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|.  INTRODUCTION

1.1. LONG NON-CODING RNA

The central dogma of molecular biology ‘DNA makes RNA makes protein’ is no more. Protein
coding genes are no longer the largest class of genetically encoded entities in the human
genome, as a myriad of long non-coding RNAs (IncRNAs) have been sequenced and await

functional characterization.

The publication of the first draft of the human reference genome in 200112 marked
the beginning of the post genomic era. With the reference genome at hand,
researchers began to explore the transcriptome, the part of genome that is
transcribed into RNA. Until recently, messenger RNAs (mRNA) were thought to be
the most prevalent and important entities of the human transcriptome. After
transcription and splicing (Figure 1), these transcripts are exported to the cytoplasm
where they serve as templates for protein synthesis. About 22,000 genes in the
human genome produce mRNA transcripts, collectively referred to as protein coding
genes as their sequences encode the amino acid sequences for a protein. Non-
coding genes on the other hand are not translated into protein; the RNA transcript
itself or a derivate RNA molecule forms the functional product of the corresponding
gene. Several thousands of non-coding genes have been discovered and functionally
described. The majority of the functionally annotated non-coding RNA transcripts
are further processed into short RNA molecules with diverse functions in genetics.
MicroRNA (miRNA) and small nucleolar RNA (snoRNA) for instance, are two well

described classes of non-coding RNA3.

One of the most surprising discoveries brought about by the spectacular
advancements in (RNA) sequencing technology is the extensive transcription arising
from regions previously regarded as genomic wasteland. Both large-scale
collaborative efforts, such as the ENCODE (Encyclopedia of DNA Elements)* project
and the FANTOM (Functional ANnoTation Of the Mammalian genome)5 consortium,
and smaller projects by individual research groups®#8 have expanded the known

human transcriptome several times in numbers of transcripts. The great majority of
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these novel transcripts are long (> 200 nt), multi-exonic and without conserved open
reading frames (ORFs)®°. As such they give rise to a new genetic class called long
non-coding RNAs (IncRNAs). Recently, RNA sequencing of over 7,000 human tumor
samples revealed more than 90,000 distinct IncRNA genes, making this the largest

genetic class in the human genome?°,

mRNA expression IncRNA expression
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Figure 1: Protein coding mRNA versus IncRNA expression. Both mRNA and IncRNA
are transcribed by RNA polymerase Il and can undergo splicing. mRNA subsequently
binds with ribosomes and is translated to protein. While a protein is here the
functional entity and not the mRNA, IncRNA is functional in itself often through
complex secondary structures.

LncRNA genes resemble their protein coding counterparts in genetic structure.
Although IncRNA transcripts are on average slightly smaller, they can also be multi-
exonic and subject to alternative splicing®. Even from an epigenetic perspective they
are very similar. Their promoter and gene body regions exhibit the same chromatin

modifications associated with RNA polymerase |l transcribed protein coding genes''.

Compared to mRNA, the expression levels of IncRNA are typically lower yet more
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tissue and cell-type specific®. Interestingly, the most extensive IncRNA expression is
found in the testes®. While protein coding genes are evolutionary well conserved,
IncRNA genes appear to be the result of more recent evolutionary adaptations as
their sequence conservation scores are often much lower®. Most importantly,
IncRNAs lack ORFs that exhibit the evolutionary pattern typically observed for
protein coding ORFs or any other evidence of protein coding potential®°. Moreover,
on the subcellular level, IncRNAs are found to be more nuclear enriched compared
to protein coding mRNAs* An observation that is highly suggestive for a function

that does not require ribosomal translation.

1.2. LNCRNA FUNCTIONS

In sharp contrast to the extraordinary rate at which new IncRNAs are being reported,
the rate at which they are functionally characterized is low. Currently, less than 200
human IncRNA genes have been functionally studied (181 according to
Incrnadb.org!? and 191 according to genenames.org'?). A surprisingly low number
considering more than 4,400 IncRNA papers have been published to date. Indeed,
the majority of publications is focused on just a handful of INcRNAs!3. Nevertheless,
the biological processes in which IncRNAs are known to be involved are numerous

and diverse.

DOSAGE COMPENSATION: EARLY EVIDENCE FOR FUNCTIONAL LNCRNAS

The cellular process where IncRNAs made their debut is X-chromosome inactivation
(XCI). Without a doubt this is currently the best and most extensively described
process that shows how IncRNAs can play crucial roles in a cell. XCl is the mechanism
that balances the gene expression on the X-chromosome between sexes in
mammals. The role of a non-coding RNA in XCl has been recognized since 1992 when
a 17 kb IncRNA was found to be exclusively expressed from the inactive X
chromosome!*, Referred to as the X-inactive-specific transcript (XIST), this IncRNA
appeared to coat the entire inactive X-chromosome (Xi)'®. Currently it is recognized
that XCI requires the interplay between several IncRNAs expressed from the same
genomic locus (X-inactivation center). The TSIX IncRNA is expressed on the active X-

chromosome (Xa) and prevents inactivation by epigenetic silencing of XIST®. In the
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absence of TSIX expression XIST recruits chromatin modifying complexes. Together
with XIST, these complexes spread across the entire chromosome, eventually

silencing the Xi'’.

EMBRYONIC DEVELOPMENT AND CELL DIFFERENTIATION

The discovery of pervasive IncRNA transcription in the human HOX loci already
suggests an important role for IncRNAs in development and differentiation'8. This
role is further confirmed by the finding that the majority of IncRNAs expressed in
mouse embryonic stem (ES) cells have implications in ES cell transcriptional
regulation and are associated both with cell differentiation and pluripotency?®°.
Indeed, several IncRNAs have been discovered that aid in maintaining the
pluripotent state and prevent differentiation into specific lineages. The IncRNA LINC-
ROR for instance, was found to be crucial for induced pluripotent stem cell and ES
cell survival. LINC-ROR is under transcriptional control of the key pluripotency
transcription factors SOX2, OCT4 and NANOG and probably promotes survival by
inhibiting the p53 response pathway?°. In addition to pluripotency, various IncRNAs
have been implicated in embryonic development. Morpholino-mediated inhibition of
the conserved IncRNAs cyrano and megamind in zebrafish embryos results in severe
but distinct phenotypes. While the cyrano morphant showed many developmental
defects resulting in an overall body malformation, megamind knockdown resulted in
specific brain and eye defects, pointing to a role in brain development?!. Also in
other species IncRNAs were found with roles in embryonic development. In mouse
embryogenesis, two IncRNAs have been implicated in cardiac development. The
poetically named IncRNA Braveheart (BVHT) has been identified and studied in
mouse ES cells. BVHT was found to be a key regulator in a cardiac gene network and
its expression is required for cardiac cell fate?2. In vivo evidence for the crucial role of
IncRNAs in mammalian development was found with the IncRNA FENDRR (Fetal-
lethal noncoding developmental regulatory RNA). Not only were homozygous
FENDRR mutants embryonic lethal, they showed an impaired heart and body wall

development?,

IMPLICATIONS IN DISEASE
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The currently reported functions of IncRNAs go well beyond dosage compensation
and development. They have been associated with processes as diverse as immune
response?4, paraspecle formation?® and growth arrest?®, Given their central role in
many cellular pathways it should be no surprise that dysregulation of IncRNAs is
often associated with disease. LncRNAs have already been implicated in an variety of
diseases?’ including COPD?2, AIDS?°, Alzheimer’s disease3°, cardiovascular diseases?®?,
autoimmune diseases3? and cancer. In addition, IncRNAs have been associated with
rare disorders such as the Beckwith-Wiedemann syndrome33, Angelman syndrome34,

Klinefelter’s syndrome3® and blepharophimosis syndrome3®.

1.3. LNCRNAS IN CANCER

Numerous reports on IncRNA involvement in cancer have been published to date, far
more than any other disease or process?’. These reports include both oncogenic and
tumor suppressive IncRNAs, implicated in many different cancer types (Table 1). Like
cancer itself, their individual mode of action is diverse. In fact, distinct IncRNAs have
been associated with all of the hallmarks of tumor biology proposed by Hanahan and

Weinberg3738,

HOTAIR is one of the most frequently described oncogenic IncRNAs to date. Elevated
expression is found in breast cancer3?, colorectal cancer® and pancreatic cancer?!,
and is associated with poor prognosis and metastasis. Transcribed from the HOXC
locus, HOTAIR regulates gene expression in trans (unlike other IncRNAs in that locus)
on many genomic loci including HOXD (the mechanism is further described in section
1.4)'8, Among the genes regulated by HOTAIR are several genes with important roles

in different aspects of cancer biology3°4L.
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Table 1: A summary of IncRNAs with a published role in cancer. With new cancer
associated IncRNAs reported on a weekly basis, this list is far from complete.

Role LncRNA Cancer type

CCAL Colorectal cancer?®?
FAL1 Ovarian cancer®
R .
c HOTAIR  Breast cancer®, colorectal cancer®’, pancreatic cancer
oY}
o
©  MALAT1 Lung cancer**, hepatocellular cancer®, bladder cancer®’
(@]
PCGEM1 Prostate cancer®®
PVT1 Gastric cancer??, ovarian & breast cancer®
GAS5 Breast cancer>?
[J]
>
§ MEG3 Pituitary adenoma®?*3, meningioma>*, hepatocellular cancer®>,
Y thyroid cancers®
2
2' PTENP1 Prostate cancer®’
>
[

TUSC7 Colorectal cancer®®

MECHANISMS OF LNCRNA DEREGULATION IN CANCER

Almost every cell in the body of a multicellular organism has the potential to
abandon its task and develop into a tumor. Cancer cells are characterized by their
ability to evade the intrinsic mechanisms that prevent uncontrollable growth and
dedifferentiation®. These characteristics result from genetic changes that are either
acquired during the lifetime of an individual (somatic) or inherited (germline).
Somatic mutations arise from exogenous mutagenic exposures and mitotic DNA copy
errors and accumulate over time®. While the majority of the mutations are so-called
passenger mutations that will not confer growth advantage, some mutations will by
chance affect one of the many cancer genes in the genome. These mutations are
driver mutations and they promote progression of a cell into a cancer cell.%.
Mutations can be small, affecting only a single basepair or larger such as
translocations and copy-number variations. Somatic copy-number aberrations

(SCNAs) are extremely common in cancer and due to their size the earliest studied
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type of genetic change®?. By studying the copy-number profile of cancer cells,
researchers have discovered many important oncogenes and tumor suppressor
genes. In doing so, they contributed to development of improved therapeutics and
treatments®®. While some cancer genes are rarely affected or affected only in
specific cancer types, others are broadly affected in many patients and entities. MYC
and CDKN2A/B for instance, exhibit copy-number chances in as many as 30% of all

human tumors®?.

Even though SCNAs affecting protein coding genes in cancer have been extensively
studied, IncRNAs have been largely overlooked in this regard. This can be explained
by the use of outdated genomic annotation in the design and analysis of the used
platforms. To overcome this problem, some researchers have repurposed existing
DNA microarray platforms and re-annotated the probe content with current IncRNA
annotation®*%>, These efforts led to the identification of new prostate cancer
associated IncRNAs®> and the discovery of the oncogenic IncRNA FAL1 (focally

amplified INcRNA on chromosome 1)%3,

Single nucleotide polymorphisms (SNPs) constitute a second class of well-studied
alterations in the cancer genome. Especially due to the many genome-wide
association studies (GWAS), numerous SNPs have now been linked to specific
diseases including cancer. Interestingly, about half of the cancer GWAS hits fall
outside of known protein coding loci. While some likely affect cis-regulatory regions
of nearby genes, many of those may be transcribed as IncRNAs®®. Early evidence of
SNPs affecting the function of IncRNAs in cancer has been reported for the IncRNA
ANRIL®’. In fact, ANRIL was identified as a major genomic hotspot in GWAS. The 126
kb gene spans several SNPs that are associated with a variety of diseases including
gliomas and basal cell carcinomas. More recently, re-annotation of SNP and GWAS
databases provided many more SNPs that potentially affect IncRNAs®®. To detect
disease-causing SNPs in protein coding genes, the discrimination between
synonymous SNPs (those that do not alter the protein sequence) and non-
synonymous SNPs is typically made. It is important to note that this classification is

not usable for IncRNA SNPs. While some authors have tried to predict the effect of
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SNPs on the secondary RNA structure®, the field currently lacks established tools

that can be used for these predictions.

Given that the mature RNA is the functional form of IncRNA genes, measurements of
IncRNA expression therefore closely represent the levels of the active molecule.
Quite a few IncRNAs exhibit deregulated expression in cancer that is often reported
as predictive for disease severity and progression*v4>4770 As such, whole-
transcriptome analysis of cancer tissue led to the identification of several
differentially expressed IncRNAs, for instance PCAT-1 in prostate cancer’:. Recently,
analysis of the combined transcriptomes of thousands of cancer and normal samples

revealed 8,000 lineage or cancer-associated IncRNA genes?.

LNCRNAS TO THE CLINIC

Although IncRNA therapeutics is still in the early stages of development, their tissue*
and cancer!? specific expression makes them ideal candidates both as biomarkers
and targets for therapy. In addition, IncRNAs are often found to be involved in
epigenetic regulation of many target genes’? and, as such, can exert broad effects on

gene expression and cell functioning.

Obviously, targeting oncogenic IncRNAs would be an interesting therapeutic
approach. Down-regulation of IncRNA expression in vivo can be achieved by
antisense technology such as antisense oligonucleotides (ASOs)**. While the first
antisense drugs showed poor performance in clinical trials’3, second generation
drugs are well on their way to the clinic with many drugs efficiently targeting both
protein coding and non-coding RNAs’®. Degradation of an oncogenic IncRNA is
however not required to disturb its undesired activity. As many IncRNAs require
interaction with protein partners such as Polycomb repressive complex 2 (PRC2) to
exhibit their function, a disruption of this interaction is sufficient to block IncRNA
functionality. Such a steric hindrance could be achieved by both small molecules and
ASQOs, the latter being currently under development by the Massachusetts-based

company RaNA Therapeutics’>.

In particular IncRNAs that act in cis on tumor suppressor genes make interesting

potential drug targets. As antisense IncRNAs typically repress transcription from the

INTRODUCTION 14



opposite strand, targeting them could induce expression on the sense strand.
Researchers have demonstrated this concept in vivo for the BDNF locus, as targeting
the BDNF-AS transcript with ASOs resulted in a sevenfold increased expression of
BDNF’®. Given the frequent occurrence of antisense transcription’’, this could be an

approach to reactivate specific tumor suppressor genes in cancer.

LncRNAs have been proposed as potent biomarkers in cancer as the expression
levels of several IncRNAs have been shown to be indicative for disease severity or
progression?4>47.70  Fyrthermore, several IncRNAs are present in bodily fluids at
detectable levels. For instance, the hepatocellular carcinoma associated IncRNA
HULC (highly upregulated in liver cancer) shows great potential as biomarker since
its expression is highly correlated with tumor grade. HULC RNA is detectable in
plasma of patients which makes testing fast and safe’®. Even more convenient
testing is possible through exosomal IncRNA in urine. Linc-p21 for instance, has a
higher exosomal concentration in the urine of patients with prostate cancer’®.
Although the majority of IncRNA based biomarkers are still under development, one
IncRNA already found its way to the clinic as a biomarker in prostate cancer. The
Progensa PCA3 assay, based on the concentration of the prostate cancer associated
3 (PCA3) IncRNA in urine, was recently approved by the FDA as biomarker for
prostate cancer’®; urinary PCA3 levels are predictive for positive biopsies and

outperform other biomarkers®°,

.4. MECHANISMS OF LNCRNA FUNCTION

LNCRNAS AS GUIDES OR SCAFFOLDS FOR CHROMATIN MODIFICATION

Chromatin remodeling is an important mechanism for the regulation of gene
expression at specific loci. Euchromatin is an open structure whereby the DNA is
accessible enabling active transcription, whereas heterochromatin is more
condensed with little or no transcription possible. The transition between the two
states depends heavily on modifications of specific amino acids in the N-terminal
tails of histones, often referred to as the histone code. The effect of the modification
depends on the histone (H2A, H2B, H3 or H4), type of modification (commonly

acetylation or methylation) and the specific amino acid that is modified, making the

INTRODUCTION 15



histone code extensive and complex81.82, A feature associated with transcriptionally
silenced chromatin is trimethylation of histone H3 on lysine 27 (H3K27me3) brought
about by PRC2. This multiprotein complex localizes to specific sites in the genome
where H3K27 is methylated through its enzymatic subunits EZH1 and EZH283. PRC2
and other chromatin-modifying complexes are often ubiquitously expressed and
target a wide range of genes, while the epigenetic pattern heavily depends on cell
type and condition. What determines the specificity of these enzymatic complexes
has long remained unclear, but is now thought to be mediated by specific
IncRNAs7283, Several IncRNAs have been found to associate with and guide PRC2,
notable examples are XIST84, HOTAIR18 and ANRILS>. Interestingly, some IncRNAs
target PRC2 in cis to nearby genomic loci8* while others work in trans18 on many loci

spanning several different chromosomes.

In addition to PRC2, IncRNAs have been found to function as a guide for other
chromatin-modifying complexes as well. HOTTIP for instance, regulates gene
activation by interacting with WDR5, directly recruiting the MLL H3K4 methylase
complex to maintain H3K4me3 (H3K4 methylation is associated with active
transcription)8¢, HOTAIR is an intriguing example, as this IncRNA appears to interact
with both demethylase and methyltransferase complexes. The 5" domain of HOTAIR
interacts with components of PRC2 while the 3’ domain binds lysine specific
demethylase 1A (LSD1) a component of COREST/REST repressor complexes. LSD1
mediates H3K4me2 demethylation. In the absence of HOTAIR, H3K4me2 gain and
H3K27me3 loss is observed in the HOXD locus, suggesting that HOTAIR functions

both as a molecular scaffold and as a guide of PRC2 and LSD187 (Figure 2a).

LncRNAs with a guide function are thus believed to associate both with protein and
DNA and function as a bridge between both. RNA-protein interactions are fairly
common; in fact RNA-binding proteins are one of the most abundant human protein
classes with over 1,500 members®. RNA-protein interactions require a complex
three-dimensional structure of both the RNA and the protein and generally involve
conformational changes to either or both interaction partners8?. The exact
mechanism of RNA-DNA interaction however, remains unclear. Local RNA:DNA

hybrid triplexes are a possible explanation®?9, but there is little evidence to support a
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widespread role for such a mechanism. Preliminary results from chromatin isolation
by RNA Purification (ChIRP)?1 have revealed that genomic IncRNA binding sites are
small, numerous and sequence specific. As chromatin marks typically span several
kilobases, this indicates that chromatin-modifying complexes are recruited by
IncRNAs to specific loci and subsequently spread out bilaterally2. However, more

research is needed to uncover the mechanism behind IncRNA-chromatin association.
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Figure 2: LncRNA modes of action. a) HOTAIR functions as a guide and as a molecular
scaffold for histone-modifying complexes LSD1 and PRC2. In this way, it silences its
target genes. b) The IncRNA GAS5 acts as a decoy for the glucocorticoid receptor
transcription factor trough a hairpin resembling its genomic target. ¢) The PTEN
pseudogene PTENP1 shares a set of miRNA target sites with its ancestor. By binding
the miRNAs it prevents downregulation of PTEN. d) DLX5 and DLX6 share an
enhancer region that harbors EVF2 IncRNA. EVF2 induces DLX5/6 gene expression is
cis by interaction with other DLX proteins. e) In the absence of the ZEB2 NAT, the
internal ribosome entry site is removed from the ZEB2 transcript by splicing and

translation is inhibited. Only when the ZEB2 NAT anneals with the splice-site efficient
translation is possible.
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Decoy LNCRNAS

If IncRNAs can bind with proteins to enhance their function, it is not hard to imagine
they can inhibit protein functions as well. The IncRNA GAS5 (growth arrest—specific
5) for instance, functions as a repressor of the glucocorticoid receptor (GR) when
cells undergo growth arrest due to starvation. A specific domain located in the stem
of a hairpin in the mature GAS5 RNA highly resembles genomic glucocorticoid
response elements (GRE) normally found in the regulatory regions of glucocorticoid-
responsive genes. GR recognizes and binds this domain on GAS5 and can no longer
carry out its normal function as a transcription factor2¢ (Figure 2b). Other
transcription factors are inhibited by IncRNAs as well. The transcription factor NF-YA,
known for the induction of pro-apoptotic genes downstream of p53, is blocked by a
IncRNA from the CDKN1A locus named PANDA (P21 associated ncRNA DNA damage

activated)?s.

In addition to transcription factors, IncRNAs have been show to function as decoys
for DNA methyltransferases. In this way, they can prevent gene silencing in cis as
was shown for the CEBPA locus. Together with CEBPA mRNA, a IncRNA spanning the
locus in sense is transcribed. This 4.5 kb RNA is termed extra-coding CEBPA
(ecCEBPA) as it spans the entire coding region of CEBPA. It interacts with DNA
methyltransferases 1 (DNMT1) through a stem-loop structure and protects the
CEBPA locus from genomic methylation by the methyltransferase. This mechanism,
whereby a sense spanning IncRNA prevents silencing of an actively transcribed locus,

may exist for many more genes?4.

COMPETING ENDOGENOUS RNAS

MicroRNAs (miRNAs) comprise an extensively studied class of small (21-25 nt) non-
coding RNAs. They restrain the translation of their target mRNAs typically by
incomplete basepairing with the 3" UTR region of the target at specific seed regions.
The target RNA is recognized and degraded by a miRNA-loaded RISC protein
complex, ultimately leading to a decrease in the protein abundance of the target9.
LncRNAs can interfere with the function of miRNAs, as was first shown for the PTEN
pseudogene PTENP1. Since the 3’ UTR of PTENP1 is highly homologous to that of

PTEN, they share several miRNA seeds. Regulatory miRNAs that would normally
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target PTEN bind to PTENP1 instead. PTENP1 thus acts as a miRNA decoy and
prevents downregulation of the PTEN tumor suppressor>7 (Figure 2c). LncRNAs that
carry out this kind of post-transcriptional regulation are also referred to as
competing endogenous RNAs (ceRNA) or miRNA sponges. Other examples of

IncRNAs belonging to this subgroup are LNCMD1% and LINC-ROR?7.

A very peculiar subtype of IncRNA that must be mentioned here is circular RNA
(circRNA). Members of this recently discovered class of RNA, such as ciRS-7, have
been shown to function as highly efficient miRNA sponges due to their resistance to

conventional miRNA destabilization98:99,

However, these individual examples are most likely oversimplifications as crosstalk
between different RNA species through miRNA binding sites is likely common. It is
hypothesized that a large number of RNAs, both coding and non-coding, compete for

the same set of miRNAs, thus forming a large-scale regulatory network00,

LNCRNAS CONTROL TRANSCRIPTION IN CIS

Several IncRNAs have been found to directly regulate the expression of other genes
in the same locus10l, Furthermore, a large number of IncRNAs reside in annotated
enhancer regions102103, An example is EVF2, a IncRNA transcribed in the enhancer
region of DLX5 and DLX6. EVF2 combines with DLX2, a protein encoded in a different
DLX gene cluster. Together, the EVF2-DLX2 complex promotes the transcription of
the DLX5/6 gene cluster (Figure 2d). Using incremental deletions, the functional
domain of EVF2 was narrowed down to a 300 bp region that corresponds to an

ultraconserved region in the genome104,

A different subclass of IncRNAs that regulates gene expression in cis is that of the
natural antisense transcripts (NATs). NATs are typically defined as transcripts that
overlap in part with a protein coding transcript but are transcribed from the
opposite DNA strand!95. For the majority of protein coding loci, antisense
transcription is observed, making this a large but poorly understood subclass of
IncRNAs. Although several NATs function by directing epigenetic mechanisms
already described in previous sections, they can also reduce transcription of the

sense strand via a mechanism determined by their orientation. The transcription
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collision model states that the act of transcription on the antisense strand rather
than its product inhibits transcription of the sense strand”’. It is unclear however
how many NATSs follow this model of transcriptional repression. Due to their (partial)
sequence complementarity, NATs can form RNA duplexes with the sense transcript
and interfere with splicing and RNA editing””. A well-studied example of this kind of
post-transcriptional regulation is found in the ZEB2 locus. In the absence of the NAT,
which is transcribed from a different promoter downstream of the ZEB2 promotor,
the ZEB2 gene cannot be translated. Only when the ZEB2 NAT is expressed together
with the ZEB2 transcript, efficient translation occurs. This particular NAT
complements a splice site in the 5’ region of the ZEB2 transcript and induces intron
retention upon annealing. The intron contains an internal ribosome entry site

required for efficient translation and expression of the ZEB2 protein196 (Figure 2e).

Although antisense transcription seems to be a prevalent feature of eukaryote
genes, the NATs are likely a diverse group of IncRNAs that enhance or reduce

transcription of the sense transcript.

In addition to NATs, many transcript loci produce Promoter Upstream Transcripts
(PROMPTs). These unstable RNA transcripts are produced up to 2.5 kilobases
upstream of active transcription start sites. The function PROMPTs is currently
unresolved although it is speculated that they affect nearby gene expression by

competition for transcription machinery07,108,

LNCRNA SUBCLASSIFICATION

It is apparent that several IncRNAs have a function that is mechanistically dependent
on their relative position and orientation to adjacent protein coding genes. As a
result, this is often used to subclassify IncRNAs into distinct classes'?>112, Although
different authors have been using slightly different definitions, the following five

classes are typically distinguished:

Antisense. The IncRNA is transcribed from the opposite strand to the protein coding

gene. Overlap can be complete or partial.

INTRODUCTION 21



Intronic. The entire IncRNA transcribed is contained within an intron of a protein
coding gene. Sometimes a further distinction is made according to the relative

orientation to the protein coding gene.

Bidirectional. The IncRNA and the protein coding gene are divergently transcribed

with the start positions within a few hundred basepairs of each other.

Sense overlapping. The IncRNA and protein coding gene overlap and reside on the

same strand. As such they share a portion of their sequence.

Intergenic. LncRNA that no dot overlap with a protein coding gene on either strand.

