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Abstract

We propose a methodology to derive pairwise-additive non-covalent force fields from

monomer electron densities without any empirical input. Energy expressions are based

on the Symmetry-Adapted Perturbation Theory (SAPT) decomposition of interaction

energies. This ensures a physically motivated force field featuring an electrostatic,

exchange-repulsion, dispersion and induction contribution, which contain two types

of parameters. First, each contribution depends on several fixed atomic parameters,

resulting from a partitioning of the monomer electron density. Second, each of the

last three contributions (exchange-repulsion, dispersion and induction) contains ex-

actly one linear fitting parameter. These three so-called interaction parameters in the

model, are initially estimated separately using SAPT reference calculations for the

S66x8 database of non-covalent dimers. In a second step, the three interaction pa-

rameters are further refined simultaneously to reproduce CCSD(T)/CBS interaction

energies for the same database. The limited number of parameters that are fitted to
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dimer interaction energies (only three), avoids ill-conditioned fits that plague conven-

tional parameter optimizations.

For the exchange-repulsion and dispersion component, good results are obtained for

all dimers in the S66x8 database using one single value for the associated interaction

parameters. The values of those parameters can be considered universal and can also be

used for dimers not present in the original database used for fitting. For the induction

component such an approach is only viable for the dispersion-dominated dimers in the

S66x8 database. For other dimers (such as hydrogen-bonded complexes), we show that

our methodology remains applicable. However the interaction parameter needs to be

determined on a case-specific basis.

As an external validation, the force field predicts interaction energies in good agree-

ment with CCSD(T)/CBS values for dispersion-dominated dimers extracted from an

HIV-II protease crystal structure with a bound ligand (indinavir). Furthermore, ex-

perimental second virial coefficients of small alkanes and alkenes are well reproduced.

1 Introduction

Classical force-field simulations are an attractive tool to study molecular systems because

the phase space can be sampled at a very low computational cost (compared to ab initio

methods). This computational efficiency allows one to study phenomena at the nanoscale

such as the competitive adsorption of H2O and CO2 in Zeolite 13X,1 the mechanical energy

absorption ability of the MIL-53(Al) metal-organic framework2 or the composition and be-

havior of disordered protein states.3 These are only a few examples of succesful applications

of force fields. The non-covalent interactions are most often based on experimental data.4–8

This is of course a limitation, as it is potentially very interesting to study systems for which

no experimental data is available. Additionally, in most cases it is impossible to assess a

priori the accuracy of such force fields as the final results critically depend on the specific

terms included in the force-field expression and on the parametrization procedure. Force
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fields derived from ab initio calculations offer in a way the best of two worlds. On the one

hand the analytical energy expression can be evaluated efficiently, allowing simulations of

large systems on a long time scale. On the other hand, these force fields succeed reasonably

well in reproducing ab initio data and can be derived for any molecular system for which

reliable ab initio data can be generated. In this work, we will therefore focus on describ-

ing non-covalent interactions with only first-principles calculations as input. Constructing

such non-covalent force fields exclusively based on ab initio data is a long-standing prob-

lem. A conventional and straightforward approach is to generate relevant configurations of

the system(s) of interest, determine the intermolecular interaction energy and/or forces for

these configurations using an ab initio method and then fit (many) parameters of the non-

covalent force field by minimizing a cost function with ab initio results as reference data.

This procedure has been applied successfully numerous times.9–11 There are however also

some drawbacks of this straightforward matching of ab initio and force-field results, such as

the introduction of many parameters and the difficulty in giving a physical interpretation

to each of the contributions. In this work we will try to circumvent some of these prob-

lems associated with deriving non-covalent force fields. Typically atom types are introduced

leading to a large number of parameters that need to be fitted. Even though the number of

unknowns in the cost function can be considerably reduced by using mixing rules, the fitting

in a high-dimensional parameter space will often be ill-conditioned.12 A second drawback

is that the physical origin of interactions is not properly incorporated. For example, most

non-covalent force fields omit the penetration effect, which has been shown to be substan-

tial,13 when describing electrostatics. This contribution is then erroneously included in the

van der Waals energy. Indeed it has been shown that most force fields rely to a large extent

on compensation of errors.14 A third and final deficiency of the conventional approach, is

that scanning the PES with an ab initio method is computationally very costly. Therefore

one is usually limited to Density Functional Theory (DFT) or second-order Møller-Plesset

perturbation theory (MP2), which both have some known limitations (mostly relevant for

3



intermolecular interactions): DFT cannot properly describe electron correlation, while the

perturbation term in MP2 is rather large, leading to overestimated dispersion interactions in

for example stacked aromatic-aromatic systems.15,16 It would therefore be very interesting

to base non-covalent force fields on coupled-cluster theory with single and double excitations

and a perturbation correction for the triples contribution (CCSD(T)) in the complete basis

set (CBS) limit, the current gold standard in quantum chemistry.17

The issues mentioned above have been partly addressed in earlier work and these ef-

forts are briefly summarized hereafter. The Quantum Mechanically Derived Force Field18

(QMDFF) is based on a limited number of universal parameters (28 in total for the non-

covalent interactions) combined with atomic charges from a partitioned molecular electron

density. QMDFF succeeds well in reproducing B3LYP-D3/def2-QZVP reference interaction

energies for gas-phase dimers. However, effects such as charge penetration are not included

and the parameters are obtained, at least partially, by manual inspection thus rendering

the physical interpretation of the different terms unclear. To correctly estimate parameters,

it is desirable to match the force field term by term with an intermolecular perturbation

theory that provides a decomposition of the interaction energy into physically recognizable

components, such as Symmetry-Adapted Perturbation Theory19 (SAPT). It has been shown

that this approach leads to physically-motivated non-covalent force fields that can predict

second virial coefficients and gas adsorption in metal-organic frameworks in quantitative

agreement with experiment.20–23 Although the resulting parameters have been shown to be

transferable to other chemical environments, the distribution of molecular properties over

atomic contributions remains a tedious work. The study of SAPT exchange energies at small

intermolecular distances showed that improved models (compared to traditional Lennard-

Jones or Born-Mayer functional forms) lead to a more accurate, transferable and robust

description of short-range interactions.24 The SAPT decomposition has also been used for

the construction of intermolecular potentials for small organic molecules using the CamCASP

suite of programs and this methodology is proven to be succesful for the pyridine system.25
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A related approach yielded similar success for the water dimer.26 Recent advances in the

AMOEBA force field use SAPT to improve the description of electrostatics27 and the sum

of echange-repulsion and dispersion,28 aiming to improve the accuracy and transferability of

the potential. Another method to ensure physical parameters, is to use the results from a

density-based energy decomposition analyis29 (DEDA). This has been applied in a force-field

context only to a few selected systems such as rare-gas dimers30 or directional dependence

of hydrogen bonds.31 Also the SIBFA32 (sum of interactions between fragments ab initio

computed) force field should be mentioned, as it successfully applies a decomposition of the

total interaction energy similar to the one used in this work.

We believe the added value of the current work is mainly that several beneficial properties

of the efforts discussed above are combined. In this way we take a step forward to tackle

the three deficiencies mentioned earlier. At most three linear parameters are calibrated at

a time, thus avoiding ill-conditioned fits. Furthermore all terms are physically inspired (for

instance including in a natural way the charge penetration effect using distributed charges)

and a limited number of high-level ab initio calculations suffices to confidently determine

all parameters. Our results show that the description of induction is the weakest point of

the model and can be used with one universal value for the interaction parameter only for

dispersion-dominated complexes. For hydrogen-bonded complexes, the interaction param-

eter needs to be determined on a case-specific basis. We thus gain insight into apparent

limitations of the proposed methodology for the description of the SAPT induction for sys-

tems that feature hydrogen bonds. We note that many-body effects are very important in

the induction energy for such systems and these need to be implicitly captured in our, by

construction, pairwise-additive force field. Concerning the exchange and dispersion contribu-

tions however, we show that good results are obtained for all dimers using a single universal

value for the corresponding interaction parameters. Moreover our model succeeds in the

explicit description of the electrostatic penetration effect using distributed charges. The

combination of SAPT (to ensure physical values) and CCSD(T)/CBS (to ensure accurate
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values) reference data in the fitting process, through the introduction of prior knowledge

about the parameters in the cost function, is a novel aspect of the presented work.

To conclude this introduction, we discuss the structure of the remainder of this paper.

