly

species-specific completeness assess-

ment method that is independent of evolu-

tionary conservation between species. This

method uses large-scale EST or RNA-seq

transcript sequencing to estimate howmany

of the transcribed genes are present in the

gene space partition of the genome assem-

bly of a given species (here referred to as

“transcript mapping”). In this case, the ex-

pected gene space is defined as the total

number of transcript sequences, either spe-

cifically generated to guide genome annota-

tion of the sequenced genotype, or derived

from public resources.

In an attempt to maximize the reference

sequencedataset, it isoften tempting touse

Figure 2. Expression and Gene Function Biases Associated with CEGMA, BUSCO, and coreGFs in Arabidopsis.

Expression and gene function biases were determined for the CEGMA set (248 single-copy core genes), the BUSCO profile best hits on the gene set of

Arabidopsis (850), and the coreGFs for green plants (2928 gene families) and rosids (6092 gene families).

(A) Expression biases were determined by counting the number of microarray experiments in which a gene was expressed and compared with the expression

breadth of the complete gene set of Arabidopsis.

(B) Gene function biases were estimated using Gene Ontology enrichment analysis of the PLAZA 3.0 Workbench. Gene Ontology slim Biological Process

terms with at least 2-fold enrichment are shown (P < 0.01).
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transcripts fromalternative genotypeswithin

the species, or even from closely related

species. However, when switching from or-

ganism-specific to intraspecies transcript

mapping or to interspecies comparisons,

one has to realize that the assumptions un-

derlying the evolutionary conservation of

gene sets may no longer hold and that in-

creased sequence divergence gradually

comes intoplayaswell. Thus, all approaches

are dependent on mapping stringency pa-

rameters, which should be adjusted to ac-

count for evolutionary divergence between

species or genetic diversity within species.

Although transcript mapping is highly de-

pendent on the number of transcript se-

quences and the complexity captured by

the different cDNA libraries, it is better

able to capture fast-evolving and species-

specific genes comparedwith evolutionary-

basedmethods. A comparison of transcript

mapping at the levels of the genome as-

sembly and the annotated gene catalog

indicates the completeness of the gene pre-

diction. Depending on the library prepara-

tionmethod used, genes encoding different

types of RNA (e.g., rRNAs, tRNAs, small

nuclear RNA, long noncoding RNAs) can

also be included.

INFLUENCE OF TRANSCRIPT MAPPING

PARAMETERS ON GENE SPACE

COMPLETENESS

In practice, de novo assembly often first

leads to reconstruction of a partition of the

genome that contains the euchromatic,

gene rich, unique sequences in thegenome.

To evaluate the influence of transcript map-

ping data sets and parameters on imperfect

genome assemblies when assessing gene

space completeness, we simulated frag-

mented and incomplete genomes of Arab-

idopsis and rice (Oryza sativa). In short, we

fragmented the genome into 10-kb se-

quences and randomly subsampled geno-

mic fragments to simulate decreasing levels

of completeness (50 to 100%). Random

subsampling of a given fraction of the entire

genome creates a reference that contains,

proportionally, a “known” fraction of the

gene space, independent of whether the

repetitive DNA partition is included in the

reference or not. We collected 1.5 and 1 M

publicly available EST sequences for Arab-

idopsis and rice, respectively, and mapped

them onto the partial reference assemblies.

We then calculated mean and SD of the

transcript mapping score across 100 repli-

cate randomsubsamples (bins)with varying

numbers of ESTs (range 100 to 300,000

ESTs) (Supplemental Methods). Finally, we

compared the measured gene space com-

pleteness scores to the known fraction of

the gene space to estimate the influence of

EST mapping parameters (such as mini-

mum percentage of coverage), and EST

library size and complexity, because these

typically varyacross the reportedcomplete-

ness estimates. On average, the transcript

mappingscore isstable (SD<1%) inbinsizes

of at least 3000 ESTs, for both Arabidopsis

and rice (Figure 3A). Transcript mapping

estimates the completeness of the gene

space at 61%, when only 50% of the Arab-

idopsis genome is used as reference, while

for more complete genomes, the transcript

mapping score converges to 97% (Figure

3A, upper panel). When partial EST map-

pingswere filteredout (90%coverage filter),

partial genomes are no longer overesti-

mated, but more complete genomes seem

incomplete (Figure 3A, lower panel). The

latter might be related to the challenge of

correctly aligning spliced transcript se-

quences to their corresponding genomic

locus, comprising both exons and introns.