I.5. LNCRNA CONSERVATION

In the past, sequence conservation has proven to be a valuable selector for
functionality. The low conservation of IncRNAs compared to mRNAs8113 has thus led
some researchers to regard them as just functionless artifacts of transcription114,
Notably, the amount of non-coding DNA in an organism’s genome is highly
correlated with biological complexityl1>. As such, one could argue that the
differences found in protein coding genes alone cannot explain the distinction
between higher evolved species and more primitive ones, and that recently evolved
evolutionary adaptations can only be explained by recently evolved genetic entities
found in the non-coding part of the genome. In addition, basepair conservation
scores such as PhastCons!16 or PhyloP117 might not be suitable measures to assess
the true functional conservation of a non-coding gene. For instance, although the
function of XIST is conserved between human and mouse, its sequence shows poor
overall conservation18, The position of the XIST-specific tandem repeats (key
elements in the function of XIST) however showed striking resemblance between the
two species. This suggests that not the sequence but the position and pattern of
tandem repeats is responsible for the functional conservation of the genells, In
addition, a large-scale study on zebrafish IncRNAs showed that for the majority of
zebrafish IncRNAs, sequence similarity to mammalian IncRNAs is absent or limited to
a short region of high conservation. However, in two IncRNA knockout models, the
phenotype could be rescued by adding the mouse or human ortholog2l. This

demonstrates again that functional conservation of IncRNAs not necessarily requires
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sequence conservation. As a result, other measures for conservation have been
developed and used to study IncRNA evolution. When examining the conservation of
splice sites, it was found that more than 70% of the human IncRNAs is conserved
within placental mammals and 15% dates back even further!1? (Figure 3 left panel).
The conservation of IncRNA promoter sequences has been studied as well, and
evolutionary selection to an extent comparable to that of protein coding genes could
be detected for the majority of IncRNA promoters!20, Of particular interest in this
regard is a large-scale RNA sequencing effort to explore the evolution of IncRNAs
based on their transcripts!?l. In this study, the transcriptomes of 8 organs from 11
tetrapod species (ranging from Xenopus to human) were sequenced. With only a
limited number of species-specific IncRNAs, over 80% was found to be primate-
specific (Figure 3 right panel). Although the number is relatively small, 425 IncRNAs
(3%) appear to have originated more than 300 million year ago. Interestingly, these
ancient IncRNAs have promoters enriched with homeobox transcription factor
binding sites, suggesting a role in embryogenesis. Although the different methods
used to assess IncRNA conservation each have their differences and particularities,
they all agree that the great majority of IncRNAs is conserved to a larger extent than

initially presumed only based on sequence conservation.
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Figure 3: Two different methods shed different lights on IncRNA evolution. Splice-

site conservation (left panel) suggests that most IncRNAs were already present at the

divergence of placental mammals (orange). Of the 5,413 human IncRNAs examined

in this study, 2,905 (54%) have emerged at this divergence and a substantial number

are even older. Transcript sequence similarity (right panel) however, suggests most
IncRNAs are more recent evolutionary adaptations. Here, only 1,476 (10%) IncRNA
families are found to be specific for placental mammals while 9,584 (65%) are

primate-specific. Even though the methods disagree on the evolutionary age of

IncRNAs, they both yield a large number of conserved IncRNAs. Adapted from

Nitsche et al.11® and Necsulea et al.12!.
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[.6.  STUDYING LNCRNA STRUCTURE

It is often speculated that IncRNAs perform their function through a specific and
complex secondary and tertiary structure. Unfortunately, IncRNA structure and its
relation to function is currently poorly understood and functional reports are mostly
limited to small domains of the IncRNA. For instance, the tandem repeat regions in
XIST are not only the most conserved part of the gene; they have also been shown to
form an intricate stem-loop structure'??. Components of PRC2 can specifically
interact with this structure, suggesting that this domain functions in PRC2
recruitment. The most conserved part of MALAT1 corresponds to a cloverleaf-like
structure at the 3’ end of the transcript. Further processing of the transcript results
in cleavage, producing a small tRNA-like RNA called the mascRNA (MALAT1
associated small cytoplasmic RNA). The function of mascRNA however remains

unclear!?.

Secondary RNA structures can be studied using either in silico or in vitro
methodologies. Several algorithms have been implemented to predict the most
probable conformation of nucleic acids in the cellular environment. A popular
approach is the use of dynamic programming to find the set of base pairings that
result in the structure with the lowest free energy. Quite a few programs are
implementations of such an algorithm, including UNAFold*?4, RNAstructure!?> and
the ViennaRNA suite!?®. It is important to note that these algorithms are prone to
false positives on long (> 200nt) RNA sequences and such MFE structures are
unreliable. Therefore, it is recommended to use a sliding window approach and
focus on local structures'?’. In vitro approaches are primarily based on determining
the positional susceptibility to certain chemical modifications or nucleases. For
instance in Selective 2’-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) 1%,
the 2’-hydroxyl group the RNA ribose component is chemically modified. Single
stranded regions, loops ore bulges are more sensitive to this reaction. To analyze
RNA structures transcriptome-wide, SHAPE can be followed by deep RNA
sequencing. This recently developed approach is referred to as SHAPE-Seq'?°.

Similarly, Parallel Analysis of RNA Structure (PARS) is based on deep RNA sequencing

of nuclease treated RNA. Two different nucleases are employed: the RNase V1,
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which specifically targets single stranded RNA and the S1 nuclease, which cleaves

double stranded RNA139,

[.7.  LNCRNA CODING POTENTIAL

Although a task of discriminating protein coding from non-coding RNA seems trivial,

it has proven to be a topic of much debate.

IN SILICO PREDICTION OF CODING ORFs

A plethora of computational methods that aim to distinguish protein coding from
non-coding sequences have been developed. Each method investigates features in
the sequence or evolution of coding ORFs that set them apart from non-coding
sequences to score transcripts of unknown coding potential. Often, some form of
machine learning is involved in the feature selection and scoring. Notable examples
are CPC131, CONC132, PORTRAIT133, CPAT134, PLEK135, iSeeRNA136 and PhyloCSF137,
There is a striking similarity in the feature sets these algorithms use. Without
assessing and comparing every algorithm in detail, a selection of interesting features

is explored in the following paragraphs.

By chance, a random progression of nucleotides can contain a short canonical ORF,
but long ORFs are unlikely to be incidental. Indeed, the (relative) ORF size is often
found to be the most powerful individual discriminator on typically used
benchmarking sets132.136, However, one might wonder if this is not just reflecting a
bias in current annotation. This is a plausible explanation as research and annotation
groups have been focusing primarily on transcripts containing ORFs larger than 300
nucleotides (100 amino acids)138. Currently, proteomics groups are shifting their
focus to small (less than 100 amino acids) but functional proteins, often called
micropeptides39. Although further research on this topic is needed, it is not
unthinkable that algorithms using current annotation as training or benchmarking
data and ORF size as a scoring feature will generate false negatives and are

unsuitable for detecting novel micropeptides in unannotated transcripts.

A second feature used by several coding potential prediction programs is similarity
to annotated protein sequences!31.132 Bjoinformatics tool such as BLASTX allow

efficient querying of protein databases using nucleotide input sequences4%. The ORF
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sequence can thus be used and the number of hits and the corresponding scores can
serve as training parameters for the prediction model131132_ A high homology to the
sequences of known proteins may however be unsuitable to detect coding ORFs in
novel transcripts. ORFs encoding proteins that are biologically distinct from already
reported proteins, such as ORFs of micropeptides, will likely be classified as non-
coding. In addition, since most annotated protein coding genes are represented in
protein databases as well, typically used benchmarking datasets will result in an

overestimation of the sensitivity obtained from this feature.

Although coding and non-coding RNA share the same alphabet, they speak a
different language. The nucleotide composition of putative coding ORFs is thus
expected to differ from that of ORFs arisen by random variation. In addition to single
nucleotide distributions, k-mer distributions (with k ranging from 1 to 6) have been
proven to be informative as well'3*135 Trimer distributions are especially important
as those reflect the codon usage within the ORF. While several different codons can
be translated to the same amino acid, some codons seem preferred over others. This
codon usage bias is one of the oldest described features of coding sequences4i,
Overall, the nucleotide composition entails a powerful set of features based on

intrinsic properties of coding ORFs with little bias to current annotations.

Over the course of evolution, synonymous nucleotide substitutions are more
common since they do not alter the function of the protein. This evolutionary
pattern can be observed in the codon substitution frequencies across multispecies
whole genome alignments. The phyloCSF algorithm137 makes use of these codon
substitution frequencies to estimate the likelihood that a given ORF represents a
conserved coding sequence. PhyloCSF was able to detect novel proteins in many use
cases and it has proven to be applicable even for the detection of small proteins

including micropeptides42.

In conclusion, a wide selection of programs or methods to assess coding potential in
unannotated transcripts is available. The performance of several programs is
excellent, with sensitivities and specificities well exceeding 95% on the used training

and test datal34. However, training data are based on the current annotation of
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protein coding genes, which shows a strong bias toward proteins larger than 100
amino acids143 with high evolutionary conservation. Even though it is uncertain how
many short or evolutionary recent proteins remain to be discovered, current coding
potential prediction methods are perhaps not the most suitable means to answer
this question. As a result, in silico predictions show very little coding potential in

present-day IncRNA annotations.

RIBOSOME PROFILING: RIBOSOME OCCUPANCY AS AN INDICATOR FOR TRANSLATION

Advances in next-generation sequencing allowed the development of numerous
methods to study specific entities in the genome and transcriptomel44. Ribosome
profiling (also known as ribosome footprinting or Ribo-Seq) is one of those methods
and has gained much attention in recent years. Here, enzymatic degradation of RNA
not associated with ribosomes, followed by deep sequencing of the 28-30 nucleotide
ribosome protected fragments is used to map ribosome occupancy to single basepair
resolution145, Ribosome profiling experiments revealed significant ribosome
occupancy on non-AUG ORFs, upstream ORFs (UORFs) and IncRNAsl46, These
findings, although controversial, have a great impact on our current understanding
of translation and on the numbers of protein coding genes (and therefore also
IncRNA genes) in the genome. The discovery of ribosome occupancy on the majority
of IncRNA transcripts!47 has been a topic of much debate in recent years. Different
research groups have come to conflicting, even opposite conclusions on the number
of true non-coding IncRNAs. To separate coding from non-coding ORFs using
ribosome profiling data, several authors have developed metrics based on specific
properties of translated RNA (Table 2). Although all of these methods acknowledge
the existence of coding ORFs in genes currently annotated as IncRNA, most authors
agree that the number of misclassified IncRNAs is low. Some authors however,
remain convinced that ribosome occupancy indicates that the majority of IncRNAs is

translated and as such are protein coding genes148,

Besides the discussion on the interpretation of ribosome footprints from IncRNA
transcripts, one may also pose questions on the usefulness of ribosome profiling for
the discovery of new and functional proteins. For instance, uORFs have been

recognized as regulatory elements for several years. Although they function by
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association with ribosomes, they probably do not encode functional proteins149.150,
The finding that the ribosome footprints of INcRNA ORFs resemble those of uORFs
more than those of coding ORFs (Figure 4) further supports the hypothesis that the
ribosome footprints on IncRNA ORFs resemble regulatory rather than coding
events!51, Regulatory ORFs on IncRNAs may for instance control the steady statel52

or subcellular localization153 of the transcript.

Despite the recent advances in ribosome profiling analysis, the debate on the role of
IncRNA ORFs will probably last until functional studies show that such ORFs are
nonessential for the function of the IncRNA or that proteomics shows that they

encode functional and stable peptides.
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Figure 4: Although ribosome occupancy is found on both coding and non-coding
ORFs, several metrics can clearly distinguish these profiles. Coding ORFs have lower
ribosome occupancy after the stop codon, resulting in a higher ribosome release
score (RSS) compared to ORFs in the UTRs. Furthermore, 3’ ORFs exhibit a lower
translation efficiency (TE). Adapted from Chew et al.*>!
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Table 2: Overview of metrics and methods used by different authors to distinguish coding and non-coding ORFs based on ribosome profiling.

Different authors draw contrasting conclusions from the ribosome occupancy observed on IncRNA. While some report evidence for translation

for the great majority of IncRNAs, others find only small numbers of true translation events.

Metric

Publication

Definition

Conclusions

Translational

efficiency (TE)

Translation initiation

sites (TIS)

Ribosome release

score (RRS)

Translated ORF
classifier (TOC)

Ingolia et al., 2011147

Ruiz-Orera et al,., 2014154

Lee et al., 2012155

Guttman et al., 2013156

Chew et al., 2013151

Ratio of number of ribosome protected reads

and RNA-seq reads for an ORF.

Lactimidomycin was used to specifically stall
initiating ribosomes. A TIS is a position in
which initiating ribosomes are enriched

above a measured background.

Ratio between the normalized number of
reads that are contained within the putative
ORF and the normalized number of reads

contained within the putative 3" UTR.

Random forest classifier combining TE, RRS,

the ratio of bases covered within an ORF

The majority of IncRNAs contain regions
of high translation comparable to

protein coding genes.

A limited number (4%) of the analyzed
non-coding RNA loci show evidence of

translation.

RRS nicely separates translated RNAs
and IncRNAs

Less than 10% of mouse IncRNA loci are

classified as coding. Interestingly, most
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ORFscore

Fragment length
organization similarity

score (FLOSS)

Bazzini et al., 2014157

Ingolia et al., 2014148

versus outside and the relative ORF size.
Trained on annotated protein coding genes
and classifies ORFs as coding, leader-like and

trailer-like.

The periodicity of ribosome movement is
detectable in ribosome profiling data. The
proportion of codons with in-frame reads is
here compared to a uniform distribution

using a modified chi-squared statistic.

Measures the disagreement between the
observed and expected fragment length

distribution.

IncRNA ORFs resemble upstream ORFs

of coding genes.

Less then 1% of the analyzed IncRNA

transcripts contain a translated ORF.

The vast majority of IncRNAs (90%)
were classified with protein coding

genes .
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MASS SPECTROMETRY: SEE IT TO BELIEVE IT

Shotgun proteomics is the method of choice for high throughput analysis of proteins
in complex mixtures by identification of individual peptides. In this approach,
proteins are first enzymatically digested, producing complex mixtures of peptides.
Next, peptides are separated often using liquid chromatography (LC). Typically,
individual peptides are ionized and then analyzed in a two-step process called
tandem mass spectrometry (MS/MS). First, the mass-to-charge ratio (m/z) of the
entire peptide ion is measured followed by fragmentation of this peptide ion and
acquisition of an m/z spectrum of its fragment ions (MS/MS spectrum). In this way a
MS/MS spectrum is obtained for every peptidel58159, From this spectrum the
peptide’s amino acid composition can be read using computational methods.
Commonly, a database search method is used whereby MS/MS spectra are
compared to theoretical spectra generated from known protein sequences!s8. To
use this approach for the discovery of novel proteins, protein sequence databases
must be extended with predicted protein sequences. In addition, computationally

intensive de novo sequencing can predict the sequence from an MS/MS spectrum158,

Several research groups have turned to shotgun proteomics to evaluate putative
ORFs on IncRNAs. Therefore, predicted ORFs based on transcriptomes or genome
sequences are added to the protein search space. The first such effort, termed
Pinstripe, employed non-redundant peptides from the public PRoteomics
Identifications DatabaskE (PRIDE). The peptide sequences were mapped to a custom
transcriptome based on RNA sequencing of 16 human tissues. From this
transcriptome the authors reported 736 canonical open reading frames (ORFs)
supported by three or more PRIDE peptides compared to over 32,000 non-coding
locil®0, A significant fraction, although the authors admit their method is likely to
generate considerable number of false positives. Indeed, more extensive approaches
using (re)processing of MS/MS spectra have come up with much smaller numbers.
Slavoff et al. combined proteomic and transcriptomic analysis of the K562 human
leukemia (CML) cell line. Their database consisted of RefSeq mRNA transcripts and
three-frame translated transcripts obtained from RNA sequencing. By analyzing

MS/MS spectra against this database they identified 90 micropeptides, 8 of which
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are encoded by IncRNAs. These 8 micropeptides represent just 0.4% of the 1,866
IncRNA transcripts detected using RNA sequencingl®l. Similar approaches that
instead made use of ribosome profiling to define the in silico peptidome have been
developed as well162-164 |n mouse and human cell lines these approaches came up

with respectively 83 and 22 novel micropeptides.

Overall, the numbers of (small) proteins encoded by IncRNAs that are detected by
mass spectrometry appear to be rather limited and not in line with the high numbers
suggested by some ribosome profiling studies. Several explanations for this
discrepancy are possible. First of all, ribosome occupancy alone may not be a good
indicator for active translation, as was already indicated by specific ribosome
profiling efforts!56. Secondly, it is possible that the translation events produce
unstable proteins that are readily degraded and as such undetectable by proteomics.
In addition, it is possible that the translation events are rare and generate only low

amounts of protein that are difficult to detect using proteomics.

It is apparent that the discrimination between coding and non-coding RNA is far
from trivial. Even though the advent of ribosome profiling promised better insight in
the translation of the transcriptome it leaves much room for interpretation. The
finding that ribosome occupancy on IncRNAs more closely resembles that of non-
coding ORFs in mRNA UTRs along with the low numbers of detected proteins by

means of proteomics points to a true non-coding role for IncRNAs.

1.8. LNCRNA ANNOTATION IN REFERENCE DATABASES

As IncRNA is currently well accepted as a genetic subclass by the genetic research
community, IncRNA annotations are slowly finding their way to the international
reference databases. These curated annotations represent a more established
subset of IncRNAs based on several lines of evidence. Both the European Ensembl|*6°

166 make use of a combination of

initiative and their American counterpart RefSeq
automated annotation pipelines and manual curation. RefSeq classifies RNA
sequences as either coding (NM_* records) or non-coding (NR_*) records. Therefore,
the non-coding records are not limited to IncRNAs but include non-coding transcripts

such as transcribed pseudogenes or non-coding isoforms of protein-coding genes.
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Ensembl makes use of a more elaborate classification schema consisting of many
biotypes. Interestingly, IncRNAs are subclassified in 11 distinct biotypes including

lincRNA (long interspersed non-coding RNA)¢”,

1.9. CONCLUSION

Although the first IncRNA was discovered in 19908, it took several decades for
geneticists to grasp the true scale of this genetic class. Recent advancements in next-
generation sequencing technology uncovered tens of thousands of IncRNA loci in the
human genome. Even though the great majority remains to be functionally studied,

some common themes seem to be emerging.

By an assortment of molecular mechanisms, IncRNAs can affect gene expression
both in cis and in trans. As such, they are involved in many cellular processes and
play a role in different genetic diseases. Our current understanding of IncRNA
evolution and conservation is poor and restricted to preliminary research that looks
beyond sequence conservation to identify IncRNA orthologs. Similarly, the
assessment of IncRNA coding potential remains elusive, with conflicting reports
coming from authors using slightly different analysis methods. All in all, IncRNAs
have proven to be a class of genes with intriguing features. Nevertheless many

secrets remain that will likely continue to unfold over the next few years.
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II.  RESEARCH OBJECTIVES

Even though the IncRNA research field is still young, it is growing at an immense
pace. An ever-increasing number of IncRNAs is being reported in literature as the
number of research labs that shift their focus to IncRNA grows. The rapidly changing
IncRNA annotations in numerous IncRNA resources however, are a burden to the
field as this diversification impedes scientific communication. The established
genetic databases struggle to keep up with IncRNA literature or take a conservative
position and await further research. As both bioinformatics and wet-lab applications
rely on IncRNA annotation, IncRNA researchers find it difficult to use the currently
available platforms. To address this issue, we developed LNCipedia, a public IncRNA
resource that aims to provide the most complete and up-to-date view on the
IncRNome (research paper 1). In order to fulfill this promise, LNCipedia has been
updated on several occasions and currently holds over five times the initial number
of entries (research paper 2). Without functional validation, it is not straightforward
to distinguish between coding and non-coding RNA, as was already thoroughly
discussed in the introduction. To address this issue, we have evaluated several
methods to assess the coding potential of IncRNA transcripts. In collaboration with
the research lab of Prof. Martens, we devised a strategy to query large-scale
proteomics datasets for putative protein products of IncRNAs. While we already
introduced this method in the LNCipedia publications, we aim to publish a
commentary paper as well, in which we comment on the discrepancy observed

between our results and some ribosome profiling studies (research paper 3).

With a IncRNA database at hand, we were able to develop a number of platforms to
functionally study IncRNAs in screening experiments. Gene expression microarrays
are often the method of choice for high throughput expression profiling
experiments. As commercial platforms typically lack extensive IncRNA annotation we
developed and subsequently updated a custom gene expression microarray covering
both protein coding and IncRNA transcripts (case study 1). In addition, we designed a
unique platform to detect small and focal copy-number aberrations targeting IncRNA

genes. Since oncogenes and tumor suppressor genes are frequent targets of genetic
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amplifications or deletions respectively, we reasoned that screening the cancer
genome for genetic aberrations on IncRNAs is a valuable method to identify novel
cancer associated IncRNAs. As such, we screened a panel of 80 cancer cell lines using
our platform and found many putative cancer associated IncRNAs (research paper
4). The ability to transiently impede gene expression in vitro is invaluable for
functional genomic research. While for protein coding genes this can easily be
achieved by various means, their lower expression and nuclear localization make
IncRNA harder to target. We evaluated the potential of ASOs for IncRNA knockdown.
In addition, we developed a tool to assess the potential of an ASO using its

thermodynamic properties and target RNA structure (research paper 5).

RESEARCH OBJECTIVES 45



RESEARCH OBJECTIVES

46



IIl. RESULTS

Cataloging IncRNAs

e Research paper 1: Volders et al., LNCipedia: a database for annotated human
IncRNA transcript sequences and structures, Nucleic acids research (2013)

e Research paper 2: Volders et al., An update on LNCipedia: a database for
annotated human IncRNA sequences, Nucleic acids research (2015)

e Research paper 3: Volders and Verheggen et al., Non-coding after all: Large-

scale proteomics reprocessing suggests limited translation of IncRNAs.
Tools to functionally study IncRNAs

e Case study 1: Development of combined mRNA and IncRNA expression
profiling platforms.

e Research paper 4: Volders et al., Targeted genomic screen reveals focal long
non-coding RNA copy number alterations in cancer cells.

e Research paper 5: Volders et al., Potent antisense oligonucleotide selection

for IncRNA knockdown.
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Pieter-Jan Volders, Kenny Helsens, Xiaowei Wang, Bjérn Menten, Lennart Martens,

Kris Gevaert, Jo Vandesompele and Pieter Mestdagh
Nucleic acids research (2013)

http://nar.oxfordjournals.org/content/41/D1/D246

Contributions: Apart from the PRIDE reprocessing pipeline, the candidate
contributed in whole or in part to design of the work, data acquisition, analysis and
interpretation and drafting of the manuscript. For the PRIDE reprocessing pipeline
and the matching paragraphs in the manuscript, the candidate contributed to the

concept of the analysis, the interpretation of the data and the revision of the text.
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ABSTRACT

Here, we present LNCipedia (http://www.Incipedia
.org), a novel database for human long non-coding
RNA (IncRNA) transcripts and genes. LncRNAs con-
stitute a large and diverse class of non-coding
RNA genes. Although several IncRNAs have been
functionally annotated, the majority remains to be
characterized. Different high-throughput methods
to identify new IncRNAs (including RNA sequencing
and annotation of chromatin-state maps) have been
applied in various studies resulting in multiple unre-
lated IncRNA data sets. LNCipedia offers 21488
annotated human IncRNA transcripts obtained
from different sources. In addition to basic tran-
script information and gene structure, several stat-
istics are determined for each entry in the database,
such as secondary structure information, protein
coding potential and microRNA binding sites. Our
analyses suggest that, much like microRNAs,
many IncRNAs have a significant secondary struc-
ture, in-line with their presumed association with
proteins or protein complexes. Available literature
on specific IncRNAs is linked, and users or authors
can submit articles through a web interface. Protein
coding potential is assessed by two different predic-
tion algorithms: Coding Potential Calculator and
HMMER. In addition, a novel strategy has been
integrated for detecting potentially coding IncRNAs
by automatically re-analysing the large body of
publicly available mass spectrometry data in the
PRIDE database. LNCipedia is publicly available
and allows users to query and download IncRNA se-
quences and structures based on different search
criteria. The database may serve as a resource to

initiate small- and large-scale IncRNA studies. As
an example, the LNCipedia content was used to
develop a custom microarray for expression
profiling of all available IncRNAs.

INTRODUCTION

Long non-coding RNAs (IncRNAs) constitute a recently
discovered class of non-coding RNAs that grew in size
drastically during the past few years. LncRNA genes
give rise to long (>200bp) and often multiexonic tran-
scripts that are supposed not to get translated to
protein, as commonly assessed by means of in silico pre-
diction algorithms (1). In comparison with their
protein-coding counterparts, IncRNA genes are poorly
conserved (2) and are more numerous in biologically
complex species (3). Although only a fraction of the
IncRNA genes has been characterized experimentally,
IncRNAs seem to function as transcriptional regulators
through direct interaction with chromatin-modifying
proteins and transcription factors (1,4,5).

LncRNAs with experimentally validated functions or
expression patterns have been named accordingly.
Notable examples are XIST (X inactive-specific transcript)
(6), HOTAIR (HOX transcript antisense RNA) (7) and
HULC (highly up-regulated in liver cancer) (8). The
HUGO Gene Nomenclature Committee currently uses
several schemes to name IncRNAs with an unknown
function. LncRNAs that reside on the opposite strand to
(antisense) or in an intron of (intronic) a protein-coding
gene are named after the protein-coding gene with suffixes
‘-AS’ and ‘-IT’, respectively. Intergenic IncRNAs are
numbered and get the prefix ‘LINC’ (9).

Recent advances in non-coding RNA research have led
to the creation of several IncRNA resources. LncRNAdb
focuses on IncRNA transcripts with well-described func-
tions in literature (10), whereas the ncRNA database

*To whom correspondence should be addressed. Tel: +32 9 3326979; Fax: +32 9 3326549; Email: pieter.mestdagh@ugent.be
Correspondence may also be addressed to Jo Vandesompele. Tel: +32 479 353563; Fax: +32 9 3326549; Email: joke.vandesompele@ugent.be
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(ncRNAdb) provides RNA sequences and annotation
from different sources (11). The NONCODE database
(12) contains a larger collection of human long
non-coding RNAs (33829) obtained from different
sources and by different experimental procedures (13).
Rfam provides structures and annotation of well-known
RNA families along with predictions of new members of
these families (14). However, it does not provide informa-
tion for an individual IncRNA. Although each of these
resources provides valuable information, database unifica-
tion and integration of IncRNA transcript sequence
details with a broad set of bioinformatics tools and a uni-
versal IncRNA gene building and naming scheme is cur-
rently lacking. Here, we present LNCipedia, a catalogue
of 21488 IncRNA transcripts that were clustered into
genes and named accordingly, and they were analysed
using multiple bioinformatics tools, revealing insights in
IncRNA structure, experimentally verified (lack of)
protein coding potential, function and regulation. We
believe such a database facilitates human IncRNA
research and communication among scientists.