In section 2, we present the analytical expression for the non-covalent contributions to the

energy of our force field. All terms are based on the partitioning of the ab initio monomer

density, resulting in a force field containing only a very limited number of free parameters

to be fitted, the so called interaction parameters. In section 3, we will discuss how these

interaction parameters are determined. In first instance this will be done by fitting to SAPT

components of the interaction energy of a database of dimer configurations. In a second step

the parameters are refined by fitting to CCSD(T)/CBS interaction energies for the same

database of dimers. In section 4, we will perform an external validation of the constructed

force field. First of all this will be done by comparing with ab initio interaction energies for

another database of dimers, next by comparing with experimental second virial coefficients

for small alkanes and alkenes. Finally we will also investigate whether the force field is

suitable to predict properties of condensed-phase systems. Section 5 summarizes our main

findings.

2 Force-field components

The primary goal is to reproduce ab initio interaction energies of dimers with a force field.

We are not concerned with intramolecular interactions, as the force field proposed in this

work only describes non-covalent interactions. We therefore start by presenting the analytical

expression for the interaction energy between two molecules, for which only intermolecular

interactions are present.

To construct a force field for a dimer, we require the ab initio molecular ground-state

electron density of the separate, isolated molecules where the nuclear positions are taken from

the monomer geometries in the dimer. In other words, the nuclear positions are not relaxed
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when going from the dimer configuration to the monomer configurations. As DFT provides

reliable ground-state electron densities for most molecules, it will be used in this paper to

compute the monomer properties that serve as input for the force field. More accurate

wavefunction-based methods, SAPT and CCSD(T), are only used in this work to determine

the three interaction parameters related to intermolecular interactions. Using DFT for the

monomer calculations makes it possible to apply the proposed method to relatively large

molecular systems. The ab initio molecular electron densities of both isolated molecules will

be represented by ρ1(r) and ρ2(r) respectively. The Minimal Basis Iterative Stockholder

(MBIS) scheme33 is used to partition the ab initio molecular electron density of the isolated

molecules into atomic contributions. This partitioning scheme allows one to approximate

the molecular electron density as a sum of s-type Slater functions:

ρ1(r) ≈
N1

atoms∑
A=1

mA∑
i=1

NAi

8πσ3
Ai

exp

(
−|r−RA|

σAi

)
(1)

where the sum over A runs over all N1
atoms atoms in molecule 1 and i runs over all mA

shells of atom A. The position of atom A is represented by RA and the parameters NAi

and σAi give the population and width of the s-type Slater function of shell i on atom A.

The width of the s-type Slater function is the characteristic length over which the density

decays appreciably. In other words the width σAi is inversely proportional to the rate of

decay of the Slater function. The parameters NAi and σAi are determined in such a way

that the information loss (expressed as the Kullback-Leibler divergence) from the ab initio

reference density to the pro-density is minimized, under constraints on the total charge and

atomic populations. This is the most simple and concise model for an electron density

that is physically reasonable, inspired by the piece-wise exponential ansatz from statistical

models for atomic densities.34,35 The MBIS charges and widths are the only molecule-specific

information used in the proposed force field and are independent of the other monomer

present in a dimer. These atomic parameters are not fitted to dimer interaction energies,
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but obtained directly from the monomer electron density. This is in sharp contrast with the

interaction parameters (introduced later on in this section), which are the fitting parameters

of the model.

For force-field applications, we further simplify the approximation of the molecular elec-

tron density by condensing the core Slater functions onto the nuclear charge. The force-field

approximation of the valence molecular electron density ρ̃1(r) is then given by:

ρ̃1(r) =

N1
atoms∑
A=1

NA,v

8πσ3
A,v

exp

(
−|r−RA|

σA,v

)
(2)

where NA,v and σA,v are the population and width of the valence Slater function of atom A.

We therefore call NA,v and σA,v the valence population and valence width respectively. The

effective core charge qA,c of atom A is given by

qA,c = ZA −
mA−1∑
i=1

NAi (3)

where ZA is simply the atomic number or nuclear charge of atom A. To clarify this approach

and to get a sense for the magnitude of populations and widths, we present the parameters of

a water molecule in Table 1. The oxygen atom has two shells of electrons and thus the MBIS

partitioning leads to a model density with two Slater functions. The first Slater function

contains 1.66 electrons (NO1 = 1.66) and decays exponentially with a characteristic length

of σO1 = 0.03Å. The second shell, containing valence electrons, contains 7.20 electrons

(NO2 = 7.20) and decays exponentially with a characteristic length of σO2 = 0.22Å. As

expected, the first Slater function decays a lot faster than the second one. This means that

the first Slater function can be approximated accurately by a point charge in force-field

simulations. The charge of this first Slater function (NO1 = 1.66) is subtracted from the

nuclear charge (ZO = 8), resulting in an effective core charge qO,c = 6.34. The oxygen

atom is modeled in the force field as a point charge qO,c = 6.34 and a Slater function with

NO,v = 7.20 and σO,v = 0.22Å. For the hydrogen atoms, the situation is less complicated.
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Because a hydrogen atom only has one electron shell, the MBIS partitioning leads to a

model density with only one Slater function. This same model is used for the force field. We

represent a hydrogen atom by a point charge of qH,c = 1.00 (equal to the nuclear charge)

and a Slater function with NH,v = 0.57 and σH,v = 0.19Å.

Table 1: MBIS parameters and resulting force-field parameters for a model of the electron
density of a water molecule (DFT with B3LYP36/aug-cc-pVTZ37).

Element NA1 σA1 [Å] NA2 σA2 [Å] ZA NA,v σA,v [Å] qA,c
O 1.66 0.03 7.20 0.22 8 7.20 0.22 6.34
H 0.57 0.19 / / 1 0.57 0.19 1.00
H 0.57 0.19 / / 1 0.57 0.19 1.00

The total force-field interaction energy for the molecular dimer is written as a sum of

4 terms, each one with a clear physical interpretation: electrostatics, exchange-repulsion,

dispersion and induction. The intermolecular energy can thus be expressed as:

Einter = Eelst + Eexch-rep + Edisp + Eind,ct (4)

This corresponds to the decomposition of the total interaction energy used in SAPT. Ev-

ery term will be discussed separately in the following subsections. The last three terms,

the exchange-repulsion, dispersion and induction component, all feature a separate linear

parameter. These three parameters are called interaction parameters because they are all

used to scale a specific interaction contribution to the total energy. The meaning of the

exchange-repulsion interaction parameter will be discussed in Section 2.2, the meaning of

the dispersion interacton parameter in Section 2.3 and the meaning of the induction interac-

tion parameter in Section 2.4. Note that the electrostatic contribution, discussed in Section

2.1, is constructed without any interaction parameter.

We thus obtain a force field with two different types of parameters. On the one hand there

are atomic parameters (such as the valence population Nv and valence width σv) obtained

from the MBIS partitioning of the monomer density. These parameters are derived from

monomer properties and not fitted to dimer interaction energies. On the other hand, there
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are three interaction parameters which are fitted to reference data for dimer interaction

energies. These three interaction parameters are the only fitting parameters present in the

model.

2.1 Electrostatics

The frozen-density electrostatic interaction energy between two molecules is given by the

Coulomb integral

Eelst =

N1
atoms∑
A=1

N2
atoms∑
B=1

qA,cqB,c
|RA −RB|

−
N1

atoms∑
A=1

qA,c

∫
dr

ρ̃2 (r)

|r−RA|

−
N2

atoms∑
B=1

qB,c

∫
dr

ρ̃1 (r)

|r−RB|
+

∫
dr1

∫
dr2

ρ̃1 (r1) ρ̃2 (r2)

|r1 − r2|
(5)

where N1
atoms is the number of atoms in molecule 1 and N2

atoms is the number of atoms in

molecule 2. The first term describes repulsion between effective core charges, the second

and third term describe attraction between effective core charges and valences electrons and

finally the fourth term describes repulsion between valence electrons. The Coulomb integral

can be evaluated analytically for our force-field model of the density from Eq. (2) to give:

Eelst =

N1
atoms∑
A=1

N2
atoms∑
B=1

EAB
elst (6)

EAB
elst =

qA,cqB,c
RAB

− qA,cNB,v

RAB

[1− g (σB,v, RAB)]− NA,vqB,c
RAB

[1− g (σA,v, RAB)]

+
NA,vNB,v

RAB

[1− f (σA,v, σB,v, RAB)− f (σB,v, σA,v, RAB)]