These results show that it is important to

consistently use and report the mapping pa-

rameters per comparison method. As stated

above, it is important to note that transcript

mapping scores should not be extrapolated

to the completeness of the total genome

assembly, but only apply to the gene space

partition, even if the entire genome reference

sequence is used for the EST mapping.

We also evaluated transcript mapping

scores per library on various simulated ge-

nome incompleteness levels for Arabidop-

sis and rice to further define the relationship

between transcript completeness score,

actual completeness, and EST library size

and complexity (Figure 3B). Both species

display more variation in EST mapping

score when smaller libraries are used to

define theexpectedgene space, confirming

the results from downsampling ESTs. If the

libraries containmore than10,000ESTs, the

EST mapping scores for Arabidopsis librar-

ies converge to the same value as for sub-

sampling bins of >10,000ESTs. For rice, the

convergence of EST mapping scores is not

as clear. This indicates that the minimum

library size needed for a reliable estimate

depends on the species, perhaps as function

of size and/or complexity of the genome.

Several transcript libraries can be generated

for a fraction of the cost of the entire genome

sequencing project, which suffices to validate

the gene space completeness test. Although

RNA-seq is a valuable alternative todefine the

expected gene space, de novo assembly can

lead to overestimation of the expected num-

ber of genes due to the construction of allelic

transcripts or splice variants and fragmented

transcripts and to underestimation due to the

failure to reconstruct low-abundant tran-

scripts (Honaas et al., 2016).

COMPARISON OF FOUR GENE SPACE

COMPLETENESS METHODS

The completeness estimates of three

methods based on evolutionary conserved

gene sets (CEGMA, BUSCO, and coreGFs)

and transcriptmappingwerecompared (Fig-

ure 4) using 10 recently published plant ge-

nomedatasets, includingrosidsandmonocots

(Supplemental Table 1). The two high-qual-

ity reference genomes of Arabidopsis and

rice contain almost all of the CEGMA and

coreGF core genes (completeness scores

>99%; only 50 and 42 missing coreGFs for

Arabidopsis and rice, respectively; Figure

4). In eight species, theCEGMAandBUSCO

scores are higher than the coreGF score.

Reporting only CEGMA or BUSCO scores

generally leads to an overestimation of the

gene space completeness. In some cases,

the differences between themeasured com-

pleteness scores are quite large. CEGMA

scoresareat least5%higher thanthecoreGF

score for more than half of the species, while

for threespecies, thisdifference isevenlarger

than 10%. These missing fractions in the

expectedgenespacecorrespond to thepro-

jectedabsenceofa fewhundredtomorethan

a thousand coreGF genes. The underlying

reasons vary and can be illustrated in three

specificcases.First, inL.perenne, thereported
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CEGMA score of 96% indicates that the

genome assembly is complete, yet 1709 cor-

eGFsaremissingfromthepredictedgeneset.

The score difference of BUSCO applied on

the genome and gene set (97 and 90%, re-

spectively) indicates a discrepancy in the

gene space present in the genome assembly

andannotatedgene set. For this genome, the

researchers generated a conservative, yet

reliable, set of annotated genes by selecting

only evidence-based gene models, i.e., sup-

ported by Brachypodium distachyon protein

alignment and transcriptome assemblies

(Byrne et al., 2015). The transcript mapping

score of 96%on the genome assembly com-

pared with the coreGF score of 76% on the

predictedgenesetcorroboratesthat thegene

space partition of the genome has been well

assembled, but that gene prediction is in-

complete. Indeed,mappingofBrachypodium

proteins on the L. perennegenome assembly

confirms that at least 924 of the 1709missing

coreGFs can be found using TBLASTN

(E-value < 1e-10).

Second, we observed that Phalaenopsis

equestris has a coreGF score of only 82%.

It is important to note that the coreGFs are

predefined at three evolutionary levels, ro-

sids, monocots, and green plants. Monocot

coreGFs were defined only using gene sets

from the Poales, which are part of the com-

melinids. As P. equestris belongs to the As-

paragales, a sister group to thecommelinids,

Figure 3. Evaluation of Transcript Completeness Scores.