DATABASE DEVELOPMENT

The sources used in the data collection step are listed in
Table 1. The most recent version of each source at the time
of development has been included. The sequences and
annotations are extracted and stored in a mongoDB
database using custom Perl scripts. To this purpose,
import scripts for different file formats, such as FASTA,
BED and GFF, have been developed. Redundant tran-
scripts are grouped in a single record, while maintaining
all annotation from the original sources. The web interface
for LNCipedia is build using the Mojolicious Perl web
framework and offers different ways of querying the
data (Figure 1). LNCipedia will be updated when newer
versions of the IncRNA sources are released or if new
sources become available. In addition, researchers are
encouraged to submit new transcript sequences or anno-
tations trough Incipedia.org.

Of note, each of the input sources uses a different
naming scheme. LncRNA researchers have previously
used the gene symbol of the nearest protein coding
gene to refer to a given IncRNA (15). Based on this

Table 1. The different sources of IncRNA transcripts used for
LNCipedia at the time of development®

Source Version Number of
transcripts

Ensembl Version 64 9069
(biotype = lincRNA)

Human 14279
bodymap lincRNAs (2)

LncRNAdD (10) September 2011 134

Total number 21488

of unique transcripts

“The database will be updated with new transcripts when new versions
of the sources are released.

Nucleic Acids Research, 2013, Vol. 41, Database issue D247

strategy, we have implemented a universal IncRNA no-
menclature to ease communication among researchers.
Different IncRNA transcripts are considered to belong
to the same gene if they share at least one (partially)
overlapping exon and reside on the same DNA strand.
In this way, transcripts are clustered into genes. These
IncRNA genes are then named after the HUGO symbol
of the nearest protein-coding gene on the same strand
using the following scheme: ‘Inc-HUGO-#. The
IncRNA genes are numbered, starting with the IncRNA
gene closest to the protein-coding gene. A second
number is added to denote the different transcript
variants starting with the most upstream transcript, for
example, Inc-MYCN-1:1 denotes transcript 1 from gene
Inc-MYCN-1 (Figure 2).

INTEGRATED ANALYSIS TOOLS

LncRNA-protein interactions are, in part, mediated by
the secondary structure of the IncRNA. The Vienna
RNA package (16,17) consists of a set of algorithms for
predicting and analysing RNA secondary structures. We
applied the RNAfold algorithm to generate a secondary
structure plot and dot plot with pair probabilities. Both of
these images are processed with the provided relplot.pl
script to obtain a structure plot with colour annotated
base pair probabilities. The output postscript (.ps)
images are converted to the graphics interchange format
(.gif) for display in web browsers.

Structural RNAs, such as miRNAs, have a significantly
lower minimum free energy of folding compared with
randomly shuffled sequences (18). The Randfold algo-
rithm implements the randomization test and returns the
mean free energy of folding and P-value for every RNA
sequence. Hence, a significant P-value denotes a high pro-
pensity in the sequence towards a stable secondary
structure.

Recently, it has been shown that IncRNAs can act as
a miRNA sponge by binding specific microRNAs and,
thus, interfering with their role as negative regulators of
gene expression (5,19,20). We include miRNA seed pre-
dictions for every IncRNA to allow researchers to evaluate
possible miRNA-IncRNA interactions. miRNA seed
predictions were performed using the MirTarget2
algoritm (21).

PROTEIN CODING POTENTIAL

Assessment of protein coding potential is an important
aspect in the study of non-coding RNAs. LNCipedia
reports the outcome of two different protein coding
potential prediction algorithms. The Coding Potential
Calculator (CPC) applies a support vector machine
classifier to the output of open reading frame analysis
and Basic Local Alignment Search Tool search (22).
CPC returns the predicted status of the transcript
(coding/non-coding) and a coding potential score. We
applied version 0.9 of the CPC software and report the
predicted status and the coding potential score for every
transcript. Another popular strategy for detection of

RESULTS 52

€10¢ ‘7 Arenuef uo AJISIOATUN) Juayn) Je /310" seuInolpIojxo-eu//:d)y woly papeojumoq



D248 Nucleic Acids Research, 2013, Vol. 41, Database issue

Export
(FASTA, GFF, BED)

Interactive
webinterface
(Mojolicious)

Automated PRIDE
reprocessing

PRIDE

database

IncRNA gene definition Tools
d . (mirTarget, ViennaRNA, PubMed,
and naming CPC, HMMER, Randfold)

I

Figure 1. LNCipedia is generated in a multistep process that comprises importing, naming, analysis and visualization of IncRNA genes. Import
scripts for the FASTA, BED and GFF file formats process IncRNA transcripts and detect redundancy. LncRNA naming is preceded by the creation
of IncRNA transcript clusters and requires information on the nearest protein-coding gene on the same DNA strand. Every IncRNA transcript is
subsequently analysed using multiple algorithms, and the results are appended to the database. A web-interface build using Perl enables IncRNA

visualization and database querying.

Inc-SOX1-32
Inc-SOX1-3:1 ety
ING-SOX1-3:3 e
InC-SOX1-3:5 i)
InC-SOX1-3:4 sy

Inc-SOX1-3

e —

Inc-SOX1-2:3 e mmm—)
Inc-SOX1-2:4 Bessly

Inc-SOX1-1:2 Wil

INC-SOX1-1:1 Miei—
Inc-SOX1-2:1

INC-SOX1-2:2 Il

SOX1 (protein coding) Inc-SOX1-1 Inc-SOX1-2

Figure 2. The SOXI protein-coding gene locus contains three IncRNAs on the same DNA strand, numbered according to their distance in relation
to SOX1. LncRNA transcripts are numbered according to their order in the gene, starting with the most upstream transcript.

coding sequences is based on known protein domains. The
HMMER3 suite provides software based on hidden
Markov models for sequence based homology searches
(23). It is often used in combination with the Pfam
protein families database (24). Using the hmmscan
algorithm, we searched for Pfam protein domains in the
RNA sequence. All six reading frames were translated in
silico, and the number of hits in 5 to 3’ and 3’ to 5
direction are reported.

A unique feature of LNCipedia is the incorporation of
an automated reprocessing pipeline that relies on publicly
available fragmentation spectra from the PRIDE database
at EMBL-EBI (25) to detect potentially coding IncRNAs.
The concept behind this feature is that mass spectrometry
based proteomics data may contain serendipitously
recorded mass spectra derived from translated IncRNAs.
As standard identification strategies in proteomics are
based on searching these spectra against protein
sequence databases, such as UniProtKB/Swiss-Prot (26),
they are implicitly unable to detect coding forms of
IncRNAs, as they are not present in these databases. To
uncover such potential traces of coding IncRNAs, the
spectra, thus, need to be re-searched against a purpose-
built database that comprises a combination of the

possible translations of known IncRNAs, the known
proteins for that organism as obtained from a traditional
sequence database and corresponding decoy sequences for
both these constituent databases for quality control and
FDR estimation purposes (27). A spectrum can, thus, be
matched against a IncRNA, a known protein, or a decoy
sequence. The known proteins must be included to prevent
relatively low-scoring matches of spectra against IncRNAs
to be picked up where a much better match for that
spectrum can be found for a known protein.

We have implemented such a pipeline by using the
SearchGUI tool (28) to run the X!Tandem (29) search
algorithm. All results are then collated and filtered at
1% FDR by the PeptideShaker algorithm (http://code
.google.com/p/peptide-shaker). The pipeline infers the
original search parameters, such as mass errors and
post-translational modifications both directly from the
PRIDE database and by using the PRIDE automatic
spectrum annotation pipeline (http://code.google.com/p/
pride-asa-pipeline). All the tools and algorithms used are
freely available as open source.

The pipeline has so far been ran on 149 PRIDE
experiments from at least 15 different tissues, yielding
81579 peptide-to-spectrum matches (PSMs) against the
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Incipedia.org

| Home | Database | Search | Download | About | Contact

Transcript: Inc-SMUG1-3:6

Basic information
Incipedia transcript ID: Inc-SMUG1-3:6

Incipedia gene ID: Inc-SMUG1-3
Location: chr12:54356092-54368740
Strand: -

Transcript size: 2421 bp §
Exons: 7 ,5%""?‘?"‘“%%
Sources: Ensembl release 64 - Sep 2011 % 'f N

Alternative transcript names: ENST00000424518
Alternative gene names: ENSG00000228630; HOTAIR

RNA sequence:

CCAGTTCTCAGGCGAGAGCCGCGGCTGACAGGGTCTGGGACAGAAGGAAAGCCCTCCAGCCTCCAGGCCCTGCCTTCTGCCTGCACATTCTGCCCTGATTTCCGGAACCTGGAAGCC
TAGGCAGGCAGTGGGGAACTCTGACTCGCCTGTGCTCTGGAGCTTGATCCGAAAGCTTCCACAGTGAGGACTGCTCCGTGGGGGTAAGAGAGCACCAGGCACTGAGGCCTGGGAGTT!
CCACAGACCAACACCCCTGCTCCTGGCGGCTCCCACCCGGGACTTAGACCCTCAGGTCCCTAATATCCCGGAGGTGCTCTCAATCAGAAAGGTCCTGCTCCGCTTCGCAGTGGAATG

GAACGGATTTAGAAGCCTGCAGTAGGGGAGTGGGGAGTGGAGAGAGGGAGCCCAGAGTTACAGACGGCGGCGAGAGGAAGGAGGGGCGTCTTTATTTTTTTAAGGCCCCAAAGAGT

CTGATGTTTACAAGACCAGAAATGCCACGGCCGCGTCCTGGCAGAGAAAAGGCTGAAATGGAGGACCGGCGCCTTCCTTATAAGTATGCACATTGGCGAGAGAAGTGCTGCAACCTA
AACCAGCAATTACACCCAAGCTCGTTGGGGCCTAAGCCAGTACCGACCTGGTAGAAAAAGCAACCACGAAGCTAGAGAGAGAGCCAGAGGAGGGAAGAGAGCGCCAGACGAAGGTG
AAAGCGAACCACGCAGAGAAATGCAGGCAAGGGAGCAAGGCGGCAGTTCCCGGAACAAACGTGGCAGAGGGCAAGACGGGCACTCACAGACAGAGGTTTATGTATTTTTATTTTTTA
AAATCTGATTTGGTGTTCCATGAGGAAAAGGGAAAATCTAGGGAACGGGAGTACAGAGAGAATAATCCGGGTCCTAGCTCGCCACATGAACGCCCAGAGAACGCTGGAAAAACCTGA
GCGGGTGCCGGGGCAGCACCCGGCTCGGGTCAGCCACTGCCCCACACCGGGCCCACCAAGCCCCGCCCCTCGCGGCCACCGGGGCTTCCTTGCTCTTCTTATCATCTCCATCTTTAT

GATGAGGCTTGTTAACAAGACCAGAGAGCTGGCCAAGCACCTCTATCTCAGCCGCGCCCGCTCAGCCGAGCAGCGGTCGGTGGGGGGACTGGGAGGCGCTAATTAATTGATTCCTTT
GGACTGTAAAATATGGCGGCGTCTACACGGAACCCATGGACTCATAAACAATATATCTGTTGGGCGTGAGTGCACTGTCTCTCAAATAATTTTTCCATAGGCAAATGTCAGAGGGTTC

TGGATTTTTAGTTGCTAAGGAAAGATCCAAATGGGACCAATTTTAGGAGGCCCAAACAGAGTCCGTTCAGTGTCAGAAAATGCTTCCCCAAAGGGGTTGGGAGTGTGTTTTGTTGGAA
AAAAGCTTGGGTTATAGGAAAGCCTTTCCCTGCTACTTGTGTAGACCCAGCCCAATTTAAGAATTACAAGGAAGCGAAGGGGTTGTGTAGGCCGGAAGCCTCTCTGTCCCGGCTGGAT
GCAGGGGACTTGAGCTGCTCCGGAATTTGAGAGGAACATAGAAGCAAAGGTCCAGCCTTTGCTTCGTGCTGATTCCTAGACTTAAGATTCAAAAACAAATTTTTAAAAGTGAAACCAG
CCCTAGCCTTTGGAAGCTCTTGAAGGTTCAGCACCCACCCAGGAATCCACCTGCCTGTTACACGCCTCTCCAAGACACAGTGGCACCGCTTTTCTAACTGGCAGCACAGAGCAACTCT!

Structure:

Protein coding potential

CPC coding potential score: -1.19011 (noncoding):?‘
HMMER Pfam domains in 3' to 5' reading frames: 0. ?:
HMMER Pfam domains in 5' to 3' reading frames: 0

PRIDE database search

Number of hits in the PRIDE database: 0.7

Secondary structure information

RNAfold image: download
Randfold minimum free energy: -825.83
Randfold P-value: 0.001

Targetting miRNAs

MirTarget2 predictions:

MicroRNA MirTarget2 score :?:

hsa-miR-3688-3p | 93.51
hsa-miR-1251 87.25

hsa-miR-202-5p 82.56

hsa-miR-26b-3p 81.72
hsa-miR-892a 80.28

Available literature

Guil etal., 2012
Niinuma et al., 2012
Kogo et al., 2011
Schorderet et al., 2011
Geng etal., 2011
Kaneko et al., 2010
Tsai et al., 2010
Gupta et al., 2010

RESULTS

Figure 3. The transcript page in the web interface provides a clear overview of information available on a specific IncRNA transcript.
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custom-built protein sequence database that includes
UniprotKB/Swiss-Prot and LNCipedia translations
(Supplementary Figure S1). Within these PSMs, there
were just 14 matches that could provide evidence for
translation of LNCipedia entries. However, after close
inspection of the FDR of the PSMs that passed our
quality criteria, we noticed that although the PSMs from
UniProtKB/Swiss-Prot have an expected FDR of 0.9%,
the subset of PSMs from translated LNCipedia entries
comes with an overwhelming FDR of 166%
(Supplementary Figure S2). As such, there are only
vague suggestions so far that any of these entries can
effectively be translated.

As the PRIDE database is growing exponentially, and
additional IncRNA transcript discovery is ongoing,
searches for potentially coding IncRNAs need to be
carried out anew at regular intervals to stay up-to-date
with the growing amount of public data. We, therefore,
envision running the full pipeline on all applicable PRIDE
data at a set interval of 3 months; thus, periodically
updating the knowledge on which IncRNAs might have
coding potential. The output of each reprocessing effort
will be used to annotate the LNCipedia, and past results
will be kept available as well.

Besides this recurrent re-analysis of the relevant publicly
available proteomics data, we also plan to extend the
statistical approach used to evaluate the identification of
a IncRNA by including information about the consistency
with which such an identification is found across
(unrelated) PRIDE experiments. Indeed, a relatively
poor match in any individual experimental data set that,
however, keeps returning across many such data sets, may
well be a real indication that translation is taken place for
that IncRNA.

LNCIPEDIA ACCES

LNCipedia is publicly available through a web interface at
http://www.Incipedia.org. The interface allows users to
query IncRNAs by name, chromosomal region or
(partial) sequence. Several statistics are calculated that
allow the user to evaluate different parameters regarding
IncRNA secondary structure and regulation (Figure 3).
The entire LNCipedia collection is available for
download in the FASTA, GFF or BED format.
LncRNA researchers can contribute to LNCipedia by
contacting the authors. In addition, registered users can
modify existing records (updating aliases and adding
PubMed literature records) directly using a web interface.

LNCRNA EXPRESSION ARRAY

The LNCipedia content can prove useful when designing
large-scale screening experiments, such as IncRNA gene
expression profiling. As a proof of concept, we have
developed a custom IncRNA gene expression array using
the Agilent Sureprint 60k platform. In addition to
roughly 33000 probes for protein coding genes, we
selected 23042 probes for IncRNA transcripts in
LNCipedia covering 97% of all LNCipedia transcripts

with at least one probe (Agilent MicroArray Design ID:
039714). The performance of the expression array was
evaluated using RNA sample titrations according to the
MicroArray Quality Control standards (30). Adequate
titration response of the IncRNA probes is shown in
Supplementary Figure S3.

CONCLUSION AND FUTURE DIRECTION

Three important features are unique to LNCipedia: gene
definitions and usage of a universal nomenclature for
IncRNA transcripts, PRIDE analysis for detection of
IncRNAs that may code for small peptides and miRNA
seed predictions for IncRNA transcripts. These, along with
the other tools available, are expected to make LNCipedia
a powerful resource for human IncRNA research.

With the advances in RNA sequencing technology,
more IncRNA genes are expected to get discovered. The
authors will update LNCipedia when new sequences are
reported in the literature or in other sources. In addition,
new features will be developed to increase the interactive
capabilities of LNCipedia. In this way, the IncRNA
community will be able to upload and maintain records
in the database. LNCipedia has the potential to become a
community resource for IncRNA transcript information
and annotation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1-3 and Supplementary Methods.
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Supplemental Figure 1. Scatterplot of re-analysis of 149 PRIDE experiments. The X-axis and

the Y-axis show the number of peptide-to-spectrum matches (PSMs) per experiment by our

automated re-analysis and as deposited in PRIDE, respectively. For most experiments, our

analysis yields roughly half the amount of PSMs annotated in PRIDE. One reason for this is

that our approach applies a stringent 1% FDR cutoff, while such stringency is not required

when depositing an experiment into PRIDE. Furthermore, our protein sequence database is

considerably larger than UniProtKB/Swiss-Prot since it contains a translated version of

Incipedia. This inherently leads to larger e-values, and thus less PSMs in our stringent results

set.
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Supplemental Figure 2. PSM counts after re-analysis of 149 PRIDE experiments with an FDR
limit of 1%. PSMs from UniProtKB/Swiss-Prot are called ‘false’ (left bar chart) and from
IncRNA translations are dubbed ‘true’ (right bar chart). Decoy hits, indicative of the amount of
false positives, are given in red, while normal hits are given in green. Note that while the left
bar chart with UniprotKB/Swiss-Prot hits shows an expected FDR of 1%, the right bar chart

with PSMs from Incipedia translations shows a much larger FDR of 166%.
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Supplemental Figure 3. MAQC titration response of INcRNA probes. LncRNA expression was
measured for samples A (Universal human reference RNA, Agilent Technologies), B (Human
brain total RNA, Ambion), C (25% A + 75% B) and D (75% A + 25% B). The percentage of
IncRNA probes that follow the monotonic titration response (Y-axis) is plotted in function of
the binned log2-fold change (X-axis) between samples A and B. Titration response was

calculated according to Shippy et al., Nature Biotechnology, 2006.
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Supplemental Methods

Data is read from the PRIDE database after filtering applicable experiments by taxonomy,
number of spectra and consistent taxonomic origin of the reported proteins. The data is then
analyzed to detect applicable search engine settings, notably the precursor and fragment ion
mass tolerances as well as the (variable) modifications to consider. Allowed missed
cleavages are set to 1. PeptideShaker is run in automatic mode to filter the proposed peptide-
to-spectrum matches hits at the 1% false discovery rate as calculated through the decoy

database searching built-in to SearchGUI.
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ABSTRACT

The human genome is pervasively transcribed, pro-
ducing thousands of non-coding RNA transcripts.
The majority of these transcripts are long non-coding
RNAs (IncRNAs) and novel IncRNA genes are be-
ing identified at rapid pace. To streamline these
efforts, we created LNCipedia, an online reposi-
tory of IncRNA transcripts and annotation. Here, we
present LNCipedia 3.0 (http://www.Incipedia.org), the
latest version of the publicly available human IncRNA
database. Compared to the previous version of LNCi-
pedia, the database grew over five times in size, gain-
ing over 90 000 new IncRNA transcripts. Assessment
of the protein-coding potential of LNCipedia entries
is improved with state-of-the art methods that include
large-scale reprocessing of publicly available pro-
teomics data. As a result, a high-confidence set of
IncRNA transcripts with low coding potential is de-
fined and made available for download. In addition,
a tool to assess IncRNA gene conservation between
human, mouse and zebrafish has been implemented.

INTRODUCTION

Over the past decade long non-coding RNAs (IncRNAs)
have emerged as a large class of functional non-coding
RNAs (ncRNAs) (1). Defined as ncRNA transcripts longer
than 200 nucleotides, IncRNAs have been shown to func-
tion mainly as transcriptional regulators by interaction with
other biomolecules, such as proteins (2-4) and microR-
NAs (5). They are involved in a wide range of processes
including cardiac development (6), dosage compensation
(7,8) and cancer (2,9-10). Several specialist databases con-
cerning IncRNA have been developed. Well-known exam-
ples are IncRNAdb, which focuses on IncRNAs with de-

scribed functions (11), and NONCODE (12,13). In addi-
tion to these general IncRNA databases, databases that de-
scribe specific IncRNA subclasses have been compiled as
well. LncRNAdisease contains IncRNAs with published
disease associations (14) while IncRNAs targeted by mi-
croRNAs can be found in DIANA-LncBase (15).

Distinguishing coding from ncRNA sequences is an im-
portant step, both in the ncRNA and the protein research
field. Classic approaches are based on either open reading
frame (ORF) length, ORF conservation or structural pro-
tein domains (16). Recent computational methods make
use of more complex features or machine learning ap-
proaches. Notable examples are the Coding-Potential Cal-
culator (CPC), Coding-Potential Assessment Tool (CPAT)
and PhyloCSF. CPC utilizes a support vector machine
trained on features that describe long, high-quality ORFs
with sequence similarity (BLASTX) to known proteins (17).
CPAT is a logistic regression model that only uses sequence-
derived features, such as ORF size, codon and hexamer us-
age bias (18). In contrast to CPC and CPAT, PhyloCSF
employs codon substitution frequencies in whole-genome
multi-species alignments and maximum likelihood trees to
distinguish between coding and non-coding loci (19).

ORF length is either directly or indirectly used in all
these computational prediction methods yet ORFs yield-
ing short peptides (<100 amino acids) are difficult to pre-
dict. The discovery of functional peptides shorter than
100 amino acids, like the Drosophila gene tarsal-less (tal),
thus raised the possibility that several IncRNAs are actu-
ally misclassified protein-coding genes encoding micropep-
tides (20,21). As small ORFs can also occur by chance
in long transcripts, many well-described IncRNAs harbor
non-functional ORFs (22). In addition to small ORFs, the
in silico prediction of coding ORFs is further complicated
by the existence of non-canonical (non-AUG) start codons
(23).
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Figure 1. LNCipedia has grown substantially since itsfi rst release. Thefi rst version (41) was based on sequences and annotation from three different
sources and was made available to the public in 2012. For the 2013 release of LNCipedia (unpublished), no additional sources were used, but the different
sources were updated to the most recent version. For version 3.0 of LNCipedia, both new sources were added and existing sources were updated.
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Figure 2. Many IncRNA loci are conserved in mouse or zebrafish. Locus
conservation is a novel tool to determine the orthologous locus of a human
IncRNA in another species. When the order of thefl anking protein-coding
genes is conserved in another species, the IncRNA locus is considered con-
served. The majority of the conserved loci in zebrafish are also conserved
in mouse, this fraction is depicted in gray.

Experimental procedures to detect translated ORFs and
their products have been developed as well. One such
method is referred to as ribosome profiling and is based on
deep sequencing of ribosome-protected mRNA fragments.
Although many ncRNAs show ribosome occupancy, by us-
ing initiation-specific translation inhibitors in combination
with ribosome profiling, researchers were able to map trans-
lation initiation sites (TIS) with base pair resolution and im-

prove the detection of true ORFs (23,24). Other researchers
were able to use the periodicity of ribosome movement on
the mRNA to define actively translated ORFs (25). In ad-
dition to ribosome profiling, mass spectrometry has been
applied in the search for novel peptides arising from IncR-
NAs (26,27). Several authors report small numbers of (mi-
cro) peptides arising from IncRNAs using either ribosome
profiling or mass spectrometry. The debate on the putative
function and total number of these peptides is still ongoing
(26-28).

Here, we report on LNCipedia 3.0, the latest version of
our publically available IncRNA database. In version 3.0,
our major improvement is the evaluation of protein-coding
potential with state-of-the-art algorithms and data sets. As
such we have generated a high-confidence data set that ex-
cludes IncRNAs with possible protein-coding potential. In
addition, a new tool to assess the conservation of IncRNA
genes has been implemented. The database content has been
updated and now contains over five times the number of
transcripts compared to thefi rst version.

MATERIALS AND METHODS
Locus conservation

The upstream and downstream protein-coding genes that
flank a human IncRNA gene are queried in the public En-
sembl (29) MySQL database (version 73). For both genes,
the orthologs in mouse and zebrafish are obtained using
the Ensembl Compara API (version 73). If any pair of or-
thologs are neighboring genes, the locus is reported as con-
served.

PhyloCSF

Whole-genome alignments of 46 species are obtained from
the UCSC website (30) and processed using the PHAST (31)
package (version 1.3) to obtain the required input format
for PhyloCSF (19). To validate our workflow, we bench-
marked PhyloCSF with transcripts annotated in Ensembl
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(version 75). Transcripts with biotype ‘lincRNA’ or ‘anti-
sense’ (20 320 transcripts) serve as negative set while tran-
scripts with biotype ‘protein_coding’ and an annotated cod-
ing sequence (36 959 transcripts) serve as positive set.

TIS

Ribosome profiling sequencing data of HEK-293 cells
treated with cycloheximide (CHX) and lactimidomycin
(LTM) were processed (24). Two technical replicates of
both treatments were pooled (Bioproject http://www.ncbi.
nlm.nih.gov/bioproject/PRINA171327: runs SRR618770
and SRR618771 for CHX and runs SRR618772 and
SRR618773 for LTM).

The reads werefi rst clipped to remove their 3’ cloning
adaptor sequence using the FASTX-Toolkit (fastx_clipper
tool). Unclipped and clipped reads shorter than 25 nt
were discarded. The remaining reads were mapped us-
ing the RNA-seq STAR aligner (32), sequentially us-
ing indices based on the following sequences: (i) Phix
genome (widely used as a quality control for Illumina
sequencing runs), (i) Homo sapiens TRNA (Refseq IDs
NR_003285.2, NR_003286.1, NR_003287.1, NR_023363.1)
and (iii) the human reference genome (downloaded
from the igenomes repository http://support.illumina.com/
sequencing/sequencing_software/igenome.ilmn, using the
H. sapiens genome build GRCh37 and Ensembl annota-
tion version 70). The human STAR index was built tak-
ing into account the splice site annotation from Ensembl.
Only uniquely mapped reads that are between 28 and 35 nt
long were retained. Footprint alignments were assigned to a
specific P-site nucleotide based on the fragment length (the
5" offset is set to respectively 12, 13 or 14 for profiles with
length < 30 nt, 31-33 nt, or > 34 nt (23)).