(7)

g (σ, r) =
(

1 +
r

2σ

)
exp

(
− r
σ

)
(8)

f (σi, σj, r) =
σ4
i(

σ2
i − σ2

j

)2 [1 +
r

2σi
−

2σ2
j

σ2
i − σ2

j

]
exp

(
− r

σi

)
(9)

The expression for the Coulomb interaction of s-type Slater densities has been presented

before.31 For convenience we provide a derivation of the above formula in the Supporting
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Information. By using the net atomic charges of atoms A and B, qA = qA,c − NA,v and

qB = qB,c − NB,v, we can rewrite the electrostatic interaction energy between those atoms

as:

EAB
elst =

qAqB
RAB

+ EAB
penetration (10)

The first term is the well-known electrostatic interaction between point charges. The second

term decays exponentially as the atoms are separated and describes the penetration effect

of the electrostatic interaction energy:

EAB
penetration =

qA,cNB,v

RAB

g (σB,v, RAB) +
NA,vqB,c
RAB

g (σA,v, RAB)

− NA,vNB,v

RAB

[f (σA,v, σB,v, RAB) + f (σB,v, σA,v, RAB)]

(11)

We remark that existing implementations to evaluate long-range electrostatics in periodic

systems (such as the Ewald summation,38,39 PPPM40 or FMM41) do not need to be modified

to calculate the first term in Equation 10. The second term, containing the penetration

correction to the electrostatic energy, clearly decays exponentially and can be evaluated

similar to other short-ranged non-covalent terms. By tabulating the values of this second

term, our force field remains compatible with existing force-field codes.

The importance of the penetration effect has been discussed before.42 Distributed charges

have already been employed successfully in force fields. Most often Gaussian functions are

used,43 some force fields feature Slater densities30,31 and one force field even uses contracted

Gaussian functions to approximate a Slater function.44 Distributed charges offer a natural

way to describe the penetration effect and can give accurate results on condition that the

model density is a good approximation to the ab initio density. It has been shown that this

is the case for model densities resulting from MBIS partitioning.33
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2.2 Exchange-Repulsion

The wavefunction of a dimer has to be antisymmetric when two electrons are exchanged.

This antisymmetrized wavefunction leads to a higher energy expectation value than if a

simple product of the two monomer wavefunctions would be used. The resulting repulsive

energy is only present when the electron densities of the two molecules in the dimer overlap.

This repulsive energy dominates the so called exchange-repulsion energy.45 The energy due

to the exchange-repulsion effect has no classical analogue and cannot be expressed simply as

a functional of the isolated molecular densities. We therefore base our model on the observed

proportionality between exchange-repulsion energy and overlap of electron densities:25,46–48

Eexch-rep ≈ Uexch-repS12 (12)

= Uexch-rep

∫
drρ̃1 (r) ρ̃2 (r) (13)

If we plug in our force-field model of the electron densities from Eq. (2), we can rewrite this

as a sum of atomic pairwise interactions:

Eexch-rep =

N1
atoms∑
A=1

N2
atoms∑
B=1

EAB
exch-rep (14)

EAB
exch-rep = Uexch-repS

AB (15)

SAB =
NA,vNB,v

8πRAB

[h(σA,v, σB,v, RAB) + h(σB,v, σA,v, RAB)] (16)

h(σi, σj, r) =

[
4σ2

i σ
2
j(

σ2
j − σ2

i

)3 +
σi(

σ2
j − σ2

i

)2 r
]

exp

(
− r

σi

)
(17)

A derivation of this expression is provided in the Supporting Information.

Uexch-rep is the first interaction parameter in our model. We use the term interaction

parameter for this proportionality constant to avoid confusion with atomic or atom-pair

parameters. Here, the total exchange-repulsion interaction energy is proportional to Uexch-rep,

which justifies the name interaction parameter. The value of the interaction parameter
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Uexch-rep will be determined in section 3 by a simple linear regression of the overlap of the

force-field densities with exchange-repulsion energies from SAPT calculations for a large

database of dimer configurations. It will be shown that the interaction parameter Uexch-rep

is, to some extent, system independent. Using a universal value for all dimers in the database

leads to accurate results. Notice the important difference with some earlier works24,49 where

the prefactor of the overlap is atom-type specific (i. e.EAB
exch-rep = UAB

exch-repS
AB). Such an

approach of course involves more paramaters to be fitted to intermolecular reference data

than the approach presented here.

2.3 Dispersion

The correlated movement of electrons in interacting molecules causes an attractive force.

This effect is called dispersion. The dispersion energy between two molecules, which are far

apart, can be written in second-order perturbation theory using a power expansion in terms

of the intermolecular distance: Edisp = −C6

R6 − C8

R8 − C10

R10 − . . . From this expansion we only

retain the two leading terms. For our force field, we write the energy as a sum of atomic

pairwise contributions to the dispersion interaction. Finally we use a damping function to

control the behavior for small distances. Our force-field model of the dispersion energy then

has the following form:

Edisp =

N1
atoms∑
A=1

N2
atoms∑
B=1

EAB
disp (18)

EAB
disp = −f6 (xAB)

C6
AB

R6
AB

− f8 (xAB)
Us8C

8
AB

R8
AB

(19)

fn (xAB) = 1−

(
n∑
k=0

xkAB
k!

)
exp (−xAB) (20)

with Us8 another interaction parameter that is used to linearly scale all interatomic C8
AB

coefficients and thus the total C8 dispersion interaction energy. The dispersion energy is

damped at short interatomic distances using the Tang-Toennies damping function50 with as
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argument the interatomic distance divided by the average of the Slater widths of the atoms

involved: xAB = RAB

(σA,v+σB,v)/2

To determine the interatomic C6
AB coefficients, we use the Tkatchenko-Scheffler method.51

In this method, the C6
AB coefficients of atoms in a molecule are computed using free-atom

reference values that are modified based on the partitioning of the molecular electron den-

sity into atomic contributions. In the original paper, the Hirshfeld partitioning scheme52

was used. To maintain consistency with the other force-field terms, we will use the MBIS

partitioning scheme. It has been shown that the combination of the Tkatchenko-Scheffler

method and MBIS partitioning leads to reliable C6
AB coefficients.33 For more information

about the computation of C6
AB coefficients we refer to the Supporting Information.

To compute the C8
AB coefficients, we use a recursion relation proposed by Starkschall:53

C8
AB =

3

2
C6
AB

√
〈r4A〉
〈r2A〉

+
〈r4B〉
〈r2B〉

(21)

The expectation values of powers of rA and rB are evaluated using the free-atom densi-

ties.54 In the energy expression Eq. (19) the C8
AB coefficients are uniformly scaled with the

interaction parameter Us8, to account for the higher order contributions to the dispersion en-

ergy and possible deficiencies in the calculation of the C8
AB coefficients and damping function.

2.4 Induction

The electrostatic interaction given by Eq. (5) assumes a frozen-density approach, where the

molecular densities are kept frozen when the two molecules approach each other. In reality,

the molecular densities will deform as both molecules approach each other, an effect called

polarization. The resulting stabilization is called the induction energy. The construction of

polarizable force fields that succeed in quantitatively reproducing this induction energy is not

trivial and is an issue that has received a lot of attention.55,56 The most common approach is
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to model each atom as an inducible dipole, either using a Drude oscillator (charge-on-spring)

model15,57–62 or as a Thole- or Gausian-damped point dipole.60,63–65 Each inducible dipole

interacts with the atomic point charges and all other dipoles. For a given geometry, the

energy of the inducible dipoles is minimized, in analogy to the Born-Oppenheimer approx-

imation. In such models, at least two parameters per atom are needed: an atomic dipole

polarizability and a damping parameter. We have tested models with inducible point dipoles,

where realistic atomic polarizabilities are obtained with the Tkatchenko-Scheffler method.51

However, the resulting induction energies were too small (in absolute value) when compared

to SAPT reference values, especially at short intermolecular distances. The same conclusion

is obtained for the induction term of the AMOEBA66 force field. The results of those two in-

duction models are presented in Section 5 of the Supporting Information. This investigation

reveals that another phenomenon plays a dominant role in the SAPT induction component.

As an alternative, some of the authors recently proposed a polarizable force field where

all parameters can be evaluated as expectation values from a quantum-mechanical wave-

function.67,68 This method is however not readily applicable to classical molecular dynamics

simulations, as it would require evaluating the quantum-mechanical wavefunction at every

timestep.

We therefore resort to an approximation with a simpler analytical expression: the induc-

tion energy is modeled as a pairwise-additive term with one interaction parameter Uind,ct.