To estimate the relationship between transcript completeness score, actual reference genome

completeness, and EST library size and complexity, two approaches were compared using Arabidopsis

or rice. For each species, the genomewas cut into

stretches of 10 kb, and fragments were randomly

sampled to create partial genome references

containing 50, 75, 80, 90, 95, and 100% of the

original genome sequence. All publicly available

EST sequences were mapped onto the respective

partial genomes. In a first approach, all ESTs were

pooled and random sampling for different EST bin

sizes (range from 100 to 300,000) was performed

100 times. The mean and SD of the transcript

completeness scores for each bin size and each

partial genome is given in (A). The lower graphs

show mean transcript completeness scores and

SD counting only mapped ESTs with a length

coverage higher than 90%. (B) shows the tran-

script completeness score for each individual EST

library (indicated by a circle) mapped onto the

partial genomes. Completeness scores per library

based on EST mappings with a length coverage

higher than 90% are shown in gray in each graph.
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the lower coreGF score could reflect poten-

tial gene loss in P. equestris and shows the

importance of choosing an appropriate phy-

logenetic level at which an evolutionary

conserved gene set is defined. A similar limi-

tation exists for the BUSCO method applied

to the genome assembly, as this approach

uses an extrinsic gene prediction tool that

was trained for maize (Zea mays), a member

of the Poales. Therefore, low BUSCO scores

on the genome could also be due to genes

missed by the gene prediction step applied

by BUSCO.

Third, although for most species the tran-

script mapping score lies within the same

range as the CEGMA, BUSCO, and coreGF

score, there are some exceptions. One ex-

ample isCicer arietinum, forwhichonly 89%

of the ESTs could be mapped on the ge-

nome sequence. More than half of the un-

mapped sequences are of non-plant origin,

mostly from Fusarium oxysporum, illustrat-

inghowcontaminations inflate theexpected

gene space and lead to an underestimation

of the gene space completeness.

CONCLUSIONS AND GUIDELINES

Population resequencing studies in Arabi-

dopsis, rice, potato (Solanum tuberosum),

and maize have unveiled extensive geno-

mic variation between individuals, including

structural rearrangements, copy number

variations, insertion-deletions, single nucle-

otide polymorphisms, and sequence re-

peats. This has led to the definition of

“core”genomesequences (sharedbetween

all members of a species), “dispensable”

genome sequences (present in only one or

a few members), and “pan” genome se-

quences (the union, or full genome comple-

ment across all members). Hence, the

variability of sequence conservation ex-

tends to the subspecies or individual organ-

ism level (Caoetal., 2011;Hirschetal., 2014;

Marroni et al., 2014). The dispensable ge-

nome contains genes with high biological

relevance, illustrated by possible roles in

adaptation to abiotic and biotic stresses

(Hardigan et al., 2016), species diversifica-

tion and development of novel gene func-

tions (Wangetal., 2006), andagronomicand

metabolic traits (Yao et al., 2015). This clearly

limits the definition of the expected gene

space and, consequently, the precision and

accuracy of completeness estimates of both

the genome and the gene space.

Acompletegenomeassembly isessential

for the study of chromosome structure and

repeat content. Although a complete gene

catalog is an important deliverable of a ge-

nome sequencing project, the genome as-

sembly should not be restricted to the gene

space partition, and alternative strategies of

librarypreparationandassemblyalgorithms

are needed to reconstruct the heterochro-

matic, repeat-rich sequence partition. Here,

we discussed different measures to assess

genomeand gene space completeness and

illustrated that large differences in com-

pleteness scores for the same genome

can be found. Therefore, we advise assess-

ing genome completeness both at the ge-

nome assembly and gene space level to

reliably estimate the quality of all steps of

assembly and annotation.

Figure 4. Comparison of CEGMA, BUSCO, CoreGF, and EST Mapping Completeness Scores for 12 Plant Genomes.