PRoteomics IDEntifications (PRIDE) reprocessing

The processing pipeline consists of three major modules.
Thefi rst module is based on the PRIDE automated spec-
trum annotation pipeline (pride-asap) (33), and is used
to reverse engineer the original search parameters from
submitted data. The key parameters extracted by pride-
asap in this stage are the allowable mass errors, the post-
translational modifications (PTMs) to consider, and the
enzyme used. Recent developments in this module have
greatly improved the PTM inference by considering the
modifications found in the PSI-mod (34) and Unimod (35)
databases, as well as the frequency of occurrence of these
modifications. Two thresholds are calculated based on this
information, with thefi rst one serving as a lower threshold
to exclude very low abundance modifications while the sec-
ond threshold is used to determine whether a sufficiently
abundant modification is to be considered as either variable
orfixed. A second development has been the impromptu de-
termination of the protease used in the original experiment.
Instead of assuming the use of trypsin, the pride-asap mod-
ule now calculates the most likely enzyme based on all re-
ported peptide sequences reported in PRIDE for that exper-
iment. Overall, these updates to the module allow a reduc-
tion in search space to consider, providing faster processing
times and leaving less room for false-positive matches.

The second module handles the peptide-to-spectrum
matching, relying on SearchGUI (36) to automatically run
multiple search engines in parallel; in this case OMSSA (37)
and X!Tandem (38). SearchGUI is configured to use the
target/decoy approach (39), where both the original (tar-
get) sequence database is searched, but also a reversed (de-
coy) version of that database. Matches from the latter can
then be used to determine a false discovery rate (FDR) (39).

The third andfi nal module uses PeptideShaker
(http://peptide-shaker.googlecode.com) and the
compomics-utilities library (40) to collect, process and
analyze the results generated by SearchGUI.

RESULTS
LNCipedia 3.0 content

LNCipedia 1.0 (41) combined sequences and annotation
from three different public resources, namely, Ensembl
(29,42), Human body map lincRNAs (43) and the IncRNA
database (11). In LNCipedia version 3.0, we have comple-
mented these resources with four additional public data
sets (Table 1). Two of these data sets are obtained from
databases (44,45), and two from IncRNA research articles
describing RNA sequencing workflows and reporting on
novel IncRNAs (46,47). As with LNCipedia 1.0, redundant
transcripts are merged into the same record. The result of
this extension and integration of sources is that LNCipedia
3.0 represents a more than 5-fold increase in transcript con-
tent over version 1.0 (Figure 1). The majority of these tran-
scripts (80%) is found in new loci and as such give rise to
novel IncRNA genes.

In LNCipedia 1.0 we introduced a universal IncRNA
nomenclature to overcome the confusion caused by the use
of different identifiers by different authors and databases.
As was suggested by others, we named IncRNAs after
neighboring protein-coding genes on the same strand (48).
In LNCipedia 3.0, we hold true to this strategy. Existing
genes are expanded when novel transcripts have overlapping
exons and new genes are created when a transcript does not
share exonic sequence with any existing gene.

Locus conservation

The identification of orthologous IncRNAs is an important
step for animal modeling and functional research across
species. Conservation of gene order is a straightforward
metric often used in comparative genomics. We applied the
concept of gene order conservation to determine the orthol-
ogous locus of a IncRNA in another species. Using the En-
sembl Compara API, we have assessed the conservation in
the order of thefl anking protein-coding genes. Currently,
orthologs for non-coding genes are not as well annotated
as for protein-coding genes,fl anking non-coding genes were
therefore not taken into account. When the order is con-
served in mouse or zebrafish we report the locus as con-
served. In this way, wefi nd locus conservation for 55% of
the human IncRNA genes in mouse, and for 27% in ze-
brafish (Figure 2). The majority of the conserved loci in ze-
brafish are also conserved in mouse, as one would expect.
While locus conservation is no proof for the functional con-
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Table 1. Overview of data sources contributing to IncRNA content in LNCipedia 3.0

Source Version Number of transcripts
Ensembl (42) 75 23498
Refseq (44) March 2014 6917
Nielsen et al. (46) 7656
Hangauer et al. (47) 5339
NONCODE (45) 4 93 164
LNCipedia (41) 1.0 21504
Total number of unique transcripts 113 513
a b
1.00- R —— 1.00 -

N

" — LNCipedia 3.0

---- Ensembl coding

—— transcripts without TIS

----- transcripts with TIS
--- Ensembl non-coding

empirical cumulative distribution
empirical cumulative distribution

<0.001
0.00 ~ P

0 2000 4000 6000 0 2000 4000 6000
PhyloCSF score PhyloCSF score

C

NONCODE v4 -

Refseq — Dec 2014 -

Ensembl release 75 — Feb 2014 -
Nielsen et al., 2014 |

long non-coding rna db - Incrnadb.com -

IncRNA source

Hangauer et al., 2013 -
Cabili et al., 2011 4

0% 5% 10%  14% 27%
percentage of putative coding transcripts (PhyloCSF > 41)

Figure 3. Different methods suggest contamination of coding sequences in IncRNA data sets. (a) PhyloCSF benchmarking and score distributions. We
can observe a considerable difference between the score distributions of coding and non-coding transcripts in the Ensembl data set. In addition, while the
great majority of LNCipedia is presumably non-coding, it also contains a fraction of transcripts with a PhyloCSF score in the coding range. (b) Transcripts
with a TIS have a significantly higher PhyloCSF score (Mann—-Whitney U test) compared to other transcripts. (¢) Several public IncRNA resources suffer
from considerable contamination with protein-coding sequences. The percentage of transcripts with PhyloCSF score greater than 41 is shown for the
different sources in LNCipedia 3.0. Two sources alreadyfi Itered with PhyloCSF are depicted in gray. In the case of RefSeq, only entries with property
“biomol_ncrna_Incrna” were considered.

RESULTS 66

S10¢T ‘T AInf uo ANSI9ATUN JUAYD) Je /310 sfeuwrnolpIoyxo teuy/:dyy woiy papeoumo



D178 Nucleic Acids Research, 2015, Vol. 43, Database issue

LNCipedia 3.0
113,513 transcripts

- Bazzine et al., 2014 smORFs
= 113,260 transcripts

- Leeetal.,, 2012 TIS
= 109,133 transcripts

- PhyloCSF score > 41
= 81,840 transcripts

- PRIDE PSMs
= 80,216 transcripts
= high-confidence set

Figure 4. Transcripts with a likely coding potential are removed in the def-
inition of a high-confidence set. Transcripts containing small ORFs (25),
TIS (24), PhyloCSF score greater than 41 or PSMs with an identification
confidence higher than 90% are excluded.

servation of the IncRNA itself, it may serve afi rst step in
finding the orthologous IncRNA.

Protein-coding potential

For collection of IncRNA transcript sequences, we rely on
public data sets that are often contaminated with small
numbers of transcripts harboring coding ORFs (25,26).
While we already presented several measures to assess this
problem (41), we further expanded these with state-of-the-
art tools and included additional IncRNA transcript data
sets. One such measure is the PhyloCSF (19) score. We have
benchmarked PhyloCSF using Ensembl transcripts and we
have determined 41 as an optimal threshold for the Phy-
1oCSF score resulting in a precision of 95% and sensitiv-
ity of 91% (Supplemental Material and Figures). From the
empirical cumulative distribution (Figure 3a) it is apparent
that LNCipedia most likely contains a considerable frac-
tion of protein-coding sequences. When applying our pre-
computed cutoff, these transcripts add up to about 26% of
the collection. Figure 3¢ shows the distribution of these pu-
tative coding transcripts among the different sources used
for LNCipedia. It is clear that some IncRNA data sets suf-
fer more from contamination of coding sequences than oth-
ers. Strikingly, nearly 50% of Refseq annotated non-coding
sequences are predicted to be coding according to the Phy-
10CSF score cutoff. It is no surprise that the lowest num-
ber of coding sequences is observed in Cabili er al and
Hangauer et al. as these studies applied PhyloCSF as afilter
in their workflow.

Another measure to assess protein-coding potential is the
use of ribosome profiling to map TIS. When we map the
TIS observed in HEK-293 (24) to LNCipedia entries, we
find 4154 trancripts with at least one TIS. Of note, these
transcripts have significantly higher PhyloCSF scores (Fig-
ure 3b), which is a good validation of both methods.

PRIDE

Similar to the rapid growth of LNCipedia, the submission
of mass spectrometry data to the PRIDE repository has
flourished as well (49). While these increased collections of
IncRNAs and mass spectrometry data provide even more
means to detect potentially coding IncRNAs, they also re-
quire much more compute power to process. The only way
to analyze these data in a timely fashion is to make use of
parallelization on a compute cluster or through grid com-
puting (50). We have therefore set up such a grid environ-
ment based on dedicated hardware running a collection of
Linux virtual machines, allowing us to re-analyze the full
human complement of PRIDE in under a week.

At the time of writing, the pipeline has been run on
2493 PRIDE experiments, containing 39 463 035 fragmen-
tation mass spectra and covering all 68 annotated human
tissues in the public repository. This resulted in a total of
8 064 657 peptide-to-spectrum matches (PSMs), of which
747 305 were matched to IncRNAs in LNCipedia (393 859
matched the target database and 353 446 matched the de-
coy database). Of these PSMs, 18 929 target sequences (rep-
resenting 2040 transcripts, from 1770 genes) had an iden-
tification confidence higher than 90% (in contrast to only
2001 decoy sequences that had such a high confidence).
Of note, the estimation of the FDR remains a complex is-
sue in these very broad searches (51,52), and care should
be taken to interpret these results. Indeed, as supplemen-
tary Figures S1 and S2 illustrate, while the confidence com-
pares reasonably well with the estimated FDR, especially
at higher confidences (higher than 90%), the evolution of
the FDR toward the higher confidences is very different
between the UniProtKB-SwissProt-derived identifications
and the IncRNA matches.

No significantly higher PhyloCSF score was found for
transcripts containing PSMs with identification confidence
higher than 90%. In addition, no significant overlap is ob-
served between the set of transcripts identified in PRIDE
and the sets containing TIS and smORFs. This observation
illustrates the very unique nature of the PRIDE analysis and
strongly suggests its ability to detect coding potential not
predicted by other methods.

HIGH-CONFIDENCE SET

Since LNCipedia contains a non-negligible number of pu-
tative coding transcripts, we propose afi ltering strategy to
create a stringent or high-confidence data set. Four groups
of putative coding transcripts are removed (Figure 4, Sup-
plementary Figure S3). The first group consists of 253 IncR-
NAs containing small ORFs (smORFs) (25). Bazzini et al.
developed an approach to detect smORFs using ribosome
profiling whereby the periodicity of ribosome movement
on actively translated ORFs is used to distinguish cod-
ing from non-coding sequences. A second approach to ap-
ply ribosome profiling in the quest for novel coding RNAs
has been described by Lee et al. (24). Using LTM, a ri-
bosome inhibitor specific to initiating ribosomes, TIS were
mapped in HEK-293 cells. Note that 4127 IncRNA tran-
scripts containing at least one TIS are thus withdrawn.
While these transcripts have a good change to give rise to
peptides, it is important to consider that a negative result
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does not guarantee the opposite. The transcript may not be
expressed or translated in the sample. The nextfi Itering step
is based on PhyloCSF (19). As discussed earlier, this algo-
rithm can distinguish between coding and non-coding se-
quences with high accuracy. As such, 27 293 transcripts with
a PhyloCSF score higher than 41 are discarded. Finally, the
2040 PSM containing transcripts from the PRIDE repro-
cessing pipeline are excluded as well. The resulting set of
80 216 transcripts (71% of LNCipedia 3.0) representing 48
028 genes (76%) is referred to as ‘high-confidence set’ and
is available for download on the LNCipedia website.

CONCLUSION AND FUTURE DIRECTION

With over 90 000 new transcripts, LNCipedia content in-
creased 5-fold since its first publication in 2012. This makes
it to our knowledge the largest publicly available human
IncRNA resource. Furthermore, we improved the evalua-
tion of coding potential with state-of-the-art algorithms,
published data sets and an improved PRIDE reprocessing
pipeline. In addition, we have developed a locus conserva-
tion analysis tool, which can aid in the search for IncRNA
orthologs or prioritarization of IncRNAs for animal stud-
ies.

As in the previous years, LNCipedia will be updated
when new IncRNA data sets are available. With the arrival
of a new human reference genome (GRCh38), an impor-
tant improvement to the database will be remapping chro-
mosomal positions to this new reference genome. We will
also continue to automatically run searches against the ever-
growing contents of the PRIDE database on a routine basis.
Furthermore, we will improve the specificity of the PRIDE
searches by taking possible contamination from viral se-
quences into account.

In conclusion, LNCipedia 3.0 provides significant im-
provements over the previous version in terms of data con-
tent and data annotation.

AVAILABILITY

LNCipedia 3.0 can be accessed trough a web interface at
www.Incipedia.org. Exports are available in FASTA, GFF,
GTF or BED format for both the entire IncRNA collec-
tion and the high-confidence set. In addition, Integrative
Genome Viewer (IGV) users have the option of loading an
IGV optimized data set directly in the application. As in
version 1.0, the database can be queried by chromosomal
position or (partial) sequence. We encourage the IncRNA
research community to contribute to LNCipedia by sub-
mitting newly discovered IncRNAs and by adding PubMed
literature records to existing entries using the web interface.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Supplemental methods: benchmarking PhyloCSF

Pieter-Jan Volders

12 augustus 2014

Data input

non_coding_cut <- read.table("non_coding cut.txt", header=F)
coding_cut <- read.table("coding cut.txt", header=F)

Incipedia_cut <- read.table("lncipedia_cut_replaced.txt", header=F,
sep = "\t")

non_coding_cut$group = 'non_coding'
coding_cut$group = 'coding’
lncipedia_cut$group = 'lncipedia’
non_coding_cut$source = ‘ensembl’
coding_cut$source = 'ensembl’
lncipedia_cut$source = 'lncipedia’

all phylocsf = rbind(non_coding_cut, coding _cut, lncipedia_cut)

all ensembl = rbind(non_coding cut, coding_cut)
colnames(all_ensembl)[1:2] = c("filename", "score")

Plotting

library(ggplot2)
ggtheme = theme(
axis.text.x = element_text(colour='gray50'),#, angle = 90, hjust =
1, vjust = 0.5),
axis.text.y = element_text(colour="'grays50'),
panel.background = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_rect(colour="gray50', fill = NA),
strip.background = element_blank()

ggplot(all_phylocsf, aes(V2, linetype = factor(group))) +
stat_ecdf(n=5000, geom="line") +
coord_cartesian(xlim=c(-1000, 7500)) +
ggtheme

Use cutoff to increase sampling in the range of the plot

all phylocsf[all_phylocsf$v2 > 5000, 'V2'] = 5000
all phylocsf[all phylocsf$v2 < -5000, 'V2'] = -5000
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ggplot(subset(all_phylocsf, source=='ensembl'), aes(x=V2, fill=group
)) +
geom_density(alpha=.3) +
#stat_bin(aes(color=group),binwidth=10, geom="L1ine", position='dod
ge') +
coord_cartesian(xlim=c(-4000, 4000)) +
#facet _wrap(~ source, ncol=1) +
ggtitle("Ensembl PhyloCSF scores") +
xlab("PhyloCSF score") +
scale_fill_discrete(name="Ensembl biotype",
breaks=c("coding", "non_coding"),
labels=c("protein_coding"”, "lincrna"))+

ggtheme
Ensembl PhyloCSF scores
0.003 +
blj-.:illj-; -1 Ensembl biotype
g protein_coding
() .
© lincrna
0.001 1
0.000 H *Jl/’lih_‘
| | I | |
-4000 -2000 0 2000 4000

PhyloCSF scor

Figure 1: Density plot of the PhyloCSF scores for Ensembl transcripts. Only
a small fraction of the protein-coding transcripts have a PhyloCSF score in
the same range as IncRNA transcripts.
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ROC analysis to determine optimal cutoff

all ensembl$label = ©

all ensembl[all_ensembl$group == 'coding', 'label'] =1
library(ROCR)
pred = prediction(all_ensembl$score, all ensembl$label)

perf = performance(pred, "tpr","fpr")
plot(perf, print.cutoffs.at = c(0, 40, 100, 500))

1.0

@

{5

True positive rate

00 0.2 04 06 08

| | | [ I I
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 2: Receiver operating characteristic (ROC) curve of the PhyloCSF
score cutoff

perf = performance(pred, "acc","cutoff")
plot(perf, xlim = c(©, 5000))
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Figure 3: Accuracy plot. A cutoff off 180.7105 will yield the highest
accuracy.

n = which.max(perf@y.values[[1]])
max_acc_cutoff = perf@x.values[[1]][n]

perf <- performance(pred, "prec", "rec", "cutoff")
plot(perf)
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Figure 4: Precision/recall curve
Precision of 95%
library(dplyr)

precision_recall = data.frame(
Precision = perf@y.values[[1]],
Recall = perf@x.values[[1]],
Cutoff perf@alpha.values[[1]]
)
precision recall sorted = tbl_df(precision _recall) %>%
filter(Precision > 0.95) %>%
arrange(Precision)

A cuttoff of 41.2019 will result in a Precision of 95.0013% and a Recall
(Sensitivity) of 90.6058%

perf = performance(pred, "sens", 'spec', 'cutoff")

n= length(perf@y.values[[1]])

sens_spec = data.frame(
Cutoff = c(perf@alpha.values[[1]], perf@alpha.values[[1]]),
Performance = c(perf@y.values[[1]], perf@x.values[[1]]),
Measure = c(rep('Sensitivity', n), rep('Specificity', n))
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n = which.min(abs(perf@y.values[[1]]-perf@x.values[[1]]))
sens_spec_cutoff = perf@alpha.values[[1]][n]

sens_spec_intersect = perf@x.values[[1]][n]

ggplot(sens_spec, aes(Cutoff, Performance, color=Measure)) +

geom_line() +

coord_cartesian(xlim = c(-1000, 5000)) +

geom_vline(xintercept = sens_spec_cutoff)+
sens_spec_intersect) +

geom_hline(yintercept =

ggtheme

1.00 - N\

| — 5
o) ?
Q :
c | Measure
(4] |
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16 - - |
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Figure 5: Sensitivity/specificity plot. The sensitivity and specificity plots
intersect at cutoff 36.6852, resulting in a sensitivity and specificity of

0.9069

lncipedia_nr_coding = sum(lncipedia_cut$VvV2 > precision_recall_sorted

[1, 'Cutoff'])
lncipedia_nr = length(lncipedia_cut$v2)
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Using a cutoff of 41.2019, we observe 29497 putative coding transcripts in
LNCipedia. This corresponds to 26.2677% of the database.
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ABSTRACT

Over the past decade, long non-coding RNAs (IncRNAs) have emerged as novel
functional entities of the eukaryotic genome. However, the scientific community
remains divided over the amount of true non-coding transcripts among the large
number of unannotated transcripts identified by recent large scale and deep RNA-
sequencing efforts. Here, we systematically exclude possible technical reasons
underlying the absence of IncRNA-encoded proteins in mass spectrometry datasets,

strongly suggesting that the large majority of IncRNAs is indeed not translated.
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INTRODUCTION

Advances in sequencing technologies have uncovered pervasive transcription of the
eukaryotic genome outside of annotated protein-coding loci. Most of these novel
transcripts are long (> 200 nucleotides), lack large open reading frames (ORFs) and
homology to annotated protein-coding genes'. Termed long non-coding RNAs
(IncRNAs), these transcripts comprise a vast, diverse and largely unexplored class of
RNA, outnumbering any other class of genetic entities in the human genome”. Those
that have been studied in detail play important roles in a wide range of cellular
processes during normal development and in homeostasis and disease, including

cancer’.

Similar to IncRNAs, short open reading frame (sORF)-encoded polypeptides (SEPs) or
micropeptides have gained increased attention over the past few years. While
classical bioactive peptides are enzymatically cleaved from longer protein
precursors, micropeptides are small peptides (< 100 amino acids) directly translated
from single sORFs. So far, only a limited number of these micropeptides have been

discovered and functionally characterized”.

The coding potential of newly discovered RNA transcripts is typically assessed by
means of prediction algorithms>’. While each algorithm has its own strengths and
weaknesses, they are all biased to current annotations and may thus be unsuitable

for the detection of small or non-conserved proteins including micropeptides.

Although the advent of ribosome profiling® (sequencing of ribosome protected RNA
fragments) promised to provide evidence for (the lack of) translation of expressed
ORFs, much is still open to interpretation. Numerous studies report substantial

ribosome occupancy of IncRNA transcripts®

. The striking similarities in the pattern
and size of ribosome protected fragments covering protein-coding transcripts and
IncRNAs have led some researchers to conclude that up to 90% of the IncRNA
transcriptome bears coding ORFs'®. Other researchers report much more

114 For instance, if the relative abundance of ribosomes

conservative numbers
before and after stop codons (termed ribosome release) is used to discriminate

between protein-coding and non-coding transcripts, only a few novel coding ORFs
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are found'. When taking into account the phased movement of ribosomes across
translated ORFs, only a small number of novel peptides arising from transcripts
annotated as IncRNAs™ are identified. Different research groups have thus
developed different metrics and methodologies to detect coding ORFs in ribosome
profiling data. Without a consensus, the true coding potential of IncRNA transcripts

remains open to speculation.

Mass spectrometry is often considered as the gold standard in detection and
characterization of proteins or peptides. So far, few studies have turned to mass
spectrometry to study micropeptides and IncRNA-encoded proteins. Reported

numbers vary from less than 100 up to 1,600 in human®™*®

. Compared to the more
than 60,000 reported IncRNA genes>*, these numbers are fairly low and definitely

much lower than those reported by various ribosome profiling studies.

This discrepancy in the reported amounts of potentially coding IncRNAs is the source
of spirited discussion in the field. Indeed, a resolution of this conflict has direct

relevance for further investigations into the biological roles of IncRNAs.

The most direct observation of coding IncRNAs is the actual detection by mass
spectrometry based proteomics of the encoded proteins. As such, the absence of
large amounts of detected IncRNA-derived proteins strongly hints at a limited coding
potential for IncRNAs. The main criticism of this approach however, is that mass
spectrometry-based proteomics is somehow biased against the detection of IncRNA

products.

Here, we therefore examine the possible biases of mass spectrometry to detect and
characterize IncRNA-encoded proteins based on a detailed yet exhaustive
reprocessing of very large amounts of public proteomics data. Our findings clearly
show that there are no obvious technical reasons why mass spectrometry would
have largely missed (micro)peptides originating from non-coding RNA transcripts,
thus eliminating the possibility that mass spectrometry would be biased against the

detection of putative IncRNA-encoded proteins.
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THE INFLUENCE OF PROTEIN COMPOSITION ON DETECTABILITY

BY MASS SPECTROMETRY

Mass spectrometry enables high-throughput protein identification in complex
samples. However, there is some controversy regarding the limitations of this
technique in terms of detectability of peptides and thus, by extension, proteins.
Several potential causes have been proposed, including biases due to the size of the
protein sequence, the amino acid composition, the abundance, and the half-life of

1921 Here, we investigate these presumed issues and identify potential

proteins
reasons as to why certain predicted ORF products evade detection. The applied
strategy revolves around the reprocessing of publicly available data in PRIDE*?, one
of the world’s leading mass spectrometry repositories”. Sequence database
searches were performed using an automated reprocessing pipeline, consisting of
pride-asap®* for the detection of data set specific parameters, SearchGUI* to match
the fragmentation mass spectra against peptides derived from protein sequence
databases, and PeptideShaker? to integrate the identifications and control these at

a 1% false discovery rate at the peptide-to-spectrum match level (see Supplementary

Material for details).

A first potential factor that may contribute to a detection bias is the size of a protein.
In order to analyse this, publicly available submissions of human projects to PRIDE
were searched against the human complement of the UniProtkB/SwissProt®’ protein
sequence database using our reprocessing pipeline. The resulting set of proteins was
ranked according to sequence length. A simple spectral count over all PRIDE assays
in which a protein was identified, was used to indicate the number of times the
protein was observed. Q8WZ42, the megadalton protein titin, represented by its
canonical isoform of 34,350 residues, was identified 298 times in 183 assays. This
indicates that large proteins are picked up despite their length, as is to be expected
due to the relatively higher number of potential MS/MS-identifiable peptides
following enzymatic cleavage of larger proteins. At the same time, short proteins are
also frequently identified across a broad range of assays (Table 1). It is noteworthy

that out of 20,207 human entries in UniProtKB/SwissProt, only 36 —(mainly) tissue or
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cell specific— proteins (0.18%) are smaller than the shortest reported protein
sequences in Table 1. These numbers provide a strong indication that protein length
is not likely a major determining factor in protein detectability by mass spectrometry

using standard sampling protocols.

protein gene length average MW spectral assay
name (AA) (da) count count
P62328 TMSB4X 44 4921.46 787 287
P63313 TMSB10 44 4894.48 366 229
Q8N4H5 TOMMS 51 6035.31 88 70
P62891 RPL39 51 6275.49 109 52
Q59GN2  RPL39P5 51 6322.59 107 51
Q5VTU8  ATP5EP2 51 5806.87 53 43
P56381 ATP5E 51 5648.57 53 43
Q96IX5 USMG5 58 6326.38 112 86
P62861 FAU 59 6647.86 248 141
P13640 MT1G 62 6647.86 71 47

Table 1: The ten shortest human proteins identified by reprocessing of the reprocessed
PRIDE data.

A second feature that could impose a bias on protein detection using mass
spectrometry is the amino acid sequence composition. The existence of such a
potential bias was investigated by comparing the composition of peptides that have
been identified at high confidence with the composition of in silico generated
peptide sequences. A theoretical digest of the human UniProtkKB/SwissProt database
was therefore created using dbtoolkit®® with tryptic cleavage rules, allowing for two
missed cleavages. Both empirical peptides from the reprocessing of the human data
in PRIDE and in silico obtained peptide sequences from the in silico digest of
UniProtKB/SwissProt were filtered to sizes between 5 and 30 amino acids, which is
the common range of observed peptide lengths in practice’. The amino acid
composition of both theoretical and observed peptides was then calculated by
counting the occurrence rate of an amino acid per position in the sequence (Figure

1). There is a high positive correlation between both datasets (Spearman p =0.952, p
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< 0.01), hinting that there is no reason to assume that the composition of proteins
identified by the reprocessing of PRIDE and those generated by in silico digestion is
very different. The somewhat higher occurrence rates for R and K in the
experimental data are most likely related to the fact that these residues are strong
bases and therefore strongly promote ionization. The explanation for the slightly
lower occurrence rate of S in the experimental data can be related to the fact that S
can be phosphorylated in vivo, and the somewhat lower efficiency in the detection

of phosphorylated residues.
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Figure 1: Comparison between theoretical (UniProtKB/SwissProt) and observed
(reprocessed PRIDE data) peptide sequence amino acid composition for human

data from PRIDE and UniProtKB/SwissProt.