Eind,ct =

N1
atoms∑
A=1

N2
atoms∑
B=1

EAB
ind,ct (22)

EAB
ind,ct = −Uind,ctS

AB (23)

The expression for the overlap of 1s-type Slater densities SAB is given in Eq. (16). The pro-

posed proportionality of the intermolecular induction energy is inspired by the exponentially

decaying nature of charge transfer.23,32,69–73 More specifically, the proportionality between

exchange-repulsion and the charge-transfer interaction has been demonstrated in the context

15



of SAPT.74 We expect that this assumption will work fairly well for dispersion-dominated

complexes, where the induction energy is dominated by contributions from charge-transfer

effects because classical polarization plays a minor role in such complexes. The induction

energy is in general attractive, so we expect a positive value for Uind,ct. The pairwise-additive

expression for the induction energy is a serious approximation and its applicability will be

assessed in section 3. For complexes where the proposed method is not viable we will discuss

possible causes of the observed deviations and extensions of the model.

In summary, our force field for non-covalent interactions contains three interaction param-

eters: Uexch-rep gives the proportionality between the exchange-repulsion energy and monomer

density overlap, Us8 is a uniform scaling factor for the C8 coefficients used to compute the

dispersion energy and finally Uind,ct gives the proportionality between the induction energy

and monomer density overlap. Note that the total interaction energy is a linear function of

these three interaction parameters.

3 Parameter calibration

In the previous section, analytical expressions have been proposed for the four terms com-

posing the total intermolecular interaction energy: Einter = Eelst + Eexch-rep + Edisp + Eind,ct,

representing electrostatic, exchange-repulsion, induction and dispersion energy, containing

three interaction parameters in total. These interaction parameters together with the MBIS

partitioned density of the molecules at hand form a complete force field to describe the inter-

action between those two molecules. High-level ab initio interaction energies obtained for a

large database of dimers will be used to determine the three interaction parameters. At the

same time, the degree of reproduction of the high-level ab initio intermolecular interaction

energies by the force field serves as a first validation that our force-field model is appropriate

and that the interaction parameters for the exchange-repulsion and dispersion component

are to a large extent system independent and their values can be considered universal.
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We used the S66x875 database as a training set to determine the values of the interac-

tion parameters. This database covers the most common types of non-covalent interactions

in biomolecules, keeping a balanced representation of electrostatic-dominated, dispersion-

dominated and mixed-influence complexes. Based on a SAPT decomposition of the interac-

tion energies, all 66 complexes in the database are classified either as hydrogen-bonded (23

complexes), dispersion-dominated (23 complexes) or “others” (20 complexes). In order to

construct a total of 66 dimers, various combinations of 14 monomers are considered. The

14 selected monomers are acetic acid, acetamide, benzene, cyclopentane, ethene, ethyne,

neopentane, n-pentane, methylamine, methanol, N-methylacetamide, pyridine, uracil and

water. All these monomers are composed exclusively of hydrogen, carbon, nitrogen and

oxygen atoms. All complexes are relatively small (6 to 34 atoms), such that CCSD(T)/CBS

and SAPT calculations are feasible for the entire dataset. The S66x8 database does not only

contain equilibrium geometries of the 66 dimers but also scans the dissociation curve with

displacements relative to the equilibrium distance of 0.90, 0.95, 1.00, 1.05, 1.10, 1.25, 1.50

and 2.00, resulting in 528 = 66× 8 data points. We note that a relative displacement of 1.00

corresponds approximately with the equilibrium separation distance. Finally we note that

the monomer geometries remain fixed along the dissociation curve, which means that there

are no changes in the covalent energy along the dissociation curve. This allows us to assess

the accuracy of the non-covalent force field.

3.1 SAPT energies for the S66x8 database

One of the ultimate goals of the force field is the capability to accurately reproduce dissocia-

tion curves obtained using the CCSD(T)/CBS method. We proposed analytical expressions

for four contributions composing the total intermolecular interaction energy: electrostatic,

exchange, dispersion and induction. A decomposition of the CCSD(T)/CBS energy into

these four categories is not straightforward and not unambigious. In the context of force-

field development it is however instructive to also study methods that provide more chemical
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insight into the interactions, by decomposing the energy into meaningful contributions. It

should be stressed that a decomposition of the total interaction energy is not unique and

somewhat arbitrary. Indeed, several decomposition schemes proposed in literature, such

as Kitaura-Morokuma76 (based on the Hartree-Fock approximation), constrained space or-

bital variation77 or density-based energy decomposition analysis29 will all lead to different

results. We will use SAPT19 as a benchmark, as it directly computes electrostatics, exchange-

repulsion, dispersion and induction contributions separately. SAPT is an ab initio method

and gives total interaction energies in reasonable agreement with CCSD(T)/CBS values.78

Unfortunately, due to its double perturbative nature (the intermolecular interaction and the

residual monomer correlation interactions), it is not always clear how to classify higher-order

terms, as they show a mixture of exchange, dispersion and induction. It is also clear that the

perturbation expansion is not converged in third order, the highest order currently available

in SAPT implementations. This is why we start by studying different SAPT approximations

and compare them to CCSD(T)/CBS values. Our results are in line with conclusions from

a similar analysis by Li et al.78

We used PSI479 for all SAPT and coupled-cluster calculations. For SAPT, the aug-

cc-pVTZ basis set37 was used with density fitting80,81 to avoid evaluation of four-center

integrals. Core orbitals were frozen and MP2 natural orbitals82 were used to speed up

the evaluation of second-order T2 amplitudes and the triples contribution to the dispersion

energy. All exchange-type terms are scaled with the factor
E

(10)
exch

E
(10)
exch(S

2)
, as recommended in

literature.83 The CCSD(T)/CBS energies were computed as the sum of the Hartree-Fock

energy in the aug-cc-pVQZ basis set,37 an MP2 correction extrapolated to the complete

basis set limit using Helgaker’s formula84 applied to aug-cc-pVTZ and aug-cc-pVQZ basis

sets,37 and finally a CCSD(T) correction computed with the aug-cc-pVDZ basis set.37 This

procedure corresponds to the one used originally for the S66 dataset.75

In Table 2 we compare several SAPT levels-of-theory with CCSD(T)/CBS values. As re-

ported before for the S66 dataset83 (only for the equilibrium separation distance), SAPT2+(3)
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performs better than SAPT2+3. This is an indication that the SAPT expansion is not

converged, because an exact treatment of third-order perturbations (SAPT2+3) performs

worse than an approximate treatment (SAPT2+(3)). Convergence properties of SAPT have

been discussed extensively, see Refs.19,85,86 and references therein. We note that although

SAPT2+(3)δMP2/aug-cc-pVTZ37 is considered as the optimal SAPT level-of-theory,83 it

cannot be used for the present application because it is no longer possible to clearly separate

induction from dispersion contributions. We therefore use SAPT2+(3) in the remainder of

this work, with the caveat that it may show some deficiencies, especially at short intermolec-

ular distances.

Table 2: RMSD of CCSD(T)/CBS and SAPT interaction energies in kJ mol−1 for the S66x8
dataset.

Relative displacement SAPT0 SAPT2+(3) SAPT2+3
0.90 10.4 2.6 4.6
0.95 8.2 1.8 3.2
1.00 6.6 1.4 2.4
1.05 5.4 1.1 1.8
1.10 4.4 0.9 1.4
1.25 2.7 0.6 0.8
1.50 1.5 0.4 0.4
2.00 0.7 0.2 0.2

3.2 Parameter calibration by comparing with SAPT energy com-

ponents

We will now investigate each term of the force field separately and compare it with its SAPT

counterpart, in order to determine the introduced interaction parameters. All the interaction

parameters are fitted to the 23 dispersion-dominated complexes present in the S66x8 dataset,

except if noted otherwise. Although this selection is only really needed for the induction

term, as will be explained below, other parameters were treated consistently. The electron

densities of the isolated monomers in the S66x8 database were calculated using DFT with a

B3LYP36 functional and aug-cc-pVTZ basis set37 using Gaussian.87 The molecular electron
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density was then partitioned with the MBIS scheme using HORTON,88 with the built-in

ultrafine grid.