Twelve genomes within rosids and monocots were analyzed. Left: CEGMA, BUSCO, coreGF, and EST completeness scores per genome. The reported

CEGMA score was obtained from the respective genome publications. We calculated the weighted coreGF score of the respective annotated gene sets using

the rosid or monocot coreGFs according to lineage. The EST mapping completeness score is the percentage of publicly available EST sequences that could

be mapped onto the genome. Right: Size of the circles and numbers indicate the number of missing coreGFs per genome.
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Based on our observations, we suggest

the following guidelines. (1) For genome

assembly completeness, we suggest re-

porting the estimated genome size based

on k-mer statistics of the raw sequence

reads, together with the fraction of reads

that map onto the assembled genome. In

addition, a nuclear weight estimate should

also be reported, obtained from an experi-

mental method such as PFGE or flow cy-

tometry using standardized references.

Comparison of these measures highlights

the fraction of the repeat DNA partition that

was not assembled. (2) One should provide

and compare gene space completeness

score of methods based on evolutionary

conservation and transcript mapping in or-

der to limit the effect of erroneous assump-

tions underlying the expected gene space.

For interspecies comparisons, the core

genesetusedtomodel theexpectednumber

of genesought tobedefinedat various levels

of evolutionary conservation, but including

a set as large as possible and without strong

gene function or expression biases. There-

fore, tools to define customized core gene

setsshouldbedevelopedsouserscandefine

the expected gene space at various phylo-

genetic levels, independent of the currently

available predefined core sets.

For transcript mapping, preferably differ-

ent cDNA librariescoveringa rangeoforgans

and conditions should be included to secure

a robust estimate of the expected number of

genes. In the case of very low transcript

mapping scores, one should check for con-

tamination of the transcript data sets.

(3) The correct structural annotation of

species-specific genes and fast-evolving

genes poses big challenges for a full char-

acterization of the gene space. Ideally, gene

space completeness estimates should be

applied to both the genome assembly and

the annotated gene set, as large score dif-

ferences can highlight loci in the genome

assembly that were missed by the gene

prediction. Identification of the missing cor-

eGFs can be used for the targeted investi-

gation of specific gene functions. Detection

of genes that are missing only from the

predicted gene space indicate that an opti-

mization of the geneprediction algorithms is

needed, since these tools frequently suffer

from the lack of proper training in a newly

sequenced organism. The absence of spe-

cific genes in the genome, and not just the

assembly, should be independently con-

firmed using, for example, de novo assem-

bled transcripts (Olsen et al., 2016) or

hybridization-based molecular techniques.

(4) To perform cross-species gene and

genome comparisons, one should work

only with genome assemblies that have

goodcontiguity. Highly fragmentedgenomes

with low N50 values (for example, genomes

wheremost contigs only contain one or a few

genes) not only limit the detection of synteny

or gene colinearity within and between spe-

cies, but also suffer fromsplit andpartial gene

models.Comparativegenomestudiesaiming

to identify genomic adaptations required for

growth inaspecificenvironmental niche (e.g.,

loss or gain of genes or pathways) should not

rely on gene space validations using evolu-

tionary conserved reference sets because

these are blind to lineage-specific genes.

Transcriptmapping is abettermeans toverify

species-specific biology.

Webelieve thesepointerswill help thenext

generation of plant scientists to assess the

quality of new genome sequences in a trans-

parent and balanced manner and to formu-

late a standard for delivering better plant

genomesequences,whichare the templates

for new biological discoveries.

Supplemental Data

Supplemental Figure 1. N50 values for plant
genomes published over the last 15 years.
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Supplemental Table 1. Data sets used to
evaluate genome assembly and gene space
completeness measures.

Supplemental Methods. Genome size estima-
tion using k-mer frequency spectra and imple-
mentation of gene space completenessmeasures
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Supplemental Figure 1. N50 values for plant genomes published over the 

last 15 years. 

The N50 values of the first 50 published plant genomes were collected from Michael and 

Jackson (2013), complemented with the ten species used in the comparison of measures 

for genome and gene space completeness. The species are ordered according to their 

lineage (Rosids, purple; Monocots, orange) and publication date. 
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Supplemental Figure 2. Theoretical example of a k-mer frequency 
spectrum. 

A k-mer frequency spectrum shows the percentage of k-mers analyzed classified by each 

coverage depth. The area under the curve reflects the total number of k-mers analyzed, 

while the peak value depicts the mean k-mer coverage depth. The genome size can be 

estimated as their respective ratio. An additional peak positioned left from the mean k-

mer coverage depth would correspond to k-mers that are associated with SNPs or other 

polymorphisms. This allows to estimate the polymorphic rate in highly polymorphic 

genomes. Sometimes the quality of the sequencing data is poor. This would lead to a 

shift towards lower k-mer frequencies indicating the number of read errors. K-mers that 

are localized in repeat regions will not appear uniquely in the genome. Their frequencies 

will reflect their copy number in the genome, leading to a bump at higher coverage. 