Another important property that can affect detection by mass spectrometry is
protein (and thus peptide) abundance in the sample. Although there are examples of
successful enrichment protocols®®, the detection of products of rare translation
events is not straightforward. In order to investigate the influence of the abundance

on the detectability of proteins by mass spectrometry, we first make use of the study
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by Anderson and Hunter®! that reports empirically obtained protein quantification
values in human blood plasma. Reprocessing of the subset of PRIDE data sets
derived from human blood was carried out, and their estimated abundances were
mapped to the values reported by Anderson and Hunter (Figure 2). While it is clear
that the lowest abundant proteins are not detected, the abundance range of human
plasma is quite extreme at eleven orders of magnitude, of which at least eight are
covered reliably in the PRIDE data. This analysis thus shows that mass spectrometry

based proteomics is only biased against the very least abundant proteins.
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Figure 2: Reprocessing results for PRIDE data sets derived from human blood plasma
mapped onto the abundance values reported by Anderson and Hunter. The size
of a bubble corresponds to the number of PRIDE assays in which that protein was
identified.

Another possibility for detection bias is provided by the half-life of a protein as

rapidly degraded proteins may escape detection as well. In order to assess a possible
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bias based on protein half-life, we make use of the study by Schwanhausser et al.,
where half-life values for murine proteins are reported®’. Because PRIDE also
contains murine data, extensive reprocessing of these murine data sets against the
mouse complement of the UniProtkB/SwissProt database was performed and the
reprocessed identifications were mapped to the originally reported half-life data
(Figure 3). This analysis reveals that the PRIDE data cover the entire half-life range,

indicating no influence of protein half-life values on detectability.
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Figure 3: Reprocessing results for all PRIDE murine data mapped onto the half-life values
reported by Schwanhausser et al. The size of the bubble corresponds to the
number of PRIDE assays in which the protein was identified.

In addition, we calculated the N-terminal instability index of human proteins as

described by Guruprasad et al.*>. This metric is based on the dipeptide composition
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of a protein and provides a crude estimation of protein half-life when large-scale
experimental data are lacking, as is the case for human proteins. The underlying
assumption is that a protein’s half-life correlates negatively to its relative instability.
We therefore compared the calculated instability indices for all proteins in the
human complement of UniProtKB/SwissProt with those calculated for the identified
proteins from the human data sets in PRIDE. Only a minor deviation is revealed
between the instability index distributions of observed and theoretical proteins,
providing additional proof that the degradation rate of a protein is of little, if any,

influence on its detectability.
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Figure 4: The instability index distributions of human UniProtKB/SwissProt proteins, and of
identified proteins from reprocessed human data sets in PRIDE.
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LNCRNA EXPRESSION AND COMPOSITION SHOW NO INDICATION

OF CODING POTENTIAL

The expression profile of IncRNAs differs extensively from that of protein coding
mMRNAs (Figure 4a). LncRNAs are generally expressed at a lower level and are more
abundant in the nucleus. While mRNAs are transported to the cytoplasm for
ribosomal translation, several IncRNAs have a documented function in the nucleus®*.
As such, the nuclear enrichment of IncRNAs suggests a non-coding role for the

majority of the IncRNA transcripts.

We have observed that very low protein abundance can hamper the detection by
mass spectrometry (Error! Reference source not found.2) and IncRNAs are
expressed at lower levels compared to mRNAs. Because expression level is a good
predictor for protein concentration®, one might speculate that IncRNAs give rise to
proteins at concentrations below the mass spectrometry detection limit. To examine
this issue, we first compared IncRNA and mRNA expression levels in the GENCODE v7
datasetl (see Supplementary Material for details). While the average expression
level of IncRNAs is below that of protein coding genes, the expression range is very
similar (Figure 4b). In addition, a substantial number of IncRNAs are expressed at
levels similar to typical mRNA transcripts. To evaluate the protein detectability as a
function of its mRNA expression, we compared mRNA expression levels to the
normalized spectral abundance factor (NSAF+)*® of the corresponding protein. The
expression level is defined as the maximally observed RPKM (reads per kilobase per
million mapped reads) for a particular mRNA across 11 cell lines in the GENCODE
dataset. The maximally observed NSAF+ for each protein from the 4,413 assays in
PRIDE that originate from these cell lines is reported. The NSAF+ and RPKM show a
low but significant correlation (Spearman p = 0.32, p-value < 0.01), which is
particularly apparent in the higher expression ranges (Figure 4c). Importantly, even
though low abundant proteins are more difficult to detect, detected proteins cover
the entire expression range. Thus, should IncRNAs give rise to proteins, their

concentrations should be detectable by mass spectrometry.
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Figure 4: LncRNA and mRNA expression profile and detectability. a) Two-dimensional kernel
density plot of IncRNA and mRNA expression levels and subcellular localization.
The enrichment of nuclear over cytosolic expression versus the expression in the
whole-cell extract is shown. Selected IncRNA and protein coding genes are
depicted. Especially low abundant IncRNAs show nuclear enrichment compared to
mRNAs (adapted from Djebali et al.') b) Whole-cell expression distribution for
IncRNAs and mRNAs. Although IncRNAs are generally expressed at lower levels, a
substantial overlap is observed. c) Normalized spectral abundance factor (NSAF) of
the detected protein as a function of its RNA expression level. While mRNA
expression and NSAF are moderately correlated, the entire range of expression is
clearly covered and thus detectable with mass-spectrometry.
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The fact remains that most (if not all) IncRNAs contain canonical ORFs. While
predictions classify these as non-coding (hence the annotation as IncRNA), it is
conceivable that these ORFs represent recent evolutionary adaptations and are thus
difficult to detect by in silico analyses. To evaluate if IncRNA ORFs are evolutionary
retained or products of random nucleotide progression, we examined the relative
size of these ORFs. By using the reverse complement of the sequence as a control, it
is obvious that mRNA ORFs are much larger than random ORFs in the reverse
complement sequence (see Supplementary Material for details). In contrast, IncRNA
ORFs do not differ in size from randomly occurring ORFs, suggesting that they are
indeed the product of random nucleotide progression. In addition, it was previously
shown that IncRNA ORFs do not show the within-species substitution patterns

expected of recently evolved proteins®™.
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strand
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Figure 5: Relative size of the largest canonical ORF in mRNA and IncRNA transcripts. Using
the reverse complement sequence as a control, it is apparent that IncRNA (as
opposed to mRNA) ORFs are not larger than what would be expected from
random nucleotide progression.
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CONCLUSION

Investigations into the proportion of coding IncRNAs have resulted in very different
estimates. RNA-based analyses, including ribosome profiling, has led to very high
estimates, while the more direct measurement of IncRNA-derived proteins via mass
spectrometry has turned up only a small percentage of putatively coding IncRNAs. In
order to help resolve this discrepancy, we here performed a detailed yet thorough
analysis across the very large amounts of publicly data available for the human and
murine proteomes to eliminate possible biases of mass spectrometry based
proteomics in detecting IncRNA-derived proteins. Our analyses reveal that the
detection of proteins by mass spectrometry displays only limited bias, relating to
proteins with very low abundance and/or very short sequence lengths (shorter than
44 amino acids). Nevertheless, it should be noted that specialized methods can
circumvent the observed protein detection biases. Targeted sampling of less studied
tissues may still reveal the existence of IncRNA-encoded, tissue specific1 translation
products. Short translation products can be picked up using peptidomics
approaches®’, and enrichment protocols® can boost yet unseen (micro-)peptides
above the mass spectrometry detection threshold. Our analyses thus also delineate
useful methods and protocols for comprehensive analysis strategies that are tailored

towards finding yet unfound putative protein products from IncRNAs.

Even though mass spectrometry has its limitations in the detection of very low
abundant or very small proteins, we firmly demonstrate here that these limitations
alone cannot explain the discrepancy between the observed number of IncRNA-
encoded proteins and the predicted number by various ribosome profiling studies. In
addition, we show that the putative protein products of IncRNA ORFs do not differ in
protein sequence length or composition from currently well-detectable proteins. It is
thus unlikely that the majority of the current IncRNA annotation consists of miss-
classified protein coding genes. These findings confirm that ribosome association
alone is insufficient to define novel coding ORFs, as was already suggested by some

ribosome profiling studies.
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SUPPLEMENTARY MATERIAL

1.1. REPROCESSING OF PUBLICLY AVAILABLE DATA IN PRIDE
The reprocessing of the public data was performed in four steps: (i) the acquisition

of data through the PRIDE webservice (Reisinger et al., 2015), (ii) the extraction of
spectra and search parameters using pride-asap (Hulstaert et al., 2013), (iii) the
execution of sequence database searches using SearchGUI (Vaudel et al., 2011), and

(iv) the collation of identifications using PeptideShaker (Vaudel et al., 2015).

The acquisition of the required input data was executed using the PRIDE webservice

(www.ebi.ac.uk/pride/ws/archive/). A query was launched to find all complete

(including legacy) human projects in PRIDE, resulting in 639 projects that contained a
total of 6438 assays for all human data, and 11 projects comprising 361 assays for all

mouse data at the time of retrieval.

Spectra were extracted in the Mascot Generic File (MGF) format from the assay files
retrieved from PRIDE using pride-asap. Any assay that contained no useable tandem
mass spectra (e.g., an assay with only MS1 data) were discarded at this point. This
filtering step lead to 4413 retained assays for human data, and 71 retained assays for
mouse data. For human plasma, 811 assays could be found amongst the 4413. were
Simultaneously, search parameters were extracted from the reported identifications
in PRIDE using pride-asap. These parameters include precursor and fragment ion
mass accuraccies, the most probable modifications and their occurrence rate, the
used digestion enzyme, and the amount of missed cleavages. In the uncommon
event that no identifications were reported in the PRIDE assay, default settings were
used ; a precursor and fragment ion mass accuracy of 0.6 da, carbamidomethyl-
cysteine as a fixed modification, acetylation of lysine and oxidation of methionine as

variable modifications, and digestion with trypsin, allowing for 2 missed cleavages.

The obtained spectra were re-analyzed in SearchGUI using the parameters extracted
by pride-asap. Three search engines were enabled in SearchGUI: X!Tandem (Craig
and Beavis, 2004), MyriMatch (Tabb et al., 2007), and MS-GF+ (Kim and Pevzner,

2014), with matching performed against the human or mouse complement of the
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UniProtKB/SwissProt protein sequence database (release 2015_05) for human and
mouse PRIDE data, respectively. These databases were automatically appended with

their reversed protein sequences as decoys by SearchGUI.

The SearchGUI output was fed into PeptideShaker to collate the identifications from
the three search engines, and to control FDR at 1% at the peptide-to-spectrum
match (psm) level. A final list of identifications was then exported by PeptideShaker

in CSV format.

1.2.  LNCRNA EXPRESSION AND SUBCELLULAR LOCALIZATION
Processed RNA sequencing datasets from the GENCODE project (Djebali et al., 2012)

were obtained from the Gene Expression Omnibus (GEO) website. The dataset
comprises RNA sequencing in eleven cell lines and three cell fractions. Average
RPKM values are extracted from the public datasets. Further analysis is performed
using the statistical environment R and the ggplot2 and dplyr packages. Using
Ensembl identifiers, the transcripts are classified as protein coding if the
corresponding Ensembl biotype is protein_coding, or LNCipedia 3.1 (Volders et al.,
2015) if the transcript corresponds to a IncRNA. Only transcripts that are expressed
in the three cell fractions are retained. The nuclear enrichment is calculated as the
rpkm in the nuclear fraction of the rpkm in the cytosolic fraction. To compare mRNA
expression and protein abundance, the normalized spectral abundance factor (NSAF)
(Zybailov et al., 2006) is calculated in PeptideShaker. Only experiments from the set
of eleven cell lines are considered. The resulting files were further processed using
custom java code and the NSAF values are matched to the corresponding mRNA
transcript using Ensembl and UniProtKB/SwissProt identifiers. Only the highest
RPKM and NSAF values across the eleven cell lines are used for visualization. All data

visualization is performed with the ggplot2 R package.
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accession cell line fraction | Filename
GSM758559 | GM12878 | cell GSM758559_hgl19_wgEncodeCshlLongRna$S
eqGm12878CellPapGeneGencV7.txt
GSM758560 | GM12878 | cytosol GSM758560_hgl19_wgEncodeCshlLongRna$S
egqGm12878CytosolPapGeneGencV7.txt
GSM758563 | HUVEC cell GSM758563 hgl9 wgEncodeCshlLongRna$S
egHuvecCellPapGeneGencV7.txt
GSM758564 | A549 cell GSM758564_hgl9_wgEncodeCshlLongRna$S
egA549CellPapGeneGencV7.txt
GSM758565 | HUVEC nucleus | GSM758565 hgl19 wgEncodeCshlLongRna$S
egHuvecNucleusPapGeneGencV7.txt
GSM758566 | H1-hESC cell GSM758566_hgl19_wgEncodeCshlLongRna$S
egH1lhescCellPapGeneGencV7.txt
GSM758568 | HepG2 nucleus | GSM758568 hgl9 wgEncodeCshlLongRna$S
egHepg2NucleusPapGeneGencV7.txt
GSM758569 | HUVEC cytosol GSM758569_hgl19_wgEncodeCshlLongRna$S
egHuvecCytosolPapGeneGencV7.txt
GSM758570 | H1-hESC cytosol GSM758570_hgl19_wgEncodeCshlLongRna$S
egH1lhescCytosolPapGeneGencV7.txt
GSM758574 | H1-hESC nucleus | GSM758574_hgl9_wgEncodeCshlLongRna$
egHlhescNucleusPapGeneGencV7.txt
GSM758575 | HepG2 cell GSM758575_hgl9_wgEncodeCshlLongRna$S
egHepg2CellPapGeneGencV7.txt
GSM758576 | HepG2 cytosol GSM758576_hgl19 wgEncodeCshlLongRna$S
eqHepg2CytosolPapGeneGencV7.txt
GSM765386 | GM12878 | nucleus | GSM765386_wgEncodeCshlLongRnaSeqGm
12878NucleusPapGeneGencV3c.txt
GSM765387 | K562 nucleus | GSM765387_wgEncodeCshlLongRnaSeqK56
2NucleusPapGeneGencV3c.txt
GSM765388 | MCF-7 cell GSM765388_wgEncodeCshlLongRnaSeqMcf
7CellPapGeneGencV3c.txt
GSM765399 | NHEK nucleus | GSM765399_wgEncodeCshlLongRnaSeqNhe
kNucleusPapGeneGencV3c.txt
GSM765400 | NHEK cytosol GSM765400 wgEncodeCshlLongRnaSeqgNhe
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kCytosolPapGeneGencV3c.txt

GSM765401 | NHEK cell GSM765401_wgEncodeCshlLongRnaSegNhe
kCellPapGeneGencV3c.txt

GSM765402 | Hela-S3 cell GSM765402_wgEncodeCshlLongRnaSeqgHela
s3CellPapGeneGencV3c.txt

GSM765403 | Hela-S3 nucleus | GSM765403_wgEncodeCshlLongRnaSeqgHela
s3NucleusPapGeneGencV3c.txt

GSM765404 | Hela-S3 cytosol GSM765404_wgEncodeCshlLongRnaSeqgHela
s3CytosolPapGeneGencV3c.txt

GSM765405 | K562 cell GSM765405_wgEncodeCshlLongRnaSegK56
2CellPapGeneGencV3c.txt

GSM840137 | K562 cytosol GSM840137_hgl19_wgEncodeCshlLongRna$S
egK562CytosolPapGeneGencV7.txt

GSM981244 | IMR9S0 cytosol GSM981244 hgl9_wgEncodeCshlLongRna$S
eqlmr90CytosolPapGeneGencV10.txt

GSM981245 | MCF-7 nucleus | GSM981245 hgl9_wgEncodeCshlLongRna$
egMcf7NucleusPapGeneGencV10.txt

GSM981246 | A549 cytosol GSM981246_hgl9_wgEncodeCshlLongRna$S
egA549CytosolPapGeneGencV10.txt

GSM981247 | A549 nucleus | GSM981247 _hgl9_wgEncodeCshlLongRna$
egA549NucleusPapGeneGencV10.txt

GSM981248 | IMR9S0 nucleus | GSM981248 hgl9_wgEncodeCshlLongRna$S
eqglmr90NucleusPapGeneGencV10.txt

GSM981249 | IMR90 cell GSM981249 _hgl19_wgEncodeCshlLongRna$S
eqlmr90CellPapGeneGencV10.txt

GSM981250 | SK-N-SH nucleus | GSM981250 hgl19 wgEncodeCshlLongRna$S
egSknshNucleusPapGeneGencV10.txt

GSM981251 | SK-N-SH cytosol GSM981251 _hgl9_wgEncodeCshlLongRna$S
eqgSknshCytosolPapGeneGencV10.txt

GSM981252 | MCF-7 cytosol GSM981252_hgl19_wgEncodeCshlLongRna$S
egMcf7CytosolPapGeneGencV10.txt

GSM981253 | SK-N-SH cell GSM981253_hgl9_wgEncodeCshlLongRna$S

eqgSknshCellPapGeneGencV10.txt

Table 2: Processed RNA sequencing datasets obtained from GEO
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1.3. LNCRNA ORF sTATISTICS
LncRNA and protein coding transcript sequences are obtained from LNCipedia (3.1,

high confidence set) and RefSeq (NM_* records only) respectively. Using Perl
scripting, all canonical open reading frames (ORF) are determined both in the
transcript sequence and in the reverse complement. Further analysis is performed
using the statistical environment R and the ggplot2 and dplyr packages. For each
transcript and its reverse complement, the largest canonical ORF is selected. The
distribution of the sizes of these ORFs (relative to the transcript length) is visualized

with the ggplot2 R package.
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[11.4. CASE STUDY 1: DEVELOPMENT OF COMBINED MRNA AND LNCRNA EXPRESSION
PROFILING PLATFORMS

Pieter-Jan Volders, Pieter Mestdagh, Bjérn Menten & Jo Vandesompele

Contributions: The candidate contributed to the concept and performed the design
of the platform, supervised data acquisition and performed data analysis and

interpretation.
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DEVELOPMENT OF COMBINED MRNA AND LNCRNA

EXPRESSION PROFILING PLATFORMS

PIETER-JAN  VOLDERS, PIETER MESTDAGH, BJORN MENTEN & JoO

VANDESOMPELE

INTRODUCTION

Long non-coding RNA (IncRNA) constitute a large and diverse class of non-coding
RNA genes. Although several IncRNAs have been functionally annotated, the
majority remains to be characterized. LNCipedia (http://www.Incipedia.org) is the
largest public compendium of IncRNAs with and without a known function!. While
microarrays are a popular choice for gene expression profiling studies, the
commercial platforms lack probes covering IncRNAs. Hereby we describe the
development of several custom gene expression platforms for detection of both

MRNA and IncRNA expression using Agilent SurePrint technology.

EXPRESSION ARRAY VERSION 1 (MARCH 2012)

The SurePrint G3 Human Gene Expression Microarrays offered by Agilent
Technologies are a popular choice for gene expression profiling studies both in
Center for Medical Genetics Ghent and other laboratories. While this platform
covers all human protein coding genes it only measures a limited number of IncRNAs
for which little or no annotation is available. Therefore, we designed a custom gene
expression microarray that covers all IncRNAs in LNCipedial in addition to the mRNA
content of the 60k gene expression microarray. Therefore, we used the same 33,128
MRNA probes as the Agilent SurePrint G3 Gene Expression Microarrays. By removing
the poorly annotated IncRNAs from the commercial platform and reducing the

number of replicate probes, we were able to free enough space to fit all the content
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on the 8x60k platform. Using Agilent’s eArray application®, we designed 23,042
IncRNA specific probes covering 96% of all LNCipedia transcripts available at the
time. The final microarray design consists of the Agilent mRNA probe groups, the
LNCipedia IncRNA probe group and the recommended reference and replicate
probes. Microarrays using this design are available from Agilent (Agilent MicroArray
Design ID: 039714).

The performance of the expression array was evaluated using RNA sample titrations
according to the MicroArray Quality Control (MAQC) standards?. Adequate titration
response of the INcRNA probes is shown in Figure 1.

Currently, a total of 1134 hybridizations have been performed at the CMGG using
this design as part of experiments belonging to many different research units and
projects. That makes our custom array by far the most popular choice for gene
expression profiling of human samples in our lab. In addition, our work attracted the

interest of Agilent and was presented as a customer success story on their website3.

EXPRESSION ARRAY VERSION 2 (MID 2013)

With the release of LNCipedia version 2.1* mid 2013 we revisited the expression
array design. Given the substantial increase in IncRNA content, only 75% of the
IncRNA genes in LNCipedia 2.1 were covered by the initial version of the expression
array. We therefore set out to update the design and create a second gene
expression profiling platform. As we again opted for the 8x60k layout, we could not
cover every IncRNA transcript with a unique probe, as the number of spots on the
array is insufficient. To cover all possible IncRNAs in LNCipedia nonetheless, we
opted to select probes in overlapping exons and thus minimize the number of probes
required. Our algorithm preferentially selects probes that target the highest number
of transcripts in a certain locus. Using this strategy, we selected 25 961 probes
covering 95% of the IncRNA genes and 90% of all IncRNA transcripts present in
LNCipedia 2.1 (Table 2). (Agilent MicroArray Design ID: 050524).

? https://earray.chem.agilent.com/earray/
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Again the Microarray Quality Control (MAQC) reference RNA samples were used to
evaluate the array and two different labeling kits. The Low Input Quick Amp labelling
kit was found to be the method of choice as it significantly increases the detection
rate for IncRNAs (Figure 2).

The updated design has been used for 216 hybridizations in the CMGG to this date.
In addition, our design has been shared with several scientific collaborators including
the UGent spin-off company Biogazelle which has currently used it to profile over

350 samples.

COLLABORATION WITH AGILENT  TECHNOLOGIES AND

DEVELOPMENT OF A COMMERCIAL PLATFORM

Following the success of the custom microarray, we contacted Agilent to evaluate
the commercial potential of our design. After positive evaluation by Agilent, the
company decided to use this design as a basis for the development the next version
of their SurePrint G3 platform. In close collaboration, the design was further
optimized based on the combined expertise of our lab and the company. The Agilent
SurePrint G3 Gene Expression Microarrays for Human version 3 was announced in
June 2015 with a press release on the Agilent website and is currently available as a

catalogue product>.
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FIGURES AND TABLES

Table 1: Comparison of the first and second expression array using LNCipedia 2.1 as a reference.

Version 1.1 (2012)

Version 2.0 (2013)

Nr of mRNA probes 33,128
Nr of IcnRNA probes 23,042

Genes covered
13,220 (75.5%)
(LNCipedia 2.1)

Transcripts covered
23,949 (74.4%)
(LNCipedia 2.1)

33,128

25,961

16,635 (95.0%)

28,949 (90.0%)
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Figure 1: MAQC titration response of IncRNA probes. LncRNA expression was measured for samples
A (Universal human reference RNA, Agilent Technologies), B (Human brain total RNA, Ambion), C
(25% A + 75% B) and D (75% A + 25% B). The percentage of IncRNA probes that follow the
monotonic titration response (Y-axis) is plotted in function of the binned log2-fold change (X-axis)

between samples A and B. Titration response was calculated according to Shippy et al., 20066.
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Figure 2: a) The titration response is excellent when using both labeling kits. b) More transcripts can be detected with the whole-
transcriptome kit. The percentage of probes that is detected above the background (darkcorner probe + 1) in at least one of the
MAQC samples is depicted for the two labeling kits. LncRNAs are found to be expressed at a lower level compared to mRNA:s, as is
often reported in literature. The number of detectable probes is higher when using the WT kit, especially for IncRNA probes. c,d)
A very good correlation is observed for replicates. All samples have been analyzed twice, the Pearson correlation for the

expression (probe-level) is reported. e) Labeling with poly-A kit slightly decreases the absolute difference between replicates.
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[11.5. RESEARCH PAPER 4: TARGETED GENOMIC SCREEN REVEALS FOCAL LONG NON-
CODING RNA COPY NUMBER ALTERATIONS IN CANCER CELLS

Pieter-Jan Volders, Pieter Mestdagh, Steve Lefever, Bjérn Menten and Jo

Vandesompele

Contributions: The candidate contributed in part to design of the work, contributed
to and supervised data acquisition and performed data analysis and interpretation.

The candidate drafted the manuscript.
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TARGETED GENOMIC SCREEN REVEALS FOCAL
LONG NON-CODING RNA COPY NUMBER
ALTERATIONS IN CANCER

PIETER-JAN VOLDERS, PIETER MESTDAGH, STEVE LEFEVER, BJORN MIENTEN AND

Jo VANDESOMPELE

ABSTRACT

The landscape of somatic copy-number alterations (SCNAs) affecting long non-
coding RNAs (IncRNAs) in human cancer remains largely unexplored. While the
majority of IncRNAs remains to be functionally characterized, several have been
implicated in cancer development and metastasis. Considering the plethora of
IncRNAs genes that is currently reported, it is conceivable that several IncRNAs might

function as oncogenes or tumor suppressor genes.

We devised a strategy to detect focal IncRNA SCNAs using a custom DNA microarray
platform probing 20 418 IncRNA genes. By screening a panel of 80 cancer cell lines,
we detected numerous focal aberrations targeting one or multiple IncRNAs without
affecting neighboring protein-coding genes. These focal aberrations are highly
suggestive for a tumor suppressive or oncogenic role of the targeted IncRNA gene.
Although functional validation remains an essential step in the further
characterization of the involved candidate cancer IncRNAs, our results provide a

direct way of prioritizing candidate IncRNAs involved in cancer pathogenesis.