Electrostatics

No interaction parameters are included in the electrostatic term Eelst (Eq.(5)) of the force

field. It simply consists of the Coulomb interaction between the total charge densities of

the two monomers determined by the effective core point charges and the Slater-type charge

distributions representing the valence electrons. Figure 1 shows a correlation diagram of

the force-field electrostatic energies and the reference SAPT values for the 528 structures of

the S66x8 dataset. As expected, most of the electrostatic interaction energies are negative

(510 out of 528 structures). For practical reasons, we only display those cases where the

SAPT electrostatic energy is below −1 kJ mol−1. It is clear that the force-field electrostatic

model is able to capture the important penetration effect accurately. In figure 2 we provide

a similar plot to investigate the performance of RESP89 fitted point charges (obtained using

antechamber90) from a HF/6-31G* density, a method often used in force fields. It is clear

that the agreement is unsatisfactory. We note that point charges obtained with other meth-

ods (partitioning schemes such as Hirshfeld,52 Iterative-Hirshfeld91 or ESP fits with other

levels-of-theory) result in similar deviations because of their intrinsic incapability to model

the penetration effect.33 Also the electrostatic part of the AMOEBA force field,64,66,92,93 cal-

culated using point multipoles up to quadrupoles (` = 2), is significantly improved when

including an empirical penetration model.27

Exchange-Repulsion

The exchange-repulsion term of our force field contains one interaction parameter, Uexch-rep.

We determine this parameter by minimizing a cost function χ2 that expresses the mean-
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Figure 1: Correlation plot of SAPT and force-field electrostatic energies for the S66x8
database. Note the use of a logarithmic scale.

Figure 2: Correlation plot of SAPT and RESP fitted point charges (HF/6-31G*) electrostatic
energies for the S66x8 database. Note the use of a logarithmic scale.
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square-deviation between force-field and SAPT exchange-repulsion energy:

χ2 =
1

Nd

Nd∑
n=1

[
EFF

exch-rep(n)− ESAPT
exch-rep(n)

]2
(24)

The summation over n runs over all Nd data points that we consider. Because our force-

field exchange-repulsion energy EFF
exch-rep(n) = Uexch-repS(n) is a linear function of Uexch-rep

(with S(n) the overlap of our molecular force-field densities), minimizing the cost function

χ2 effectively amounts to a linear regression with solution:

Uexch-rep =

∑
n S(n)ESAPT

exch-rep(n)∑
n S(n)S(n)

(25)

We first determine the value of Uexch-rep for every dimer separately and Figure 3 justifies

our approximation that the value of the interaction parameter Uexch-rep is indeed universal, as

it takes on about the same value for all dimers independent of their classification (hydrogen-

bonded, dispersion-dominated or other). A notable outlier is the neopentane dimer (index

36). By fitting to all dispersion-dominated complexes from the S66x8 database, we find

Figure 3: Values of Uexch-rep specific for each dimer.

Uexch = 8.13 in atomic units. In Figure 4 we show that our model is capable of reproducing
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SAPT exchange-repulsion energies, justifying the assumed functional expression that is pro-

portional to the overlap of monomer electron densities. It turns out that for hydrogen-bonded

complexes the model slightly underestimates the exchange-repulsion energy. Fortunately, this

error is (at least partly) compensated by an underestimation of the electrostatic attraction

energy for the same complexes (see figure 1). Our model seems to be better suited to repro-

duce the sum of exchange-repulsion and electrostatic energies, rather than both individual

SAPT components. This can probably be related to the somewhat arbitrary classification of

some terms, one of the limitations of the energy-decomposition methods mentioned earlier.

Figure 4: Correlation plot of SAPT and force-field exchange-repulsion energies for the S66x8
database. Note the use of a logarithmic scale.

Dispersion

Our expression for the dispersion energy contains one interaction parameter Us8 to scale the

contribution of the term decaying as r−8. To avoid interference from possible deficiencies of

our Tang-Toennies damping function, we choose to fit Us8 to relatively large intermolecular

separations (relative displacements 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 2.25 and 2.50, some of

which are not included in the original S66x8 database). The fitting is first performed for

each dimer separately and the resulting values of Us8 are reported in Figure 5. We note

a rather large spread on the values of the interaction parameter. Only within the class of
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dispersion-dominated complexes it is reasonable to attribute a universal value to Us8 and we

find Us8 = 0.57. If we compare the SAPT dispersion energies with our model energies (for

Figure 5: Values of s8 specific for each dimer.

Us8 = 0.57) we find a good agreement for the dispersion-dominated complexes in the S66x8

dataset as shown in figure 6. Surprisingly the model also performs acceptably well for the

hydrogen-bonded and other complexes. This is due to a fortuitous error cancellation between

the underestimated value for Us8 and the overestimated damping for those complexes at short

intermolecular separation. The value Us8 = 0.57 can thus also be considered to be universally

applicable.

Induction

Our current induction model has a simple pairwise-additive functional form, again involving

only one interaction parameter Uind,ct that provides a linear relationship between the induc-

tion energy and monomer density properties. Figure 7 reveals that fitting Uind,ct for every

dimer separately results in a large spread of values. It is notable, but perhaps not surprising,

that Uind,ct is systematically higher for hydrogen-bonded than for dispersion-dominated com-

plexes. It also becomes clear that only within the group of dispersion-dominated complexes

it makes sense to define a universal value for Uind,ct. Nevertheless we tested the approach

with a universal value for Uind,ct for the entire dataset on the one hand and the different

subsets on the other hand, and report the results in Figure 8. Figure 8 (c) confirms that by
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Figure 6: Correlation plot of SAPT and force-field dispersion energies for the S66x8 database.
Note the use of a logarithmic scale.

Figure 7: Values of Uind,ct specific for each dimer.
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setting Uind,ct = 0.87 we obtain a quantitatively accurate induction model for the dispersion-

dominated complexes. From Figures 8 (b) and (d) we learn that a similar approach is not

viable for hydrogen-bonded and other complexes, although at the same time it seems that

the correlation between SAPT induction and overlap is rather good for each separate com-

plex (i. e. the curves connecting data points belonging to the same complex are relatively

straight.)

(a) (b)

(c) (d)

Figure 8: Correlation plots of SAPT and force-field induction energies. (a): complete S66x8
database with Uind,ct = 2.77, (b): only hydrogen-bonded complexes in cost function (Uind,ct =
3.42), (c): only dispersion-dominated complexes in cost function (Uind,ct = 0.87), (d): only
“other” complexes in cost function (Uind,ct = 1.68). Note the use of a logarithmic scale. Data
points on the dissociation curve of each dimer are connected with a line.

We investigate this further on a complex-specific basis. In Figure 9 (a) we compare our
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model induction with the SAPT counterpart for the water dimer (index 01 of the S66x8

dataset, containing one hydrogen bond) where the parameter Uind,ct = 2.42 is obtained by

fitting only to the 8 points on the dissociation curve of the water dimer. To make sure that

the model still holds for other configurations on the water-dimer potential energy surface,

we validate it for the geometries of the water dimer in the S66a8 dataset.94 This dataset

contains angular-displaced nonequilibrium geometries for the complexes present in the S66x8

dataset. Similar plots are shown in Figure 9 (b), (c) and (d) for the water-peptide dimer

(index 04, containing one hydrogen bond), the acetamide dimer (index 21, containing two

hydrogen bonds) and the benzene-methanol dimer (index 55, containing an OH-π bond)

respectively. In general the absolute value of the SAPT induction energy is underestimated

at long intermolecular distances (small absolute values of SAPT induction energies) while

the absolute value is overestimated at short intermolecular distances (large absolute values

of SAPT induction energies). This is because at long range the SAPT induction energy

decays as a power of 1
r
, while our model shows a much faster exponential decay. This could

be solved by the inclusion of for instance inducible dipoles which are not present in our

pairwise-additive force field. In general the MEDFF induction energies for the complexes

shown in Figure 9 are in reasonable agreement with SAPT induction energies, and especially

the transferability to angular-displaced geometries (very challenging for directional hydrogen

bonds) is encouraging. We thus conclude that our induction model cannot describe all

dimers in the S66x8 dataset with just one universal value for Uind,ct; only for the subset

of dispersion-dominated dimers this is a viable approach. Other dimers such as hydrogen-

bonded complexes can still be described relatively well using our induction model, provided

one uses a value for Uind,ct specifically fitted to the dimer at hand. Plots similar to Figure 9

are included in the Supporting information for all complexes of the S66x8 dataset.
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(a) Water-Water dimer (b) Water-Peptide dimer

(c) AcNH2-AcNH2 dimer (d) Benzene-MeOH dimer

Figure 9: Correlation plots of SAPT and force-field induction energies. The parameter Uind,ct

has a different value for each complex, obtained by fitting to the 8 geometries of that complex
in the S66x8 dataset. The RMSD is computed for all geometries of that complex in S66x8
and S66a8.
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3.3 Refining parameters by calibrating to CCSD(T)/CBS energies

By comparison of SAPT2+(3) interaction energies with CCSD(T)/CBS reference values,

it became clear in Section 3.1 that the perturbation expansion is not fully converged in

SAPT2+(3), especially at shorter intermolecular distances. It is also important to note that

the total force-field energy is composed of several terms that cancel each other to a large

extent. The exchange-repulsion term is always positive, while induction, dispersion and

electrostatic are usually negative contributions. The typical behavior of all these terms is

illustrated in Figure 10 for the dissociation of two dimers selected from the S66x8 database.