Adapted from http://koke.asrc.kanazawa-u.ac.jp/HOWTO/kmer-genomesize.html 
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Supplemental Table 1. Datasets used to evaluate genome assembly and 

gene space completeness measures. 

Species Taxonomic 
clade 

Size (Mb) # 
sequences 

Scaffold 
N50 (kb) 

# ESTs Ref. 

Arabidopsis 
thaliana 

Rosids 125 7 23,460 1.529.700 (Parra et al., 2007) 

Capsella 
rubella 

Rosids 219 15,100 NA (Haudry et al., 
2013); Slotte et al. 
(2013) 

Cicer 
arietinum L. 

Rosids 738 181.462 39,990 44.618 (Parween et al., 
2015) 

Nelumbo 
nucifera 
Gaertn. 

Rosids 929 3334 3400 2207 (Ming et al., 2013) 

Primula veris Rosids 302 164 NA (Nowak et al., 2015) 

Pyrus 
communis L. 

'Bartlett' 

Rosids 265 142.083 27,400 450 (Chagné et al., 
2014) 

Raphanus 
raphanistrum 

Rosids 254 68.331 10 81.524 (Moghe et al., 2014) 

Vigna 
angularis 

Rosids 443 3387 703 11.199 (Kang et al., 2015) 

Lolium 
perenne 

Monocots 1128 48.415 70 19.774 (Byrne et al., 2015) 

Oryza sativa Monocots 389 16 29,895 987.327 (Parra et al., 2007) 

Setaria italica Monocots 510 37.854 47,600 66.027 (Zhang et al., 2012) 

Phalaenopsis 
equestris 

Monocots 1086 236.185 359 5604 (Cai et al., 2015) 

* CEGMA score reported in Figure 4 was obtained from this reference.
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In total, twelve species including rosids and monocots were used to compare gene space 

completeness measures. Based on an initial list of 18 studies that used CEGMA to assess 

the completeness of a sequencing project within flowering plants, assembled sequence 

information could be retrieved for ten species. These datasets covered seven rosid 

species (C. rubbella, C. arietinum L., N. nucifera Gaertn., P. veris, P. communics L. 

‘Bartlett’, R. raphanistrum, V. angularis) and three monocots (L. perenne, P. equestris, S. 

italica). A. thaliana and O. sativa were also included as the oldest, high-quality reference 

genomes, which were sequenced using a gold-standard BAC-clone based approach and 

are thoroughly expert curated. 

Supplemental Methods 

Genome size estimation using k-mer frequency spectra 

The genome size can be estimated by counting the k-mer frequencies. Several algorithms 

are available that count the number of occurrences of each substring of length k in raw 

sequencing data. The results are summarized in a histogram, leading to an empirical 

distribution of the DNA k-mers. Several models for the distribution of k-mers have been 

proposed that try to estimate genome characteristics more accurately in highly repetitive 

or heterozygous genomes (Liu et al., 2013). 

The genome size can be calculated using the information one gets from a k-mer 

frequency spectrum (Supplemental Figure 2). First, the total number of k-mers analyzed 

should be determined. This number is equal to the area under the frequency curve, and 

can be calculated as the total number of reads multiplied by the number of k-mers that 

can be found in each read: 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑚𝑒𝑟𝑠 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 × (𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑘 + 1) 

Next, the depth of coverage should be determined. For non-repetitive regions of the 

genome, the histogram should be normally distributed around a single peak. The peak 

value is the mean k-mer coverage depth in the sequencing data. 

Finally, the genome size can be calculated as follows: 

𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑚𝑒𝑟𝑠

𝑘𝑚𝑒𝑟 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑝𝑡ℎ
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CEGMA 

The CEGMA completeness score reports the number of conserved eukaryotic genes that 

could be found in the genome assembly using an accurate mapping protocol (Figure 1C). 