INTRODUCTION

The cancer genome is marked by large numbers of genetic and non-genetic
alterations. The greater majority of those are somatic. Only a small fraction of the
somatic mutations, the so-called driver mutations, contribute to cancer
development by activating or inactivating specific cancer genes. The remainder are

passenger mutations that do not confer growth advantage but were acquired at
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some point during cancer cell proliferationl. Differentiating between driver and
passenger mutations is of the biggest challenges in the quest for new cancer genes
and putative therapeutic targets. While somatic alterations can be as small as a
single nucleotide substitution, insertion or deletion, somatic copy-number
alterations (SCNA) affect the largest fraction of the genome®. In some cases, SCNA
affect entire or partial chromosome arms. The ability to detect these genetic
alterations using (molecular) cytogenetic methods has made large SCNA historically
the best studied cancer associated genetic alterations. Many well-known oncogenes
and tumor suppressor genes have been initially identified as targets of recurrent
genomic amplifications or deletions, respectively. Notable examples are tumor
suppressor genes PTEN® and RB1* and oncogenes HER2 (ERBB2)’ and the MYC-
family of transcription factors®’. The resulting diagnostic and therapeutic successes
have made cancer SCNA subject of many studies. Additionally, the advent of
genome-wide array comparative genome hybridization (array-CGH) platforms that
enable robust identification of small SCNAs greatly improved our knowledge of the

cancer genome®™°.

As cancer genetics until now mainly focused on protein-coding genes, not much is
known on SCNAs affecting non-coding RNA genes in cancer. In recent years, our
knowledge on the non-coding genome has expanded enormously. This is especially
the case for the class of long non-coding RNAs (IncRNAs), consisting of genes with
transcripts larger than 200 nucleotides that do not encode proteins. In the past 5
years, ten thousands of human IncRNAs have been reported and catalogued, making
this the largest genetic class in the human genome''. While the bulk of IncRNAs
remains to be functionally annotated, they have been implicated in many important
normal cellular processes such as dosage compensation®?, chromatin remodeling®,
and cell differentiation*®; when deregulated, they play a role in disease as well,

including cancer™.

The discovery of cancer associated IncRNAs such as HOTAIR'®, MALAT1' and PvT1'®
uncovered an important role for IncRNAs in oncogenesis. The reason for the current
hiatus in our knowledge on IncRNA SCNAs is the fact that the majority of IncRNA

annotations are very recent. Most commercially available platforms are based on
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older genomic annotations (with no probes for IncRNAs, or probes for as yet
unannotated IncRNAs) or IncRNAs are simply overlooked in the data analysis.
Indeed, recurrent SCNAs outside of protein coding regions have been reported®*.
To overcome this problem, existing DNA microarray platforms have been repurposed

2021 "One such

and probe content was reannotated with current IncRNA annotation
effort resulted in the discovery of the oncogenic FAL1 (focally amplified IncRNA on
chromosome 1) IncRNA in ovarian cancer’’. While the potential of this approach lies
in its ability to make use of the large amount of publically available DNA microarray
data, the used platforms have several disadvantages for the discovery of putative
cancer associated IncRNAs. Whole cancer genome sequencing has the potential in
principle to circumvent these limitations, but the method is still relatively expensive,
and challenging in terms of data-analysis. Consequently, public databases (e.g.

TCGA) are mainly populated with targeted exome sequencing datasets, again

focusing on protein coding genes.

The occurrence of SCNAs is inversely proportional to their size, with small SCNAs

219 However, smaller SNCAs are covered by

being more common than larger ones
fewer probes making them more difficult to detect reliably. It is reasonable to
assume that a substantial number of SCNAs are overlooked in this way. As SCNA
recurrence is often used to prioritize putative cancer genes, more samples will be
required to compensate for the undetected small SCNAs. Secondly, reliably
detectable and thus larger SCNAs will contain multiple genes, possible including

protein-coding genes, making it harder to identify IncRNA cancer genes.

Here we present a targeted and cost-effective approach to identify focal IncRNA
SCNA based on a custom DNA microarray covering 20 418 IncRNA transcripts and
their flanking protein coding genes. We show the ability of this platform to detect
focal aberrations that only affect IncRNA exons and not encompass their flanking
protein coding genes. By analyzing the DNA of 80 cancer cell lines covering 11 cancer
subtypes we reveal that IncRNAs are frequently targeted by focal aberrations in
human cancer. In addition, we have generated a dataset with putative oncogenic

and tumor suppressor IncRNAs for future functional studies.
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METHODS

LNCRNA EXON DATABASE

LncRNA transcript annotation was obtained from LNCipedia22 (version 1.0) and
stored in a MongoDB NoSQL database. Protein coding transcript annotation was
obtained from Ensembl’s*® biomart (version 64, September 2011) and stored in the
same format. For every IncRNA transcript, the nearest upstream and downstream
protein coding transcript was determined. To interface with the MongoDB dataset,
both perl scripts and mongo shell scripts were employed. Using MongoDB’s
MapReduce functionality, a non-redundant exon collection was built starting from

the collection of non-redundant transcripts.

ARRAY CGH PLATFORM DESIGN
Array CGH probe design was performed using Agilent Technologies eArray software®.

A BED file of all non-redundant exons was generated from the exon database and
uploaded into eArray for probe design. Since our criterion to have 2 probes per exon
was initially not met, the exon boundaries were extended and the corresponding
BED files were uploaded as well. Exon boundaries are extended with 100 bp, 300 bp
and 500 bp. In addition, less stringent selection parameters were used for the 500 bp
extended exon. In this way, 5 probe datasets were generated and stored in a
separate  MongoDB collection. From this collection, 2 probes per exon
(neighborhood) were selected with preference for the probes closest to the exon.
Overlapping transcripts were taken into account to avoid duplicate probe selection.
For transcripts with fewer than 5 exons, additional probes were selected until the
transcript was covered by at least 10 probes. For the flanking protein coding genes,
probes were designed for the 2 exons closest to the IncRNA. From this set, the 2
probes nearest to the IncRNA were selected. The resulting set of 166 417 unique
probes was uploaded to eArray and supplemented with normalization and QC probe
groups recommended by Agilent Technologies. Agilent Technologies subsequently

manufactured the final design in the 4x180k format.

CANCER CELL LINE DNA AND RNA

? https://earray.chem.agilent.com/earray/
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The National Cancer Institute (NCI) provided DNA and RNA samples for all cell lines
in the NCI 60 cancer cell line panel. The neuroblastoma and T-ALL cell lines were
available in house, RNA extraction was performed with the miRNeasy Mini Kit

(QIAGEN) and DNA extraction with the QlAamp DNA Mini Kit (QIAGEN).

ARRAY CGH
400 ng of genomic DNA was labeled with Cy3-dCTP (GE Healthcare, Belgium) using a

Bioprime array CGH genomic labeling system (Invitrogen, Belgium). In parallel,
Kreatech gender-matched controls were labeled with Cy5-dCTP. Samples were
hybridized on the custom array CGH arrays for 40 h at 65 °C. After washing, the
samples were scanned at 5 um resolution using a DNA microarray scanner G2505B
(Agilent Technologies). The scan images were analyzed using the feature extraction
software 9.5.3.1 (Agilent Technologies). Segmentation is achieved using the circular
binary segmentation algorithm in the DNACopy R package. Visual inspection and

creation of the copy number profile plots is performed with ‘arrayCGHbase’**.

SEGMENT ANALYSIS AND FILTERING
Segment position and statistics are stored in a MongoDB collection. A perl script is

used to combine the segment annotation with IncRNA and protein coding gene
annotation in other collections and implement the filtering process. First, only
segments that overlap IncRNA exons are retained. Next, segments with an absolute
average log-ratio less than 1.5 are discarded as are segments contained within
segmental duplications (UCSC genomicSuperDups track) or segments that overlap
with more than 3 known variants (database of genomic variants®). The absolute log-
ratio of the nearest segments covering the flanking protein coding genes should be
0.5 lower than the segment covering the IncRNA (corresponding to about 1 copy
less). A more stringent subset of segments is obtained by requiring the absolute log-
ratio of the nearest segments covering the flanking protein coding genes to be less

than 0.35 (copy number neutral).

RT-aPCR VALIDATION
QPCR assays are designed based on the chromosomal locations of the altered

segment covering the IncRNA and the nearest exons of the two flanking protein

coding genes. Primer design is performed using Primer3%, primers spanning
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common SNPs are excluded. Specificity is evaluated using BiSearch®’. All gqPCR
reaction are prepared using Bio-Rad’s SsoAdvanced Universal SYBR Green Supermix
in 5 ul (2.5 pL mastermix, 0.25 ul of each forward and reverse primers (250 nM final
concentration) and 2 pl DNA (5 ng)). QPCR plates are analyzed on the LightCycler480
(Roche) using 2 min activation at 95 °C, followed by 45 cycles of 5 sec at 95 °C, 30 sec

at 60 °C and 1 second at 72 °C, and a melt curve analysis.

Calculation of normalized relative quantities was done using the gbase+ software
version 2.6 (Biogazelle) and the open source statistical environment R (version 3).
The Cq values corresponding to the altered segment are normalized to those
corresponding to the flanking protein coding genes and scaled to the control sample
(Human Genomic DNA, Roche). Downstream analysis and data visualization was

achieved using R and third party modules (plyr, ggplot2).

RESULTS

A TARGETED PLATFORM TO DETECT FOCAL COPY NUMBER CHANGES IN LNCRNA GENES
LncRNAs are underrepresented on commercial array CGH platforms and the mean

chromosomal distance between the probes on these arrays makes them unsuitable
to detect small aberrations that only involve (part of) a single IncRNA gene (Figure

S1, Supplementary material).

In order to detect small and focal SCNAs that only affect IncRNA exons, we designed
a custom 180k CGH array covering intergenic IncRNA exons and the nearest exons of
their flanking protein coding genes. To this purpose, we constructed a database with
52 324 non-redundant exons derived from all transcripts listed in LNCipedia (Figure
1, Figure S2 and Figure S3). The database was subsequently extended with protein
coding gene annotation from Ensembl. Next, we designed probes using the genomic
sequence of the IncRNA exons and the two nearest exons of the flanking protein
coding genes. By removing duplicate probes in overlapping exons and selecting
additional probes for transcripts with fewer exons, we were able to cover the

majority (94%) of the transcripts with at least 10 probes (Figure S4). Only 1.2% of
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IncRNAs could not be covered by any probe. For 95% of the IncRNA transcripts we

succeeded in designing 2 probes for each flanking protein coding exon.

To assess the quality of our custom aCGH platform, we compared the profiles for 60
cancer cell lines (NCI-60 subset) to publically available profiles of two different array
CGH platforms. The average log ratio in 1 Mb bins was calculated and correlated
between the different platforms. These correlations were compared with
correlations among unrelated cell lines (Figure S5 and Figure S6). Correlation
between the same cell lines across different platforms was high (median Pearson’s
correlation = 0.70), validating the quality of our profiles. As expected, cell lines
derived from the same individual (such as NCI/ADR-RES and OVCAR-8) are also highly
correlated (Pearson’s correlation = 0.74). In addition, this analysis revealed problems
with 2 DNA samples (HCT-15 and CAKI-1) as the obtained profiles showed poor
correlation with publically available profiles. This poor correlation remained
unresolved by repeating the hybridization. As such, results from these two cell lines

should be interpreted with care.

FREQUENT FOCAL LNCRNAS COPY NUMBER ALTERATIONS IN CANCER CELL LINES
To explore focal IncRNA SCNAs in cancer, we analyzed DNA from 80 cancer cell lines

covering 11 cancer subtypes with our custom DNA microarray (Table 1). An extensive
filtering was performed on the resulting segments to shortlist focal IncRNA SCNA
alterations. To be considered a IncRNA SCNA, a segment should (1) overlap with
exonic IncRNA sequence, (2) not be contained within known segmental duplications,
(3) overlap with at most 3 known variants and (4) have an absolute average log-ratio
that is larger than 1.5 (reflecting homozygous deletions and gene amplifications). In
the case of a copy number gain, an additional requirement was that the segment
includes the entire transcript. Finally, to withhold a focal SCNA (5), the segment
cannot overlap any of the flanking protein coding gene exons. To attribute for
anomalies in the circular binary segmentation process that generates multiple
segments for the same genetic alteration, we pose further requirements on the
segments spanning the flanking protein coding genes. A SCNA is only considered
focal if the difference between its absolute average log-ratio and that of the

segment spanning the nearest exon of the flanking protein coding genes is at least
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0.5. Using these settings, 173 focal SCNAs affecting 136 IncRNAs in at least one cell
line were identified (Figure 2). The majority of these IncRNAs (111) is affected in a
single cell line, 16 are affected in 2 cell lines, 7 in 3 cell lines, 1 in 4 cell lines and 1 in
5 cell lines. By confining the relative difference in log-ratio between the segment
covering the IncRNA and the segment covering the flanking protein coding genes, it
is possible to retain focal SCNA that are part of larger ones (for instance a large
hemizygous deletion that contains a smaller homozygous deletion). A more stringent
subset of 76 IncRNA SCNA is obtained if we require that the flanking protein coding

gene does not show any copy number change (Figure S7).

RT-QPCR CONFIRMS THE MAJORITY OF FOCAL ABERRATIONS
We devised a unique strategy to validate the selected focal IncRNA SCNAs using

gPCR. Assays were designed targeting the genomic locus of the aberration and the
nearest exons of the flanking protein coding genes. By comparing the Cq value of the
IncRNA locus and the flanking coding exons, we can accurately assess the difference
in copy number between the two. Using this strategy, we evaluated 88 events
(Figure 3). For 66 of these (75%) an altered copy number status compared to at least
one of the two flanking assays could be confirmed, of which 43 (49%) showed the
expected relative difference in Cq values with both flanking assays and were thus
validated as focal aberrations. The validation rate is higher for the amplifications
than for the deletions (56% and 48%, respectively). The validation rate drastically
increases when we limit our analysis to the subset of segments with an absolute
average log-ratio larger than 2.5. In that case, 58 out of 64 (91%) events are
confirmed copy number alterations. The fraction of confirmed focal aberrations

remains similar (53%).

MoOST NOVEL LNCRNA ABBERATIONS DO NOT CORRESPOND TO COMMON SOMATIC

VARIANTS
As our custom platform differs considerably from other array CGH platforms, it not

unlikely that the newly found SCNAs actually comprise uncharted germline copy-
number variants that may exist in a normal population and do not contribute to
cancer. To assess this possibility, we performed an RT-gPCR experiment for five

validated loci on DNA from 192 healthy individuals. Neither homozygous deletions
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nor high order amplifications could be detected for any IncRNA in any of the samples
(Figure S8). Of note, for one IncRNA heterozygous deletions were found in 12

individuals (6%).

DISCUSSION

Even though the number of samples we examined is limited and confined to cancer
cell lines, we were able to detect a large number of SCNA that specifically affect
IncRNA exons. This suggests that similarly to protein-coding genes, IncRNAs are
frequently targeted by SCNAs in cancer. After rigorous filtering focused on novel
highly aberrant segments that not encompass protein coding genes, we report 136
such events, including 25 that are recurrent. Of those, 76 events were marked as
focal based on the copy number of the flanking protein coding genes. Since the
cancer genome harbors many large SCNAs, it is important to also consider the events
where the flanking protein coding genes are not strictly copy number normal. As

long as the IncRNA itself is focally affected by a second event as well.

Our strategy uncovered several cancer-associated IncRNAs. For instance, the known
oncogene Inc-MYC-2 (PVT1) was detected as a recurrent focal aberration (Figure 2,
Figure S3). PVT1 has been implicated in several cancer types including gastric
cancer?®, ovarian cancer and breast cancer'®. PVT1 copy number was found to be co-
gained in more than 98% of cancers with a MYC copy number increase”. Our work
not only confirms frequent amplification of PVT1 in cancer, but also reveals that
PVT1 amplifications can be focal. Another interesting accordance with previous
studies is found in a large-scale pan-cancer study on SCNAs'. Although the authors
mainly focus on SCNAs affecting protein coding genes and use limited IncRNA
annotation, they report one IncRNA, Inc-DCTD-5 (LINC00290), as the sole member of
a frequently deleted region. Our results reveal a recurrent and focal deletion in

ovarian and breast cancer cell lines, suggesting a role in cancer (Figure 2).

The validation rate determined with gPCR was strongly dependent on the log-ratio
cutoff applied to the segments, with an absolute average log-ratio larger than 2.5

showing high validation rates for IncRNA copy number status. The relatively high
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cutoff is likely to be related to the unique design of our platform. As the probes are
confined to small genomic loci (IncRNA exons) is it not unimaginable that the
observed signal-to-noise ratio is different compared to typical designs. In addition,
gPCR may not be the most appropriate method to detect hemizygous copy number
changes. Even with a stringent log-ratio cutoff (2.5), only 50% of the events could be
confirmed to be truly focal. This suggests that the limited number of probes on the
flanking protein coding genes is insufficient to define the breakpoints of the

segments in some cases.

Nevertheless, even when taking the validation rate into account, our research finds
about 100 IncRNAs affected by focal SCNA. As the majority of these events are likely
no germline copy-number variants, these SCNAs harbor interesting candidates for

further research.

CONCLUSION

We developed and applied a unique array CGH platform capable of detecting small
and focal IncRNA SCNAs. We have screened a panel of 80 cancer cell lines and
shortlisted 136 IncRNA genes with a putative role in cancer. Among this list are
several IncRNAs that have been implicated in cancer, validating our approach. Since
the great majority of the IncRNAs on our platform have yet to be functionally
studied, this finding suggests that our research provides many new cancer related
IncRNA genes. We present a set of IncRNA genes to the IncRNA and cancer research
community as novel candidate cancer IncRNA genes for further functional

exploration.

REFERENCES

1. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature
458, 719-724 (2009).

2. Beroukhim, R. et al. The landscape of somatic copy-number alteration across
human cancers. Nature 463, 899-905 (2010).
3. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in

human brain, breast, and prostate cancer. Science 275, 1943-1947 (1997).
4, Friend, S. H. et al. A human DNA segment with properties of the gene that

RESULTS 122



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

predisposes to retinoblastoma and osteosarcoma. - PubMed - NCBI. Nature
323, 643-646 (1986).

Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival
with amplification of the HER-2/neu oncogene. Science 235, 177-182 (1987).
Nau, M. M. et al. Human small-cell lung cancers show amplification and
expression of the N-myc gene. Proceedings of the National Academy of
Sciences of the United States of America 83, 1092—-1096 (1986).

Little, C. D., Nau, M. M., Carney, D. N., Gazdar, A. F. & Minna, J. D.
Amplification and expression of the c-myc oncogene in human lung cancer cell
lines., Published online: 10 November 1983; | doi:10.1038/306194a0 306,
194-196 (1983).

Zhao, X. et al. An integrated view of copy number and allelic alterations in the
cancer genome using single nucleotide polymorphism arrays. Cancer Research
64, 3060-3071 (2004).

Network, T. C. G. A. Comprehensive molecular portraits of human breast
tumours. Nature 490, 61-70 (2012).

Weir, B. A. et al. Characterizing the cancer genome in lung adenocarcinoma.
Nature 450, 893—898 (2007).

Volders, P.-J. et al. An update on LNCipedia: a database for annotated human
IncRNA sequences. Nucleic Acids Research gkul1060 (2014).
do0i:10.1093/nar/gku1060

Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435—
1439 (2012).

Kogo, R. et al. Long noncoding RNA HOTAIR regulates polycomb-dependent
chromatin modification and is associated with poor prognosis in colorectal
cancers. Cancer Research 71, 6320-6326 (2011).

Ulitsky, I., Shkumatava, A., Jan, C., Sive, H. & Bartel, D. P. Conserved function
of lincRNAs in vertebrate embryonic development despite rapid sequence
evolution. Cell 147, 1537-1550 (2011).

Gutschner, T. & Diederichs, S. The Hallmarks of Cancer: A long non-coding
RNA point of view. rnabiology 9, 0—1 (2012).

Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state
to promote cancer metastasis. Nature 464, 1071-1076 (2010).

Gutschner, T. et al. The non-coding RNA MALAT1 is a critical regulator of the
metastasis phenotype of lung cancer cells. Cancer Research 73,
canres.2850.2012-1189 (2012).

Guan, Y. et al. Amplification of PVT1 contributes to the pathophysiology of
ovarian and breast cancer. Clin Cancer Res 13, 5745-5755 (2007).

Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat.
Genet. 45, 1134-1140 (2013).

Du, Z. et al. Integrative genomic analyses reveal clinically relevant long
noncoding RNAs in human cancer. Nature Structural & Molecular Biology 20,
908-913 (2013).

Hu, X. et al. A Functional Genomic Approach Identifies FAL1 as an Oncogenic
Long Noncoding RNA that Associates with BMI1 and Represses p21 Expression
in Cancer. Cancer Cell 26, 344-357 (2014).

Volders, P.-J. et al. LNCipedia: a database for annotated human IncRNA

RESULTS 123



23.

24.

25.

26.

27.

28.

29.

transcript sequences and structures. Nucleic Acids Research 41, D246—-D251
(2013).

Hubbard, T. et al. The Ensembl genome database project. Nucleic Acids
Research 30, 38—41 (2002).

Menten, B. et al. arrayCGHbase: an analysis platform for comparative genomic
hybridization microarrays. BMC Bioinformatics 6, 124 (2005).

MacDonald, J. R., Ziman, R., Yuen, R. K. C., Feuk, L. & Scherer, S. W. The
Database of Genomic Variants: a curated collection of structural variation in
the human genome. - PubMed - NCBI. Nucleic Acids Research 42, D986—D992
(2013).

Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for
biologist programmers. Methods Mol Biol 132, 365—-386 (2000).

Tusnady, G. E., Simon, |., Varadi, A. & Aranyi, T. BiSearch: primer-design and
search tool for PCR on bisulfite-treated genomes. Nucleic Acids Research 33,
e9—e9 (2005).

Ding, J. et al. Expression and clinical significance of the long non-coding RNA
PVT1 in human gastric cancer. OncoTargets and therapy 7, 1625-1630 (2014).
Tseng, Y.-Y. et al. PVT1 dependence in cancer with MYC copy-number
increase. Nature (2014). doi:10.1038/nature13311

RESULTS 124



Table 1: Overview of cell line panel and cell line origin

cancer subtype # cell lines origin
breast | 6 MCF7, MDA-MB-231, HS578T, BT-549, T47D, NCl
MDA-MB-468
CNS | 6 | SF-268, SF-295, SF-539, SNB-19, SNB-75, U251 | NCI
colon | 7 COLO205, HCC-2998, HCT-116, HCT-15, HT29, NCl
KM12, SW-620
leukemia | 6 CCRF-CEM*, HL-60, K-562, MOLT-4*, RPMI- NCl
8226, SR
LOXIMVI, MALME-3M, M14, SK-MEL-2, SK-
melanoma | 9 | MEL-28, SK-MEL-5, UACC-257, UACC-62, NCI
MDA-MB-435
non-small cell lun 9 A549, EKVX, HOP-62, HOP-92, NCI-H226, NCI- NCl
g H23, NCI-H322M, NCI-H460, NCI-H522
ovarian | 7 IGROV1, OVCAR-3, OVCAR-4, OVCAR-5, NCl
OVCAR-8, SK-OV-3, NCI-ADR-RES
prostate | 2 | PC-3, DU-145 NCI
renal | 8 786-0, A498, ACHN, CAKI-1, RXF-393, SN12C, NCl
TK-10, UO-31
| r:_cheglb?::ii g | Jurkat-DSMZ, ALL-SIL, DND-41, HPB-ALL, TALL- | o~
ymp . 1, LOUCY, MOLT-16, PEER
leukemia
CLB-GA, IMR-32, NB-1, NGP, N206, SHEP, SH-
neuroblastoma | 12 | SY5Y, SK-N-SH, SK-N-BE-2c, CHP-134, SK-N-AS, | CMGG
CHP-902R
11 subtypes | 80
* MOLT-4 and CCRF-CEM are T-ALL cell lines in the NCI60 panel.
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Incrnadb.com Ensembil
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Figure 1: Euler diagram of the different IncRNA sources. The circle diameter and overlap
correspond to the number of IncRNAs. The sources include several IncRNA databases and
the IncRNAs on the Wafergen SmartChip Human LncRNA1 Panel
(http://www.wafergen.com/products/smartchip-panels/smartchip-human-Incrnal-
panel/)
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Figure 2: Overview of the IncRNA genes affected by focal SCNAs after extensive filtering.
Red represents copy number loss (log-ratio < 1.5) in that cell line while blue corresponds
to copy number gain (log-ratio > 1.5). Dark red and blue correspond to copy number

changes with absolute log-ratio above 2.5.

RESULTS

127



oeISsold

UBLIBAQ

6un 180
IleWS-UoN

BWOISE|qOINaN

BlweyNe

uo|0)

SNO

1seaig

500 -

Flanking gene
right

x =

- €= kdSIM-ou|

« -~ V1102dHd-oUI
-5§-201943-oul
- e— S NNAROU
- O, = Z-NNAW-ou
+ —  ENHOu

x -

—mm -~ 2TSLNEWL-OUI
- 2-¥1eDvLS-oul

, *. — 2-ud-oul TIV-L
* — - €-DAN-U|
* -2-ONasv-aul
Ll UeLRAQ
- -ONasv-aul
. - €-g@v8Nv4-ou|
I 6un 180
. E— 2-av8iNv4-oul I[BWS—UON
* - - -0l
« -EE— - tTSNINO—oU BWOJSBIqOINEN
. s - V- SVEN-OUI
. s - - NOAW-OUI BWOURIAN

- E—— VYNV
o - -OWGSD-0U
- S - £~50dD-0UI BlSIel

T — 804070

« - }S0d9-0UI uoiog
- E— - EVENYi-oU
- E— O 8VENVA-oU
- — - E7BNYA-U
- E— 6100~ e

- — 100U
- — - OLOG-U
. e - ¢SNANL-OUI
. — - SNINL-OUI
¥ Smmm— - ¢OAN-OUI
« 4

+ S— &89V
=2~ OAN-oUl

* =

—mm -~ VH1odia-oul

« Emmm - £6SLAVAvV-oUl
« - - ©6SLAVAV-OUl

' '
o -

100 -

Amuenb ananejey

Flanking gene
right

C

x -

7 -9~ LY09LNYS-oul
. - 1-82NMa0-oul
- €-1Sedv-oul

« - S~ HINIdH3s-oul
I -9-aLoa-ou

% - E~2AdsH-ou|
¢ - 5-vov-oul
11 -9-aLog-ou
X - —
& -2-pr1di-oul
« o - b=3Nd-oul
& - 1-28H060-0u|

¥ - -vOddL-oul
»

- Z~COONIT-0UI
3 -9-LvLHNG-oul
3 -6-9dwa-ou

WS - peTTvs-oul

¢ - vy-dan-oul

X - g-dan-oul

, X -g-aLoa-oul

. . -9-0L0a-oul

I --eaav-oul

¢ - p=1'€2v8900V-0ul

% ~2-1'eLv8900V-0ul

'
o

Amnuenb annejey

ing regions is
128

is less than 1. Red crosses represent Cq

RESULTS

ing regions

dered confirmed and focal when the relative quantity to both flank
higher than 1. Similarly, a copy number loss (red) is considered confirmed and focal when

the relative quantity to both flank

Figure 3: RT-qPCR validation of the putative focal SCNAs. The Cq value of the aberration is
consi

normalized to the Cq value of each of the flanking regions. A copy number gain (blue) is
values > 35, corresponding to a homozygous deletion of the flanking regions. Stars

represent significant (p-value < 0.05) differences from 1.
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Figure S1: The smallest theoretical segment that covers each IncRNA using the Genome-
Wide Human SNP Array 6.0. A theoretical segment is the distance between the two closest
probes covering IncRNAs.
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Figure S5: Comparison of the global copy number profiles (averaged in 1Mb bins) with
publically available profiles of two different array CGH platforms (Agilent 44K and
Nimblegen 385k). Pearson correlation of all samples is depicted. Blue corresponds to no
correlation while red is a high correlation. Excellent correlation if observed for our
platform. As expected, cell lines derived from the same individual (such as NCI/ADR-RES
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2 DNA samples (HCT-15 and CAKI-1) that were unresolved by repeating the hybridization.