An important consequence is that, in order to get reasonably accurate total energies, all the

Figure 10: Dissociation curves showing components of the SAPT energy for the water dimer
(left, hydrogen-bonded) and π − π benzene dimer (right, dispersion-dominated).

components need to be very accurate. Otherwise small relative errors on one component will

result in large relative errors on the total energy. This is why we prefer to further refine the

interaction parameters together by fitting to total interaction energies from CCSD(T)/CBS

calculations. A conventional minimization of a quadratic cost function often leads to an

ill-conditioned fitting procedure in a high-dimensional parameter space, with an imminent

danger of overfitting. Even when the number of parameters is rather modest, so-called sloppy

modes can lead to parameters sets that are unphysical.95,96 Furthermore all information

deduced from the SAPT decomposition would be lost by using a conventional quadratic
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cost function. Although the total SAPT energy may not be very accurate, the interaction

parameters of our force field fitted to individual SAPT components certainly are an excellent

first guess for further refinement of the parameters to reproduce CCSD(T)/CBS energies.

This is why we will use ridge regression in the next subsection to refine the interaction

parameters.

We note that only the difference of the interaction parameters Uexch-rep − Uind,ct is impor-

tant, as both Uexch-rep and −Uind,ct are prefactors of the same functional form (the overlap of

electron densities). We however choose to treat these parameters separately in the remain-

der, as knowing the contribution of exchange-repulsion and induction can be useful for the

physical interpretation of the interactions in the systems at hand.

In the previous sections, we have shown that our force field is particularly suited for

the dispersion-dominated complexes. We will refer to this force field as MEDFF (Monomer

Electron Density based Force Field) and will obtain universal values of the interaction pa-

rameters for MEDFF from fitting to the dispersion-dominated complexes from the S66x8

dataset. It is clear that especially the induction term needs improvement to also decribe

hydrogen-bonded and other complexes. To demonstrate that the functional form of our

force field is appropriate for those complexes, we show results for a few selected cases where

the interaction parameters are determined specifically for each case.

Ridge regression or Tikhonov regularization

A refinement of the interaction parameters can be performed by applying Tikhonov regular-

ization, sometimes also termed ridge regression, to the conventional quadratic cost function,

similar to Bayesian statistics.97–99 In this work we will use the following cost function:

χ2 =
1

2

Nd∑
n=1

(En
FF [U]− En

ref)
2

Nd

+
1

2σ2
pr

Nu∑
α=1

(
Uα − USAPT

α

USAPT
α

)2

(26)
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The cost function χ2 has dimension [energy2] (note that the parameter σpr has dimension

[energy−1] as all terms in the second summation are dimensionless). The sum over n runs

over all Nd data points in the database, while the sum over α runs over all Nu interaction

parameters, thus Nu = 3 in the case of MEDFF. The vector U contains all interaction

parameters and the force-field energy En
FF [U] of dimer n depends on these interaction pa-

rameters. The second term, that regularizes the cost function, is called the prior and its

influence is controlled by the parameter σpr. Our prior term in the cost function penalizes

large relative deviations of the interaction parameters from their values computed by fitting

to individual SAPT energy components, denoted by USAPT
α .

The parameter σpr cannot be computed a priori, instead its optimal value has to be

determined as part of the fitting procedure. This can be achieved by first computing the

estimated prediction error (EPE) as a function of σpr. The EPE can be estimated from the

training dataset by cross validation (CV):

EPECV =

(
Nd∑
n=1

(En
FF [U (Dn)]− En

ref)
2

Nd

)1/2

(27)

Here each of the Nd points in the database are in turn left out of the fitting procedure and

the point that is left out, contributes to EPECV. We denote the database without point n

as Dn. The notation U (Dn) is used to indicate that the parameters U are fitted to points

in the database Dn, in this case the database that contains all data points except for point

n. The optimal values of the parameters U depend on the value of σpr in the cost function,

and in this way also EPECV depends on σpr. We computed EPECV for several values of σpr.

In figure 11 we only consider dispersion-dominated complexes of the S66x8 database and use

the force field for all energy contributions. We see that small values of σpr result in a high

EPE because all interaction parameters are constrained to their SAPT values, which results

in large differences with CCSD(T)/CBS energies. As soon as σpr is larger than 0.1 mol kJ−1,

the EPE does not decrease appreciably. Therefore we consider the parameters that are found
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by minimizing the cost function with σpr = 0.1 mol kJ−1 to offer an optimal combination of

being physical (close to parameters from fitting to separate SAPT components) and at the

same time leading to good correspondence between CCSD(T)/CBS and force-field energies.

The fact that the EPE does not increase again, indicates that we are not overfitting the

parameters.

The values of the interaction parameters are given in Table 3 for different contributions of

the prior to the cost function. If σpr = 0.0 mol kJ−1, the prior dominates the cost function and

we obtain the values from fitting to the SAPT components separately. On the other hand, if

σpr =∞, the prior does not contribute to the cost function and we obtain parameters from

an unrestrained fit to CCSD(T)/CBS reference energies. If we choose σpr = 0.1 mol kJ−1

for MEDFF, we obtain parameters that show small relative deviations from parameters

fitted to SAPT components and at the same time result in energies close to CCSD(T)/CBS

reference values. In the remainder of this paper we will work with the parameters obtained

by minimizing the cost function with σpr = 0.1 mol kJ−1.

We note that the refinement of the parameters mainly influences the interaction energies

at rather small intermolecular separations. The resulting differences are in general smaller

than the remaining errors with respect to the reference ab initio interaction energies.

Figure 11: The EPE initially decreases as σpr increases (the prior contribution in the
cost function diminishes). However, the EPE remains nearly constant as soon as σpr ≥
0.1 mol kJ−1.
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Table 3: Optimal values of the MEDFF interaction parameters (all in atomic units) for
different prior contributions (σpr in mol kJ−1) to the cost function.

σpr [mol kJ−1] 0.0 0.1 ∞
Uexch-rep 8.13 8.43 8.27
Uind,ct 0.87 0.86 0.86
Us8 0.57 0.57 0.48

Results

With the refinement of the interaction parameters according to the cost function ( Equation

26), our force field MEDFF is completely constructed. The final values of the interaction

parameters are tabulated in Table 3 in the column with σpr = 0.1 mol kJ−1. In a first

internal validation we check whether MEDFF succeeds in reproducing the reference data that

were used in the fitting procedure. We present the RMSD with respect to CCSD(T)/CBS

interaction energies for our force field MEDFF in Table 4. We compare with the recently

developed QMDFF,18 where we note that QMDFF was fitted to B3LYP-D3/def2-QZVP

reference data for the S22 dataset, a subset of the S66 dataset. MEDFF performs very well

and can be considered chemically accurate (RMSD < 1 kcal mol−1).We show the dissociation

curves for a few selected dimers obtained with our force field MEDFF in Figure 12, and

again compare with QMDFF. Dissociation curves for dispersion-dominated complexes are

presented in the Supporting Information. These results reveal that the MEDFF force field

performs remarkably well for all dispersion-dominated complexes. The neopentane dimer

(index 36) is a notable exception, where also QMDFF fails to reproduce the dissociation

curve correctly. A detailed analysis reveals that the main source of error is in the exchange-

repulsion contribution, which is severely underestimated. This can also be seen in Figure

3, where it is clear that the value of the interaction parameter Uexch,rep fitted only to the

neopentane dimer (index 36) is significantly above average.

We now turn our attention to some dimers that are not dominated by dispersion. Just as

in Section 3.2 we will show the results for the water dimer (containing one hydrogen bond),

the water-peptide dimer (containing one hydrogen bond), the acetamide dimer (containing
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Table 4: RMSD of CCSD(T)/CBS and force-field interaction energies in kJ mol−1 for the
dispersion-dominated complexes in the S66x8 database. The definition of relative displace-
ments is discussed elsewhere.75 CCSD(T)/CBS and force-field energies are always compared
for the same geometry.