Partial and complete CEGMA scores refer to the presence of a gene fragment or a 

complete copy, respectively. For the ten species included in the comparison, the complete 

CEGMA score was extracted from the corresponding genome paper. The CEGMA score 

of A. thaliana is equal to 100%, as this species was one of the six eukaryotic species 

used to define the CEGMA core gene set. 

 

BUSCO 

Whereas CEGMA only works on raw genome or transcript sequences and performs gene 

prediction prior to the completeness estimation, BUSCO can be applied on a genome 

sequence as well as on an annotated gene set. For all species included in the comparison, 

the BUSCO plant profiles (only available upon request) were used to calculate genome 

and gene set completeness scores. For dicot and monocot species, Augustus was trained 

with A. thaliana or Zea mays, respectively. The completeness score was calculated as 

the percentage of complete and partially recovered BUSCO groups.  

 

Transcript mapping score 

For twelve species, EST sequences were obtained from the NCBI Nucleotide EST 

database (downloaded on October 12, 2015). The EST sequences were mapped to their 

respective reference genome using GMAP with default parameters (Wu and Watanabe, 

2005). We collected all EST sequences that are publicly available for A. thaliana (186 

libraries, ranging from 1 to 541,852 ESTs per library, 1,529,700 ESTs in total) and O. 

sativa (220 libraries, ranging from 1 to 53,637 ESTs per library, 987,327 ESTs in total). 

For A. thaliana and O. sativa, all ESTs were also mapped on simulated incomplete 

genomes. To simulate genome fragmentation, the genome was cut into pieces of 10kb 

and incomplete genomes were constructed by randomly selecting 50%, 75%, 80%, 90%, 

95%, and 100% of these fragments. Next, we randomly sampled ESTs, to construct bin 

sizes containing 100 up to 300,000 ESTs, and for each bin we estimated which fraction 

was mapped onto the genome. Optionally, an extra filtering step was applied retaining 
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only EST mappings with >90% coverage. For each bin size, the mean and standard 

deviation of the transcript mapping score was calculated over 100 random replicates per 

bin size. In a second approach, each EST was assigned to its original EST library, and 

the transcript mapping score was calculated per EST library.  

CoreGF completeness score 

Three sets of coreGFs have been defined: green plants, based on conserved genes in 

25 species including angiosperms, mosses and green algae (2928 coreGFs); rosids, 

based on conservation in 12 species (6092 coreGFs); and monocots, based on 

conservation in 5 species (7076 coreGFs). A BLAST-based sequence similarity search is 

applied per set of transcript sequences or predicted proteins to detect the presence of a 

coreGF, using one representative protein per coreGF. The representation across all 

individual coreGFs is summarized in a global weighted coreGF score, where large gene 

families get a smaller weight than single-copy families, as the former have a higher 

probability to be detected. All three coreGF sets, a preformatted BLAST database and a 

python3 script to calculate the coreGF score are available via 

ftp://ftp.psb.ugent.be/pub/plaza/plaza_public_02_5/coreGF/. More details can be found in 

the enclosed README file. 

Expression and gene function bias of CEGMA and coreGFs 

Gene function bias was determined through Gene Onotology enrichment analysis using 

the PLAZA 3.0 Dicots Workbench using GO source ‘primary’ (Proost et al., 2015) for the 

CEGMA core genes, BUSCO groups and the coreGFs of green plants and rosids. As 

there is no information available on which A. thaliana genes are present in the BUSCO 

plant profiles, the best hits of the A. thaliana gene set were used. The expression bias 

was assessed through A. thaliana gene expression analysis using the Compendium2 

from the CORNET database (De Bodt et al., 2010). Highly similar experiments were 

removed by clustering the experiments using a 0.95 Pearson Correlation Coefficient 

threshold and taking into account the sample descriptions available in Gene Expression 

Omnibus. This resulted in an expression atlas of 75 experiments. Expression bias was 

determined for all expressed A. thaliana genes, the CEGMA core genes, the A. thaliana 

ftp://ftp.psb.ugent.be/pub/plaza/plaza_public_02_5/coreGF/
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BUSCO best hits (n=850 because some genes are not present on the ATH1 microarray) 

and the coreGFs of green plants and rosids. For each gene in these gene sets, we 

counted the number of experiments in which the gene is expressed (expression value > 

2^7.5) and summarized the values in an expression breadth histogram. 
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