RESULTS 133



Cluster Dendrogram (complete linkage)

BIED G¥1 NA
— Elep alvl
elep § 4YONO

— elep NcceH ION
eep /40N

— EBlep g¢H ION
— BJep 92c8 IINdY
Elep ¢cSH ION

j_’|_H

elep ¢ Od

—— BIBP_OZINS
——— Eeep | VO

Blep_ 09yH ION
Blep 6¥GY

elep ¥ 110N
T_Wsﬂ:mo:
Elep NHOV
7|_H Elep LAOHDI
— Blep_ N30 4400
elep_9¢cH ION
Blep €6€ 4XY

Blep XAM3

eep _Hg
BIEP 0l M1
ElEp 861V
R — SIep 18L5SH ——— BIBP_}_HVIAQ
_ L——— ®Blep ¢ HVOAO
elep ¢ AO XS
Blep ¢9 dOH
erep 09 TH
elep L2 dN VA

EleD ¢9G M
elep 89y dN VAN

Blep 6v5 19 _ —
— EIEp_S34 HAy ION
L——— ®ep 8 HYONO

T T T 1
0e 0c ot 0

wbreH
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POTENT ANTISENSE OLIGONUCLEOTIDE SELECTION
FOR LNCRNA KNOCKDOWN

PIETER-JAN VOLDERS, JUSTINE NUYTENS, PIETER MIESTDAGH AND JO VANDESOMPELE

ABSTRACT

In this work, the potential of antisense oligonucleotides (ASOs) for transient knockdown of long non-
coding RNAs (IncRNAs) is evaluated. Several features of both the oligo and the target RNA are
examined for their effect on the observed knockdown in an experiment comprising 90 oligos
targeting 6 human IncRNAs. Of these features, the affinity of the oligo for the target, the secondary
structure of the target RNA and dimerization of the oligos are statistically significantly correlated to
the knockdown efficacy. We trained a generalized additive model on these features that shows 78%
accuracy in predicting functional ASOs. In addition, the effect of two nucleic acid analogs (2’-O-
methyl and locked nucleic acid) is evaluated. The use of nucleic acid analogs decreases the required
dose and increases the stability of the knockdown over time. Furthermore, the design and
evaluation of non-targeting controls oligos is discussed. Together, this research shows that ASOs can
be useful and efficient tools for studying the role of IncRNA, and we propose a strategy for the

selection and evaluation of ASOs.

INTRODUCTION

Advances in sequencing technology have unveiled extensive and genome-wide transcription outside
of known protein-coding loci. Transcripts (>200 nt) with poor coding potential comprise the majority
of this transcription and have given rise to a new group of RNAs termed long non-coding RNAs
(IncRNAs)™. Although the function of various IncRNAs has been studied in detail, the great majority

remains to be fully characterized®.

Perturbation of gene expression is an important aspect of functional genomics research and
antisense-based tools have proven to be valuable for this purpose. From the lab, where they are
used to study the function of the target gene, they are finding their way to the clinic, where
overexpression of disease associated genes is attenuated by administration of antisense drugs’.

Oligonucleotides with sequence complementarity to a known target can inhibit the function of the
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target via three mechanisms: RNA interference (RNAi), ribonuclease H (RNase H) mediated

degradation and steric hindrance®.

RNase H is an endonuclease that specifically cleaves DNA/RNA duplexes and can be trigged by small
DNA molecules called antisense oligonucleotides (ASOs) with sequence complementarity to
endogenous RNA. To improve the stability and affinity of antisense oligonucleotides, a wide range of
modifications have been developed, giving rise to what is often referred to as “second-generation”
oligonucleotides. The improved performance of these ASOs drastically decreases the required dose
and number of applications to achieve stable knockdown. These modifications can be classified as
modifications of the backbone, sugar modifications and the less common base modifications’. The
most popular and readily available modification of the backbone is the replacement of the
phosphodiester bond with a phosphorothioate (PS) linkage. Full PS-DNA oligos show an improved
nuclease resistance, while retaining the ability to induce RNase H mediated cleavage®. A broad range
of sugar modifications has been developed and many have been shown to improve the efficacy and
stability of ASOs’®. Commonly used sugar modifications include 2’-O-Methyl (2'0Me), 2’-O-
Methoxyethyl (2'MOE) and locked nucleic acid (LNA)™. Many of these sugar modifications’ are often
used in chimeric gapmer conformations where two regions consisting of modified residues flank a
central part of unmodified nucleotides. Gapmers have an improved affinity and stability compared
to PS-DNA backbone oligos without inhibiting RNase H cleavage’. Although RNase H activity is
generally desirable, in some cases better results are achieved when fully modified oligos are used
instead. These molecules will provide steric hindrance and prevent interaction with other

macromolecules or prevent correct processing of the primary RNA transcript.

Antisense strategies that show great effectiveness to silence or functionally impair protein-coding
genes may be unsuitable for IncRNAs. While oligos that interfere with ribosome binding are very
powerful for mRNA silencing’’, they have poor potential for use against IncRNAs as IncRNAs are by
definition not translated to protein. Furthermore, the great majority of IncRNAs are nuclear

13,14

retained™ and many have described functions in the nucleus™™"". This requires oligonucleotides that

can efficiently pass the nuclear membrane and trigger a nuclease that functions in the nucleus.

Until now, researchers have predominantly used small interfering RNAs to achieve transient
knockdown of IncRNAs. ASOs however, have several characteristics that make them superior
candidates for silencing IncRNAs. Efficient silencing of nuclear retained transcripts has been reported

. . 15,16
using ASOs on several occasions™

. A potential explanation is that while siRNAs are administered as
double stranded RNA molecules, ASOs are of single stranded nature. This makes them smaller than

siRNAs and improves delivery to the nucleus, where the great majority of IncRNAs is found". In
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contrast to siRNAs, ASOs can mediate knockdown when targeted to intronic sequences as well®®. As
IncRNAs are not translated and the mature RNA transcript is also the functional form of the gene;
intronic ASOs prevent formation of the functional transcript and as such improve the chances of
observing a phenotype. The lack of a second strand has other advantages as well, for instance it

reduces the risk of off-target effects"’.

Successful application of ASOs in vivo in the IncRNA research field has been reported. For instance,
ASOs have been used successfully to target the oncogenic IncRNA MALAT1. In one specific study,
subcutaneous injection of ASOs in mice effectively inhibited MALAT1 expression in the tumor tissue

.19
and decreased lung metastasis™.

While ASOs have promising features for IncRNA knockdown, open source tools for their design are
currently scarce. Here, we develop a design tool and evaluate the efficacy of several chemical

modifications.

METHODS

ASO SYNTHESIS
All oligos except LNA gapmers are synthesized by Integrated DNA Technologies (IDT). LNA gapmers

are synthesized by Exigon. All gapmers consist of a fully PS backbone and have nucleic acid analogs
at position 1, 2, 3, 14, 15 and 16 (3-10-3 gapmers). Freeze-dried oligos are resuspended in nuclease-

free water (Sigma).

CELL CULTURE, TRANSFECTION AND QUANTIFICATION OF KNOCKDOWN
Following trypsinization and dilution, HEK-293T cells were cultured in 96-well plates at 10 000

cells/well density (90 pl). Transfection with DharmaFECT 2 (Dharmacon) is performed 24 hours after
seeding. 10 ul of transfection solution is added resulting in a final DharmaFECT 2 concentration of
4% and ASO concentration of 100 nM. Control samples are treated with transfection solution

without ASO (reagent only) or not treated at all (cells only).

SK-MEL-28 cells are cultured in 100 pl (10 000 cells/well) and are transfected using Lipofectamine
(Life Technologies). 50 ul transfection solution is supplemented after 24 hours so that the

Lipofectimine concentration is 1.7% and the ASO concentration 100 nM.

Cell lysis and RNA extraction is performed using the SingleShot SYBR Green Kit (Bio-Rad) according to
the manufacturer’s instructions. In brief, cells were washed with 125 pl of Ca2+- and Mg2+-free

phosphate buffered saline (PBS) and subsequently lysed with 50 pl of SingleShot Cell Lysis Buffer
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containing DNase. Lysis reactions were incubated 5 min at room temperature followed by 5 min at
75 °C. cDNA synthesis was carried out on 4 pl of cell lysate in a total volume of 20 pl (20%) using the
iScript Advanced cDNA Synthesis Kit for RT-qPCR that is supplied with the SingleShot SYBR Green Kit

(both from Bio-Rad).

RT-oPCR

Calculation of normalized relative expression levels was done using the gbase+ software version 2.6
(Biogazelle). Normalization was performed using three stably expressed reference genes (UBC, TBP
and YWHAZ). The normalized relative quantities are then scaled to the appropriate control sample to
obtain the knockdown percentage. Downstream analysis and data visualization was done using the
open source statistical environment R (version 3) and third party modules (plyr, ggplot2, car,

reshape2, mgcv, ROCR).

ASO PARAMETER CALCULATION
The affinity of the oligo for the target is estimated by the Gibbs free energy (AG) of the hybridization

reaction. To calculate the standard Gibbs free energy at 37 °C (AG§7), a custom implementation the
nearest neighbor model for nucleic acid hybridization is applied. To this purpose, published nearest-
neighbor parameter sets are being used: Santalucia et al. 2004%° for DNA/DNA hybridization,
Sugimoto et al 1995** for DNA/RNA hybridization and Owczarzy et al 2011?*> LNA/DNA hybridization.

To assess the accessibility of the target RNA, the RNAplfold program from the ViennaRNA package
(version 2.1.6) is used. Different window sizes (-W), maximum allowed separation of the pairs (-L)
and averaging windows (-u) are tested. The accessibility profile is extracted form the _lunp output

file.

Oligo dimerization and self-folding are evaluated with respectively the hybrid-min and the quikfold

algorithms from the UNAFold package (nucleic acid type is set to DNA).

In order to filter out non-specific oligos, all sequences are aligned to the reference genome using the
short read aligner bowtie (version 0.12.7). The used reference genomes are hgl9 (GRCh37) for
human and mm10 (GRCm38) for mouse. Only alignments without mismatches are considered, oligos
with more than one exact match in the reference genome are regarded as non-specific. For non-

targeting controls however, alignments up to one mismatch are considered.

MODEL BUILDING AND PARAMETER SELECTION
Efficacy of the oligo is modeled as a function of the different oligo parameters. To account for the

distinct origin of the parameters, a non-parametric method called generalized additive models was

chosen. All calculations are performed in R (version 3.1.2) and the package mgcv (version 1.8). To

RESULTS 142



assess if a model with a certain parameter set improves over a model with a different parameter set,
the anova.gam function in the mgcv package is used. The quality of the predictions is evaluated

using cross-validation and the ROCR package (version 1.0).

NON-TARGETING CONTROLS

Non-targeting controls (NTC) are designed by permuting the sequence of functional oligos until a
sequence is obtained with no perfect homology to the reference genome. NTC sequences should

have at least 2 mismatch nucleotide compared to the genome sequence.

CELL VIABILITY

Cell viability is evaluated using the CellTiter-Glo luminescent cell viability assay available from
Promega. Cells are cultured in 96-well plates as described before. 48 hours after transfection,
CellTiter-Glo reagent is supplemented to the wells and the BMG FLUOstar OPTIMA microplate

reader is used for read-out.

MRNA EXPRESSION PROFILING

To assess off-target effects, transcriptome-wide gene expression profiling is performed using an in-
house developed gene expression array based on the Agilent SurePrint platform. This array
measures both IncRNA and mRNA expression. The mRNA probe content is based on the SurePrint G3
Human Gene Expression 8x60K v2 Microarray while the probes for IncRNA are designed using
LNCipedia 2.1* (http://www.Incipedia.org) as a reference. RNA is extracted using the miRNeasy
Micro Kit (Qiagen) and labeled with Agilent’s Low Input Quick Amp WT Labeling Kit according to the
manufacturers protocol. VSN normalization and further analysis of the expression data is performed
with the Bioconductor Limma package (version 3.20.9) in R (version 3.1.2). The Benjamini Hochberg

method is used to correct for multiplicity when significantly different expression is assayed.

RESULTS AND DISCUSSION

ANTISENSE OLIGONUCLEOTIDES ARE EFFECTIVE IN SILENCING LNCRNA EXPRESSION

To assess the potential of PS-modified ASOs for knockdown of IncRNA transcripts and to generate
empirical data for modeling (see further), a screening experiment was performed. We randomly
selected 90 specific 16-mers covering 6 IncRNA genes. Oligonucleotides with multiple occurrences in
the reference genome and as such possible off-target effects were rejected. Target IncRNA
expression was measured with RT-qPCR in the treated samples and compared to non-targeting
control oligos, untreated cells and cells treated with transfection reagent only. Although the success

rate differs between the different transcripts, knockdown > 50% is observed with at least some
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probes for every transcript (Figure 1). These results establish ASOs as a valuable tool for in vitro

IncRNA expression modulation.

PARAMETERS THAT PREDICT KNOCKDOWN EFFICACY
In order to evaluate the relative contribution of different oligo parameters on knockdown efficiency

and to identify a predictive parameter set for upfront selection of potent oligos, we used the dataset
from the screening experiment for modeling. Thermodynamic properties of the oligo — target
interaction have been established as powerful predictors of oligo performanceza. Therefore, the
significance of the Gibbs free energy (AG) of oligo — target annealing, oligo dimerization and oligo
self-interaction was assessed using generalized additive modeling (GAM), a non-parametric
expansion of generalized linear modeling (GLM). GAM confirmed that the AG of oligo — target
annealing and the AG oligo dimerization are significant predictors for the observed knockdown
(Figure 2). Oligo self-interaction was the only non-significant parameter and was therefore excluded
from further analyses. Next, different versions of the parameters were tested to see if they could
improve the model. For the AG of oligo — target annealing, two nearest neighbor parameter sets
were compared. The parameter set from Santalucia et al. 2004 for DNA/DNA hybridization was
found to have a higher predictive value than the Sugimoto et al. 1995*" set for DNA/RNA

hybridization.

Since each transcript has a characteristic secondary structure, one can assume that some regions of
the RNA are less accessible to ASO molecules due to intramolecular base pairing. Indeed, for siRNA
the importance of the secondary structure of the target site has been documented®. The in silico
assessment of RNA structure is not a trivial task, and the best results for large RNA fragments are
obtained when the prediction is limited to small regions®>. The RNAplfold algorithm®® computes the
probability that a chosen region is free from base pairing and hence available for ASO binding. This
probability is referred to as the accessibility of the target site. Using GAM, the accessibility was
found to be a significant predictor (Figure 2). Three different parameters in the RNAplfold algorithm
were optimized to obtain the highest predictive value. This was achieved by limiting the window size
and maximum allowed separation of the pairs to 70 bp. While it seems contradictory that a smaller
window size results in an improved accuracy, RNA structure prediction algorithms are prone to false
positive interactions on large stretches of RNA and using a sliding window approach is
recommended®. To further improve the predictive value, the accessibility is averaged over several
bases. The third parameter that was optimized determines the size of the window in which the
accessibility is averaged. The optimal size was found to be 12 nucleotides. As expected, a high
accessibility is associated with more efficient knockdown of the target and the region around potent

binding sites shows a significantly higher accessibility (Figure S1).
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Of the 90 tested PS-ASOs, 35 target an intron of the transcript. The effect of the ASO position
(intronic vs. exonic) is not found to be a significant predictor in this analysis. Several intronic ASOs
result in significant knockdown of their target, confirming that ASOs have the capacity to function
before splicing. This has important consequences for ASO design, as it widens the search space and

increases the number of potential target sites.

The potential of the GAM for upfront selection of oligos is evaluated using a modified leave-one-out
cross validation. For all ASOs that target one of the six transcripts, the knockdown is predicted using
a GAM build using the ASOs targeting the five remaining transcripts. Although the prediction
accuracy differs between the different transcripts (Figure S2), the model shows an overall accuracy

of 78% (Figure S3).

DIFFERENT NUCLEIC ACID ANALOGS IMPROVE DURABILITY OF THE KNOCKDOWN
Natural single stranded DNA molecules are rapidly degraded by nucleases and as such show poor

stability and knockdown efficacy. These features can be improved dramatically through specific
modifications of the DNA structure®. Currently a wide range of modifications is being used in
research and clinical applications. In this study, the potency of two popular sugar modifications,
namely 2’-O-methylation (2’-O-me) and locked nucleic acids (LNA), were evaluated. In the chosen
gapmer configuration, the first 3 and last 3 nucleic acids are substituted with 2’-0O-me or LNA nucleic
acid analogs (3-10-3 conformation). Four PS-DNA ASOs were selected and tested alongside their 2’-
O-me and LNA gapmers. Using two different concentrations (10 nM and 100 nM), the knockdown
was measured at 5 time points (12, 24, 48, 72 and 96 h post-transfection). Although there is little
difference in the measured knockdown at the early time point (24 h) using a 100 nM concentration,
it is clear that the use of nucleic acid analogs has a great impact on the knockdown at later time
points and lower concentrations (Figure 3, S4). While the effect of pure PS-DNA oligos decreases
over time, LNA gapmer mediated knockdown remains stable over the course of the experiment. In
addition, it is apparent that, especially for the LNA gapmers, even at the 10 nM concentration,
substantial knockdown is observed. This either suggests a higher affinity of the ASO to the RNA or
improved activation of RNase H. Indeed, an improved affinity has already been reported for LNA
oligos®’. In addition, this can be examined using nucleic acid thermodynamics as the Gibbs free
energy (AG) of the hybridization reaction can serve as a measure for the affinity of the ASO to the
target. When comparing the AG for all possible 16-mers in a given sequence, the AG for LNA gapmer
— DNA hybridization is on average 7 kiJ/mol lower compared to DNA — DNA hybridization (Figure S5).
This is a considerable difference when taking into account the AG range required for efficient
knockdown and supports the hypothesis that a higher affinity is a valuable explanation for the

observed difference at lower concentrations.
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NON-TARGETING CONTROLS
Given that sequence independent effects of modified DNA are well-established?, high quality non-

targeting controls are indispensable to evaluate the true effect of a targeting oligo. Non-targeting
oligos are developed by random permutation of the sequence of functional oligos until a sequence is
obtained with no homology to the reference genome. Three different NTCs were designed in this
way. To verify that the selected NTCs lack sequence specific effect on the gene expression,
transcriptome-wide gene expression profiling was performed using a custom expression microarray.
NTC treated samples were compared among each other and untreated samples. No significant up or
down regulation could be detected, pointing to a lack of sequence specific off-target effects (Figure
S6). To elucidate the sequence independent effects related to the chemistry, PS-DNA NTCs were
compared to their 2’-O-methyl gapmer counterparts. Again, no significant differences were

detected.

ASO TRANFECTION INDUCES SEQUENCE INDEPENDENT REDUCTION IN CELL VIABILITY

In cancer research, genes are often silenced to probe for their relevance in pathogenesis. As such,
the intended cellular phenotype upon knockdown is altered cell viability. To determine whether NTC
ASO transfection has impact on cell viability, CellTiter-Glo luminescence was measured 48h post
transfection. Two different cell lines were transfected with the NTCs described earlier to elucidate
the sequence independent effects. In addition, two different transfection reagents were tested in
parallel. Both transfection reagents reduce the cell viability of the two cell lines, although SK-MEL-28
seems more resistant to this toxicity than HEK-293 (Figure 4). In HEK-293, a more pronounced
reduction in viability is observed when both transfection reagent and ASO are present. This
increased toxicity is observed for all tested ASOs and is thus sequence and chemistry independent.
The additional reduction in viability cannot be observed in the SK-MEL-28 cell line. Repetition of this
experiment confirmed these findings. Together, these results show the importance of validated

NTCs when ASOs are used in phenotyping experiments.

CONCLUSIONS

ASO are successfully applied to reduce the intracellular RNA concentration of their target IncRNA.
Random selection of ASOs with perfect complementarity to a IncRNA target of interest is a viable
option for ASO selection although the success rate is low; only few random ASOs show a good
knockdown performance. Upfront selection of functional ASOs with high potential should reduce the
number of oligos to be tested and the cost of the experiment. To test this hypothesis, several

parameters of the ASO and its target-site were evaluated for their influence on the potency of the
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ASO. The Gibbs free energy (AG) of oligo — target annealing, the accessibility of the target site and
the AG of oligo dimerization were found to be significant predictors of the obtained knockdown.
Using these features, a generalized additive model was trained and tested to predict ASO potency in
silico. Although PS-DNA oligos showed good knockdown up until two days post transfection, a longer
lasting effect can be achieved using 2’-O-me or LNA gapmers. Since sequence independent effects of
ASOs are described in literature and confirmed in this work, it is important that high quality NTCs are
evaluated in parallel. A strategy to select valid NTC sequences is proposed and 3 NTCs were designed
and tested. In conclusion, this work provides IncRNA research community with several tools and

strategies that empower them to apply ASOs for the knockdown of their IncRNA of interest.

AVAILABILITY

A web-interface has been developed that allows users to design ASOs for an RNA of interest. All
potential ASOs are evaluated using the described GAM model. In addition, non-specific ASOs are

automatically removed. The web-interface is available at https://brenner.ugent.be/~janckaer/aso-

design (provisory url).
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Figure 1: Knockdown at 48 h post transfection for 90 randomly selected PS-ASOs targeting 6 IncRNA
transcripts. RNA concentration is measured using RT-qPCR and scaled relative to the sample treated
with transfection reagent only. Mean knockdown is plotted along with the standard error
calculated from the biological replicates (n=3). Although the results differ between the different
IncRNAs, for every IncRNA at least one ASO results in a knockdown > 50%. Oligos are ordered from
5’ to 3’ along the transcript.
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Figure 2: Three features were found to be significant predictors of the knockdown when assessed
using a generalized additive model (GAM): the Gibbs free energy (AG) of oligo — target annealing
(left), the accessibility of the target site (middle) and the AG of oligo dimerization (right). While the
first feature is being modeled with a GAM spline, the others have been reduced to a simple linear
effect.
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Figure 3: Different nucleic acid analogs increase ASO potency and stability. The same
oligonucleotide sequence yields different results when different modifications are being used.
Although the differences are subtle for the 100 nM concentration (left) compared to the 10 nM
condition (right), the locked nucleic acid (LNA) gapmers (3-10-3 conformation) show substantial
improvement of stability of the knockdown.
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Figure 4: CellTiter-Glo luminescence relative to the non-treated sample as a measure for relative
cell viability. The viability is reduced upon transfection with ASOs in a sequence and chemistry
independent manner.
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Figure S1: Local RNA accessibility in the region of the target site differs significantly (p<0.05, *)
between functional (>50% knockdown) and non-functional ASOs.

RESULTS 153



Observed knockdown

Figure S2: Cross-validation of the predicted knockdown
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Figure S3: Receiver operating characteristic (ROC) curve representing the ability of the GAM to
distinguish functional (>50% knockdown) from non-functional ASOs.
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Figure S4: Nucleic acid analogs increase ASO potency and durability, shown for 4 different
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Figure S5: Comparison of the calculated Gibbs free energy (AG) of DNA-DNA annealing (SantaLucia
et al 2004 parameters) and LNA gapmer-DNA annealing (Owczarzy et al 2011 parameters) for a
selection of 16-mers. Although the two are highly correlated, AG is on average 7 kJ/mol lower for
the LNA gapmers.