Relative displacement MEDFF QMDFF
0.90 3.7 6.2
0.95 2.2 5.3
1.00 1.5 4.7
1.05 1.1 4.2
1.10 0.9 3.8
1.25 0.6 2.7
1.50 0.4 1.5
2.00 0.2 0.5

Figure 12: Dissociation curves of the π-π pyridine dimer and the benzene-cyclopentane
complex (both dispersion-dominated complexes).
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two hydrogen bonds) and the benzene-methanol dimer (containing an OH-π bond) where we

determine the parameters specifically for those complexes using the regularization procedure

described at the beginning of this section. Again we use the 8 geometries of each complex

in the S66x8 dataset as training data for the parameters for that specific complex. The

geometries of the same complex in S66a8 is used afterwards as a validation. All results

for the 4 complexes mentioned are summarized in Figure 13. For the water dimer the

results are not entirely satisfying. A detailed analysis reveals that this is due to errors in

the electrostatic term, most likely because the MBIS model gives isotropic atomic densities

while atomic multipoles are indispensable for this specific case. For the other cases shown

here the agreement is acceptable and the transferability of the model to the angular-displace

geometries of the S66a8 dataset is remarkable. The results for all complexes are provided in

the Supporting Information.

In Table 5 we summarize the results for the force field where parameters are obtained

specifically for each complex, in contrast to our universal approach presented earlier. The

errors with respect to CCSD(T)/CBS are well below 1 kcal mol−1 thereby demonstrating

that our proposed energy expression can be used to reproduce high-level ab initio data. Of

course one has to keep in mind that to use the force field in this way for complexes not

present in the S66x8 dataset, a limited number of new ab initio calculations need to be

performed.

4 External Validation

4.1 External validation on the hsg dataset

The next step in the validation of the new force field is an assessment in how far MEDFF

succeeds in reproducing interaction energies of non-covalent complexes not included in the

S66x8 dataset. For this external validation we select the hsg dataset.100 The hsg dataset

consists of 21 interacting fragment pairs, extracted from an HIV-II protease crystal struc-
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(a) Water-Water dimer (b) Water-Peptide dimer

(c) AcNH2-AcNH2 dimer (d) Benzene-MeOH dimer

Figure 13: Correlation plots of CCSD(T) and force-field interactions energies. The param-
eters Uexch-rep, Us8 and Uind,ct have a different value for each complex, obtained by fitting
to the 8 geometries of that complex in the S66x8 dataset. The RMSD is computed for all
geometries of that complex in S66x8 and S66a8.

36



Table 5: RMSD of CCSD(T)/CBS and force-field interaction energies in kJ mol−1 for all
complexes in the S66x8 database. The force-field interaction energies are obtained using
parameters determined specifically for each separate complex.

Relative Displacement Hydrogen-bonded Dispersion-dominated Others All
0.90 1.89 0.72 1.34 1.40
0.95 0.46 0.39 0.88 0.60
1.00 1.50 0.58 1.13 1.13
1.05 2.39 0.69 1.32 1.64
1.10 2.94 0.73 1.38 1.94
1.25 3.31 0.68 1.20 2.10
1.50 2.26 0.51 0.72 1.42
2.00 0.70 0.24 0.26 0.46
All 2.15 0.59 1.09 1.45

ture with a bound ligand (indinavir). The molecules included in this dataset are, amongst

others, 2-formamidoacetamide, N-methylacetamide, benzene, toluene, ethane, propane, bu-

tane, pyridine, methanol and acetic acid. We only retain the 13 dimers that are dominated

by dispersion in this study. The values of the interaction parameters of our force field are

not reoptimized, but instead taken from the fitting for the S66x8 dataset discussed earlier.

This means that the computationally most expensive step to construct a force field for these

complexes, is a DFT calculation for the monomers. We note that a similar computational

effort is required for force fields where charges are obtained from an ab initio density (for

example from ESP fitting or partitioning).

We compare the performance of our force field with some other force fields (Quantum Me-

chanically Derived Force Field18 (QMDFF), the Generalized Amber Force Field101 (GAFF)

and the Merck Molecular Force Field102 (MMFF)) in Figure 14. It is encouraging to see that

our force field, MEDFF, performs well for dispersion-dominated complexes, even though the

molecules present in this dataset were not used to fit the interaction parameters. Also the

good performance of QMDFF for these complexes should be noted. Here we consider a

complex to be dispersion-dominated if
ESAPT

dispersion

ESAPT
electrostatics

≥ 1.7, a definition corresponding to the

classification used for the S66 dataset.75
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Figure 14: Performance of several force fields in reproducing CCSD(T)/CBS interaction
energies for the dispersion-dominated complexes of the hsg dataset.

4.2 Second virial coefficients

To further validate our force field, we used it to compute second virial coefficients for some

small alkanes and alkenes. Existing force fields can successfully predict this quantity, but

such force fields are either based on experimental data,103 on first principles calculations

on alkane and alkene dimers23 or on both.104 Here, most force-field parameters for these

systems will be derived solely from monomer computations on alkanes and alkenes. The

three interaction parameters retain the values that were determined earlier without fitting

to calculations for the dimers considered here, making this a proper validation of our method.

The second virial coefficient describes the non-ideality of a gas in a first-order approximation.

They form an interesting test case for our force field because experimental results are widely

available and they only depend on the interaction between two molecules. The second virial
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coefficient B2 can be computed as follows105

B2 = 2π

∫
(1− 〈exp [−βUinter (r)]〉) r2dr (28)

In this formula r is the distance between the centers of mass of the two molecules and β =

1
kBT

. The brackets 〈. . .〉 indicate an average over all possible configurations and orientations

of the molecules. This average is weighted with a Boltzmann factor of the intramolecular

energies of the configurations. To sample the molecular configurations with these weights, we

performed MD simulations of an isolated molecule in the NVT ensemble for 5 ns with a time

step of 0.5 fs. Where necessary, the dihedral force constants are rescaled in order to correctly

reproduce the energy barriers obtained from a dihedral scan using the same ab initio level

of theory. For instance in butane this is crucial to correctly sample gauche and trans states.

The resulting intramolecular parameters are provided in the Supporting Information. For

non-covalent interactions, MEDFF is used. Note that we neglect non-covalent interactions

between 1 − 2 and 1 − 3 neighbours. To compute the second virial coefficient, two random

configurations were selected from the MD run and one of the monomers was randomly

rotated. This procedure enables the computation of B2 by numerical integration over r with

1.5Å ≤ r ≤ 40Å in steps of 0.02Å. At each value of r, the orientational average was obtained

by calculating the interaction energy for 100 different randomly generated orientations. The

whole procedure was repeated 1 000 times with different randomly selected configurations,

in order to properly compute the average over all possible configurations.

As mentioned, our force field is expected to work well for molecules where polarization

plays a minor role. Thus, for a series of alkanes and alkenes we expect good performance.

We limit the simulations to methane, ethane, propane, butane, ethene and propene, as

for longer chains a proper intramolecular force field is strictly necessary to correctly sample

molecular configurations. In general the agreement with experiment is rather good, as shown

in Figure 15. The second virial coefficient is however slightly underestimated for the larger
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molecules propene, propane and butane. We stress again that no dimer calculations for

these molecules have to be performed to construct our force field. All necessary parameters

come from monomer calculations with addition of a few interaction parameters obtained by

fitting to reference data from the S66x8 database (accidentally ethene is present in the S66

database). This is in sharp contrast to most ab initio force fields where the parameters of

a certain molecule are fitted to reproduce interaction energies for dimers containing that

specific molecule.

Figure 15: Comparison of second virial coefficients from our force field (symbols) with ex-
periment (solid line). Experimental data for alkanes from Ref. 106, for propene from Ref.
107,108 and for ethene from Ref. 109.

4.3 Liquid properties

As a final validation, we applied the force field to compute properties of liquids. Because our

force field is derived entirely based on ab initio computations in the gas phase, condensed-

phase simulations are a stringent test to validate the assumptions made in the construction

of the force field.
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Computational details

We performed molecular dynamics simulations in the NPT-ensemble with our in-house code

YAFF.110 We used a Nosé-Hoover chain thermostat111,112 with a time constant of 100 fs

and chainlength 3, in combination with a Martyna-Tobias-Klein barostat112,113 with time

constant 1 000 fs. To treat the long-range electrostatic terms correctly, the Ewald summa-

tion38,39 was used, while other non-bonded interactions were cut off at 12 Åusing a third-order

polynomial to ensure smoothness of the potential and forces. The penetration contribution

to the electrostatic interaction (the second term in 10) is also cut off at 12 Å. This is justified

by the exponential decay of this term, which is clear from Equation 11. All simulations were

carried out with 100 molecules in a cubic box and a time step of 0.5 fs. Every MD run lasted

for 1 ns, of which the last 800 ps is used to collect data. The same force field as for the

computation of virial coefficients, with an intramolecular force field obtained using QuickFF,

was used.