157



NTC 1 NTC 2

log,(fold change)

Figure S6: Volcano plot showing the expression of mRNAs and IncRNAs measured by expression
array. When the FDR is taken into account (Benjamini Hochberg method), no p-value < 0.05 are
observed.
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SUPPLEMENTAL MATERIAL

Table S1: Sequences and chromosomal position (hg19) of the used ASOs

ID target sequence chromosome | position
ENST_62_1 Inc-SYNPR-2:3 CCGTCCTGGGACAGCC | chr3 62974917
ENST_62_2 Inc-SYNPR-2:3 ATTTCCGTGTGGCTGA | chr3 62936177
ENST_62_3 Inc-SYNPR-2:3 GTGTCTGGGAGCCAAC | chr3 62939395
ENST_62_4 Inc-SYNPR-2:3 CGTCCTGGGACAGCCA | chr3 62974916
ENST_62_5 Inc-SYNPR-2:3 TGTCTGGGAGCCAACA | chr3 62939394
ENST_62_6 Inc-SYNPR-2:3 AGCAGATTCACTGGGC | chr3 62970735
ENST_62_7 Inc-SYNPR-2:3 GCCAGAAGGTCCTCAG | chr3 63099348
ENST_62_8 Inc-SYNPR-2:3 TACAAGAAGATACAAT | chr3 62974866
ENST_62_9 Inc-SYNPR-2:3 CTCTTATGCCTATAAG | chr3 62937682
ENST_62_10 Inc-SYNPR-2:3 ATTATATAAGAATCTC | chr3 63060671
ENST_25_1 Inc-GLT1D1-1:9 GGGCGCCGGATGCCCA | chr12 129596076
ENST_25_2 Inc-GLT1D1-1:9 GCGCCGGATGCCCACC | chr12 129596074
ENST_25_3 Inc-GLT1D1-1:9 GGCAGGGGGGCTGCAT | chr12 129595561
ENST_25_4 Inc-GLT1D1-1:9 GCTGAGGGCAGCGACG | chr12 129595539
ENST_25_5 Inc-GLT1D1-1:9 GGTCTCCCTCCGAGCA | chr12 129595628
ENST_25_6 Inc-GLT1D1-1:9 GTGGCCAGATGAGGGT | chr12 129597702
ENST_25_7 Inc-GLT1D1-1:9 TCCGTCAGAATGCACA | chri12 129596019
ENST_25_8 Inc-GLT1D1-1:9 GATAATAGAGCAACTC | chr12 129596099
ENST_25_9 Inc-GLT1D1-1:9 TTATATGGGAATTGGT | chrl2 129597731
ENST_25_10 Inc-GLT1D1-1:9 CTAGTAAAGATTACTG | chr12 129596329
TCONS_59_1 Inc-FHL2-1:2 GCGTCCGTGAGCTGGG | chr2 106217644
TCONS_59_2 Inc-FHL2-1:2 CGGGGAACACACGCAC | chr2 106213655
TCONS_59_3 Inc-FHL2-1:2 CGGCTGGTGCAACAGG | chr2 106217615
TCONS_59_4 Inc-FHL2-1:2 AGGACATGAAGGCGGA | chr2 106217494
TCONS_59_5 Inc-FHL2-1:2 CAGCGTCCGTGAGCTG | chr2 106217642
TCONS_59_6 Inc-FHL2-1:2 GTGCTGAGCTGTGCAA | chr2 106213611
TCONS_59_7 Inc-FHL2-1:2 GGTGCAACAGGGGTCA | chr2 106217620
TCONS_59_8 Inc-FHL2-1:2 TCGTATATAAAATAAC | chr2 106215652
TCONS_59.9 Inc-FHL2-1:2 AAGAACTACGAATATT | chr2 106217348
TCONS_59_10 | Inc-FHL2-1:2 CGGATGAATGTACTTT | chr2 106217506
Inc-RBM48-1 Inc-RBM48-1:4 GCGGCTCCCACATTCC | chr7 92546293
Inc-RBM48-2 Inc-RBM48-1:4 GAAACCAGCCAGGGGT | chr7 92484225
Inc-RBM48-3 Inc-RBM48-1:4 GCAGGGGTGAGACTTG | chr7 92485084
Inc-RBM48-4 | Inc-RBM48-1:4 TCTCCTAGGTGTTGCA | chr? 92546228
Inc-RBM48-5 Inc-RBM48-1:4 GGCATATGATGCAGGG | chr7 92485094
Inc-RBM48-6 | Inc-RBM48-1:4 CAGGGGTGAGACTTGA | chr7 92485083
Inc-RBM48-7 Inc-RBM48-1:4 CGGCTCCCACATTCCA | chr7 92546292
Inc-RBM48-8 Inc-RBM48-1:4 GGCGCCACGCCCAGTC | chr7 92500869
Inc-RBM48-9 Inc-RBM48-1:4 GCGTCTGGCAGGGGCC | chr7 92527466
Inc-RBM48-10 | Inc-RBM48-1:4 TGGGCACGGCATGGGC | chr7? 92510450
Inc-RBM48-11 | Inc-RBM48-1:4 AGGCATCATCAGCGGC | chr7 92546304
Inc-RBM48-12 | Inc-RBM48-1:4 TTTTCACGGTGTGGCA | chr7? 92546447
Inc-RBM48-13 | Inc-RBM48-1:4 CAGGCCCCCGGATGGC | chr7 92510226
Inc-RBM48-14 | Inc-RBM48-1:4 GACATCCTTGGAGAGG | chr7 92485116
Inc-RBM48-15 | Inc-RBM48-1:4 TGCGTGGGCTCTGCGA | chr7? 92505293
Inc-RBM48-16 | Inc-RBM48-1:4 CGAATAATAAAATTCC | chr7 92485009
Inc-RBM48-17 | Inc-RBM48-1:4 TTAAGTATTATATGTC | chr? 92496222
Inc-RBM48-18 | Inc-RBM48-1:4 CCTTACTTTAATATAA | chr7 92545541
Inc-RBM48-19 | Inc-RBM48-1:4 TTTTGAGCTATCTAGG | chr? 92485049
Inc-RBM48-20 | Inc-RBM48-1:4 GGGTAAGATTATAATA | chr7 92520172
Inc-DCTD-1 Inc-DCTD-7:3 GCTCCGGTTCAGGGCC | chr4 181985563
Inc-DCTD-2 Inc-DCTD-7:3 CTCGGCCAGCTTTGGC | chr4 181985549
Inc-DCTD-3 Inc-DCTD-7:3 GCCAGCTTTGGCTCCG | chr4 181985553
Inc-DCTD-4 Inc-DCTD-7:3 TGGATTCGCTTGTCTG | chr4 182076832
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Inc-DCTD-5 Inc-DCTD-7:3 GCACGGGCGGCCCGCA | chr4 182068810
Inc-DCTD-6 Inc-DCTD-7:3 CAGTGATGGATTCGCT | chr4 182076826
Inc-DCTD-7 Inc-DCTD-7:3 GACCGTGCGCGGTGGC | chr4 181989099
Inc-DCTD-8 Inc-DCTD-7:3 CAGCACGGGCCGGGCT | chr4 182074409
Inc-DCTD-9 Inc-DCTD-7:3 CGTGGCCCAGTGCCGC | chr4 182073201
Inc-DCTD-10 | Inc-DCTD-7:3 GCCTGTGGGGGCCGGT | chr4 182034362
Inc-DCTD-11 | Inc-DCTD-7:3 GCCCGCTCTGGCAGGC | chr4 182054430
Inc-DCTD-12 | Inc-DCTD-7:3 GCGGCAAGCCAGACGC | chr4 182059058
Inc-DCTD-13 | Ine-DCTD-7:3 GGCTCCGGTTCAGGGC | chr4 181985562
Inc-DCTD-14 | Inc-DCTD-7:3 GCCATCCAGTTGCTGC | chr4 181985612
Inc-DCTD-15 | Inc-DCTD-7:3 CAGAATCTCCCCCAGC | chr4 181985531
Inc-DCTD-16 | Inc-DCTD-7:3 GCATCATCATACATTA | chr4 181985391
Inc-DCTD-17 | Inc-DCTD-7:3 AAGTTGCTAATCCTAT | chr4 182076781
Inc-DCTD-18 | Inc-DCTD-7:3 GACTCTATATATATAG | chr4 182003503
Inc-DCTD-19 | Inc-DCTD-7:3 TAGAGTATCTATTAAT | chr4 182025590
Inc-DCTD-20 | Inc-DCTD-7:3 ATAATCGATATTATTT | chr4 182062869
Inc-1575-1 Inc-TMEM180-1:1 | AGCTGAATGTTCGATT | chr10 104211015
Inc-1575-2 Inc-TMEM180-1:1 | CCTTATTGTCTGCTGG | chr10 104211076
Inc-1575-3 Inc-TMEM180-1:1 | AGTTGGGATGAGTTAT | chr10 104211634
Inc-1575-4 Inc-TMEM180-1:1 | GTAACATTCTAGAGTG | chr10 104211773
Inc-1575-5 Inc-TMEM180-1:1 | ACTTCACATAGCTATT | chr10 104212437
Inc-1575-6 Inc-TMEM180-1:1 | GGTTCCTTATCTACTA | chr10 104212475
Inc-1575-7 Inc-TMEM180-1:1 | GTTTTAATCATCCATA | chr10 104212715
Inc-1575-8 Inc-TMEM180-1:1 | GACATCACCAGGGTGA | chr10 104212896
Inc-1575-9 Inc-TMEM180-1:1 | CTATGACAGTGTTAGA | chr10 104213031
Inc-1575-10 Inc-TMEM180-1:1 | ACTAATCACATAATGG | chr10 104215392
Inc-1575-11 Inc-TMEM180-1:1 | GAGCAATTAATACTTA | chr10 104215476
Inc-1575-12 Inc-TMEM180-1:1 | CAGTCCTTACAGCAGA | chr10 104215568
Inc-1575-13 Inc-TMEM180-1:1 | CAACCTTACTGCCATC | chr10 104215695
Inc-1575-14 Inc-TMEM180-1:1 | CCCATGACTGCCGGCC | chr10 104210056
Inc-1575-15 Inc-TMEM180-1:1 | AGCGCGCGCGGGGCCC | chr10 104210454
Inc-1575-16 Inc-TMEM180-1:1 | GCCCCGCCGCGCCACC | chr10 104210649
Inc-1575-17 Inc-TMEM180-1:1 | CGGTCCCATGGGCCCC | chr10 104214240
Inc-1575-18 Inc-TMEM180-1:1 | GGCAGGACCGCATCCC | chr10 104215959
Inc-1575-19 Inc-TMEM180-1:1 | GTTAAGTCTTTCAGTC | chr10 104215833
Inc-1575-20 Inc-TMEM180-1:1 | TCAGTAATACTGTAGG | chr10 104211360
NTC1 NTC ATGCGACCCCGCCGGA | # #

NTC 2 NTC GACACTATCGGACGAG | # #

Table S2: Chromosomal position (hg19) of the transcripts used in this study

transcript position

Inc-SYNPR-2:3 chr3:62936146-63099387
Inc-GLT1D1-1:9 chr12:129595538-129597839
Inc-FHL2-1:2 chr2:106209554-106227016
Inc-RBM48-1:4 chr7:92484223-92546488
Inc-DCTD-7:3 chr4:181985270-182076852

Inc-TMEM180-1:1

chr10:104209595-104216051
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V. DISCUSSION AND FUTURE PERSPECTIVES

This PhD is set in the era of emerging IncRNA research. Most IncRNA annotation is
very recent; consequently, it is absent from popular platforms and databases. The
development of novel tools is thus a prerequisite to study IncRNAs in cancer. Our
work comprises both the development and the application of such tools. In this way,

this thesis stands out as a unique combination of wet and dry lab research.

IV.1. CATALOGING THE UNKNOWN: CHALLENGES AND REMARKS

The rate at which new IncRNA transcripts are being reported in literature is unseen
and a consequence of recent advances in deep RNA sequencing. Yet, the rate at
which they find their way to the genomic reference databases such as Ensembl’,
RefSeq” and UCSC® is much lower as annotators struggle to keep up or hold a more
conservative position. A broad collection of sequenced IncRNAs is nonetheless
invaluable for high-throughput transcriptomics. We developed LNCipedia to fill this
gap and provide extensive and meaningful IncRNA annotation to the community.
With an average of over 100 visitors every day (Figure 5), about 500 emails to the
authors regarding database exports, over 100 citations (Google scholar) for the
original LNCipedia paper and numerous mentions on blogs and social media, we
believe LNCipedia has proven to be a relevant resource for IncRNA researchers.
While several other IncRNA databases such as NONCODE®*, LncRNA2Function’,
DIANA-LncBase® and many more have mushroomed in the past few years, LNCipedia
holds a unique position as the largest publicly available human IncRNA resource. As a
result, LNCipedia has been recommended as a primary resource in a 2014 review
article on IncRNA databases due to its compromise between coverage and depth of
annotations’. The catalogue of human IncRNAs however is far from complete as is
our understanding of the transcriptome in general. In sharp contrast to our initial
view on the human genome, we now know that most of the genome is transcribed

8-10

into distinct RNA transcripts” . Even more, targeted RNA sequencing of selected

genomic loci (CaptureSeq) revealed an immense uncharted complexity of the
transcriptome. It uncovers extensive alternative splicing both in and outside of

11,12

annotated loci including many rare isoforms™ ™. As the greater majority of these
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novel transcripts lack signs of coding potential, it is reasonable to assume that the
(long) non-coding transcriptome will continue to grow over the coming years. The
crucial question however is not on the number of transcribed non-coding genes but
on the number of functional non-coding genes in the genome. Even though the
number of IncRNAs with an experimentally derived function is steadily increasing,
some people remain skeptical that functional IncRNA genes outnumber protein
coding genes in the human genome®. Often, the lack of measurable sequence
conservation forms the basis for their doubt. Recently, several research groups have
studied IncRNA evolution and have each identified a subset of conserved IncRNAs™*
'8 Although their results do show that IncRNAs are more recent adaptations
compared to most protein coding genes, they are clearly subject to selective
pressure contrary to previous suggestions. In LNCipedia, we apply the concept of
locus conservation'’ to aid the identification of IncRNA orthologs. Yet, locus
conservation alone is not enough to prove conservation of the gene, let alone its
function. In a future release of LNCipedia, we will therefore incorporate more
relevant measures and datasets to tackle this problem. Since most research on
IncRNA evolution is still in its infancy, the true extent of IncRNA conservation will

likely unfold in the near future.
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Figure 5: Average number of weekday visits for LNCipedia.org. The number of visits shows
a steady incline with visible peaks in the weeks when two papers were published.
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LNCRNA CODING POTENTIAL

The ability of a novel RNA sequence to encode a protein can be assessed by in silico
prediction programs (vide supra). In LNCipedia, we include several of these
programs, namely CPC'®, HMMER® and PhyloCSF?°, and our analyses show poor
coding potential for the greater majority of IncRNAs. Nevertheless, a substantial
fraction of LNCipedia transcripts show elevated coding potential compared to
benchmarking datasets. It is important to note however that while benchmarking
datasets are typically composed of intergenic non-coding transcripts, meaning they
do not overlap with protein coding sequence, a considerable fraction of IncRNA
transcript overlaps protein coding genes, in sense or antisense. As it is currently
unclear what fraction of LNCipedia corresponds to these kinds of transcripts, we will
look into subclassification of IncRNAs according to their relative position to protein
coding genes in a future release of LNCipedia. Further analysis on the coding
potential of the intergenic subset can provide a better insight in the true extent of
putative protein coding genes. While several research groups have turned to
ribosome profiling as a method to distinguish protein coding from non-coding
sequence, interpretation of these data is not without pitfalls and complications.
Consequently, distinct authors have come to contrary conclusions when examining

ribosome occupancy on IncRNAs*>?2

. Therefore, we and other groups have used
shotgun proteomics data to detect the putative products of IncRNA ORFs. Our results
show that only a minute fraction of LNCipedia IncRNAs (<1.5%) bears ORFs that
produce detectable peptides. This is very much in agreement with similar efforts,

d*?%. These low numbers

where also only low numbers of novel peptides were foun
contradict the pervasive translation of IncRNAs that is reported by some ribosome
profiling studies?. In our commentary paper, we have explored the possibility that
this discrepancy is due to the current limitations of mass spectrometry. As such, we
have examined several possible explanations why the putative proteins encoded by
IncRNA ORFs are less detectable than established protein coding genes. We have
come to the conclusion that the most plausible explanation remains that the greater
majority of IncRNAs are not translated and their ORFs have thus other functions, if

any, than a protein coding one. Since ribosome profiling has gained much attention

in its short existence, we are convinced that more research on the interpretation of
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ribosome occupancy on (non-) coding ORFs is ongoing and over the next years it will

become clear how to use and interpret this kind of data.

The number of IncRNAs that produce detectable peptides according to our PRIDE
reprocessing pipeline increased drastically (from 14 to 2,040) in the LNCipedia 3.1
release. This increase can be attributed to both the increase in LNCipedia entries and
the increased number of PRIDE experiment evaluated. In addition, the sources that
were added to LNCipedia for the 3.1 release show an increased coding potential
when assessed with PhyloCSF. The putative novel peptides that are found using the

reprocessing pipeline are available on the LNCipedia website for download.

Our work on IncRNA coding potential did not go unnoticed and in the spring of 2015,
we were invited to participate in an invitation-only event organized by the European
Bioinformatics Institute and the Wellcome Trust. The goal of this retreat was to
gather all major genetic annotation groups and devise a consensus framework for

validation of novel human coding loci.

IV.2. LNCRNA IN CANCER

Until now the identification of new cancer associated genes by large-scale genetic
screening of cancer samples has been mainly restricted to protein coding genes*®?’.
Nevertheless, several IncRNAs have been implicated in cancer, both as tumor
suppressor and oncogene®®. To identify putative novel cancer associated IncRNA
genes, we developed a unique platform to detect small and focal copy number
aberrations that affect IncRNA exons but do not cover protein coding genes. The
copy number profile of cancer cells has often been used to identify new cancer

2930 These studies clearly show the

associated genes among protein coding genes
importance of the size of the aberration as larger aberrations cover multiple genes
and thus prevent the clear-cut identification of the cancer gene. Our strategy is
unique since our probes are confined to narrow genomic loci and restricted to
IncRNA exons and the exons of their flanking protein coding genes. As a result, we
were able to detect hundreds of small and focal aberrations pointing to a largely

unexplored landscape of cancer-associated IncRNAs. These numbers are very much

in agreement with a similar effort that is based on the reannotation of public copy
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number profiles®'. The major and likely underestimated role of IncRNAs in cancer is
also suggested from pervasive and differential expression of IncRNAs that has been
reported in a recent large-scale RNA sequencing effort®’. In addition, our list of
putative cancer genes also harbors IncRNAs that have previously been associated
with cancer by other means, further demonstrating the validity of our approach.
Therefore, we selected several of the IncRNAs on our list for further research to

elucidate their role in the development of cancer.

IV.3. STUDYING LNCRNA EXPRESSION

While RNA sequencing is the method of choice for de novo transcriptome assembly
and the discovery of novel transcripts, gene expression microarrays offer an
economical alternative for the assessment of global gene expression pattern of
known transcripts. Moreover, RNA sequencing and gene expression microarrays
generally show good concordance and it is only at high sequencing depth that RNA
sequencing outperforms the latter®. Recently, a large-scale comparison between
RNA sequencing and microarray using 498 primary neuroblastoma samples showed
that both platforms performed equally well for clinical endpoint prediction34. As
such, we designed a custom gene expression microarray based on Agilent’s SurePrint
G3 platform to measure the expression of LNCipedia IncRNAs and mRNAs. Our
custom array and its successor have been used extensively both at the CMGG and
other research labs over the past few years. In addition, it formed the basis for the
development of the latest version of the commercial SurePrint G3 platform by
Agilent Technologies. However, as RNA sequencing becomes more affordable, gene
expression microarrays will no longer be the most economical alternative.
Furthermore, RNA sequencing yields more information. It is thus foreseeable that
RNA sequencing will replace gene expression microarrays for most applications in

the near future.

IV.4. LNCRNA PERTURBATION IN VITRO
In vitro perturbation of gene expression is an important aspect of functional genomic
research and antisense-based tools have proven to be valuable for this purpose.

Antisense strategies that show great effectiveness for protein coding genes however
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may be unsuitable for IncRNAs since they are insensitive to inhibition of ribosome
association or due to their subcellular localisation®. While siRNAs have been
predominantly used to achieve transient knockdown of IncRNAs, our work shows
great potential in the use of ASOs for this purpose. Random selection of ASOs with
perfect complementarity to a IncRNA target of interest is a viable option for ASO
selection although the success rate is low. Therefore, we constructed an in silico
model to predict ASO potency based on thermodynamic properties and the
secondary structure of the target. In addition, we have show that 2’-O-me or LNA
gapmers can improve the stability of the knockdown and reduce the required
concentration. Finally, we devised a strategy to select and evaluate high quality
NTCs. As such, our work provides IncRNA researchers with several tools and
strategies that empower them to apply ASOs for the knockdown of their IncRNA of

interest.

Despite our best efforts and those of other IncRNA research groups, antisense-based
IncRNA perturbation remains troublesome and often, sufficient knockdown cannot
be achieved. While it is hard to assess the scale of this problem from literature, we
have learned from our own experience and contacts with other research groups that
in vitro perturbation is quite often the most difficult, yet critical step in functional
IncRNA research. For that reason, several research groups have turned to genome-
editing to create stable knockdown cell lines or model organism. Especially the
recently developed CRISPR-Cas systems (Clustered, Regularly Interspaced, Short
Palindromic Repeat)?’5 have gained the attention of the IncRNA research community.
These systems are based on the bacterial Cas9, an endonuclease that forms a
complex with specific RNA molecules and subsequently cleaves DNA that is
complementary to these RNA molecules. By engineering these so-called guide RNAs
(gRNAs) with complementarity to a genomic location of interest, researchers were
able to perform genome-editing in a wide array of cell types®. While for protein
coding genes a small genomic change can be sufficient for knockdown, the lack in
our current understanding of IncRNA structure and function makes this impossible
for IncRNAs. As such, researchers have opted to remove large parts of the IncRNA or

even the entire gene®.
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While genome-editing using CRISPR-Cas is by no means straightforward and its

success rate is highly variable®, it does provide a valuable new tool to study the

function of IncRNAs.

IV.5. CONCLUDING REMARKS

This research has led to the development of a set of tools with substantial relevance

to the IncRNA research community. In addition, the application of these tools has led

to novel insights into the genetics of IncRNAs in cancer.
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SAMENVATTING

Lange niet-coderende RNAs (IncRNAs) vormen een nieuwe klasse van genen die
talrijker is dan eender welke andere klasse in het menselijk genoom. Aangezien de
meeste IncRNA annotatie relatief nieuw is, ontbreekt deze in de populaire
databanken en op commerciéle platformen. Om dit probleem aan te pakken
verzamelde ik humane IncRNA annotatie van diverse bronnen en ontwikkelde ik de
publieke IncRNA databank LNCipedia (www.Incipedia.org) in de eerste maanden van
mijn doctoraat. Ondertussen is het een referentiedatabank geworden met vele
citaties en vermeldingen in het IncRNA onderzoeksveld. Aangezien het debat over
het werkelijke aantal niet-coderende IncRNAs nog steeds gaande is, heb ik
bijzondere aandacht besteed aan het bepalen van het coderend potentieel van
IncRNAs. In samenwerking met andere onderzoeksgroepen van de Universiteit Gent
heb ik een strategie bedacht om IncRNAs met coderende open leesramen te
detecteren aan de hand van grote publieke massaspectrometrie datasets. Op die
manier heb ik LNCipedia kunnen optimaliseren en kunnen aantonen dat slechts een
beperkte fractie ervan mogelijks coderende open leesramen bevat. De LNCipedia
dataset stelde mij in staat om verschillende platformen te ontwikkelen waarmee we
IncRNAs kunnen bestuderen. Het eerste platform is een genexpressie microarray die
terzelfdertijd de expressie van IncRNA en proteine coderend RNA meet. Deze array is
uitgegroeid tot het populairste platform in zijn soort aan het Centrum voor Medische
Genetica Gent en is reeds gebruikt om meer dan 1000 stalen te profileren. Het
tweede platform dat ik ontwikkelde is een DNA microarray met als doel kleine,
focale copynumbervariaties te detecteren die specifiek IncRNAs aantasten. Met dit
platform heb ik het DNA van 80 kankercellijnen bestudeerd en een groot aantal
InNcRNAs met een potentiele rol in kanker ontdekt. Om IncRNAs in vitro te
bestuderen hebben we technieken nodig waarmee we de genexpressie kunnen
manipuleren. Daarom evalueerde ik de bruikbaarheid van antisense
oligonucleotiden om IncRNAs uit te schakelen en ontwikkelde ik een model dat de

werkzaamheid van een oligonucleotide kan voorspellen.
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SUMMARY

Long non-coding RNAs (IncRNAs) form a new class of genes that outnumbers any
other class of RNAs predicted in the human genome. Since most IncRNA annotation
is relatively new, IncRNAs are underrepresented in the established genomic
databases and on the commercially available platforms. To address this issue, |
collected human IncRNA annotation from different sources and developed the public
IncRNA database LNCipedia (www.Incipedia.org) in the first months of my PhD. Since
then it has become a reference database with numerous citations and mentions
throughout the IncRNA research field. As the debate on the number of true non-
coding IncRNAs is still ongoing, | paid particular attention to the assessment of the
coding potential of LNCipedia IncRNAs. In collaboration with other research groups
at Ghent University, | devised a strategy to use large public proteomics datasets to
detect IncRNAs with coding ORFs. In doing so, | have optimized the LNCipedia
dataset and showed that only a small number of IncRNAs have coding ORFs. With
the LNCipedia catalogue at hand, | was able to design several platforms to study the
functional role of IncRNAs. One such platform consists of a custom gene expression
microarray to measure the expression of IncRNA and protein coding RNA at the
same time. This array quickly grew to become the primary platform for global gene
expression profiling at the Center for Medical Genetics Ghent and has currently been
used for over 1000 samples. A second platform | developed is a DNA microarray for
the detection of small and focal copy number aberrations that affect IncRNA genes.
Using this platform, | screened a panel of 80 cancer cell lines and revealed a vast
number of putative cancer associated IncRNA genes. To enable in vitro IncRNA
studies, means to perturb their gene expression are indispensable. Therefore, |
examined the use of antisense oligonucleotides for IncRNA knockdown and

developed a model to predict the potency of an oligonucleotide.
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PERSONAL NOTE

For me, starting a PhD was an obvious choice. Science and technology have been a
lifelong fascination and | quickly realized that pursuing a PhD would fulfill the
childhood dream of becoming a scientist. Sure, there have been moments of doubt
and frustration in the past 4 years, but looking back | am confident | made the right

decision.

Jo and Kris, | cannot thank you enough for this amazing opportunity. Jo, not once you
doubted my capabilities, even though there were many occasions where | did. | have
great admiration for the way you keep motivating people and finding opportunities
when all seems lost. Pieter, you are one of the smartest and skillful scientists | know.
Even though | learned a lot from you in the past years, you always seem two steps

ahead.

Science is a team sport and as such many colleagues contributed to the projects |
worked on. Justine, Katrien, Kimberly and Jasper, you made crucial contributions to
this thesis. Thank you so much for putting up with my often-chaotic style and terrible

sense of humor.

Aan alle vrienden en collega's (wat was ook weer het verschil?) die de afgelopen
maanden te weinig (of misschien juist te veel) van mij gehoord hebben: ik maak het
snel weer goed, beloofd! Of het nu een bemoedigend sms'je of babbeltje op de
bureau, in 't lab of op café was, het deed steeds deugd hoor. Dankzij jullie zijn de

afgelopen vier jaar snel voorbij gevlogen.

Voetbal en auto’s gingen helemaal aan mij voorbij als kind; ik bouwde raketten met
kartonnen dozen en elektriciteitscentrales met lego. Mama, papa en bompa deelden
met plezier in mijn rijke fantasie en interesse in wetenschap. Jullie hebben mij altijd
aangemoedigd om te doen en studeren wat me interesseerde. Zonder mijn ouders
had ik hier dus zeker niet gestaan, bedankt voor de steun en bedankt om steeds in

mij te geloven.
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Elke, jij hebt de laatste fase in mijn doctoraat van heel dichtbij meegemaakt. Mijn
excuses voor mijn afwezigheid en soms minder goed humeur de afgelopen
maanden. Je staat altijd voor me klaar en ik weet dat ik het niet vaak genoeg zeg,

maar ik ben er je er wel ongelooflijk dankbaar voor.

Pieter-Jan
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