Following quantities were computed based on the NPT simulation runs. The density

ρ follows trivially from ρ = M
V

, with M the mass of the system and V the volume. The

enthalpy of vaporization ∆Hvap is approximated as:

∆Hvap ≈ 〈Egas
pot〉+ kBT − 〈Eliq

pot〉 (29)

where Egas
pot is obtained from a 100 ps NVT simulation of a single molecule.

Results

In line with calculations of the second virial coefficients, we performed MD simulations of

methane, ethane, propane, butane, ethene and propene. We study liquid properties just

below the boiling point of these molecules at a pressure of 1 atm. The experimental data for

methane, ethane, propane and butane are taken from Ref. 114, for ethene from Ref. 115 and

for propene from Ref. 116. Results for the density and enthalpy of vaporization are shown
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in Table 6. In general the agreement with experiment is not very good, and we cannot claim

that our force field predicts liquid properties that are quantitatively correct. The densities

are systematically overestimated with errors ranging from +11% for ethane up to +20% for

ethene. The enthalpies of vaporization are also overestimated for all molecules we studied,

with errors ranging from +12% for ethane up to +23% for butane.

Table 6: Comparison of simulated and experimental liquid density ρ and enthalpy of vapor-
ization ∆Hvap

Molecule T [K] ρ [g l−1] ∆Hvap [kJ mol−1]
Experiment Simulation Experiment Simulation

methane 111.6 422.8 502.5 8.2 9.2
ethane 184.5 544.6 618.2 14.7 16.4

propane 231.1 581.2 684.1 18.8 22.8
butane 272.6 601.1 713.8 22.4 28.3
ethene 169.2 568.0 673.1 13.5 16.1

propene 225.4 609.1 674.0 18.5 18.8

Discusssion

In the condensed phase, many-body effects will have a much larger impact than in the gas

phase. With our pairwise-additive force field, it is impossible to properly describe many-

body effects such as induction or Axilrod-Teller-Muto dispersion. Recently, it was shown how

pairwise-additive force fields can be extended with explicit three-body terms for dispersion

and exchange.117 In the same paper, it was shown that neglect of these terms in ab initio

derived force fields can have a large impact on predicting quantities such as density and

heat of vaporization. Similar conclusions have been presented for liquid argon,118 where

the two-body force field overestimates densities with an error of 12%, while the inclusion

of three-body corrections leads to good agreement with experimental results. Indeed, the

necessity of many-body terms in general has been discussed before.119,120

In force fields based on experimental data, all these effects are included implicitly in the

parameters. We illustrate this for the case of butane with the Optimized Potential for Liq-

uid Simulations All Atom (OPLS-AA) force field.121 The parameters of the intermolecular
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potential are determined to correctly reproduce experimental liquid densities, heats of va-

porization and radial distribution functions. For butane at the boiling point, this results in

an error for the density of only −0.5% and only +1.4% for the heat of vaporization.121 These

errors are considerably smaller than errors obtained with MEDFF, +19.0% and +24.8% for

liquid density and heat of vaporization respectively. In Figure 16 however, we show that the

OPLS-AA force field fails to correctly reproduce the second virial coefficient of butane.122 As

its name suggests, OPLS-AA is not well suited to compute gas-phase properties. The fact

that MEDFF performs better at reproducing the second virial coefficient than the empiri-

cal OPLS-AA force field, indicates indeed that the empirical OPLS-AA force field implicitly

contains many-body effects (of critical importance in the condensed phase) in its parameters.

Similar conclusions are obtained for the TraPPE force field for n-alkanes.8

Figure 16: Second virial coefficient of butane. Experimental data from Ref. 106, OPLS-AA
results from Ref. 122.

We elaborate on this point by comparing our force field MEDFF with a two-body force

field derived from SAPT.117 For methane under similar conditions, the predicted relative

errors on density and heat of vaporization there are +14% and +26% respectively. By in-

cluding explicit three-body terms, the errors are reduced to +8% and +13% respectively.

Omission of repulsive three-body terms seems to result in an overestimation of liquid den-

sities and of enthalpies of vaporization. This observation provides further evidence that the
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errors in our current force field are to some extent due to its pairwise-additive character, and

that these errors can be made significantly smaller by including explicit three-body terms

in the force field. Another approach to include many-body dispersion effects is to map the

valence-electron response onto a set of atom-centered quantum harmonic oscillators inter-

acting through a dipole potential.123–125 In this work, such effects are not taken into account

yet, but this will be investigated in future extensions of the proposed method.

To obtain better results while maintaining the pairwise-additivity of our force field, we

studied the following approach. Instead of deriving the MBIS parameters from the electron

density in the gas phase, we derive them from the electron density from an ab initio cal-

culation in the condensed phase. This offers an interesting way to implicitly include some

many-body effects missing in the force field. We tested this approach for the case of methane.

The resulting density and enthalpy of vaporization are indeed in closer agreement with ex-

periment, compared to values obtained using MBIS parameters from gas-phase methane.

The error is however still considerable, possibly because the interaction parameters have

been derived using gas-phase interaction energies. In other words, not all many-body effects

will be included using the suggested procedure. Another explanation is the limited accuracy

of the two-body potential: after all MEDFF gives very good, but not perfect agreement with

the second virial coefficient of methane. More details concerning this remark are given in

Section 6 of the Supporting Information.

5 Summary and Conclusions

We present a procedure to derive pairwise-additive non-covalent force fields based on monomer

electron densities. Our approach differs from existing methods because we avoid ill-conditioned

fitting of parameters, we employ physically-motivated energy terms and we are able to use

CCSD(T)/CBS data as a reference, because a limited number of data points is sufficient to

fit the three interaction parameters. Similar approaches based on universal parameters for
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non-covalent interactions have been presented before, but they usually involve more parame-

ters. Furthermore our model is based on a distributed model of monomer electron densities,

which allows to include the electrostatic penetration effect in an elegant and simple manner.

By comparison with a SAPT decomposition of interaction energies for the S66x8 dataset,

we show that all terms of our force field correctly reproduce the reference data. For the

exchange-repulsion and dispersion contribution, the associated interaction parameter values

are shown to be universal, i. e. largely independent of which specific dimer is considered. For

the induction term, the same holds only for the dispersion-dominated dimers. For complexes

not dominated by dispersion (for example hydrogen-bonded dimers) it is necessary to deter-

mine the induction parameter on a case-specific basis, so it takes on a different value for each

complex studied. Next, the parameters for this pairwise-additive force field were refined by

combining information from a SAPT energy decomposition with CCSD(T)/CBS interaction

energies. The resulting force field is capable of accurately describing the dissociation curves

that were used to fit the parameters.

As external validation, we first tested our force field on the hsg dataset, consisting of

dimers extracted from an HIV-II protease crystal structure with a bound ligand (indinavir).

Again, our force field performs well for the dispersion-dominated complexes. Furthermore

experimental second virial coefficients for small alkanes and alkenes were successfully pre-

dicted. This is a remarkable success as the interaction parameters are not fitted specifically

for these molecules and at no point experimental input is needed. Future extensions are

needed to describe condensed-phase properties and hydrogen-bonded complexes. These ex-

tensions will cover many-body dispersion and exchange-repulsion terms, as well as a proper

non-additive polarization model to describe induction interactions.
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In the Supporting Information, we derive analytical expressions for the integrals involving s-

type Slater densities that appear in the force-field energy expression. Furthermore, we briefly

review the method that is used to compute atomic pairwise C6
AB dispersion coefficients and

show the dissociation curves for the dispersion-dominated dimers included in the S66 dataset

computed using MEDFF, QMDFF and CCSD(T)/CBS. Scatter plots showing the perfor-

mance of MEDFF with complex-specific parameters are given as well as the performance of

some polarizable models for the induction energies. Finally a discussion on using condensed-

phase electron densities to obtain the MBIS parameters is included. Additionally we also

provide text files containing geometries, force-field parameters and interaction energies for

the S66x8 and the hsg dataset and force-field parameters used to determine second virial

coefficients and liquid densities for methane, ethane, propane, butane, ethene and propene.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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